Sample records for valley riverside county

  1. 2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This is an oblique aerial view to the north, looking over the flooded fields between Chino Creek and the Santa Ana River, just upstream of the Prado Dam site. File number written on negative: R & H 80 024. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  2. Transportation decision making in San Bernardino County. Transportation decision-making in Riverside County.

    DOT National Transportation Integrated Search

    2009-08-19

    The Institute of Applied Reearch (IAR) at California Sate University, San Bernadino (CSUSB) is pleased to present its report on the 2009 Pilot Study: Trasnportation Decision-Making in the Inland Empire (Riverside and San Bernandino Counties). This st...

  3. Sections. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sections. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/15, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  4. Elevations. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/14, Rev. "B"; file drawer 77-1/102. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. photocopy on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Chuckwalla Valley multiple-well monitoring site, Chuckwalla Valley, Riverside County

    USGS Publications Warehouse

    Everett, Rhett

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, is evaluating the geohydrology and water availability of the Chuckwalla Valley, California. As part of this evaluation, the USGS installed the Chuckwalla Valley multiple-well monitoring site (CWV1) in the southeastern portion of the Chuckwalla Basin. Data collected at this site provide information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus enhancing the understanding of the geohydrologic framework of the Chuckwalla Valley. This report presents construction information for the CWV1 multiple-well monitoring site and initial geohydrologic data collected from the site.

  6. Airborne radioactivity surveys in the Mojave Desert region, Kern, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    Moxham, Robert M.

    1952-01-01

    Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.

  7. Fire prevention in California's Riverside County Headstart Project...an evaluation

    Treesearch

    William S. Folkman; Jean Taylor

    1972-01-01

    An especially designed series of fire prevention lessons were taught to preschool children in the Headstart Project in Riverside County, Calif. Their effectiveness was evaluated by observing classroom reaction and by testing the children at the end of the year. The results suggest that this type of educational approach is feasible.

  8. 78 FR 54147 - Domestic Dates Produced or Packed in Riverside County, California; Decreased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... Executive Order 12988, Civil Justice Reform. Under the marketing order now in effect, Riverside County... contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0... 54147

  9. The Prado Dam and Reservoir, Riverside and San Bernardino Counties, California

    DTIC Science & Technology

    1989-10-31

    Riverside and San Bernardino counties. It exemplifies current awareness of the need for broad based, regional planning efforts which transcend the...Pacific Ocean (Post 1928:31). En route to the sea, the river passes through two constrictions, both named Santa Ana Canyon . The Upper Santa Ana Canyon ... Canyon is located about 30 miles from the sea and is formed by the Puente Hills to the northwest and the Santa Ana Mountains to the southeast (Figure

  10. 9. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer unknown, ca. 1903-04. VIEW OF WORKERS AND BRIDGE UNDER CONSTRUCTION - Union Pacific Railroad Bridge, Spanning Santa Anna River, west of Riverside, Riverside, Riverside County, CA

  11. 17. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF MAGNOLIA AVENUE - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  12. 19. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF CITRUS EXPERIMENT STATION - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  13. 5. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF ARLINGTON HEIGHTS CITRUS GROVES - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  14. 10. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF DUFFERIN AVENUE AND VEHICLE - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  15. 11. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF WORKERS HARVESTING ORANGES IN GROVES - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  16. 18. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF MISSION INN, SEVENTH STREET ENTRANCE - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  17. 16. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF MAGNOLIA AVENUE WITH ELECTRIC STREET CAR - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  18. 75 FR 42377 - Foreign-Trade Zone 244-Riverside County, CA; Application for Reorganization Under Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... application and case record and to report findings and recommendations to the Board. Public comment is invited...--Riverside County, CA; Application for Reorganization Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ) Board (the Board) by the March Joint Powers Authority...

  19. 14. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF OSBORNE CAMP AND STABLES, ARLINGTON HEIGHTS FRUIT COMPANY - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  20. 30. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF SANTA FE RAILROAD TRACKS AND PACHAPPA AVENUE (COMMERCE STREET) LOOKING NORTH - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  1. 15. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer and date unknown. VIEW OF BARNS, STABLE AND FIELD EQUIPMENT, ARLINGTON HEIGHTS FRUIT COMPANY, EXACT LOCATION UNKNOWN - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  2. 9. Photocopy of photograph (original print at Riverside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of photograph (original print at Riverside Library, Local History Collection), photographer unknown, October 1916. FORMER 'VICTORIA BRIDGE' (HOWE DECK TRUSS SUPPORTED BY TRESTLE) LOOKING SOUTHWEST, SHOWING STREETCAR AND THATCH-ROOFED, CANTILEVERED PEDESTRIAN PLATFORM - Victoria Bridge, Spanning Tequesquite Arroyo, Riverside, Riverside County, CA

  3. 27 CFR 9.50 - Temecula Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the point where it converges with the Riverside County-San Diego County line. (3) The boundary follows the Riverside County-San Diego County line southwesterly, then southeasterly to the point where the Riverside County-San Diego County line diverges southward and the Santa Rosa Land Grant boundary continues...

  4. 27 CFR 9.50 - Temecula Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the point where it converges with the Riverside County-San Diego County line. (3) The boundary follows the Riverside County-San Diego County line southwesterly, then southeasterly to the point where the Riverside County-San Diego County line diverges southward and the Santa Rosa Land Grant boundary continues...

  5. 27 CFR 9.50 - Temecula Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the point where it converges with the Riverside County-San Diego County line. (3) The boundary follows the Riverside County-San Diego County line southwesterly, then southeasterly to the point where the Riverside County-San Diego County line diverges southward and the Santa Rosa Land Grant boundary continues...

  6. 77 FR 37762 - Domestic Dates Produced or Packed in Riverside County, CA; Order Amending Marketing Order 987

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 987 [Doc. No. AMS-FV-10-0025; FV10-987-1 FR] Domestic Dates Produced or Packed in Riverside County, CA; Order Amending Marketing Order 987 AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This final rule...

  7. 75 FR 13303 - Notice of Realty Action: Direct Sale of Public Lands in Riverside County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...; CACA 48002] Notice of Realty Action: Direct Sale of Public Lands in Riverside County, CA AGENCY: Bureau... market value of $2,102,000. DATES: Comments regarding the proposed sale must be received by the BLM on or before May 3, 2010. ADDRESSES: Written comments concerning the proposed sale should be sent to the Field...

  8. 75 FR 28650 - Notice of Realty Action: Proposed Direct Sale of Public Lands in Riverside County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... in Riverside County, California to Cocopah Nurseries, Inc. for the appraised fair market value of $77... INFORMATION: The following described public land is being proposed for direct sale to Cocopah Nurseries, Inc... isolated parcel of land which lacks legal access. The BLM is proposing a direct sale to Cocopah Nurseries...

  9. Evaluation of pyrethrin aerial ultra-low volume applications for adult Culex tarsalis control in the desert environments of the Coachella Valley, Riverside County, California.

    PubMed

    Lothrop, Hugh; Lothrop, Branka; Palmer, Mark; Wheeler, Sarah; Gutierrez, Arturo; Miller, Patrick; Gomsi, Donald; Reisen, William K

    2007-12-01

    Eliminating infected female mosquitoes by aerial applications of ultra-low volume adulticides is the intervention strategy currently recommended to interrupt the epidemic transmission of encephalitis viruses, including West Nile. The current research optimized pyrethrin formulations and evaluated their efficacy in the desert environment of the Coachella Valley, Riverside County, California. After seven trials during 2004, a 1:2 by volume mixture of Pyrenone 25-5 in BVA oil optimized particle size, droplet descent to ground level, and kill of sentinel mosquitoes. Three subsequent experiments used 3 aerial applications of the 1:2 Pyrenone 25-5:BVA oil mixture on alternate nights to suppress Culex tarsalis Coquillett host-seeking abundance over a 1-square-mile target area. Mortality patterns among caged sentinel mosquitoes varied among sites and replicate sprays, indicating variable particle dispersion at ground level within the target area. In addition, mortality was observed for sentinels up to 1 mile downwind from the target area, indicating considerable particle drift. Geometric mean abundance of host-seeking Cx. tarsalis females collected at dry ice-baited traps within each of 3 sprayed and 2 unsprayed negative control strata varied similarly over time, indicating that our sprays minimally impacted the target population or that drift combined with other factors led to widespread area control. Experiments during March and June when recruitment rates were minimal showed general area-wide suppression of abundance following spray, whereas an experiment during September when recruitment rates were high from newly flooded marshes failed to prevent an area-wide increase in abundance. Clearly additional research is needed to standardize the efficacy of aerial applications of pyrethrins in hot dry desert environments.

  10. 27 CFR 9.44 - Solano County Green Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Solano County Green Valley. 9.44 Section 9.44 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Solano County Green Valley. (a) Name. The name of the viticultural area described in this section is...

  11. Building a Commitment to Partnerships in the Coachella Valley: The Santa Rosa Mountains-A Case Study

    Treesearch

    Russell L. Kaldenberg

    1992-01-01

    The Coachella Valley is situated in eastern Riverside County, California, approximately 100 miles east of Los Angeles. During the 1980s it was one of the fastest growing areas in the nation with an annual growth rate of 8.3 percent. As open space diminished, many governing jurisdictions, and environmental and educational organizations began looking for a commitment to...

  12. View of elevated West Side (Joe Dimaggio) Highway, Riverside Park ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of elevated West Side (Joe Dimaggio) Highway, Riverside Park South, and Trump Place development from 71st to 66th streets. Shot taken from Pier 1 (Riverside Park South) looking southeast. Henry Hudson Parkway (HHP) starts just to the left of the view, one block north. 69th Street Transfer Bridge in center. - Henry Hudson Parkway, Extending 11.2 miles from West 72nd Street to Bronx-Westchester border, New York County, NY

  13. Climate controls on valley fever incidence in Kern County, California

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.; Talamantes, Jorge

    2006-01-01

    Coccidiodomycosis (valley fever) is a systemic infection caused by inhalation of airborne spores from Coccidioides immitis, a soil-dwelling fungus found in the southwestern United States, parts of Mexico, and Central and South America. Dust storms help disperse C. immitis so risk factors for valley fever include conditions favorable for fungal growth (moist, warm soil) and for aeolian soil erosion (dry soil and strong winds). Here, we analyze and inter-compare the seasonal and inter-annual behavior of valley fever incidence and climate risk factors for the period 1980-2002 in Kern County, California, the US county with highest reported incidence. We find weak but statistically significant links between disease incidence and antecedent climate conditions. Precipitation anomalies 8 and 20 months antecedent explain only up to 4% of monthly variability in subsequent valley fever incidence during the 23 year period tested. This is consistent with previous studies suggesting that C. immitis tolerates hot, dry periods better than competing soil organisms and, as a result, thrives during wet periods following droughts. Furthermore, the relatively small correlation with climate suggests that the causes of valley fever in Kern County could be largely anthropogenic. Seasonal climate predictors of valley fever in Kern County are similar to, but much weaker than, those in Arizona, where previous studies find precipitation explains up to 75% of incidence. Causes for this discrepancy are not yet understood. Higher resolution temporal and spatial monitoring of soil conditions could improve our understanding of climatic antecedents of severe epidemics.

  14. 75 FR 14465 - Notice of Inventory Completion: Riverside Metropolitan Museum, Riverside, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... made by the Riverside Metropolitan Museum professional staff in consultation with the Barona Group of... Metropolitan Museum, Riverside, CA AGENCY: National Park Service, Interior. ACTION: Notice. Notice is here... of the Riverside Metropolitan Museum, Riverside, CA. The human remains and associated funerary...

  15. Telephone equipment room, showing channel terminal bank with vacuum tubes. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Telephone equipment room, showing channel terminal bank with vacuum tubes. View to east - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  16. Soccer field at West 101st102nd streets, Riverside Park, looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Soccer field at West 101st-102nd streets, Riverside Park, looking south with railroad retaining wall in background. - Henry Hudson Parkway, Extending 11.2 miles from West 72nd Street to Bronx-Westchester border, New York County, NY

  17. Wiring repair area, southwest corner of room 227, looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Wiring repair area, southwest corner of room 227, looking east. Repair area includes soldering equipment and wire dispensing reels hanging from the ceiling - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  18. Interior, equipment room, weather support area (from July, 1968 drawing) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, equipment room, weather support area (from July, 1968 drawing) at north end of display area, looking west. Window looks south towards the main console - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  19. Detail of one way mirror, mail slot, and electrical box ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of one way mirror, mail slot, and electrical box at sentry post no. 3, top of east stairs near the end of second floor corridor - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  20. Pneumatic vacuum tube message center, basement room 23, looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pneumatic vacuum tube message center, basement room 23, looking southeast toward doorway and corridor. Note soundproof walls, pedestal flooring, and cable tray suspended from the ceiling - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  1. Statistical modeling of valley fever data in Kern County, California

    NASA Astrophysics Data System (ADS)

    Talamantes, Jorge; Behseta, Sam; Zender, Charles S.

    2007-03-01

    Coccidioidomycosis (valley fever) is a fungal infection found in the southwestern US, northern Mexico, and some places in Central and South America. The fungus that causes it ( Coccidioides immitis) is normally soil-dwelling but, if disturbed, becomes air-borne and infects the host when its spores are inhaled. It is thus natural to surmise that weather conditions that foster the growth and dispersal of the fungus must have an effect on the number of cases in the endemic areas. We present here an attempt at the modeling of valley fever incidence in Kern County, California, by the implementation of a generalized auto regressive moving average (GARMA) model. We show that the number of valley fever cases can be predicted mainly by considering only the previous history of incidence rates in the county. The inclusion of weather-related time sequences improves the model only to a relatively minor extent. This suggests that fluctuations of incidence rates (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather anomalies.

  2. 76 FR 3655 - Bunker Hill Groundwater Basin, Riverside-Corona Feeder Project, San Bernardino and Riverside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Bunker Hill Groundwater Basin, Riverside-Corona... Draft Environmental Impact Statement (SDEIR/DEIS) for the proposed Riverside-Corona Feeder (RCF) Project... Bernardino, California 92410 Corona Public Library, 650 South Main Street, Corona, California 92882 Riverside...

  3. 75 FR 8395 - Bunker Hill Groundwater Basin, Riverside-Corona Feeder Project, San Bernardino and Riverside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Bunker Hill Groundwater Basin, Riverside-Corona...) will prepare a joint EIS/EIR for the proposed Riverside-Corona Feeder Project. The public and agencies... participate in the planning, design, and construction of the Riverside-Corona Feeder Project including: (i) 20...

  4. The Economic Impact of Mohawk Valley Community College upon Oneida County.

    ERIC Educational Resources Information Center

    Sotherden, Stephen; And Others

    A comparison of the short-term economic costs of Mohawk Valley Community College (MVCC) to Oneida County (New York) with the short-term economic benefits to Oneida County for the 1977-78 MVCC fiscal year revealed that MVCC had an annual operating budget of approximately ten million dollars. Of this, 13.41% or $1,330,738 was contributed by the…

  5. Selected hydrologic data for Cedar Valley, Iron County, southwestern Utah, 1930-2001

    USGS Publications Warehouse

    Howells, James H.; Mason, James L.; Slaugh, Bradley A.

    2001-01-01

    This report presents hydrologic data collected by the U. S. Geological Survey from 1930 to 2001 with emphasis on data collected from 1997 to 2001 as part of a study of ground-water resources in Cedar Valley, Iron County, southwestern Utah (fig. 1). Data collected prior to this study are also presented to show long-term trends. Data were collected during this study in cooperation with the Central Iron County Water Conservancy District; Utah Department of Natural Resources, Division of Water Resources; Utah Department of Environmental Quality, Division of Water Quality; Cedar City; and Enoch City; as part of a study to better understand the ground-water resources of Cedar Valley and to assess possible effects of increased ground-water withdrawal on water quality. Quality of ground water in Cedar Valley is variable and water suppliers need to know if additional water resources can be developed without drawing water of lower quality into public-supply wells.Cedar Valley is in central Iron County at the transitional boundary between the Basin and Range and Colorado Plateau physiographic provinces described by Hunt (1974) and covers about 570 mi2. Additional data from wells west of Cedar Valley and to the south in the vicinity of Kanarraville in the Virgin River drainage (Colorado River Basin) adjacent to the study area are included. Cedar Valley is bounded on the east by the Markagunt Plateau and Red Hills, on the southwest by the Harmony Mountains, on the west by a complex of low hills, and on the north by the Black Mountains. Altitudes in the study area range from about 5,300 ft in Mud Spring Canyon to about 10,400 ft at Blowhard Mountain to the east.

  6. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  7. Display area, looking north towards the classified storage rooms, D.M. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Display area, looking north towards the classified storage rooms, D.M. Logistics and D.O. Offices in northwest corner. Viewing bridge is at upper left, and alert status display at upper right - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  8. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  9. Development of a Real-Time GPS/Seismic Displacement Meter: Applications to Civilian Infrastructure in Orange and Western Riverside Counties, California

    NASA Technical Reports Server (NTRS)

    Bock, Yehuda

    2005-01-01

    We propose a three-year applications project that will develop an Integrated Real-Time GPS/Seismic System and deploy it in Orange and Western Riverside Counties, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) during all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. Finally, the GPS/Seismic system will also be applicable to navigation in any environment (land, sea, or air) by combining precise real-time instantaneous GPS positioning with inertial navigation systems. This development will take place under the umbrella of the California Spatial Reference Center, in partnership with local (Counties, Riverside County Flood and Water Conservation District, Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCIGN/SCEC2), and the private sector (RBF Consulting). The project will leverage considerable funding, resources, and R&D from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to

  10. West wall, display area (room 101), view 4 of 4: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West wall, display area (room 101), view 4 of 4: northwest corner, with D.M. logistics office below (room 137), and D.O./D.D.O. offices above. Lower stairs lead to entry shown in view 13 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  11. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following

  12. Preliminary geologic map of the Perris 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.; Alvarez, Rachel M.

    2003-01-01

    Open-File Report 03-270 contains a digital geologic map database of the Perris 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. A Readme file b. The same graphic as described in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc.

  13. Interior of display area (room 101), looking south towards TV ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of display area (room 101), looking south towards TV control panel room (room 139) at far left corner. The stairway leads to the commander's quarters and the senior battle viewing bridge at top right. Control and communication consoles at the right - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  14. West wall, display area (room 101), view 1 of 4: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West wall, display area (room 101), view 1 of 4: southwest corner, showing stairs to commander's quarters and viewing bridge, windows to controller's room (room 102), south end of control consoles, and holes in pedestal floor for computer equipment cables (tape drive I/O?) - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  15. 76 FR 71124 - Caddo Valley Railroad Company-Abandonment Exemption-in Pike and Clark Counties, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 1076 (Sub-No. 1X)] Caddo Valley Railroad Company--Abandonment Exemption--in Pike and Clark Counties, AR On October 27, 2011, Caddo... 17.55 miles, in Pike and Clark Counties, Ark. (the line).\\1\\ The line traverses United States Postal...

  16. Land-use legacies from dry farming in the Park Valley area of Box Elder County

    USDA-ARS?s Scientific Manuscript database

    Last fall in this newsletter, we reported on the initiation of a study on the land-use legacies of dry farming in the Park Valley area. Land-use legacies are the long lasting impacts of historic land uses; such as, cultivation for dry farming. The Park Valley area and Box Elder County experienced ...

  17. Kirschenmann Road multi-well monitoring site, Cuyama Valley, Santa Barbara County, California

    USGS Publications Warehouse

    Everett, R.R.; Hanson, R.T.; Sweetkind, D.S.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works, is evaluating the geohydrology and water availability of the Cuyama Valley, California (fig. 1). As part of this evaluation, the USGS installed the Cuyama Valley Kirschenmann Road multiple-well monitoring site (CVKR) in the South-Main subregion of the Cuyama Valley (fig. 1). The CVKR well site is designed to allow for the collection of depth-specific water-level and water-quality data. Data collected at this site provides information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus, enhancing the understanding of the geohydrologic framework of the Cuyama Valley. This report presents the construction information and initial geohydrologic data collected from the CVKR monitoring site, along with a brief comparison to selected supply and irrigation wells from the major subregions of the Cuyama Valley (fig. 1).

  18. 7. WEST DAM STRUCTURE, LOOKING NORTHWEST. QUARRIES AT BOTTOM; OUTLET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WEST DAM STRUCTURE, LOOKING NORTHWEST. QUARRIES AT BOTTOM; OUTLET STRUCTURE UNDER CONSTRUCTION CUTTING INTO HILL AT TOP OF PICTURE. - Eastside Reservoir, Diamond & Domenigoni Valleys, southwest of Hemet, Hemet, Riverside County, CA

  19. Main doorway to the display area, straight ahead. Double doors ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main doorway to the display area, straight ahead. Double doors with "top secret" alert lights, coded doorbell, and one way mirror. Stairway to second floor and basement is at the left, as well as the secondary entrance at the east part of the north front. View to east - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  20. 76 FR 71125 - Caddo Valley Railroad Company-Abandonment Exemption-in Clark, Pike, and Montgomery Counties, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 1076X] Caddo Valley Railroad Company--Abandonment Exemption--in Clark, Pike, and Montgomery Counties, AR Caddo Valley Railroad... milepost 479.2, at the end of the line near Birds Mill, a distance of 32.2 miles, in Clark, Pike, and...

  1. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  2. Calleguas Creek Simi Valley to Moorpark Ventura County, California.

    DTIC Science & Technology

    1976-06-01

    Valley and Moorpark; (2) the elimination of flood hazard to health and safety; (3) availability of 185 acres of flood plain for urban growths ; (4...again. The outlook is high for continued production. 22. In the study area, most of the oil and gas fields are along the Oak Ridge-Santa Susana fault and...the Simi field. The Simi oil fields are relatively large. 23. Most of the commercial sand and gravel produced in Ventura County in 1972 was from the

  3. 76 FR 68830 - Mississippi & Skuna Valley Railroad, LLC-Abandonment Exemption-in Yalobusha and Calhoun Counties, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... & Skuna Valley Railroad, LLC--Abandonment Exemption-- in Yalobusha and Calhoun Counties, MS On October 18... Yalobusha and Calhoun Counties, Miss.\\1\\ The line traverses United States Postal Service Zip Codes 38915 and... no traffic had moved over the line since April 17, 2008. MSV states that, based on information in its...

  4. Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 2 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-6. Scale one-eighth inch to one foot. 29x41 inches. pencil on paper 405 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Roof plan, Combat Operations Center, Building No. 2605. (Also includes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof plan, Combat Operations Center, Building No. 2605. (Also includes a typical roof section, with new fiberglass and urethane insulation layers.) By Federal Builders, 575 Carreon Drive, Colton, California. Sheet 1 of 1, dated 18 May 1992. Scale one-eighth inch to one foot. 24x36 inches. ink on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  6. Fogwater chemistry at Riverside, California

    NASA Astrophysics Data System (ADS)

    Munger, J. William; Collett, Jeff; Daube, Bruce; Hoffmann, Michael R.

    Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH 4+, NO 3-, and SO 42-. Gaseous NH 3 was frequently present at levels equal to or exceeding the aerosol NH 4+. Maximum level were 3800, 3100, 690 and 4540 neq m -3 for NH 4+, NO 32- and NH 3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH 4+, NO 3- and SO 42-, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH 2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient. The chemistry at Riverside is controlled by the balance between HNO 3 production from NO x emitted throughout the Los Angeles basin and NH 3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH 3 source. Continued formation of HNO 3(g) in this air mass eventually depletes the residual NH 3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH 3 levels would decrease the total NO 3- in the atmosphere, but nearly all remaining NO 3- would exist as HNO 3. Fogwater in the basin would be uniformly acidic.

  7. Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California

    NASA Astrophysics Data System (ADS)

    Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of

  8. Virgin Valley opal district, Humboldt County, Nevada

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  9. 75 FR 877 - Cancellation of the South Valley Facilities Expansion Project-Clark County, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... DEPARTMENT OF INTERIOR Bureau of Reclamation Cancellation of the South Valley Facilities Expansion Project-- Clark County, NV AGENCY: Bureau of Reclamation, Interior. ACTION: Cancellation of Notice of Intent to prepare the Environmental Impact Statement. SUMMARY: The Bureau of Reclamation, together with...

  10. Conference room 211, adjacent to commander's quarters, with vault door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Conference room 211, adjacent to commander's quarters, with vault door at right. Projection area at center is equipped with automatic security drapes. Projection room uses a 45 degree mirror to reflect the image onto the frosted glass screen. Door on far left leads to display area senior battle staff viewing bridge, and the commander's quarters - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  11. High-resolution seismic reflection/refraction imaging from Interstate 10 to Cherry Valley Boulevard, Cherry Valley, Riverside County, California: implications for water resources and earthquake hazards

    USGS Publications Warehouse

    Gandhok, G.; Catchings, R.D.; Goldman, M.R.; Horta, E.; Rymer, M.J.; Martin, P.; Christensen, A.

    1999-01-01

    This report is the second of two reports on seismic imaging investigations conducted by the U.S. Geological Survey (USGS) during the summers of 1997 and 1998 in the Cherry Valley area in California (Figure 1a). In the first report (Catchings et al., 1999), data and interpretations were presented for four seismic imaging profiles (CV-1, CV-2, CV-3, and CV-4) acquired during the summer of 1997 . In this report, we present data and interpretations for three additional profiles (CV-5, CV-6, and CV-7) acquired during the summer of 1998 and the combined seismic images for all seven profiles. This report addresses both groundwater resources and earthquake hazards in the San Gorgonio Pass area because the shallow (upper few hundred meters) subsurface stratigraphy and structure affect both issues. The cities of Cherry Valley and Beaumont are located approximately 130 km (~80 miles) east of Los Angeles, California along the southern alluvial fan of the San Bernardino Mountains (see Figure 1b). These cities are two of several small cities that are located within San Gorgonio Pass, a lower-lying area between the San Bernardino and the San Jacinto Mountains. Cherry Valley and Beaumont are desert cities with summer daytime temperatures often well above 100 o F. High water usage in the arid climate taxes the available groundwater supply in the region, increasing the need for efficient management of the groundwater resources. The USGS and the San Gorgonio Water District (SGWD) work cooperatively to evaluate the quantity and quality of groundwater supply in the San Gorgonio Pass region. To better manage the water supplies within the District during wet and dry periods, the SGWD sought to develop a groundwater recharge program, whereby, excess water would be stored in underground aquifers during wet periods (principally winter months) and retrieved during dry periods (principally summer months). The SGWD preferred a surface recharge approach because it could be less expensive than a

  12. Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 1 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-5. Last revised 31 August 1968?. Scale one-eighth inch and one-quarter inch to one foot. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  13. Preliminary geologic map of the Elsinore 7.5' Quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Weber, F. Harold; Digital preparation: Alvarez, Rachel M.; Burns, Diane

    2003-01-01

    Open-File Report 03-281 contains a digital geologic map database of the Elsinore 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in els_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  14. Ground-water conditions in Avra Valley, Pima and Pinal Counties, Arizona -1985

    USGS Publications Warehouse

    Cuff, Melinda K.; Anderson, S.R.

    1987-01-01

    Avra Valley is a north-trending alluvial basin about 15 mi west of Tucson in Pima and Pinal Counties in south-central Arizona. The valley includes about 520 sq mi of which about 100 sq mi is in the San Xavier Indian Reservation. The basin is bounded on the east by the Tortolita, Tucson, and Sierrita Mountains and on the west by the Picacho, Silverbell, and Roskruge Mountains. The climate of the valley is semiarid, the average annual precipitation ranges from 8 to 12 in., and the average annual lake evaporation ranges from 58 to 62 in. Two major ephemeral streams--Santa Cruz River and Brawley Wash--drain the area. Santa Cruz River and Brawley Wash and their tributaries provide a source of recharge to an extensive alluvial aquifer that underlies the valley floor. Since 1940, the amount of groundwater pumped from the aquifer has been greater than the amount of natural recharge from infiltration and underflow. Overdraft of the aquifer resulted in substantial water level declines throughout the valley. Until 1969, use of groundwater in Avra Valley was for irrigation. Since 1969, the city of Tucson has pumped and transported groundwater for municipal use in the adjacent Tucson basin from lands that were purchased and retired from agriculture. The purpose of this report is to describe groundwater conditions in Avra Valley as of 1985. A brief discussion of the geohydrologic setting and history of groundwater development are given to define aquifer characteristics, changes in groundwater levels, and groundwater pumpage since 1940. (Lantz-PTT)

  15. 76 FR 1150 - City of Riverside, CA; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ11-7-000] City of Riverside, CA; Notice of Filing December 30, 2010. Take notice that on December 20, 2010, the City of Riverside, California (Riverside) filed a Petition for Declaratory Order, Request for waiver of Sixty-day...

  16. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    USGS Publications Warehouse

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  17. 76 FR 30754 - Notice of Availability of the Draft Environmental Impact Statement: Riverside and Orange Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Corona Civic Center Gymnasium, 502 S. Vicentia, Corona, California 92882, between 3:30 p.m. and 7:30 p.m... Transportation Commission, 4080 Lemon Street, 3rd Floor, Riverside, CA 92501, the Corona Public Library, 650 S. Main Street, Corona, CA 92882, the City of Corona Public Works Department, 400 S. Vicentia Ave., 2nd...

  18. Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2012-01-01

    The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New York–Pennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the east–west valley section at the Broome County–Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested. Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers. Current (2012) use of

  19. Utility Building Plan, elevations and sections. March Air Force Base, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Utility Building Plan, elevations and sections. March Air Force Base, Riverside, California, COmbat Operations Center, Utility Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 57, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/57, Rev. "B"; file drawer 1290. Last revised 3 October 1966 "drawings updated." Various scales. 29 x 41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Utility Building, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  20. Commission Review of a Proposal by Riverside Community College District To Convert the Norco Educational Center to College Status. A Report to the Governor and Legislature in Response to a Request from the California Community College Board of Governors. Commission Report 04-02

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2004

    2004-01-01

    This report reviews a proposal by the Riverside Community College District and the California Community College Chancellor's Office to convert the Norco Education Center to college status. The center is situated in the western section of Riverside County on 144 acres of land that had been occupied by the U.S. Navy until it was donated by the…

  1. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine

  2. Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses : Evaluation Results

    DOT National Transportation Integrated Search

    2006-11-23

    This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California. San Mateo County Transit District (SamTrans) in San Carlos, California, is a partner...

  3. 75 FR 59285 - Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R8-R-2010-N169; 80230-1265-0000-S3] Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife Refuge and Coachella Valley National Wildlife Refuge), Imperial and Riverside Counties, CA Correction Notice...

  4. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  5. First floor plan. (Also includes a door schedule and door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    First floor plan. (Also includes a door schedule and door elevations). March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 12, approved March 1962; specifications no. OCI-62-66; D.O. series AW 1596/12, Rev. "C"; file drawer 1290. Last revised 25 August 1975. Scale one-eighth inch to one foot. 28.5x 41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  6. 78 FR 936 - City of Riverside, California; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ13-5-000] City of Riverside, California; Notice of Filing Take notice that on December 17, 2012, City of Riverside, California [[Page 937

  7. Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses : Preliminary Evaluation Results

    DOT National Transportation Integrated Search

    2006-03-23

    This report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California. San Mateo County Transit District (SamTrans) in San Carlos, Calif...

  8. 77 FR 47918 - Chicago Central and Pacific Railroad Company-Abandonment Exemption-in Cook County, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Central and Pacific Railroad Company--Abandonment Exemption--in Cook County, IL Chicago Central and... North Riverside, Cook County, Ill. The line traverses United States Postal Service Zip Codes 60546 and... system. A copy of any petition filed with the Board should be sent to CCP's representative: Thomas J...

  9. Refraction seismic studies in the Miami River, Whitewater River, and Mill Creek valleys, Hamilton and Butler Counties, Ohio

    USGS Publications Warehouse

    Watkins, Joel S.

    1963-01-01

    Between September 17 and November 9, 1962, the U.S. Geological Survey, in cooperation with Ohio Division of Water, Miami Conservancy District, and c,ty of Cincinnati, Ohio, co.,:ducted a refraction seismic study in Hamilton and Butler Counties, southwest Ohio. The area lies between Hamilton, Ohio, and the Ohio River and includes a preglacial valley now occupied by portions of the Miami River, Whitewater River, and Mill Creek. The valley is partially filled with glacial debris which yields large quantities of good-quality water. The object of the study was to determine the thickness of these glacial deposits and the shape of the preglacial valley.

  10. 7 CFR 301.89-3 - Regulated areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... That portion of Riverside County known as the Palo Verde Valley (in part) bounded by a line drawn as... and −114.691197 longitude; then, southwest along the unnamed canal to the shoreline of Palo Verde Lagoon; then, northeast along the shoreline of Palo Verde Lagoon to its intersection with Rannells Drain...

  11. Family Child Care Home Education Network

    ERIC Educational Resources Information Center

    Russom, Dianne

    2006-01-01

    This article features the Family Child Care Home Education Network (FCCHEN), a groundbreaking program operated by the Riverside County Office of Education's Division of Children and Family Services. The FCCHEN is a network of family child care homes located throughout the Coachella Valley that receive funding for subsidized child care through an…

  12. Preliminary report on geology and ground water of the Pajaro Valley area, Santa Cruz and Monterey counties, California

    USGS Publications Warehouse

    Muir, K.S.

    1972-01-01

    The Pajaro Valley area, California, covering about 120 square miles, extends from the southern part of Santa Cruz County to several miles south of the county line into Monterey County. It borders the Pacific Ocean on the west and the Santa Cruz Mountains on the east. The city of Watsonville is the largest center of population. Deposits that range in age from Pliocene to Holocene make up the ground-water reservoir. These include, from oldest to youngest, the Purisima Formation, Aromas Red Sands of Allen (1946), terrace deposits, alluvium, and dune sand. These deposits underlie an area of about 80 square miles and have a maximum thickness of about 4,000 feet. The alluvium yields most of the water pumped from wells in the area. Pre-Pliocene rocks underlie and form the boundaries of the ground-water reservoir. These rocks contain ground water in fractures and in sandstone beds. However, they are not an important source of ground water. There is close continuity between the geology of the Pajaro Valley area and that of the Soquel-Aptos area, which is contiguous on the north. Ground water in the Pajaro Valley area is derived from three sources: (1) Precipitation within the Pajaro Valley area that reaches the ground-water body by direct infiltration or by seepage from streams, (2) seepage from the Pajaro River as it crosses the Pajaro Valley carrying runoff which originates upstream from the valley, and (3) precipitation in the Soquel-Aptos area that infiltrates and then moves southeastward at depth into the Pajaro Valley area. Ground water in most wells in the Pajaro Valley area occurs under confined (artesian) conditions; the only exception is ground water in the upper, near-surface part of the alluvium and that in the dune sand. It moves south from the north part of the area and southwest away from the San Andreas fault toward and out under Monterey Bay. In the south part of the area, ground-water movement is almost due west. The San Andreas fault probably is the only

  13. 75 FR 81604 - City of Riverside, California; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ11-5-000] City of Riverside, California; Notice of Filing December 21, 2010. Take notice that on December 13, 2010, the City of Riverside, California submitted its annual revision to its Transmission Revenue Balancing Account...

  14. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  15. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  16. 77 FR 36994 - Questa Ranger District, Carson National Forest; Taos County, NM; Taos Ski Valley's 2010 Master...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... County, NM; Taos Ski Valley's 2010 Master Development Plan--Phase 1 Projects; Additional Filings AGENCY... environmental impact statement for a proposal to authorize several (Phase 1) projects included in the Taos Ski... (ROD) are expected in July 2012. Change in Responsible Official: In addition, this notice changes the...

  17. 78 FR 77448 - City of Riverside, California; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ14-2-000] City of Riverside, California; Notice of Filing Take notice that on December 11, 2013, City of Riverside, California submitted its tariff filing per 35.28(e): 2014 Transmission Revenue Balancing Account Adjustment/Existing...

  18. 1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' This is an oblique aerial view to the northeast taken from the northeast extremity of the canyon, showing, in the middle distance, the confluence of Chino Creek and the Santa Ana River, site of the future Prado Dam. File number written on negative: R & H 80 026. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. Preliminary Geologic Map of the Hemet 7.5' Quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jon C.

