Sample records for vallis region mars

  1. Clay Minerals in Mawrth Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold.

    The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green.

    The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter.

    Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars.

    CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  2. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.

    PubMed

    Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B

    2010-09-01

    The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.

  3. Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Golombek, M. P. (Editor); Edgett, K. S. (Editor); Rice, J. W. , Jr. (Editor)

    1995-01-01

    Mars Pathfinder will place a single lander on the surface of Mars on July 4, 1997, following a December 1996 launch. As a result of the very successful first Mars Pathfinder Landing Site Workshop, the project has selected the Ares Vallis outflow channel in Chryse Planitia as the landing site. This location is where a large catastrophic outflow channel debouches into the northern lowlands. A second workshop and series of field trips, entitled Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington, were held in Spokane and Moses Lake, Washington. The purpose of the workshop was to provide a focus for learning as much as possible about the Ares Vallis region on Mars before landing there. The rationale is that the more that can be learned about the general area prior to landing, the better scientists will be able interpret the observations made by the lander and rover and place them in the proper geologic context. The field trip included overflights and surface investigations of the Channeled Scabland (an Earth analog for the martian catastrophic outflow channels), focusing on areas particularly analogous to Ares Vallis and the landing site. The overflights were essential for placing the enormous erosional and depositional features of the Channeled Scabland into proper three-dimensional context. The field trips were a joint educational outreach activity involving K-12 science educators, Mars Pathfinder scientists and engineers, and interested scientists from the Mars scientific community. Part 1 of the technical report on this workshop includes a description of the Mars Pathfinder mission, abstracts accepted for presentation at the workshop, an introduction to the Channeled Scabland, and field trip guides for the overflight and two field trips. This part, Part 2, includes the program for the workshop, summaries of the workshop technical sessions, a summary of the field trips and ensuing

  4. Incision of Licus Vallis, Mars, From Multiple Lake Overflow Floods

    NASA Astrophysics Data System (ADS)

    Goudge, Timothy A.; Fassett, Caleb I.

    2018-02-01

    Licus Vallis is a large valley (>350 km long, >2 km wide, and >150 m deep) that heads at the outlet breach of an 30 km diameter impact crater. We present observations of the geomorphology and topography of this paleolake outlet valley and associated tributary valleys to constrain the history of incision of the Licus Vallis system. Licus Vallis has an abrupt increase in gradient by a factor of approximately 4 along its longitudinal profile, and a knickpoint that drops 200 m over a reach of 2 km approximately 12 km downstream from the valley head. We also describe a set of paired terraces within Licus Vallis, which are continuous for tens of kilometers and define an interior valley >2 km in width. We interpret the geomorphology of Licus Vallis as recording at least two discrete, major episodes of valley incision, both driven by lake overflow floods. The main portion of Licus Vallis formed by overflow flooding from a large ( 103-104 km2) lake contained in an intercrater basin. Subsequently, overflow flooding from a lake within the 30 km diameter impact crater reactivated Licus Vallis, forming a major knickpoint at the valley head and establishing the upstream section of the valley at a lower slope. Farther down the valley, this flood event incised an interior valley bounded by paired terraces. Regional tributary valleys that feed Licus Vallis also have prominent knickpoints, which have retreated farthest for downstream valleys. We conclude that these knickpoints record successive waves of incision that swept up Licus Vallis during lake overflow flooding, with erosion in the main trunk of the valley (from overflow floods) significantly outpacing erosion in the tributary valleys (from regional surface runoff). These observations of Licus Vallis illustrate how lake overflow floods may have provided an important control on the pace of landscape evolution on Mars.

  5. Geologic map of MTM -45252 and-45257 quadrangles, Reull Vallis region of Mars

    USGS Publications Warehouse

    Mest, Scott C.; Crown, David A.

    2003-01-01

    Mars Transverse Mercator (MTM) quadrangles -45252 and -45257 (latitude 42.5° S. to 47.5°S., longitude 250° W. to 260° W.) cover a portion of the highlands of Promethei Terra east of Hellas basin. The map area consists of heavily cratered ancient highland materials having moderate to high relief, isolated knobs and massifs of rugged mountainous material, and extensive tracts of smooth and channeled plains. Part of the ~1,500-km-long Reull Vallis outflow system is within the map area. The area also contains surficial deposits, such as the prominent large debris aprons that commonly surround highland massifs. Regional slopes are to the west, toward the Hellas basin, as indicated by topographic maps of Mars. Approximately 60 percent of the surface of Mars is covered by rugged, heavily cratered terrains believed to represent the effects of heavy bombardment in the inner solar system about 4.0 billion years ago. Much of this terrain, including that within the map area, records a long history of modification by tectonism, fluvial processes, mass wasting, and eolian activity. The presence of fluvial features to the east of Hellas basin, including Reull Vallis and other smaller channels, has significant implications for past environmental conditions. The degraded terrains surrounding Hellas basin provide constraints on the role and timing of volatile-driven activity in the evolution of the highlands. Current photogeologic mapping at 1:500,000 scale (see also Mest and Crown, 2002) from analysis of Viking Orbiter images complements previous geomorphic studies of Reull Vallis and other highland outflow systems, drainage networks, and highland debris aprons, as well as regional geologic mapping studies and geologic mapping of Hellas basin as a whole at 1:5,000,000 scale. Viking Orbiter image coverage of the map area generally ranges from 160 to 220 m/pixel; the central part of the map area is covered by higher resolution images of about 47 m/pixel. Crater size

  6. Mapping and dating based evolution studies of the Niger Vallis outflow channel, Mars

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-04-01

    Niger Vallis is one of the four large outflow channel systems in the eastern Hellas rim region of Mars. Niger, as well as the other nearby valles, is assumed to have been carved by water and later covered by ice-rich deposits. Thus, it plays a significant role both in the fluvial and glacial evolution of the region. This work presents the photogeological mapping and crater count dating results of the Niger Vallis system achieved based on the images of the ConTeXt (CTX) and High Resolution Imaging Science Experiment (HiRISE) cameras of Mars Reconnaissance Orbiter (MRO). The results show that Niger Vallis formed in at least two stages. The southern branch of Niger Vallis originated from Ausonia Cavus, ∼3.7-3.9 Ga ago, whereas the northern branch formed from Peraea Cavus, ∼3.3-3.4 Ga ago. Both of the time scales correspond to the volcanic activity phases of the nearby highland volcanoes of Tyrrhenus and Hadriacus Montes. The fluvial activity of Niger Vallis was not, however, as intense as the activity of the other nearby outflow channels, and it seems to have weakened soon after the formation of the northern branch. The outflow channel was resurfaced again ∼0.9-1.5 Ga ago, probably by regional fluvial activity. After that, the floor of Niger Vallis was covered by lineated valley fills and corresponding ice-rich deposits, the formation of which ended ∼220-470 Ma ago, or not later than ∼110 Ma ago. Although the origin of the deposits was probably related to contemporary climate conditions, the emplacement of some deposits, or even their formation, may have been contributed by impact events. After lineated valley fill formation, the region was resurfaced several times, probably because of changes in regional climatic or endogenic circumstances.

  7. Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Golombek, M. P. (Editor); Edgett, K. S. (Editor); Rice, J. W., Jr. (Editor)

    1995-01-01

    This volume, the first of two comprising the technical report for this workshop, contains papers that have been accepted for presentation at the Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region, September 24-30, 1995, in Spokane, Washington. The Mars Pathfinder Project received a new start in October 1993 as one of the next missions in NASA's long-term Mars exploration program. The mission involves landing a single vehicle on the surface of Mars in 1997. The project is one of the first Discovery-class missions and is required to be a quick, low-cost mission and achieve a set of significant but focused engineering, science, and technology objectives. The primary objective is to demonstrate a low-cost cruise, entry, descent, and landing system required to place a payload on the martian surface in a safe, operational configuration. Additional objectives include the deployment and operation of various science instruments and a microrover. Pathfinder paves the way for a cost-effective implementation of future Mars lander missions. Also included in this volume is the field trip guide to the Channeled Scabland and Missoula Lake Break-out. On July 4, 1997, Mars Pathfinder is scheduled to land near 19.5 deg N, 32.8 deg W, in a portion of Ares Vallis. The landing ellipse covers a huge (100 x 200 km) area that appears to include both depositional and erosional landforms created by one or more giant, catastrophic floods. One of the best known terrestrial analogs to martian outflow channels (such as Ares Vallis) is the region known as the Channeled Scabland. The field trip guide describes some of the geomorphological features of the Channeled Scabland and adjacent Lake Missoula break-out area near Lake Pend Oreille, Idaho.

  8. Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. A.

    2009-01-01

    Geologic mapping of MTM -30247, -35247, and -40247 quadrangles is being used to characterize Reull Vallis (RV) and to determine the history of the eastern Hellas region of Mars. Studies of RV examine the roles and timing of volatile-driven erosional and depositional processes and provide constraints on potential associated climatic changes. This study complements earlier investigations of the eastern Hellas region, including regional analyses [1-6], mapping studies of circum-Hellas canyons [7-10], and volcanic studies of Hadriaca and Tyrrhena Paterae [11-13]. Key scientific objectives include 1) characterizing RV in its "fluvial zone," 2) analysis of channels in the surrounding plains and potential connections to and interactions with RV, 3) examining young, presumably sedimentary plains along RV, and 4) determining the nature of the connection between the segments of RV.

  9. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars

    USGS Publications Warehouse

    Bishop, J.L.; Dobrea, E.Z.N.; McKeown, N.K.; Parente, M.; Ehlmann, B.L.; Michalski, J.R.; Milliken, R.E.; Poulet, F.; Swayze, G.A.; Mustard, J.F.; Murchie, S.L.; Bibring, J.-P.

    2008-01-01

    Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe2+ phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)-rich units. Fe2+-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history.

  10. Uzboi Vallis, Nirgal Vallis, and Luki Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 9 April 2002) This THEMIS image captures two channels (Nirgal Vallis is the smaller sinuous channel on the left and Uzboi Vallis is the larger channel located in the lower right) and Luki Crater located in the upper right. The mouth of Nirgal Vallis appears to be truncated by Uzboi Vallis. This indicates that Nirgal Vallis is an older channel than Uzboi Vallis. The floor of Uzboi Vallis was subsequently bombarded by an asteroid or comet which gouged out the 21 km diameter crater named Luki. Luki is named after a town in the Ukraine. Uzboi is the name of a dry river in Russia. Nirgal is the Babylonian name for Mars. Gullies and alluvial deposits discovered by Mars Global Surveyor are clearly visible on the polar-facing (south) wall and floor of Nirgal Vallis and also in the inner rim of Luki crater. These gullies appear to emanate from a specific layer in the walls. There is a pronounced sparsity of gullies on the equator-ward facing slopes but some are present in this image. The gullies have been proposed to have formed by the subsurface release of water. The western channel wall of Uzboi Vallis does not appear to have the fine-scale gullying as does Nirgal Vallis. However, the western channel wall of Uzboi Vallis does show some evidence of downslope movement (mass wasting). Some patches of dunes are also seen on the channel floor, notably along the edges of the channel floor near the canyon walls. There is also a landslide located along the southern wall of Luki Crater.

  11. End of Lethe Vallis

    NASA Image and Video Library

    2010-11-15

    This image from NASA Mars Reconnaissance Orbiter shows the funnel-shaped terminus of Lethe Vallis, a winding channel in the Elysium Planitia region of Mars; the floor is covered in solidified lava and blanketed by a thin layer of light-toned dust.

  12. Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. A.

    2008-01-01

    Geologic mapping and stratigraphic analyses of MTM -30247, -35247, and -40247 quadrangles are being used to characterize the Reull Vallis (RV) system and to determine the history of the eastern Hellas region of Mars. Studies of RV examine the roles and timing of volatile-driven erosional and depositional processes and provide constraints on potential associated climatic changes. This study complements earlier investigations of the eastern Hellas region, including regional analyses [1-6], mapping studies of circum-Hellas canyons [7-10], and volcanic studies of Hadriaca and Tyrrhena Paterae [11-13]. Key scientific objectives for these quadrangles include 1) characterization of RV in its "fluvial zone," 2) analysis of channels in the surrounding plains and potential connections to and interactions with RV, 3) examination of young (?), presumably sedimentary plains along RV that embay the surrounding highlands, and 4) determination of the nature of the connection between segments 1 and 2 of RV.

  13. The Color Wonderland of Mawrth Vallis

    NASA Image and Video Library

    2016-09-08

    There is a candidate landing site in the Mawrth Vallis region for the European Space Agency's ExoMars rover, planned to launch in 2020. This is one of the HiRISE images acquired to evaluate this site. Mawrth Vallis has some of the most spectacular color variations seen anywhere on Mars. This color variability is due to a range of hydrated minerals -- water caused alteration of these ancient deposits -- which is why this site is of interest to study the past habitability of Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21029

  14. Moon/Mars Landing Commemorative Release: Gusev Crater and Ma'adim Vallis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On July 20, 1969, the first human beings landed on the Moon. On July 20, 1976, the first robotic lander touched down on Mars. This July 20th-- 29 years after Apollo 11 and 22 years since the Viking 1 Mars landing-- we take a look forward toward one possible future exploration site on the red planet.

    One of the advantages of the Mars Global Surveyor Mars Orbiter Camera (MOC) over its predecessors on the Viking and Mariner spacecraft is resolution. The ability to see-- resolve--fine details on the martian surface is key to planning future landing sites for robotic and, perhaps, human explorers that may one day visit the planet.

    At present, NASA is studying potential landing sites for the Mars Surveyor landers, rovers, and sample return vehicles that are scheduled to be launched in 2001, 2003, and 2005. Among the types of sites being considered for these early 21st Century landings are those with 'exobiologic potential'--that is, locations on Mars that are in some way related to the past presence of water.

    For more than a decade, two of the prime candidates suggested by various Mars research scientists are Gusev Crater and Ma'adim Vallis. Located in the martian southern cratered highlands at 14.7o S, 184.5o W, Gusev Crater is a large, ancient, meteor impact basin that--after it formed--was breached by Ma'adim Vallis.

    Viking Orbiter observations provided some evidence to suggest that a fluid--most likely, water--once flowed through Ma'adim Vallis and into Gusev Crater. Some scientists have suggested that there were many episodes of flow into Gusev Crater (as well as flow out of Gusev through its topographically-lower northwestern rim). Some have also indicated that there were times when Ma'adim Vallis, also, was full of water such that it formed a long, narrow lake.

    The possibility that water flowed into Gusev Crater and formed a lake has led to the suggestion that the materials seen on the floor of this crater--smooth-surfaced deposits

  15. Marte Vallis

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of catastrophic flooding in Marte Vallis, Mars. Marte is the Spanish word for Mars. Many of the major valleys on the red planet are named for the word for 'Mars' in the various languages of Earth. This image shows just a very small portion of the hundreds-of-kilometers-long Marte Vallis system.

    Location near: 17.4oN, 174.7o Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  16. Knickpoints and Hanging Valleys of Licus Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, T. A.; Fassett, C.

    2016-12-01

    Licus Vallis is a 350 km long valley system located along the dichotomy boundary on Mars. The main trunk of the valley is incised 200-700 m into the surrounding terrain. The valley heads at an outlet breach of a shallow, 30 km diameter impact crater, and is also fed by a system of tributaries incised into the plateau surrounding Licus Vallis. Many of the tributary valleys, as well as the main stem of the valley fed by the paleolake outlet, have profiles that are not smoothly graded, but rather have distinct reaches with concave downward topography. These sections are either knickpoints or hanging valleys that develop in response to changes in the effective local base level, changes in climate conditions during incision of the valley, or lithologic boundaries in the substrate. Here we present remote sensing observations from images and topography to test these competing hypotheses and further characterize the evolution of this large valley system. Slope-watershed area relationships for the tributaries and main trunk valley are used to distinguish between knickpoints and hanging valleys. Analysis of orbital images does not reveal any distinct layer above which knickpoints develop, and the elevation of knickpoints show no systematic trends that might be expected of a regional lithologic unit(s). Our preliminary results suggest that the distance of knickpoint retreat is correlated with the position of the tributary valley and not the watershed area. Downstream valleys have retreated the most, suggesting they have had the most time to adjust to lowering of the local base level associated with incision of the main valley. These results are most consistent with a wave of incision sweeping up the valley system as it adjusts to a low base level in the northern plains. This conclusion is also consistent with observations of the incision depth of Licus Vallis, which increases approximately linearly downstream. Understanding this signature of base level control on the incision

  17. Crater in Marte Vallis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-566, 6 December 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a streamlined tail-pointing toward the upper right (northeast)--in the lee of a meteor impact crater in Marte Vallis, a large valley and channel complex southeast and east of the Elysium volcanic region. The fluid that went through Marte Vallis, whether water, mud, lava, or otherwise, created this form as it moved from the lower left (southwest) toward the upper right. The crater is located near 19.0oN, 174.9oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the left.

  18. Geologic map of MTM -40252 and -40257 quadrangles, Reull Vallis region of Mars

    USGS Publications Warehouse

    Mest, Scott C.; Crown, David A.

    2002-01-01

    Mars Transverse Mercator (MTM) quadrangles -40252 and -40257 cover a portion of the highlands of Promethei Terra northeast of the Hellas basin. The map area consists of heavily cratered ancient highland materials of moderate to high relief, isolated knobs and massifs of rugged mountainous materials, extensive tracts of smooth and channeled plains, and other surficial deposits. Reull Vallis, an approximately 1,500 km-long outflow channel system, cuts through the southeast corner of the map area. Regional slopes are to the southwest, toward the Hellas basin, as indicated by Martian topographic maps and the orientations of channels along the northeast rim of the Hellas basin. The Martian highlands cover more than 60 percent of the planet's surface and are primarily in the southern hemisphere. Most of the highlands consist of rugged, densely cratered terrains believed to represent the final phase of heavy bombardment in the inner solar system about 4.0 billion years ago. Parts of the Martian highlands show evidence of extensive degradation and modification. The map area shows landforms created by numerous geologic processes, including tectonism, fluvial activity, and mass wasting. The occurrence of fluvial features, such as outflow channels and valley networks, has significant implications for past Martian conditions. Determining the geology of the highlands northeast of the Hellas basin provides a better understanding of the role and timing of volatile-driven activity in the evolution of the highlands. Photogeologic mapping at 1:500,000 scale from analysis of Viking Orbiter images complements geomorphic studies of Reull Vallis and other highland outflow systems, of drainage networks, and of highland debris aprons and regional geologic mapping studies of the highlands at the 1:2,000,000 scale and 1:1,000,000 scale. Crater size-frequency distributions have been compiled to constrain the relative ages of geologic units and determine the timing and extents of the observed

  19. Kasei Vallis of Mars: Dating the Interplay of Tectonics and Geomorphology

    NASA Technical Reports Server (NTRS)

    Wise, D. U.

    1985-01-01

    Crater density age dates on more than 250 small geomorphic surfaces in the Kasei Region of Mars show clusterings indicative of times of peak geomorphic and tectonic activity. Kasei Vallis is part of a 300 km wide channel system breaching a N-S trending ancient basement high (+50,000 crater age) separating the Chryse Basin from the Tharsis Volcanic Province of Mars. The basement high was covered by a least 3 groups of probable volcanic deposits. Major regional fracturing took place at age 4,000 to 5,000 and was immediately followed by deposition of regional volcanics of the Fesenkov Plains (age 3,000 to 4,200). Younger clusterings of dates in the 900 to 1,500 and 500 to 700 range represent only minor modification of the basic tectonic geomorphic landform. The data suggest that Kasei gap is a structurally controlled breach of a buried ridge by a rather brief episode of fluvial activity.

  20. Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate

    USGS Publications Warehouse

    McKeown, N.K.; Bishop, J.L.; Noe Dobrea, E.Z.; Ehlmann, B.L.; Parente, M.; Mustard, J.F.; Murchie, S.L.; Swayze, G.A.; Bibring, J.-P.; Silver, E.A.

    2009-01-01

    Mawrth Vallis contains one of the largest exposures of phyllosilicates on Mars. Nontronite, montmorillonite, kaolinite, and hydrated silica have been identified throughout the region using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In addition, saponite has been identified in one observation within a crater. These individual minerals are identified and distinguished by features at 1.38-1.42, ???1.91, and 2.17-2.41 ??m. There are two main phyllosilicate units in the Mawrth Vallis region. The lowermost unit is nontronite bearing, unconformably overlain by an Al-phyllosilicate unit containing montmorillonite plus hydrated silica, with a thin layer of kaolinite plus hydrated silica at the top of the unit. These two units are draped by a spectrally unremarkable capping unit. Smectites generally form in neutral to alkaline environments, while kaolinite and hydrated silica typically form in slightly acidic conditions; thus, the observed phyllosilicates may reflect a change in aqueous chemistry. Spectra retrieved near the boundary between the nontronite and Al-phyllosilicate units exhibit a strong positive slope from 1 to 2 ??m, likely from a ferrous component within the rock. This ferrous component indicates either rapid deposition in an oxidizing environment or reducing conditions. Formation of each of the phyllosilicate minerals identified requires liquid water, thus indicating a regional wet period in the Noachian when these units formed. The two main phyllosilicate units may be extensive layers of altered volcanic ash. Other potential formational processes include sediment deposition into a marine or lacustrine basin or pedogenesis. Copyright 2009 by the American Geophysical Union.

  1. Modification history of the Harmakhis Vallis outflow channel, Mars, based on CTX-scale photogeologic mapping and crater count dating

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-01-01

    Harmakhis Vallis is one of the four major outflow channel systems (Dao, Niger, Harmakhis, and Reull Valles) that cut the eastern rim region of the Hellas basin, the largest well-preserved impact structure on Mars. The structure of Harmakhis Vallis and the volume of its head depression, as well as earlier dating studies of the region, suggest that the outflow channel formed in the Hesperian period by collapsing when a large amount of subsurface fluid was released. Thus Harmakhis Vallis, as well as the other nearby outflow channels, represents a significant stage of the fluvial activity in the regional history. On the other hand, the outflow channel lies in the Martian mid-latitude zone, where there are several geomorphologic indicators of past and possibly also contemporary ground ice. The floor of Harmakhis also displays evidence of a later-stage ice-related activity, as the outflow channel has been covered by lineated valley fill deposits and debris apron material. The eastern rim region of the Hellas impact basin has been the subject of numerous geologic mapping studies at various scales and based on different imaging data sets. However, Harmakhis Vallis itself has received less attention and the studies on the outflow channel have focused only on limited parts of the outflow channel or on separated different geologic events. In this work, the Harmakhis Vallis floor is mapped and dated from the head depression to the beginning of the terminus based on the Mars Reconnaissance Orbiter's ConTeXt camera images (CTX; ∼ 6 m/pixel). Our results show that Harmakhis Vallis has been modified by several processes after its formation. Age determinations on the small uncovered parts of the outflow channel, which possibly represent the original floor of Harmakhis, imply that Harmakhis may have experienced fluvial activity only 780-850 ( ± 400-600) Ma ago. The discovered terrace structure instead shows that the on-surface activity of the outflow channel has been periodic

  2. Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Palucis, M.; Dietrich, B.; Calef, F.; Stack, K. M.; Ehlmann, B.; Bridges, J.; Dromart, J.; Eigenbrode, J.; Farmer, J.; hide

    2013-01-01

    A geomorphically defined alluvial fan extends from Peace Vallis on the NW wall of Gale Crater, Mars into the Mars Science Laboratory (MSL) Curiosity rover landing ellipse. Prior to landing, the MSL team mapped the ellipse and surrounding areas, including the Peace Vallis fan. Map relationships suggest that bedded rocks east of the landing site are likely associated with the fan, which led to the decision to send Curiosity east. Curiosity's mast camera (Mastcam) color images are being used to refine local map relationships. Results from regional mapping and the first 100 sols of the mission demonstrate that the area has a rich geological history. Understanding this history will be critical for assessing ancient habitability and potential organic matter preservation at Gale Crater.

  3. Eruption Constraints for a Young Channelized Lava Flow, Marte Vallis, Mars

    NASA Technical Reports Server (NTRS)

    Therkelsen, J. P.; Santiago, S. S.; Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.

    2001-01-01

    This study constrains flow rates for a specific channelized lava flow in Marte Vallis, Mars. We measured slope-gradient, channel width, and channel depth. Our results are similar to other recent studies which suggests similarities to long, terrestrial basaltic flow. Additional information is contained in the original extended abstract.

  4. Nirgal Vallis (Released 27 March 2002)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This THEMIS image shows a sinuous valley network channel with sharp bends cutting across the cratered highlands of the southern hemisphere of Mars. The channel is named Nirgal Vallis, which is from the Babylonian word for 'Mars.' Nirgal Vallis is a channel with a total length of approximately 500 km. It is approximately 6 km wide in this region. Gullies and alluvial deposits discovered by Mars Global Surveyor are clearly visible on the polar-facing (south) wall and floor of Nirgal Vallis. These gullies appear to emanate from a specific layer in the walls. There is a pronounced sparsity of gullies on the equator-ward facing slopes. The gullies have been proposed to have formed by the subsurface release of water. Patches of dunes are also seen on the channel floor, notably along the edges of the channel floor near the canyon walls. There is still debate within the scientific community as to how valley networks themselves form: surface runoff (rainfall/snowmelt) or headward erosion via groundwater sapping. This image is approximately 22 km wide and 60 km in length; north is toward the top.

  5. Marte Vallis Textures

    NASA Technical Reports Server (NTRS)

    2006-01-01

    20 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows platy flow surfaces in the Marte Vallis region of Mars. The origin of the flows is not well-understood, but as some Mars scientists have suggested, the flows may be the product of low viscosity (very fluid), high temperature volcanic eruptions, or perhaps they are the remains of large-scale mud flows. In either case, the materials are solid and hold a record of small meteor impact craters, thus indicating that they are not composed of ice, as still others have speculated.

    Location near: 6.7oN, 182.0oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  6. Geomorphology of Ma'adim Vallis, Mars,and Associated Paleolake Basins

    NASA Technical Reports Server (NTRS)

    Irwin, Rossman, P., III; Howard, Alan D.; Maxwell, Ted A.

    2004-01-01

    Ma'adim Vallis, one of the largest valleys in the Martian highlands, appears to have originated by catastrophic overflow of a large paleola ke located south of the valley heads. Ma'adim Vallis debouched to Gus ev crater, 900 km to the north, the landing site for the Spirit Mars Exploration Rover. Support for the paleolake overflow hypothesis come s from the following characteristics: (I) With a channel width of 3 km at its head, Ma'adim Vallis originates at two (eastern and western) gaps incised into the divide of the approximately 1.1 M km(exp 2) enc losed Eridania head basin, which suggests a lake as the water source. (2) The sinuous course of Ma'adim Vallis is consistent with overland flow controlled by preexisting surface topography, and structural con trol is not evident or required to explain the valley course. (3) The nearly constant approximately 5 km width of the inner channel through crater rim breaches, the anastomosing course of the wide western tri butary, the migration of the inner channel to the outer margins of be nds in the valley's lower reach, a medial sedimentary bar approximate ly 200 m in height, and a step-pool" sequence are consistent with modeled flows of 1-5 x l0 (exp 6) m(exp 3)/s. Peak discharges were likely higher but are poorly constrained by the relict channel geometry. (4 ) Small direct tributary valleys to Ma'adim Vallis have convex-up lon gitudinal profiles, suggesting a hanging relationship to a valley that was incised quickly relative to the timescales of tributary developm ent. (5) The Eridania basin had adequate volume between the initial d ivide and the incised gap elevations to carve Ma'adim Vallis during a single flood. (6) The Eridania basin is composed of many overlapping , highly degraded and deeply buried impact craters. The floor materials of the six largest craters have an unusually high internal relief ( approximately 1 km) and slope (approximately 0.5-1.5 degrees) among d egraded Martian craters, which are usually

  7. Diversity in Mawrth Region, Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view shows diverse materials and morphologies in the region south of Mawrth Vallis on Mars. The color is composed of infrared, red, and blue-green color images, and has been enhanced to accentuate the color differences. The bright material may be rich in clays and date back to a time when Mars had a wetter environment. This is a sub-image of a larger view imaged by the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter on Oct. 1, 2006. The resolution is 25 centimeters (10 inches) per pixel, and the scene is 352 meters (385 yards) wide.

  8. Aquifers In Nirgal Vallis

    NASA Astrophysics Data System (ADS)

    Reiss, D.; Jaumann, R.

    The topographic information provided by the Mars Orbiter Laser Altimeter has been used in combination with the Mars Observer Camera imagery to estimate the topo- graphic position of sapping pits and gully heads on the rim of Nirgal Vallis. Hence Nirgal Vallis is understood to be formed by groundwater sapping (1, 2, 3, 4) an aquifer is proposed as water supply. Gullies in the northern rim of Nirgal Vallis as discovered in Mars Observer Camera (MOC) images (5, 6) proof the existence of such an aquifer. Further evidence for sapping in Nirgal Vallis is demonstrated by short hanging tribu- taries with amphitheater-like heads. The basis of these sapping pits defines the con- tact of aquifer to aquiclude during the valley formation. The gully heads are much deeper under the local surface and the correlation of their topographic position with the valley depth indicate the subsidence of the groundwater level following the ver- tical erosion of the valley. This implies the existence of different groundwater tables over time confined by impermeable layers, whereas the gully head level is the most recent groundwater table which still may be erosional active under the conditions of increasing water pressure and ice barrier failure (5). The occurrence of more than one tilted sapping level at different topographic positions which are time-correlated with the erosional notching of the valley, either indicates different aquifers with litholog- ical aquicludes or a climate controlled subsidence of the permafrost layer acting as confining layer. References: (1) Baker et al., 1992, In: Mars, Univ. of Arizona Press. (2) Carr, 1995, JGR 100, 7479. (3) Malin and Carr, 1999, Icarus, 397, 589. (4) Jaumann and Reiss, 2002, LPSC. (5) Malin and Edgett, 2000, Science, 288, 2330. (6) Malin and Edgett, 2001, JGR 106, 23429.

  9. Formation of outflow channels on Mars: Testing the origin of Reull Vallis in Hesperia Planum by large-scale lava-ice interactions and top-down melting

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2018-05-01

    The Reull Vallis outflow channel is a segmented system of fluvial valleys which originates from the volcanic plains of the Hesperia Planum region of Mars. Explanation of the formation of the Reull Vallis outflow channel by canonical catastrophic groundwater release models faces difficulties with generating sufficient hydraulic head, requiring unreasonably high aquifer permeability, and from limited recharge sources. Recent work has proposed that large-scale lava-ice interactions could serve as an alternative mechanism for outflow channel formation on the basis of predictions of regional ice sheet formation in areas that also underwent extensive contemporaneous volcanic resurfacing. Here we assess in detail the potential formation of outflow channels by large-scale lava-ice interactions through an applied case study of the Reull Vallis outflow channel system, selected for its close association with the effusive volcanic plains of the Hesperia Planum region. We first review the geomorphology of the Reull Vallis system to outline criteria that must be met by the proposed formation mechanism. We then assess local and regional lava heating and loading conditions and generate model predictions for the formation of Reull Vallis to test against the outlined geomorphic criteria. We find that successive events of large-scale lava-ice interactions that melt ice deposits, which then undergo re-deposition due to climatic mechanisms, best explains the observed geomorphic criteria, offering improvements over previously proposed formation models, particularly in the ability to supply adequate volumes of water.

  10. The Moving Sands of Lobo Vallis

    NASA Image and Video Library

    2018-04-02

    NASA's Mars Reconnaissance Orbiter shows bright ripples line the topography in this region, formed within a past climate. Dark dunes and sand streaks (composed of basaltic sand) have moved and filled lower areas, pushed by more recent winds from the top towards the bottom of this image. Lobo Vallis is named for a river on the Ivory Coast. https://photojournal.jpl.nasa.gov/catalog/PIA22346

  11. Marte Vallis Platy Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-442, 4 August 2003

    The Marte Vallis system, located east of Cerberus and west of Amazonis Planitia, is known for its array of broken, platy flow features. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a close-up view of some of these plates; they appear to be like puzzle pieces that have been broken apart and moved away from each other. The Mars science community has been discussing these features for the past several years--either the flows in Marte Vallis are lava flows, or mud flows. In either case, the material was very fluid and had a thin crust on its surface. As the material continued to flow through the valley system, the crust broke up into smaller plates that were then rafted some distance down the valley. This picture is located near 6.9oN, 182.8oW. It is illuminated by sunlight from the left.

  12. Ares Vallis Polygons

    NASA Image and Video Library

    2002-12-04

    The jumble of eroded ridges and mesas seen in this NASA Mars Odyssey image occurs within Ares Vallis, one of the largest catastrophic outflow channels on the planet. Floods raged through this channel, pouring out into the Chryse Basin to the north. Close inspection of the THEMIS image reveals polygonal shapes on the floor of the channel system. Polygonal terrain on Mars is fairly common although the variety of forms and scales of the polygons suggests multiple modes of origin. Those in Ares Vallis resemble giant desiccation polygons that form in soils on Earth when a moist layer at depth drys out. While polygons can form in icy soils (permafrost) and even lava flows, their presence in a channel thought to have been carved by flowing water is at least consistent with a mode of origin that involved liquid water. http://photojournal.jpl.nasa.gov/catalog/PIA04019

  13. Reull Vallis - False Color

    NASA Image and Video Library

    2014-12-18

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Reull Vallis.

  14. Near-Surface Geologic Units Exposed Along Ares Vallis and in Adjacent Areas: A Potential Source of Sediment at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1997-01-01

    A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.

  15. Shalbatana/Simud Vallis Junction

    NASA Image and Video Library

    2003-01-11

    The sinuous channels and streamlined islands at the junction of Shalbatana and Simud Vallis, seen in this NASA Mars Odyssey image, present an erosional history of the catastrophic floods that scoured the Martian surface hundreds of millions of years ago.

  16. Ares Vallis - False Color

    NASA Image and Video Library

    2014-12-31

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Ares Vallis.

  17. Mawrth Vallis - False Color

    NASA Image and Video Library

    2015-09-30

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows where Mawrth Vallis empties into Chryse Planitia.

  18. Spectrometer Observations Near Mawrth Vallis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

    CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

    This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

    Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the

  19. Daga Vallis - False Color

    NASA Image and Video Library

    2014-12-19

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Daga Vallis on Eos Mensa.

  20. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region

    NASA Astrophysics Data System (ADS)

    Farrand, William H.; Glotch, Timothy D.; Rice, James W.; Hurowitz, Joel A.; Swayze, Gregg A.

    2009-12-01

    Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe 3(SO 4) 2(OH) 6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 μm absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying.

  1. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region

    USGS Publications Warehouse

    Farrand, W. H.; Glotch, T.D.; Rice, J. W.; Hurowitz, J.A.; Swayze, G.A.

    2009-01-01

    Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe3(SO4)2(OH)6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 ??m absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying. ?? 2009 Elsevier Inc. All rights reserved.

  2. Ares Vallis - False Color

    NASA Image and Video Library

    2015-09-18

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the beginning of Ares Vallis at the edge of Iani Chaos.

  3. Ares Vallis Tributary - False Color

    NASA Image and Video Library

    2014-12-17

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of a tributary channel that empties into Ares Vallis.

  4. A View of the Painted Desert Near Mawrth Vallis

    NASA Image and Video Library

    2017-08-07

    The clay-rich terrain surrounding Mawrth Vallis is one of the most scenic regions of Mars, a future interplanetary park, as seen by NASA's Mars Reconnaissance Orbiter. Here, we cut a long, oblique view into strips to see the full color coverage in more compact form. The origin of these altered layers is the subject of continued debates, perhaps to be resolved by a future rover on the surface. We do know that these layers are very ancient, dating back to a time when the environment of Mars was wetter and more habitable, if there were any inhabitants. https://photojournal.jpl.nasa.gov/catalog/PIA21871

  5. Kasei Vallis Streamlined Island

    NASA Image and Video Library

    2002-12-13

    Except for the loss of its ring of ejecta, the crater at the leading edge of this streamlined island in Kasei Vallis, imaged here by NASA Mars Odyssey, shows no hint of the catastrophic floods that passed by it. Kasei Vallis is one of several major outflow channel systems that were active over 3 billion years ago. The intense floods scoured the landscape, eroding craters and producing streamlined islands. But in a close-up view, the evidence for these floods is not apparent. This true of the most similar terrestrial example, the channeled scablands of eastern Washington which also were formed by a catastrophic flood. http://photojournal.jpl.nasa.gov/catalog/PIA04022

  6. Automated Texture Classification of the Mawrth Vallis Landing Site Region

    NASA Astrophysics Data System (ADS)

    Parente, M.; Bayley, L.; Hunkins, L.; McKeown, N. K.; Bishop, J. L.

    2009-12-01

    Supervised classification techniques have been developed to discriminate geomorphologic units in HiRISE images of Mawrth Vallis on Mars, one of the MSL candidate landing sites. A variety of clay minerals that indicate water was once present have been identified in the ancient bedrock at Mawrth Vallis [1-7]. These clay-rich rocks exhibit distinct surface textures in HiRISE images, where the nontronite-bearing unit consists of two primary textures: 2-5 m irregular inverted polygons and irregular parallel fracture sets ([8,13], Fig. b-c). In contrast, the montmorillonite-bearing unit consists of 0.5-1.5 m regular polygons ([8,13], Fig. e). We also characterized dunes (Fig. d), and the spectrally unremarkable caprock unit (Fig. a). Classification of these textures was performed by extracting discriminatory features from gray-level run length matrices (GLRLMs) [9], gray-level co-occurrence matrices (GLCMs) [10], and semivariograms [11] calculated for small blocks of data in HiRISE images. Preliminary results using an algorithm containing eight of these classification features produced a texture classification technique that is 85 percent accurate. The discriminant analysis (e.g. [12]) classifier we used modeled a linear discriminant function for each class based on the training feature vectors for that class. The test vector with the largest value for its discriminant function was then assigned to each class. We assumed linear functions were acceptable for small training sets and we performed automated selection in order to identify the most discriminative features for the textures in Mawrth Vallis. Continued efforts are underway to test and refine this procedure in order to optimize texture recognition on a broader collection of textures, representing additional surface components from Mawrth Vallis and other landing sites on Mars. [1] Bibring, J.-P., et al. (2005) Science, 307, 1576-1581. [2] Poulet, F., et al. (2005) Nature, 438, 632-627. [3] Bishop, J. L., et al

  7. Marte Vallis Channel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a channel in the Marte Valles outflow system. An old meteor impact crater in the lower left (southwest) corner of the image blocked the erosive fluids that poured through Marte Vallis, creating a streamlined tail in its lee. The materials that flowed through the valley may have been water-rich mud, very fluid lava, or both. The nature of the fluid is still a matter of research and discussion among Mars scientists. This image is located near 12.5oN, 177.5oW. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/lower left.

  8. Lunar and Planetary Science XXXV: Ancient Mars Water and Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Titles in this section include: 1) Giant Lowland Polygons: Relics of an Ancient Martian Ocean? 2) Lake Shorelines: Earth Analogs for Hypothesized Martian Coastal Features; 3) Complex Evolution of Paleolacustrine Systems on Mars: An Example from the Holden Crater; 4) Geomorphology and Hydraulics of Ma'adim Vallis, Mars, During a Noachian/Hesperian Boundary Paleoflood; 5) Geologic Evolution of Dao Vallis, Mars; 6) Advances in Reconstructing the Geologic History of the Chryse Region Outflow Channels on Mars; 7) Ravi Vallis, Mars - Paleoflood Origin and Genesis of Secondary Chaos Zones; 8) Walla Walla Vallis and Wallula Crater: Two Recently Discovered Martian Features Record Aqueous History; 9) Tharsis Recharge: a Source of Groundwater for Martian Outflow Channels; 10) Factors Controlling Water Volumes and Release Rates in Martian Outflow Channels; 11) Significance of Confined Cavernous Systems for Outflow Channel Water Sources, Reactivation Mechanisms and Chaos Formation; 12) Systematic Differences in Topography of Martian and Terrestrial Drainage Basins; 13) Waves on Seas of Mars and Titan: Wind-Tunnel Experiments on Wind-Wave Generation in Extraterrestrial Atmospheres.

  9. The sinuous ridge and channel network within Rahway Vallis and the wider contextual study of the surrounding Rahway Basin, Mars.

    NASA Astrophysics Data System (ADS)

    Ramsdale, Jason; Balme, Matthew; Conway, Susan; Gallagher, Colman

    2014-05-01

    Rahway Vallis is a previously identified shallow v-shaped valley network in the Mars Orbiter Laser Altimeter data, located at 10°N 175°E, within the Cerberus Plains in the Elysium Planitia region of Mars. Rahway Vallis is situated in low-lying terrain bounded to west, north and east by older highlands, and to the south by the flood-carved channel system Marte Vallis. Here we present a study of the low-lying area in which Rahway Vallis sits, which we refer to as the "Rahway basin". The floor of the Rahway basin is extremely flat (sloping at 0.02° south-east) and hosts a branching network of ridge and channel systems. The aim of this project is to determine the genesis of these branching forms, in particular to test the hypothesis that they are glaciofluvial in origin. Using topographic cross-profiles of the channels that are identifiable in CTX 6 m/pixel images, we have found that they are set within broader v-shaped valley that has almost no morphological expression. These valleys have a convex-up, shallow (around 15 metres vertically compared to several kilometres in the horizontal) V-shaped profiles that are consistent in form across the whole Rahway Basin. Long profiles show the channels to deepen with respect to the bank height downslope. Both channels and valley show a consistent downhill gradient from west to east. The channels typically widen down-slope and increase in width at confluences. If these are water-cut channels, they reach Strahler stream orders of 4, consistent with a contributory network with multiple sources. Associated with the channels are sinuous ridges, typically several kilometres long, 20 m across, with heights on the order of 10 m. They sometimes form branching networks leading into the channels but also form individually and parallel to the channels. Possible explanations for the sinuous ridges include inverted fluvial channels and eskers. However despite looking through ca. 250 CTX images across the Rahway basin, no other glacial

  10. Athabasca Vallis Streamlined 'Islands'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-322, 12 December 2002

    Tremendous floods carved these tear drop-shaped landforms in Athabasca Vallis in the Cerberus region, south of the Elysium volcanoes. The orientation of the streamlined forms indicate that the fluid flowed from the right/upper right toward the left/lower left (from the northeast to the southwest). Similar features occur in central and eastern Washington in the northwestern United States. The examples in Washington formed when massive amounts of water rushed across the landscape, scouring a 'channeled scabland' during the last Ice Age, roughly 12,000-13,000 years ago. The features on Mars are much older; while the absolute age cannot be determined, the small impact craters with rayed ejecta patterns on the flood surfaces indicate it must be much, much older than the flood landscape in Washington. This is a mosaic of six Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images acquired in 1999 through 2002. Illumination is from the left. The mosaic covers an area 11.9 km (7.4 mi) by 13.0 km (8.1 mi). The full-size mosaic has a resolution of 4 meters (13 ft) per pixel.

  11. An Inverted Crater West of Mawrth Vallis

    NASA Image and Video Library

    2017-11-28

    This image from NASA's Mars Reconnaissance Orbiter (MRO) captures details of an approximately 1-kilometer inverted crater west of Mawrth Vallis. A Context Camera image provides context for the erosional features observed at this site. The location of this HiRISE image is north of the proposed landing ellipse for the ExoMars 2020 rover mission that will investigate diverse rocks and minerals related to ancient water-related activity in this region. Prolonged erosion removed less resistant rocks leaving behind other rocks that stand up locally such as the crater seen here and other nearby remnants. These resistant layers may belong to a phase of volcanism and/or water-related activity that carved Mawrth Vallis and filled in existing craters, and other lower-lying depressions, with darker materials. Erosion has also exposed these layers down to older, more resistant lighter rocks that are clay-bearing. The diversity of exposed bedrock made this location an ideal candidate for exploring a potentially water-rich ancient environment that might have once harbored life. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 28.7 centimeters (11.3 inches) per pixel (with 1 x 1 binning); objects on the order of 86 centimeters (33.9 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22117

  12. Dao Vallis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This THEMIS visible image shows Dao Vallis, a large outflow channel that starts on the southeast flank of a large volcano called Hadriaca Patera and runs for 1000 kilometers southwest into the Hellas impact basin. The channel is up to 20 kilometers wide near its source, but narrows downstream. As can be seen in the context image, the part of Dao Vallis imaged by THEMIS is actually one of the most narrow.