    2005-01-01

    The Hemet 7.5' quadrangle is located near the eastern edge of the Perris block of the Peninsular Ranges batholith. The northeastern corner of the quadrangle extends across the San Jacinto Fault Zone onto the edge of the San Jacinto Mountains block. The Perris block is a relatively stable area located between the Elsinore Fault Zone on the west and the San Jacinto Fault Zone on the east. Both of the fault zones are active; the San Jacinto being the seismically most active in southern California. The fault zone is obscured by very young alluvial deposits. The concealed location of the San Jacinto Fault Zone shown on this quadrangle is after Sharp, 1967. The geology of the quadrangle is dominated by Cretaceous tonalite formerly included in the Coahuila Valley pluton of Sharp (1967). The northern part of Sharp's Coahuila Valley pluton is separated out as the Hemet pluton. Tonalite of the Hemet pluton is more heterogeneous than the tonalite of the Coahuila Valley pluton and has a different sturctural pattern. The Coahuila Valley pluton consists of relatively homogeneous hornblende-biotite tonalite, commonly with readily visible large euhedral honey-colored sphene crystals. Only the tip of the adjacent Tucalota Valley pluton, another large tonalite pluton, extends into the quadrangle. Tonalite of the Tucalota Valley pluton is very similar to the tonalite of the Coahuila Valley pluton except it generally lacks readily visible sphene. In the western part of the quadrangle a variety of amphibolite grade metasedimentary rocks are informally referred to as the rocks of Menifee Valley; named for exposures around Menifee Valley west of the Hemet quadrangle. In the southwestern corner of the quadrangle a mixture of schist and gneiss marks a suture that separated low metamorphic grade metasedimentary rocks to the west from high metamorphic grade rocks to the east. The age of these rocks is interpreted to be Triassic and the age of the suturing is about 100 Ma, essentially the

  20. Salton Seismic Imaging Project Line 6: San Andreas Fault and Northern Coachella Valley Structure, Riverside and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone

  1. Hydrologic reconnaissance of the Wah Wah Valley drainage basin, Millard and Beaver Counties, Utah

    USGS Publications Warehouse

    Stephens, Jerry C.

    1974-01-01

    The Wah Wah Valley drainage basin is an area of about 600 square miles (1,550 km2) in Millard and Beaver Counties in southwestern Utah. Surface-water supplies of the area are negligible--total runoff averages about 7,800 acre-feet (9.62 hm3) annually, all streams are ephemeral or intermittent, and surface storage is negligible. Evaporation and transpiration within the basin consume more than 97 percent of total annual precipitation. There is no surface outflow.

  2. Geochemistry of soils from the San Rafael Valley, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Folger, Helen W.; Gray, Floyd

    2013-01-01

    This study was conducted to determine whether surficial geochemical methods can be used to identify subsurface mineraldeposits covered by alluvium derived from surrounding areas. The geochemical investigation focused on an anomalous geo-physical magnetic high located in the San Rafael Valley in Santa Cruz County, Arizona. The magnetic high, inferred to be asso-ciated with a buried granite intrusion, occurs beneath Quaternary alluvial and terrace deposits. Soil samples were collected at a depth of 10 to 30 centimeters below land surface along transects that traverse the inferred granite. The samples were analyzed by inductively coupled plasma-mass spectrometry and by the partial-leach Mobile Metal Ion™ method. Principal component and factor analyses showed a strong correlation between the soils and source rocks hosting base-metal replacement deposits in the Harshaw and Patagonia Mining Districts. Factor analysis also indicated areas of high metal concentrations associated with the Meadow Valley Flat. Although no definitive geochemical signature was identified for the inferred granite, concentrations otungsten and iron in the surrounding area were slightly elevated.

  3. Second floor plan. (Also includes a roof plan and finish ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Second floor plan. (Also includes a roof plan and finish schedule.) March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 13, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/13, Rev. "C"; file drawer 1290. Last revised 7 February 1984. Roof plan scale one-sixteenth inch to one foot; second floor plan scale one-eighth inch to one foot. 28.75x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  4. Hydrogeologic Appraisal of the Valley-Fill Aquifer in the Port Jervis Trough, Sullivan and Ulster Counties, New York

    USGS Publications Warehouse

    Reynolds, Richard J.

    2007-01-01

    The nature and extent of valley-fill aquifers in the Port Jervis Trough was evaluated for a 16 mile section of this valley from the Orange-Sullivan County line near Westbrookville to the village of Napanoch in Ulster County as part of the U.S. Geological Survey's Detailed Aquifer Mapping Program in New York State. The principal aquifer in the Port Jervis Trough is a 50 feet thick outwash aquifer that extends from the Phillipsport Moraine near Summitville, southward through the study area to Port Jervis, N.Y. Previous studies had estimated as much as 500 feet of saturated drift in parts of the Trough, but new well data show that much of the valley fill consists of fine-grained lacustrine sediments. Drillers' logs show that the outwash aquifer south of Summitville is underlain by as much as 275 feet of lacustrine silt and clay. North of the Phillipsport Moraine, three large glaciolacustrine deltas that were built into Glacial Lake Wawarsing provide some local and discontinuous confined aquifers through their coarser bottomset beds. Elsewhere in the Trough, collapsed and buried portions of kame deltas and terraces provide local confined aquifers. The outwash aquifer appears to be very transmissive, as evidenced by the high specific capacity of 130 gallons per minute per foot [(gal/min)/ft] of a commercial test well screened in the aquifer.

  5. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado

  6. Cone penetration tests and soil borings at the Mason Road site in Green Valley, Solano County, California

    USGS Publications Warehouse

    Bennett, Michael J.; Noce, Thomas E.; Lienkaemper, James J.

    2011-01-01

    In support of a study to investigate the history of the Green Valley Fault, 13 cone penetration test soundings and 3 auger borings were made at the Mason Road site in Green Valley, Solano County, California. Three borings were made at or near two of the cone penetration test soundings. The soils are mostly clayey with a few sandy layers or lenses. Fine-grained soils range from low plasticity sandy lean clay to very plastic fat clay. Lack of stratigraphic correlation in the subsurface prevented us from determining whether any channels had been offset at this site. Because the soils are generally very clayey and few sand layers or lenses are loose, the liquefaction potential at the site is very low.

  7. Reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Arizona

    USGS Publications Warehouse

    Metzger, Donald G.

    1957-01-01

    In accordance with a request from its cooperating agency, the Arizona State Land Department, the U.S. Geological Survey has made a brief reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Ariz., to determine the probable hydrologic effects of a proposed dam on Lynx Creek. The construction of this dam has been proposed by the Arizona Game and Fish Department, for recreational and fish-cultural purposes. Data on the geology of the area were furnished by Mrs. Medora M. Krieger, geologist, Geologic Division, U.S. Geological Survey, and the map was prepared by Floyd R. Twenter, geologist, Ground Water Branch.

  8. Ground-water potentialities in the Crescent Valley, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Zones, Christie Paul

    1961-01-01

    The Crescent Valley is an intermontane basin in Eureka and Lander Counties, just south of the Humboldt River in north-central Nevada. The valley floor, with an area of about 150 square miles, has a shape that more nearly resembles a Y than a crescent, although the valley apparently was named after the arc described by its southern part and northeastern arm. The northwestern arm of the Y extends northward to the small railroad town of Beowawe on the Humboldt River; the northeastern arm lies east of the low Dry Hills. The leg of the Y extends southwestward toward a narrow gap which separates the Crescent Valley from the Carico Lake Valley. The total drainage area of the Crescent Valley-about 700 square miles--includes also the slopes of the bordering mountain ranges: the Shoshone Range to the west, the Cortez Mountains to the east, and the Toiyabe Range to the south. The early history of the Crescent Valley was dominated by mining of silver and gold, centered at Lander in the Shoshone Range and at Cortez and Mill Canyon in the Cortez Mountains, but in recent years the only major mining activity has been at Gold Acres; there open-pit mining of low-grade gold ore has supported a community of about 200. For many years the only agricultural enterprises in the valley were two cattle ranches, but recently addition lands have been developed for the raising of crops in the west-central part of the valley. The average annual precipitation upon the floor of the Crescent Valley is probably less than 7 inches, of which only a little more than 1 inch formally falls during the growing season (from June through September). This is far less than the requirement of any plants of economic value, and irrigation is essential to agricultural development. Small perennial streams rising in the mountains have long been utilized for domestic supply, mining and milling activities of the past, and irrigation, and recently some large wells have been developed for irrigation. In 1956 the total

  9. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  10. RadNet Air Data From Riverside, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Riverside, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. Weather support area, floor plan and details. ("Alter COC, Bldg. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Weather support area, floor plan and details. ("Alter COC, Bldg. 2605, Weather Support Area, Floor Plan & Details" Also includes a site plan and a finish schedule. The exact location of this construction is obscure, but it appears to be the enclosure of space at the north end of room 101, the "Display Area" or "War Room") Strategic Air Command, Civil Engineering. Drawing no. B-1081, sheet no. 1 of 2, 9 July 1968; project no. MAR-132-8; CE-562; file drawer 2605-9, also 1315. Various scales. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  12. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley... boundary proceeds in a straight line westerly to the town of Dry Ridge in Grant County, Kentucky...

  13. Equipment Location Plan, partial basement plan. (Includes identification of each ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial basement plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southeast part of the basement.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L DPC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 100, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/100, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  14. Equipment Location Plan, partial first floor plan. (Includes identification of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial first floor plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southwest part of the first floor.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L EDTCC/EDLCC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 85, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/85, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  15. Updated computations and estimates of streamflows tributary to Carson Valley, Douglas County, Nevada, and Alpine County, California, 1990-2002

    USGS Publications Warehouse

    Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.

    2004-01-01

    Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are

  16. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Price, Don; Waddell, K.M.

    1969-01-01

    This report is the third in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data for Rush Valley, to provide an evaluation of the potential water-resources development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  17. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Waddell, K.M.

    1968-01-01

    This report is the second in a series by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Skull Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understandingof the valley's water supply.

  18. Analytical results and sample locality map of stream-sediment, heavy mineral-concentrate, rock and water samples from the Skedaddle (CA-020- 612) and Dry Valley Rim (CA-020-615) Wilderness Study Areas, Lassen County, California, and Washoe County, Nevada

    USGS Publications Warehouse

    Adrian, B.M.; Frisken, J.G.; Bradley, L.A.; Taylor, Cliff D.; McHugh, J.B.

    1987-01-01

    In the summer of 1985, the U.S. Geological Survey conducted a reconnaissance geochemical survey of the Skedaddle (CA-020-612) and Dry Valley Rim (CA-020-615) Wilderness Study Areas in Lassen County, California, and Washoe County, Nevada.Skedaddle and Dry Valley Rim are contiguous wilderness study areas (WSA) located in the eastern part of the Modoc Plateau in Lassen County, northeastern California, and Washoe County, northwestern Nevada (fig. 1). The Skedaddle study area encompasses 39,420 acres and the Dry Valley Rim study area encompasses 54,480 acres of Bureau of Land Management administered public land about 25 mi east of Susanville, California. The Skedaddle study area is bounded on the east by the Skedaddle road, on the north by the Smoke Creek Road, on the south by the Wendel road, and on the west by the rim west of Wendel Canyon. The Dry Valley Rim study area is bounded on the east by the lower Smoke Creek road, the Dry Valley road, and the Pipe Springs Road. The northern boundary is the Smoke Creek Ranch road, the southern boundary the Wendel road, and the western boundary the east-side Skedaddle road. Access to the study areas is provided by several light-duty dirt roads and ways that join the boundary roads. Elevations range from 3,800 (1158 m) to 7,552 ft (2302 m). Steep rim rock walls and talus-covered canyons are common in the eastern third of the Dry Valley Rim study area, and the western third of the Skedaddle study area, while the majority of both study areas is gradually sloping, covered only by sparse sagebrush. Existing geologic maps that cover the two study areas consist of Lydon and others (I960), Bonham (1969), and Diggles and others (1986).The Skedaddle Wilderness Study Area consists of two parallel ridges, the Skedaddle Mountains and the Amedee Mountains. The ridges bound the Wendel and Spencer basins, an area of bleached and silicified rocks. Dry Valley Rim is a 17-mi (5.2 m)-long north-south-trending fault block that is situated 1,500 ft

  19. 78 FR 35314 - Availability of Final Environmental Impact Statement; Bunker Hill Groundwater Basin, Riverside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [A10-1999-6000-100-00-0-0-3, 3501000] Availability of Final Environmental Impact Statement; Bunker Hill Groundwater Basin, Riverside-Corona Feeder... proposed Riverside-Corona Feeder Project. DATES: The Bureau of Reclamation will not make a decision on the...

  20. Chemical analyses for selected wells in San Joaquin County and part of Contra Costa County, California

    USGS Publications Warehouse

    Keeter, Gail L.

    1980-01-01

    The study area of this report includes the eastern valley area of Contra Costa County and all of San Joaquin County, an area of approximately 1,600 square miles in the northern part of the San Joaquin Valley, Calif. Between December 1977 and December 1978, 1,489 wells were selectively canvassed. During May and June in 1978 and 1979, water samples were collected for chemical analysis from 321 of these wells. Field determinations of alkalinity, conductance, pH, and temperature were made, and individual constituents were analyzed. This report is the fourth in a series of baseline data reports on wells in the Sacramento and San Joaquin Valleys. (USGS)

  1. Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.; Maurer, Douglas K.

    1981-01-01

    Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)

  2. Potential for aquifer compaction, land subsidence, and earth fissures in Avra Valley, Pima and Pinal counties, Arizona

    USGS Publications Warehouse

    Anderson, S.R.

    1987-01-01

    Avra Valley is a large north-trending alluvial basin about 15 mi west of Tucson in Pima and Pinal Counties, Arizona. The climate of Avra Valley is semiarid, and the average annual precipitation ranges from 8 to 12 in. Two major ephemeral streams, the Santa Cruz River and Brawley Wash, drain the area. These streams and their tributaries provide a source of recharge to an extensive alluvial aquifer that underlies the valley floor. The aquifer consists of interbedded gravel, sand, silt, and clay and contains a vast quantity of groundwater. The physiography, fertile soil, and mild climate of Avra Valley make it an ideal environment for agriculture and urban development. Although the aquifer is replenished by natural recharge and underflow, rates of recharge and underflow have not kept pace with the rate of pumping. Pumping has exceeded recharge for several decades, resulting in a lowering of groundwater levels throughout most of the valley. In places, water level declines have resulted in small amounts of aquifer compaction and land subsidence. Earth fissures, some of which may be the result of localized differential subsidence, also have been observed in the valley. Geohydrologic characteristics of Avra Valley that may contribute to potential aquifer compaction, land subsidence, and earth fissures are described. The quantitative evaluation of potential land subsidence in this report is presented as an interim land- and water-use planning tool pending acquisition and study of additional data. Because of data limitations, the evaluation is made on the assumption that future rates of compaction and subsidence in Avra Valley will be similar to those in the Eloy-Picacho area. The evaluation also assumes that water level declines in the aquifer will continue. Several factors that may reduce groundwater withdrawals, and thus the potential for compaction and subsidence in Avra Valley, were not evaluated. These factors include the enactment of the 1980 Arizona Ground

  3. Hydrogeology and water quality of the Shell Valley Aquifer, Rolette County, North Dakota

    USGS Publications Warehouse

    Strobel, M.L.

    1997-01-01

    The Shell Valley aquifer is the sole source of water for the city of Belcourt and the primary source of water for most of the Turtle Mountain Indian Reservation. The Turtle Mountain Band of Chippewa Indians is concerned about the quantity and quality of water in the Shell Valley aquifer, which underlies about 56 square miles in central Rolette County and has an average saturated thickness of about 35 feet. Water levels across most of the Shell Valley aquifer fluctuate with variations in precipitation but generally are stable. Withdrawals from the north well field decreased slightly during 1976-95, but withdrawals from the south well field increased during 1983-95. Water levels in the south well field declined as withdrawals increased. The average decline during the last 8 years was about 1.75 feet per year. The water level has reached the well screen in at least one of the production wells. Most of the water in the aquifer is a bicarbonate type and has dissolved-solids concentrations ranging from 479 to 1,510 milligrams per liter. None of the samples analyzed had detectable concentrations of pesticides, but hydrocarbons were detected in both ground- and surfacewater samples. Polycyclic aromatic hydrocarbons (PAH) were the most frequently detected hydrocarbons. Benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) also were detected.Generally, the Shell Valley aquifer is an adequate source of water for current needs, but evaluation of withdrawals in relation to a knowledge of aquifer hydrology would be important in quantifying sustainable water supplies. Water quality in the aquifer generally is good; the Turtle Mountain Band of Chippewa Indians filters the water to reduce concentrations of dissolved constituents. Hydrocarbons, although present in the aquifer, have not been quantified and may not pose a general health risk. Further analysis of the quantity and distribution of the hydrocarbons would be useful

  4. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    USGS Publications Warehouse

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially

  5. Rogue Community College Student Satisfaction Survey, Winter 2001: Management Report. Redwood and Riverside Campuses.

    ERIC Educational Resources Information Center

    Wild, Nancy

    This document is a 2001 report on student satisfaction at the Redwood and Riverside campuses of Rogue Community College (RCC) (Oregon). Surveys were used to help assess the community college's overall effectiveness and address the needs of students. A total of 269 (120 from Redwood and 149 from Riverside) student surveys were returned--most…

  6. Agreement, 1989-1992, between the Board of Community College District No. 524, County of Cook and State of Illinois and the Moraine Valley Faculty Association, a Chapter of the Cook County College Teachers Union.

    ERIC Educational Resources Information Center

    Moraine Valley Community Coll., Palos Hills, IL.

    The collective bargaining agreement between the Board of Community College District No. 524, County of Cook and State of Illinois, and the Moraine Valley Faculty Association is presented. This contract, covering the period from July 1, 1989 to June 30, 1992, deals with the following topics: definitions; bargaining agent recognition;…

  7. 76 FR 76802 - Riverside Micro-Cap Fund II, L.P.; Notice Seeking Exemption Under Section 312 of the Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... SMALL BUSINESS ADMINISTRATION [License No. 02/02-0646] Riverside Micro-Cap Fund II, L.P.; Notice... hereby given that Riverside Micro-Cap Fund II, L.P., 45 Rockefeller Center, New York, NY 10111, a Federal... Regulations (13 CFR 107.730). Riverside Micro-Cap Fund II, L.P. proposes to provide equity security financing...

  8. 77 FR 7655 - Riverside Micro-Cap Fund II, L.P.; Notice Seeking Exemption Under Section 312 of the Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... SMALL BUSINESS ADMINISTRATION [License No. 02/02-0646] Riverside Micro-Cap Fund II, L.P.; Notice... hereby given that Riverside Micro-Cap Fund II, L.P., 45 Rockefeller Center, New York, NY 10111, a Federal... Regulations (13 CFR 107.730). Riverside Micro-Cap Fund II, L.P. proposes to provide equity security financing...

  9. Groundwater quality at the Saline Valley Conservancy District well field, Gallatin County, Illinois

    USGS Publications Warehouse

    Gorczynska, Magdalena; Kay, Robert T.

    2016-08-29

    The Saline Valley Conservancy District (SVCD) operates wells that supply water to most of the water users in Saline and Gallatin Counties, Illinois. The SVCD wells draw water from a shallow sand and gravel aquifer located in close proximity to an abandoned underground coal mine, several abandoned oil wells, and at least one operational oil well. The aquifer that yields water to the SVCD wells overlies the New Albany Shale, which may be subjected to shale-gas exploration by use of hydraulic fracturing. The SVCD has sought technical assistance from the U.S. Geological Survey to characterize baseline water quality at the SVCD well field so that future changes in water quality (if any) and the cause of those changes (including mine leachate and hydraulic fracturing) can be identified.

  10. 76 FR 67055 - Amendment of Class E Airspace; Valley City, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0605; Airspace Docket No. 11-AGL-13] Amendment of Class E Airspace; Valley City, ND AGENCY: Federal... Valley City, ND. Decommissioning of the Valley City non-directional beacon (NDB) at Barnes County Municipal Airport, Valley City, ND, has made this action necessary to enhance the safety and management of...

  11. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    USGS Publications Warehouse

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in

  12. 78 FR 49925 - Revisions to California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... California State Implementation Plan, Antelope Valley Air Quality Management District and Ventura County Air...: EPA is taking direct final action to approve revisions to the Antelope Valley Air Quality Air Management District (AVAQMD) and Ventura County Air Pollution Control District (VCAPCD) portions of the...

  13. Geohydrology of the Valley-Fill Aquifers between the Village of Greene, Chenango County and Chenango Valley State Park, Broome County, New York

    USGS Publications Warehouse

    Hetcher-Aguila, Kari K.; Miller, Todd S.

    2005-01-01

    The confined aquifer is widely used by people living and working in the Chenango River valley. The confined aquifer consists of ice-contact sand and gravel, typically overlies bedrock, and underlies a confining unit consisting of lacustrine fine sand, silt, and clay. The confining unit is typically more than 100 feet thick in the central parts of the valley between Greene Landing Field and along the northern edge of the Chenango Valley State Park. The thickness of the confined aquifer is more than 40 feet near the Greene Landing Field.

  14. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  15. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  16. Geological literature on the San Joaquin Valley of California

    USGS Publications Warehouse

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  17. 10. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  18. Water resources of Lincoln County, Wyoming

    USGS Publications Warehouse

    Eddy-Miller, C. A.; Plafcan, Maria; Clark, M.L.

    1996-01-01

    Streamflow and ground-water quantity and quality data were collected and analyzed, 1993 through 1995, and historical data were compiled to summarize the water resources of Lincoln County.Deposits of Quaternary age, in the valleys of the Bear River and Salt River, had the most well development of any geologic unit in the county.The most productive alluvial aquifers were located in the Bear River Valley and Star Valley with pumping wells discharging up to 2,000 gallons perminute. The ground-water connection between the Overthrust Belt and the Green River Basin is restricted as a result of the folding and faulting that occurred during middle Mesozoic and early Cenozoic time. Total water use in Lincoln County during 1993 was estimated to be 405,000 million gallons. Surface water was the source for 98 percent of the water used in the county. Hydroelectric power generation and irrigation used the largest amounts of water. Dissolved-solids concentrations varied greatly for water samples collected from 35 geologic units inventoried. Dissolved-solids concentrations in all water samples from the LaneyMember of the Green River Formation were greater than the Secondary Maximum Contaminant Level of 500 milligrams per liter established by the U.S. Environmental Protection Agency. Statistical analysis of data collected from wells in the Star Valley monitoring study indicated there was no significant difference between data collected during different seasons, and no correlation between the nitrate concentrations and depth to ground water.

  19. 7. Photocopy of map of the Agua Fria Valley and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of map of the Agua Fria Valley and lands to be irrigated by the Agua Fria Water and Land Company. Photographer Mark Durben, 1987 Source: 'Map of the Agua Fria Valley and the Western Portion of the Salt River Valley Showing the System of Reservoirs and Canals of the Agua Fria Water and Land Company and the Land to be Irrigated Thereby 160,000 Acres of New Land to be Reclaimed in the Maricopa County, Arizona Territory,' (Brochure) Union Photo Engraving Company, c. 1895, Salt River Project Research Archives, Tempe, Arizona. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  20. 79. COVERED CONDUIT ACROSS ANTELOPE VALLEY WITH WIND FARM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. COVERED CONDUIT ACROSS ANTELOPE VALLEY WITH WIND FARM IN DISTANCE - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  1. Results of Gravity Fieldwork Conducted in March 2008 in the Moapa Valley Region of Clark County, Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Andreasen, Arne Dossing

    2008-01-01

    In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.

  2. Geologic map of the west half of the Blythe 30' by 60' quadrangle, Riverside County, California and La Paz County, Arizona

    USGS Publications Warehouse

    Stone, Paul

    2006-01-01

    The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial

  3. Description and Evaluation of the Cultural Resources within Brea, Carbon Canyon, Fullerton and San Antonio Reservoirs, Santa Ana River Basin, Orange, Los Angeles, and San Bernardino Counties,

    DTIC Science & Technology

    1977-09-30

    RD- R136 704 DESCRIPTION fIND EVALUATION OF THE CULTURAL RESOURCES i/i I WITHIN BREA CARBON C..(U) CALIFORNIA UNIV RIVERSIDE RRCHAEOLOGICAL RESEARCH...plant resources occurred along the coast, and in the interior valleys about the base of the mountains or along major drainage systems . Sometime around

  4. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  5. 19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON THE BEACH. VALVE AT RIGHT (WITH WRENCH NEARBY) OPENS TO FLUSH VALLEY SYSTEM OUT. VALVE AT LEFT CLOSES TO KEEP WATER FROM ENTERING SYSTEM ALONG THE PALI DURING REPAIRS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  6. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs.

    PubMed

    Tolstykh, E I; Degteva, M O; Peremyslova, L M; Shagina, N B; Vorobiova, M I; Anspaugh, L R; Napier, B A

    2013-05-01

    Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949-1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were Sr and Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The Sr intake function was recently improved, taking into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of Cs by Techa Riverside residents. The Cs intake with river water used for drinking was reconstructed on the basis of the Sr intake-function and the concentration ratio Cs-to-Sr in river water. Intake via Cs transfer from floodplain soil to grass and cows' milk was evaluated for the first time. As a result, the maximal Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000-9,000 kBq). For villages located on the lower Techa River, the Cs intake was significantly less (down to 300 kBq). Cows' milk was the main source of Cs in diet in the upper-Techa River region.

  7. 11. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA, SHOWING DETAIL OF OVERHEAD WIRING - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  8. A Literature Review of Cultural Resources in Morgan County, Colorado,

    DTIC Science & Technology

    1978-06-02

    MILES APPRCXI: %TE LOCATIONS OF SURVEY AREAS 1. NARROWS DAM SURVEY 2. WILDCAT CREEK SURVEY 3. BRUS { FLOOD CO’IOL PROJECT L B3I B LI 0 RAP H Y...Kenneth L. 1975 Edible plants available to aboriginal occupants of the Narrows area. IN Morris, Elizabeth Ann, Bruce J. Lutz, N. Ted Ohr, Timothy J...Reservoi - , Morgan County. Prepared for -1e Riverside IrrigaLion District and Public Service Company of Colorado. Morris, Elizabeth Ann, Bruce J. Lutz, N

  9. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  10. 75 FR 13808 - Missouri & Valley Park Railroad Corporation-Discontinuance of Service Exemption-in St Louis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Docket No. AB-1057X] Missouri & Valley Park Railroad Corporation--Discontinuance of Service Exemption--in St Louis County, MO On March 3... Subdivision between milepost 18.36 and milepost 20.50, near West Valley Park, St. Louis County, MO.\\2\\ The...

  11. 12. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA, SHOWING SOUTH END OF OVERHEAD WIRING TERMINATION - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  12. Quaternary geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: a digital database

    USGS Publications Warehouse

    Helley, E.J.; Graymer, R.W.

    1997-01-01

    Alameda County is located at the northern end of the Diablo Range of Central California. It is bounded on the north by the south flank of Mount Diablo, one of the highest peaks in the Bay Area, reaching an elevation of 1173 meters (3,849 ft). San Francisco Bay forms the western boundary, the San Joaquin Valley borders it on the east and an arbitrary line from the Bay into the Diablo Range forms the southern boundary. Alameda is one of the nine Bay Area counties tributary to San Francisco Bay. Most of the country is mountainous with steep rugged topography. Alameda County is covered by twenty-eight 7.5' topographic Quadrangles which are shown on the index map. The Quaternary deposits in Alameda County comprise three distinct depositional environments. One, forming a transgressive sequence of alluvial fan and fan-delta facies, is mapped in the western one-third of the county. The second, forming only alluvial fan facies, is mapped in the Livermore Valley and San Joaquin Valley in the eastern part of the county. The third, forming a combination of Eolian dune and estuarine facies, is restricted to the Alameda Island area in the northwestern corner of the county.

  13. Reconstruction of Long-Lived Radionuclide Intakes for Techa Riverside Residents: Cesium-137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, E. I.; Degteva, M. O.; Peremyslova, L. M.

    2013-05-01

    Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949–1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were 90Sr and 137Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The 90Sri ntake function was recently improved takingmore » into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on 90Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of 137Cs by Techa Riverside residents. The 137Cs intake with river water used for drinking was reconstructed on the basis of the 90Sr intake-function and the concentration ratio 137Cs/90Sr in river water. Intake via 137Cs transfer from floodplain soil to grass and cows’ milk was evaluated for the first time. As a result, the maximal 137Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000–9,000 kBq). For villages located on the lower Techa River the 137Cs intake was significantly less (down to 300 kBq). Cows’ milk was the main source of 137Cs in diet in the upper-Techa.« less

  14. Geologic map of the Oasis Valley basin and vicinity, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridrich, C.J.; Minor, S.A.; Ryder, P.L.

    2000-01-13

    This map and accompanying cross sections present an updated synthesis of the geologic framework of the Oasis Valley area, a major groundwater discharge site located about 15 km west of the Nevada Test Site. Most of the data presented in this compilation is new geologic map data, as discussed below. In addition, the cross sections incorporate new geophysical data that have become available in the last three years (Grauch and others, 1997; written comm., 1999; Hildenbrand and others, 1999; Mankinen and others, 1999). Geophysical data are used to estimate the thickness of the Tertiary volcanic and sedimentary rocks on themore » cross sections, and to identify major concealed structures. Large contiguous parts of the map area are covered either by alluvium or by volcanic units deposited after development of the major structures present at the depth of the water table and below. Hence, geophysical data provide critical constraints on our geologic interpretations. A companion paper by Fridrich and others (1999) and the above-cited reports by Hildenbrand and others (1999) and Mankinen and others (1999) provide explanations of the interpretations that are presented graphically on this map. This map covers nine 7.5-minute quadrangles in Nye County, Nevada, centered on the Thirsty Canyon SW quadrangle, and is a compilation of one published quadrangle map (O'Connor and others, 1966) and eight new quadrangle maps, two of which have been previously released (Minor and others, 1997; 1998). The cross sections that accompany this map were drawn to a depth of about 5 km below land surface at the request of hydrologists who are modeling the Death Valley groundwater system.« less

  15. Organisms of the Hubbard Brook Valley, New Hampshire

    Treesearch

    Richard T. Holmes; Gene E. Likens

    1999-01-01

    Lists the organisms, both plant and animal, that have been identified by scientists engaged in multidisciplinary ecological research in the Hubbard Brook Valley, New Hampshire, during the past three decades. The Valley encompasses the Hubbard Brook Experimental Forest, Mirror Lake, and nearby areas within the White Mountain region of Grafton County. The species lists...

  16. Gravity Data from Newark Valley, White Pine County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.

    2007-01-01

    The Newark Valley area, eastern Nevada is one of thirteen major ground-water basins investigated by the BARCAS (Basin and Range Carbonate Aquifer Study) Project. Gravity data are being used to help characterize the geophysical framework of the region. Although gravity coverage was extensive over parts of the BARCAS study area, data were sparse for a number of the valleys, including the northern part of Newark Valley. We addressed this lack of data by establishing seventy new gravity stations in and around Newark Valley. All available gravity data were then evaluated to determine their reliability, prior to calculating an isostatic residual gravity map to be used for subsequent analyses. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a view of subsurface shape of the basin and will provide information useful for the development of hydrogeologic models for the region.

  17. Geology and ground-water resources of Rock County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1964-01-01

    Rock County is in south-central Wisconsin adjacent to the Illinois State line. The county has an area of about 723 square miles and had a population of about 113,000 in 1957 ; it is one of the leading agricultural and industrial counties in the State. The total annual precipitation averages about 32 inches, and the mean annual temperature is about 48 ? F. Land-surface altitudes are generally between 800 and 00 feet, but range from 731 feet, where the Rock River flows into Illinois, to above 1,080 feet, at several places in the northwestern part of the county. The northern part of Rock County consists of the hills and kettles of a terminal moraine which slopes southward to a flat, undissected outwash plain. The southeastern part of the county is an area of gentle slopes, whereas the southwestern part consists of steep-sided valleys and ridges. Rock County is within the drainage basin of the Rock River, which flows southward through the center of the county. The western and southwestern parts of ,the county are drained by the Sugar River und Coon Creek, both of which flow into the Pecatonica River in Illinois and thence into the Rock River. The southeastern part of the county is drained by Turtle Creek, which also flows into Illinois before joining the Rock River. Nearly all the lakes and ponds are in the northern one-third of the county, the area of most recent glaciation. The aquifers in Rock County are of sedimentary origin and include deeply buried sandstones, shales, and dolomites of the Upper Cambrian series. This series overlies crystalline rocks of Precambrian age and supplies water to all the cities and villages in the county. The St. Peter sandstone of Ordovician age underlies all Rock County except where the formation has been removed by erosion in the Rock and Sugar River valleys, and perhaps in Coon Creek valley. The St. Peter sandstone is the principal source of water for domestic, stock, and small industrial wells in the western half of the county

  18. Hydrologic reconnaissance of Grouse Creek valley, Box Elder County, Utah

    USGS Publications Warehouse

    Hood, J.W.; Price, Don

    1970-01-01

    This report is the seventh in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Grouse Creek valley, to provide an evaluation of the potential water-resource development of the valley, and to identify studies that would help provide a better understanding of the valley's water supply

  19. Hydrogeologic data update for the stratified-drift aquifer in the Sprout and Fishkill Creek valleys, Dutchess County, New York

    USGS Publications Warehouse

    Reynolds, Richard J.; Calef, F.J.

    2011-01-01

    The hydrogeology of the stratified-drift aquifer in the Sprout Creek and Fishkill Creek valleys in southern Dutchess County, New York, previously investigated by the U.S. Geological Survey (USGS) in 1982, was updated through the use of new well data made available through the New York State Department of Environmental Conservation's Water Well Program. Additional well data related to U.S. Environmental Protection Agency (USEPA) remedial investigations of two groundwater contamination sites near the villages of Hopewell Junction and Shenandoah, New York, were also used in this study. The boundary of the stratified-drift aquifer described in a previous USGS report was extended slightly eastward and southward to include adjacent tributary valleys and the USEPA groundwater contamination site at Shenandoah, New York. The updated report consists of maps showing well locations, surficial geology, altitude of the water table, and saturated thickness of the aquifer. Geographic information system coverages of these four maps were created as part of the update process.

  20. Validating the Riverside Acculturation Stress Inventory with Asian Americans

    ERIC Educational Resources Information Center

    Miller, Matthew J.; Kim, Jungeun; Benet-Martinez, Veronica

    2011-01-01

    An emerging body of empirical research highlights the impact of acculturative stress in the lives of culturally diverse populations. Therefore, to facilitate future research in this area, we conducted 3 studies to examine the psychometric properties of the Riverside Acculturation Stress Inventory (RASI; Benet-Martinez & Haritatos, 2005) and its 5…

  1. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    Cedar Valley, located in the eastern part of Iron County in southwestern Utah, is experiencing rapid population growth. Cedar Valley traditionally has supported agriculture, but the growing population needs a larger share of the available water resources. Water withdrawn from the unconsolidated basin fill is the primary source for public supply and is a major source of water for irrigation. Water managers are concerned about increasing demands on the water supply and need hydrologic information to manage this limited water resource and minimize flow of water unsuitable for domestic use toward present and future public-supply sources.Surface water in the study area is derived primarily from snowmelt at higher altitudes east of the study area or from occasional large thunderstorms during the summer. Coal Creek, a perennial stream with an average annual discharge of 24,200 acre-feet per year, is the largest stream in Cedar Valley. Typically, all of the water in Coal Creek is diverted for irrigation during the summer months. All surface water is consumed within the basin by irrigated crops, evapotranspiration, or recharge to the ground-water system.Ground water in Cedar Valley generally moves from primary recharge areas along the eastern margin of the basin where Coal Creek enters, to areas of discharge or subsurface outflow. Recharge to the unconsolidated basin-fill aquifer is by seepage of unconsumed irrigation water, streams, direct precipitation on the unconsolidated basin fill, and subsurface inflow from consolidated rock and Parowan Valley and is estimated to be about 42,000 acre-feet per year. Stable-isotope data indicate that recharge is primarily from winter precipitation. The chloride mass-balance method indicates that recharge may be less than 42,000 acre-feet per year, but is considered a rough approximation because of limited chloride concentration data for precipitation and Coal Creek. Continued declining water levels indicate that recharge is not

  2. Preliminary geologic map of the Winchester 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.

    2003-01-01

    The Winchester quadrangle is located in the northern part of the Peninsular Ranges Province within the central part of the Perris block, a relatively stable, rectangular in plan view, area located between the Elsinore and San Jacinto fault zones (see location map). The quadrangle is underlain by Cretaceous and older basement rocks. Cretaceous plutonic rocks are part of the composite Peninsular Ranges batholith, which indicates wide variety of granitic rocks, ranging from granite to gabbro. Parts of three major plutonic complexes are within the quadrangle, the Lakeview Mountains pluton, the Domenigoni Valley pluton and the Paloma Valley ring complex. In the northern part of the quadrangle is the southern part of the Lakeview Mountains pluton, a large composite body, most of which lies in the quadrangle to the north. In the center part of the quadrangle is the eastern part of the Domenigoni Valley pluton, which consists of massive biotite-hornblende granodiorite and tonalite; some tonalite in the southern part of the pluton has a relatively pronounced foliation produced by oriented biotite and hornblende. Common to abundant equant-shaped, mafic inclusions occur through out the pluton except in the outermost part where inclusions are absent. The pluton was passively emplaced by piecemeal stoping of a variety of older rocks and the eastern contact is well exposed in the quadrangle. Associated with the Domenigoni Valley pluton is a swarm of latite dikes; the majority of these dikes occur in the Winchester quadrangle, but they extend into the Romoland quadrangle to the west. The latite dikes intrude both the pluton and adjacent metamorphic rocks, most are foliated, and most have a well developed lineation defined by oriented biotite and/or hornblende crystals. Dikes intruding the pluton were emplaced in northwest striking joints; and dikes intruding the metamorphic rocks were emplaced along foliation planes. In the eastern part of the quadrangle a Cretaceous age suture

  3. Factors limiting recruitment in valley and coast live oak

    Treesearch

    Claudia M. Tyler; Bruce E. Mahall; Frank W. Davis; Michael Hall

    2002-01-01

    The Santa Barbara County Oak Restoration Program was initiated in 1994 to determine the major factors limiting recruitment of valley oak (Quercus lobata) and coast live oak (Q. agrifolia). At Sedgwick Reserve in Santa Barbara County, California, we have replicated large-scale planting experiments in four different years to...