    It is believed that Dao Vallis was carved by a combination of surface and subsurface flow. Evidence for both of these processes can be seen in this image. The size of the channel, its steep walls, and the lineations at the bottom of the channel indicate that it was carved by surface flow of water. The erosional morphology near the center of the image, on the northern edge of the channel indicates that groundwater sapping was also a minor process. Subsidence of the surface into the quasi-circular depressions seen in this image is indicative of this process.

    Because the source region of Dao Vallis is the flank of a volcano, it is most likely that the water that carved the channel erupted from the subsurface as geothermal heating by nearby magma melted large amounts of ground ice. Some of this water made it to the surface and carved the channel, while some water flowed below ground and caused the sapping features evident in this THEMIS image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  13. Stunning Image of Rosetta above Mars taken by the Philae Lander Camera

    NASA Image and Video Library

    2007-02-05

    Stunning image taken by the CIVA imaging instrument on Rosetta Philae lander just 4 minutes before closest approach at a distance of some 1000 km from Mars on Feb. 25, 2007. A portion of the spacecraft and one of its solar arrays are visible in nice detail. Beneath, the Mawrth Vallis region is visible on the planet's disk. Mawrth Vallis is particularly relevant as it is one of the areas on the Martian surface where the OMEGA instrument on board ESA's Mars Express detected the presence of hydrated clay minerals -- a sign that water may have flown abundantly on that region in the very early history of Mars. Id 217487 http://photojournal.jpl.nasa.gov/catalog/PIA18154

  14. Rotated Perspective View of Nirgal Vallis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is the full-resolution, rotated perspective image of Nirgal Vallis, a subset of PIA00942. Nirgal Vallis is one of a number of canyons called valley networks or runoff channels. Much of the debate concerning the origin of these valleys centers on whether they were formed by water flowing across the surface, or by collapse and upslope erosion associated with groundwater processes. At the resolution of this image, it is just barely possible to discern an interwoven pattern of lines on the highland surrounding the valley, but it is not possible to tell whether this is a pattern of surficial debris (sand or dust), as might be expected with the amount of crater burial seen, or a pattern of drainage channels. With 4X better resolution from its mapping orbit, MOC should easily be able to tell the difference between these two possibilities.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The spacecraft has been using atmospheric drag to reduce the size of its orbit for the past three weeks, and will achieve a circular orbit only 400 km (248 mi) above the surface early next year. Mapping operations begin in March 1998. At that time, MOC narrow angle images will be 5-10 times higher resolution than these pictures.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  15. Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III; Crown, David A.

    2009-01-01

    Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleo-environments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The results of this work will include two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).

  16. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  17. Solar Conjunction Ends: Nirgal Vallis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 September 2004 For the past several weeks, Mars was on the other side of the Sun relative to Earth. During this period, known as solar conjunction, radio communication with spacecraft orbiting and roving on Mars was limited. As is always done during solar conjunction, on 7 September 2004, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) was turned off. On Saturday, 25 September 2004, the MOC team gathered at Malin Space Science Systems to command the instrument to turn back on again. After a successful turn-on, MOC acquired its first narrow angle camera image, shown here, on orbit 24808 (24,808th orbit since the start of the Mapping phase of the MGS mission in March 1999).

    The 25 September image shows a portion of Nirgal Vallis, an ancient valley system in the Mare Erythraeum region of Mars. The valley floor is covered by large, ripple-like bedforms created by wind. This early southern winter image is located near 27.4oS, 42.9oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

    This was the 4th solar conjunction period that MGS and MOC have been through since the spacecraft reached the red planet in September 1997. The four solar conjunction periods, where MOC was turned off, were:

    First solar conjunction: 29 April - 1 June 1998 Second solar conjunction: 22 June - 12 July 2000 Third solar conjunction: 1 August - 18 August 2002 Fourth solar conjunction: 7 September - 25 September 2004.

    In late October, MGS MOC will mark the start of its fourth Mars year since the beginning of the Mapping Phase of the mission in March 1999. MGS and MOC have already been orbiting Mars for more than 4 Mars years, including the pre-Mapping aerobrake and science phasing orbit insertion periods.

  18. A Plateau in Ares Vallis

    NASA Image and Video Library

    2015-01-15

    This channelized area is near the source region of the huge outflow channel, Ares Vallis. It was at the distal end or long-ways down-river-area where the Pathfinder/Sojourner mission landed on 4 July 1997.

  19. The Keck "Mars 2000" Project: Using Mars Orbiter Laser Altimeter Data to Assess Geological Processes and Regional Stratigraphy Near Orcus Patera and Marte Vallis on Mars

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.

    2001-01-01

    During the Keck 'Mars 2000' summer project 10 undergraduates (rising juniors) used Mars Orbiter Laser Altimeter (MOLA) data to study a 19x14 degree region they identified as a potential Mars 2003 landing site. Here we introduce the project science and organization. Additional information is contained in the original extended abstract.

  20. Ares Vallis Polygons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This jumble of eroded ridges and mesas occurs within Ares Vallis, one of the largest catastrophic outflow channels on the planet. Floods raged through this channel, portions of which are up to 25 km wide, pouring out into the Chryse Basin to the north. Close inspection of the THEMIS image reveals polygonal shapes on the floor of the channel system. Polygonal terrain on Mars is fairly common although the variety of forms and scales of the polygons suggests multiple modes of origin. Those in Ares Vallis resemble giant desiccation polygons that form in soils on Earth when a moist layer at depth drys out. While polygons can form in icy soils (permafrost) and even lava flows, their presence in a channel thought to have been carved by flowing water is at least consistent with a mode of origin that involved liquid water.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Gullies and Bedrock in Nirgal Vallis

    NASA Image and Video Library

    2015-02-11

    The gullies in this image are within the valley wall of an ancient channel-Nirgal Vallis-a testament to flowing water in Mars' ancient past. However, the formation of gullies are still the subject of much debate with respect to their formation: "wet" vs. "dry" or even "dry" with the aid of some lubricating fluid. Gullies most commonly form in the steep walls of simple craters. Gullies are common even in cold arctic deserts on Earth (e.g., the Haughton impact structure on Devon Island). This suggests that these provocative features can form on a mostly dry Mars that is only sporadically wet. Regardless, these features bear a remarkable resemblance to flowers, including the blossom, petals, stem, and roots. Can you see it too? http://photojournal.jpl.nasa.gov/catalog/PIA19294

  2. Ma'adim Vallis Estuarine Delta in Elysium Basin and Its Relevance as a Landing Site for Exobiology Exploration on Mars

    NASA Technical Reports Server (NTRS)

    Grin, E. A.; Cabrol, N. A.

    1998-01-01

    The debouche of Ma'adim Vallis in the Elysium Basin generated a transitional transported sediment structure, which planimetric shape is controlled by the enclosing topography of a deep reentrant gulf of the Basin into the highland. We defined it as an estuarine delta. The location and the importance of this estuarine delta is supported by the theoretical model of graded profile constructed for Ma'adim Vallis, and by two approaches: (i) the reconstruction of Ma'adim Vallis downstream course from Gusev to Elysium Basin, and (ii) the survey of the sediment deposit in the alleged estuary. The longitudinal graded profile of Ma'adim Vallis finds its base-level in the Elysium Basin, at a about 1000 m elevation, which is in agreement with the observed Basin shoreline. This model is supported by observational evidence of flow between the northern rim of Gusev crater, and the Elysium Basin shoreline. This downstream course of Ma'adim Vallis can be divided into three hydrogeologic regions. into three hydrogeologic regions. (a) The first region is a flooded plain (Zephiria Mensae), consisting in chaotic terrain formed by highland rocks, and disintegrated lava of the western flank of Apollinaris. Morphologic indicators of the flood process are: (1) the sediment deposit over the Gusev crater northern rim that reflects the overspilling of the crater-lake water through a 40-km wide gap provided by an ancient impact crater, (2) the tear-drop shaped feature on the northeastern flank of Apollinaris Patera, and (3) the chaotic terrain that suggest the emergence of ground water generated by the seepage of the crater lake through high-permeable broken rampart material. This underground water circulation sustained by the hydrostatic pressure of the crater-lake has likely generated a hydrothermal system in the volcanic environment of Apollinaris Patera. The stratigraphy of the flooded area is identified as Hesperian age, with occurrences of Noachian hilly individual features, and as

  3. Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III; Crown, David A.

    2008-01-01

    Geologic mapping studies at the 1:1M-scale will be used to characterize geologic processes that have shaped the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary will provide the ability to: 1) further test original dichotomy formation hypotheses, 2) constrain ancient paleoenvironments and climate conditions, and 3) evaluate various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The result will be two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).

  4. Regional Topographic Views of Mars from MOLA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With one year of global mapping of the Mars Global Surveyor mission completed, the MOLA dataset has achieved excellent spatial and vertical resolution. The maps below (and above) have been produced from the altimetric observations collected during MOLA's first year of global mapping and provide a variety of regional topographic views of the Martian surface. The maps were compiled from a data base of 266.7 million laser altimetric measurements collected between March 1, 1999 and February 29, 2000. In each map the spatial resolution is approximately 1/16o by 1/32o (where 1o on Mars is about 59 km) and the vertical accuracy is approximately 1 meter. Note that the sizes of the regions vary. Click on image for to see full resolution (Warning! these are large files) [figure removed for brevity, see original site] Nirgal Vallis region: 23o to 33o S; 313 to 323o E.

    [figure removed for brevity, see original site] Locras Valles region: 5o to 15o N; 45 to 55o E.

    [figure removed for brevity, see original site] Syrtis Major: 5o to 15o S; 62 to 72o E.

    [figure removed for brevity, see original site] Viking 1 landing site: 20o to 25o N; 310 to 315o E. The landing site is marked by the plus sign.

    [figure removed for brevity, see original site] Nicholson crater: 5o S to 5o N; 190 to 200o E. [figure removed for brevity, see original site] Schiaparelli crater: 8o S to 2o N; 12 to 22o E.

  5. Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  6. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  7. Acidalia and Chryse Plains, Mars

    NASA Image and Video Library

    2000-06-14

    Somewhere down there sits the Mars Pathfinder lander and Sojourner rover. This Mars Global Surveyor Mars Orbiter Camera view of the red planet shows the region that includes Ares Vallis and the Chryse Plains upon which both Mars Pathfinder and the Viking 1 landed in 1997 and 1976, respectively. Acidalia Planitia is the dark surface that dominates the center left. The Pathfinder site is immediately south of Acidalia, just left of center in this view. Also shown--the north polar cap is at the top, and Arabia Terra and Sinus Meridiani are to the right. The bluish-white features are clouds. This is a color composite of 9 red and 9 blue image strips taken by the Mars Global Surveyor Mars Orbiter Camera on 9 successive orbits from pole-to-pole during the calibration phase of the mission in March 1999. The color is computer-enhanced and is not shown as it would actually appear to the human eye. http://photojournal.jpl.nasa.gov/catalog/PIA02000

  8. Nirgal Vallis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 16 September 2003

    Upper reaches of Nirgal Vallis. This valley network is one of the longest on Mars and this image captures the sapping morphology (alcoves, stubby tributaries) associated with this channel. However, it is not clear how this channel formed (ground water sapping vs rain/snowmelt surface runoff). The last geomorphic process to occur is the one best preserved but it should be noted that earlier processes may have been modified and or wiped out.

    Image information: VIS instrument. Latitude -27.4, Longitude 314.4 East (45.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Ponding, draining and tilting of the Cerberus Plains; a cryolacustrine origin for the sinuous ridge and channel networks in Rahway Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Ramsdale, J. D.; Balme, M. R.; Conway, S. J.; Gallagher, C.

    2015-06-01

    Rahway Vallis sits within a shallow basin (the "Rahway basin") in the Cerberus Plains of Mars containing a branching network of channels converging on the basin floor. Using topographic cross-profiles of the channels we have found that they are set within broader, subtly-expressed, valleys. These valleys are shallow (around 15 m vertically compared to several kilometres in the horizontal) and have convex to rectilinear slope profiles that are consistent in form across the whole Rahway basin. Both channels and valleys descend and deepen consistently from west to east. The channels typically widen down-slope and increase in width at confluences. The morphology and topology of this channel system are consistent with formation by contributory fluid flow, generated from many distributed sources. The transition between the older heavily cratered terrain and the floor of the Rahway basin is bounded by near-horizontal continuous topographic terraces. Plotting the elevation of the terraces shows that they conform to a plane with a height difference of around 100 m east to west for the 300 km width of the Rahway basin. We calculate that the volume of material needed to fill the topography up to the level of the plane best fit by the terraces is ∼1500 km3. Bordering the channels are sinuous ridges, typically several kilometres long, 20 m across, with heights on the order of 10 m. They sometimes form branching networks leading into the channels, but also occur individually and parallel to the channels. The multiple tilted terraces, the channel/valley network with many fluvial-like characteristics, and the distributed source regions, suggest that the landforms within the Rahway basin are unlikely to have formed through purely volcanic processes. Rather, the channels within the Rahway basin are consistent with a genesis requiring the flow of liquid water, and the sinuous ridges with melting of a static ice body that occupied the basin. We suggest a hypothesis of rapid basin

  10. 3D Reconstruction of the Source and Scale of Buried Young Flood Channels on Mars

    NASA Astrophysics Data System (ADS)

    Morgan, Gareth A.; Campbell, Bruce A.; Carter, Lynn M.; Plaut, Jeffrey J.; Phillips, Roger J.

    2013-05-01

    Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (<500 million years old), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.

  11. 3D reconstruction of the source and scale of buried young flood channels on Mars.

    PubMed

    Morgan, Gareth A; Campbell, Bruce A; Carter, Lynn M; Plaut, Jeffrey J; Phillips, Roger J

    2013-05-03

    Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (<500 million years old), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.

  12. Bahram Vallis

    NASA Image and Video Library

    2018-04-27

    Today's VIS image shows a section of Bahram Vallis. This channel is located in northern Lunae Planum, south of Kasei Valles. Orbit Number: 71256 Latitude: 21.0762 Longitude: 301.486 Instrument: VIS Captured: 2018-01-06 08:51 https://photojournal.jpl.nasa.gov/catalog/PIA22379

  13. Mesoscale modeling of the water vapor cycle at Mawrth Vallis: a Mars2020 and ExoMars exploration rovers high-priority landing site

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2017-04-01

    Introduction: The Mars Regional Atmospheric Modeling System (MRAMS) was used to predict meteorological conditions that are likely to be encountered by the Mars 2020 (NASA) Rover at several of their respective proposed landing sites during entry, descent, and landing at Ls5 [1] and by the ExoMars (ESA) Rover at one of the final landing sites. MRAMS is ideally suited for this type of investigation; the model is explicitly designed to simu-late Mars' atmospheric circulations at the mesoscale and smaller with realistic, high-resolution surface proper-ties [2, 3]. One of the sights studied for both rovers was Mawrth Vallis (MV), an ancient water outflow channel with light colored clay-rich rocks in the mid-latitude north hemisphere (Oxia Palus quadrangle). MV is the northernmost of the Mars2020 and ExoMars landing sites and the closest to the northern polar cap water source. The primary source of water vapor to the atmosphere is the northern polar cap during the northern summer. In order to highlight MV habitability implications, additional numerical experiments at Ls90, 140 and 180, highest column abundance of water vapor is found over MV [4], were performed to study how the atmospheric circulation connects MV with the polar water source. Once the winter CO2 retreats, the underlying polar water ice is exposed and begins to sublimate. The water is transported equatorward where it is manifested in the tropical aphelion cloud belt. If transport is assumed to be the result of the summer Hadley Cell, then the polar water is carried aloft in the northern high latitude rising branch before moving equatorward and eventually toward the southern high latitudes. Thus, the mean meridional summer circulation precludes a direct water vapor connection between MV and the polar source. Around the equinoxes (Ls0 and Ls180), there is a brief transition period where the rising branch quickly crosses from one hemisphere into the other as it migrates to its more typical solstitial location

  14. Sedimentary geomorphology of the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Rice, James W., Jr.; Parker, Timothy Jay

    1997-01-01

    The first landing on Mars in over 20 years will take place July 4, 1997, near te mouth of the Ares Vallis outflow channel located in southeastern Chryse Planitia. Mars Pathfinder, unlike Viking 1, is expected to land on a surface that has a distinct and unambiguous fluvial signature.

  15. Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-05-01

    The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole

  16. Huo Hsing Vallis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 5 June 2002) The Science A portion of an ancient channel called the Huo Hsing Vallis seen in the center of this image. As with all channel forms on Mars, it was carved by some moving fluid but that fluid can not automatically be assumed to be water. Lava and even wind can sculpt channel forms that mimic those of flowing water. In this case, the presence of pronounced oxbow bends in the channel favors the conclusion that water was the fluid. It is interesting that the ripple-like ridges on the channel floor mimic current ripples found in many streams on Earth. But the fluid responsible for their formation likely is the wind. Similar ripples occur in many places on Mars that have no relationship to channels. Surrounding the channel is an intensely eroded landscape known as etched terrain. The many layers that were deposited in the past are now being eroded away by the wind. In the process, unusual polygonal ridges are being exposed, the most prominent of which appear just north of the oxbow bends. The mechanism by with they form is poorly understood. It is possible that they began as polygonal troughs similar in form and origin as those that form in permafrost regions on Earth like the Canadian Arctic. If the troughs were subsequently filled in by sediment that solidified into a more resistant deposit than the surrounding material, later erosion would leave behind ridges in place of the former troughs. Known as inverted topography, there are examples of this type of landform in other etched terrains on Mars. The Story For thousands of years, many cultures the world over have studied the planets, first by observing their motions in the night sky, later through telescopes, and today through up-close observation enabled by spacecraft. Many places on Mars are given names that honor the long history of contributions by all peoples to Mars exploration. Huo Hsing, the Chinese word for the planet Mars, is the namesake of the ancient channel shown above. As with all

  17. SHARAD Investigation of the Interaction Between Volcanism and Deep Water Release in Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Morgan, G. A.; Campbell, B. A.; Carter, L. M.; Plaut, J. J.

    2011-12-01

    Situated between the equator and 12°N and extending from 130° to 180°E, Elysium Planitia is considered to be the youngest volcanic plain on Mars. Recent crater counts on individual lava units argue for multiple phases of activity over the last 230 Myrs, with the most recent volcanic features dating to just ~2 Ma. The region also contains the youngest outflow channels on the planet. Multiple channel systems which are present across the region are interpreted to have been carved by the release of deep ground water (>1 km) from the broadly east-west trending Cerberus Fossae graben system. Elysium Planitia is therefore a region of high scientific interest, as it represents an ideal site to investigate the interaction of lava and water both below and on the surface of Mars. Extensive geologic mapping of Elysium Planitia has provided detailed information concerning the stratigraphy of the major volcanic units in addition to the classification of other landforms attributed to volcanic (e.g. small shields), fluvial (e.g. outflow channels) and aeolian (e.g. yardangs) activity. Orbital sounding radar provides a means to take this work to the next level through the mapping of buried surfaces associated with a contrast in dielectric permittivity and thus can be used to investigate the 3-D structure of the subsurface. Previous studies using the SHARAD radar sounder onboard the Mars Reconnaissance Orbiter have identified multiple subsurface reflectors below the plains of Elysium Planitia. We will present our investigation of SHARAD data covering the eastern portion of this region of Mars - an area that includes the upstream reaches of Marte Vallis and the eastern extent of Cerberus Fossae. Our subsurface mapping shows remarkable correlations with published geologic maps produced using visible orbital datasets. These similarities allow us to use SHARAD data to make estimates of the average permittivity values and imply density measurements of the volcanic units. We will

  18. Lobo Vallis

    NASA Image and Video Library

    2018-04-20

    Today's VIS image shows a small portion of Lobo Vallis near where it recombines with Kasei Valles and empties into Chryse Planitia. Kasei Valles is a huge channel system that drained the higher elevations of Tharsis into the low of Chryse Planitia. Orbit Number: 71206 Latitude: 28.9604 Longitude: 303.568 Instrument: VIS Captured: 2018-01-02 06:02 https://photojournal.jpl.nasa.gov/catalog/PIA22374

  19. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  20. A recent, equatorial, periglacial environment on Mars

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Gallagher, C.; Murray, J. B.; Muller, J.-P.

    2009-04-01

    During the Viking era, Mars' recent climatic history was held to be cold and dry with little evidence for long-lived liquid water near the surface; signs of a past wetter, warmer climate were confined to ancient Noachian or Hesperian-aged terrains. Recent missions have revealed contemporary near-surface water-ice to be abundant at high latitudes, and a population of mid-latitude fluvial-like gullies that appear to have formed by transient melting of ice or snow. Thus today's view of Mars' recent surface evolution is one of global permafrost existing within a framework of climate change, the timescales of which are governed by obliquity cycles with periods of tens to hundreds of thousands of years. However, in recent mapping work of the equatorial Elysium Planitia region using the latest very high resolution images of Mars (HiRISE; 25cm/pixel) we have found evidence for longer-lived, geologically recent liquid water at the martian surface. This suggests that there was a recent period when the climate was warmer than current obliquity cycle-based models predict. The Elysium Planitia region of Mars is both geologically young (late Amazonian period; <100 Ma) and hosts a variety of landforms that are morphologically similar to those of periglacial and permafrost environments on Earth. The region was exposed to massive flooding from deep underground sources during the late Amazonian, as demonstrated by the distinctive fluvial morphologies seen in the outflow channel Athabasca Vallis. These floods would have provided both the source of ice and particulate material required for a periglacial or permafrost landscape and there was probably a long-lived, but slowly freezing, lake or sea in the downstream Elysium basin. However, the provenance of the materials and landforms of this region is disputed: many authors still regard the Athabasca Vallis and Elysium basin as being flood lava provinces, with effusive volcanic materials reoccupying earlier flood landscapes (a classic

  1. Tinto Vallis Fluvial Channel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    <

    [figure removed for brevity, see original site]

    This night time IR image shows a small fluvial channel located near Tinto Vallis. These channels are northeast of Tyrrhena Patera and its related lava flows. Tyrrhena Patera is one of the larger volcanic complexs in the southern hemisphere of Mars. Small channels are easy to see in nighttime IR, with the cold channel floor (dark) contrasting from the warmer (bright) surroundings.

    NOTE: in nighttime images North is to the bottom of the image.

    Image information: IR instrument. Latitude -24.6, Longitude 349.7 East (10.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Investigating the volcanic versus aqueous origin of the surficial deposits in Eastern Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Voigt, Joana R. C.; Hamilton, Christopher W.

    2018-07-01

    The Elysium Volcanic Province consists of numerous overlapping flow units and may include the youngest lava flows on Mars. However, it is possible that these volcanic units have been modified or overprinted by aqueous processes. Understanding the timing of the igneous and aqueous events in this region is therefore essential for constraining the geological and environmental history of Mars during the Amazonian Period. We investigate the geologic evolution of Eastern Elysium Planitia to determine the relationship between major units, with the support of a geological map and chronological constraints from crater size-frequency distributions. We also evaluate the hypothesized origin of these units via volcanic, fluvial, and/or fluvioglacial processes using a detailed facies-mapping approach. The study area includes the Eastern Cerberus Fossae, Rahway Valles, and Marte Vallis. The surficial deposits in Rahway Valles were formerly interpreted to be modified by fluvial and fluvioglacial processes. However, our facies map reveals that the surface of Eastern Elysium Planitia includes nineteen morphologically distinct regions (i.e., facies), which are interpreted to be the products of flood lava volcanism, including: ´a´ā, pāhoehoe, and transitional lava flow types. In contrast to previous studies, which determined that Rahway Valles and Marte Vallis consist of two distinct geologic units with Middle to Late Amazonian ages, the results of this work show that the region was resurfaced by at least two volcanic flows with much younger ages of 20.0 Ma and 8.8 Ma. Furthermore, by coupling results of our geologic and facies mapping with chronological constraints as well as subsurface information provided by Shallow Radar reflectors, we show that there is an erosional unconformity located between the two youngest lava flow units in Marte Vallis. We interpret that this unconformity was generated by a catastrophic aqueous flooding event that occurred only 8.8 - 20.0 Ma ago. This

  3. Mars 2020 Candidate Landing Site in McLaughlin Crater

    NASA Image and Video Library

    2016-01-14

    McLaughlin Crater (21.9 N, 337.6 E) is a large, approximately 95-kilometer diameter impact crater located north of Mawrth Vallis, in Arabia Terra, a region that was made famous by the book and movie "The Martian" by Andy Weir. McLaughlin Crater straddles three major terrain types: the Northern lowlands, the Southern highlands and the Mawrth Vallis region. The crater floor is thought to be covered by clays and carbonates that were deposited in a deep lake at least 3.8 billion years ago perhaps by ground water upwelling from beneath the crater floor (Michalski et al., 2013, Nature Geoscience). McLaughlin Crater is listed as a candidate landing site for the 2020 Mars surface mission. Although it is described as a "flat, low-risk and low-elevation landing zone," the region in this image on the southern floor of the crater shows a complex surface of eroded layers that are rough in places. An unusual feature is a straight fracture cutting diagonally across the layered material at the bottom portion of the image that may be a fault line. http://photojournal.jpl.nasa.gov/catalog/PIA20338

  4. Fluvial processes in Ma'adim Vallis and the potential of Gusev crater as a high priority site

    NASA Technical Reports Server (NTRS)

    Cabrol, Nathalie; Landheim, Ragnild; Greeley, Ronald; Farmer, Jack

    1994-01-01

    According to exobiology site selection criteria for Mars, the search for potential extinct/extant water dependent life should focus on sites were water flowed and ponded. The Ma'adim Vallis/Gusev crater system is of high priority for exobiology research, because it appears to have involved long term flooding, different periods and rates of sedimentation, and probable episodic ponding. The topics covered include the following: evidence of nonuniform fluvial processes and early overflooding of the plateau and ponding.

  5. Clay Bearing Units in the Region around Mawrth Vallis: Stratigraphy, Extent, and Possible Alteration Fronts

    NASA Technical Reports Server (NTRS)

    Dobrea, E. Z. Noe; Bishop, J. L.; McKeown, N. K.; Swayze, G.; Michalski, J. R.; Poulet, F.; Bibring, J.-P.; Mustard, J. F.; Ehlmann, B. L.; Arvidson, R.; hide

    2007-01-01

    The largest exposure of phyllosilicates on Mars occurs on the highland plains around Mawrth Vallis. This exposure extends for about 300 km southward from the edge of the dichotomy boundary, covering an area greater than 200 x 300 kilometers over an elevation range of approximately 2000 meters. At least two different types of hydrated phyllosilicates (Fe/Mg-rich and Al-rich phyllosilicates) have been identified in OMEGA data based on absorption bands near 2.3 and 2.2 micrometers, respectively. These clay-bearing units are associated with layered, indurated light-toned units with complex spatial and stratigraphic relationships, and are unconfomably overlain by a darker, indurated, more heavily cratered unit. Ongoing analysis of OMEGA (approximately 1 kilometer/pixel) and CRISM multi-spectral (MSP, 200 meters/pixel) data reveal hydrated minerals with absorptions at approximately 2.2 or 2.3 micrometers in locations up to 300 kilometers away from the borders of the previously identified extent of clay-bearing units. We seek to: 1) further constrain the mineralogy of the hydrated species identified in [5], and 2) understand spatial and stratigraphic relationships between the different hydrated minerals and the cratered plains units in which they are found. In this work we perform mineralogical and stratigraphic comparisons between units to test whether these extended units may be related, in order to establish a broad zone of alteration.

  6. Application of VitaVallis dressing for infected wounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirilova, N. V., E-mail: n.kirilova@vitavallis.com; Fomenko, A. N., E-mail: alserova@ispms.tsc.ru; Korovin, M. S., E-mail: msk@ispms.tsc.ru

    Today there is a growing demand for safe and efficient antimicrobial dressings for infected wound treatment. The antimicrobial sorption material for VitaVallis dressings was produced by one-stage oxidation of aluminum nanopowder in water in the presence of fibrous acetylcellulose matrix. Scanning electron microscopy revealed that the material is made up of fibers of diameter 1.5–3.0 µm with adhered agglomerated alumina nanosheets. An antimicrobial study revealed a high inhibitory effect of VitaVallis against the growth of gram-negative (E.coli, P. aeruginosa) and gram-positive (S. aureus) strains. The antimicrobial activity of the dressing against microbial pathogens on the wound surface was demonstrated in inmore » vivo experiments on male rats. The dressing was also tested on volunteer patients. The testing showed reduction of the wound healing period, accelerated cleaning of the infected wound and enhanced tissue regeneration in the wound. The results demonstrate that the VitaVallis dressing can be used for the treatment of deep infected wounds.« less

  7. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin

    USGS Publications Warehouse

    Noe Dobrea, E.Z.; Bishop, J.L.; McKeown, N.K.; Fu, R.; Rossi, C.M.; Michalski, J.R.; Heinlein, C.; Hanus, V.; Poulet, F.; Mustard, R.J.F.; Murchie, S.; McEwen, A.S.; Swayze, G.; Bibring, J.-P.; Malaret, E.; Hash, C.

    2010-01-01

    Analyses of MRO/CRISM images of the greater Mawrth Vallis region of Mars affirm the presence of two primary phyllosilicate assemblages throughout a region ∼1000 × 1000 km. These two units consist of an Fe/Mg-phyllosilicate assemblage overlain by an Al-phyllosilicate and hydrated silica assemblage. The lower unit contains Fe/Mg-smectites, sometimes combined with one or more of these other Fe/Mg-phyllosilicates: serpentine, chlorite, biotite, and/or vermiculite. It is more than 100 m thick and finely layered at meter scales. The upper unit includes Al-smectite, kaolin group minerals, and hydrated silica. It is tens of meters thick and finely layered as well. A common phyllosilicate stratigraphy and morphology is observed throughout the greater region wherever erosional windows are present. This suggests that the geologic processes forming these units must have occurred on at least a regional scale. Sinuous ridges (interpreted to be inverted channels) and narrow channels cut into the upper clay-bearing unit suggesting that aqueous processes were prevalent after, and possibly during, the deposition of the layered units. We propose that layered units may have been deposited at Mawrth Vallis and then subsequently altered to form the hydrated units. The Fe/Mg-phyllosilicate assemblage is consistent with hydrothermal alteration or pedogenesis of mafic to ultramafic rocks. The Al-phyllosilicate/hydrated silica unit may have formed through alteration of felsic material or via leaching of basaltic material through pedogenic alteration or a mildly acidic environment. These phyllosilicate-bearing units are overlain by a darker, relatively unaltered, and indurated material that has probably experienced a complex geological history.

  8. Multispectral Imaging from Mars PATHFINDER

    NASA Technical Reports Server (NTRS)

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  9. Ma'adim Vallis From the Top

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a still from an animation showing the geography of Ma'adim Vallis, a valley or channel that enters Gusev Crater. The view of the crater is from the northwest, which is not the direction from which Spirit approached the crater as it landed.

  10. Mineralogy of Layered Outcrops at Mawrth Vallis and Implications for Early Aqueous Geochemistry on Mars

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Gross, C.; Rampe, E. B.; Wray, J. J.; Parente, M.; Horgan, B.; Loizeau, D.; Viviano-Beck, C. E.; Clark, R. N.; Seelos, F. P.; hide

    2016-01-01

    Recently developed CRISM parameters and newly available DTMs are enabling refined characterization of the mineralogy at Mawrth Vallis. A stratigraphy including 5 units is mapped using HRSC DTMs across 100s of kms and using HiRISE DTMs across 100s of meters. Transitions in mineralogic units were characterized using spectral properties and surface morphology. The observations point to an ancient wet and warm geologic record that formed the thick nontronite unit, a period of wet/dry cycling to create acid alteration, followed by leaching or pedogenesis to result in Al-phyllosilicates, and finally a drier, colder climate that left the altered ash in the form of nanophase aluminosilicates, rather than crystalline clays.

  11. Age of large volcanism to originate the Vallis Schroteri on the Moon

    NASA Astrophysics Data System (ADS)

    Honda, Chikatoshi; Toguchi, Masashi; Morota, Tomokatsu; Hirata, Naru; Demura, Hirohide; Asada, Noriaki; Kitazato, Kohei; Ogawa, Yoshiko; Terazono, Jun-Ya; Haruyama, Junichi

    The Vallis Schrüteri on the Aristarchus Plateau of the Moon is a meandering negative depres-o sion, as called a sinuous rille. The sinuous rille is located at 26.2 N deg. in latitude and 50.8 W deg. in longitude. This is the largest sinuous rille on the moon, which is 168 km in length, 6 km in width, and 500 m on average in depth (less than 1 km) [Honda et al., 2009]. The sinuous rille has been suggested that the negative depression was produced by an ancient huge lava flow which eroded into the substrate ground. The volume of lava flow to produce the negative depression seemed to be the largest among volcanisms on the Moon. However, an age of this volcanic event is not estimated yet. Therefore, it is important to estimate the formation age of the Vallis Schrüteri for understanding of thermal evolution of the Moon. We utilize the crater chronology method using the crater size-frequency distribution for the age estimation of the sinuous rille, because the ability of suitable high resolution images of Kaguya/TC lead us to measure an accurate diameter of small craters in the sinuous rille. We should remove secondary craters from our measurements to acquire more accurate age estimation. There is the Aristarchus crater, 40 km in diameter, nearby the Vallis Schrüteri, so we eliminated the area blanketed by ejecta from the crater by using the Clementine and Kaguya/MI data and carefully remove the secondary craters showing the herringbone, cluster, chains, and elongated characteristics. We examined areas of the floor of the Vallis Schrüteri, and of southwestern outside of the Aristarchus Plateau which is suspected as the lava pond to produce the Vallis Schrüteri by spectral data. If these areas are originated by same lava flow, no difference of the results of age estimation among the areas. As a result, we estimated the formation age of the floor part of the Vallis Schrüteri, as 2.5 (+0.4, -0.4) Ga, and the age of the lava pond, as 3.1 (+0.3, -0.7) Ga. The results

  12. Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Muhleman, D. O.; Pettengill, G. H.; Phillips, R. J.; Solomon, S. C.; Zwally, H. J.; hide

    1998-01-01

    The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris.

  13. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    NASA Technical Reports Server (NTRS)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  14. Relative Time-scale for Channeling Events Within Chaotic Terrains, Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Janke, D.

    1985-01-01

    A relative time scale for ordering channel and chaos forming events was constructed for areas within the Margaritifer Sinus region of Mars. Transection and superposition relationships of channels, chaotic terrain, and the surfaces surrounding them were used to create the relative time scale; crater density studies were not used. Channels and chaos in contact with one another were treated as systems. These systems were in turn treated both separately (in order to understand internal relationships) and as members of the suite of Martian erosional forms (in order to produce a combined, master time scale). Channeling events associated with chaotic terrain development occurred over an extended geomorphic period. The channels can be divided into three convenient groups: those that pre-date intercrater plains development post-plains, pre-chasma systems; and those associated with the development of the Vallis Marineris chasmata. No correlations with cyclic climatic changes, major geologic events in other regions on Mars, or triggering phenomena (for example, specific impact events) were found.

  15. Ancient Martian Lakestands and Fluvial Processes in Iani Chaos: Geology of Light-Toned Layered Deposits and their Relationship to Ares Vallis Outflow Channels

    NASA Astrophysics Data System (ADS)

    Guallini, Luca; Gilmore, Martha; Marinangeli, Lucia; Thomas, Nicolas

    2015-04-01

    Iani Chaos is a ~30,000 square kilometers region that lies at the head of the Ares Vallis outflow channel system. Mapping of Ares Vallis reveals multiple episodes of erosion, probably linked to several discharge events from the Iani Chaos aquifer. We present the first detailed geomorphological map of the Iani region. Five chaos units have been distinguished with varying degrees of modification (primarily by erosion and fracturing), starting from a common terrain (Noachian highlands). We observe a general progressive decrease of their mean elevation from the Mesas, Mesas & Knobs and Hummocky (Hy) terrains to the Knobs and Knobby morphologies. This trend is consistent with an initial collapse of the original surface with an increase of the fracturing and/or of the erosion. Light-toned Layered Deposits (LLD) have been also mapped and described in Iani Chaos. These terrains are clearly distinguished by a marked light-toned albedo, high thermal inertia and a pervasively fractured morphology. LLD both fill the basins made by the collapsed chaotic terrains and are found to be partially modified by the chaos formation. LLD also overlap chaos mounds or are themselves eroded into mounds after deposition. These stratigraphic relationships demonstrate that LLD deposition occurred episodically in the Iani region and throughout the history of the development of the chaos. Water seems to have had an active role in the geological history of Iani. The composition and morphologies of the LLD are consistent with deposition in an evaporitic environment and with erosion by outflows, requiring stable water on the surface. For the first time, we have also mapped and analyzed potential fluvial features (i.e., channels, streamlined islands, terraces, grooved surfaces) on the surface of the LLD. These landforms describe a fluvial system that can be traced from central Iani and linked northward to Ares Vallis. Using topographic data, we have compared the elevation of the LLD and channel

  16. Report of the COSPAR mars special regions colloquium

    USGS Publications Warehouse

    Kminek, G.; Rummel, J.D.; Cockell, C.S.; Atlas, R.; Barlow, N.; Beaty, D.; Boynton, W.; Carr, M.; Clifford, S.; Conley, C.A.; Davila, A.F.; Debus, A.; Doran, P.; Hecht, M.; Heldmann, J.; Helbert, J.; Hipkin, V.; Horneck, G.; Kieft, Thomas L.; Klingelhoefer, G.; Meyer, M.; Newsom, H.; Ori, G.G.; Parnell, J.; Prieur, D.; Raulin, F.; Schulze-Makuch, D.; Spry, J.A.; Stabekis, P.E.; Stackebrandt, E.; Vago, J.; Viso, M.; Voytek, M.; Wells, L.; Westall, F.

    2010-01-01

    In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 ??C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis. ?? 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. The Northwestern Slope Valleys Region, Mars: A Prime Target for the Future Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Dohm, J. M.; Ferris, J. C.; Anderson, R. C.; Baker, V. R.; Hare, T. M.; Mahaney, W. C.

    2002-12-01

    Mars is a water-enriched planet theorized to have had Earth-like conditions during its embryonic stages of evolution (Early into Middle Noachian or > 3.8 GA). The Earth-like conditions include: (1) plate tectonism, (2) an active hydrosphere resulting in higher erosion rates and the presence of layered sedimentary deposits, and (3) a potential biosphere. Due to its smaller size and lower gravity, its thermal energy rapidly declined, sending the planet into a permanent monoplate regime. The Tharsis superplume, Elysium superplume, and structural discontinuities in the lithosphere are sites of long-lived energy releases and hydrothermal activity. Furthermore, as its atmosphere thinned and cooled, and water was lost to hydrodynamic escape, the Earth-like hydrological cycle transitioned into a persisting cold desert climate, approximating the present-day climate of the Dry Valleys in Antarctica. Stratigraphic, hydrogeomorphic, and paleotectonic information indicate an active Mars (e.g., late-stage superplume activity) that experienced punctuated periods of magmatic-driven hydrologic activity long after the Earth-like hydrologic regime had ended. Existing geologic, geomorphic, geophysical, topographic, impact cratering, spectral, and elemental information collectively point to a prime target site for future exploration that has the potential to yield significant geologic, paleoclimatic, paleohydrologic, and exobiologic information. The Northwestern Slope Valleys (NSVs) region archives traits similar to terrestrial field sites where the processes associated with: (1) fluvial, eolian, and hydrothermal activity, (2) modification due to landslides and glaciers, and (3) the formation of diverse rock assemblages (e.g., provenances include Noachian Thaumasia highlands mountain range and Europe-sized sedimentary basin and Noachian-Amazonian basaltic and possibly silica-enriched volcanoes and lava flow fields) are recorded. The region is especially remarkable since it encapsulates

  18. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  19. Ripple Trap

    NASA Image and Video Library

    2006-04-03

    This Mars Global Surveyor MGS Mars Orbiter Camera MOC image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples

  20. Arecibo radar imagery of Mars: II. Chryse-Xanthe, polar caps, and other regions

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, Michael C.

    2017-01-01

    We conclude our radar imaging survey of Mars, which maps spatial variations in depolarized radar reflectivity using Arecibo S-band (λ12.6 cm) observations from 2005-2012. Whereas our earlier paper (Harmon et al., 2012, Arecibo radar imagery of Mars: the major volcanic provinces. Icarus 220, 990-1030) covered the volcanic regions of Tharsis, Elysium, and Amazonis, this paper includes non-volcanic regions where hydrologic and impact processes can be the dominant resurfacing agents affecting radar backscatter. Many of the more prominent and interesting radar-bright features outside the major volcanic provinces are located in and around Chryse Planitia and Xanthe Terra. These features are identified with: a basin in northeast Lunae Planum containing the combined deposits from Maja Vallis and Ganges Catena outflows; channel outwash plains in western and southern Chryse basin; plateaus bordering chasma/chaos zones, where surface modification may have resulted from hydrologic action associated with incipient chaos formation; and some bright-ejecta craters in Chryse basin, of a type otherwise rare on Mars. Dark-halo craters have also been identified in Chryse and elsewhere that are similar to those seen in the volcanic provinces. Although the cratered highlands are relatively radar-bland, they do exhibit some bright depolarized features; these include eroded crater rims, several unusual ejecta flows and impact melts, and terrain-softened plains. The rims of large impact basins (Hellas, Argyre, Isidis) show a variety of radar-bright features provisionally identified with massif slopes, erosion sediments, eroded pyroclastics, impact melts, and glacial deposits. The interiors of these basins are largely radar-dark, which is consistent with coverage by rock-free sediments. Tempe Terra and Acheron Fossae show bright features possibly associated with rift volcanism or eroded tectonic structures, and northwest Tempe Terra shows one very bright feature associated with glacial or

  1. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  2. Streamlined Island

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-514, 15 October 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a streamlined island in Marte Vallis, a large outflow channel system that crosses the 180oW meridian between the Elysium and Amazonis regions of Mars. The flow patterns on the floor of Marte Vallis might be the remains of lava flows or mud flows. Marte is the Spanish word for Mars. Most of the largest valleys on the red planet are named for 'Mars' in various languages. This island is located near 21.8oN, 175.3oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  3. Visualization of Buried Marte Vallis Channels

    NASA Image and Video Library

    2013-03-07

    This illustration schematically shows where the Shallow Radar instrument on NASA Mars Reconnaissance Orbiter detected flood channels that had been buried by lava flows in the Elysium Planitia region of Mars.