  4. Water resources of Beaver Valley, Utah

    USGS Publications Warehouse

    Lee, Willis Thomas

    1908-01-01

    Location and extent of area examined. Beaver Valley is located in Beaver County, in southwestern Utah, about 175 miles south of Salt Lake. It lies between the Tushar Mountains on the east and the Beaver Mountains on the west. The principal town of the valley is Beaver, which is most conveniently reached from Milford, a station on the San Pedro, Los Angeles and Salt Lake Railroad. The valley, together with its neighboring highlands, occupies the eastern third of Beaver County, an area of about 1,200 square miles. A large part of this area, however, is rocky upland and unproductive desert, the tillable land comprising a comparatively small area in the immediate vicinity of the streams.Purpose and scope of work. The purpose of this paper is to present information concerning the waters of Beaver Valley and to point out ways and means of increasing their usefulness. The presence of a large amount of water in Beaver Valley results from local topograhic conditions, the water being supplied by precipitation in the highland to the east. Its conservation and distribution result from geologic conditions, the water being held in loose gravel and sand, which are more or less confined between ridges of consolidated rocks. The rock basins were formed partly by erosion and partly by faulting and surface deformation. In order to accomplish the purpose in view it is therefore necessary to describe the geographic and geologic conditions in Beaver Valley and neighboring regions.The investigation included the determination of the flow of streams and springs, of the manner of occurrence and quantity of the underground waters as shown by the geologic and geographic conditions of the region and by the distribution of springs and wells, and of the chemical character of the waters with reference to their adaptability to domestic use and to irrigation. The chemical data were obtained (a) by field assays, which are approximately correct and probably of sufficient accuracy to be of value in

  5. 2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  6. Site Plan & Site Section of Citrus Landscape (Showing Relationship ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site Plan & Site Section of Citrus Landscape (Showing Relationship of Victoria Avenue to Citrus Groves) - Arlington Heights Citrus Landscape, Southwestern portion of city of Riverside, Riverside, Riverside County, CA

  7. Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005

    USGS Publications Warehouse

    Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.

    2009-01-01

    The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and

  8. Assessing potential effects of changes in water use with a numerical groundwater-flow model of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.

    2012-01-01

    Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley

  9. Site Plan & Site Section of Citrus Landscape (Showing Relationship ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site Plan & Site Section of Citrus Landscape (Showing Relationship of Groves & Irrigation System to Grove Canal) - Arlington Heights Citrus Landscape, Southwestern portion of city of Riverside, Riverside, Riverside County, CA

  10. The Changing Epidemiology of Coccidioidomycosis in Los Angeles (LA) County, California, 1973–2011

    PubMed Central

    2015-01-01

    Coccidioidomycosis, also known as Valley Fever, is often thought of as an endemic disease of central California exclusive of Los Angeles County. The fungus that causes Valley Fever, Coccidioides spp., grows in previously undisturbed soil of semi-arid and arid environments of certain areas of the Americas. LA County has a few large areas with such environments, particularly the Antelope Valley which has been having substantial land development. Coccidioidomycosis that is both clinically- and laboratory-confirmed is a mandated reportable disease in LA County. Population surveillance data for 1973–2011 reveals an annual rate increase from 0.87 to 3.2 cases per 100,000 population (n = 61 to 306 annual cases). In 2004, case frequency started substantially increasing with notable epidemiologic changes such as a rising 2.1 to 5.7 male-to-female case ratio stabilizing to 1.4–2.2. Additionally, new building construction in Antelope Valley greatly rose in 2003 and displayed a strong correlation (R = 0.92, Pearson p<0.0001) with overall LA County incidence rates for 1996–2007. Of the 24 LA County health districts, 19 had a 100%-1500% increase in cases when comparing 2000–2003 to 2008–2011. Case residents of endemic areas had stronger odds of local exposures, but cases from areas not known to be endemic had greater mortality (14% versus 9%) with notably more deaths during 2008–2011. Compared to the 57 other California counties during 2001–2011, LA County had the third highest average annual number of cases and Antelope Valley had a higher incidence rate than all but six counties. With the large number of reported coccidioidomycosis cases, multi-agency and community partnering is recommended to develop effective education and prevention strategies to protect residents and travelers. PMID:26313151

  11. Flooding in Clark and Lincoln Counties, Nevada, December 2004 and January 2005

    USGS Publications Warehouse

    Ryan, Roslyn

    2006-01-01

    Introduction: A regional storm passed through the Las Vegas Valley, Nevada, on December 28-29, 2004, producing up to 2 inches of rain in a 24-hour period. Due to the intense, sustained rainfall, streamflow along Las Vegas Wash was near the record discharges of July 8, 1999. Additional rainfall in December and in January, combined with an early warming trend, resulted in record flooding along Meadow Valley Wash, Muddy River, and Virgin River, January 10-11, 2005 (figs. 1 and 2). On January 7, this warming trend resulted in about a 15?F (degree Fahrenheit) increase over the previous week (fig. 2). This temperature spike, along with further precipitation, caused much of the snow pack in the surrounding mountain ranges to melt and run off into the valleys. These two factors led to the major flood events in Clark and Lincoln Counties during December 2004 and January 2005. Total flood and storm damage for Lincoln County was estimated at $9.4 million and $4.5 million for Clark County (Manning, 2005). Clark County generally is drained by the Las Vegas and Meadow Valley Washes, and the Muddy and Virgin River systems. Las Vegas Valley is drained by Duck Creek, Tropicana Wash (not in fig. 1), Flamingo Wash, Las Vegas Wash, and several smaller tributaries (fig. 1). Water in these drainages generally flows eastward through Las Vegas to Las Vegas Wash and on toward Lake Mead, an impoundment of the Colorado River. The Virgin River originates in southern Utah, flows past Littlefield, AZ, through Mesquite, NV, and into the Overton Arm of Lake Mead. Meadow Valley Wash flows from Ursine, NV, through Caliente, NV, continues southeast through Moapa Valley, and into the Muddy River at Glendale, NV. The Muddy River flows southeast through Moapa Valley into the Overton Arm of Lake Mead (Kane and Wilson, 2000).

  12. Experimental maintenance painting on the I-64 Riverside expressway in Louisville

    DOT National Transportation Integrated Search

    2000-04-01

    The Riverside Parkway comprises some 3.2 miles of elevated steel (plate-girder) in downtown Louisville having approximately 24,054 tons of steel. The structures had existing coatings that contained lead. The project posed significant operational and ...

  13. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  14. Estimation of pumpage from a riverside well at the lower reaches of the Songhua River

    NASA Astrophysics Data System (ADS)

    Sun, K. N.; Hu, L. T.; Zhang, M. L.; Liu, X. M.

    2017-08-01

    As a kind of vital water resources exploitation mode, riverside pumping has the important advantage of maintaining the stability of water supply and purifying surface water quality. It is of great significance to estimate the pumpage from a riverside well for the sustainable utilization of water resources in the area. In this article, the method of image and Girinskii’s potential function are used to derive the pumpage. A case study in the Jamusi City shows that the pumpage from a riverside well varies from 9000 to 15000 m3/d. The sensitivity of factors (h0 , K, Smax and rw. ) is analysed, indicating that the influence degree from large to small is h0, K, Smax, and rw. Besides, h0, K, Smax are far greater than rw . It is hoped that this paper can provide some theoretical reference for the rational utilization of groundwater in the areas near the rivers.

  15. Experimental painting of the I-64 Riverside Parkway in Louisville, KY.

    DOT National Transportation Integrated Search

    2009-02-01

    The Kentucky Transportation Cabinet conducted a large-scale zone maintenance painting operation on 13 elevated steel bridges along the I-64 Riverside Parkway in Louisville, KY in 2007. That work included abrasive blast-cleaning and painting of steel ...

  16. Geologic map of the Fifteenmile Valley 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    Open-File Report OF 01-132 contains a digital geologic map database of the Fifteenmile Valley 7.5’ quadrangle, San Bernardino County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A PostScript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units (CMU) and Description of Map Units (DMU) is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Fifteenmile Valley 7.5’ topographic quadrangle in conjunction with the geologic map.

  17. Geology and mineral deposits of Churchill County, Nevada

    USGS Publications Warehouse

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  18. Pliocene Invertebrates From the Travertine Point Outcrop of the Imperial Formation, Imperial County, California

    USGS Publications Warehouse

    Powell, Charles L.

    2008-01-01

    Forty-four invertebrate taxa, including one coral, 40 mollusks (30 bivalves and 10 gastropods), and three echinoids are recognized from a thin marine interval of the Imperial Formation near Travertine Point, Imperial County, California. The Travertine Point outcrop lies about midway between exposures of the Imperial Formation around Palm Springs, Riverside County, and exposures centered at Coyote Mountain in Imperial and San Diego Counties. Based on faunal comparisons, the Travertine Point outcrop corresponds to the Imperial and San Diego outcrops. The Travertine Point fauna is inferred to have lived in subtropical to tropical waters at littoral to inner sublittorial (<50 m) water depths. Coral and molluscan species from the Travertine Point outcrop indicate a Pliocene age. Two extant bivalve mollusks present have not previously been reported as fossils Anadara reinharti and forms questionably referred to Dosinia semiobliterata.

  19. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  20. 4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  1. Shelving plans, elevations, and sections. San Bernardino Valley Union Junior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Shelving plans, elevations, and sections. San Bernardino Valley Union Junior College, Science Building. Howard E. Jones, Architect, San Bernardino, California. Sheet 9, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  2. Echoes of Spring Valley.

    ERIC Educational Resources Information Center

    Boyken, J. Clarine J.

    Designed to preserve the rich heritage of the rural school system which passed from the education scene in the 1930's and 1940's, this narrative, part history and part nostalgia, describes the author's own elementary education and the secure community life centered in the one room Spring Valley School in Hamilton County, Iowa, in the early decades…

  3. Ground water in Tooele Valley, Tooele County, Utah

    USGS Publications Warehouse

    Thomas, H.E.

    1946-01-01

    Tooele Valley is a typical basin of the Basin and Range Province located about 30 miles southwest of Salt Lake City. It is roughly 15 miles long and 10 miles wide and has a population of about 7,000. Bordered on the west by the Stansbury Range, on the east by the Oquirrh Range, and on the south by South Mountain, it opens northward to Great Salt Lake. The bordering mountain ranges are formed by Paleozoic rocks ranging in age from Lower Cambrian to Pennsylvanian but with the Ordovician and Silurian periods unrepresented. There is no sedimentary record of the interval between Pennsylvanian and Tertiary times, and the Tertiary, Quaternary, and Recent sediments are of continental origin. These continental deposits play the dominant role in the ground-water hydrology of the basin, and were mapped and studied in detail. Pleistocene sediments are of major importance because they form the surface rock over most of the area, and give rise to conditions which yield water by artesian flow in the lower part of the valley.The development of the present land forms in this area began with the folding of Paleozoic and probably Mesozoic sediments during the Laramide revolution. The cycle of highland erosion and lowland deposition thus initiated has continued through recurrent uplift along Basin-Range faults to the present day. The principal physiographic subdivisions of the valley were developed as a result of the Basin-Range faulting, which began early in the Tertiary and has continued to Recent times.There are about 1,100 wells in Tooele Valley, about 90 per cent of which yield or have yielded water by artesian flow. Most of them are located in the lower part of the valley below an altitude of 4,400 feet. These wells and many of the springs derive their water from the unconsolidated Quaternary sediments, which include discontinuous, lenticular and commonly elongated bodies of sand, clay, gravel, and boulders of alluvial origin alternating and inter-fingered with lacustrine beds

  4. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch

  5. Ground-water resources in Mendocino County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1986-01-01

    Mendocino County includes about 3,500 sq mi of coastal northern California. Groundwater is the main source for municipal and individual domestic water systems and contributes significantly to irrigation. Consolidated rocks of the Franciscan Complex are exposed over most of the county. The consolidated rocks are commonly dry and generally supply < 5 gal/min of water to wells. Unconsolidated fill in the inland valleys consists of gravel, sand, silt, and clay. Low permeability in the fill caused by fine grain size and poor sorting limits well yields to less than 50 gal/min in most areas; where the fill is better sorted, yields of 1,000 gal/min can be obtained. Storage capacity estimates for the three largest basins are Ukiah Valley, 90,000 acre-ft; Little lake Valley, 35,000 acre-ft; and Laytonville Valley, 14,000 acre-ft. Abundant rainfall (35 to 56 in/yr) generally recharges these basins to capacity. Seasonal water level fluctuations since the 1950 's have been nearly constant, except during the 1976-77 drought. Chemical quality of water in basement rocks and valley fill is generally acceptable for most uses. Some areas along fault zones yield water with high boron concentrations ( <2 mg/L). Sodium chloride water with dissolved solids concentrations exceeding 1,000 mg/L is found in deeper parts of Little Lake Valley. (Author 's abstract)

  6. South entrance, plan, section, & detail. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South entrance, plan, section, & detail. San Bernardino Valley Union Junior College, Science Building. Detailed drawings of tile work, wrought iron, and art stone, Howard E. Jones, Architect, San Bernardino, California. Sheet 6, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  7. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Smith, G. I.; Robinson, J. E.; Stauffer, P. H.; Zigler, J. L.

    2010-12-01

    (beaches or tufa benches) are common, but their deposits tend to be thin. Combining the subsurface evidence of lake history with the outcrop record allows the history of lake fluctuations to be reconstructed for the period between about 150 ka and the present. Translating this record of lake fluctuations into paleohydrologic and paleoclimatic histories is complicated by uncertainties as to which of the several components of climate affected runoff volumes and lake-surface evaporation. A simplified model, however, suggests that the flow of the Owens River stayed between 2.5 and 4.5 times its present flow volume for most of the past 150 ky. Its flow exceeded this range only about 14 percent of the time, and it fell below this range only 4 percent of the time—which includes the present. In fact, the past 10 ky is clearly the driest period during the past 150 ky in the Owens River drainage. Smith, G.I., 2009, Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California: U.S. Geological Survey Professional Paper 1727, 115 p., 4 plates.

  8. 3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  9. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China.

    PubMed

    Yang, Lei; He, Jiang-Tao; Su, Si-Hui; Cui, Ya-Feng; Huang, De-Liang; Wang, Guang-Cai

    2017-06-01

    This study investigated the occurrence, seasonal-spatial distribution characteristics, and attenuation process of 15 pharmaceuticals and personal care products (PPCPs) in riverside sections of Beiyun River of Beijing. The overall PPCP levels both in surface water and riverside groundwater were moderate on the global scale, and showed higher concentrations in the dry season mainly caused by water temperature variation. Caffeine (CF), carbamazepine (CBZ), metoprolol (MTP), N,N-diethyl-meta-toluamide (DEET), diclofenac (DF), bezafibrate (BF), and gemfibrozil (GF) were seven representative PPCPs, because the rest eight studied compounds occurred in low concentrations and less than 15% of the total concentration of PPCPs. Caffeine and bezafibrate, respectively, was the most abundant compound in surface water and riverside groundwater, with median concentrations of 3020.0 and 125.0 ng L -1 . Total concentrations of PPCPs in surface water were much higher than those in the riverside groundwater spatially. Attenuation of PPCPs during riverbank filtration was largely depending on the sources, site hydrogeological conditions, and physical-chemical properties of PPCPs, also was influenced by dissolved organic matter and environmental physicochemical parameters. CF, MTP, DEET, and CBZ were potential groundwater attenuation contaminants; DF, BF, and GF were groundwater-enriched contaminants based on their removal rates. Predominant removal mechanism of PPCPs like CF was biodegradation. Attenuation simulation showed that the one-way supply between Beiyun River and riverside groundwater, and further confirmed Beiyun River, was the main source of pharmaceutical compounds in the riverside groundwater.

  10. Apportionment of Primary and Secondary Organic Aerosols in Southern California During the 2005 Study of Organic Aerosols in Riverside (SOAR-1)

    EPA Science Inventory

    Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionment techniques.

  11. Monitoring and analysis of combined sewer overflows, Riverside and Evanston, Illinois, 1997-99

    USGS Publications Warehouse

    Waite, Andrew M.; Hornewer, Nancy J.; Johnson, Gary P.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed flow data in combined sewer systems in Riverside and Evanston, northeastern Illinois, from March 1997 to December 1999. Continuous 2- and 5-minute stage and velocity data were collected during surcharged and nonsurcharged conditions at 12 locations. Mass balances were calculated to determine the volume of water flowing through the tide-gate openings to the Des Plaines River and the North Shore Channel and to determine the volume of water flowing past the sluice gate to the deep tunnel. The sewer systems consist of circular pipes ranging in diameter from 0.83 feet to 10.0 feet, elliptical siphon pipes, ledges, and tide and sluice gates. Pipes were constructed of either brick and mortar or concrete, and ranged from having smooth surfaces to rough, pitted and crumbling surfaces. One pipe was noticeably affected by water infiltration from saturated ground. During data analysis, many assumptions were necessary because of the complexity of the flow data and sewer-system configurations. These assumptions included estimating the volume of water entering an interceptor sewer at the ''Gage Street pipe'' at Riverside, the effect of infiltration on the ''brick pipe'' at Riverside, and the minimum velocity required for the meter to make an accurate velocity determination. Other factors affecting the analysis of flow data included possible non-instrumented sources of inflow, and backwater conditions in some pipes, which could have caused error in the data analysis. Variations of these assumptions potentially could cause appreciable changes to the final massbalance calculations. Mass-balance analysis at Riverside indicated a total inflow volume into chamber 3 of approximately 721,000 cubic feet (ft3) during April 22-26, 1999. Outflow volume to the Des Plaines River at Riverside through the tide gate was approximately 132,000 ft3; outflow volume to the deep tunnel through the

  12. 22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. EYE BOLTS IN ROCK FACE AT RIGHT WERE USED BRIEFLY IN PLACE OF PIERS TO SUSPEND PIPE BY CHAIN BECAUSE THE CONCRETE PIERS WERE SUSCEPTIBLE TO HEAVY WAVE ACTION IN THIS AREA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  13. South elevation and main floor plan. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South elevation and main floor plan. San Bernardino Valley Union Junior College, Science Building. Includes chemistry and botany departments. Howard E. Jones, Architect, San Bernardino, California. Sheet 2, job no. 311. Scale 1/8 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  14. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  15. Hydrogeologic framework of LaSalle County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Bailey, Clinton R.

    2016-10-28

    Water-supply needs in LaSalle County in northern Illinois are met by surface water and groundwater. Water-supply needs are expected to increase to serve future residential and mining uses. Available information on water use, geology, surface-water and groundwater hydrology, and water quality provides a hydrogeologic framework for LaSalle County that can be used to help plan the future use of the water resources.The Illinois, Fox, and Vermilion Rivers are the primary surface-water bodies in LaSalle County. These and other surface-water bodies are used for wastewater disposal in the county. The Vermilion River is used as a drinking-water supply in the southern part of the county. Water from the Illinois and Fox Rivers also is used for the generation of electric power.Glacial drift aquifers capable of yielding sufficient water for public supply are expected to be present in the Illinois River Valley in the western part of the county, the Troy Bedrock Valley in the northwestern part of the county, and in the Ticona Bedrock Valley in the south-central part of the county. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, although well yield often needs to be improved by using large-diameter wells. Arsenic concentrations above health-based standards have been detected in some wells in this aquifer. These aquifers are a viable source for additional water supply in some areas, but would require further characterization prior to full development.Shallow bedrock deposits comprising the sandstone units of the Ancell Group, the Prairie du Chien Group, dolomite of the Galena and Platteville Groups, and Silurian-aged dolomite are utilized for water supply where these units are at or near the bedrock surface or where overlain by Pennsylvanian-aged deposits. The availability of water from the shallow bedrock deposits depends primarily on the geologic unit analyzed. All these deposits can yield sufficient water for

  16. 15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  17. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) andmore » the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.« less

  18. 69. MISSISSIPPI, LOWNDES CO. COLUMBUS MAP OF LOWNDES COUNTY, 1931 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. MISSISSIPPI, LOWNDES CO. COLUMBUS MAP OF LOWNDES COUNTY, 1931 ROAD MAP OF LOWNDES COUNTY, MISSISSIPPI, 1931 by C.L. Wood, the county engineer. Updated through the mid-1930s to show new federal aid-state roads. Compares modern system with older county system. Original scale: 1 in. to 1 mi. Property of Helen (Mrs. Sam L.) Crawford, Hamilton, Ms. Sarcone Photography, Columbus, Ms., Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  19. A Study of the Job Satisfaction of Special Education Local Plan Area (SELPA) Directors and Local School District Special Education Directors in Four Counties of Southern California

    ERIC Educational Resources Information Center

    Alexander, Gregory Haynes, III

    2009-01-01

    Purpose. The purpose of this study was to compare the perceived level of job satisfaction of SELPA directors with that of local school district special education directors in the counties of Riverside, San Bernardino, San Diego, and Orange of Southern California and to identify factors that contribute to their job satisfaction. Additionally, this…

  20. Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.

    2016-09-30

    In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface

  1. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voegele, Michael; McCracken, Robert; Herrera, Troy

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening withmore » the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)« less

  2. 75 FR 27690 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Ambrosia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Habitat Conservation Plan (Western Riverside County MSHCP), and Subarea Plans (City of San Diego and.... Subunit 3B is located in the City of Temecula in southwestern Riverside County, California. This subunit... grassland habitat type, which allows adequate sunlight and airflow for A. pumila (PCE 2). The physical and...

  3. Wild food plants used by the Tibetans of Gongba Valley (Zhouqu county, Gansu, China)

    PubMed Central

    2014-01-01

    Background The ethnobotany of Tibetans is a seriously under-studied topic. The aim of the study was to investigate knowledge and use of wild food plants in a valley inhabited by Tibetans in the Gannan Tibetan Autonomous Region. Methods The field research was carried out in a wooded mountain valley in 9 neighbouring villages the Zhouqu (Brugchu) county, and comprised 17 interviews with single informants and 14 group interviews, involving 122 people altogether. Results We recorded the use of 81 species of vascular plants from 41 families. Fruits formed the largest category, with 42 species, larger than the wild greens category, with 36 species. We also recorded the culinary use of 5 species of edible flowers, 7 species with underground edible organs and 5 taxa of fungi. On average, 16.2 edible taxa were listed per interview (median – 16). Green vegetables formed the largest category of wild foods (mean – 8.7 species, median – 9 species), but fruits were listed nearly as frequently (mean – 6.9, median – 6). Other categories were rarely mentioned: flowers (mean – 0.2, median – 0), underground edible parts (mean – 0.3, median – 0) and mushrooms (mean – 1.5, – median 1). Wild vegetables are usually boiled and/or fried and served as side-dishes (cai). They are often lacto-fermented. Wild fruits are mainly collected by children and eaten raw, they are not stored for further use. The most widely used wild vegetables are: Eleuterococcus spp., Pteridium aquilinum, Helwingia japonica, Aralia chinensis, Allium victorialis, Pteridium aquilinum, Ixeris chinensis, Thlaspi arvense and Chenopodium album. The culinary use of Caltha palustris as a green vegetable is very interesting. In its raw state, marsh marigold is a toxic plant, due to the presence of protoanemonin. In this area it is dried or lactofermented before use. The most commonly eaten fruits are: Pyrus xerophila, Prunus salicina, Berchemia sinica, Rubus spp. and Eleagnus umbellata. Conclusions The

  4. Golden eagle (Aquila chrysaetos) habitat selection as a function of land use and terrain, San Diego County, California

    USGS Publications Warehouse

    Tracey, Jeff A.; Madden, Melanie C.; Bloom, Peter H.; Katzner, Todd E.; Fisher, Robert N.

    2018-04-16

    Beginning in 2014, the U.S. Geological Survey, in collaboration with Bloom Biological, Inc., began telemetry research on golden eagles (Aquila chrysaetos) captured in the San Diego, Orange, and western Riverside Counties of southern California. This work was supported by the San Diego Association of Governments, California Department of Fish and Wildlife, the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Geological Survey. Since 2014, we have tracked more than 40 eagles, although this report focuses only on San Diego County eagles.An important objective of this research is to develop habitat selection models for golden eagles. Here we provide predictions of population-level habitat selection for golden eagles in San Diego County based on environmental covariates related to land use and terrain.

  5. 27 CFR 9.165 - Applegate Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... within Jackson and Josephine Counties, and entirely within the existing Rogue Valley viticultural area. The boundaries are as follows: (1) Beginning at the confluence of the Applegate River with the Rogue... until it joins the northern boundary of the Rogue River National Forest; (7) Then easterly along the...

  6. Geologic map and digital database of the Porcupine Wash 7.5 minute Quadrangle, Riverside County, southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a

  7. Glade Valley School: 1909-1985.

    ERIC Educational Resources Information Center

    Dickson, Kay Reita

    This book is a comprehensive history of the Glade Valley School in Allegheny County, North Carolina. It is filled with letters, newspaper reports, first-hand accounts, and photographs that trace the lives of its students and faculty back to opening day in January 1911. The school's site was chosen in 1909 and was deemed favorable because it was…

  8. Geologic Map of the Sheep Hole Mountains 30' x 60' Quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.

    2002-01-01

    This data set describes and maps the geology of the Sheep Hole Mountains 30' x 60' quadrangle in southern California. The quadrangle covers an area of the Mojave Desert characterized by desert ranges separated by broad basins. Ranges include parts of the Old Woman, Ship, Iron, Coxcomb, Pinto, Bullion, and Calumet mountains as well as Lead Mountain and the Kilbeck Hills. Basins include part of Ward Valley, part of Cadiz Valley including Cadiz Lake playa, and broad valleys occupied by the Bristol Lake and Dale Lake playas. Bedrock geologic units in the ranges range in age from Proterozoic to Quaternary. The valleys expose Neogene and Quaternary deposits. Proterozoic granitoids in the quadrangle include the Early Proterozoic Fenner Gneiss, Kilbeck Gneiss, Dog Wash Gneiss, granite of Joshua Tree, the (highly peraluminous granite) gneiss of Dry Lakes valley, and a Middle Proterozoic granite. Proterozoic supracrustal rocks include the Pinto Gneiss of Miller (1938) and the quartzite of Pinto Mountain. Early Proterozoic orogeny left an imprint of metamorphic mineral assemblages and fabrics in the older rocks. A Cambrian to Triassic sequence deposited on the continental shelf lies above a profound nonconformity developed on the Proterozoic rocks. Small metamorphosed remnants of this sequence in the quadrangle include rocks correlated to the Tapeats, Bright Angel, Bonanza King, Redwall, Bird Spring, Hermit, Coconino, Kaibab, and Moenkopi formations. The Dale Lake Volcanics (Jurassic), and the McCoy Mountains Formation of Miller (1944)(Cretaceous and Jurassic?) are younger Mesozoic synorogenic supracrustal rocks in the quadrangle. Mesozoic intrusions form much of the bedrock in the quadrangle, and represent a succession of magmatic arcs. The oldest rock is the Early Triassic quartz monzonite of Twentynine Palms. Extensive Jurassic magmatism is represented by large expanses of granitoids that range in composition from gabbro to syenogranite. They include the Virginia May

  9. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  10. 31 flavors to 50 shades of grey: battling Phytophthoras in native habitats managed by the Santa Clara Valley Water District

    Treesearch

    Janet Hillman; Tedmund J. Swiecki; Elizabeth A. Bernhardt; Heather K. Mehl; Tyler B. Bourret; David Rizzo

    2017-01-01

    The Santa Clara Valley Water District (District) is a wholesale water supplier for 1.8 million people in Santa Clara County, California. Capital, water utility, and stream maintenance projects result in extensive, long-term mitigation requirements in riparian, wetland, and upland habitats throughout the county. In 2014, several restoration sites on the valley floor and...

  11. A public health issue related to collateral seismic hazards: The valley fever outbreak triggered by the 1994 Northridge, California earthquake

    USGS Publications Warehouse

    Jibson, R.W.

    2002-01-01

    Following the 17 January 1994 Northridge. California earthquake (M = 6.7), Ventura County, California, experienced a major outbreak of coccidioidomycosis (CM), commonly known as valley fever, a respiratory disease contracted by inhaling airborne fungal spores. In the 8 weeks following the earthquake (24 January through 15 March), 203 outbreak-associated cases were reported, which is about an order of magnitude more than the expected number of cases, and three of these cases were fatal. Simi Valley, in easternmost Ventura County, had the highest attack rate in the county, and the attack rate decreased westward across the county. The temporal and spatial distribution of CM cases indicates that the outbreak resulted from inhalation of spore-contaminated dust generated by earthquake-triggered landslides. Canyons North East of Simi Valley produced many highly disrupted, dust-generating landslides during the earthquake and its aftershocks. Winds after the earthquake were from the North East, which transported dust into Simi Valley and beyond to communities to the West. The three fatalities from the CM epidemic accounted for 4 percent of the total earthquake-related fatalities.

  12. 71. MISSISSIPPI, LOWNDES CO. COLUMBUSSTEENS MAP OF LOWNDES COUNTY, 1931 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. MISSISSIPPI, LOWNDES CO. COLUMBUS-STEENS MAP OF LOWNDES COUNTY, 1931 Detail of ROAD MAP OF LOWNDES COUNTY, MISSISSIPPI, 1931 by C. L. wood, county engineer. Orig. scale: I in. to I mi. Includes Columbus and area NE to steens. Extent: 12 mi. East-West, 9 mi. North-South. Property of Helen (Mrs. Sam L.) Crawford, Hamilton, Ms. Sarcone Photography, Columbus, Ms., Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  13. 7 CFR 987.339 - Assessment rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Assessment rate. 987.339 Section 987.339 Agriculture... RIVERSIDE COUNTY, CALIFORNIA Assessment Rates § 987.339 Assessment rate. On and after October 1, 2013, an assessment rate of $0.40 per hundredweight is established for Riverside County, California, dates. [78 FR...

  14. Little Tennessee Valley Charrette. Final Report.

    ERIC Educational Resources Information Center

    Peccolo, Charles M.

    Purpose of the study was to evaluate the effectiveness of the Little Tennessee Valley Charrette, a 3-county experiment in community participation in identification of educational needs and planning new programs. An evaluation team interviewed charrette participants and group discussion leaders to obtain information on the program as the basis for…

  15. Foundation plan. San Bernardino Valley Union Junior College, Classics Building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Foundation plan. San Bernardino Valley Union Junior College, Classics Building. Also includes sections AA-KK (except DD). Howard E. Jones, Architect, San Bernardino, California. Sheet 1, job no. 312. Scales 1/8 inch to the foot (plan) and 1/2 inch to the foot (sections). February 15, 1927. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  16. Details of main entrance. San Bernardino Valley Union Junior College, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Details of main entrance. San Bernardino Valley Union Junior College, Classics Building. Half elevation of exterior iron gates, half plan of interior with tiling, and section AA. Howard E. Jones, Architect, San Bernardino, California. Sheet 5, job no. 312. Scale 1/2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  17. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah

    USGS Publications Warehouse

    Fix, Philip F.; Nelson, W.B.; Lofgren, B.E.; Butler, R.G.

    1950-01-01

    Escalante Valley in southwestern Utah is one of the largest and most important ground-water areas of the State, with 1,300 square miles of arid land and an additional 1,500 square miles in its tributary drainage basin. Ground water is obtained from gravel and sand beds in the unconsolidated valley fill. In 1950 more irrigation wells were pumped than in any other basin of Utah, and their total pumpage exceeded 80,000 acre-feet. Farming is done chiefly in the Beryl-Enterprise district at the south (upper) end of the valley, where it depends almost entirely upon ground water, and in the Milford and Minersville districts in the northeast-central part of the valley. This progress report concerns chiefly the Beryl-Enterprise and Milford districts.

  18. Delaware County Community College Business and International Education Program.

    ERIC Educational Resources Information Center

    Delaware County Community Coll., Media, PA.

    In 1987, Delaware County Community College (DCCC) initiated the Delaware Valley Trade Enhancement Project, comprising a number of activities to promote the involvement of local firms in international trade. One of the first activities of the Delaware Valley Trade Enhancement project was a survey of over 6,000 small and medium-sized businesses in…

  19. Rates of evapotranspiration, recharge from precipitation beneath selected areas of native vegetation, and streamflow gain and loss in Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.; Tumbusch, Mary L.; Johnson, Michael J.

    2006-01-01

    Rapid growth and development in Carson Valley is causing concern over the continued availability of water resources to sustain such growth into the future. A study to address concerns over water resources and to update estimates of water-budget components in Carson Valley was begun in 2003 by the U.S. Geological Survey, in cooperation with Douglas County, Nevada. This report summarizes micrometeorologic, soil-chloride, and streambed-temperature data collected in Carson Valley from April 2003 through November 2004. Using these data, estimates of rates of discharge by evapotranspiration (ET), rates of recharge from precipitation in areas of native vegetation on the eastern and northern sides of the valley, and rates of recharge and discharge from streamflow infiltration and seepage on the valley floor were calculated. These rates can be used to develop updated water budgets for Carson Valley and to evaluate potential effects of land- and water-use changes on the valley's water budget. Data from eight ET stations provided estimates of annual ET during water year 2004, the sixth consecutive year of a drought with average or below average precipitation since 1999. Estimated annual ET from flood-irrigated alfalfa where the water table was from 3 to 6 feet below land surface was 3.1 feet. A similar amount of ET, 3.0 feet, was estimated from flood-irrigated alfalfa where the water table was about 40 feet below land surface. Estimated annual ET from flood-irrigated pasture ranged from 2.8 to 3.2 feet where the water table ranged from 2 to 5 feet below land surface, and was 4.4 feet where the water table was within 2 feet from land surface. Annual ET estimated from nonirrigated pasture was 1.7 feet. Annual ET estimated from native vegetation was 1.9 feet from stands of rabbitbrush and greasewood near the northern end of the valley, and 1.5 feet from stands of native bitterbrush and sagebrush covering alluvial fans along the western side of the valley. Uncertainty in most ET

  20. 22. Top 30/5. Plan of superstructure elevations. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Top 30/5. Plan of superstructure elevations. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  1. 23. Top 30/6. Plan of superstructure sections. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Top 30/6. Plan of superstructure sections. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  2. 24. Top 30/7. Plan of superstructure details. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Top 30/7. Plan of superstructure details. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  3. 77 FR 2469 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Imperial... Quality Management District (AVAQMD) and Imperial County Air Pollution Control District (ICAPCD) portions... Technology (RACT),'' adopted on February 23, 2010. * * * * * (G) Antelope Valley Air Quality Management...

  4. Zoonotic Intestinal Trematodes in Stray Cats (Felis catus) from Riverside Areas of the Republic of Korea

    PubMed Central

    Shin, Sung-Shik; Oh, Dae-Sung; Ahn, Kyu-Sung; Cho, Shin-Hyeong; Lee, Won-Ja; Na, Byoung-Kuk; Sohn, Woon-Mok

    2015-01-01

    The present study was performed to survey the infection status of zoonotic intestinal trematode (ZIT) in stray cats from 5 major riverside areas in the Republic of Korea. Total 400 stray cats were captured with live-traps in riverside areas of Seomjingang (‘gang’ means river) (203 cats) from June to October 2010, and of Yeongsangang (41), Nakdonggang (57), Geumgang (38), and Hangang (61 cats) from June to October 2011, respectively. Small intestines resected from cats were opened with a pair of scissors in a beaker with 0.85% saline and examined with naked eyes and under a stereomicroscope. More than 16 ZIT species were detected in 188 (92.6%) cats from Seomjingang areas, and the number of worms recovered was 111 per cat infected. In cats from riverside areas of Yeongsangang, Nakdonggang, Geumgang, and Hangang, more than 9, 8, 3, and 5 ZIT species were recovered, and the worm burdens were 13, 42, 11, and 56 specimens per infected cat, respectively. As the members of family Heterophyidae, more than 10 species, i.e., Metagonimus spp., Pygidiopsis summa, Heterophyes nocens, Stellantchasmus falcatus, Heterophyopsis continua, Acanthotrema felis, Centrocestus armatus, Procerovum varium, Cryptocotyle concava, and Stictodora lari, were recovered. More than 5 species of echinostomes, i.e., Echinostoma hortense, Echinochasmus japonicus, Echinochasmus sp., Echinoparyphium sp., and unidentified larval echinostomes, were collected. Plagiorchis spp. were detected in cats from areas of Seomjin-gang and Yeongsangang. From the above results, it has been confirmed that stray cats in 5 major riverside areas of Korea are highly infected with various species of ZITs. PMID:25925180

  5. 70. MISSISSIPPI, LOWNDES CO., NORTHWEST CORNER MAP OF LOWNDES COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. MISSISSIPPI, LOWNDES CO., NORTHWEST CORNER MAP OF LOWNDES COUNTY, 1931 Detail of ROAD OF LOWNDES COUNTY, MISSISSIPPI, 1931 by C. L. wood, county engineer. Detail of section NW of Columbus (12 mi. N, 9 mi. W), including Plymouth, Waverly, Barton, Buttahatchie R. Orig. scale: 1 in. to 1 mi. Property of Helen (Mrs. Sam L.) Crawford, Hamilton, Ms. Sarcone Photography, Columbus, Ms., Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  6. 78 FR 25011 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District, Santa Barbara County Air Pollution Control District, South Coast Air Quality Management District and Ventura... rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management...

  7. 78 FR 58459 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District, Santa Barbara County Air Pollution Control District, South Coast Air Quality Management District and Ventura.... SUMMARY: EPA is finalizing approval of revisions to the Antelope Valley Air Quality Management District...

  8. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  9. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Bigmore » Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.« less

  10. Hydrogeology of a drift-filled bedrock valley near Lino Lakes, Anoka County, Minnesota

    USGS Publications Warehouse

    Winter, T.C.; Pfannkuch, H.O.

    1976-01-01

    The bedrock surface of east-central Minnesota is dissected by an intricate network of valleys. Outside the bedrock valley at site B, 3 mi (4. 8 km) from site A, 100 ft (30 m) of drift overlies the bedrock surface. Observation wells were installed at the two sites to determine the vertical ground-water movement between the various aquifer units and the lateral movement between the two sites. An aquifer test of the lowest valley-fill aquifer at site A showed that the observation well completed in the same aquifer as the pumping well responded immediately; whereas a lag of about 100 min occurred between the lower valley fill and uppermost body of sand and gravel. This indicates that the hydraulic connection between these two layers is poor at the immediate site. Test results show that the lower sand-and-gravel aquifer has a transmissivity between 14,000 and 27,000 ft2/d (1,300 and 2,500 m2/d). Although the hydraulic gradient is vertically downward in the valley, much of the drift fill is poorly permeable. This suggests that the quantity of downward-percolating water reaching the lowest valley-fill aquifer is relatively small at the test site. Because valley cut through a number of bedrock aquifers in the region, they could potentially be an important avenue of contamination from land-surface waste. In addition, the vast network of bedrock valleys in the Twin Cities area might cause contaminants to disseminate rather rapidly throughout a large area.

  11. North elevation and second floor plan. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North elevation and second floor plan. San Bernardino Valley Union Junior College, Science Building. Includes physics, geology, and zoology departments shelving. Howard E. Jones, Architect, San Bernardino, California. Sheet 4, job no. 311. Scales 1/8 inch to the foot (elevations) and 1/2 inch to the foot (shelving). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. East and west elevations. San Berardino Valley Union Junior College, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East and west elevations. San Berardino Valley Union Junior College, Science Building. Also includes elevations and sections of chemistry department shelving. Howard E. Jones, Architect, San Bernardino, California. Sheet 4, Job no. 311. Scales 1/8 inch to the foot (elevations) and 1/2 inch t other foot (shelving). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  13. 75. MISSISSIPPI, MONROE COUNTY, ARMORY COTTON GIN PORT BRIDGE Dirt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. MISSISSIPPI, MONROE COUNTY, ARMORY COTTON GIN PORT BRIDGE Dirt road SW from Amory to River Cotton Gin Port road bridge. Copy of photo taken in 1932 by Jack Donnell, Columbus Mississippi. Sarcone Photography, Columbus, MS., Sept. 1978 - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  14. 76 FR 67369 - Revisions to the California State Implementation Plan, Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... the California State Implementation Plan, Joaquin Valley Unified Air Pollution Control District and Imperial County Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution...

  15. Tracing reclaimed water in the Menifee, Winchester, and Perris-South ground-water subbasins, Riverside County, California

    USGS Publications Warehouse

    Kaehler, Charles A.; Belitz, Kenneth

    2003-01-01

    As a component in the management of water resources in the Menifee, Winchester, and Perris-South subbasins in Riverside County, California, ponds are operated by the Eastern Municipal Water District for the temporary storage of reclaimed water that is produced by several regional water-reclamation facilities. A primary goal of this study was to evaluate the potential for using various ground-water constituents or characteristics as tracers of reclaimed water that has infiltrated from the storage ponds into the ground water in the three subbasins. A secondary goal was to estimate the degree to which the infiltrated reclaimed water has mixed with the native ground water. The evaluation of potential tracers and the estimation of mixing focused on data from wells located relatively close to the ponds. The most useful constituents and characteristics for evaluation of the fate and mixing of reclaimed water in the Menifee, Winchester, and Perris-South subbasins are major-ion composition, stable isotopes of hydrogen and oxygen, ultraviolet absorbance (UV-A), chloride concentration, and boron/chloride ratio plotted against chloride concentration. Emphasis in this study was placed on evaluating the utility of UV-A as a tracer and boron/chloride ratios in estimating the fraction of reclaimed water in ground water. In the Menifee subbasin, major-ion data, stable isotopes, chloride, UV-A, and boron/chloride ratio are all useful in identifying reclaimed water, and the results based on these indicators are consistent with each other. The results suggest that values of UV-A greater than or equal to 0.007 indicate the presence of reclaimed water in the Menifee subbasin. Ground-water samples with UV-A greater than 0.007 are estimated to consist of about 75 to 100 percent reclaimed water, on the basis of chloride-mixing calculations and boron/chloride-versus-chloride mixing calculations. In the Winchester subbasin, results based on the same factors used in the Menifee subbasin are

  16. Geology and ground-water resources of the Ahtanum Valley, Yakima County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1962-01-01

    The Ahtanum Valley covers an area of about 100 square miles in an important agricultural district in central Yakima County, Wash. Because the area is semiarid, virtually all crops require irrigation. Surface-water supplies are inadequate in most of the area, and ground water is being used increasingly for irrigation. The purpose of this investigation was the collection and interpretation of data, pertaining to ground water in the area as an aid in the proper development and management of the water resources. The occurrence and movement of ground water in the Ahtanum Valley are directly related to the geology. The valley occupies part of a structural trough (Ahtanum-Moxee subbasin) that is underlain by strongly folded flow layers of a thick sequence of the Yakima basalt. The upper part of the basalt sequence interfingers with, and is conformably overlying by, sedimentary rocks of the Ellensburg formation which are as much as 1,000 feet thick. These rocks are in turn overlying unconformably by cemented basalt gravel as much as 400 feet thick. Unconsolidated alluvial sand and gravel, as much as 30 feet thick, form the valley floor. Although ground water occurs in each of the rock units within the area, the Yakima basalt and the unconsolidated alluvium yield about three-fourths of the ground water currently used. Wells in the area range in depth from a few feet to more than 1,200 feet and yield from less than 1 to more than 1,030 gallons per minute. Although water levels in water-table wells usually are shallow--often less than 5 feet below the land surface--levels in deeper wells tapping confined water range from somewhat above the land surface (in flowing wells) to about 200 feet below. Wells drilled into aquifers in the Yakima basalt, the Ellensburg formation, and the cemented gravel usually tap confined water, and at least 12 wells in the area flow or have flowed in the past. Ground-water levels fluctuate principally in response to changes in stream levels

  17. Looking southeast down the Turtle Creek Valley at the Edgar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast down the Turtle Creek Valley at the Edgar Thomson works from a bluff at North Braddock (Martin Stupich) - U.S. Steel Edgar Thomson Works, Along Monongahela River, Braddock, Allegheny County, PA

  18. San Diego County Planning Efforts to Preserve Oak Woodlands

    Treesearch

    Thomas A. Oberbauer

    1991-01-01

    Development of San Diego County has traditionally taken place on the coastal plain and in coastal valleys. Within the past two decades, it has spread into the foothills resulting in conflicts with oak woodlands. The County of San Diego has proposed a number of measures to protect oak vegetation including a tree protection ordinance, land use designations and zones...

  19. Radiogenic Risk of Malignant Neoplasms for Techa Riverside Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akleyev, A. V.; Krestinina, L. Y.; Preston, D. L.

    As a result of releases of liquid radioactive waste into the Techa River from the Mayak PA in the 1950s, residents of the riverside villages were for decades exposed to external and internal radiation resulting from consumption of locally produced food and river water. Presented in the paper is a brief description of the radiation conditions, organization of medical follow-up of the exposed population, principles for dose estimation, epidemiological analyses of cancer mortality and incidence for residents of the Techa RIverside villages. The estimates of excess relative risk of radiation-related leukemia and solid cancer mortality and incidence obtained for membersmore » of the Techa River cohort point to a clear-cut dependence of the rates on radiation exposure. Attributive risk of cancer incidence characterizing the proportion of radiation-related cancer cases among the total cancers was comparable with that for mortality: 3.2% derived for cancer incidence and 2.5% for cancer mortality. Based on the non-CLL leukemia excess relative risk (ERR) estimates calculated using the linear dose-effect model and the nature of the cohort, it was estimated that 31 (60%) out of 49 leukemia death cases (with the exclusion of 12 cases of chronic lymphatic leukemia) can be related to a long-term radiation exposure due to the contamination of the Techa River.« less

  20. Wildlife Diversity in Valley-Foothill Riparian Habitat: North Central vs. Central Coast California

    Treesearch

    William D. Tietje; Reginald H. Barrett; Eric B. Kleinfelter; Brett T. Carré

    1991-01-01

    Habitat characteristics and diversity of terrestrial vertebrates were studied September 1989 to August 1990 in valley-foothill riparian habitat on two study areas: Dye Creek, Tehama County, and Avenales Ranch, San Luis Obispo County, California. The assumption considered was that differences between study areas in physical and vegetation characteristics would be...

  1. Hydrogeology of the stratified-drift aquifers in the Cayuta Creek and Catatonk Creek valleys in parts of Tompkins, Schuyler, Chemung, and Tioga Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Pitman, Lacey M.

    2012-01-01

    The surficial deposits, areal extent of aquifers, and the water-table configurations of the stratified-drift aquifer systems in the Cayuta Creek and Catatonk Creek valleys and their large tributary valleys in Tompkins, Schuyler, Chemung, and Tioga Counties, New York were mapped in 2009, in cooperation with the New York State Department of Environmental Conservation. Well and test-boring records, surficial deposit maps, Light Detection and Ranging (LIDAR) data, soils maps, and horizontal-to-vertical ambient-noise seismic surveys were used to map the extent of the aquifers, construct geologic sections, and determine the depth to bedrock (thickness of valley-fill deposits) at selected locations. Geologic materials in the study area include sedimentary bedrock, unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent alluvium. Stratified drift consisting of glaciofluvial sand and gravel is the major component of the valley fill in this study area. The deposits are present in sufficient amounts in most places to form extensive unconfined aquifers throughout the study area and, in some places, confined aquifers. Stratified drift consisting of glaciolacustrine fine sand, silt, and clay are present locally in valleys underlying the surficial sand and gravel deposits in the southern part of the Catatonk Creek valley. These unconfined and confined aquifers are the source of water for most residents, farms, and businesses in the valleys. A generalized depiction of the water table in the unconfined aquifer was constructed using water-level measurements made from the 1950s through 2010, as well as LIDAR data that were used to determine the altitudes of perennial streams at 10-foot contour intervals and water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. The configuration of the water-table contours indicate that the general direction of groundwater flow within Cayuta Creek and Catatonk

  2. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  3. 77 FR 64427 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the..., Gas, and Geothermal Resources confirmed that in the Ventura County Air Pollution Control District...

  4. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah.

    USGS Publications Warehouse

    Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.

    1996-01-01

    Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate

  5. Results of a conservation agreement and strategy for Rabbit Valley gilia (Gilia caespitosa)

    Treesearch

    L. A. Armstrong; T. O. Clark; R. B. Campbell

    2001-01-01

    Gilia caespitosa Gray (Rabbit Valley gilia) is a rare species restricted to scattered occurrences from the northern Waterpocket Fold to Thousand Lakes Mountain and Rabbit Valley in Wayne County, Utah. This species is a very narrow endemic, known only from unstable and faulting soils of detrital Navajo Sandstone. Species occurrences are often found with limited numbers...

  6. College in Paradise! (Paradise Valley Shopping Mall).

    ERIC Educational Resources Information Center

    Schoolland, Lucile B.

    Rio Salado Community College (RSCC), a non-campus college within the Maricopa Community College District, offers hundreds of day, late afternoon, and evening classes at locations throughout the county. The Paradise Valley community had always participated heavily in the evening classes offered by RSCC at local high schools. In fall 1982, an effort…

  7. KAWEAH RIVER VALLEY, WITH GENERALS HIGHWAY AT LEFT, MORO ROCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    KAWEAH RIVER VALLEY, WITH GENERALS HIGHWAY AT LEFT, MORO ROCK IN LEFT BACKGROUND. WITH PHOTO NO. 81, THIS SHOT FORMS A PANORAMA OF THE ROAD ALONG THE KAWEAH RIVER - Generals Highway, Three Rivers, Tulare County, CA

  8. Seismic-refraction study of suspected drift-filled bedrock valleys in Ramsey County, Minnesota

    USGS Publications Warehouse

    Woodward, D.G.

    1985-01-01

    A drift-filled bedrock valley was thought to incise the St. Peter aquifer to an altitude between 770 and 800 feet above sea level at the Koppers site. The interpretation of a seismic profile just east of the Koppers site is not conclusive, but suggests that a bedrock valley may be present near the middle of the line. The interpretation of a second seismic profile across the westward extension of the same suspected valley also is not conclusive, but suggests that a bedrock valley may be present at the north end of the line. The optimal field layout for each line at the site (longer shot offsets) could not be obtained because of limited space available in the densely developed residential neighborhoods.

  9. Basic Education in the Lower Rio Grande Valley: Human Capital Development or a Colonial System?

    ERIC Educational Resources Information Center

    Lynch, Patrick D.

    This report describes economic, social, and political characteristics of the lower Rio Grande Valley with implications for the educational system, and presents preliminary findings on how south Texas schools are integrating new immigrant Mexican students. The lower Rio Grande Valley comprises four Texas counties and northern Tamaulipas, Mexico.…

  10. Fy00 Treasure Valley ITS Deployment Project : advanced traffic management system (ATMS) software procurement and implementation process

    DOT National Transportation Integrated Search

    2006-08-02

    In 2000, the Treasure Valley area of the State of Idaho received a federal earmark of $390,000 to develop an Advanced Transportation Management System (ATMS) for the Treasure Valley region of Idaho. The Ada County Highway District (ACHD), located in ...

  11. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Androscoggin Valley Interstate Air Quality Control Region (Maine-New Hampshire) consists of the territorial... New Hampshire: Cass County. ..., New Sharron Town, New Vineyard Town, Perkins Township, Phillips Town, Salem Township, Strong Town...

  12. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Androscoggin Valley Interstate Air Quality Control Region (Maine-New Hampshire) consists of the territorial... New Hampshire: Cass County. ..., New Sharron Town, New Vineyard Town, Perkins Township, Phillips Town, Salem Township, Strong Town...

  13. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Androscoggin Valley Interstate Air Quality Control Region (Maine-New Hampshire) consists of the territorial... New Hampshire: Cass County. ..., New Sharron Town, New Vineyard Town, Perkins Township, Phillips Town, Salem Township, Strong Town...

  14. Elevation and plan of east side entrance. San Bernardino Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation and plan of east side entrance. San Bernardino Valley Union Junior College, Library Building. Also includes sections II and SS of entrance hall; and a stress diagram of steel truss. Howard E. Jones, Architect, San Bernardino, California. Sheet 7, job no. 315. Scale 1/2 inch to the foot. No date given on sheet (probably March or April, 1927). - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  15. West elevation. San Bernardino Valley Union Junior College, Science Building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West elevation. San Bernardino Valley Union Junior College, Science Building. Also includes plan of entrance, section EE showing tiling and typical transom design, and a full size detail of a door jamb for inside concrete walls. Howard E. Jones, Architect, San Bernardino, California. Sheet 7, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  16. 7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS AND PARKING LOT AREA. LOOKING WNW. GIS: N-37 40 36.2 / W-119 44 45.0 - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

  17. Ethnic groups' knowledge, attitude and practices and Rift Valley fever exposure in Isiolo County of Kenya.

    PubMed

    Affognon, Hippolyte; Mburu, Peter; Hassan, Osama Ahmed; Kingori, Sarah; Ahlm, Clas; Sang, Rosemary; Evander, Magnus

    2017-03-01

    Rift Valley fever (RVF) is an emerging mosquito-borne viral hemorrhagic fever in Africa and the Arabian Peninsula, affecting humans and livestock. For spread of infectious diseases, including RVF, knowledge, attitude and practices play an important role, and the understanding of the influence of behavior is crucial to improve prevention and control efforts. The objective of the study was to assess RVF exposure, in a multiethnic region in Kenya known to experience RVF outbreaks, from the behavior perspective. We investigated how communities in Isiolo County, Kenya were affected, in relation to their knowledge, attitude and practices, by the RVF outbreak of 2006/2007. A cross-sectional study was conducted involving 698 households selected randomly from three different ethnic communities. Data were collected using a structured questionnaire regarding knowledge, attitudes and practices that could affect the spread of RVF. In addition, information was collected from the communities regarding the number of humans and livestock affected during the RVF outbreak. This study found that better knowledge about a specific disease does not always translate to better practices to avoid exposure to the disease. However, the high knowledge, attitude and practice score measured as a single index of the Maasai community may explain why they were less affected, compared to other investigated communities (Borana and Turkana), by RVF during the 2006/2007 outbreak. We conclude that RVF exposure in Isiolo County, Kenya during the outbreak was likely determined by the behavioral differences of different resident community groups. We then recommend that strategies to combat RVF should take into consideration behavioral differences among communities.

  18. Ethnic groups’ knowledge, attitude and practices and Rift Valley fever exposure in Isiolo County of Kenya

    PubMed Central

    Affognon, Hippolyte; Mburu, Peter; Hassan, Osama Ahmed; Kingori, Sarah; Ahlm, Clas; Sang, Rosemary; Evander, Magnus

    2017-01-01

    Rift Valley fever (RVF) is an emerging mosquito-borne viral hemorrhagic fever in Africa and the Arabian Peninsula, affecting humans and livestock. For spread of infectious diseases, including RVF, knowledge, attitude and practices play an important role, and the understanding of the influence of behavior is crucial to improve prevention and control efforts. The objective of the study was to assess RVF exposure, in a multiethnic region in Kenya known to experience RVF outbreaks, from the behavior perspective. We investigated how communities in Isiolo County, Kenya were affected, in relation to their knowledge, attitude and practices, by the RVF outbreak of 2006/2007. A cross-sectional study was conducted involving 698 households selected randomly from three different ethnic communities. Data were collected using a structured questionnaire regarding knowledge, attitudes and practices that could affect the spread of RVF. In addition, information was collected from the communities regarding the number of humans and livestock affected during the RVF outbreak. This study found that better knowledge about a specific disease does not always translate to better practices to avoid exposure to the disease. However, the high knowledge, attitude and practice score measured as a single index of the Maasai community may explain why they were less affected, compared to other investigated communities (Borana and Turkana), by RVF during the 2006/2007 outbreak. We conclude that RVF exposure in Isiolo County, Kenya during the outbreak was likely determined by the behavioral differences of different resident community groups. We then recommend that strategies to combat RVF should take into consideration behavioral differences among communities. PMID:28273071

  19. Citrus Research Board-sponsored review of the University of California Riverside citrus breeding

    USDA-ARS?s Scientific Manuscript database

    In October 2015 the Citrus Research Board (CRB) assembled a panel of experts to review the Citrus Research Board-sponsored Citrus Research and Genetics Programs at University of California Riverside (UCR). The panel consisted of: Gennaro Fazio, USDA/ARS, Geneva, NY; Maria Angeles Forner-Giner, Insti...

  20. Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.; Kirby, Stefan

    2011-01-01

    The water resources of Rush Valley were assessed during 2008–2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.Drillers’ logs and geophysical gravity data were compiled and used to delineate seven hydrogeologic units important to basin-wide groundwater movement. The principal basin-fill aquifer includes the unconsolidated Quaternary-age alluvial and lacustrine deposits of (1) the upper basin-fill aquifer unit (UBFAU) and the consolidated and semiconsolidated Tertiary-age lacustrine and alluvial deposits of (2) the lower basin-fill aquifer unit (LBFAU). Bedrock hydrogeologic units include (3) the Tertiary-age volcanic unit (VU), (4) the Pennsylvanian- to Permian-age upper carbonate aquifer unit (UCAU), (5) the upper Mississippian- to lower Pennsylvanian-age upper siliciclastic confining unit (USCU), (6) the Middle Cambrian- to Mississippian-age lower carbonate aquifer unit (LCAU), and (7) the Precambrian- to Lower Cambrian-age noncarbonate confining unit (NCCU). Most productive bedrock wells in the Rush Valley groundwater basin are in the UCAU.Average annual recharge to the Rush Valley groundwater basin is estimated to be about 39,000 acre-feet. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall within the mountains with smaller amounts occurring as infiltration of streamflow and unconsumed irrigation water at or near the mountain front. Groundwater

  1. Mineral resources and land use in Stanislaus County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, C.T.; Dupras, D.L.; Chapman, R.H.

    1993-04-01

    Stanislaus County covers portions of 3 geologic provinces: Coast Ranges, Great Valley, and Sierra Nevada. Each has been exploited for a distinct set of mineral resources, which include sand and gravel, ball and fire clay, placer gold, manganese, chromite, magnesite, mercury, diatomite, building stone, and mineral pigment. Of these, sand and gravel, clay, and diatomite have been the most important commodities produced recently. Sand and gravel, particularly that along the Tuolumne River, is and will continue to be the county's main mineral product; other potentially important areas include alluvial fans along the west side of the Great Valley. Clay andmore » diatomite could resume importance in the future. There is also potential for quartz-rich specialty sands. Although the county is largely rural, it is undergoing one of the highest growth rates in California. Several new residential communities are being proposed in the county, which would have two major effects on mineral resources: (1) large sources of aggregate will be required for construction, and (2) development of residential areas may preclude mining of resources in those areas. Maps of mineral resources produced by this study, will assist decisions on such potential conflicts in land use.« less

  2. 47. VIEW NORTH OF LITTLE PATUXENT VALLEY: PARKWAY CROSSES LITTLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. VIEW NORTH OF LITTLE PATUXENT VALLEY: PARKWAY CROSSES LITTLE PATUXENT RIVER BRIDGE, WITH ANNAPOLIS JUNCTION ROAD UNDERPASS IN DISTANCE (COMPARE WITH MD-129-33). (NPS/NCR (cn) 2104-V) - Baltimore-Washington Parkway, Greenbelt, Prince George's County, MD

  3. 2. View looking south from Lehigh Valley Railroad Bridge showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View looking south from Lehigh Valley Railroad Bridge showing Neshanic Station Bridge in elevation. Jet Lowe, photographer, 1983 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  4. "U.S.R.S., Grand Valley Project, Colo. Sprocket, shaft and chain for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "U.S.R.S., Grand Valley Project, Colo. Sprocket, shaft and chain for 70 ft. roller hoist. May 14, 1915." Note that on this and other working drawings of the roller gates, the German manufacturer/patent holder is not acknowledged - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  5. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    USGS Publications Warehouse

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  6. 75 FR 7029 - Lonza, Inc., Riverside Plant, Lonza Exclusive Synthesis Section, Custom Manufacturing Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,231] Lonza, Inc., Riverside Plant, Lonza Exclusive Synthesis Section, Custom Manufacturing Division Including On-Site Leased Workers of Lab Support, Aerotek, Job Exchange, and Synerfac; Conshohocken, PA; Notice of Affirmative...

  7. 75 FR 878 - Lonza, Inc. Riverside Plant; Lonza Exclusive Synthesis Section Custom Manufacturing Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,231] Lonza, Inc. Riverside Plant; Lonza Exclusive Synthesis Section Custom Manufacturing Division Including On-Site Leased Workers of Lab Support, Aerotek, Job Exchange, and Synerfac; Conshohocken, PA; Notice of Affirmative...

  8. Geology and ground water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California

    USGS Publications Warehouse

    Kunkel, Fred; Upson, Joseph Edwin

    1960-01-01

    Napa and Sonoma Valleys are adjacent alluvium-filled valleys about 40 miles northeast of San Francisco. They occupy alined and structurally controlled depressions in the northern Coast Ranges physiographic province and drain south into San Pablo Bay. The valleys are surrounded and underlain by unconsolidated marine and continental sediments and volcanic rocks of Pliocene and Pleistocene age, which are water bearing in large part and together make up relatively extensive ground-water basins. Napa Valley, the eastern valley, is the larger and has a valley-floor area of about 85 square miles. Sonoma Valley has a valley-floor area of about 35 square miles; in addition, about 10 square miles is unreclaimed tidal marsh. The rock units of Napa and Sonoma Valleys are divided into four classes on the basis of their distribution and relative capacity to yield water: (a) Consolidated virtually non-water-bearing chiefly sedimentary (some metamorphic) rocks that range in age from Jurassic ( ?) to Pliocene; (b) marine shale and sand of the Petaluma formation (Pliocene) and the Merced formation (Pliocene and Pleistocene) that do not crop out within Napa or Sonoma Valleys but perhaps are penetrated by some deep wells drilled in Sonoma Valley; (c) Sonoma volcanics of Pliocene age, parts of which are non-water-bearing and parts of which locally yield large quantities of water; and (d) unconsolidated alluvial deposits mainly of Quaternary age. The deposits of classes (c) and (d) contain the most important aquifers in the area. Most of the water used in these valleys is pumped from wells in the younger and older alluvium in the Huichica and Glen Ellen formations. and in the Sonoma volcanics. The principal aquifers are the younger and older alluvium. but appreciable quantities of water are pumped locally from the Sonoma volcanics. The Huichica and Glen Ellen formations yield water in small quantities and at most places supply water only for limited domestic uses. The younger alluvium

  9. Susceptibility of Bagrada hilaris (Hemiptera: Pentatomidae) to insecticides in laboratory and greenhouse bioassays

    USDA-ARS?s Scientific Manuscript database

    Field-collected populations of Bagrada hilaris (Burmeister) from Coachella Valley, CA, Imperial Valley, CA, Riverside, CA and Yuma Valley, AZ, were evaluated for susceptibility to several active ingredients representing ten classes of insecticide chemistry. Both leaf-spray and leaf-dip bioassays wer...

  10. 78 FR 13932 - Yellowstone Valley Railroad, L.L.C.-Discontinuance of Lease and Trackage Rights Operations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 991 (Sub-No. 1X)] Yellowstone Valley Railroad, L.L.C.--Discontinuance of Lease and Trackage Rights Operations Exemption--In Richland, Sheridan, Roosevelt, and Daniels Counties, Mont., and McKenzie County, ND On February 11, 2013...

  11. A Public Health Issue Related To Collateral Seismic Hazards: The Valley Fever Outbreak Triggered By The 1994 Northridge, California Earthquake

    NASA Astrophysics Data System (ADS)

    Jibson, Randall W.

    Following the 17 January 1994 Northridge, California earthquake (M = 6.7), Ventura County, California, experienced a major outbreak ofcoccidioidomycosis (CM), commonly known as valley fever, a respiratory disease contracted byinhaling airborne fungal spores. In the 8 weeks following the earthquake (24 Januarythrough 15 March), 203 outbreak-associated cases were reported, which is about an order of magnitude more than the expected number of cases, and three of these cases were fatal.Simi Valley, in easternmost Ventura County, had the highest attack rate in the county,and the attack rate decreased westward across the county. The temporal and spatial distribution of CM cases indicates that the outbreak resulted from inhalation of spore-contaminated dust generated by earthquake-triggered landslides. Canyons North East of Simi Valleyproduced many highly disrupted, dust-generating landslides during the earthquake andits aftershocks. Winds after the earthquake were from the North East, which transporteddust into Simi Valley and beyond to communities to the West. The three fatalities from the CM epidemic accounted for 4 percent of the total earthquake-related fatalities.

  12. Miami Valley ITS : early deployment plan : final ITS strategic deployment plan

    DOT National Transportation Integrated Search

    1997-09-01

    This report presents the Strategic Deployment Plan for Intelligent Transportation Systems (ITS) in Clark, Greene, Miami and Montgomery Counties, Ohio (the Miami Valley). The report summarizes the steps that were performed in preparing the Strat...

  13. 9. Photocopy of photograph (original print at Riveside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of photograph (original print at Riveside Library, Local History Collection), photographer unknown, ca. 1916. VIEW OF MAUDE STREET AT VICTORIA AVENUE LOOKING SOUTH - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  14. Montana Valley and Foothill Prairies Ecoregion: Chapter 6 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Taylor, Janis L.

    2012-01-01

    The Montana Valley and Foothill Prairies Ecoregion comprises numerous intermountain valleys and low-elevation foothill prairies spread across the western half of Montana, on both sides of the Continental Divide (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion, which covers approximately 64,658 km2 (24,965 mi2), includes the Flathead Valley and the valleys surrounding Helena, Missoula, Bozeman, Billings, Anaconda, Dillon, and Lewistown (fig. 1). These valleys are generally characterized by shortgrass prairie vegetation and are flanked by forested mountains (Woods and others, 1999); thus, the valleys’ biotas with regards to fish and insects are comparable. In many cases, the valleys are conduits for some of the largest rivers in the state, including Clark Fork and the Missouri, Jefferson, Madison, Flathead, Yellowstone, Gallatin, Smith, Big Hole, Bitterroot, and Blackfoot Rivers (fig. 2). The Montana Valley and Foothill Prairies Ecoregion also includes the “Rocky Mountain front,” an area of prairies along the eastern slope of the northern Rocky Mountains. Principal land uses within the ecoregion include farming, grazing, and mining. The valleys serve as major transportation and utility corridors and also contain the majority of Montana’s human population. The Montana Valley and Foothill Prairies Ecoregion extends into 17 mostly rural counties throughout western Montana. Only three of the counties—Carbon, Yellowstone, and Missoula—are part of a metropolitan statistical area with contiguous built-up areas tied to an employment center. Nearly two-thirds of Montana residents live in nonmetropolitan counties (Albrecht, 2008). Ten of the counties within the ecoregion had population growth rates greater than national averages (9–13 percent) between 1970 and 2000 (table 1). Ravalli and Gallatin Counties had the highest growth rates. Population growth was largely due to amenity-related inmigration and an economy dependent on tourism

  15. Inventory of amphibians and reptiles at Death Valley National Park

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.

  16. Hydrogeology and groundwater availability in Clarke County, Virginia

    USGS Publications Warehouse

    Nelms, David L.; Moberg, Roger M.

    2010-01-01

    The prolonged drought between 1999 and 2002 drew attention in Clarke County, Virginia, to the quantity and sustainability of its groundwater resources. The groundwater flow systems of the county are complex and are controlled by the extremely folded and faulted geology that underlies the county. A study was conducted between October 2002 and October 2008 by the U.S. Geological Survey, in cooperation with Clarke County, Virginia, to describe the hydrogeology and groundwater availability in the county and to establish a long-term water monitoring network. The study area encompasses approximately 177 square miles and includes the carbonate and siliciclastic rocks of the Great Valley section of the Valley and Ridge Physiographic Province and the metamorphic rocks of the Blue Ridge Physiographic Province (Blue Ridge). High-yielding wells generally tend to cluster along faults, within lineament zones, and in areas of tight folding throughout the county. Water-bearing zones are generally within 250 feet (ft) of land surface; however, median depths are slightly deeper for the hydrogeologic units of the Blue Ridge than for those of the Great Valley section of the county. Total water-level fluctuations between October 2002 and October 2008 ranged from 2.86 to 87.84 ft across the study area, with an average of 24.15 ft. Generally, water-level fluctuations were greatest near hydrologic divides, in isolated elevated areas, and in the Opequon Creek Basin. Seasonally, water-level highs occur in the early spring at the end of the major groundwater recharge period and lows occur in late autumn when evapotranspiration rates begin to decrease. An overall downward trend in water levels between 2003 and 2008, which closely follows a downward trend in annual precipitation over the same period, was observed in a majority of wells in the Great Valley and in some of the wells in the Blue Ridge. Water-level fluctuations in the Blue Ridge tend to follow current meteorological conditions, and

  17. Geologic map and digital database of the Conejo Well 7.5 minute quadrangle, Riverside County, Southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Conejo Well 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses part of the northern Eagle Mountains and part of the south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults. In and adjacent to the Conejo Well quadrangle, faults of the northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Conejo Well database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a point coverage

  18. Data network, collection, and analysis in the Diamond Valley flow system, central Nevada

    USGS Publications Warehouse

    Knochenmus, Lari A.; Berger, David L.; Moreo, Michael T.; Smith, J. LaRue

    2011-01-01

    Future groundwater development and its effect on future municipal, irrigation, and alternative energy uses in the Diamond Valley flow system are of concern for officials in Eureka County, Nevada. To provide a better understanding of the groundwater resources, the U.S. Geological Survey, in cooperation with Eureka County, commenced a multi-phase study of the Diamond Valley flow system in 2005. Groundwater development primarily in southern Diamond Valley has resulted in water-level declines since the 1960s ranging from less than 5 to 100 feet. Groundwater resources in the Diamond Valley flow system outside of southern Diamond Valley have been relatively undeveloped. Data collected during phase 2 of the study (2006-09) included micrometeorological data at 4 evapotranspiration stations, 3 located in natural vegetation and 1 located in an agricultural field; groundwater levels in 95 wells; water-quality constituents in aquifers and springs at 21 locations; lithologic information from 7 recently drilled wells; and geophysical logs from 3 well sites. This report describes what was accomplished during phase 2 of the study, provides the data collected, and presents the approaches to strengthen relations between evapotranspiration rates measured at micrometeorological stations and spatially distributed groundwater discharge. This report also presents the approach to improve delineation of areas of groundwater discharge and describes the current methodology used to improve the accuracy of spatially distributed groundwater discharge rates in the Diamond Valley flow system.

  19. 72. MISSISSIPPI, MONROE CO. MAP OF MONROE COUNTY, ca. 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. MISSISSIPPI, MONROE CO. MAP OF MONROE COUNTY, ca. 1925 Broad side of map of Monroe Co., 'Compliments of Home Mortgage & Realty Co., Amory, Miss.' Orig. scale: ca. 1 in. to 2 mi. No date. Property of Helen (Mrs. Sam L.) Crawford, Hamilton, Ms. Sarcone Photography, Columbus, Ms., Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  20. Title V Operating Permit: QEP Field Services Company - Wonsits Valley Compressor Station

    EPA Pesticide Factsheets

    Response to public comments and the Title V Operating Permit for the QEP Field Services Company, Wonsits Valley Compressor Station, located on the Uintah and Ouray Indian Reservation in Uintah County, Utah.

  1. Geology and ground-water resources of Uvalde County, Texas

    USGS Publications Warehouse

    Welder, F.A.; Reeves, R.D.

    1964-01-01

    Ground-water withdrawals from the Edwards and associated limestones in Uvalde County probably could be maintained indefinitely at a rate of about 200,000 acre-feet per year, provided that withdrawals north and west of the county were not increased. However, continued withdrawals at this rate-would cause wells in structurally high areas to go dry, and underflow into Medina County would cease. Furthermore, saline water might invade the fresh-water part of the aquifer from the south, and perennial spring flow in the Leona River valley would cease.

  2. Geology and ground-water resources of Washington County, Colorado

    USGS Publications Warehouse

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according

  3. 13. Photocopy of photograph (original print at Riveside Library, Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original print at Riveside Library, Local History Collection), photographer and date unknown. VIEW OF JAPANESE WORKER HOUSING, ARLINGTON HEIGHTS FRUIT COMPANY, EXACT LOCATION UNKNOWN - California Citrus Heritage Recording Project, Riverside, Riverside County, CA

  4. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the

  5. 75 FR 28279 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Hyder Valley Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... Valley Solar Energy Project, Maricopa County, AZ AGENCY: Bureau of Land Management, Interior. ACTION... Solar Energy Project by any of the following methods: E-mail: HyderValley_Solar@blm.gov . Mail: Bureau.... Pacific Solar Investments is also considering the use of thermal energy storage. Thermal energy storage...