  4. Northwestern Branch of Mangala Vallis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 12 June 2002) The Science One of the many branches of the Mangala Vallis channel system is seen in this image. The water that likely carved the channels emerged from a huge graben or fracture almost 1000 km to the south. The THEMIS image shows where one of the channels exits the cratered highlands terrain onto the lowland plains. A bright scarp marks the transition between the two terrain types and demonstrates that in this location the highlands terrain is being eroded back. Note how the floor of the main channel appears to be at the same level as the lowland terrain, suggestive of a base level where erosion is no longer effective. Most of the steep slope faces in the image display darker slope streaks that are thought to be dust avalanche scars and indicate that a relatively thick mantle of dust is present in this region. Wind-sculpted ridges known as yardangs cover many of the surfaces throughout the area as shown by images from the Mars Global Surveyor mission. Most of them are at the limit of resolution in the THEMIS image but some are evident on the floor of the main channel at the point at which a smaller side channel enters. In this location they appear to extend right up to the base of the channel wall, giving the appearance that they are emerging from underneath the thick pile of material into which the channel is eroded. This suggests a geologic history in which a preexisting landscape of eroded yardangs was covered over by a thick pile of younger material that is now eroding back down to the original level. Alternatively, it is possible that the yardangs formed more recently at the abrupt transition between the channel floor and wall. More analysis is necessary to sort out the story. The Story This channel system is named 'Mangala,' the word for Mars in Sanskrit, a language of the Hindus of India that goes back more than 4,000 years, with written literature almost as long. Great epic tales have been written in this language, and Odyssey is

  5. A Streamlined Form in Lethe Vallis

    NASA Image and Video Library

    2016-09-08

    This image shows a portion of Lethe Vallis, an outflow channel that also transported lava. Another investigation of this area (Balme et al., 2011) discovered a repeat pattern of dune-like forms in the channel interpreted as fluvial dunes (or, giant current ripples) which are dunes formed by flowing water. This is one of only a few places on Mars where these pristine-appearing landforms have been identified. The channel formed by catastrophic floods, during which it produced the prominent crater-cored, teardroped-shaped island in the middle. The island has the blunter end pointing upstream and the long tail pointing downstream. Both the island and the fluvial dunes were formed by these extreme floods and their size is an indicator of the enormous discharges required to create them. The margins of the channel also show the terminal front of a pristine lava flow unit that inundated the channel from the south and the dunes show the remnants of another older lava flow. The top of the island displays polygonal patterned ground texture, which is a characteristic of periglacial processes in ice-rich ground. The dark materials from the channel and island walls are probably dark sand being eroded from an underlying horizontal basaltic (lava) layer. The crater at the core of the island has elongated dunes and reticulate dust ridges inside. This single image thus contains features formed by periglacial, volcanic, fluvial, impact, aeolian and mass wasting processes, all in one place. http://photojournal.jpl.nasa.gov/catalog/PIA21039

  6. Resurfacing event observed in Morpheos basin (Eridania Planitia) and the implications to the formation and timing of Waikato and Reull Valles, Mars

    NASA Astrophysics Data System (ADS)

    Kostama, V.-P.; Kukkonen, S.; Raitala, J.

    2017-06-01

    The large scale outflow channels of the Hellas impact basin are characteristic to its eastern rim region. Although the majority of the valles are located in the large-scale topographic trough connecting Hesperia Planum and Hellas basin, the most far-reaching of them, Reull Vallis is situated to the south-southeast of this trough cutting through Promethei Terra. Reull Vallis and the general geology of the region has been studied in the past, but new higher resolution image data enables us to look into the details of the features implicating the fluvial history of the region. Photogeological mapping using the available data and extensive crater counting utilizing CTX, HiRISE and HRSC provided new insights to the timing of the regional events and episodes. The study resulted in more detailed age constraints compared to the previous results from Viking images. These calculations and the geological study of the upper WMR system (Waikato Vallis - Morpheos basin - Reull Vallis) region and southern Hesperia Planum enabled us to estimate the time-frame of the (fluid) infilling of this reservoir to a model time period of 3.67-3.52 Ga which is thus also the time of the visible activity of the upper Reull Vallis and Waikato Vallis outflow channels. The results also more explicitly defined the size of previously identified Morpheos basin (confined to the 500-550 m contour lines). We also present a geological analysis of the upper parts of the WMR system, and using the observations and calculations, present an updated view of the evolution of the system and associated region.

  7. Authentic Mars Research in the High School

    NASA Astrophysics Data System (ADS)

    Kortekaas, Katie; Leach, Dani

    2015-01-01

    As a 11th and 12th grade Astrobiology class we were charged with developing a scientific research question about the potential for life on Mars. We narrowed our big picture question to, 'Where should the next Mars rover land in order to study the volcanic and water features to find evidence of past or present extremophiles on Mars?'After a lot of searching through images on JMARS (although not extensive due to high school time constraints) we narrowed our interest to three areas of Mars we thought could be good candidates to land a rover there to do further research. We know from extremophiles on Earth that microscopic life need water and energy. It seems reasonable that Mars would be no different. We developed a research question, 'Does Kasei Valles, Dzigai Vallis and Hecate Tholus have volcanic features (lava flow, fractures, volcanoes, cryovolcanoes) and water features (layers of ice, hematite, carbonate, chaos)?'This question is important and interesting because by having a deeper understanding of whether these places have evidence of volcanic and water features, we will be able to decide where the best place to land a future rover would be. Evidence of volcanic and water features are important to help determine where to land our rover because in those areas, temperatures could have been warm and the land could be wet. In these conditions, the probability of life is higher.We individually did research through JMARS (CTX, THEMIS) in order to establish if those three areas could contain certain land features (volcanic and water features) that could possibly lead to the discovery of extremophiles. We evaluated the images to determine if the three areas have evidence of those volcanic and water features.Although we are not experts at identifying features we believe we have evidence to say that all three areas are interesting, astrobiologically, but Dzigai Vallis shows the most number of types of volcanic and water features. More importantly, through this process we

  8. Lunar and Planetary Science XXXV: Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars" included the following reports:Tentative Theories for the Long-Term Geological and Hydrological Evolution of Mars; Stratigraphy of Special Layers Transient Ones on Permeable Ones: Examples from Earth and Mars; Spatial Analysis of Rootless Cone Groups on Iceland and Mars; Summer Season Variability of the North Residual Cap of Mars from MGS-TES; Spectral and Geochemical Characteristics of Lake Superior Type Banded Iron Formation: Analog to the Martian Hematite Outcrops; Martian Wave Structures and Their Relation to Mars; Shape, Highland-Lowland Chemical Dichotomy and Undulating Atmosphere Causing Serious Problems to Landing Spacecrafts; Shear Deformation in the Graben Systems of Sirenum Fosssae, Mars: Preliminary Results; Components of Martian Dust Finding on Terrestrial Sedimentary Deposits with Use of Infrared Spectra; Morphologic and Morphometric Analyses of Fluvial Systems in the Southern Highlands of Mars; Light Pattern and Intensity Analysis of Gray Spots Surrounding Polar Dunes on Mars; The Volume of Possible Ancient Oceanic Basins in the Northern Plains of Mars MARSES: Possibilities of Long-Term Monitoring Spatial and Temporal Variations and Changes of Subsurface Geoelectrical Section on the Base; Results of the Geophysical Survey Salt/Water Interface and Groundwater Mapping on the Marina Di Ragusa, Sicily and Shalter Island, USA ;A Miniature UV-VIS Spectrometer for the Surface of Mars; Automatic Recognition of Aeolian Ripples on Mars; Absolute Dune Ages and Implications for the Time of Formation of Gullies in Nirgal Vallis, Mars; Diurnal Dust Devil Behaviour for the Viking 1 Landing Site: Sols 1 to 30; Topography Based Surface Age Computations for Mars: A Step Toward the Formal Proof of Martian Ocean Recession, Timing and Probability; Gravitational Effects of Flooding and Filling of Impact Basins on Mars; Viking 2 Landing Site in MGS/MOC Images South Polar Residual Cap of Mars: Features, Stratigraphy, and Changes.

  9. Mars: Stratigraphy of Western Highlands and Polar Regions

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.

    1985-01-01

    Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.

  10. No Mystery! Water Carved the Outflow Channels on Mars

    NASA Astrophysics Data System (ADS)

    Coleman, N.

    2002-12-01

    The enormous outflow channels of Chryse Planitia provide the best evidence that large amounts of water were once released onto the martian surface. The role of water has recently been challenged by the White Mars hypothesis, which claims that the channels were cut by CO2 gas-supported debris flows that also resurfaced the northern plains. Hoffman [Icarus, 2000] refers to a volumetric "misfit" between outburst channels and the chaos source zones. He explains that chaos collapse "...involves regolith alone which generates its own fluids from liquid CO2 and CO2-bearing ices within its own volume." Hoffman [LPSC 32, #1257] argues that release of liquid CO2 produced Aromatum Chaos, and a hypothetical energetic "jet" of gas and debris carved Ravi Vallis. He notes that water would have had to be locally recharged in many episodes to provide enough discharge to form the chaos and channel. However, these assertions appear incorrect because the fluid source was a distant surface impoundment, not local recharge. Carr [Water on Mars, 1996] describes a 400-km-long zone of subsidence that extends northward from Ganges Chasma to the source of Shalbatana Vallis. MOLA data reveal that this subsidence also extends eastward to Aromatum Chaos, the source of Ravi Vallis. The field relations show that a liquid-filled impoundment in Ganges Chasma drained northward via subterranean flowpaths to maintain surface flows in Shalbatana and Ravi Valles. The fact that the flows began at a surface impoundment virtually eliminates liquid CO2 as the flowing agent. Liquid CO2 would not be stable at the surface unless the atmospheric pressure exceeded 5 atm. A recent study by Stewart and Nimmo [JGR, in press] suggests that CO2 in liquid, solid, or clathrate form could not be preserved within the crust over geologic time. Liquid water is much closer to its stability field even on present-day Mars. Large outflow channels, such as Kasei and Tiu-Simud Valles, likely formed through the release of

  11. ExoMars 2018: the four final candidate Landing Sites

    NASA Astrophysics Data System (ADS)

    Loizeau, Damien; Flahaut, Jessica; Vago, Jorge L.; Hauber, Ernst; Bridges, John C.

    2015-04-01

    December 2014. The Aram Dorsum site comprises Noachian layered sedimentary rocks with a prominent inverted channel system (>80 km long). Potential targets include the inverted channel, the channel margins, a channel transition unit, and pits present within the floodplain. The Hypanis Vallis site lies near two fluvial fan/deltaic systems at the termination of Hypanis and Sabrina Valles. Potential targets include mainly outcrops of expected fine-grained sediments on the smooth transition unit that surrounds the delta/fan, and units around the rim of Magong crater. The Mawrth Vallis site contains one of the largest exposures of phyllosilicates detected on the Martian surface, in Noachian terrain [8]. Potential targets include the mineralogically diverse clay-rich outcrops and ancient channels. The Oxia Planum site lies on Fe/Mg phyllosilicates-rich exposures associated to layered rocks that may be related to the Mawrth Vallis sequence. Potential targets include the clay-rich outcrops as well as channels and inverted channels and delta-fan deposits. New data are being actively acquired by the HiRISE, CRISM and HRSC teams to support the ExoMars 2018 landing site selection process. The ellipses are large and new data are important for characterizing the potential targets and evaluating the safety of the sites. The proposing teams, the ExoMars project team and the LSSWG will continue their analysis and comparison of the sites, aiming to complete the certification of at least one site by September 2016 -- in time for the start of the mission's Critical Design Review (CDR). The final selection of the landing site is expected within 2017. References: [1] http://exploration.esa.int/mars/48088-mission-overview/ [2] http://exploration.esa.int/mars/53462-call-for-exo mars-2018-landing-site-selection/ [3] ExoMars 2018 LSSWG recommendation: http://exploration.esa.int/mars/54707-recommendation-for-the-narrowing-of-exomars-2018-landing-sites/

  12. New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Banks, M.; Buczkowski, D.

    2010-01-01

    The primary objective of the mapping effort is to produce a geologic map of the Argyre basin and surrounding region at 1:5,000,000 scale in both digital and print formats that will detail the stratigraphic and crosscutting relations among rock materials and landforms (30 deg. S to 65 deg. S, 290 deg. E to 340 deg E). There has not been a detailed geologic map produced of the Argyre region since the Viking-era mapping investigation. The mapping tasks include stratigraphic mapping, crater counting, feature mapping, quantitative landform analysis, and spectroscopic/ stratigraphic investigation feature mapping. The regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impactrelated modification, and the southeast margin of the Thaumasia plateau using important new data sets from the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter. The geologic information unfolded by this new mapping project will be useful to the community for constraining the regional geology, paleohydrology, and paleoclimate, which includes but is not limited to the assessment of: (1) whether the Argyre basin contained lakes, (2) the extent of reported flooding and glaciation, (3) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor, and (4) the extent of Argyre-related tectonism and its influence on the surrounding regions.

  13. Streamlined Island

    NASA Image and Video Library

    2014-04-15

    This image from NASA 2001 Mars Odyssey spacecraft shows a streamlined island in a broad channel in Chryse Planitia. The channel is part of the outflow region of Lobo Vallis, a northern branch of Kasei Valles.

  14. The discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.; ,

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia–Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas.

  15. Discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia-Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas. ?? 2009 The Geological Society of America.

  16. Smectite deposits in Marathon Valley, Endeavour Crater, Mars, identified using CRISM hyperspectral reflectance data

    NASA Astrophysics Data System (ADS)

    Fox, V. K.; Arvidson, R. E.; Guinness, E. A.; McLennan, S. M.; Catalano, J. G.; Murchie, S. L.; Powell, K. E.

    2016-05-01

    The ~100 m wide Marathon Valley crosscuts the Cape Tribulation rim segment of the 22 km diameter, Noachian-age Endeavour impact crater on Mars. Single-scattering albedo spectra retrieved from three Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) Full-Resolution Targeted (FRT, regularized to 18 m/pixel) and two Along Track Oversampled (ATO, regularized to 12 m/pixel) observations indicate the presence of Fe3+-Mg2+ smectite exposures located in Marathon Valley with combination vibration metal-OH absorption strength comparable to smectite spectral signatures in Mawrth Vallis. The Opportunity rover was directed to the exposures and documented the presence of Shoemaker formation impact breccias that have been isochemically altered, likely by fracture-controlled aqueous fluids.

  17. Medusae Fossae-Elysium Region, Mars: Depression in the HEND/Odyssey Map of Mars Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Litvak, M. L.; Mitrofanov, I. G.; Boynton, W.; Saunders, R. S.

    2003-01-01

    The first data from the Gamma Ray Spectrometer (GRS) onboard Mars Odyssey spacecraft showed that the low neutron fluxes characterize both subpolar regions of Mars. The low neutron fluxes mean the presence of hydrogen-rich soils and have been interpreted as an indication on abundant water ice in these areas. The equatorial region of Mars (equatorward of approx. 50 deg) is characterized by higher fluxes of both epithermal (0.4 eV-100 keV, come from depth 1-2 m) and fast (3.4-7.3 MeV, come from depth 0.2-0.3 m) neutrons meaning that this area is mostly dry. The pattern of distribution of the neutron fluxes is in a good agreement with the theoretical predictions on the stability of ground ice on present Mars. The actual distribution of the ice, however, depends on variations of thermal inertia of soils and albedo of the surface. The flux of the epithermal neutrons detected by the HEND instrument, which is part of GRS, has two noticeable depressions in the equatorial region, one in Arabia Terra and another in the Medusae Fossae-Elysium region (MFER). Here we present the initial results of analysis of characteristics of the neutron fluxes and regional geological setting of the epithermal neutron depression in this area. The main goal of our study was to put some constraints on the time of the anomaly formation and to assess possible form of hydrogen (ground ice vs. chemically bound water) there.

  18. Recurring slope lineae in equatorial regions of Mars

    USGS Publications Warehouse

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  19. Characterisation of sites of astrobiology interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D. E. S.; Monaghan, E. P.; Foing, B. H.

    2009-04-01

    priority sites and a safe-haven. The sites chosen are Mawrth Vallis (21.6°N, 344.0°E) and Vernal Crater (5.9°N, 355.3°E), and a safe-haven in Eastern Meridiani (0° N, 3.7°E). The entire length of Mawrth Vallis is of interest, not least because the source is unknown. It doesn't begin in chaotic terrain like the majority of outflow channels. Weathered phyllosilicates are prevalent and their variety, concentration and surface area are currently unmatched compared to anywhere on Mars. They exist in layered outcrops. Structures in Vernal Crater are strongly suggestive of spring deposits, which would have a high potential for preservation of biosignatures. Other key features of interest at this site include probable lake-shore and regional fluvial deposits, lacustrine layers and evidence of methane activity. Eastern Meridiani has been nominated as a potential safe-haven. The science interest of this site includes many diverse layers, evidence of phyllosilicates, and excavation of underlying material by cratering. General references: G. Neukum, R. Jaumann et al., HRSC: The High Resolution Stereo Camera of Mars Express, in Mars Express: The scientific payload, edited by A. Wilson, pp. 17-35, ESA, Noordwijk, The Netherlands, 2004; R. Jaumann, G. Neukum, T. Behnke, T.C. Duxburry, K. Eichentopf, S. van Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.D; Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiß, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch, and the HRSC; Co-Investigator Team: The High Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary; Cruise through Nominal Mission, Planetary and Space Science, 55, 928-952, 2007.

  20. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  1. Surface properties of the Mars Science Laboratory candidate landing sites: characterization from orbit and predictions

    USGS Publications Warehouse

    Fergason, R.L.; Christensen, P.R.; Golombek, M.P.; Parker, T.J.

    2012-01-01

    This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410 J m-2 K-1 s-1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475 J m-2 K-1 s-1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310 J m-2 K-1 s-1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500 J m-2 K-1 s-1/2), suggesting physical properties that are also similar.

  2. Constraints on the Martian cratering rate imposed by the SNC meteorites and Vallis Marineris layered deposits

    NASA Technical Reports Server (NTRS)

    Brandenburg, J. E.

    1993-01-01

    Following two independent lines of evidence -- estimates of the age and formation time of a portion of the Martian geologic column exposed in the layered deposits and the crystallization and ejection ages of the SNC meteorites -- it appears that the Martian cratering rate must be double the lunar rate or even higher. This means models such as NHII or NHIII (Neukum and Hiller models II and III), which estimate the Martian cratering rate as being several times lunar are probably far closer to reality on Mars than lunar rates. The effect of such a shift is profound: Mars is transformed from a rather Moon-like place into a planet with vigorous dynamics, multiple large impacts, erosion, floods, and volcanism throughout its history. A strong shift upward in cratering rates on Mars apparently solves some glaring problems; however, it creates others. The period of time during which Earth-like atmospheric conditions existed, the liquid water era on Mars, persists in NHIII up to only 0.5 b.y. ago. Scenarios of extended Earth-like conditions on Mars have been discounted in the past because they would have removed many of the craters from the early bombardment era found in the south. It does appear that some process of crater removal was quite vigorous in the north during Mars' past. Evidence exists that the northern plains may have been the home of long-lived seas or perhaps even a paleo-ocean, so models exist for highly localized destruction of craters in the north. However, the question of how the ancient crater population could be preserved in the south under a long liquid-water era found in any high-cratering-rate models is a serious question that must be addressed. It does appear to be a higher-order problem because it involves low-energy dynamics acting in localized areas, i.e., erosion of craters in the south of Mars, whereas the two problems with the low-cratering-rate models involve high-energy events acting over large areas: the formation of the Vallis Marineris

  3. The northwestern slope valleys (NSVs) region, Mars: A prime candidate site for the future exploration of Mars

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Barlow, N.G.; Baker, V.R.; Mahaney, W.C.; Anderson, R.C.; Hare, T.M.

    2004-01-01

    The northwestern slope valleys region is a prime candidate site for future science-driven Mars exploration because it records Noachian to Amazonian Tharsis development in a region that encapsulates (1) a diverse and temporally extensive stratigraphic record, (2) at least three distinct paleohydrologic regimes, (3) gargantuan structurally controlled flood valleys that generally correspond with gravity and magnetic anomalies, possibly marking ancient magnetized rock materials exposed by fluvial activity, (4) water enrichment, as indicated by Mars Odyssey and impact crater analyses, (5) long-lived magma and ground water/ice interactions that could be favorable for the development and sustenance of life, and (6) potential paleosol development. This region has high probability to yield significant geologic, climatic, and exobiologic information that could revolutionize our understanding of Mars. ?? 2003 Elsevier Ltd. All rights reserved.

  4. Regional and seasonal limitations for Mars intrinsic ecopoiesis.

    PubMed

    Badescu, Viorel

    2005-04-01

    Mars ecopoiesis is a human controlled process consisting in changes needed for anaerobic life to be established on planet surface. The daily minimum temperature on present day Mars is well below the water freezing point, due to the low thermal inertia of the surface. A simple time-dependent model to evaluate the ground temperature is developed here. It takes into account the incident solar radiation, the greenhouse effect and surface thermal inertia. The model is applied to two modified Martian atmospheres. Increasing surface thermal inertia seems to be necessary for Mars intrinsic ecopoiesis. This can be done either by removing the regolith layer covering the bedrock or by regolith compression. The Northern hemisphere of the terraformed Mars appears to be more hospitable than the Southern hemisphere, because the amplitude of the daily temperature excursion there is lower and the freezing temperature appears at higher latitudes. A regional (and seasonal) terraforming of Mars is suggested. c2005 Elsevier Ltd. All rights reserved.

  5. Topographic map of the western region of Dao Vallis in Hellas Planitia, Mars; MTM 500k -40/082E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszka, Donna M.

    2006-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. Contours were derived from a digital terrain model (DTM) compiled on a digital photogrammetric workstation using Viking Orbiter stereo image pairs with orientation parameters derived from an analytic aerotriangulation. The image base for this map employs Viking Orbiter images from orbits 406 and 363. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models.

  6. Geologic Mapping of the Meridiani Region, Mars

    NASA Technical Reports Server (NTRS)

    Hynek, B. M.

    2008-01-01

    The light toned bedrock that has been observed at the Mars Exploration Rover Opportunity landing site is an upper layer in a sequence >600 m thick in places. These outcrops contain mineral and textural signatures that require interaction of, and possibly formation from, water. Many distinct layers are visible in the remote sensing data (e.g. Figure 1) and no work has ever characterized the full set of these materials that cover an area >3 105 km2 spanning 20 of longitude. Thus, whatever water-related process( es?) altered, and possibly formed, the rocks at the Opportunity landing site extended over a vast region of Mars. Yet many questions remain to be answered, such as: (1) in what capacity did water form and alter the deposits?, (2) what are the temporal and spatial relations with other major events known from ancient Mars?, and (3) would this type of environment have been conducive to the development of life? To address these questions we are completing a detailed geologic, stratigraphic, and thermophysical properties study of this widespread terrain. Specifically, we are drafting a 1:2M-scale geological map covering the full extent of these water-related deposits. In tandem with the mapping, Hynek and Phillips [1] have conducted a preliminary stratigraphic analysis of the stack of materials. After mapping is complete, we will study the thermophysical properties of the varied layers to derive possible compositional information of the materials. These tasks serve several purposes including gaining an understanding of the complex nature of these materials, their potential source region(s), and their timing of emplacement. All of these efforts are necessary to place the observations by the Opportunity Rover in a broader context and prepare for potential future landed missions to the region. Understanding the large-scale paleohydrology of Mars is central to NASA s goals and vital for determining if life ever arose on the planet.

  7. General geology and geomorphology of the Mars Pathfinder landing site

    USGS Publications Warehouse

    Ward, A.W.; Gaddis, L.R.; Kirk, R.L.; Soderblom, L.A.; Tanaka, K.L.; Golombek, M.P.; Parker, T.J.; Greeley, Ronald; Kuzmin, R.O.

    1999-01-01

    The Mars Pathfinder (MPF) spacecraft landed on relatively young (late Hesperian-early Amazonian; 3.1-0.7 Ga) plains in Chryse Planitia near the mouth of Ares Vallis. Images returned from the spacecraft reveal a complex landscape of ridges and troughs, large hills and crater rims, rocks and boulders of various sizes and shapes, and surficial deposits, indicating a complex, multistage geologic history of the landing site. After the deposition of one or more bedrock units, depositional and erosional fluvial processes shaped much of the present landscape. Multiple erosional events are inferred on the basis of observations of numerous channels, different orientations of many streamlined tails from their associated knobs and hills, and superposition of lineations and streamlines. Medium- and small-scale features, interpreted to be related to late-stage drainage of floodwaters, are recognized in several areas at the landing site. Streamlined knobs and hills seen in Viking orbiter images support this inference, as they seem to be complex forms, partly erosional and partly depositional, and may also indicate a series of scouring and depositional events that, in some cases, further eroded or partially buried these landforms. Although features such as these are cited as evidence for catastrophic flooding at Ares Vallis, some of these features may also be ascribed to alternative primary or secondary depositional processes, such as glacial or mass-wasting processes. Close inspection of the landing site reveals rocks that are interpreted to be volcanic in origin and others that may be conglomeratic. If such sedimentary rocks are confirmed, fluvial processes have had a greater significance on Mars than previously thought. For the last several hundred million to few billion years, eolian processes have been dominant. Dunes and dune-like features, ventifacts, and deflation and exhumation features around several rocks probably are the most recent landforms. The relatively pristine

  8. Geologic Mapping of the Meridiani Region of Mars

    NASA Technical Reports Server (NTRS)

    DiAchille, G.; Hynek, B. M.

    2009-01-01

    The Mars Exploration Rover Opportunity observed an upper layer of a more than 600-m-thick sequence of light toned outcrops that characterize the Meridiani region of Mars. Results from the rover analyses have shown that the bedrock contains mineral and textural characteristics that require at least the interaction of, and possibly an overall formation by, water-related mechanisms in order to be explained [1]. Additionally, remote sensing studies of the region have suggested that the rocks sampled in places by the MER rover consist of many distinct layers extending over an area of more than 3 10(exp 5) sq km spanning 20deg of longitude [2].

  9. A new analysis of Mars "Special Regions": findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2)

    USGS Publications Warehouse

    Rummel, John D.; Beaty, David W.; Jones, Melissa A.; Bakermans, Corien; Barlow, Nadine G.; Boston, Penelope J.; Chevrier, Vincent F.; Clark, Benton C.; de Vera, Jean-Pierre P.; Gough, Raina V.; Hallsworth, John E.; Head, James W.; Hipkin, Victoria J.; Kieft, Thomas L.; McEwen, Alfred S.; Mellon, Michael T.; Mikucki, Jill A.; Nicholson, Wayne L.; Omelon, Christopher R.; Peterson, Ronald; Roden, Eric E.; Lollar, Barbara Sherwood; Tanaka, Kenneth L.; Viola, Donna; Wray, James J.

    2014-01-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth—including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations

  10. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

    PubMed

    Rummel, John D; Beaty, David W; Jones, Melissa A; Bakermans, Corien; Barlow, Nadine G; Boston, Penelope J; Chevrier, Vincent F; Clark, Benton C; de Vera, Jean-Pierre P; Gough, Raina V; Hallsworth, John E; Head, James W; Hipkin, Victoria J; Kieft, Thomas L; McEwen, Alfred S; Mellon, Michael T; Mikucki, Jill A; Nicholson, Wayne L; Omelon, Christopher R; Peterson, Ronald; Roden, Eric E; Sherwood Lollar, Barbara; Tanaka, Kenneth L; Viola, Donna; Wray, James J

    2014-11-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of

  11. The Mars Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  12. Styles of Phreatomagmatic Activity Adjacent to Volcanic Constructs on Mars

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Mouginis-Mark, P.

    2001-05-01

    Early in the analysis of Viking Orbiter data, it was recognized that there were numerous sites on Mars where igneous intrusions may have interacted with ice near the surface. Hrad Vallis (34N, 142E) in Western Elysium Planitia, and Olympica Fossae (25N, 245E) to the southwest of Ceraunius Fossae, were two such candidate areas. New images from the Mars Orbiter Camera show striking differences between these two sites, revealing a wide diversity of depositional and erosional features. We are therefore exploring several potential terrestrial analogs to better constrain models of heat transfer from the igneous intrusion, the style of "eruption" of the water/sediment mixtures, and the hydrologic conditions in the substrate at the time of emplacement. We have found layering at the source of Hrad Vallis, and several nearby impact craters 270 - 530 m diameter that are almost totally mantled, consistent with the deposition of 20 - 30 m of sediment around the source graben. Prominent sub-radial ridges occur within this 8,400 km2 deposit; close to the source, these ridges have a spacing of 100 - 120 m but grade to smaller ridges 60 m apart within 2 km of the source. No "de-watering" features are visible on this unit. In contrast, Olympica Fossae displays no depositional features near the source graben. We interpret these morphologic differences to be due to a higher sediment load of the fluid that reached the surface at Hrad Vallis compared with Olympica Fossae. At neither site are there signs of "weeping" graben walls, indicating that the source of the water was probably at a depth greater than that of the graben (about 60 - 100 m). With due allowance for bulking and for errors of measurement, the volumes of the deposits are comparable to the volumes of their parent source depressions. We envisage that these deposits were created by phreatomagmatic explosions in which heat from a sill-like intrusion melts ice occupying pore space in crustal rocks and boils the resulting water

  13. A new technique for identification of minerals in hyperspectral images. Application to robust characterization of phyllosilicate deposits at Mawrth Vallis using CRISM images.

    NASA Astrophysics Data System (ADS)

    Parente, M.; Bishop, J. L.

    2008-12-01

    Mapping of Mars by MRO has revealed the presence of numerous small phyllosilicate outcrops. These are typically identified in CRISM images using "summary products" (Pelkey, 2007) that consist of band ratios, depths and spectral slopes around diagnostic wavelengths. The summary products are designed to capture spectral features related to both surface mineralogy and atmospheric gases and aerosols. Such products, as an analysis tool to characterize composition as well as a targeting tool to identify areas of mineralogical interest, have been successful in capturing the known diversity of the Martian surface, and in highlighting locations with strong spectral signatures. Here we present alternative mineral mapping technique that 1) aims to increase the robustness of mineral detections with respect to the specific CRISM artifacts, 2) takes advantage of the spatial context of each pixel and 3) develops new parameters for the discrimination of species in the phyllosilicates family. We include spatial context by evaluating spectral shapes, band depths and spectral slopes for the current pixel based on its spatial neighbors within the same geological unit. Furthermore, the parameters are based on estimates that are more robust to CRISM speckling noise that might alter the parameters and potentially the mineral interpretation. As an effort to distinguish between phyllosilicates species, we are augmenting the suite of existent parameters with a set of mineral parameters that involve the position, number and shapes of diagnostic phyllosilicate absorptions. We are comparing the effectiveness of this new approach to the summary product procedure. The study shows that homogeneous mineral maps and diagnostic spectral identifications are possible as a result of the application of such new parameters. We applied the technique to the discrimination of kaolinite in Mawrth Vallis. The experiments show several small kaolinite outcrops dispersed within the more extensive Al

  14. Planetary Protection and Mars Special Regions--A Suggestion for Updating the Definition.

    PubMed

    Rettberg, Petra; Anesio, Alexandre M; Baker, Victor R; Baross, John A; Cady, Sherry L; Detsis, Emmanouil; Foreman, Christine M; Hauber, Ernst; Ori, Gian Gabriele; Pearce, David A; Renno, Nilton O; Ruvkun, Gary; Sattler, Birgit; Saunders, Mark P; Smith, David H; Wagner, Dirk; Westall, Frances

    2016-02-01

    We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions.

  15. Mass loss from the region of Mars and the asteroid belt

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1975-01-01

    Models of the solar nebula suggest that the mass of solid matter which condensed in the region of Mars and the asteroids was much greater than the amount now present. Bombardment by a primordial population of asteroidal bodies originating near Jupiter's orbit could preferentially remove matter from this region, without significant effects in the earth's zone. A critical velocity exists, for which they can be ejected from the solar system by Jupiter. The minimum perihelion attainable at this velocity lies between the orbits of Mars and the earth. The lifetimes of Mars-crossing bodies are limited by collisions with Jupiter; earth-crossers are ejected on a much shorter time scale. The total bombardment flux was at least two orders of magnitude greater in the zone of Mars than in that of the earth. The flux at Venus and Mercury from this source was negligible.

  16. Dust Devil Tracks and Wind Streaks in the North Polar Region of Mars: A Study of the 2007 Phoenix Mars Lander Sites

    NASA Technical Reports Server (NTRS)

    Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.

    2006-01-01

    The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.

  17. Vallis Marineris

    NASA Image and Video Library

    2009-09-18

    This Mars Odyssey image transects Candor Chasma and Melas Chasma. Many canyon features are clearly visible in the image, including the steep cliff faces, landslides, and layered canyon floor deposits.

  18. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites.

    PubMed

    Chojnacki, Matthew; Banks, Maria; Urso, Anna

    2018-02-01

    Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.

  19. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Banks, Maria; Urso, Anna

    2018-02-01

    Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.

  20. Introduction to an Updated Analysis of Planetary Protection: "Special Regions" on Mars

    NASA Astrophysics Data System (ADS)

    Beaty, D. W.; Rummel, J. D.; Viola, D.

    2014-03-01

    Since the beginning of human activity in space science and exploration, there has been an appreciation of the negative consequences of transferring life from one planet to another. Given the unknown consequences of contact between two life forms and the fundamental value of studying a new form life, thoughtfulness and caution are warranted. The "special regions" concept is a component of the International Council for Science's Committee on Space Research (COSPAR) Planetary Protection Policy, as it applies to Mars. These are regions "within which terrestrial organisms are likely to replicate" as well as "any region which is interpreted to have a high potential for the existence of extant martian life." Robotic missions planning to have direct contact with such special regions are given planetary protection categorization (IVc), with stringent cleanliness constraints on the portions of the mission contacting such regions. The current, quantitative definition of "special regions based on temperature and water activity limits was adopted by COSPAR in 2008 after a two-year process that included meetings of the Mars Exploration Planning and Analysis Group's (MEPAG) Special Regions Science Analysis Group (SR-SAG) and COSPAR's Panel on Planetary Protection. In this study, the MEPAG SR-SAG2 will review and update the technical information that underlie NASA's and COSPAR's definition of special regions on Mars, enabling interpretations of when and where they could occur in light of new discoveries since 2007. This will include updates of current understanding in (1) the known physical limits to life on Earth, including low temperature and low water activity, the biological capture/use of vapor-phase water, and survival over long time scales with short periods of growth; (2) observational data sets and new models from Mars that could be relevant to our understanding of the natural variations on Mars of water activity and temperature, including recurring slope lineae (RSL

  1. Progress in the Scandia Region Geologic Map of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Rodriguez, J. A. P.

    2010-01-01

    We are in the second year of a four year project to produce a geologic map of the Scandia region of Mars at 1:3,000,000 scale for publication in the USGS Scientific Investigations Map series. The primary objective of the map is to analyze and reconstruct the resurfacing history of this region in much greater detail than achieved by the previous northern plainswide mapping effort. This region includes (1) a broad swath of the Vastitas Borealis plains that includes various Scandia landforms and the Phoenix lander site; (2) part of the margin of the north polar plateau, Planum Boreum; and (3) the northern margin of the immense Alba Mons volcanic shield. We rely mostly on Mars Orbiter Laser Altimeter (MOLA) digital elevation models, Thermal Emission Imaging Spectrometer infrared and visual range, and Context Camera images for mapping and topographic analysis.

  2. Patapsco Vallis

    NASA Image and Video Library

    2010-01-13

    This NASA 2001 Mars Odyssey spacecraft image shows two different types of linear depressions. The wide depression at the top of the frame is Elysium Fossae, which most likely formed due to tectonic activity.

  3. Wind-Related Topography in Phoenix's Region of Mars (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This movie shifts from a global zoom indicating the Phoenix landing area on Mars to a topographical map indicating relative elevations in the landing region. The elevations could affect wind patterns at the site.

    In particular, Phoenix is in a broad, shallow valley. The edge of the valley, about 150 meters (500 feet) above the floor, may provide enough of a slope to the east of Phoenix to explain winds coming from the east during nights at the site. Cooler, denser air could be sinking down the slope and toward the lander.

    Atmospheric scientists on the Phoenix team are analyzing wind patterns to distiguish effects of nearby topography from larger-scale movement of the atmosphere in the polar region.

    The elevation information for this topographical mapping comes from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. The blue-coded area is the valley floor. Orange and yellow indicate relatively higher elevations.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver. JPL managed the Mars Global Surveyor mission for the NASA Science Mission Directorate.

  4. Recent Geologic Mapping Results for the Polar Regions of Mars

    NASA Technical Reports Server (NTRS)

    tanaka, K. L.; Kolb, E. J.

    2008-01-01

    The polar regions of Mars include the densest data coverage for the planet because of the polar orbits of MGS, ODY, and MEX. Because the geology of the polar plateaus has been among the most dynamic on the planet in recent geologic time, the data enable the most detailed and complex geologic investigations of any regions on Mars, superseding previous, even recent, mapping efforts [e.g., 1-3]. Geologic mapping at regional and local scales is revealing that the stratigraphy and modificational histories of polar materials by various processes are highly complex at both poles. Here, we describe some of our recent results in polar geologic mapping and how they address the geologic processes involved and implications for polar climate history.

  5. Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars - A Keck Geology Consortium Undergraduate Research Project

    NASA Technical Reports Server (NTRS)

    de Wet, A. P.; Bleacher, J. E.; Garry, W. B.

    2012-01-01

    Water has clearly played an important part in the geological evolution of Mars. There are many features on Mars that were almost certainly formed by fluvial processes -- for example, the channels Kasei Valles and Ares Vallis in the Chryse Planitia area of Mars are almost certainly fluvial features. On the other hand, there are many channel features that are much more difficult to interpret -- and have been variously attributed to volcanic and fluvial processes. Clearly unraveling the details of the role of water on Mars is extremely important, especially in the context of the search of extinct or extant life. In this project we built on our recent work in determining the origin of one channel on the southwest rift apron of Ascraeus Mons. This project, funded by the Keck Geology Consortium and involving 4 undergraduate geology majors took advantage of the recently available datasets to map and analyze similar features on Ascraeus Mons and some other areas of Mars. A clearer understanding of how these particular channel features formed might lead to the development of better criteria to distinguish how other Martian channel features formed. Ultimately this might provide us with a better understanding of the role of volcanic and fluvial processes in the geological evolution of Mars.

  6. The Aerial Regional-scale Environmental Survey (ARES) Mission to Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    2005-01-01

    ARES is an exploration mission concept for an Aerial Regional-scale Environmental Survey of Mars designed to fly an instrumented platform over the surface of Mars at very low altitudes (1-3 km) for distances of hundreds to thousands of kilometers to obtain scientific data to address fundamental problems in Mars science. ARES helps to fill a gap in the scale and perspective of the Mars Exploration Program and addresses many key COMPLEX/MEPAG questions (e.g., nature and origin of crustal magnetic anomalies) not readily pursued in other parts of the exploration program. ARES supports the human exploration program through key environmental measurements and high-resolution contiguous data essential to reference mission design. Here we describe the major types of scientific goals, candidate instruments, and reference mission profiles.

  7. Channel geometry and discharge estimates for Dao and Niger Valles, Mars

    NASA Astrophysics Data System (ADS)

    Musiol, S.; van Gasselt, S.; Neukum, G.

    2008-09-01

    Introduction The outflow channels Dao and Niger Valles are located at the eastern rim of the 2000-km diameter Hellas Planitia impact basin, in a transition zone with ancient cratered terrain and the volcanoes Hadriaca and Tyrrhena Patera (Hesperia Planum) on the one hand and fluvial, mass-wasting and aeolian deposits on the other hand [1]. Dao and Niger have alcove-shaped source regions similar to the chaotic terrains found in the Margaritifer Terra region, with flat floors, landslide morphologies and small, chaotically distributed isolated mounds. As [2] pointed out, the intrusion of volcanic material could be responsible for the release of pressurized water that can carry loose material away. This process could than have created a depression and an associated outflow channel. In contrast to [2] who made their calculations for Aromatum Chaos and Ravi Vallis, we have focused on Dao and Niger Valles for investigation, since they are spatially related to the nearby Hadriaca Patera. Heat-triggered outflow events seem likely. We follow the generally accepted assumption that water was the main erosional agent [3]. Furthermore we take into account that multiple floods with different volumes are more likely than a single event because of repressurization of an aquifer [4]. Background Hadriaca Patera Hadriaca Patera is among the oldest central-vent volcanoes on Mars, a low-relief volcano with a central caldera complex which consists predominantly of pyroclastic material. The erosional structure of degraded valleys on its flanks is indicative of dissection by a combination of groundwater sapping and surface runoff, attributed to a hydromagmatic eruption scenario [5]. Dao Vallis Dao Vallis is interpreted as collapse region of volcanic and sedimentary plains that have been eroded by surface and subsurface flow [5]. The approximately radial alignment to Hellas is interpreted as following deep-seated structural weakness zones generated by the impact. Small grabens and fractures

  8. Thermophysical Properties of the Phoenix Mars Landing Site Study Regions

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Mellon, M. T.; Golombek, M. P.; Arvidson, R. E.

    2006-03-01

    Analysis of Phoenix Mars study regions places 4 of 5 in a previously-identified duricrust-dominated thermophysical unit which also contains the Viking and Spirit landing sites. Extrapolation of lander-observed properties to the study regions may be complicated by surface heterogeneity.

  9. Meter-scale morphology of the north polar region of mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Byrne, S.; Russell, P.S.; Fishbaugh, K.E.; McEwen, A.S.

    2007-01-01

    Mars' north pole is covered by a dome of layered ice deposits. Detailed (???30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar layers themselves are as thin as 10 centimeters but appear to be covered by a dusty veneer in places, which may obscure thinner layers. Repetition of particular layer types implies that quasi-periodic climate changes influenced the stratigraphic sequence in the polar layered deposits, informing models for recent climate variations on Mars.

  10. Erosion of Edge of the South Polar Layered Deposits

    NASA Image and Video Library

    2017-05-23

    This image from NASA's Mars Reconnaissance Orbiter shows small ripples, about 10 meters apart, located in Her Desher Vallis. Her Desher is a small channel that shows evidence of phyllosilicates -- silicates with a sheet-like structure, such as clay minerals. Much larger images of this area show that Her Desher Vallis appears isolated, with no obvious connections to craters or larger valleys. Her Desher, the ancient Egyptian name for Mars, translates to "the Red One." https://photojournal.jpl.nasa.gov/catalog/PIA21639

  11. What on Mars is a High Thermal-Inertia Surface?

    NASA Image and Video Library

    2015-04-08

    Coprates Chasma is located in the huge canyon system, Vallis Marineris. NASA Mars Reconnaissance Orbiter finds indications of high thermal inertia. What do we mean when we describe a surface as having "high thermal inertia"? The term refers to the ability of a material to conduct and store heat, and in planetary science, its measure of the subsurface's ability to store heat during the day and reradiate it during the night. What causes thermal inertia? It depends on the composition of the terrain that we're studying. Here in Coprates Chasma, the site of this observation, we find indications of such high thermal inertia, so an image at high resolution may help us determine the composition and structure to give us an answer. http://photojournal.jpl.nasa.gov/catalog/PIA19357

  12. Diverse Aqueous Conditions on Mars from New Orbital Detections of Carbonate and Sulfate

    NASA Astrophysics Data System (ADS)

    Wray, James J.; Squyres, S. W.

    2010-10-01

    Diverse aqueous environments on ancient Mars have been a key inference from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter, which has identified many alteration minerals in a range of settings [e.g., 1-4]. Here we report two new minerals detected using CRISM. In the southern highlands northwest of the Hellas basin, a mid-sized crater exposes carbonate in its central uplift. Spectral absorptions at 1, 2.33, and 2.53 microns are most consistent with Fe-carbonate, distinct from the Mg-carbonates identified from orbit by [5]. Fe-carbonate is associated with Mg-phyllosilicate in fractured materials formerly buried kilometers beneath the surface, and--like the Mg/Fe-carbonate found by the Spirit rover [6]--suggests a reducing, neutral-to-alkaline alteration environment. One of the largest phyllosilicate exposures on Mars occurs in the Mawrth Vallis region [e.g., 7]. We identify bassanite (Ca-sulfate hemihydrate) in layers underlying the phyllosilicate-bearing beds [8], a stratigraphy distinct from that predicted by global models of martian aqueous history [9]. Bassanite could have formed via acid-sulfate alteration of Ca-carbonate, through dehydration of gypsum, or under hydrothermal conditions [10]. These detections expand the known mineralogic diversity of Mars and the range of environments to explore for past habitability. [1] Mustard, J. F. et al. (2008) Nature 454, 305-309. [2] Murchie, S. L. et al. (2009) J. Geophys. Res. 114, E00D06. [3] Ehlmann, B. L. et al. (2009) J. Geophys. Res. 114, E00D08. [4] Wray, J. J. et al. (2009) Geology 37, 1043-1046. [5] Ehlmann, B. L. et al. (2008) Science 322, 1828-1832. [6] Morris, R. V. et al. Science, in press, doi:10.1126/science.1189667. [7] Poulet, F. et al. (2005) Nature 438, 623-627. [8] Wray, J. J. et al. Icarus, in press, doi:10.1016/j.icarus.2010.06.001. [9] Bibring, J.-P. et al. (2006) Science 312, 400-404. [10] Vaniman, D. T. et al. (2009) LPSC 40, 1654.