  6. Maps Suggest Transport and Source Processes of PM2.5 at 1 km x 1 km for the Whole San Joaquin Valley, Winter 2011 (Generalizations from DISCOVER-AQ)

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.

    2016-12-01

    We present interpreted data analysis using MAIAC (Multiangle implementation of Atmospheric Correction) retrievals and appropriate RAPid Update Cycle (RAP) meteorology to map respirable aerosol (PM2.5) for the period January and February, 2011. The San Joaquin Valley is one of the unhealthiest regions in the USA for PM2.5 and related morbidity. The methodology evaluated can be used for the entire moderate-resolution imaging spectrometer (MODIS, VIIRS) data record. Other difficult areas of the West: Riverside, CA, Salt Lake City, UT, and Doña Ana County, NM share similar difficulties and solutions. The maps of boundary layer depth for 11-16 hr local time from RAP allows us to interpret aerosol optical thickness as a concentration of particles in a nearly well-mixed box capped by clean air. That mixing is demonstrated by DISCOVER-AQ data and afternoon samples from the airborne measurements, P3B (on-board) and B200 (HSRL2 lidar). This data and the PM2.5 gathered at the deployment sites allowed us to estimate and then evaluate consistency and daily variation of the AOT to PM2.5 relationship. Mixed-effects modeling allowed a refinement of that relation from day to day; RAP mixed layers explained the success of previous mixed-effects modeling. Compositional, size-distribution, and MODIS angle-of-regard effects seem to describe the need for residual daily correction beyond ML depth. We report on an extension method to the entire San Joaquin Valley for all days with MODIS imagery using the permanent PM2.5 stations, evaluated for representativeness. Resulting map movies show distinct sources, particularly Interstate-5 (at 1km x 1km resolution) and the broader Bakersfield area. Accompanying winds suggest transport effects and variable pathways of pollution cleanout. Such estimates should allow morbidity/mortality studies. They should be also useful for actual model assimilations, where composition and sources are uncertain. We conclude with a description of new work to

  7. Documentation of model input and output values for simulation of pumping effects in Paradise Valley, a basin tributary to the Humboldt River, Humboldt County, Nevada

    USGS Publications Warehouse

    Carey, A.E.; Prudic, David E.

    1996-01-01

    Documentation is provided of model input and sample output used in a previous report for analysis of ground-water flow and simulated pumping scenarios in Paradise Valley, Humboldt County, Nevada.Documentation includes files containing input values and listings of sample output. The files, in American International Standard Code for Information Interchange (ASCII) or binary format, are compressed and put on a 3-1/2-inch diskette. The decompressed files require approximately 8.4 megabytes of disk space on an International Business Machine (IBM)- compatible microcomputer using the MicroSoft Disk Operating System (MS-DOS) operating system version 5.0 or greater.

  8. Assessing Riverside Community College Nursing Student Attitudes toward Exposure to AIDS/HIV-Positive Patients.

    ERIC Educational Resources Information Center

    Kross, Carolyn Sue

    In fall 1990, a study was conducted to assess the attitudes of nursing students who were attending Riverside Community College (RCC), in California, toward exposure to Acquired Immune Deficiency Syndrome/Human Immunodeficiency Virus (AIDS/HIV) positive patients in a hospital setting. All students enrolled in RCC's associate degree nursing program…

  9. Rogue Community College Student Satisfaction Survey, Winter 2000. Management Report: Redwood and Riverside Campuses.

    ERIC Educational Resources Information Center

    Wild, Nancy

    The Annual Student Satisfaction Survey at Oregon's Rogue Community College (RCC) allows the school to measure achievement in services, classes, and facilities. Three hundred and eleven students responded to this winter 2000 survey. Findings include: (1) seventeen percent of all respondents at the Redwood and Riverside campuses were very satisfied…

  10. Water Budgets and Potential Effects of Land- and Water-Use Changes for Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.

    2006-01-01

    To address concerns over continued growth in Carson Valley, the U.S. Geological Survey, in cooperation with Douglas County, Nevada, began a study in February 2003 to update estimates of water-budget components in Carson Valley. Estimates of water-budget components were updated using annual evapotranspiration (ET) rates, rates of streamflow loss to infiltration and gain from ground-water seepage, and rates of recharge from precipitation determined from data collected in 2003 and 2004 for the study and reported in the literature. Overall water budgets were developed for the area of basin-fill deposits in Carson Valley for water years 1941-70 and 1990-2005. Water years 1941-70 represent conditions prior to increased population growth and ground-water pumping, and the importation of effluent. A ground-water budget was developed for the same area for water years 1990-2005. Estimates of total inflow in the overall water budget ranged from 432,000 to 450,000 acre-feet per year (acre-ft/yr) for water years 1941-70 and from 430,000 to 448,000 for water years 1990-2005. Estimates of total inflow for both periods were fairly similar because variations in streamflow and precipitation were offset by increases in imported effluent. Components of inflow included precipitation on basin-fill deposits of 38,000 acre-ft/yr for both periods, streamflow of the Carson River and tributaries to the valley floor of 372,000 acre-ft/yr for water years 1941-70 and 360,000 acre-ft/yr for water years 1990-2005, ground-water inflow ranging from 22,000 to 40,000 acre-ft/yr for both periods, and imported effluent of 9,800 acre-ft/yr for water years 1990-2005 with none imported for water years 1941-70. Estimates of ground-water inflow from the California portion of Carson Valley averaged about 6,000 acre-ft/yr and ranged from 4,000 to 8,000 acre-ft/yr. These estimates compared well with a previous estimate of ground-water inflow across the State line. Estimates of total outflow in the overall water

  11. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    USGS Publications Warehouse

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  12. New Mexico: Bernalillo County, Albuquerque (A Former EPA CARE Project)

    EPA Pesticide Factsheets

    The Bernalillo County Office of Environmental Health (BCEH) will help the South Valley neighborhood reduce health risks attributed to benzene and heavy metal exposures by conducting an environmental assessment of gasoline stations and auto dismantlers,

  13. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California

    USGS Publications Warehouse

    Kapple, Glenn W.; Mitten, Hugh T.; Durbin, Timothy J.; Johnson, Michael J.

    1984-01-01

    A two-dimensional, finite-element, digital model was developed for the Carmel Valley alluvial ground-water basin using measured, computed, and estimated discharge and recharge data for the basin. Discharge data included evapotranspiration by phreatophytes and agricultural, municipal, and domestic pumpage. Recharge data included river leakage, tributary runoff, and pumping return flow. Recharge from subsurface boundary flow and rainfall infiltration was assumed to be insignificant. From 1974 through 1978, the annual pumping rate ranged from 5,900 to 9,100 acre-feet per year with 55 percent allotted to municipal use principally exported out of the valley, 44 percent to agricultural use, and 1 percent to domestic use. The pumpage return flow within the valley ranged from 900 to 1,500 acre-feet per year. The aquifer properties of transmissivity (about 5,900 feet squared per day) and of the storage coefficient (0.19) were estimated from an average alluvial thickness of 75 feet and from less well-defined data on specific capacity and grain-size distribution. During calibration the values estimated for hydraulic conductivity and storage coefficient for the lower valley were reduced because of the smaller grain size there. The river characteristics were based on field and laboratory analyses of hydraulic conductivity and on altitude survey data. The model is intended principally for simulation of flow conditions using monthly time steps. Time variations in transmissivity and short-term, highrecharge potential are included in the model. The years 1974 through 1978 (including "pre-" and "post-" drought) were selected because of the extreme fluctuation in water levels between the low levels measured during dry years and the above-normal water levels measured during the preceding and following wet years. Also, during this time more hydrologic information was available. Significantly, computed water levels were generally within a few feet of the measured levels, and computed

  14. 77 FR 42488 - Intent To Prepare a Draft Environmental Impact Statement for the Proposed Panoche Valley Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Water Act to construct and operate a 399-Megawatt AC (MWAC) solar photovoltaic (PV) energy generating... Environmental Impact Statement for the Proposed Panoche Valley Solar Farm in San Benito County, CA, Corps Permit... Department of the Army permit application to construct a solar photovoltaic energy plant in San Benito County...

  15. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  16. Hydrogeologic framework of Antelope Valley and Bedell Flat, Washoe County, west-central Nevada

    USGS Publications Warehouse

    Berger, D.L.; Ponce, D.A.; Ross, W.C.

    2001-01-01

    Description of the hydrogeologic framework of Antelope Valley and Bedell Flat in west-central Nevada adds to the general knowledge of regional ground-water flow north of the Reno-Sparks metropolitan area. The hydrogeologic framework is defined by the rocks and deposits that transmit ground water or impede its movement and by the combined thickness of Cenozoic deposits. When data are lacking about the subsurface geology of an area, geophysical methods can be used to provide additional information. In this study, gravimetric and seismic-refraction methods were used to infer the form of structural features and to estimate the thickness of Cenozoic deposits in each of the two valleys. In Antelope Valley, the thickness of these deposits probably does not exceed about 300 feet, suggesting that ground-water storage in the basin-fill aquifer is limited. Beneath Bedell Flat is an elongated, northeast-trending structural depression in the pre-Cenozoic basement; the maximum thickness of Cenozoic deposits is about 2,500 feet beneath the south-central part of the valley. Shallow ground water in the northwest corner of Bedell Flat may be a result of decreasing depth to the pre-Cenozoic basement.

  17. 21st Century jobs initiative - Tennessee`s Resource Valley. Progress report 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-20

    Tennessee`s Resource Valley, a regional economic development organization, was asked to facilitate a two-year, $750,000 grant from the Department of Energy. The grant`s purpose is to make the East Tennessee region less dependent on federal funds for its economic well-being and to increase regional awareness of the advantages of proximity to the Department of Energy facilities in Oak Ridge. Tennessee`s Resource Valley`s mission is to market the mid-East Tennessee region`s business location advantages to corporate decision makers and to facilitate regional initiatives that impact the creation of quality job opportunities. Tennessee`s Resource Valley represents the following fifteen (15) counties inmore » East Tennessee: Anderson, Blount, Campbell, Claiborne, Cocke, Grainger, Jefferson, Knox, Loudon, Monroe, Morgan, Scott, Sevier, and Union.« less

  18. Geology and ground-water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Cline, Denzel R.

    1965-01-01

    The purpose of the ground-water investigation of Dane County, Wis., was to determine the occurrence, movement, quantity, quality, and availability of ground water in the unconsolidated deposits and the underlying bedrock. The relationships between ground water and surface water were studied in general in Dane County and in detail in the Madison metropolitan area. An analysis was made of the hydrologic system of the Yahara River valley and of the effects of ground-water pumpage on that system.

  19. 78 FR 17717 - Notice of Availability of the Record of Decision for the EDF Renewable Energy Desert Harvest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... decommission an up to 150-megawatt (MW), nominal capacity, alternating current, solar photovoltaic (PV) energy... Solar Field Project and California Desert Conservation Area Plan Amendment, Riverside County, California... California Desert Conservation Area (CDCA) Plan, for the Desert Harvest Solar Project (DHSP), in Riverside...

  20. 76 FR 47143 - Approval for Manufacturing Authority, Foreign-Trade Zone 153; Abbott Cardiovascular Systems, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Authority, Foreign-Trade Zone 153; Abbott Cardiovascular Systems, Inc., (Cardiovascular Devices), Riverside... of Abbott Cardiovascular Systems, Inc., within Sites 11-13 of FTZ 153, located in Riverside County... behalf of Abbott Cardiovascular Systems, Inc., as described in the application and Federal Register...

  1. Survey of a violent tornado in far southwestern Texas: The Bakersfield Valley storm of June 1, 1990

    NASA Astrophysics Data System (ADS)

    Woodall, Gary R.; Mathews, George N.

    During the late afternoon of June 1, 1990, a violent tornado struck northern and eastern Pecos County, Texas. This tornado killed two people, injured 21, and caused over $5 million in damage. The tornado passed over the unincorporated ranching community of Bakersfield Valley, so the tornado will be referred to as the Bakersfield Valley (BV) tornado.

  2. Forest fire laboratory at Riverside and fire research in California: past, present, and future

    Treesearch

    Carl C. Wilson; James B. Davis

    1988-01-01

    The need for protection from uncontrolled fire in California was identified by Abbott Kinney, Chairman of the State Board of Forestry, more than 75 years before the construction of the Riverside Forest Fire Laboratory. With the organization of the USDA Forest Service the need for an effective fire protection organization became apparent. In response, a...

  3. 77 FR 47813 - Notice of Sanders County Resource Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... the Federal Advisory Committee Act (Pub. L. 92-463) and under the Secure Rural Schools and Community... will be posted in the local newspapers, including the Clark Fork Valley Press, and Sanders County...

  4. Data from exploratory sampling of groundwater in selected oil and gas areas of coastal Los Angeles County and Kern and Kings Counties in southern San Joaquin Valley, 2014–15: California oil, gas, and groundwater project

    USGS Publications Warehouse

    Dillon, David B.; Davis, Tracy A.; Landon, Matthew K.; Land, Michael T.; Wright, Michael T.; Kulongoski, Justin T.

    2016-12-09

    Exploratory sampling of groundwater in coastal Los Angeles County and Kern and Kings Counties of the southern San Joaquin Valley was done by the U.S. Geological Survey from September 2014 through January 2015 as part of the California State Water Resources Control Board’s Water Quality in Areas of Oil and Gas Production Regional Groundwater Monitoring Program. The Regional Groundwater Monitoring Program was established in response to the California Senate Bill 4 of 2013 mandating that the California State Water Resources Control Board design and implement a groundwater-monitoring program to assess potential effects of well-stimulation treatments on groundwater resources in California. The U.S. Geological Survey is in cooperation with the California State Water Resources Control Board to collaboratively implement the Regional Groundwater Monitoring Program through the California Oil, Gas, and Groundwater Project. Many researchers have documented the utility of different suites of chemical tracers for evaluating the effects of oil and gas development on groundwater quality. The purpose of this exploratory sampling effort was to determine whether tracers reported in the literature could be used effectively in California. This reconnaissance effort was not designed to assess the effects of oil and gas on groundwater quality in the sampled areas. A suite of water-quality indicators and geochemical tracers were sampled at groundwater sites in selected areas that have extensive oil and gas development. Groundwater samples were collected from a total of 51 wells, including 37 monitoring wells at 17 multiple-well monitoring sites in coastal Los Angeles County and 5 monitoring wells and 9 water-production wells in southern San Joaquin Valley, primarily in Kern and Kings Counties. Groundwater samples were analyzed for field waterquality indicators; organic constituents, including volatile and semi-volatile organic compounds and dissolved organic carbon indicators; naturally

  5. Diablo Valley College: The First Forty Years, 1949-1989.

    ERIC Educational Resources Information Center

    Mahan, Don; And Others

    An overview is provided of the 40-year history of Diablo Valley College (DVC), examining the educational ideals of the founders of the college and the changes in the goals of community college education in Central Contra Costa County, California. Part 1 sets the historical scene for the establishment of public two-year colleges nationally, in…

  6. Field Surveys, IOC Valleys. Volume II, Part II. Biological Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    Colorado Plateau, and the Uinta Mountains. The Great Basin , which is the largest division, is divided into nine sections. Pine and Wah Wah * valleys lie...unconfirmed reports of sightings from Uinta Basin in 1972 and 1975, from New Green River in 1976, and from Rich and Emery counties in 1977 and 1978. The...Fish and Wildlife Service, Boise, Idaho, Personal communication, 3 April. Graham, E. H., 1937, Botanical studies in the Uinta Basin of Utah and Colorado

  7. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  8. Earthquake Hazard Class Mapping by Parcel in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Pancha, A.; Pullammanappallil, S.; Louie, J. N.; Hellmer, W. K.

    2011-12-01

    Clark County, Nevada completed the very first effort in the United States to map earthquake hazard class systematically through an entire urban area. The map is used in development and disaster response planning, in addition to its direct use for building code implementation and enforcement. The County contracted with the Nevada System of Higher Education to classify about 500 square miles including urban Las Vegas Valley, and exurban areas considered for future development. The Parcel Map includes over 10,000 surface-wave array measurements accomplished over three years using Optim's SeisOpt° ReMi measurement and processing techniques adapted for large scale data. These array measurements classify individual parcels on the NEHRP hazard scale. Parallel "blind" tests were conducted at 93 randomly selected sites. The rms difference between the Vs30 values yielded by the blind data and analyses and the Parcel Map analyses is 4.92%. Only six of the blind-test sites showed a difference with a magnitude greater than 10%. We describe a "C+" Class for sites with Class B average velocities but soft surface soil. The measured Parcel Map shows a clearly definable C+ to C boundary on the west side of the Valley. The C to D boundary is much more complex. Using the parcel map in computing shaking in the Valley for scenario earthquakes is crucial for obtaining realistic predictions of ground motions.

  9. INDOOR, OUTDOOR, AND PERSONAL AIR EXPOSURES TO PARTICLES, ELEMENTS, AND NICOTINE FOR 178 RESIDENTS OF RIVERSIDE, CALIFORNIA

    EPA Science Inventory

    Personal, indoor, and outdoor concentrations of inhalable particles and 15 elements were measured for a probability sample of 178 persons representing 139,000 nonsmoking residents of Riverside, California. ewly designed personal monitors were employed. ersonal exposures often exc...

  10. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2015-10-19

    Water-resource potential is greatest within saturated sand and gravel in the Chemung River valley (nearly 1 mile wide), especially where induced infiltration of additional water from the Chemung River is possible. The second most favorable area is the Newtown Creek valley at the confluence of Newtown Creek with North Branch Newtown Creek east of Horseheads, N.Y. Extensive sand and gravel deposits within the Breesport, N.Y., area are largely unsaturated but may have greater saturation along the east side of Jackson Creek immediately north of Breesport. Till deposits confine sand and gravel along Newtown Creek at Erin, N.Y., and along much of the upper reach of North Branch Newtown Creek; this confining unit may limit recharge and potential well yield. The north-south oriented valleys of Baldwin and Wynkoop Creeks end at notched divides that imply input of glacial meltwater and limited sediment from outside of the present watersheds. These two valleys are relatively narrow but contain variably sorted sand and gravel, which, in places, may be capable of supplying modest-size community water systems.

  11. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    USGS Publications Warehouse

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  12. Preliminary geologic map of the Murrieta 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Kennedy, Michael P.; Morton, Douglas M.

    2003-01-01

    The Murrieta quadrangle is located in the northern part of the Peninsular Ranges Province and includes parts of two structural blocks, or structural subdivisions of the province. The quadrangle is diagonally crossed by the active Elsinore fault zone, a major fault zone of the San Andreas fault system, and separates the Santa Ana Mountains block to the west from the Perris block to the east. Both blocks are relatively stable internally and within the quadrangle are characterized by the presence of widespread erosional surfaces of low relief. The Santa Ana Mountains block, in the Murrieta quadrangle, is underlain by undifferentiated, thick-layered, granular, impure quartzite and well-layered, fissile, phyllitic metamorphic rock of low metamorphic grade. Both quartzite and phyllitic rocks are Mesozoic. Unconformably overlying the metamorphic rocks are remnants of basalt flows having relatively unmodified flow surfaces. The age of the basalt is about 7-8Ma. Large shallow depressions on the surface of the larger basalt remnants form vernal ponds that contain an endemic flora. Beneath the basalt the upper part of the metamorphic rocks is deeply weathered. The weathering appears to be the same as the regional Paleocene saprolitic weathering in southern California. West of the quadrangle a variable thickness sedimentary rock, physically resembling Paleogene rocks, occurs between the basalt and metamorphic rock. Where not protected by the basalt, the weathered rock has been removed by erosion. The dominant feature on the Perris block in the Murrieta quadrangle is the south half of the Paloma Valley ring complex, part of the composite Peninsular Ranges batholith. The complex is elliptical in plan view and consists of an older ring-dike with two subsidiary short-arced dikes that were emplaced into gabbro by magmatic stoping. Small to large stoped blocks of gabbro are common within the ring-dikes. A younger ring-set of hundreds of thin pegmatite dikes occur largely within the

  13. RIVERSIDE COUNTY BOARD OF EDUCATION.

    ERIC Educational Resources Information Center

    GARDNER, GORDON,; AND OTHERS

    BACKGROUND MATERIAL FOR ADMINISTRATORS AND TEACHERS WHO WERE INTERESTED IN DEVELOPING AND REFINING INSTRUCTIONAL PROGRAMS FOR THE GIFTED WAS PRESENTED. THE FIRST AREA OF DISCUSSION WAS THE IDENTIFICATION OF THE GIFTED CHILDREN. CHILDREN IN GRADES 1 THROUGH 3 SHOULD BE IDENTIFIED BY INDIVIDUAL INTELLIGENCE TESTS, BUT, FROM GRADES 4 THROUGH 12, THE…

  14. Principal facts for gravity stations in Dixie; Fairview, and Stingaree valleys, Churchill and Pershing counties, Nevada

    USGS Publications Warehouse

    Schaefer, D.H.; Thomas, J.M.; Duffrin, B.G.

    1984-01-01

    During March through July 1979, gravity measurements were made at 300 stations in Dixie Valley, Nevada. In December 1981, 45 additional stations were added--7 in Dixie Valley, 23 in Fairview Valley, and 15 in Stingaree Valley. Most altitudes were determined by using altimeters or topographic maps. The gravity observations were made with a Worden temperature-controlled gravimeter with an initial scale factor of 0.0965 milliGal/scale division. Principal facts for each of the 345 stations are tabulated; they consist of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer anomaly values at a bedrock density of 2.67 grams/cu cm. (Lantz-PTT)

  15. 76 FR 26286 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... the Red Bluff Substation, California Desert Conservation Area (CDCA Plan, Riverside County, CA, Review..., Biodiversity, and Natural Production of Anadromous Salmonids, Kittitas County, WA, Review Period Ends: 05/16...

  16. The hydrogeology of the Tully Valley, Onondaga County, New York: an overview of research, 1992-2012

    USGS Publications Warehouse

    Kappel, William M.

    2014-01-01

    Onondaga Creek begins approximately 15 miles south of Syracuse, New York, and flows north through the Onondaga Indian Nation, then through Syracuse, and finally into Onondaga Lake in central New York. Tully Valley is in the upper part of the Onondaga Creek watershed between U.S. Route 20 and the Valley Heads end moraine near Tully, N.Y. Tully Valley has a history of several unusual hydrogeologic phenomena that affected past land use and the water quality of Onondaga Creek; the phenomena are still present and continue to affect the area today (2014). These phenomena include mud volcanoes or mudboils, landslides, and land-surface subsidence; all are considered to be naturally occurring but may also have been influenced by human activity. The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency and the Onondaga Lake Partnership, began a study of the Tully Valley mudboils beginning in October 1991 in hopes of understanding (1) what drives mudboil activity in order to remediate mudboil influence on the water quality of Onondaga Creek, and (2) land-surface subsidence issues that have caused a road bridge to collapse, a major pipeline to be rerouted, and threatened nearby homes. Two years into this study, the 1993 Tully Valley landslide occurred just over 1 mile northwest of the mudboils. This earth slump-mud flow was the largest landslide in New York in more than 70 years (Fickies, 1993); this event provided additional insight into the geology and hydrology of the valley. As the study of the Tully Valley mudboils progressed, other unusual hydrogeologic phenomena were found within the Tully Valley and provided the opportunity to perform short-term, small-scale studies, some of which became graduate student theses—Burgmeier (1998), Curran (1999), Morales-Muniz (2000), Baldauf (2003), Epp (2005), Hackett, (2007), Tamulonis (2010), and Sinclair (2013). The unusual geology and hydrology of the Tully Valley, having been investigated for

  17. Geohydrology and water-chemistry of the Alexander Valley, Sonoma County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Farrar, Christopher D.; Koczot, Kathryn M.; Reichard, Eric G.

    2006-01-01

    This study of the geohydrology and water chemistry of the Alexander Valley, California, was done to provide an improved scientific basis for addressing emerging water-management issues, including potential increases in water demand and changes in flows in the Russian River. The study tasks included (1) evaluation of existing geohydrological, geophysical, and geochemical data; (2) collection and analysis of new geohydrologic data, including subsurface lithologic data, ground-water levels, and streamflow records; and (3) collection and analysis of new water-chemistry data. The estimated total water use for the Alexander Valley for 1999 was approximately 15,800 acre-feet. About 13,500 acre-feet of this amount was for agricultural use, primarily vineyards, and about 2,300 acre-feet was for municipal/industrial use. Ground water is the main source of water supply for this area. The main sources of ground water in the Alexander Valley are the Quaternary alluvial deposits, the Glen Ellen Formation, and the Sonoma Volcanics. The alluvial units, where sufficiently thick and saturated, comprise the best aquifer in the study area. Average recharge to the Alexander Valley is estimated from a simple, basinwide water budget. On the basis of an estimated annual average of 298,000 acre-feet of precipitation, 160,000 acre-feet of runoff, and 113,000 to 133,000 acre-feet of evapotranspiration, about 5,000 to 25,000 acre-feet per year is available for ground-water recharge. Because this estimate is based on differences between large numbers, there is significant uncertainty in this recharge estimate. Long-term changes in ground-water levels are evident in parts of the study area, but because of the sparse network and lack of data on well construction and lithology, it is uncertain if any significant changes have occurred in the northern part of the study area since 1980. In the southern half of the study area, ground-water levels generally were lower at the end of the 2002 irrigation

  18. 21st Century jobs initiative - Tennessee`s Resource Valley. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-23

    Tennessee`s Resource Valley, a regional economic development organization, was asked to facilitate a two-year, $750,000 grant from the Department of Energy. The grant`s purpose was to make the East Tennessee region less dependent on federal funds for its economic well-being and to increase regional awareness of the advantages of proximity to the Department of Energy facilities in Oak Ridge. The mission of Tennessee`s Resource Valley is to market the business location advantages of mid-East Tennessee to corporate decision makers and to facilitate regional initiatives that impact the creation of quality job opportunities. Tennessee`s Resource Valley represents fifteen (15) counties inmore » East Tennessee: Anderson, Blount, Campbell, Claiborne, Cocke, Grainger, Jefferson, Knox, Loudon, Monroe, Morgan, Roane, Scott, Sevier and Union.« less

  19. Hydrogeology and groundwater quality of the glaciated valleys of Bradford, Tioga, and Potter Counties, Pennsylvania

    USGS Publications Warehouse

    Williams, John H.; Taylor, Larry E.; Low, Dennis J.

    1998-01-01

    The most important sources of groundwater in Bradford, Tioga, and Potter Counties are the stratified-drift aquifers. Saturated sand and gravel primarily of outwash origin forms extensive unconfined aquifers in the valleys. Outwash is underlain in most major valleys by silt, clay, and very fine sand of lacustrine origin that comprise extensive confining units. The lacustrine confining units locally exceed 100 feet in thickness. Confined aquifers of ice-contact sand and gravel are buried locally beneath the lacustrine deposits. Bedrock and till are the basal confining units of the stratifies-drift aquifer systems. Recharge to the stratified-drift aquifers if by direct infiltration of precipitation, tributary-stream infiltration, infiltration of unchanneled runoff at the valley walls, and groundwater inflow from the bedrock and till uplands. Valley areas underlain by superficial sand and gravel contribute about 1 million gallons per day per square mile of water from precipitation to the aquifers. Tributary streams provide recharge of nearly 590 gallons per day per foot of stream reach. Water is added at the rate of 1 million gallons per day per square mile of bordering uplands not drained by tributary streams to the stratified-drift aquifers from unchanneled runoff and groundwater inflow. Induced infiltration can be a major source of recharge to well fields completed in unconfined stratified-drift aquifers that are in good hydraulic connection with surface water. The well fields of an industrial site in North Towanda, a public-water supplier at Tioga Point, and the U.S. Fish and Wildlife Service at Asaph accounted for 75 percent of the 10.8 million gallons per day pf groundwater withdrawn by public suppliers and other selected users in 1985. The well fields tap stratified-drift aquifers that are substantially recharged by induced infiltration or tributary-stream infiltration. Specific-capacity data from 95 wells indicate that most wells completed in stratified

  20. AERIAL VIEW, LOOKING NORTHWEST TOWARDS JONES VALLEY FROM THE CREST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW, LOOKING NORTHWEST TOWARDS JONES VALLEY FROM THE CREST OF RED (CALLED RUFFNER) MOUNTAIN AND THE CITY OF BIRMINGHAM (TOP), WITH ABANDONED SLOSS CO. LIMESTONE QUARRIES (CENTER) AND RIGHT-OF-WAY OF THE L. & N. BIRMINGHAM MINERAL RAILROAD (LEFT CENTER TO BOTTOM RIGHT). - Ruffner Red Ore Mine, North of I-20 at Madrid Exit, Birmingham, Jefferson County, AL

  1. West Harlem Walk (Hudson River Valley Greenway) beneath Henry Hudson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West Harlem Walk (Hudson River Valley Greenway) beneath Henry Hudson Parkway (HHP) Viaduct at West 155th Street vicinity, with Palisades, George Washington Bridge, and Little Red Lighthouse (visible to left of bridge tower) in background, looking northeast. - Henry Hudson Parkway, Extending 11.2 miles from West 72nd Street to Bronx-Westchester border, New York County, NY

  2. Ground-water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1990-1993

    USGS Publications Warehouse

    Kues, G.E.; Garcia, B.M.

    1995-01-01

    Ground-water-quality and ground-water-level data were collected in four unincorporated areas of Bernalillo County during 1990-93. Twenty wells in the east mountain area of Bernalillo County were sampled approximately monthly between January 1990 and June 1993. The water samples were analyzed for concentrations of chloride and selected nutrient species; many of the samples also were analyzed for concentrations of total organic carbon and dissolved boron and iron. Eleven wells northeast of the city of Albuquerque, 20 wells in the Rio Grande Valley immediately north of Albuquerque, and 30 wells in the Rio Grande Valley immediately south of Albuquerque were sampled once each between December 1992 and September 1993; all water samples were analyzed for chloride and selected nutrient species, and selected samples from wells in the north and south valley areas were also analyzed for major dissolved constituents, iron, manganese, and methylene blue active substances. Samples from 10 of the wells in the north and south valley areas were analyzed for 47 selected pesticides. Field measurements of specific conductance, pH, temperature, and alkalinity were made on most samples at the time of sample collection. Water levels also were measured at the time of sample collection when possible. Results of the monthly water-quality and water-level monitoring in the east mountain area of Bernalillo County are presented in graphical form. Water-quality and water-level data collected from the other areas are presented in tabular form.

  3. Hydrogeology of the western part of the Salt River Valley area, Maricopa County, Arizona

    USGS Publications Warehouse

    Brown, James G.; Pool, D.R.

    1989-01-01

    The Salt River Valley is a major population and agricultural center of more than 3,000 mi2 in central Arizona (fig. 1). The western part of the Salt River Valley area (area of this report) covers about 1,500 mi2. The Phoenix metropolitan area with a population of more than 1.6 million in 1985 (Valley National Bank, 1987) is located within the valley. The watersheds of the Salt, Verde, and Agua Fria Rivers provide the valley with a reliable but limited surface-water supply that must be augmented with ground water even in years of plentiful rainfall. Large-scale ground-water withdrawals began in the Salt River Valley in the early part of the 20th century; between 1915 and 1983, the total estimated ground-water pumpage was 81 million acre-ft (U.S. Geological Survey, 1984). Because of the low average annual rainfall and high potential evapotranspiration, the principal sources of ground-water recharge are urban runoff, excess irrigation, canal seepage and surface-water flows during years of higher-than-normal rainfall. Withdrawals greatly exceed recharge and, in some area, ground-water levels have declines as much as 350 ft (Laney and other, 1978; Ross, 1978). In the study area, ground-water declines of more than 300 ft have occurred in Deer Valley and from Luke Air Force Base north to Beardsley. As a result, a large depression of the water table has developed west of Luke Air Force Base (fig. 2). Ground-water use has decreased in recent years because precipitation and surface-water supplies have been greater than normal. Increased precipitation also caused large quantities of runoff to be released into the normally dry Salt and Gila River channels. From February 1978 to June 1980, streamflow losses of at least 90,000 acre-ft occurred between Jointhead Dam near the east boundary of the study area and Gillespie Dam several miles southwest of the west edge of the study area (Mann and Rhone, 1983). Consequently, ground-water declines in a large part of the basin have

  4. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower Part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to lateWordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  5. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to late Wordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  6. 10. INTERIOR OF OUTLET TOWER LOOKING DOWN TO TIER #1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR OF OUTLET TOWER LOOKING DOWN TO TIER #1 OF SLIDE GATES. STRUCTURE HAS LEVELS ENABLING OPERATORS TO CHOOSE LEVEL WITH BEST QUALITY WATER. OVERHANGING DEVICE THAT LOOKS LIKE A LIGHT STANDARD IS ACTUALLY A METER FOR MEASURING WATER LEVELS. - Lake Mathews, East of Route 15, Riverside, Riverside County, CA

  7. Annual Report, 1995. California Educational Research Cooperative.

    ERIC Educational Resources Information Center

    Zykowski, Jane L.; And Others

    The California Educational Research Cooperative (CERC) of the School of Education, University of California, Riverside, was established in 1988 as a joint venture designed to bring educational professionals and researchers together. CERC is a partnership among the Riverside and San Bernadino County Offices of Education, 19 local school districts,…

  8. Hydrogeology and ground-water quality of Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; McManus, B. Craig

    1996-01-01

    Valley Forge National Historical Park is just southwest of the Commodore Semiconductor Group (CSG) National Priorities List (Superfund) Site, a source of volatile organic compounds (VOC's) in ground water. The 7.5-square-mile study area includes the part of the park in Lower Providence and West Norriton Townships in Montgomery County, Pa., and surrounding vicinity. The park is underlain by sedimentary rocks of the Upper Triassic age stockton Formation. A potentiometric-surface map constructed from water levels measured in 59 wells shows a cone of depression, approximately 0.5 mile in diameter, centered near the CSG Site. The cone of depression is caused by the pumping of six public supply wells. A ground-water divide between the cone of depression and Valley Forge National Historical Park provides a hydraulic barrier to the flow of ground water and contaminants from the CSG Site to the park. If pumping in the cone of depression was to cease, water levels would recover, and the ground-water divide would shift to the north. A hydraulic gradient between the CSG Site and the Schuylkill River would be established, causing contaminated ground water to flow to the park.Water samples were collected from 12 wells within the park boundary and 9 wells between the park boundary and the ground-water divide to the north of the park. All water samples were analyzed for physical properties (field determinations), nutrients, common ions, metals and other trace constituents, and VOC's. Water samples from the 12 wells inside the park boundary also were analyzed for pesticides. Concentrations of inorganic constituents in the water samples did not exceed U.S. Environmental Protection Agency maximum contaminant levels. Very low concentrations of organic compounds were detected in some of the water samples. VOC's were detected in water from 76 percent of the wells sampled; the maximum concentration detected was 5.8 micrograms per liter of chloroform. The most commonly detected VOC was

  9. Riverside East Solar Energy Zone (SEZ) - California

    Science.gov Websites

    Los Mogotes East Nevada Amargosa Valley Dry Lake Dry Lake Valley North Gold Point Millers New Mexico Pavement Cultural Gravel Bench I 10 Wiley Well Road South Wiley Well Rest Stop Ford Dry Lake Get Adobe there are also dry lake beds, sandy areas, and dry washes with ironwood and other trees. Some areas are

  10. 76 FR 2680 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ..., Proposed Naval Training Activities, Cities of Coronado and Imperial Beach, San Diego County, CA, Wait... Mine, near the town of Desert Center, Riverside County, CA, Comment Period Ends: 02/14/2011, Contact...

  11. Ground-water areas and well logs, central Sevier Valley, Utah

    USGS Publications Warehouse

    Young, Richard A.

    1960-01-01

    Between September 1959 and June 1960 the United States Geological Survey and the Utah State Engineer, with financial assistance from Garfield, Millard, Piute, Sanpete, and Sevier Counties and from local water-users’ associations, cooperated in an investigation to determine the structural framework of the central Sevier Valley and to evaluate the valley’s ground-water potential. An important aspect of the study was the drilling of 22 test holes under private contract. These data and other data collected during the course of the larger ground-water investigation of which the test drilling was a part will be evaluated in a report on the geology and ground-water resources of the central Sevier Valley. The present report has been prepared to make available the logs of test holes and to describe in general terms the availability of ground water in the different areas of the valley.

  12. Ground-water hydrology of Dugway Proving Ground and adjoining area, Tooele and Juab counties, Utah

    USGS Publications Warehouse

    Steiger, Judy I.; Freethey, Geoffrey W.