  13. Kasei Vallis

    NASA Image and Video Library

    2002-12-04

    The scoured grooves in the catastrophic outflow channels shown in this image from NASA Mars Odyssey spacecraft formed hundreds of million of years ago and have the appearance of wood grain. They now host dune-like ripples of windblown material. http://photojournal.jpl.nasa.gov/catalog/PIA04015

  14. Meter-scale morphology of the north polar region of Mars.

    PubMed

    Herkenhoff, K E; Byrne, S; Russell, P S; Fishbaugh, K E; McEwen, A S

    2007-09-21

    Mars' north pole is covered by a dome of layered ice deposits. Detailed ( approximately 30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar layers themselves are as thin as 10 centimeters but appear to be covered by a dusty veneer in places, which may obscure thinner layers. Repetition of particular layer types implies that quasi-periodic climate changes influenced the stratigraphic sequence in the polar layered deposits, informing models for recent climate variations on Mars.

  15. The Polar Regions and the Search for Evidence of Life on Mars

    NASA Technical Reports Server (NTRS)

    McKay, C. P.

    2003-01-01

    The search for life on Mars and evidence for past life connects to polar exploration in two important ways. First the polar regions on Mars are sites of possible liquid water today, and hence possible locations for extant life. Secondly, ancient permafrost may preserve evidence of the nature of martian life.

  16. Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing

    PubMed Central

    Will, Katrin; Warnecke, Gabriele; Wiesmüller, Lisa; Deppert, Wolfgang

    1998-01-01

    Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT “DNA-unwinding motif,” which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA. PMID:9811860

  17. Meteorological predictions for Mars 2020 Exploration Rover high-priority landing sites throug MRAMS Mesoscale Modeling

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge; Rafkin, Scot C. R.

    2015-04-01

    The Mars Regional Atmospheric Modeling System (MRAMS) is used to predict meteorological conditions that are likely to be encountered by the Mars 2020 Exploration Rover at several proposed landing sites during entry, descent, and landing (EDL). The meteorology during the EDL window at most of the sites is dynamic. The intense heating of the lower atmosphere drives intense thermals and mesoscale thermal circulations. Moderate mean winds, wind shear, turbulence, and vertical air currents associated with convection are present and potentially hazardous to EDL [1]. Nine areas with specific high-priority landing ellipses of the 2020 Rover, are investigated: NE Syrtis, Nili Fossae, Nili Fossae Carbonates, Jezero Crater Delta, Holden Crater, McLaughlin Crater, Southwest Melas Basin, Mawrth Vallis and East Margaritifer Chloride. MRAMS was applied to the landing site regions using nested grids with a spacing of 330 meters on the innermost grid that is centered over each landing site. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' atmospheric thermal circulations at the mesoscale and smaller with realistic, high-resolution surface properties [2, 3]. Horizontal wind speeds, both vertical profiles and vertical cross-sections wind speeds, are studied. For some landing sites simulations, two example configurations -including and not including Hellas basin in the mother domain- were generated, in order to study how the basin affects the innermost grids circulations. Afternoon circulations at all sites pose some risk entry, descent, and landing. Most of the atmospheric hazards are not evident in current observational data and general circulation model simulations and can only be ascertained through mesoscale modeling of the region. Decide where to go first and then design a system that can tolerate the environment would greatly minimize risk. References: [1] Rafkin, S. C. R., and T. I. Michaels (2003), J. Geophys. Res., 108(E12

  18. Geologic map of the Nepenthes Planum Region, Mars

    USGS Publications Warehouse

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  19. Observations at the Mars Pathfinder site: Do they provide "unequivocal" evidence of catastrophic flooding?

    USGS Publications Warehouse

    Chapman, M.G.; Kargel, J.S.

    1999-01-01

    After Mars Pathfinder landed at the mouth of Ares Vallis, a large channel that drains into the Chryse Planitia basin, the mission reports unanimously supported the interpretation that the lander site is the locus of catastrophic flooding by noting that all aspects of the scene are consistent with this interpretation. However, alternatives cannot be ruled out by any site observations, as all aspects of the scene are equally consistent with other interpretations of origin, namely, ice and mass-flow processes subsequently modified by wind erosion. The authors discuss alternative explanations for the geologic history of the channel based on a regional view of the circum-Chryse channels from Viking images (our best broad-scale information to date) and the local view from the recent Pathfinder landing site. Mega-indicators of channel origin, the regional geomorphology, geology, and planetary climatic conditions, taken together suggest some combination of flood, mass flow, glacial, and eolian processes. The macro-indicators of channel origin (sedimentologic) are also not indicative of one process of emplacement, either as single criteria or taken cumulatively. Finally, the micro-indicators of channel origin (geochemical and mineralogic composition) do not provide very tight constraints on the deposits' possible origins other than that water was in some way involved.

  20. Styles and Timing of Volatile-driven Activity in the Eastern Hellas Region of Mars

    NASA Astrophysics Data System (ADS)

    Crown, D. A.; Bleamaster, L. F., III; Mest, S. C.; Teneva, L. T.

    2005-03-01

    Current research integrates geologic studies of the basin floor and east rim using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets to provide a synthesis of the history of volatiles in the region.

  1. Styles and Timing of Volatile-driven Activity in the Eastern Hellas Region of Mars

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.; Teneva, Lida T.

    2005-01-01

    Hellas basin, the largest well-preserved impact structure on the Martian surface, is Mars deepest depositional sink and has long been recognized as a source for global dust storms. The basin and surrounding highlands span a wide range in latitude and elevation, exhibit landforms shaped by a diversity of geologic processes, and preserve exposures of Noachian, Hesperian, and Amazonian units. Geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide resources for potential Martian life. Hellas is a geologically significant region for evaluating volatile abundance, distribution and cycling and changes in surface conditions on Mars. Current work integrates geologic studies of the basin floor and east rim using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets to provide a synthesis of the history of volatiles in the region.

  2. Disappearance of the Propontis Regional Dark Albedo Feature on Mars

    NASA Astrophysics Data System (ADS)

    Lee, Steven W.; Thomas, P. C.; Cantor, B. A.

    2013-10-01

    The appearance of Propontis, one of many distinct classical dark albedo features on Mars, has been documented by ground-based observers for well over a century; Propontis was once thought to be the location of a “typical Martian canal”. The roughly circular feature (centered at 38°N, 179°W) covers about 500km in north-south extent. Modern spacecraft observations have shown the northern plains in which Propontis is located to include many subdued craters, knobs, and troughs. Observations by the Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) have documented dramatic changes in the Propontis feature during August 2009. Daily MARCI mosaics (spatial resolution of 1 km/pixel) revealed extensive dust storm activity in this region over a ten day period (August 16-25, Ls ~ 322°-327°). At this time, the north polar seasonal ice cap was at maximum extent (reaching southward to about 55°N), and dust storm activity was frequently observed southward of the seasonal cap. These storms apparently led to sufficient deposition of bright dust to effectively “erase” the dark Propontis feature - yielding one of the most significant changes in regional albedo since Mars Global Surveyor began routine global mapping in 1997. Only minor changes have been detected over the course of repeated MARCI observations of this region since late-2009 - Propontis has not yet “recovered” to its previous extent and appearance. MRO is expected to provide ongoing MARCI mapping, enhanced with regular Context Imager (CTX, spatial resolution of 6 m/pixel) monitoring. An overview of the accumulated observations to date will be presented, along with interpretation of the magnitude of sediment transport required to account for the observed changes in Propontis.

  3. Global geologic mapping of Mars: The western equatorial region

    USGS Publications Warehouse

    Scott, D.H.

    1985-01-01

    Global geologic mapping of Mars was originally accomplished following acquisition of orbital spacecraft images from the Mariner 9 mission. The mapping program represented a joint enterprise by the U.S. Geological Survey and other planetary scientists from universities in the United States and Europe. Many of the Mariner photographs had low resolution or poor albedo contrast caused by atmospheric haze and high-sun angles. Some of the early geologic maps reflect these deficiencies in their poor discrimination and subdivision of rock units. New geologic maps made from higher resolution and better quality Viking images also represent a cooperative effort, by geologists from the U.S. Geological Survey, Arizona State University, and the University of London. This second series of global maps consists of three parts: 1) western equatorial region, 2) eastern equatorial region, and 3) north and south polar regions. These maps, at 1:15 million scale, show more than 60 individual rock-stratigraphic units assigned to three Martian time-stratigraphic systems. The first completed map of the series covers the western equatorial region of Mars. Accompanying the map is a description of the sequence and distribution of major tectonic, volcanic, and fluvial episodes as recorded in the stratigraphic record. ?? 1985.

  4. Using Mars Orbiter Laser Altimeter (MOLA) Data to Assess Impact Crater Modification in the Arrhenius Region of Mars

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Grosfils, E. B.; Sakimoto, S. E. H.

    2000-01-01

    This study combines MOLA altimetry with photographic imagery to begin assessing the extent to which sedimentary and volcanic processes have affected impact crater morphology in the Arrhenius region of Mars.

  5. Zephyria Channel System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of an outflow channel system located in the Zephyria region, south of Cerberus, from which vast quantities of rough-surfaced material flowed. The channel system has no name and was not known prior to the MGS mission. The material that flowed through this system may have been extremely fluid lava, or it may have been water-rich mud. Research by members of the Mars science community regarding the nature and origin of flow materials in the Cerberus, Zephyria, and Marte Vallis regions of Mars is on-going. This image is located near 4.6oN, 204.1oW. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/lower left.

  6. Mars Aerial Regional-Scale Environmental Survey (ARES) Coordinate Systems Definitions and Transformations

    NASA Technical Reports Server (NTRS)

    Kuhl, Christoper A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  7. Surface-based 3D measurements of small aeolian bedforms on Mars and implications for estimating ExoMars rover traversability hazards

    NASA Astrophysics Data System (ADS)

    Balme, Matt; Robson, Ellen; Barnes, Rob; Butcher, Frances; Fawdon, Peter; Huber, Ben; Ortner, Thomas; Paar, Gerhard; Traxler, Christoph; Bridges, John; Gupta, Sanjeev; Vago, Jorge L.

    2018-04-01

    Recent aeolian bedforms comprising loose sand are common on the martian surface and provide a mobility hazard to Mars rovers. The ExoMars rover will launch in 2020 to one of two candidate sites: Mawrth Vallis or Oxia Planum. Both sites contain numerous aeolian bedforms with simple ripple-like morphologies. The larger examples are 'Transverse Aeolian Ridges' (TARs), which stereo imaging analyses have shown to be a few metres high and up to a few tens of metres across. Where they occur, TARs therefore present a serious, but recognized and avoidable, rover mobility hazard. There also exists a population of smaller bedforms of similar morphology, but it is unknown whether these bedforms will be traversable by the ExoMars rover. We informally refer to these bedforms as "mini-TARs", as they are about an order of magnitude smaller than most TARs observed to date. They are more abundant than TARs in the Oxia Planum site, and can be pervasive in areas. The aim of this paper is to estimate the heights of these features, which are too small to measured using High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Models (DEMs), from orbital data alone. Thereby, we aim to increase our knowledge of the hazards in the proposed ExoMars landing sites. We propose a methodology to infer the height of these mini-TARs based on comparisons with similar features observed by previous Mars rovers. We use rover-based stereo imaging from the NASA Mars Exploration Rover (MER) Opportunity and PRo3D software, a 3D visualisation and analysis tool, to measure the size and height of mini-TARs in the Meridiani Planum region of Mars. These are good analogues for the smaller bedforms at the ExoMars rover candidate landing sites. We show that bedform height scales linearly with length (as measured across the bedform, perpendicular to the crest ridge) with a ratio of about 1:15. We also measured the lengths of many of the smaller aeolian bedforms in the ExoMars rover Oxia Planum

  8. Weather Movie, Mars South Polar Region, March-April 2009

    NASA Image and Video Library

    2009-04-16

    This image is from a movie from NASA Mars Reconnaissance Orbiter showing the southern high-latitudes region of Mars from Mar. 19-Apr. 14, 2009, a period when regional dust storms occurred along the retreating edge of carbon-dioxide frost in the seasonal south polar cap. The movie combines hundreds of images from the Mars Color Imager (MARCI) camera on NASA's Mars Reconnaissance Orbiter. In viewing the movie, it helps to understand some of the artifacts produced by the nature of MARCI images when seen in animation. MARCI acquires images in swaths from pole-to-pole during the dayside portion of each orbit. The camera can cover the entire planet in just over 12 orbits, and takes about 1 day to accumulate this coverage. The indiviual swaths are assembled into a mosaic, and that mosaic is shown here wrapped onto a sphere. The blurry portions of the mosaic, seen to be "pinwheeling" around the planet in the movie, are the portions of adjacent images viewing obliquely through the hazy atmosphsere. Portions with sharper-looking details are the central part of an image, viewing more directly downward through less atmosphere than the obliquely viewed portions. MARCI has a 180-degree field of view, and Mars fills about 78 percent of that field of view when the camera is pointed down at the planet. However, the Mars Reconnaissance Orbiter often is pointed to one side or the other off its orbital track in order to acquire targeted observations by the higher-resolution imaging systems on the spacecraft. When such rolls exceed about 20 degrees, gaps occur in the mosaic of MARCI swaths. Also, dark gaps appear when data are missing, either because of irrecoverable data drops, or because not all the data have yet been transmitted from the spacecraft. It isn't easy to see the actual dust motion in the atmosphere in these images, owing to the apparent motion of these artifacts. However, by concentrating on specific surface features (craters, prominent ice deposits, etc.) and looking

  9. Sunset over Ares Vallis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Every several days, Mars Pathfinder will image the sunrise and sunset on Mars. Future images will show a larger area -- we have a higher data rate than we expected when we planned this image, so we can get more information. Images taken at sunset, like this, and up to two hours later, will be used to investigate the distribution of dust within the Martian atmosphere. Already, we can see some dust layers in the images. By seeing how the twilight fades with time -- it lasts for over two hours -- we can determine that the dust extends high into the atmosphere.

  10. Cerberus Fossae, Elysium, Mars: a source for lava and water

    NASA Astrophysics Data System (ADS)

    Plescia, J. B.

    2003-07-01

    Cerberus Fossae, a long fracture system in the southeastern part of Elysium, has acted as a conduit for the release of both lava and water onto the surface. The southeastern portion of the fracture system localized volcanic vents having varying morphology. In addition, low shields occur elsewhere on the Cerberus plains. Three locations where the release of water has occurred have been identified along the northwest (Athabasca and Grjota' Vallis) and southeast (Rahway Vallis) portions of the fossae. Water was released both catastrophically and noncatastrophically from these locations. A fluvial system that extends more than 2500 km has formed beginning at the lower flank of the Elysium rise across the Cerberus plains and out through Marte Vallis into Amazonis Planitia. The timing of the events is Late Amazonian.

  11. Recent Geological and Hydrological Activity in Amazonis and Elysium Basins and Their Link, Marte Valles (AME): Prime Target for Future Reconnaissance

    NASA Astrophysics Data System (ADS)

    Dohm, J. M.; Robbins, S. J.; Hynek, B. M.

    2012-03-01

    Amazonis and Elysium basins and their link, Marte Vallis (AME), uniquely point to a geologically and hydrologically active Mars. We will present evidence for why AME reconnaissance can help address whether Mars is geologically, hydrologically, and biologically active.

  12. Interannual Comparison of Water Vapor in the North Polar Region of Mars

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Smith, M. D.; Hale, A. S.; Bass, D. S.

    2003-01-01

    In order to better understand the current climate of Mars, we seek to understand atmospheric water in the north polar region. Our approach is to examine the water transport and cycling issues within the north polar region and in/out of the region on seasonal and annual timescales. Viking Mars Atmospheric Water Detector (MAWD) data showed that water vapor increased as the northern summer season progressed and temperatures increased, and that vapor appeared to be transported southward . However, there has been uncertainty about the amount of water cycling in and out of the north polar region, as evidenced by residual polar cap visible brightness changes between one Martian year (Mariner 9 data) and a subsequent year (Viking data). These changes were originally thought to be interannual variations in the amount of frost sublimed based on global dust storm activity . However, Viking thermal and imaging data were re-examined and it was found that 14-35 pr m of water -ice appeared to be deposited on the cap later in the summer season, indicating that some water may be retained and redistributed within the polar cap region. This late summer deposition could be due to adsorption directly onto the cap surface or due to snowfall. We seek to understand what happens to the water on seasonal and interannual timescales. We address these issues by examining water vapor in the north polar region of Mars during the north spring and summer period from MGS TES data and by comparing these results to the Viking MAWD results.

  13. Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions.

    PubMed

    Jakosky, Bruce M; Nealson, Kenneth H; Bakermans, Corien; Ley, Ruth E; Mellon, Michael T

    2003-01-01

    The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.

  14. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites

    PubMed Central

    Chojnacki, Matthew; Banks, Maria; Urso, Anna

    2018-01-01

    Aeolian processes have likely been the predominant geomorphic agent for most of Mars’ history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low. PMID:29568719

  15. Findings of the Mars Special Regions Science Analysis Group

    USGS Publications Warehouse

    Beaty, D.W.; Buxbaum, K.L.; Meyer, M.A.; Barlow, N.; Boynton, W.; Clark, B.; Deming, J.; Doran, P.T.; Edgett, K.; Hancock, S.; Head, J.; Hecht, M.; Hipkin, V.; Kieft, T.; Mancinelli, R.; McDonald, E.; McKay, C.; Mellon, M.; Newsom, H.; Ori, G.; Paige, D.; Schuerger, A.C.; Sogin, M.; Spry, J.A.; Steele, A.; Tanaka, K.; Voytek, M.

    2006-01-01

    In summary, within the upper 5 m most of Mars is either too cold or too dry to support the propagation of terrestrial life. However, there are regions that are in disequilibrium, naturally or induced, and could be classified as "special" or, if enough uncertainty exist, could not be declared as "non-special." ?? Mary Ann Liebert, Inc.

  16. Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences

    NASA Technical Reports Server (NTRS)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Kuzmin, R. O.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.; Saunders, R. S.

    2004-01-01

    The measurements by neutron detectors on Odyssey have revealed two large poleward regions with large depression of flux of epithermal and high energy neutrons. The flux of neutrons from Mars is known to be produced by the bombardment of the surface layer by galactic cosmic rays. The leakage flux of epithermal and fast neutrons has regional variation by a factor of 10 over the surface of Mars. These variations are mainly produced by variations of hydrogen content in the shallow subsurface. On Mars hydrogen is associated with water. Therefore, the Northern and Southern depressions of neutron emission could be identified as permafrost regions with very high content of water ice. These regions are much larger than the residual polar caps, and could contain the major fraction of subsurface water ice. Here we present the results of HEND neutron data deconvolution for these regions and describe the similarities and differences between them.

  17. Analysis of Solar Wind Plasma Properties of Co-Rotating Interaction Regions at Mars with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Lohf, H.; Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Posner, A.; Heber, B.; Appel, J. K.; Matthiae, D.; Brinza, D. E.; Weigle, E.; Böttcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Boehm, E.; Rafkin, S. C.; Kahanpää, H.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The measurements of the Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover Curiosity have given us the very first opportunity to evaluate the radiation environment on the surface of Mars, which consists mostly of Galactic Cosmic Rays (GCRs) and secondary particles created in the Martian Atmosphere. The solar wind can have an influence on the modulation of the GCR, e.g. when the fast solar wind (~ 750 km/s) interacts with the slow solar wind (~ 400 km/s) at so-called Stream Interaction Regions (SIRs) resulting in an enhancement of the local magnetic field which could affect the shielding of GCRs. SIRs often occur periodically as Co-rotating Interaction Regions (CIRs) which may-be observed at Mars as a decrease in the radiation data measured by MSL/RAD. Considering the difference of the Earth-Mars orbit, we correlate these in-situ radiation data at Mars with the solar wind properties measured by spacecrafts at 1 AU, with the aim to eventually determine the solar wind properties at Mars based on MSL/RAD measurements.

  18. Workshop on the Polar Regions of Mars: Geology, Glaciology, and Climate History, part 1

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Howard, A. D. (Editor); Paterson, W. S. B. (Editor)

    1992-01-01

    Papers and abstract of papers presented at the workshop are presented. Some representative titles are as follows: Glaciation in Elysium; Orbital, rotational, and climatic interactions; Water on Mars; Rheology of water-silicate mixtures at low temperatures; Evolution of the Martian atmosphere (the role of polar caps); Is CO2 ice permanent; Dust transport into Martian polar latitudes; Mars observer radio science (MORS) observations in polar regions; and Wind transport near the poles of Mars (timescales of changes in deposition and erosion).

  19. Geologic Map of the Thaumasia Region, Mars

    USGS Publications Warehouse

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  20. Potential ExoMars Rover Landing Sites: Aram Dorsam (previously known as Oxia Palus) and Hypanis Delta

    NASA Astrophysics Data System (ADS)

    Sefton-Nash, E.; Balme, M. R.; Grindrod, P. M.; Gupta, S.; Fawdon, P.; Muller, J. P.; Michalski, J. R.