    2001-01-01

    Dugway Proving Ground (DPG) is a U.S. Department of Defense chemical, biological, and explosives testing facility in northwestern Utah.  The facility includes about 620 mi2 in Tooele County.  The town of Dugway, referred to as English Village, is the administrative headquarters for the military facility, the primary residential area, and community center.  The English Village area is located at the southern end of Skull Valley and is separated from the Fries area by a surface-water divide.  Most of the facility is located just to the west of Skull Valley in Government Creek Valley, Dugway Valley, and the Great Salt Lake Desert (fig. 1).

  13. Hydrology reconnaissance of the Sink Valley area, Tooele and Box Elder Counties, Utah

    USGS Publications Warehouse

    Price, Don; Bolke, E.L.

    1970-01-01

    This is the sixth in a series of reports by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describe the water resources of selected basins in western Utah. Areas covered by previously published reports in this series are shown in figure 1 and are listed on page 29. The purpose of this report is to present available hydrologic data on the Sink Valley (Puddle Valley) area, to provide an evaluation of the potential for water-resource development in the area, and to serve as a basis for planning possible later detailed investigations.

  14. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as

  15. "We do not bury dead livestock like human beings": Community behaviors and risk of Rift Valley Fever virus infection in Baringo County, Kenya.

    PubMed

    Mutua, Edna N; Bukachi, Salome A; Bett, Bernard K; Estambale, Benson A; Nyamongo, Isaac K

    2017-05-01

    Rift Valley Fever (RVF), is a viral zoonotic disease transmitted by Aedes and Culex mosquitoes. In Kenya, its occurrence is associated with increased rains. In Baringo County, RVF was first reported in 2006-2007 resulting in 85 human cases and 5 human deaths, besides livestock losses and livelihood disruptions. This study sought to investigate the county's current RVF risk status. A cross-sectional study on the knowledge, attitudes and practices of RVF was conducted through a mixed methods approach utilizing a questionnaire survey (n = 560) and 26 focus group discussions (n = 231). Results indicate that study participants had little knowledge of RVF causes, its signs and symptoms and transmission mechanisms to humans and livestock. However, most of them indicated that a person could be infected with zoonotic diseases through consumption of meat (79.2%) and milk (73.7%) or contact with blood (40%) from sick animals. There was a statistically significant relationship between being male and milking sick animals, consumption of milk from sick animals, consuming raw or cooked blood, slaughtering sick livestock or dead animals for consumption (all at p≤0.001), and handling sick livestock with bare hands (p = 0.025) with more men than women engaging in the risky practices. Only a few respondents relied on trained personnel or local experts to inspect meat for safety of consumption every time they slaughtered an animal at home. Sick livestock were treated using conventional and herbal medicines often without consulting veterinary officers. Communities in Baringo County engage in behaviour that may increase their risk to RVF infections during an outbreak. The authors recommend community education to improve their response during outbreaks.

  16. Knowledge, attitudes and practices (KAP) regarding leptospirosis among residents of riverside settlements of Santa Fe, Argentina.

    PubMed

    Ricardo, Tamara; Bergero, Laura C; Bulgarella, Esteban P; Previtali, M Andrea

    2018-05-01

    Leptospirosis is a global and re-emerging zoonotic disease caused by Leptospira spirochetes that are shed into the environment by infected animals. Humans can get infected via contact with animal hosts or contaminated environment. In Argentina, the highest annual incidences were reported in the province of Santa Fe, where epidemic outbreaks occurred during flooding events. This study examined the knowledge, attitudes and practices (KAP) regarding leptospirosis among residents of riverside slum settlements from Santa Fe after a major flood. A cross-sectional questionnaire was administered to 113 residents of 3 riverside settlements from Santa Fe. The influence of knowledge and attitudes regarding leptospirosis on the likelihood that an individual will use preventive practices were evaluated using linear mixed-effects models. The majority of respondents (83.2%) had previously heard about leptospirosis; however specific knowledge about leptospirosis was limited. The results of the modeling efforts, show that the likelihood of using preventive practices was associated with having greater knowledge score, but not with more positive attitudes. We also found that females were more likely to use safer practices than males. Even though the majority of respondents had heard about leptospirosis, a high percentage of them had limited knowledge regarding the severity of the disease and its prevalence in the region. Our results suggest that public health interventions in these riverside communities should focus on educating the public on the multiple dimensions of leptospirosis in order to attain greater adherence to preventive practices instead of intending to change the perceptions or attitudes towards the disease, which did not have a significant influence. The key challenge lies in identifying effective strategies to reach the high risk group for leptospirosis here that is male fishermen, who spend most of the time in precarious campsites on the river islands.

  17. APPLICATION OF PSCF TO PMF-MODELED SOURCES OF PM2.5 IN RIVERSIDE USING 1-HR AVERAGED DATA

    EPA Science Inventory

    Data from semi-continuous instruments employed during a sampling campaign in Riverside, CA in July-August 2005 was used in a PMF2 analysis and sixteen sources were identified. Factors attributed to being primarily from local automobile emissions, local diesel emissions, wood comb...

  18. 75 FR 34421 - Notice of Sanders County Resource Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF AGRICULTURE Forest Service Notice of Sanders County Resource Advisory Committee Meeting AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: Pursuant to the authorities in... location is changed, notice will be posted in the local newspapers, including the Clark Fork Valley Press...

  19. 75 FR 7286 - Rappahannock River Valley National Wildlife Refuge, Caroline, Essex, King George, Lancaster...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R5-R-2009-N203; BAC-4311-K9-S3] Rappahannock River Valley National Wildlife Refuge, Caroline, Essex, King George, Lancaster, Middlesex, Richmond, and Westmoreland Counties, VA AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of...

  20. Historical Mortality of Valley Oak (Quercus lobata, Nee) in the Santa Ynez Valley, Santa Barbara County, 1938-1989

    Treesearch

    Rodney W. Brown; Frank W. Davis

    1991-01-01

    The range and abundance of valley oak (Quercus lobata, Nee) have steadily decreased in the last 100 years due to low rates of regeneration during this period. Documented low rates of sapling recruitment must be compared to adult mortality rates in order to evaluate the severity of this decline. The purpose of this research is to measure and analyze...

  1. Three-dimensional numerical model of ground-water flow in northern Utah Valley, Utah County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2009-01-01

    A three-dimensional, finite-difference, numerical model was developed to simulate ground-water flow in northern Utah Valley, Utah. The model includes expanded areal boundaries as compared to a previous ground-water flow model of the valley and incorporates more than 20 years of additional hydrologic data. The model boundary was generally expanded to include the bedrock in the surrounding mountain block as far as the surface-water divide. New wells have been drilled in basin-fill deposits near the consolidated-rock boundary. Simulating the hydrologic conditions within the bedrock allows for improved simulation of the effect of withdrawal from these wells. The inclusion of bedrock also allowed for the use of a recharge model that provided an alternative method for spatially distributing areal recharge over the mountains.The model was calibrated to steady- and transient-state conditions. The steady-state simulation was developed and calibrated by using hydrologic data that represented average conditions for 1947. The transient-state simulation was developed and calibrated by using hydrologic data collected from 1947 to 2004. Areally, the model grid is 79 rows by 70 columns, with variable cell size. Cells throughout most of the model domain represent 0.3 mile on each side. The largest cells are rectangular with dimensions of about 0.3 by 0.6 mile. The largest cells represent the mountain block on the eastern edge of the model domain where the least hydrologic data are available. Vertically, the aquifer system is divided into 4 layers which incorporate 11 hydrogeologic units. The model simulates recharge to the ground-water flow system as (1) infiltration of precipitation over the mountain block, (2) infiltration of precipitation over the valley floor, (3) infiltration of unconsumed irrigation water from fields, lawns, and gardens, (4) seepage from streams and canals, and (5) subsurface inflow from Cedar Valley. Discharge of ground water is simulated by the model to (1

  2. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  3. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... four U.S.G.S. maps. They are titled: (1) San Diego, 1:250,000 series, 1958 (revised 1978). (2) Santa...). (v) Then southward along the San Bernardino Meridian to the Riverside County-San Diego County line...

  4. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... four U.S.G.S. maps. They are titled: (1) San Diego, 1:250,000 series, 1958 (revised 1978). (2) Santa...). (v) Then southward along the San Bernardino Meridian to the Riverside County-San Diego County line...

  5. 27 CFR 9.104 - South Coast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... four U.S.G.S. maps. They are titled: (1) San Diego, 1:250,000 series, 1958 (revised 1978). (2) Santa...). (v) Then southward along the San Bernardino Meridian to the Riverside County-San Diego County line...

  6. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  7. Ground-water quality in Douglas County, western Nevada

    USGS Publications Warehouse

    Garcia, K.T.

    1989-01-01

    A 182% increase in population within the last 10 years in Douglas County, Nevada, has raised concerns by county officials as to the possible effects land development may have on groundwater quality. Most groundwater in Douglas County meets the State of Nevada drinking water standards. Of the 333 water samples used in this analysis, 6 equaled or were greater than the drinking water standards for sulfates, 44 for fluoride, 4 for dissolved solids, 5 for nitrate as nitrate, 12 for arsenic, 33 for iron, and 18 for manganese. Groundwater in the west-central, northern, and northeastern part of Carson Valley is influenced by geothermal water. Some areas in the county may have septic-tank effluent contaminating the groundwater. Temporal changes in most municipal wells showed no overall trend for dissolved-solids and nitrate concentrations spanning the years 1969-83. However, a municipal well in the Topaz Lake area has shown a general increases in the nitrate concentration from 1961 to 1984, but the concentration does not exceed the drinking-water standard. A future groundwater quality monitoring program in Douglas County would include periodic sampling of primary or heavily pumped wells, long-term trend wells, and supplemental wells. (Thacker-USGS)

  8. A.C.T. Student Opinion Survey, Spring 2000: Rogue Community College, Redwood and Riverside Campuses. Management Report.

    ERIC Educational Resources Information Center

    Wild, Nancy

    This report provides the results of a standardized survey of student opinions and satisfaction at Rogue Community College (RCC) (Oregon). In the spring of 2000, the Student Opinion Survey was conducted among students at both the Redwood Campus (RWC) in Grants Pass and the Riverside Campus (RVC) in Medford. Results include: (1) students at both…

  9. Colonias in the Lower Rio Grande Valley of South Texas: A Summary Report. Lyndon B. Johnson School of Public Affairs, Policy Research Report, Number 18.

    ERIC Educational Resources Information Center

    Haynes, Kingsley E.; And Others

    The Lower Rio Grande Valley of South Texas consists of three counties: Cameron, Hidalgo, and Willacy. Poverty pervades in the Valley, especially in the colonias ("a poor, rural unincorporated community with 20 or more dwelling units, where home ownership is the rule"). Colonia residents are almost exclusively Mexican Americans.…

  10. Hydraulic Analyses of Sni-A-Bar Creek and Selected Tributaries at Grain Valley, Jackson County, Missouri

    USGS Publications Warehouse

    Rydlund, Jr., Paul H.; Otero-Benitez, William; Heimann, David C.

    2008-01-01

    A study was done by the U.S. Geological Survey, in cooperation with the city of Grain Valley, Jackson County, Missouri, to simulate the hydraulic characteristics of Sni-A-Bar Creek and selected tributaries within the corporate limits. The 10-, 50-, 100-, and 500-year recurrence interval streamflows were simulated to determine potential backwater effects on the Sni-A-Bar Creek main stem and to delineate flood-plain boundaries on the tributaries. The water-surface profiles through the bridge structures within the model area indicated that backwater effects from the constrictions were not substantial. The water-surface profile of Sni-A-Bar Creek generated from the one- and two-dimensional models indicated that the Gateway Western Railroad structure provided the greatest amount of contraction of flow within the modeled area. The results at the location of the upstream face of the railroad structure indicated a change in water-surface elevation from 0.2 to 0.8 foot (corresponding to simulated 10-year and 500-year flood occurrences). Results from all analyses indicated minimal backwater effects as a result of an overall minimal energy grade line slope and velocity head along Sni-A-Bar Creek. The flood plains for the 100-year recurrence interval floods on the Sni-A-Bar tributaries were mapped to show the extent of inundated areas. The updated flooding characteristics will allow city managers to contrast changes in flood risk and zoning as determined through the National Flood Insurance Program.

  11. 76 FR 76802 - Riverside Micro-Cap Fund II, L.P.; Notice Seeking Exemption Under Section 312 of the Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... SMALL BUSINESS ADMINISTRATION [License No. 02/02-0646] Riverside Micro-Cap Fund II, L.P.; Notice Seeking Exemption Under Section 312 of the Small Business Investment Act, Conflicts of Interest Notice is..., Financings which Constitute Conflicts of Interest of the Small Business Administration (``SBA'') Rules and...

  12. Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997

    USGS Publications Warehouse

    Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.

    1999-01-01

    Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'

  13. Mating patterns in a savanna population of valley oak (Quercus labata Neé)

    Treesearch

    Victoria L. Sork; Frank W. Davis; Rodney J. Dyer; Peter E. Smouse

    2002-01-01

    California valley oak is threatened by landscape alteration and failing recruitment in remnant stands. Its reproductive ecology is a key element of the seedling recruitment process. We first examine the mating system, to determine the extent of inbreeding in a population at Sedgwick Reserve, in Santa Barbara County. We then quantify variation in germination success and...

  14. Study on Plan of Rural Waterfront Greenway in Beijing Based On Valley Economy

    NASA Astrophysics Data System (ADS)

    Feng, Li; Ma, Xiaoyan

    2018-01-01

    Valley economy is a major strategy for the development of Beijing mountainous area. This paper tried to apply the theory of rural waterfront greenway in valley, propose the grade system of rural greenway, which has important meaning to the refining of ecological network, the integration of tourism resources, and the promotion of agricultural industry in rural area. By way of illustration, according to the detailed analysis of the hydrology, altitude, slope, aspect, soil and vegetation conditions by GIS, the waterfront greenway, named ‘four seasons flowers’, in Yanqing county area was planned, so as to provide scientific guidance for the rural waterfront greenway construction.

  15. The SAT Prediction of Grades for Mexican-American Versus Anglo-American Students at the University of California, Riverside.

    ERIC Educational Resources Information Center

    Goldman, Roy D.; Richards, Regina

    The predictive validity of the Scholastic Aptitude Test (SAT) for Mexican-Americans is investigated. Forty-two Mexican-American freshmen students who entered the University of California, Riverside, in the Fall 1971 participated in the study. Analyses of variance concerning ethnic groups on GPA (grade point average) and SAT verbal (SATV) and math…

  16. Water resources of Indiana County, Pennsylvania

    USGS Publications Warehouse

    Williams, D.R.; McElroy, T.A.

    1997-01-01

    Indiana County, west-central Pennsylvania, is a major producer of coal and natural gas. Water managers and residents are concerned about the effects of mining and natural gas exploration on the surface- and ground-water resources of the county. This study assesses the quality and quantity of water in Indiana County. Ground- and surface-water sources are used for public supplies that serve 61 percent of the total population of the county. The remaining 39 percent of the population live in rural areas and rely on cisterns and wells and springs that tap shallow aquifers. Most of the county is underlain by rocks of Middle to Upper Pennsylvanian age. From oldest to youngest, they are the Allegheny Group, the Glenshaw Formation, the Casselman Formation, and the Monongahela Group. Almost all the coals mined are in the Allegheny Group and the Monongahela Group. Ground water in Indiana County flows through fractures in the rock. The size and extent of the fractures, which are controlled by lithology, topography, and structure, determine the sustained yield of wells. Topography has a significant control over the yields of wells sited in the Allegheny Group. Properly sited wells in the Glenshaw Formation may have yields adequate for municipal, commercial, or industrial uses. The Casselman Formation yields adequate amounts of water for domestic use. Yield of the Monongahela Group is small, and the water may not be of suitable quality for most uses. Yields of hilltop wells may be marginal, but valley wells may yield sufficient amounts for large-volume users. Data on the other rock units are sparse to nonexistent. Few wells in the county yield more than 40 gallons per minute. Most of the wells that do are in valleys where alluvial deposits are extensive enough to be mapable. Short-term water-level fluctuations are variable from well to well. Seasonal water-level fluctuations are controlled by time of year and amount of precipitation. The quality of water from the Casselman

  17. 76 FR 13446 - Juniata Valley Railroad Company-Operation Exemption-SEDA-COG Joint Rail Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... Railroad Company-Operation Exemption-SEDA-COG Joint Rail Authority Juniata Valley Railroad Company (JVRR... milepost 2.0 in Lewistown, Mifflin County, Pa. The line is owned or leased by SEDA-COG Joint Rail Authority (SEDA-COG). JVRR states that the line it proposes to operate is an extension of its existing line of...

  18. 76 FR 13445 - Lycoming Valley Railroad Company-Operation Exemption-SEDA-COG Joint Rail Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... Railroad Company-Operation Exemption--SEDA--COG Joint Rail Authority Lycoming Valley Railroad Company (LVRR... milepost 0.4 in Muncy, Lycoming County, Pa. The line is owned or leased by SEDA-COG Joint Rail Authority (SEDA-COG). LVRR states that the line it proposes to operate is an extension of its existing line of...

  19. Simulated ground-water flow and sources of water in the Killbuck Creek Valley near Wooster, Wayne County, Ohio

    USGS Publications Warehouse

    Breen, K.J.; Kontis, A.L.; Rowe, G.L.; Haefner, R.J.

    1995-01-01

    The stratified-drift aquifer in the 3,000-ft (feet)-wide and 100-ft-deep buried valley of Killbuck Creek near Wooster in northeastern Ohio was studied. The stratified drift with adjacent sandstone and shale bedrock produce a system of ground-water flow representative of the western part of the glaciated north-eastern United States. The stratified-drift aquifer is an excellent source of water for municipal and industrial wells. The aquifer is recharged locally by water from precipitation on the valley floor and uplands, by infiltration from streams, and by lateral flow to the valley from the uplands. As a result, the aquifer is vulnerable to surface or subsurface spills of contaminants in the valley or the adjacent uplands. Quality of water in the stratified drift is affected by influx of water from bedrock lateral to or beneath the valley. This influx is controlled, in part, by the pumping stress placed on the stratified-drift aquifer. Hydrogeologic and aqueous-geochemical data were analyzed to establish the framework necessary for stead-state and transient simulations of ground-water flow in stratified drift and bedrock with a three-layer ground-water-flow model. A new model routine, the Variable-Recharge procedure, was developed to simulate areal recharge and the contribution of the uplands to the drift system. This procedure allows for water applied to land surface to infiltrate or to be rejected. Rejected recharge and ground water discharged when the water table is at land surface form surface runoff-this excess upland water can be redirected as runoff to other parts of the model. Infiltration of streamwater, areal recharge to uplands and valley, and lateral subsurface flow from the uplands to the valley are sources of water to the stratufued0druft aquifer. Water is removed from the stratified-drift aquifer at Wooster primarily by production wells pumping at a rate of approximately 8.5 ft3/s (cubic feet per second). The ground-water budget resulting from two

  20. U.S. Geological Survey cooperative water-resources programs in Chester County, Pennsylvania

    USGS Publications Warehouse

    Wood, Charles R.

    1998-01-01

    Since 1969, the U.S. Geological Survey (USGS) has had a cooperative water-resources investigation program with Chester County to measure and describe the water resources of the County. Generally, the USGS provides one-half of the program funding, and local cooperators are required to provide matching funds. Cooperation has been primarily with the Chester County Water Resources Authority (CCWRA), with participation from the Chester County Health Department and funding from the Chester County Board of Commissioners. Municipalities and the Red Clay Valley Association also have provided part of the funding for several projects. This report describes how the long-term partnership between the USGS and Chester County, Pa., provides the County with the information that it needs for sound water-resources management.The CCWRA was created in 1961, primarily for land acquisition and planning for flood-control and water-supply projects. With the backing of the Brandywine Valley Association, the CCWRA started its first cooperative project with the USGS in 1969. It was a study of the water-quality condition of Chester County streams with an emphasis on benthic macroinvertebrates and stream chemistry.The kinds of projects and data collection conducted by the USGS have changed with the needs of Chester County and the mission of the CCWRA. Chester County is experiencing rapid population growth (it had the tenth-highest rate of growth in the nation from 1980 to 1990). This growth places considerable stress on water resources and has caused the CCWRA to broaden its focus from flood control to water-supply planning, water quality, and ground-water and surface-water management. The results of USGS studies are used by the CCWRA and other County agencies, including the Planning Commission, Health Department, and Parks and Recreation Department, for conducting day-to-day activities and planning for future growth. The results also are used by the CCWRA to provide guidance and technical

  1. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  2. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2009–10

    USGS Publications Warehouse

    Rankin, Dale R.; Oelsner, Gretchen P.; McCoy, Kurt J.; Goeff J.M. Moret,; Jeffery A. Worthington,; Kimberly M. Bandy-Baldwin,

    2016-03-17

    The Albuquerque area of New Mexico has two principal sources of water: (1) groundwater from the Santa Fe Group aquifer system, and (2) surface water from the Rio Grande. From 1960 to 2002, pumping from the Santa Fe Group aquifer system caused groundwater levels to decline more than 120 feet while water-level declines along the Rio Grande in Albuquerque were generally less than 40 feet. These differences in water-level declines in the Albuquerque area have resulted in a great deal of interest in quantifying the river-aquifer interaction associated with the Rio Grande.In 2003, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, acting as fiscal agent for the Middle Rio Grande Endangered Species Collaborative Program, and the U.S. Army Corps of Engineers, began a study to characterize the hydrogeology of the Rio Grande inner valley alluvial aquifer in the Albuquerque area of New Mexico. The study provides hydrologic data in order to enhance the understanding of rates of water leakage from the Rio Grande to the alluvial aquifer, groundwater flow through the aquifer, and discharge of water from the aquifer to riverside drains. The study area extends about 20 miles along the Rio Grande in the Albuquerque area. Piezometers and surface-water gages were installed in paired transects at eight locations. Nested piezometers, completed at various depths in the alluvial aquifer, and surface-water gages, installed in the Rio Grande and riverside drains, were instrumented with pressure transducers. Water-level and water-temperature data were collected from 2009 to 2010.Water levels from the piezometers indicated that groundwater movement was usually away from the river towards the riverside drains. Annual mean horizontal groundwater gradients in the inner valley alluvial aquifer ranged from 0.0024 (I-25 East) to 0.0144 (Pajarito East). The median hydraulic conductivity values of the inner valley alluvial aquifer, determined from slug tests, ranged from 30

  3. Geologic map of the Lockwood Valley Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2001-01-01

    The Lockwood Valley quadrangle is located in the western Transverse Ranges of California, about 10 km southwest of Frazier Park. It includes the western flank of Frazier Mountain, southern Lockwood Valley, and a region of the Los Padres National Forest near northern Piru Creek. The oldest rocks are mostly biotite augen gneiss, in the hanging wall of the Frazier Mountain thrust and in a large body south of the thrust. A U-Pb zircon age for the gneiss is 1690+5 Ma (W. Premo, unpublished data). Two Cretaceous intrusive rocks are named the quartz monzonite of Sheep Creek and the coarse-grained granodiorite of Lockwood Peak. A U-Pb zircon age on the latter is 76.05+0.22 Ma (W. Premo, unpublished data). The northeastern edge of a large Eocene marine basin, comprising the sandstones, shales, and conglomerates of the Juncal Formation, occupies the southwestern 25 percent of the quadrangle. Miocene fluvial rocks, including coarse boulder conglomerates, sandstones, and shale, of the Caliente Formation crop out mostly in the northwestern part of the quadrangle. Commercially exploitable Lockwood Clay unconformably overlies the Caliente, which, in turn, is overlain by the mostly fluvial Pliocene Quatal Formation. Two major south-directed thrusts, the Frazier Mountain thrust and the South Frazier Mountain thrust, place crystalline rocks over Miocene and Pliocene sedimentary rocks. The South Frazier Mountain thrust is transected by the newly recognized, north-directed Lockwood Peak reverse fault. In addition, the newly recognized south-directed Yellowjacket thrust displaces rocks of the Pliocene Quatal Formation.

  4. Development of Guidelines Related to Riverside Community College Nursing Student Mandatory Assignment to AIDS Patients in the Clinical Setting.

    ERIC Educational Resources Information Center

    Kross, Carolyn Sue

    The purpose of this study was to develop Associate Degree nursing program guidelines for Riverside Community College (RCC), in California, regarding mandatory nursing student assignment to Acquired Immune Deficiency Syndrome (AIDS) patients, and student refusal of such assignments in a clinical setting. During the 1990 fall semester, RCC's Nursing…

  5. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    USGS Publications Warehouse

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  6. A Case Study on Collaboration: Sharing the Responsibility of Economic Development in Juniata Valley, Pennsylvania

    ERIC Educational Resources Information Center

    Ward, Shakoor A.; Clark, Robert W.

    2013-01-01

    In an attempt to better understand the need and importance of the community college's role in economic development, this article takes a closer look at how collaboration in the Juniata Valley of Pennsylvania between Industrial Development Corporations (IDCs) of Mifflin and Juniata counties, career and technical centers, and other agencies is…

  7. Ground water in Box Elder and Tooele Counties, Utah

    USGS Publications Warehouse

    Carpenter, Everett

    1913-01-01

    The area covered by this report includes Boxelder County, Utah, the eastern part of Tooele County, Utah, and some small tracts in southern Idaho. It comprises about 9,500 square miles, or more than the combined area of Massachusetts and Rhode Island. It lies between 40° and 42° north latitude and 112° and 114° west longitude. (See fig. 1.)Insufficient rainfall and the rapid settling of the country have created a demand for an investigation to determine the feasibility of irrigating by the use of underground water. In response to this demand and in order to classify the land under the enlarged homestead act, the writer made an investigation covering a period of four months during the summer and fall of 1911. The greater part of this time was spent in Boxelder County, but two weeks at the close of the season were devoted to a reconnaissance in Tooele, Rush, and Skull valleys, in Tooele County. W. B. Heroy, of the United States Geological Survey, collected most of the data presented for southern Idaho.

  8. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    USGS Publications Warehouse

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt anticlines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as 'marker beds.' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.

  9. 76 FR 37888 - Yellowstone Valley Railroad, L.L.C.-Discontinuance of Service Exemption-in Dawson and Richland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... contains false or misleading information, the exemption is void ab initio. Board decisions and notices are... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 991X] Yellowstone Valley Railroad, L.L.C.--Discontinuance of Service Exemption--in Dawson and Richland Counties, Mont. Yellowstone...

  10. Ground-water quality and geochemistry of Las Vegas Valley, Clark County, Nevada, 1981-83; implementation of a monitoring network

    USGS Publications Warehouse

    Dettinger, M.D.

    1987-01-01

    As a result of rapid urban growth in Las Vegas Valley, rates of water use and wastewater disposal have grown rapidly during the last 25 years. Concern has developed over the potential water quality effects of this growth. The deep percolation of wastewater and irrigation return flow (much of which originates as imported water from Lake Mead), along with severe overdraft conditions in the principal aquifers of the valley, could combine to pose a long-term threat to groundwater quality. The quantitative investigations of groundwater quality and geochemical conditions in the valley necessary to address these concerns would include the establishment of data collection networks on a valley-wide scale that differ substantially from existing networks. The valley-wide networks would have a uniform areal distribution of sampling sites, would sample from all major depth zones, and would entail repeated sampling from each site. With these criteria in mind, 40 wells were chosen for inclusion in a demonstration monitoring network. Groundwater in the northern half of the valley generally contains 200 to 400 mg/L of dissolved solids, and is dominated by calcium, magnesium , and bicarbonate ions, reflecting a chemical equilibrium between the groundwater and the dominantly carbonate rocks in the aquifers of this area. The intermediate to deep groundwater in the southern half of the valley is of poorer quality (containing 700 to 1,500 mg/L of dissolved solids) and is dominated by calcium, magnesium, sulfate, and bicarbonate ions, reflecting the occurrence of other rock types including evaporite minerals among the still-dominant carbonate rocks in the aquifers of this part of the valley. The poorest quality groundwater in the valley is generally in the lowland parts of the valley in the first few feet beneath the water table, where dissolved solids concentrations range from 2,000 to > 7,000 mg/L , and probably reflects the effects of evaporite dissolution, secondary recharge, and

  11. The Real Libraries of the OC

    ERIC Educational Resources Information Center

    Oder, Norman

    2008-01-01

    Sandwiched between Los Angeles and San Diego counties, nudging up to Riverside and San Bernardino to the east, Orange County, California is far more diverse than the stereotype. Orange County has no dominant city; its two largest, Santa Ana and Anaheim--each with populations around 350,000--are, respectively, home to lower-income Latinos and a…

  12. 40 CFR 52.227 - Control strategy and regulations: Particulate matter, Metropolitan Los Angeles Intrastate Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... IMPLEMENTATION PLANS California § 52.227 Control strategy and regulations: Particulate matter, Metropolitan Los... Los Angeles Intrastate Region. (1) Los Angeles County Air Pollution Control District: (i) Regulation IV, Rule 68.1. (2) Riverside County Air Pollution Control District: (i) Regulation IV, Rule 54 for...

  13. 40 CFR 52.227 - Control strategy and regulations: Particulate matter, Metropolitan Los Angeles Intrastate Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... IMPLEMENTATION PLANS California § 52.227 Control strategy and regulations: Particulate matter, Metropolitan Los... Los Angeles Intrastate Region. (1) Los Angeles County Air Pollution Control District: (i) Regulation IV, Rule 68.1. (2) Riverside County Air Pollution Control District: (i) Regulation IV, Rule 54 for...

  14. 40 CFR 52.227 - Control strategy and regulations: Particulate matter, Metropolitan Los Angeles Intrastate Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... IMPLEMENTATION PLANS California § 52.227 Control strategy and regulations: Particulate matter, Metropolitan Los... Los Angeles Intrastate Region. (1) Los Angeles County Air Pollution Control District: (i) Regulation IV, Rule 68.1. (2) Riverside County Air Pollution Control District: (i) Regulation IV, Rule 54 for...

  15. 76 FR 5156 - Environmental Impact Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Firm Water Supplies, Improve Water Quality, and to Reduce Water Costs, San Bernardino and Riverside.... 20110020, Draft EIS, NRCS, IA, Clarke County Water Supply, To Construct a Multiple-purpose Structure that Provides for Rural Water Supply and Water Based Recreational Opportunities, Clarke County, IA, Comment...

  16. Water resources of King County, Washington

    USGS Publications Warehouse

    Richardson, Donald; Bingham, J.W.; Madison, R.J.; Williams, R.

    1968-01-01

    Although the total supply of water in King County is large, water problems are inevitable because of the large and rapidly expanding population. The county contains a third of the 3 million people in Washington, most of the population being concentrated in the Seattle metropolitan area. King County includes parts of two major physiographic features: the western area is part of the Puget Sound Lowland, and the eastern area is part of the Cascade Range. In these two areas, the terrain, weather, and natural resources (including water) contrast markedly. Average annual precipitation in the county is about 80 inches, ranging from about 30 inches near Puget Sound to more than 150 inches in parts of the Cascades. Annual evapotranspiration is estimated to range from 15 to 24 inches. Average annual runoff ranges from about 15 inches in the lowlands to more than 100 inches in the mountains. Most of the streamflow is in the major basins of the county--the Green-Duwamish, Lake Washington, and Snoqualmie basins. The largest of these is the Snoqualmie River basin (693 square miles), where average annual runoff during the period 1931-60 was about 79 inches. During the same period, annual runoff in the Lake Washington basin ( 607 square miles) averaged about 32 inches, and in the Green-Duwamish River basin (483 square miles), about 46 inches. Seasonal runoff is generally characterized by several high-flow periods in the winter, medium flows in the spring, and sustained low flows in the summer and fall. When floods occur in the county they come almost exclusively between October and March. The threat of flood damage is greatest on the flood plaits of the larger rivers, but in the Green-Duwamish Valley the threat was greatly reduced with the completion of Howard A. Hanson Dam in 1962. In the Snoqualmie River basin, where no such dam exists, the potential damage from a major flood increases each year as additional land is developed in the Snoqualmie Valley. 0nly moderate amounts of

  17. PESTICIDES AND THEIR METABOLITES IN THE HOMES AND URINE OF FARMWORKER CHILDREN LIVING IN THE SALINAS VALLEY, CA

    EPA Science Inventory

    This paper describes a study to test field methods for characterizing pesticide exposures to 20 farmworker children aged 5-27 months old living in the Salinas Valley of Monterey County, California. Methods for collecting house dust, indoor and outdoor air, dislodgeable residues ...

  18. Geologic map of the Riverside West 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Cox, Brett F.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in rsw_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f.Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  19. Geologic map of the Riverside East 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Cox, Brett F.

    2001-01-01

    a. This Readme; includes in Appendix I, data contained in rse_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).

  20. SRTM Perspective View with Landsat Overlay: San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    San Joaquin, the name given to the southern portion of California's vast Central Valley, has been called the world's richest agricultural valley. In this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image, we are looking toward the southwest over a checkerboard pattern of agricultural fields. Mt. Pinos, a popular location for stargazing at 2,692 meters (8,831 feet) looms above the valley floor and is visible on the left side of the image. The productive southern San Joaquin is in reality a desert, averaging less than 12.7 cm (5 inches) of rain per year. Through canals and irrigation, the region nurtures some two hundred crops including grapes, figs, apricots, oranges, and more than 4,047 square-km (1,000,000 acres) of cotton. The California Aqueduct, transporting water from the Sacramento River Delta through the San Joaquin, runs along the base of the low-lying Wheeler Ridge on the left side of the image. The valley is not all agriculture though. Kern County, near the valley's southern end, is the United States' number one oil producing county, and actually produces more crude oil than Oklahoma. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U

  1. Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.

    1987-01-01

    Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)

  2. Integrated hydrologic model of Pajaro Valley, Santa Cruz and Monterey Counties, California

    USGS Publications Warehouse

    Hanson, Randall T.; Schmid, Wolfgang; Faunt, Claudia C.; Lear, Jonathan; Lockwood, Brian

    2014-01-01

    The HS-ASR was simulated for the years 2002–09, and replaced about about 1,290 acre-ft of coastal pumpage. This was combined with the simulation of additional 6,200 acre-ft of deliveries from supplemental wells, recycled water, and city connection deliveries through the CDS that also supplanted some coastal pumpage. Total simulated deliveries were 7,350 acre-ft of the 7,500 acre-ft of reported deliveries for the period 2002-09. The completed CDS should be capable of delivering about 8.8 million cubic meters (7,150 acre-ft) of water per year to coastal farms within the Pajaro Valley, if all the local supply components were fully available for this purpose. This would represent about 15 percent of the 48,300 acre-ft (59.6 million cubic meters) average agricultural pumpage for the period 2005 to 2009. Combined with the potential capture and reuse of some of the return flows and tile-drain flows, this could represent an almost 70 percent reduction of average overdraft for the entire valley and a large part of the coastal pumpage that induces seawater intrusion.

  3. Channel incision and suspended sediment delivery at Caspar Creek, Mendocino County, California

    Treesearch

    Nicholas J. Dewey; Thomas E. Lisle; Leslie M. Reid

    2003-01-01

    Tributary and headwater valleys in the Caspar Creek watershed,in coastal Mendocino County, California,show signs of incision along much of their lengths.An episode of incision followed initial-entry logging which took place between 1860 and 1906. Another episode of incision cut into skid-trails created for second-entry logging in the 1970's.

  4. Proposal for an Early Retirement Incentive Program at Mercer County Community College.

    ERIC Educational Resources Information Center

    Schwartz, Arthur E.

    A project was undertaken to evaluate existing models of early retirement incentive programs (ERIPs) and recommend an ERIP for New Jersey's Mercer County Community College (MCCC). The following categories of ERIPs were reviewed: state plans for New York and Minnesota; K-12 school districts plans at the Castro Valley Unified School District and 48…

  5. 75 FR 62852 - Notice of Availability of the Record of Decision for the Chevron Energy Solutions Lucerne Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ...-way (ROW) authorization to construct and operate a 45-megawatt (MW) solar photovoltaic project which... Solar Project, California and the Approved Plan Amendment to the California Desert Conservation Area...) Lucerne Valley Solar Project located in San Bernardino County, California. The Secretary of the Interior...

  6. A Summary interpretation of geologic, hydrologic, and geophysical data for Yucca Valley, Nevada test site, Nye County, Nevada

    USGS Publications Warehouse

    Wilmarth, Verl Richard; Healey, D.L.; Clebsch, Alfred; Winograd, I.J.; Zietz, Isadore; Oliver, H.W.

    1959-01-01

    This report summarizes an interpretation of the geology of Yucca Valley to depths of about 2,300 feet below the surface, the characteristics features of ground water in Yucca and Frenchman Valleys, and the seismic, gravity, and magnetic data for these valleys. Compilation of data, preparation of illustrations, and writing of the report were completed during the period December 26, 1958 to January 10, 1959. Some of the general conclusions must be considered as tentative until more data are available. This work was done by the U.S. Geological Survey on behalf of Albuquerque Operations Office, U.S. Atomic Energy Commission.

  7. Transboundary Contributions To Surface Ozone In California's Central Valley

    NASA Astrophysics Data System (ADS)

    Post, A.; Faloona, I. C.; Conley, S. A.; Lighthall, D.

    2014-12-01

    Rising concern over the impacts of exogenous air pollution in California's Central Valley has prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County, under the auspices of the Monterey Institute for Research in Astronomy. Two and a half years of continuous ozone data are presented in the context of long-range transport and its potential impact on surface air quality in the San Joaquin Valley (SJV). Past attempts to quantify the impact of transboundary ozone on surface levels have relied on uncertain model estimates, or have been limited to weekly ozonesonde data. Here, we present an observationally derived quantification of the contribution of free tropospheric ozone to surface sites in the San Joaquin Valley throughout three ozone seasons (June through September, 2012-2014). The diurnal ozone patterns at Chews Ridge, and their correlations with ozone aloft over the Valley, have been presented previously. Furthermore, reanalysis data of geopotential heights indicate consistent flow from Chews Ridge to the East, directly over the SJV. In a related airborne project we quantify the vertical exchange, or entrainment, rate over the Southern SJV from a series of focused flights measuring ozone concentrations during peak photochemical hours in conjunction with local meteorological data to quantify an ozone budget for the area. By applying the entrainment rates observed in that study here we are able to quantify the seasonal contributions of free tropospheric ozone measured at Chews Ridge to surface sites in the San Joaquin Valley, and compare prior model estimates to our observationally derived values.

  8. Analysis of the apiclutural industry in relation to geothermal development and agriculture in the Imperial Valley, Imperial County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkins, E.L.

    PART I: Continuous exposure to 30 ppB H/sub 2/S increased lifespan of caged worker honey bees, Apis mellifera L., 33%; whereas, bees exposed > 13 days to 100 ppB and 300 ppB H/sub 2/S the lifespan was shortened 32% and 51%, respectively, over unexposed bees; bees exposed > 15 days to a combination of 300 ppB H/sub 2/S + 50 ppM CO/sub 2/ the lifespan was shortened 4.4% more that 300 ppB H/sub 2/S alone. The mean temperature and/or relative humidity did not exert a direct effect on the hazard to bees. A continuous exposure to 300 ppB SO/sub 2/more » was detrimental to caged worker honey bees; and, a mean temperature of 27.2/sup 0/C was 75.7% more toxic than the same dosage at 16.7/sup 0/C. Worker bee lifespans exposed to 300 ppB SO/sub 2/ at 16.7/sup 0/C were shortened 13.5% and 79%, respectively, compared to unexposed bees. Therefore, both dosage and temperature exert direct effects on the hazards to bees. PART II: The status of the apicultural industry in Imperial County, California, was outlined giving a short characterization of the area in relation to the apicultural industry. Agriculture utilizes 500,000 intensely farmed acres which generated a 11-year average income of $370 million. Over 40 agricultural commodities are produced. The apicultural industry is intimately involved in 25% of the total gross agricultural income. In addition, most of the flora growing in the desert community which comprises the remainder of the county are very important to honey bees by providing sustaining nectar and/or pollen for brood rearing. The bee foraged flora provides substantial bee forage when colonies are located outside of the agriculutral area. It is concluded that geothermal resource development in the Imperial Valley is contemplated to have minimal effects on the apicultural industry.« less

  9. 76 FR 27173 - Lassen Valley Railway, LLC-Abandonment Exemption-in Washoe County, NV and Lassen County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... located between milepost 338.33 near Flanigan, Washoe County, Nev. and milepost 360.10 near Wendel,\\1... originally identified milepost 359.25 as the end of the line instead of milepost 360.10. The letter also...) under 49 CFR 1152.27(b)(2) will be due no later than 10 days after service of a decision granting the...

  10. Principal facts for gravity stations in the Dry Valley area, west-central Nevada and east-central California

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Ponce, David A.

    2003-01-01

    In June, 2002, the U.S. Geological Survey (USGS) established 143 new gravity stations and 12 new rock samples in the Dry Valley area, 30 miles north of Reno, Nevada, on the California - Nevada border (see fig. 1). This study reports on gravity, magnetic, and physical property data intended for use in modeling the geometry and depth of Dry Valley for groundwater analysis. It is part of a larger study that aims to characterize the hydrologic framework of several basins in Washoe County. Dry Valley is located south of the Fort Sage Mountains and south-east of Long Valley, on USGS 7.5’ quadrangles Constantia and Seven Lakes (fig. 2). The Cretaceous granitic rocks and Tertiary volcanic rocks that bound the sediment filled basin (fig. 3) may be especially important to future modeling because of their impact on groundwater flow. The granitic and volcanic rocks of Dry Valley exhibit densities and magnetic susceptibilities higher than the overlaying sediments, and create a distinguishable pattern of gravity and magnetic anomalies that reflect these properties.

  11. Land-Surface Subsidence and Open Bedrock Fractures in the Tully Valley, Onondaga County, New York

    USGS Publications Warehouse

    Hackett, William R.; Gleason, Gayle C.; Kappel, William M.

    2009-01-01

    Open bedrock fractures were mapped in and near two brine field areas in Tully Valley, New York. More than 400 open fractures and closed joints were mapped for dimension, orientation, and distribution along the east and west valley walls adjacent to two former brine fields. The bedrock fractures are as much as 2 feet wide and over 50 feet deep, while linear depressions in the soil, which are 3 to 10 feet wide and 3 to 6 feet deep, indicate the presence of open bedrock fractures below the soil. The fractures are probably the result of solution mining of halite deposits about 1,200 feet below the land surface.

  12. 75 FR 5354 - Tennessee Valley Authority; Browns Ferry Nuclear Plant, Units 1, 2, and 3 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... Valley Authority; Browns Ferry Nuclear Plant, Units 1, 2, and 3 Environmental Assessment and Finding of..., Units 1, 2, and 3 (BFN), located in Limestone County, Alabama. In accordance with 10 CFR 51.21, the NRC... considered in the Final Environmental Statement for the BFN dated September 1, 1972. Agencies and Persons...

  13. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    USGS Publications Warehouse

    Gard, Leonard Meade

    1976-01-01

    This report describes the geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Part of sec. 5, T. 23 S., R. 20 E. has been selected as a site for subsurface investigation as a potential repository for radioactive waste. This site has easy access to transportation, is on public land, is isolated from human habitation, is not visible from Arches National Park, and the salt body lies within about 800 feet (244 m) of the surface. Further exploration should include investigation of possible ground water in the caprock and physical exploration of the salt body to identify a thick bed of salt for use as a storage zone that can be isolated from the shaly interbeds that possibly contain quantities of hydrocarbons. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after

  14. Effect of Acorn Planting Depth on Depredation, Emergence, and Survival of Valley and Blue Oak

    Treesearch

    William D. Tietje; Sherryl L. Nives; Jennifer A. Honig; William H. Weitkamp

    1991-01-01

    During 1989 in east-central San Luis Obispo County, California, we studied the relationship of valley oak (Quercus lobata) and blue oak (Q. douglasii) acorn planting depth and number of acorns per planting site to acorn depredation, seedling emergence, survival, and height. Acorns were planted at three depths (1.3, 5.1, and 10.2 cm...

  15. A STUDY OF THE MATURE WOMEN STUDENTS ATTENDING DAY CLASSES AT RIVERSIDE CITY COLLEGE DURING THE SPRING SEMESTER, 1964.

    ERIC Educational Resources Information Center

    SENSOR, PHYLLIS

    THIS STUDY DEFINED A MATURE WOMAN AS BEING 25 YEARS OLD OR OLDER OR MARRIED. DATA WERE COLLECTED ON 225 MATURE WOMEN ATTENDING RIVERSIDE CITY COLLEGE DURING THE 1964 SPRING SEMESTER, INCLUDING DATE OF BIRTH, MARITAL STATUS, ACADEMIC SUCCESS, TEST SCORES, GRADE POINT AVERAGE, UNITS OF STUDY, MAJOR, AND SCHOOLS OF TRANSFER. A QUESTIONNAIRE WAS SENT…

  16. Metals, pesticides, and semivolatile organic compounds in sediment in Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Reif, Andrew G.; Sloto, Ronald A.

    1997-01-01

    The Schuylkill River flows through Valley Forge National Historical Park in Lower Providence and West Norriton Townships in Montgomery County, Pa. The concentration of selected metals, pesticides, semivolatile organic compounds, and total carbon in stream-bottom sediments from Valley Forge National Historical Park were determined for samples collected once at 12 sites in and around the Schuylkill River.Relatively low concentrations of arsenic, chromium, copper, and lead were detected in all samples. The concentrations of these metals are similar to concentrations in other stream-bottom sediment samples collected in the region. The concentrations of iron, manganese, and zinc were elevated in samples from four sites in the Schuylkill River, and the concentration of mercury was elevated in a sample from an impoundment along the river.The organophosphorus insecticide diazinon was detected in relatively low concentrations in half of the 12 samples analyzed. The organo-chlorine insecticide DDE was detected in all 12 samples analyzed; dieldrin was detected in 10 samples, chlordane, DDD, and DDT were detected in 9 samples, and heptachlor epoxide was detected in one sample. The concentrations of organo-chlorine and organophosphorus insecticides were relatively low and similar to concentrations in samples collected in the region.Detectable concentrations of 17 semivolatile organic compounds were measured in the 12 samples analyzed. The most commonly detected compounds were fluoranthene, phenanthrene, and pyrene. The maximum concentration detected was 4,800 micrograms per kilogram of phenanthrene. The highest concentrations of compounds were detected in Lamb Run, a small tributary to the Schuylkill River with headwaters in an industrial corporate center. The concentration of compounds in the Schuylkill River below Lamb Run is higher than the Schuylkill River above Lamb Run, indicating that sediment from Lamb Run is increasing the concentration of semivolatile organic

  17. 75 FR 19454 - Montreal, Maine & Atlantic Railway, Ltd.-Discontinuance of Service and Abandonment-in Aroostook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Penobscot Counties, ME April 9, 2010. AGENCY: Surface Transportation Board. ACTION: Notice of Public Hearing... District Court House, 27 Riverside Drive, Presque Isle, ME 04769. Any person wishing to speak at the... discontinue service over approximately 233 miles of line in Aroostook and Penobscot Counties, ME.\\1\\ In a...

  18. 18. A VIEW EAST, SHOWING THE HEAVILY WOODED BANKS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. A VIEW EAST, SHOWING THE HEAVILY WOODED BANKS OF THE ST. JOSEPH RIVER. THIS IS TYPICAL OF THE RIVERSIDE ENVIRONMENT OF THE BRIDGE. - County Line Bridge, Spanning St. Joseph River at State Route 219, 0.6 mile south of U.S. Route 20, Osceola, St. Joseph County, IN

  19. Spatial Statistics of the Clark County Parcel Map, Trial Geotechnical Models, and Effects on Ground Motions in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Savran, W. H.; Louie, J. N.; Pullammanappallil, S.; Pancha, A.

    2011-12-01

    When deterministically modeling the propagation of seismic waves, shallow shear-wave velocity plays a crucial role in predicting shaking effects such as peak ground velocity (PGV). The Clark County Parcel Map provides us with a data set of geotechnical velocities in Las Vegas Valley, at an unprecedented level of detail. Las Vegas Valley is a basin with similar geologic properties to some areas of Southern California. We analyze elementary spatial statistical properties of the Parcel Map, along with calculating its spatial variability. We then investigate these spatial statistics from the PGV results computed from two geotechnical models that incorporate the Parcel Map as parameters. Plotting a histogram of the Parcel Map 30-meter depth-averaged shear velocity (Vs30) values shows the data to approximately fit a bimodal normal distribution with μ1 = 400 m/s, σ1 = 76 m/s, μ2 = 790 m/s, σ2 = 149 m/s, and p = 0.49., where μ is the mean, σ is standard deviation, and p is the probability mixing factor for the bimodal distribution. Based on plots of spatial power spectra, the Parcel Map appears to be fractal over the second and third decades, in kilometers. The spatial spectra possess the same fractal dimension in the N-S and the E-W directions, indicating isotropic scale invariance. We configured finite-difference wave propagation models at 0.5 Hz with LLNL's E3D code, utilizing the Parcel Map as input parameters to compute a PGV data set from a scenario earthquake (Black Hills M6.5). The resulting PGV is fractal over the same spatial frequencies as the Vs30 data sets associated with their respective models. The fractal dimension is systematically lower in all of the PGV maps as opposed to the Vs30 maps, showing that the PGV maps are richer in higher spatial frequencies. This is potentially caused by a lens focusing effects on seismic waves due to spatial heterogeneity in site conditions.

  20. Ground-water resources of Snohomish County, Washington

    USGS Publications Warehouse

    Newcomb, Reuben Clair

    1952-01-01

    Snohomish County comprises an east-west strip, six townships wide, extending 60 miles from the eastern shore of Puget Sound to the drainage divide of the Cascade Mountains. Topographically, the eastern two-thirds of the county varies frown hills and low mountain spurs at the west to the continuous high, maturely carved mountains of the Cascade Range at the east. The western third of the county lies in the Puget Sound lowland section: it is made up largely of unconsolidated deposits, as contrasted with the hard rocks of the mountain section. High-level deposits of glacial debris in some places form a transitional ramp from the lowlands to the mountain topography; in other places the transition is abrupt. The principal rivers--the Snohomish, Skykomish, Stillaguamish, and Sauk--drain westward and northwestward to Puget Sound. The Puget Sound lowland, with its extensions up the river valleys, is economically the important part. of the county. Within that part., ground-water development is of particular importance. The climate is equable and dominantly oceanic, with an average of about 32 h. of rainfall annually, but with a pronounced dry season from June to September. A mean annual temperature of 52 F, a growing season of more than 200 days, and a variety of good soils form a setting in which supplemental irrigation can at least double the average crop production. Within the coastal lowland, plateau segments 200 to 600 ft or more in altitude are separated by flat-bottomed, alluviated river gorges. The river flats in some eases represent the surface of as much as 500 to 600 ft of glacial and alluvial deposits backfilled into canyonlike arms of the aneestral drainage system. The plateau segments are formed of the till-smoothed remnants of bedrock or the tabular segments of Pleistocene deposits. The Pleistocene deposits consist, above sea level, of about 200 ft of Admiralty clay and as much as 1,000 ft of deposits of the Vashon glaciation. The latter include as much as

  1. 7 CFR 1210.501 - Realignment of districts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Florida counties of Alachua, Baker, Bay, Bradford, Calhoun, Clay, Columbia, Dixie, Duval, Escambia... California; San Bernardino, Riverside, San Diego, and Imperial. [71 FR 34234, June 14, 2006] ...

  2. 7 CFR 1210.501 - Realignment of districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Florida counties of Alachua, Baker, Bay, Bradford, Calhoun, Clay, Columbia, Dixie, Duval, Escambia... California; San Bernardino, Riverside, San Diego, and Imperial. [71 FR 34234, June 14, 2006] ...

  3. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  4. Hydrologic reconnaissance of the Blue Creek Valley area, Box Elder County, Utah

    USGS Publications Warehouse

    Bolke, E.L.; Price, Don

    1972-01-01

    This report is the tenth in a series of reports prepared by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, that describe the water resources of selected areas in northwestern Utah. The purpose of this report is to present available hydrologic data for the Blue Creek Valley area and to provide a quantitative evaluation of the potential water-resources development of the area.

  5. Hydrogeologic Framework and Ground-Water Budget of the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Bartolino, James R.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington State Department of Ecology, investigated the hydrogeologic framework and ground-water budget of the Spokane Valley-Rathdrum Prairie (SVRP) aquifer located in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho, and the Spokane Valley and Hillyard Trough, Washington, is the sole source of drinking water for more than 500,000 residents. Continued growth, water-management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer consists mostly of gravels, cobbles, and boulders - deposited during a series of outburst floods resulting from repeated collapse of the ice dam that impounded ancient Glacial Lake Missoula. In most places, the SVRP aquifer is bounded by bedrock of pre-Tertiary granite or metasedimentary rocks, or Miocene basalt and associated sedimentary deposits. Discontinuous fine-grained layers are scattered throughout the SVRP aquifer at considerably different altitudes and with considerably different thicknesses. In the Hillyard Trough and the Little Spokane River Arm of the aquifer, a massive fine-grained layer with a top altitude ranging from about 1,500 to 1,700 feet and thickness ranging from about 100 to 200 feet separates the aquifer into upper and lower units. Most of the Spokane Valley part of the aquifer is devoid of fine-grained layers except near the margins of the valley and near the mouths of lakes. In the Rathdrum Prairie, multiple fine-grained layers are scattered throughout the aquifer with top altitudes ranging from about 1,700 to 2,400 feet with thicknesses ranging from 1

  6. Data for four geologic test holes in the Sacramento Valley, California

    USGS Publications Warehouse

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  7. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  8. Hydrology of the Little Androscoggin River Valley aquifer, Oxford County, Maine

    USGS Publications Warehouse

    Morrissey, D.J.

    1983-01-01

    The Little Androscoggin River valley aquifer, a 15-square-mile sand and gravel valley-fill aquifer in southwestern Maine, is the source of water for the towns of Norway, Oxford, and South Paris. Estimated inflows to the aquifer during the 1981 water year were 16.4 cubic feet per second from precipitation directly on the aquifer, 11.2 cubic feet per second from till covered uplands adjacent to the aquifer, and 1.4 cubic feet per second from surface-water leakage. Outflows from the aquifer were 26.7 cubic feet per second to surface water and 2.3 cubic feet per second to wells. A finite-difference ground-water flow model was used to simulate conditions observed in the aquifer during 1981. Model conditions observed in the aquifer during 1981. Model simulations indicate that a 50 percent reduction of average 1981 recharge to the aquifer would cause water level declines of up to 20 feet in some areas. Model simulations of increased pumping at a high yield well in the northern part of the aquifer indicate that resulting changes in the water table will not be sufficient to intercept groundwater contaminated by a sludge disposal site. Water in the aquifer is low in dissolved solids (average for 38 samples was 67 mg/L), slightly acidic and soft. Ground-water contamination has occurred near a sludge-disposal site and in the vicinity of a sanitary landfill. Dissolved solids in ground water near the sludge disposal site were as much as ten times greater than average background values for the aquifer. (USGS)

  9. M-X Environmental Technical Report. Alternative Potential Operating Base Locations, Coyote Spring Valley.

    DTIC Science & Technology

    1980-12-22

    necessary and identify by block number) MX Coyote Spring, Nevada Siting Analysis Nevada Environnental Report 20. ABSTRACT (Continue on reverse side If...necessary and Identify by block number) The area of analysis (AO) for the Coyote Spring Valley operating base option includes both Clark and Lincoln...counties, and is located in the southern portion of the designated region of influence. Las Vegas and the surrounding suburbs are the major settlements and

  10. Permeability of covers over low-level radioactive-waste burial trenches, West Valley, Cattaraugus County, New York

    USGS Publications Warehouse

    Prudic, David E.

    1980-01-01

    Among the facilities at the Western New York Nuclear Service Center, near the hamlet of West Valley in the northern part of Cattaraugus County, N.Y., is a State-licensed burial ground for commercial low-level radioactive wastes. The 11-acre burial ground contains a series of trenches excavated in a silty-clay till of low permeability that contains scattered pods of silt, sand, and gravel. Gas pressure in the unsaturated parts of radioactive waste burial trenches responds to fluctuations in atmospheric pressure. Measurements of atmospheric pressure and the differential pressure between the trench gas and the atmosphere on several dates in 1977-78 were used to calculate hydraulic conductivity of the reworked silty-clay till that covers the trenches. Generally the hydraulic conductivity of covers over trenches that had a history of rapidly rising water levels are higher, at least seasonally, than covers over trenches in which the water level remained low. This supports the hypothesis that recharge occurs through the cover, presumably through fractures caused by desiccation and (or) subsidence. Hydraulic conductivities of the cover as calculated from gas- and air-pressure measurements at several trenches were 100 to 1,000 times greater than those calculated from the increase in water levels in the trenches. This difference suggests that the values obtained from the air- and gas-pressure measurements need to be adjusted and at present are not directly usable in ground-water flux calculations. The difference in magnitude of values may be caused by rapidly decreasing hydraulic conductivity during periods of recharge or by the clogging of fractures with sediment washed in by runoff. (USGS)

  11. 75 FR 39581 - Yosemite Valley Plan; Yosemite National Park; Mariposa, Madera, and Tuolumne Counties, California...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... processes in Yosemite Valley, to ameliorate environmental impacts, to preserve cultural resource values, and... of No Significant Impact (FONSI decisions) for Yosemite Lodge area redevelopment and improvements at...

  12. A Cultural Resources Literature Search and Record Review of The St. Francis River Seepage Project within Clay, Craighead, Mississippi and Poinsett Counties, Arkansas and Dunklin County, Missouri

    DTIC Science & Technology

    1985-10-30

    Brook Shelters). During this long period a large number of different projectile point types were produced (ie, Rice Lobed, Big Sandy, White River Archaic...Hidden Valley Stemmed, Hardin Barbed, Sear- cy, Rice Lanceolate, Jakie Stemmed, and Johnson). No controlled excavations have been done at any Early...University of Arkansas, Fayetteville. Edrington, Mabel 1962 History of Mississippi County. Arkansas. Ocala Star Banner, Ocala, Florida. 5 68

  13. 75 FR 20619 - Endangered and Threatened Wildlife and Plants; Permit, Santa Cruz County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... square feet of habitat for the species in Scotts Valley, Santa Cruz County, California. We invite... result in permanent impacts to a total of 483 square feet of habitat for the Mount Hermon June beetle... Mount Hermon June beetle habitat within the permit area: (1) Applicants will purchase 483 square feet of...

  14. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  15. Underground water in Sanpete and central Sevier valleys, Utah

    USGS Publications Warehouse

    Richardson, George Burr

    1907-01-01

    Sanpete and central Sevier valleys are situated at the border of the Basin Range and Plateau provinces in south-central Utah. They are bounded on the east by the Wasatch and Sevier plateaus and on the west by the Gunnison Plateau and the Valley and Pavant ranges, and are drained by Sevier River, which empties into Sevier Lake in the Great Basin. (See fig. 1, p. 6.)These valleys rank with the richest parts of the State. They were occupied a few years after the Mormon pioneers founded Salt Lake City, in 1847, when settlements, which soon became thriving farming communities, were established where water for irrigation was most available. A variety of crops, especially wheat, are successfully grown, and the valleys are popularly known as the "granary of Utah." Sheep raising is also an important industry, the adjacent highlands being used for summer pastures. The climate is arid, and there is a striking contrast between those areas which in their natural state are covered with sagebrush and grease wood and the fruitful cultivated tracts. (See PI. I, A and B.) Trees are normally absent in the valleys, but they flourish to a limited extent on the adjacent highlands, where there are thin growths of quaking aspen, scrub oak, and stunted conifers. Irrigation is necessary for the production of crops. Canal systems are maintained by San Pitch Creek and Sevier River, and the mountain streams are tapped by ditches near the mouths of the canyons, but this supply is insufficient and attention is being turned to the subterranean store.This report is a preliminary statement of the general conditions of occurrence of underground water in Sanpete and central Sevier valleys. The field work was carried on in cooperation with Sanpete and Sevier counties through the State engineer, Mr. Caleb Tanner, who detailed Mr. C. S. Jarvis to collect the data embodied in the list of springs and wells on pages 51-60.

  16. SRTM Perspective View with Landsat Overlay: Caliente Range and Cuyama Valley, California

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Before the arrival of Europeans, California's Cuyama Valley was inhabited by Native Americans who were culturally and politically tied to the Chumash tribes of coastal Santa Barbara County. Centuries later, the area remains the site of noted Native American rock art paintings. In the 1800s, when Europeans established large cattle and horse-breeding ranches in the valley, the early settlers reported the presence of small villages along the Cuyama River. This perspective view looks upstream toward the southeast through the Cuyama Valley. The Caliente Range, with maximum elevations of 1,550 meters (5,085 feet), borders the valley on the left. The Cuyama River, seen as a bright meandering line on the valley floor, enters the valley from headwaters more than 2,438 meters (8,000 feet) above sea level near Mount Abel and flows 154 kilometers (96 miles) before emptying into the Pacific Ocean. The river's course has been determined in large part by displacement along numerous faults.

    Today, the Cuyama Valley is the home of large ranches and small farms. The area has a population of 1,120 and is more than an hour and a half drive from the nearest city in the county.

    This image was generated by draping an enhanced Landsat satellite image over elevation data from the Shuttle Radar Topography Mission (SRTM). Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors approximate natural colors.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM

  17. Independent technical review and analysis of hydraulic modeling and hydrology under low-flow conditions of the Des Plaines River near Riverside, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Straub, Timothy D.; Hortness, Jon E.; Murphy, Elizabeth A.

    2012-01-01

    The U.S. Geological Survey (USGS) has operated a streamgage and published daily flows for the Des Plaines River at Riverside since Oct. 1, 1943. A HEC-RAS model has been developed to estimate the effect of the removal of Hofmann Dam near the gage on low-flow elevations in the reach approximately 3 miles upstream from the dam. The Village of Riverside, the Illinois Department of Natural Resources-Office of Water Resources (IDNR-OWR), and the U. S. Army Corps of Engineers-Chicago District (USACE-Chicago) are interested in verifying the performance of the HEC-RAS model for specific low-flow conditions, and obtaining an estimate of selected daily flow quantiles and other low-flow statistics for a selected period of record that best represents current hydrologic conditions. Because the USGS publishes streamflow records for the Des Plaines River system and provides unbiased analyses of flows and stream hydraulic characteristics, the USGS served as an Independent Technical Reviewer (ITR) for this study.

  18. Differences and Commonalities: Farmer Stratifications in the San Luis Valley Research/Extension Project Area. ARE Research Report.

    ERIC Educational Resources Information Center

    Eckert, Jerry B.

    A research project in the San Luis Valley of Colorado sought to isolate a few unique farm types that could become target groups for the design and implementation of agricultural research and extension programs. Questionnaires were completed by 44 of 65 farmers in one watershed area of Conejos County. Analysis revealed a complex pattern of…

  19. Community Resistance to Survey Research and 1890 Colleges and Universities: The Case of Fort Valley State College.

    ERIC Educational Resources Information Center

    Walker, Melvin E., Jr.; Holik, John S.

    In order to reduce community resistance to a multi-ethnic/cross-sectional survey by an 1890 institution and to identify those factors which influenced survey completion, 395 white and 335 black heads of households in 19 middle Georgia county areas were surveyed. Since a suit labeling Fort Valley a "diploma mill" had recently been filed…

  20. The Ogden Valley artesian reservoir

    USGS Publications Warehouse

    Thomas, H.E.

    1945-01-01

    Ogden Valley, in Weber County, Utah, contains an artesian reservoir from which the city of Ogden obtains all except a small part of its municipal water supply. A detailed investigation of the ground-water resources of Ogden Valley, and particularly of this artesian reservoir, was made by the Geological Survey, United States Department of the Interior, in cooperation with the city of Ogden between 1932 and 1934, and the results of this investigation have been reported by Leggette and Taylor.1 The present paper, which might be termed a sequel to that report, is based on data collected during those years, augmented by records that have been obtained (1935-1940) by the Geological Survey as part of a State-wide project in cooperation with the Utah State Engineer. The conclusions drawn from the study of these records and presented in detail in the following pages are as follows: (1) The artesian reservoir is filled to capacity nearly every year during the spring run-off from melting snow; (2) after the annual freshet, the recharge to the reservoir is insufficient to balance the discharge from artesian wells, which ordinarily is at a maximum during the summer; the reservoir is depleted and is not filled again until the following spring; (3) during the periods when the artesian reservoir is not full the rate of recharge is more or less proportional to the inflow to the valley by streams, except that rain on the recharge area may be of sufficient intensity to contribute some water by infiltration and deep penetration; and (4) the artesian reservoir thus serves to store water that would otherwise be lost to Great Salt Lake in the excess spring overflow, and available records indicate that water used by increased draft from wells would be replenished in normal years by increased recharge during the spring freshet.

  1. Geology and ground-water resources of Fillmore County, Nebraska

    USGS Publications Warehouse

    Keech, Charles Franklin; Dreeszen, V.H.

    1968-01-01

    Fillmore County, an area 24 miles square, lies in the eastern part of the Nebraska loess plain. Although tributaries of the Big Blue River have eroded valleys into this plain, much of the original surface is intact. Broad flats and numerous shallow undrained depressions characterize the plain. The county is underlain by unconsolidated deposits of Quaternary age to depths ranging from about 80 to 450 feet. The upper part of this depositional sequence consists largely of wind-deposited clayey silt, and the lower part of stream-deposited sand and gravel. In part of the county, deposits of glacial till also are included. The Quaternary deposits mantle an eroded surface of marine-deposited strata of Cretaceous age. The lower deposits of Quaternary age are saturated and constitute a highly productive aquifer throughout much of the county. The saturated zone ranges from about 20 to 350 feet in thickness. Replenishment to this aquifer, derived principally from precipitation, is believed to average about 1.4 inches per year. Because the quantity of ground water pumped per year exceeds the average annual quantity of recharge, some of the water used for irrigation is from storage. Consequently, water levels in wells .are declining. This trend is likely to continue. The ground water is of the calcium bicarbonate type and is hard, but it is chemically suitable for irrigation use on most soils in the county.

  2. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, Southern Coast Ranges, California

    USGS Publications Warehouse

    Burton, Carmen

    2018-05-30

    The Monterey-Salinas Shallow Aquifer study unit covers approximately 7,820 square kilometers (km2) in Santa Cruz, Monterey, and San Luis Obispo Counties in the Central Coast Hydrologic Region of California. The study unit was divided into four study areas—Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands. More than 75 percent of the water used for drinking-water supply in the Central Coast Hydrologic Region of California is groundwater, and there are more than 8,000 well driller’s logs for domestic wells (California Department of Water Resources, 2013).

  3. Groundwater Quality in the Shallow Aquifers of the Monterey Bay, Salinas Valley, and Adjacent Highland Areas, Southern Coast Ranges, California

    USGS Publications Warehouse

    Burton, Carmen

    2018-05-30

    The Monterey-Salinas Shallow Aquifer study unit covers approximately 7,820 square kilometers (km2) in Santa Cruz, Monterey, and San Luis Obispo Counties in the Central Coast Hydrologic Region of California. The study unit was divided into four study areas—Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands. More than 75 percent of the water used for drinking-water supply in the Central Coast Hydrologic Region of California is groundwater, and there are more than 8,000 well driller’s logs for domestic wells (California Department of Water Resources, 2013).

  4. Gravity and magnetic study of the Pahute Mesa and Oasis Valley region, Nye County, Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; Hildenbrand, Thomas G.; Dixon, Gary L.; McKee, Edwin H.; Fridrich, Christopher J.; Laczniak, Randell J.

    1999-01-01

    Regional gravity and aeromagnetic maps reveal the existence of deep basins underlying much of the southwestern Nevada volcanic field, approximately 150 km northwest of Las Vegas. These maps also indicate the presence of prominent features (geophysical lineaments) within and beneath the basin fill. Detailed gravity surveys were conducted in order to characterize the nature of the basin boundaries, delineate additional subsurface features, and evaluate their possible influence on the movement of ground-water. Geophysical modeling of gravity and aeromagnetic data indicates that many of the features may be related to processes of caldera formation. Collapse of the various calderas within the volcanic field resulted in dense basement rocks occurring at greater depths within caldera boundaries. Modeling indicates that collapse occurred along faults that are arcuate and steeply dipping. There are indications that the basement in the western Pahute Mesa - Oasis Valley region consists predominantly of granitic and/or fine-grained siliceous sedimentary rocks that may be less permeable to groundwater flow than the predominantly fractured carbonate rock basement to the east and southeast of the study area. The northeast-trending Thirsty Canyon lineament, expressed on gravity and basin thickness maps, separates dense volcanic rocks on the northwest from less dense intracaldera accumulations in the Silent Canyon and Timber Mountain caldera complexes. The source of the lineament is an approximately 2-km wide ring fracture system with step-like differential displacements, perhaps localized on a pre-existing northeast-trending Basin and Range fault. Due to vertical offsets, the Thirsty Canyon fault zone probably juxtaposes rock types of different permeability and, thus, it may act as a barrier to ground-water flow and deflect flow from Pahute Mesa along its flanks toward Oasis Valley. Within the Thirsty Canyon fault zone, highly fractured rocks may serve also as a conduit

  5. 10. VIEW TO NORTHEAST ALONG NORTHWEST SPILLWAY ABUTMENT; SERVICE VEHICLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW TO NORTHEAST ALONG NORTHWEST SPILLWAY ABUTMENT; SERVICE VEHICLE GARAGE IN BACKGROUND. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  6. Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1971-01-01

    This water-resources investigation was initiated in order to provide an estimate of the average annual water yield of the Mill Creek-Pack Creek drainage basin, the parts of that total yield available as surface water and ground water, the amount of ground water that might be recovered for beneficial use, and the effect of this use on the usable ground-water storage within the valley fill in Spanish and Moab Valleys. Detailed information has been sought which is basic to the establishment of sound policies for the development and management of water resources. The investigation was carried out as part of water-resources investigations in Utah with the Utah Division of Water Rights, Department of Natural Resources. Fieldwork was done during the period July 1967-November 1969.

  7. Ground-Water Occurrence and Movement, 2006, and Water-Level Changes in the Detrital, Hualapai, and Sacramento Valley Basins, Mohave County, Arizona

    USGS Publications Warehouse

    Anning, David W.; Truini, Margot; Flynn, Marilyn E.; Remick, William H.

    2007-01-01

    Ground-water levels for water year 2006 and their change over time in Detrital, Hualapai, and Sacramento Valley Basins of northwestern Arizona were investigated to improve the understanding of current and past ground-water conditions in these basins. The potentiometric surface for ground water in the Basin-Fill aquifer of each basin is generally parallel to topography. Consequently, ground-water movement is generally from the mountain front toward the basin center and then along the basin axis toward the Colorado River or Lake Mead. Observed water levels in Detrital, Hualapai, and Sacramento Valley Basins have fluctuated during the period of historic water-level records (1943 through 2006). In Detrital Valley Basin, water levels in monitored areas have either remained the same, or have steadily increased as much as 3.5 feet since the 1980s. Similar steady conditions or water-level rises were observed for much of the northern and central parts of Hualapai Valley Basin. During the period of historic record, steady water-level declines as large as 60 feet were found in wells penetrating the Basin-Fill aquifer in areas near Kingman, northwest of Hackberry, and northeast of Dolan Springs within the Hualapai Valley Basin. Within the Sacramento Valley Basin, during the period of historic record, water-level declines as large as 55 feet were observed in wells penetrating the Basin-Fill aquifer in the Kingman and Golden Valley areas; whereas small, steady rises were observed in Yucca and in the Dutch Flat area.

  8. Hydrology of the San Luis Valley, south-central Colorado

    USGS Publications Warehouse

    Emery, P.A.; Boettcher, A.J.; Snipes, R.J.; Mcintyre, H.J.

    1969-01-01

    An investigation of the water resources of the Colorado part of the San Luis Valley was begun in 1966 by the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board. (See index map, fig. 1). The purpose of the investigation is to provide information for planning and implementing improved water-development and management practices. The major water problems in the San Luis Valley include (1) waterlogging, (2) waste of water by nonbeneficial evapotranspiration, (3) deterioration of ground-water chemical quality, and (4) failure of Colorado to deliver water to New Mexico and Texas in accordance with the Rio Grande Compact. This report describes the hydrologic environment, extent of water-resource development, and some of the problems related to that development. Information presented is based on data collected from 1966 to 1968 and on previous studies. Subsequent reports are planned as the investigation progresses. The San Luis Valley extends about 100 miles from Poncha Pass near the northeast corner of Saguache County, Colo., to a point about 16 miles south of the Colorado-New Mexico State line. The total area is 3,125 square miles, of which about 3,000 are in Colorado. The valley is nearly flat except for the San Luis Hills and a few other small areas. The Colorado part of the San Luis Valley, which is described in this report, has an average altitude of about 7,700 feet. Bounding the valley on the west are the San Juan Mountains and on the east the Sangre de Cristo Mountains. Most of the valley floor is bordered by alluvial fans deposited by streams originating in the mountains, the most extensive being the Rio Grande fan (see block diagram, fig. 2 in pocket). Most of the streamflow is derived from snowmelt from 4,700 square miles of watershed in the surrounding mountains. The northern half of the San Luis Valley is internally drained and is referred to as the closed basin. The lowest part of this area is known locally as the "sump." The

  9. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  10. Transformation of Army National Guard Environmental Performance Assessment System (EPAS): Technologies and Best Practices in Field Audit Automation

    DTIC Science & Technology

    2012-05-01

    Lorenzo Richmond San Francisco San Mateo Sunnyvale Salinas Oakdale Reedley Hanford Visalia Fresno Modesto Stockton Indio Burbank Orange Fullerton Glendale...Riverside El Centro Camp Morena National City San Diego Barstow Ontario Bakersfield Apple Valley Los Angeles Santa Barbara Santa Maria Camp San Luis

  11. Water-resources appraisal of the Wet Mountain Valley, in parts of Custer and Fremont counties, Colorado

    USGS Publications Warehouse

    Londquist, C.J.; Livingston, R.K.

    1978-01-01

    The Wet Mountain Valley is an intermontane trough filled to a depth of at least 6,700 feet with unconsolidated deposits. Ground water occurs under both artesian and water-table conditions within the basin-fill aquifer and ground-water moverment is toward Grape and Texas Creeks. The depth to the water table is less than 10 feet in an area of about 40 square miles along the central part of the valley and is less than 100 feet in most of the remainder of the valley. Ground water stored in the upper 200 feet of saturated basin-fill sediments is estimated to total 1.5 million acre-feet. Yields greater than 50 gallons per minute generally can be expected from wells in the central part of the basin-fill aquifer, and yields less than 50 gallons per minute are generally reported from wells around the edge of the basin-fill aquifer. Yields of wells in the mountainous areas are generally less than 20 gallons per minute. Most streamflow occurs as a result of snowmelt runoff during June and July. The long-term annual runoff at seven stations ranges from an estimated 0.02 cubic foot per second per square mile to an estimated 1.17 cubic feet per second per square mile, generaly increasing with station altitude. Generalized annyal water budgets for two areas in the Wet Mountain Valley indicate that surface-water outflow is only 7 to 11 percent of the total water supply from precipitation and other sources. The remaining water is lost to the atmosphere by evapotranspiration. The quality of both the surface and ground water is generally within the recommended limits for drinking water set by the U.S. Public Health Service. (Woodard-USGS)

  12. Intelligent transportation systems deployment project for the Ada County Highway District FY99 Treasure Valley ITS : final self evaluation report

    DOT National Transportation Integrated Search

    2004-11-01

    In 1999, the Treasure Valley area of the State of Idaho received a federal earmark of $441,470 to develop an Incident Management Plan for the Treasure Valley and to design/deploy Intelligent Transportation Systems (ITS) devices for Interstates 84 and...

  13. Landslide susceptibility in the Tully Valley area, Finger Lakes region, New York

    USGS Publications Warehouse

    Jager, Stefan; Wieczorek, Gerald E.

    1994-01-01

    As a consequence of a large landslide in the Tully Valley, Onondaga County, New York, an investigation was undertaken to determine the factors responsible for the landslide in order to develop a model for regional landslide susceptibility. The April 27, 1993 Tully Valley landslide occurred within glacial lake clays overlain by till and colluvium on gentle slopes of 9-12 degrees. The landslide was triggered by extreme climatic events of prolonged heavy rainfall combined with rapid melting of a winter snowpack. A photoinventory and field checking of landslides within a 415 km2 study area, including the Tully Valley, revealed small recently-active landslides and other large dormant prehistoric landslides, probably Pleistocene in age. Similar to the larger Tully Valley landslide, the smaller recently-active landslides occurred in red, glacial lake clays very likely triggered by seasonal rainfall. The large dormant landslides have been stable for long periods as evidenced by slope denudational processes that have modified the landslides. These old and ancient landslides correspond with proglacial lake levels during the Pleistocene, suggesting that either inundation or rapid drainage was responsible for triggering these landslides. A logistic regression analysis was performed within a Geographic Information System (GIS) environment to develop a model of landslide susceptibility for the Tully Valley study area. Presence of glacial clays, slope angle, and glacial lake levels were used as explanatory variables for landslide incidence. The spatial probability of landsliding, categorized as low, moderate and high, is portrayed within 90-m square cells on the susceptibility map.

  14. 77 FR 75632 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ..., McCoy Solar Energy Project, Proposed Plan Amendment, Riverside County, CA, Review Period Ends: 01/ 22..., Contact: Sandra Shelin 509-527-7265. EIS No. 20120393, Final EIS, WAPA, AZ, Quartzsite Solar Energy...

  15. 4. NORTH REAR, CONTROL TOWER AND CONTROL HOUSE, SHOWING INTAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH REAR, CONTROL TOWER AND CONTROL HOUSE, SHOWING INTAKE STRUCTURE TRASH RACKS BELOW. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  16. 16. DOWNSTREAM VIEW OF OUTLET STRUCTURE AND OUTLET CHANNEL, FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DOWNSTREAM VIEW OF OUTLET STRUCTURE AND OUTLET CHANNEL, FROM WEST END OF EMBANKMENT. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  17. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  18. Validating the Riverside Acculturation Stress Inventory with Asian Americans.

    PubMed

    Miller, Matthew J; Kim, Jungeun; Benet-Martínez, Verónica

    2011-06-01

    An emerging body of empirical research highlights the impact of acculturative stress in the lives of culturally diverse populations. Therefore, to facilitate future research in this area, we conducted 3 studies to examine the psychometric properties of the Riverside Acculturation Stress Inventory (RASI; Benet-Martínez & Haritatos, 2005) and its 5 subscales in a total sample of 793 self-identified Asian American participants. The reliability and validity of RASI scores and the hypothesized 1-factor higher order model (with 1st-order factors Language Skills, Work Challenges, Intercultural Relations, Discrimination, and Cultural Isolation) of the RASI were examined in Study 1. The RASI higher order structure and score validity and reliability were examined across different generational groups in Study 2. The stability of RASI scores over a 3-week period was examined in Study 3. Overall, findings from these studies support the hypothesized structure of the RASI and indicate that this brief instrument provides reliable and valid acculturative stress scores. In addition, results suggest that RASI items are interpreted in an equivalent manner across different generations of Asian American individuals. Implications for research and assessment are discussed. 2011 APA, all rights reserved

  19. 75 FR 40821 - Public Utility District No. 1 of Douglas County; Notice of Settlement Agreement and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Bickford, Natural Resources Supervisor, Public Utility District No. 1 of Douglas County, 1151 Valley Mall...-mail at [email protected] . j. Deadline for filing comments on the Settlement: July 27, 2010. Reply... toll-free at (866) 208-3676; or, for TTY, contact (202) 502-8659. Although the Commission strongly...

  20. Goldspotted oak borer

    Treesearch

    M.L. Flint; M. I. Jones; T. W. Coleman; S.J. Seybold

    2013-01-01

    The goldspotted oak borer (GSOB), Agrilus auroguttatus (Coleoptera: Buprestidae), is a flatheaded borer introduced to San Diego County, California, in the late 1990s or early 2000s and also detected at one site in Riverside County in 2012. It was likely brought into the state on oak firewood collected and transported from the insect's native...

  1. Seismic refraction survey in the Great Miami River Valley and vicinity, Montgomery, Warren, and Butler Counties, Ohio

    USGS Publications Warehouse

    Watkins, Joel S.; Spieker, Andrew M.

    1964-01-01

    As part of a continuing program to define the thickness and extent of water-bearing sand and gravel deposits in southwestern Ohio, the U.S. Geological Survey, in cooperation with the Ohio Division of Water and The Miami Conservancy District, completed a seismic refraction survey of the Great Miami River valley and adjacent areas between Dayton and Hamilton, Ohio, in the fall of 1963. A similar survey of the adjoining lower Great Miami River and Whitewater River valleys was completed in 1962 (Watkins, 1963; Spieker and Watkins, unpublished data).The area of the survey includes known or inferred portions of an interglacial drainage system which is deeply entrenched into bedrock. Ohio was covered by glaciers at least three times during the Pleistocene epoch. As each glacier melted, rock fragments absorbed by the glacier were transported and deposited in these buried valleys by torrents of meltwater. The total thickness of glacial drift is over 300 feet in some places. Much of the glacial material is highly permeable and saturated with large quantities of water of good quality. The underlying bedrock is virtually impermeable and yields only meager quantities of water. The cities of Dayton, Middletown, Hamilton, and many industries in the Miami River valley rely on wells in the glacial deposits as their principal source of water. The purpose of the present survey is to define the thickness and extent of these important water-bearing formations. Such information will make possible a more accurate evaluation of the area's water resources than has previously have been possible.

  2. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  3. Epizootiology of Tacaribe serocomplex viruses (Arenaviridae) associated with neotomine rodents (Cricetidae, Neotominae) in southern California.

    PubMed

    Milazzo, Mary Louise; Cajimat, Maria N B; Mauldin, Matthew R; Bennett, Stephen G; Hess, Barry D; Rood, Michael P; Conlan, Christopher A; Nguyen, Kiet; Wekesa, J Wakoli; Ramos, Ronald D; Bradley, Robert D; Fulhorst, Charles F

    2015-02-01

    The objective of this study was to advance our knowledge of the epizootiology of Bear Canyon virus and other Tacaribe serocomplex viruses (Arenaviridae) associated with wild rodents in California. Antibody (immunoglobulin G [IgG]) to a Tacaribe serocomplex virus was found in 145 (3.6%) of 3977 neotomine rodents (Cricetidae: Neotominae) captured in six counties in southern California. The majority (122 or 84.1%) of the 145 antibody-positive rodents were big-eared woodrats (Neotoma macrotis) or California mice (Peromyscus californicus). The 23 other antibody-positive rodents included a white-throated woodrat (N. albigula), desert woodrat (N. lepida), Bryant's woodrats (N. bryanti), brush mice (P. boylii), cactus mice (P. eremicus), and deer mice (P. maniculatus). Analyses of viral nucleocapsid protein gene sequence data indicated that Bear Canyon virus is associated with N. macrotis and/or P. californicus in Santa Barbara County, Los Angeles County, Orange County, and western Riverside County. Together, analyses of field data and antibody prevalence data indicated that N. macrotis is the principal host of Bear Canyon virus. Last, the analyses of viral nucleocapsid protein gene sequence data suggested that the Tacaribe serocomplex virus associated with N. albigula and N. lepida in eastern Riverside County represents a novel species (tentatively named "Palo Verde virus") in the genus Arenavirus.

  4. Geohydrology, water quality, and nitrogen geochemistry in the saturated and unsaturated zones beneath various land uses, Riverside and San Bernardino counties, California, 1991-93

    USGS Publications Warehouse

    Rees, Terry F.; Bright, Daniel J.; Fay, Ronald G.; Christensen, Allen H.; Anders, Robert; Baharie, Brian S.; Land, Michael T.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Eastern Municipal Water District, the Metropolitan Water District of Southern California, and the Orange County Water District, has completed a detailed study of the Hemet groundwater basin. The quantity of ground water stored in the basin in August 1992 is estimated to be 327,000 acre-feet. Dissolved-solids concentration ranged from 380 to 700 mg/L (milligrams per liter), except in small areas where the concentration exceeded 1,000 mg/L. Nitrate concentrations exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10 mg/L nitrate (as nitrogen) in the southeastern part of the basin, in the Domenigoni Valley area, and beneath a dairy in the Diamond Valley area. Seven sites representing selected land uses-- residential, turf grass irrigated with reclaimed water, citrus grove, irrigated farm, poultry farm, and dairy (two sites)--were selected for detailed study of nitrogen geochemistry in the unsaturated zone. For all land uses, nitrate was the dominant nitrogen species in the unsaturated zone.Although nitrate was seasonally present in the shallow unsaturated zone beneath the residential site, it was absent at moderate depths, suggesting negligible migration of nitrate from the surface at this time. Microbial denitrification probably is occurring in the shallow unsaturated zone. High nitrate concentrations in the deep unsaturated zone (greater than 100 ft) suggest either significantly higher nitrate loading at some time in the past, or lateral movement of nitrate at depth. Nitrate also is seasonally present in the shallow unsaturated zone beneath the reclaimed-water site, and (in contrast with the residential site), nitrate is perennially present in the deeper unsaturated zone. Microbial denitrification in the unsaturated zone and in the capillary fringe above the water table decreases the concentrations of nitrate in pore water to below the MCL before reaching the water table

  5. 75 FR 71143 - Notice of Realty Action: Direct Sale of Public Land in Blaine County, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... to sell a parcel of public land totaling 17 acres in Blaine County, Idaho, to the Animal Shelter of Wood River Valley (Animal Shelter) for the appraised fair market value of $18,700. DATES: Comments... following described public land is being proposed for direct sale to the Animal Shelter in accordance with...

  6. 8. DETAIL VIEW, LOOKING NORTHEAST, SHOWING OUTRIGGERS FOR LATERAL BRACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW, LOOKING NORTHEAST, SHOWING OUTRIGGERS FOR LATERAL BRACING FOR TRUSSES AND BOTTOM CHORD CONNECTIONS. - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  7. 23. DOWNSTREAM VIEW OF COMPLETED OUTLET CONTROL STRUCTURE.... Volume XIX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DOWNSTREAM VIEW OF COMPLETED OUTLET CONTROL STRUCTURE.... Volume XIX, No. 8, April 12, 1940. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  8. 3. WEST SIDE, CONTROL TOWER AND CONTROL HOUSE, ALSO SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. WEST SIDE, CONTROL TOWER AND CONTROL HOUSE, ALSO SHOWING INTAKE STRUCTURE BELOW AT LEFT. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  9. 2. PERSPECTIVE VIEW, WEST AND SOUTH SIDES, CONTROL TOWER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PERSPECTIVE VIEW, WEST AND SOUTH SIDES, CONTROL TOWER AND CONTROL HOUSE, LOOKING TO NORTHEAST. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  10. Geology and water resources of Winnebago County, Wisconsin

    USGS Publications Warehouse

    Olcott, Perry C.

    1966-01-01

    Sources or water in Winnebago County include surface water from the Fox and Wolf Rivers and their associated lakes, and ground water from sandstone, dolomite, and sand and gravel deposits. Surface water is hard and generally requires treatment, but is then suitable for municipal and most industrial uses. Pollution is only a local problem in the lakes and rivers, but algae are present in most of the lakes. Ground water in Winnebago County is hard to very hard, and dissolved iron is a problem in a large area of the county. A saline-water zone borders the eastern edge of the county and underlies the areas of concentrated pumpage at Neenah-Menasha and Oshkosh. A thick, southeastward-dipping sandstone aquifer, yielding as much as 1,000 gallons per minute to municipal and industrial wells, underlies Winnebago County. A dolomite aquifer in the eastern and southern part of the county yields as much as 50 gallons per minute to wells. Sand and gravel layers and lenses in preglacial bedrock channels, in northwestern Winnebago County and in the upper Fox River valley, yield as much as 50 gallons per minute to wells. Present water problems in the county include algae and local pollution in the Lake Winnebago Pool, iron in water from the sandstone aquifer, and saline ground Water in the eastern part of the county. Potential problems include rapid decline of water levels because of interference between closely spaced wells, migration of saline ground water toward areas of pumping, surface-water pollution from inadequate sewage and industrial-waste process plants, and ground-water pollution in dolomite formations. Development of the water resources of the county should follow a comprehensive plan which takes into consideration all aspects of water use. Dispersal of wells, especially extending toward the west from the heavily pumped Neenah-Menasha and Oshkosh areas, is recommended to reduce water-level declines and to avoid saline water. Supplemental use of ground water is

  11. Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors

    NASA Astrophysics Data System (ADS)

    Sadighi, Kira; Coffey, Evan; Polidori, Andrea; Feenstra, Brandon; Lv, Qin; Henze, Daven K.; Hannigan, Michael

    2018-03-01

    Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone (O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the collocation calibration method. Field validation of sensor O3 measurements to minute-resolution reference observations resulted in R2 and root mean squared errors (RMSEs) of 0.95-0.97 and 4.4-5.9 ppbv, respectively. Using the deployment data, ozone concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone than they would assume based on current regulatory monitoring.

  12. Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada

    USGS Publications Warehouse

    Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.

    1999-01-01

    Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the

  13. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    USGS Publications Warehouse

    Smith, George I.

    2009-01-01

    Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. It is bounded on the east and northeast by the Slate Range, on the west by the Argus Range and Spangler Hills, and on the south by the Lava Mountains; Searles (dry) Lake occupies the north-central part of the valley. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated, is fully revealed by cores from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. The subsurface record is described elsewhere. This volume includes six geologic maps (scales: 1:50,000 and 1:10,000) and a text that describes the outcrop record, most of which represents sedimentation since 150 ka. Although this outcrop record is discontinuous, it provides evidence indicating the lake's water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Several rock units of Tertiary and early Quaternary ages crop out in Searles Valley. Siltstone and sandstone of Tertiary age, mostly lacustrine in nature and locally deformed to near-vertical dips, are exposed in the southern part of the valley, as is the younger(?) upper Miocene Bedrock Spring Formation. Unnamed, mostly mafic volcanic rocks of probable Miocene or Pliocene age are exposed along the north and south edges of the basin. Slightly deformed lacustrine sandstones are mapped in the central-southwestern and southern parts of the study area. The Christmas

  14. 8. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE. Sheet A19, November, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE. Sheet A-19, November, 1940. File no. SA 342/13. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  15. 26. UPSTREAM VIEW OF DISCHARGE END OF OUTLET STRUCTURE.... Volume ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. UPSTREAM VIEW OF DISCHARGE END OF OUTLET STRUCTURE.... Volume XVI, No. 17, September 29, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  16. 18. EASTERLY VIEW ALONG THE SPILLWAY BUCKET, SHOWING CONSTRUCTION OPERATIONS.... ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. EASTERLY VIEW ALONG THE SPILLWAY BUCKET, SHOWING CONSTRUCTION OPERATIONS.... Volume XX, No. 5, September 5, 1940. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  17. 35. OUTLET WORKS: GATE HOIST ASSEMBLY. Sheet 44, August 20, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. OUTLET WORKS: GATE HOIST ASSEMBLY. Sheet 44, August 20, 1938. File no. SA 121/84(?). - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  18. 40 CFR 52.232 - Part D conditional approval.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Angeles and Riverside portions of the Southeast Desert Air Basin. (i) For Ozone: (A) By August 9, 1982...)-(15) [Reserved] (16) San Bernardino County portion of the Southeast Desert Air Basin. (i) For ozone...

  19. 40 CFR 52.232 - Part D conditional approval.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Angeles and Riverside portions of the Southeast Desert Air Basin. (i) For Ozone: (A) By August 9, 1982...)-(15) [Reserved] (16) San Bernardino County portion of the Southeast Desert Air Basin. (i) For ozone...

  20. 40 CFR 52.232 - Part D conditional approval.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Angeles and Riverside portions of the Southeast Desert Air Basin. (i) For Ozone: (A) By August 9, 1982...)-(15) [Reserved] (16) San Bernardino County portion of the Southeast Desert Air Basin. (i) For ozone...

  1. 40 CFR 52.232 - Part D conditional approval.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Angeles and Riverside portions of the Southeast Desert Air Basin. (i) For Ozone: (A) By August 9, 1982...)-(15) [Reserved] (16) San Bernardino County portion of the Southeast Desert Air Basin. (i) For ozone...

  2. 76 FR 15047 - Port of Ivory, LLC-Operation Exemption-Line of Railroad in Tulare County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...--Operation Exemption--Line of Railroad in Tulare County, CA Port of Ivory, LLC (Port), a limited liability company and noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to operate about 1... a rail line operated by the San Joaquin Valley Railroad Company (SJVR) at a point known as Ivory...

  3. Logs and Scarp Data from a Paloseismic Investigation of the Surprise Valley Fault Zone, Modoc County, California

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Lidke, David J.; Bradley, Lee-Ann; Mahan, Shannon

    2007-01-01

    This report contains field and laboratory data from a paleoseismic study of the Surprise Valley fault zone near Cedarville, California. The 85-km-long Surprise Valley fault zone forms the western active margin of the Basin and Range province in northeastern California. The down-to-the-east normal fault is marked by Holocene fault scarps along most of its length, from Fort Bidwell on the north to near the southern end of Surprise Valley. We studied the central section of the fault to determine ages of paleoearthquakes and to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005; 2007). We excavated a trench in June 2005 across a prominent fault scarp on pluvial Lake Surprise deltaic sediments near the mouth of Cooks Canyon, 4 km north of Cedarville. This site was chosen because of the presence of a well-preserved fault scarp and its development on lacustrine deposits thought to be suitable for luminescence dating. We also logged a natural exposure of the fault in similar deltaic sediments near the mouth of Steamboat Canyon, 11 km south of Cedarville, to better understand the along-strike extent of surface ruptures. The purpose of this report is to present photomosaics, trench, drill hole, and stream exposure logs; scarp profiles; and fault slip, tephrochronologic, radiocarbon, luminescence, and unit description data obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Surprise Valley fault zone; that history will be the subject of a future report.

  4. 76 FR 12365 - Canaan Valley National Wildlife Refuge, Tucker and Grant Counties, WV; Final Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... protect fish and wildlife resources and the unique wetland and upland habitats of this high-elevation... acres. It includes the largest wetland complex in the State, and encompasses the headwaters of the... integrity of the Canaan Valley wetland complex, perpetuating the ecological integrity of upland northern...

  5. Ground-Water Data for Indian Wells Valley, Kern, Inyo, and San Bernardino Counties, California, 1977-84

    USGS Publications Warehouse

    Berenbrock, Charles

    1987-01-01

    Ground water is the sole source of water in Indian Wells Valley. Since 1966, annual ground-water pumpage has exceeded estimates of mean annual recharge, and continued and increased stresses on the aquifer system of the valley are expected. In 1981 the U.S. Geological Survey began a 10-year program to develop a data base that could be used in evaluating future water-management alternatives for the valley. This report tabulates existing water-level and water-quality data in order to provide a basis for the design of a ground-water monitoring network for Indian Wells Valley. Water-levels were measured in 131 wells during 1977-84. About 62 percent of the wells that have water-level measurements spanning at least 3 years during the period 1977-84 show a net water-level decline; the decline in 23 percent of the wells is greater than 5 feet. Water-quality samples from 85 wells were analyzed for major dissolved constituents. At selected wells water samples were also analyzed for nutrients and trace metals. Seventy-nine of the wells sampled contained water with concentrations of one or more dissolved constituents that equaled or exceeded U.S. Environmental Protection Agency primary or secondary maximum contaminant levels for drinking water. Dissolved-solids concentrations, which ranged from 190 to 67,000 milligrams per liter, equaled or exceeded 500 milligrams per liter (the Environmental Protection Agency secondary maximum contaminant level) in 85 percent of the sampled wells and 1,000 milligrams per liter in 59 percent. Water samples collected in 1984 from eight wells near the industrial-waste ponds of the China Lake Naval Weapons Center were analyzed for the presence of organic compounds designated 'priority pollutants' by the U.S. Environmental Protection Agency. Priority pollutants were detected in three wells. Trichloroethylene, methylene chloride, vinyl chloride, and chloroform were identified; concentrations were less than 10 micrograms per liter except for

  6. Trench Logs and Scarp Data from an Investigation of the Steens Fault Zone, Bog Hot Valley and Pueblo Valley, Humboldt County, Nevada

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Kyung, Jai Bok; Cisneros, Hector; Lidke, David J.; Mahan, Shannon

    2006-01-01

    Introduction: This report contains field and laboratory data from a study of the Steens fault zone near Denio, Nev. The 200-km-long Steens fault zone forms the longest, most topographically prominent fault-bounded escarpment in the Basin and Range of southern Oregon and northern Nevada. The down-to-the-east normal fault is marked by Holocene fault scarps along nearly half its length, including the southern one-third of the fault from the vicinity of Pueblo Mountain in southern Oregon to the southern margin of Bog Hot Valley (BHV) southwest of Denio, Nev. We studied this section of the fault to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005). We excavated a trench in May 2003 across one of a series of right-stepping fault scarps that extend south from the southern end of the Pueblo Mountains and traverse the floor of Bog Hot Valley, about 4 km south of Nevada State Highway 140. This site was chosen because of the presence of well-preserved fault scarps, their development on lacustrine deposits thought to be suitable for luminescence dating, and the proximity of two geodetic stations that straddle the fault zone. We excavated a second trench in the southern BHV, but the fault zone in this trench collapsed during excavation and thus no information about fault history was documented from this site. We also excavated a soil pit on a lacustrine barrier bar in the southern Pueblo Valley (PV) to better constrain the age of lacustrine deposits exposed in the trench. The purpose of this report is to present photomosaics and trench logs, scarp profiles and slip data, soils data, luminescence and radiocarbon ages, and unit descriptions obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Steens fault zone; that history will be the subject of a future

  7. Nitrate Contamination of Shallow Groundwater in The San Joaquin Valley - A Domestic Well Survey

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; King, A.

    2011-12-01

    Groundwater quality has been, and continues to be, a major concern in agricultural areas where concentrated animal feeding operations (CAFO) exist or where fertilizers are applied. In the San Joaquin Valley, California, the majority of land-use is agricultural and groundwater contamination by nitrate is common in areas where many people rely on shallow domestic wells. Elevated levels of nitrate in drinking water have been linked to adverse health effects. This project sampled 200 domestic wells in Stanislaus, Merced, Tulare, and Kings Counties for nitrate as NO3-N. Wells were given a "dairy" or "non-dairy" designation depending on the distance to the nearest dairy corral or lagoon. This study found 46% of wells sampled in Tulare and Kings Counties and 42% of wells sampled in Stanislaus and Merced Counties exceeded the MCL for nitrate (10 mg/l). In Tulare and Kings Counties, non-dairy wells had a significantly greater mean nitrate value than dairy wells, and Tulare and Kings County non-dairy wells had a significantly greater mean nitrate value than Stanislaus and Merced non-dairy wells. Stanislaus and Merced County dairy wells had a significantly greater mean nitrate value than Tulare and Kings dairy wells. Tulare and Kings non-dairy wells may have greater nitrate values due to overlying row-crop and orchard land-use (commonly citrus) and the large quantities of fertilizers typically applied to these crops. Stanislaus and Merced Counties contain some of the densest CAFO areas of the state, possibly leading to Stanislaus and Merced dairy wells having higher nitrate concentrations than Tulare and Kings dairy wells.

  8. DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, SHOWING CONNECTION BETWEEN VERTICAL AND UPPER CHORD MEMBER - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  9. 39. OUTLET WORKS: CONTROL HOUSE STRUCTURAL DETAILS. Sheet 33, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. OUTLET WORKS: CONTROL HOUSE - STRUCTURAL DETAILS. Sheet 33, August 20, 1938. File no. SA 121/72. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  10. 22. SPILLWAY CHANNEL SLAB REINFORCEMENT DETAILS, NO. 1. Sheet S4, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SPILLWAY CHANNEL SLAB REINFORCEMENT DETAILS, NO. 1. Sheet S-4, February, 1939. File no. SA 343/67. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  11. 25. PLAN OF SPILLWAY SHOWING INDEX TO MONOLITHS. Sheet S18, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PLAN OF SPILLWAY SHOWING INDEX TO MONOLITHS. Sheet S-18, July, 1939. File no. SA 342/15. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  12. 48. OUTLET WORKS: ELECTRICAL SYSTEM NO. 3. Sheet H3, October, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. OUTLET WORKS: ELECTRICAL SYSTEM NO. 3. Sheet H-3, October, 1939. File no. SA 342/59. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  13. 28. SPILLWAY BUCKET SLAB: REINFORCEMENT DETAILS NO. 1. Sheet S37, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SPILLWAY BUCKET SLAB: REINFORCEMENT DETAILS NO. 1. Sheet S-37, December, 1939. File no. SA 342/47. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  14. 30. SPILLWAY BUCKET SLAB: REINFORCEMENT DETAILS NO. 4. Sheet S44, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. SPILLWAY BUCKET SLAB: REINFORCEMENT DETAILS NO. 4. Sheet S-44, December, 1939. File no. SA 342/50. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  15. 19. ...INTAKE STRUCTURE AND PIER FOR SERVICE BRIDGE NEARING COMPLETION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. ...INTAKE STRUCTURE AND PIER FOR SERVICE BRIDGE NEARING COMPLETION. Volume XVI, No. 14, September 29, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  16. 34. OUTLET WORKS: GATES ELEVATIONS AND SECTION. Sheet 43, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. OUTLET WORKS: GATES - ELEVATIONS AND SECTION. Sheet 43, August 20, 1938. File no. SA 121/89(?). - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  17. 45. OUTLET WORKS: SERVICE BRIDGE BEARING DETAILS. Sheet 39, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. OUTLET WORKS: SERVICE BRIDGE - BEARING DETAILS. Sheet 39, August 20, 1938. File no. SA 121/78. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  18. 44. OUTLET WORKS: SERVICE BRIDGE GIRDER DETAILS. Sheet 38, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. OUTLET WORKS: SERVICE BRIDGE - GIRDER DETAILS. Sheet 38, August 20, 1938. File no. SA 121/77. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. 31. OUTLET WORKS: INTAKE PLAN AND SECTIONS. Sheet 21, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. OUTLET WORKS: INTAKE - PLAN AND SECTIONS. Sheet 21, August 20, 1938. File no. SA 121/60. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  20. 29. SPILLWAY BUCKET SLAB: REINFORCEMENT DETAILS NO. 3. Sheet S40, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SPILLWAY BUCKET SLAB: REINFORCEMENT DETAILS NO. 3. Sheet S-40, December, 1939. File no. SA 342/49. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  1. 33. SIDE DRAINAGE TREATMENT AT INTAKE STRUCTURE. Sheet F5, May, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SIDE DRAINAGE TREATMENT AT INTAKE STRUCTURE. Sheet F-5, May, 1939. File no. SA 342/7. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  2. Increasing access to care for Brazos Valley, Texas: a rural community of solution.

    PubMed

    Garney, Whitney R; Drake, Kelly; Wendel, Monica L; McLeroy, Kenneth; Clark, Heather R; Ryder, Byron

    2013-01-01

    Compared with their urban counterparts, rural populations face substantial disparities in terms of health care and health outcomes, particularly with regard to access to health services. To address ongoing inequities, community perspectives are increasingly important in identifying health issues and developing local solutions that are effective and sustainable. This article has been developed by both academic and community representatives and presents a brief case study of the evolution of a regional community of solution (COS) servicing a 7-county region called the Brazos Valley, Texas. The regional COS gave rise to multiple, more localized COSs that implemented similar strategies designed to address access to care within rural communities. The regional COS, known as the Brazos Valley Health Partnership, was a result of a 2002 health status assessment that revealed that rural residents face poorer access to health services and their care is often fragmented. Their localized strategy, called a health resource center, was created as a "one-stop shop" where multiple health and social service providers could be housed to deliver services to rural residents. Initially piloted in Madison County, the resource center model was expanded into Burleson, Grimes, and Leon Counties because of community buy-in at each of these sites. The resource center concept allowed service providers, who previously were able to offer services only in more populous areas, to expand into the rural communities because of reduced overhead costs. The services provided at the health resource centers include transportation, information and referral, and case management along with others, depending on the location. To ensure successful ongoing operations and future planning of the resource centers, local oversight bodies known as health resource commissions were organized within each of the rural communities to represent local COSs. Through collaboration with local entities, these partnerships have

  3. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  4. Superfund Record of Decision (EPA Region 9): San Fernando Valley Area 2, operable unit 2, Los Angeles County, CA, June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    This decision document presents the selected remedial action for the Glendale North Operable Unit, San Fernando Valley Area 2 Superfund site. The remedy involves groundwater extraction and treatment for the shallow aquifer system in the Glendale area of the San Fernando Valley.

  5. Superfund Record of Decision (EPA Region 9): San Fernando Valley Area 2, operable unit 3, Los Angeles County, CA, June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    This decision document presents the selected remedial action for the Glendale South Operable Unit, San Fernando Valley Area 2 Superfund site. The remedy involves groundwater extraction and treatment for the shallow aquifer system in the Glendale area of the San Fernando Valley.

  6. “We do not bury dead livestock like human beings”: Community behaviors and risk of Rift Valley Fever virus infection in Baringo County, Kenya

    PubMed Central

    Bukachi, Salome A.; Bett, Bernard K.; Estambale, Benson A.; Nyamongo, Isaac K.

    2017-01-01

    Background Rift Valley Fever (RVF), is a viral zoonotic disease transmitted by Aedes and Culex mosquitoes. In Kenya, its occurrence is associated with increased rains. In Baringo County, RVF was first reported in 2006–2007 resulting in 85 human cases and 5 human deaths, besides livestock losses and livelihood disruptions. This study sought to investigate the county’s current RVF risk status. Methodology and principal findings A cross-sectional study on the knowledge, attitudes and practices of RVF was conducted through a mixed methods approach utilizing a questionnaire survey (n = 560) and 26 focus group discussions (n = 231). Results indicate that study participants had little knowledge of RVF causes, its signs and symptoms and transmission mechanisms to humans and livestock. However, most of them indicated that a person could be infected with zoonotic diseases through consumption of meat (79.2%) and milk (73.7%) or contact with blood (40%) from sick animals. There was a statistically significant relationship between being male and milking sick animals, consumption of milk from sick animals, consuming raw or cooked blood, slaughtering sick livestock or dead animals for consumption (all at p≤0.001), and handling sick livestock with bare hands (p = 0.025) with more men than women engaging in the risky practices. Only a few respondents relied on trained personnel or local experts to inspect meat for safety of consumption every time they slaughtered an animal at home. Sick livestock were treated using conventional and herbal medicines often without consulting veterinary officers. Conclusions Communities in Baringo County engage in behaviour that may increase their risk to RVF infections during an outbreak. The authors recommend community education to improve their response during outbreaks. PMID:28542242

  7. Radon as a tracer to characterize the interactions between groundwater and surface water around the ground source heat pump system in riverside area

    NASA Astrophysics Data System (ADS)

    Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun

    2016-04-01

    The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  8. Quality and sources of ground water used for public supply in Salt Lake Valley, Salt Lake County, Utah, 2001

    USGS Publications Warehouse

    Thiros, Susan A.; Manning, Andrew H.

    2004-01-01

    Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range

  9. 6. DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, SHOWING CONNECTION BETWEEN VERTICAL AND UPPER CHORD MEMBER. - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  10. 7 CFR 987.157 - Approved date product manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 987.157 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DOMESTIC DATES PRODUCED OR PACKED IN RIVERSIDE COUNTY, CALIFORNIA Administrative Rules Qualification to...

  11. 14. A VIEW ALONG AXIS OF OGEE SECTION OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. A VIEW ALONG AXIS OF OGEE SECTION OF THE SPILLWAY STRUCTURE... Volume XVII, No. 14, November 29, 1939. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  12. 17. OUTLET STRUCTURE, LOOKING NORTH. NOTE ALSO THE DRAINAGE CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. OUTLET STRUCTURE, LOOKING NORTH. NOTE ALSO THE DRAINAGE CHANNEL AND CONCRETE FLUME ALONG WEST EDGE OF EMBANKMENT. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  13. 50. OUTLET WORKS: OUTLET STRUCTURE PLAN AND SECTIONS. Sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. OUTLET WORKS: OUTLET STRUCTURE - PLAN AND SECTIONS. Sheet C-1, September, 1939. File no. SA 343/50. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  14. 38. OUTLET WORKS: CONTROL HOUSE PLAN AND ELEVATIONS. Sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. OUTLET WORKS: CONTROL HOUSE - PLAN AND ELEVATIONS. Sheet 32, August 20, 1938. File no. SA 121/71. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  15. 43. OUTLET WORKS: SERVICE BRIDGE PLAN AND ELEVATION. Sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. OUTLET WORKS: SERVICE BRIDGE - PLAN AND ELEVATION. Sheet 37, August 20, 1938. File no. SA 121/76. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  16. 13. AERIAL VIEW SHOWING IN THE FOREGROUND, EXCAVATION FOR THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. AERIAL VIEW SHOWING IN THE FOREGROUND, EXCAVATION FOR THE SPILLWAY APRON.... Volume XVII, No. 12, December 26, 1939. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  17. 27. SPILLWAY CHANNEL: PLAN AND SECTIONS OF CRIB CUTOFF. Sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SPILLWAY CHANNEL: PLAN AND SECTIONS OF CRIB CUTOFF. Sheet S-27, May, 1939. File no. SA 342/36. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  18. 6. GENERAL CONSTRUCTION VIEW ALONG AXIS OF DAM FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL CONSTRUCTION VIEW ALONG AXIS OF DAM FROM THE EAST ABUTMENT.... Volume XVII, No. 18, December 18, 1939. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. 40. OUTLET WORKS: VIBRATION ABSORBER FOR STANDBY UNIT, Sheet H7, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. OUTLET WORKS: VIBRATION ABSORBER FOR STANDBY UNIT, Sheet H-7, September, 1940. File no. SA 342/79. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  20. Geologic map of the White Hall quadrangle, Frederick County, Virginia, and Berkeley County, West Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.

    2010-01-01

    The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.