    2014-12-01

    The search for life on Mars is a cornerstone of international solar system exploration. In 2018, the European Space agency will launch the ExoMars Rover to further this. The key science objectives of the ExoMars Rover are to: 1) search for signs of past and present life on Mars; 2) investigate the water/geochemical environment as a function of depth in the shallow subsurface; and 3) to characterise the surface environment. ExoMars will drill into the sub-surface to look for indicators of past life using a variety of complementary techniques, including assessment of morphology (potential fossil organisms), mineralogy (past environments) and a search for organic molecules and their chirality (biomarkers). The choice of landing site is vital if the objectives are to be met. The landing site must: (i) be ancient (≥3.6 Ga); (ii) show abundant morphological and mineral evidence for long-term, or frequently reoccurring, aqueous activity; (iii) include numerous sedimentary outcrops that (iv) are distributed over the landing region (the typical Rover traverse range is a few km, but ellipse size is ~ 100 by 15 km). Various 'engineering constraints' also apply, including: (i) latitude limited to 5º S to 25º N; (ii) maximum altitude of the landing site 2 km below Mars's datum; and (iii) few steep slopes within the ellipse. In March 2014, the first ExoMars Landing Site Selection Workshop was held, during which about ten different landing sites were presented and discussed. At the end of the workshop a poll of the workshop participants highlighted four sites as highest priority: Mawrth Vallis, Oxia Planum, Oxia Palus and Hypanis Delta. Of these, our team led proposals for the Oxia Palus and Hypanis Delta sites. The Oxia Palus site has since been renamed "Aram Dorsum" - the name the IAU designated to the inverted channel system that is the most prominent feature of the site. This is inferred to be the remnants of a long-lived, widespread alluvial system that was buried and

  1. A Rapid Method of Genomic Array Analysis of Scaffold/Matrix Attachment Regions (S/MARs) Identifies a 2.5-Mb Region of Enhanced Scaffold/Matrix Attachment at a Human Neocentromere

    PubMed Central

    Sumer, Huseyin; Craig, Jeffrey M.; Sibson, Mandy; Choo, K.H. Andy

    2003-01-01

    Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome. PMID:12840048

  2. Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences

    NASA Technical Reports Server (NTRS)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Kuzmin, R. O.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.; Saunders, R. S.

    2004-01-01

    The measurements by neutron detectors on Odyssey have revealed two large poleward regions with large depression of flux of epithermal and high energy neutrons [1-3]. The flux of neutrons from Mars is known to be produced by the bombardment of the surface layer by galactic cosmic rays. The leakage flux of epithermal and fast neutrons has regional variation by a factor of 10 over the surface of Mars (e.g. see [3- 5]). These variations are mainly produced by variations of hydrogen content in the shallow subsurface. On Mars hydrogen is associated with water. Therefore, the Northern and Southern depressions of neutron emission could be identified as permafrost regions with very high content of water ice [1-5]. These regions are much larger than the residual polar caps, and could contain the major fraction of subsurface water ice. Here we present the results of HEND neutron data deconvolution for these regions and describe the similarities and differences between them.

  3. Physical properties of Meridiani Sinus-type units in the central equatorial region of Mars

    NASA Technical Reports Server (NTRS)

    Strickland, Edwin L., III

    1992-01-01

    Classification and mapping of surficial units in the central equatorial region of Mars (30 degrees N to 20 degrees S, 57 degrees E to 75 degrees W) using enhanced color images and Mars Consortium data identified four major color/albedo units in the dark, reddish-gray regions that form the classical dark albedo markings of Mars, including Meridiani Sinus. The darkest, least red (relatively 'blue') materials form splotches (some with dune forms) in craters, inter-crater depressions, and part of Valles Marineris. These form the 'Dark Blue' Meridiani unit. Abundant materials that have higher albedos and are somewhat redder than the 'Dark Blue' unit have uniquely high green/(violet + red) color ratios in Viking Orbiter images. These materials, named 'Green-blue' Meridiani surround and mix with 'Dark Blue' Meridiani patches and are abundant on crater rims and local elevations. Discontinuous, patchy deposits with still higher albedos and much redder colors have morphologies classified of the Type Ib bright depositional dust streaks and sheets that were classified by Thomas et al. These dust deposits, which appear to be optically thin and patchy and are darker and not as red as other Type Ib dust deposits on Mars, and their Meridiani substrates, were designated the 'Red' Meridiani unit. Distinctive deposits that form highly eroded mesas and escarpments in northern Meridiani Sinus were named 'Light Blue' Meridiani, since they are not as red as other materials with moderately high albedos. Large areas dominated by these units form Meridiani Province in the central equatorial region of Mars.

  4. Ancient deltas on Mars: outstanding targets for martian habitability?

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Fawdon, P.; Grindrod, P. M.; Balme, M. R.; Hauber, E.; Warner, N. H.; Muller, J. P.

    2014-12-01

    The identification of putative ancient deltaic sedimentary systems on Mars has been both exciting and controversial. Our excitement is elicted by the potential provided by deltas as evidence for standing bodies of water associated with the deltas, and the resulting implications for both the ancient climate of Mars and ancient habitability. The controversy stems from how confident can we be in the identification of ancient deltaic systems from orbital data, and how robust are our assertions about the habitability potential of such settings. Delta systems in particular are key astrobiological targets because at their distal toes fine-grained sediment (ie., clays) settle from suspension in a lower energy setting and they are commonly characterised by high rates of sedimentation. This leads to high preservation potential of biosignatures. Targeting of future Mars rovers to investigate deltaic landing sites requires better understanding of these issues to reduce exploration risk. In this presentation, we describe the key criteria that enable us to make robust interpretations of deltaic stratigraphy and constrain delta evolution for martian systems. In particular, the past 10 years has seen in a revolution in our process understanding of terrestrial delta systems through a combination of field, experimental and numerical modelling studies. Analysis of martian deltas has much to gain from these results. We go on to consider why deltaic systems offer potential as astrobiological target paleoenvironments. We use the exhumed delta system (Hypanis delta system) at the termination of Hypanis Vallis, 11.8°N, 314.96°E as a case example. This system, situated in Xanthe Terra, comprises layered sedimentary rocks with an overall multi-lobate geometry and associated inverted channel networks. The Hypanis 'delta' is a proposed landing site for the ExoMars rover and also for the NASA 2020 mission.

  5. Four Types of Deposits From Wet Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Each of these four panels shows a close-up view of a different type of geological deposit formed with the involvement of water, based on observations by NASA's Mars Reconnaissance Orbiter. All four date from the earliest period of Martian history, called the Noachian Period.

    The upper-left panel shows carbonates overlying clays in the Nili Fossae region of Mars. The view combines color-coded information from infrared spectral observations by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) with an underlying black-and-white image from the High Resolution Imaging Science Experiment (HiRISE) camera. Beneath a rough-textured capping rock unit (purple) lie banded olivine-bearing layers (yellow), which in some places have been partially or wholly altered to carbonate (green).

    The upper-right panel shows phyllosilicates and chlorides in the Terra Sirenum region, observed by CRISM and HiRISE. Medium-toned, finely fractured rocks containing chloride salts either underlie higher-standing, light-toned phyllosilicates or fill in low spots between them. Both sit on dark, eroded volcanic material.

    The lower-left panel shows the upper portion of canyon wall in Coprates Chasma, observed by HiRISE and CRISM. The chasm rim cuts across the middle of the image. The wall slopes down to the top of the image and continues outside the region shown, exposing multiple phyllosilicate-bearing layers in a section of rock 7 kilometers (4 miles) thick. Two of the layers shown here are finely fractured aluminum clays that dominate the lower half of the image, underlain by thin beds of iron-magnesium clays at the top of the image. The dark material is a remnant of an overlying layer of basaltic sand that has been partly eroded away by the wind.

    The lower-right panel shows phyllosilicates with vertically layered compositions in Mawrth Vallis, observed by HiRISE (presented in enhanced color) and CRISM. The brown-colored knob in the middle of the scene is a

  6. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Kraft, Michael D.; Kuzmin, Ruslan O.; Bridges, Nathan T.

    2000-01-01

    Surface features related to the wind are observed in the vicinity of the Mars Pathfinder (MPR landing site data from the lander and in data from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions. One is inferred to represent winds from the northeast, which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions. A second wind blowing from the ESE was responsible for modifying the crater rims and cutting some of the ventifacts. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, and the original surface formed by sedimentary processes from Tiu and Ares Vallis flooding events has been modified by repeated burial and exhumation.

  7. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2008-01-01

    Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi

  8. Lineated Valley Fill and Lobate Debris Aprons in the Deuteronilus Mensae Region, Mars: Implications for Regional Glaciation

    NASA Astrophysics Data System (ADS)

    Kress, A.; Head, J. W.

    2009-03-01

    Studies of lineated valley fill and lobate debris aprons in the Deuteronilus Mensae region, Mars, reveal that they are endmembers of a continuum of morphologies with the same mode of origin, which is that of debris-covered glacier.

  9. Structure and Dynamics of the Polar Regions of Mars from MGS Topography and Gravity

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Lemoine, Frank G.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft has been engaged in systematic mapping of Mars since insertion into Mars orbit in September, 1997. The objectives of the MGS mission are to globally map Mars as well as to quantify seasonal changes on the planet. MGS geophysical/geodetic observations of topography from the Mars Orbiter Laser Altimeter (MOLA) and gravity from the Radio Science investigation are providing significant new insights on both static and time-varying aspects of the polar regions of Mars. These observations have implications for polar processes on diurnal seasonal and climatic timescales. Thus far, MOLA has collected over 300 million precise measurements of Martian topography and cloud heights. The instrument has also provided measurements of the width of the backscattered optical pulse and of the 1064 nm reflectivity of the Martian surface and atmosphere. The along-track resolution of MOLA ground shots is approx. 300 m and the across-track spacing in the polar regions is a maximum of about four kilometers. The vertical accuracy of the topography is determined by the precision recovery of spacecraft orbits from the Radio Science investigation, which includes MOLA altimetry in the form of crossovers. This accuracy is currently approx. one meter. The gravity field is derived from X-band Doppler tracking with typical accuracy of 0.03 to 0.05 mm/s averaged over ten seconds. Current Mars gravity fields are to approximately degree and order 80 but are interpretable to the approximate degree and order 60 (spatial resolution < 180 km), which represents an estimate of the approximate coefficient limit of a field that can be produced without a power law constraint on the gravitational field inversion, which is commonly imposed for solution stability. Additional information is contained in the original extended abstract.

  10. Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. A.

    2010-01-01

    Geologic mapping of MTM -30247, -35247, and -40247 quadrangles is being used to characterize Reull Vallis (RV) and examine the roles and timing of volatile-driven erosional and depositional processes. This study complements earlier investigations of the eastern Hellas region, including regional analyses [1-6], mapping studies of circum-Hellas canyons [7-10], and volcanic studies of Hadriaca and Tyrrhena Paterae [11-13]. Key scientific objectives include 1) characterizing RV in its "fluvial zone," and evaluating its history of formation, 2) analyzing channels in the surrounding plains and potential connections to RV, and 3) examining young, possibly sedimentary plains along RV.

  11. Mapping analysis of scaffold/matrix attachment regions (s/MARs) from two different mammalian cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilus, Nur Shazwani Mohd; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd

    Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved frommore » 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively.« less

  12. Mariner 9 evidence for wind erosion in the equatorial and mid-latitude regions of Mars

    NASA Technical Reports Server (NTRS)

    Mccauley, J. F.

    1973-01-01

    Evidence for extensive wind erosion principally in the equatorial and mid-latitude regions of Mars is presented and compared with selected erosional landforms from the coastal desert of Peru known to be of eolian origin. The evidence for widespread erosion on Mars prompted an examination of certain aspects of its wind regime that are thought to be significant geologically.

  13. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  14. Similar Ring Structures on Mars and Tibetan Plateau confirm recent tectonism on Martian Northern polar region

    NASA Astrophysics Data System (ADS)

    Anglés, A.; Li, Y. L.

    2017-10-01

    The polar regions of Mars feature layered deposits, some of which exist as enclosed zoning structures. These deposits raised strong interest since their discovery and still remain one of the most controversial features on Mars. Zoning structures that are enclosed only appear in the Northern polar region, where the disappearance of water bodies may have left behind huge deposits of evaporate salts. The origin of the layered deposits has been widely debated. Here we propose that the enclosed nature of the zoning structures indicates the result of recent tectonism. We compared similar structures at an analogue site located in the western Qaidam Basin of Tibetan Plateau, a unique tectonic setting with abundant saline deposits. The enclosed structures, which we term Ring Structures, in both the analogue site and in the Northern polar region of Mars, were formed by uplift induced pressurization and buoyancy of salts as the result of recent tectonic activity.

  15. Extreme temperature events on Greenland in observations and the MAR regional climate model

    NASA Astrophysics Data System (ADS)

    Leeson, Amber A.; Eastoe, Emma; Fettweis, Xavier

    2018-03-01

    Meltwater from the Greenland Ice Sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected to contribute 20-110 mm to future sea level rise by 2100. These estimates were produced by regional climate models (RCMs) which are known to be robust at the ice sheet scale but occasionally miss regional- and local-scale climate variability (e.g. Leeson et al., 2017; Medley et al., 2013). To date, the fidelity of these models in the context of short-period variability in time (i.e. intra-seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event identification algorithm commonly used in extreme value analysis, together with observations from the Greenland Climate Network (GC-Net), to assess the ability of the MAR (Modèle Atmosphérique Régional) RCM to reproduce observed extreme positive-temperature events at 14 sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but underestimates their magnitude by more than half a degree Celsius/kelvin, although this bias is much smaller than that exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 16 and 41 % depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and regional climate model evaluation and that addressing shortcomings in this area should be a priority for model development.

  16. An experimental flow-through assessment of acidic Fe/Mg smectite formation on early Mars

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Peretyazhko, T.; Garcia, A. H.; Ming, D. W.

    2017-12-01

    Orbital observations have detected the phyllosilicate smectite in layered material hundreds of meters thick, intracrater depositional fans, and plains sediments on Mars; however, the detection of carbonate deposits is limited. Instead of neutral/alkaline conditions during the Noachian, early Mars may have experienced mildly acidic conditions derived from volcanic acid-sulfate solutions that allowed Fe/Mg smectite formation but prevented widespread carbonate formation. The detection of acid sulfates (e.g., jarosite) associated with smectite in Mawrth Vallis supports this hypothesis. Previous work demonstrated smectite (saponite) formation in closed hydrologic systems (batch reactor) from basaltic glass at pH 4 and 200°C (Peretyazhko et al., 2016 GCA). This work presents results from alteration of basaltic glass from alkaline to acidic conditions in open hydrologic systems (flow-through reactor). Preliminary experiments exposed basaltic glass to deionized water at 190°C at 0.25 ml/min where solution pH equilibrated to 9.5. These initial high pH experiments were conducted to evaluate the flow-through reactor system before working with lower pHs. Smectite at this pH was not produced and instead X-ray diffraction results consistent with serpentine was detected. Experiments are in progress exposing basaltic glass from pH 8 down to pH 3 to determine what range of pHs could allow for smectite formation in this experimental open-system. The production of smectite under an experimental open-system at low pHs if successful, would support a significant paradigm shift regarding the geochemical evolution of early Mars: Early Mars geochemical solutions were mildly acidic, not neutral/alkaline. This could have profound implications regarding early martain microbiology where acid conditions instead of neutral/alkaline conditions will require further research in terrestrial analogs to address the potential for biosignature preservation on Mars (Johnson et al., 2016, LPSC).

  17. Inverted Martian Craters in Lineated Glacial Valleys, Ismenius Lacus Region, Mars

    NASA Technical Reports Server (NTRS)

    McConnell, B. S.; Wilt, G. L.; Gillespie, A.; Newsom, H. E.

    2005-01-01

    We studied small, uniquely-shaped craters found on the surface of lineated terrain in the Ismenius Lacus region of Mars. By utilizing MOC and THEMIS satellite images, we located terrain including lineations (viscous flow features), smoothing of topography, and morphologic features such as polygons and gullies, which appear to be strong evidence of preexisting ice deposits.

  18. Ice-bearing deposits in the southern mid-latitude regions of Terra Cimmeria, Mars

    NASA Astrophysics Data System (ADS)

    Adeli, S.; Hauber, E.; Jaumann, R.; Michael, G.; Fawdon, P.

    2017-09-01

    We report here the presence of a newly observed well-preserved glacial-like and ice-bearing deposit, named Valley Fill Deposit (VFD), on the surface of Terra Cimmeria, located in the southern mid-latitude regions of Mars.

  19. Geologic map of the north polar region of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Fortezzo, Corey M.

    2012-01-01

    The north polar region of Mars occurs within the central and lowest part of the vast northern plains of Mars and is dominated by the roughly circular north polar plateau, Planum Boreum. The northern plains formed very early in Martian time and have collected volcanic flows and sedimentary materials shed from highland sources. Planum Boreum has resulted from the accumulation of water ice and dust particles. Extensive, uncratered dune fields adjacent to Planum Boreum attest to the active and recent transport and accumulation of sand. Our geologic map of Planum Boreum is the first to record its entire observable stratigraphic record using the various post-Viking image and topography datasets released before 2009. We also provide much more detail in the map than previously published, including some substantial revisions based on new data and observations. The available data have increased and improved immensely in quantity, resolution, coverage, positional accuracy, and spectral range, enabling us to resolve previously unrecognized geomorphic features, stratigraphic relations, and compositional information. We also employ more carefully prescribed and effective mapping methodologies and digital techniques, as well as formatting guidelines. The foremost aspect to our mapping approach is how geologic units are discriminated based primarily on their temporal relations with other units as expressed in unit contacts by unconformities or by gradational relations. Whereas timing constraints of such activity in the north polar region are now better defined stratigraphically, they remain poorly constrained chronologically. The end result is a new reconstruction of the sedimentary, erosional, and structural histories of the north polar region and how they may have been driven by climate conditions, available geologic materials, and eolian, periglacial, impact, magmatic, hydrologic, and tectonic activity.

  20. Evidence of ancient alteration and subaqueous activity in Oxia Planum, the candidate landing site for Exomars 2020

    NASA Astrophysics Data System (ADS)

    Quantin-Nataf, Cathy; Carter, John; Thollot, Patrick; Loizeau, Damien; Davis, Joel; Grindrod, Peter; lozach, Loic

    2017-04-01

    The ExoMars 2018 mission (ESA) has for scientific objectives to search for signs of past and present life on Mars, to investigate the water/geochemical environment as a function of depth in the shallow subsurface, to study to Martian atmospheric trace gases and to characterize the surface environment. The landing site has to be relevant with regard to these objectives while fitting the restrictive engineering constrains. From the scientific point of view, the site must be ancient, from the Early Mars period, for which many scientific evidences favor the existence of a water-related cycle. In this paper, we present the unique location called Oxia Planum, a wide clay bearing plain located between 16° and 19° North and -23° to -28° East proposed as landing site for Exomars 2020 mission. Oxia Planum is located between Ares Vallis and Marwth Vallis in a wide basin just at the outlet of Cogoon Vallis System, with elevations ranging from -2800 m down to -3100 m. The regional compositional mapping of Oxia planum has been achieved based on OMEGA data at 2.5 km/pix well as CRISM multispectral data at 200 m/pix. Mg/Fe phyllosilicates, identified and mapped based on their diagnostic absorptions at 1.4, 1.9 and 2.3 µm are exposed over about 80% of the ellipse surface. The entire unit with phyllosilicates signatures corresponds to a light-toned layered unit that is observed over a large range of elevations (from -2600 m to -3100m) suggesting that like in Marwth Vallis region, the layered and altered formation overlaps a pre-existing topography . The age returned from crater count on the clay rich formation is 3.9 Ga. At the top or embedded within the layered formation, several fluvial morphologies such as former valleys or inverted channels are observed. Also, at the top of the layered clay-rich formation, a deltaic deposit is observed suggesting sub-aqueous episodes postdating the altered layered formation. In terms of mineralogy, the putative delta fan shows layers

  1. Gravity and lithospheric stress on the terrestrial planets with reference to the Tharsis region of Mars

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.; Phillips, R. J.

    1985-01-01

    On Mars and Venus, a strong positive correlation is found between geoid height and topography. The Tharsis region of Mars provides an exhibition of this correlation. Several hypotheses have been proposed regarding the origin of Tharsis. For purposes of explanation, three end-member dynamic hypotheses are considered. A hypothesis that the flexural doming of Tharsis resulted from uplift caused by some force acting on the base of the lithosphere can be rejected. According to another hypothesis, Tharsis is associated with a lithospheric load, while a third one considers that Tharsis is primarily isostatically compensated. In the present study, improved stress models for isostatic compensation on Mars are obtained. The strains inferred from fracture patterns on Mars are compared with the stresses predicted by the isostatic theory. It is found that the computed stresses are in reasonable agreement with tectonic features on Mars.

  2. Mars observer radio science (MORS) observations in polar regions

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.

    1992-01-01

    MORS observations will focus on two major areas of study: (1) the gravity field of Mars and its interpretation in terms of internal structure and history and (2) the structure of the atmosphere, with emphasis on both temperature-pressure profiles of the background atmosphere and small scale inhomogeneities resulting from turbulence. Scattering of cm wavelength radio signals from Mars' surface at highly oblique angles will also be studied during the primary mission; nongrazing scattering experiments may be possible during an extended mission. During the MORS primary mission, measurements of the spacecraft distance and velocity with respect to Earth based tracking stations will be used to develop models of the global gravity field. The improvement in knowledge of the gravity field will be especially evident in polar regions. The spatial and temporal coverage of atmospheric radio occultation measurements are determined by the geometry of the spacecraft orbit and the direction to the Earth. Profiles of atmospheric temperature and pressure will extend from the surface to altitudes of 50 to 70 km.

  3. North polar region of Mars: imaging results from viking 2.

    PubMed

    Cutts, J A; Blasius, K R; Briggs, G A; Carr, M H; Greeley, R; Masursky, H

    1976-12-11

    During October 1976, the Viking 2 orbiter acquired approximately 700 high-resolution images of the north polar region of Mars. These images confirm the existence at the north pole of extensive layered deposits largely covered over with deposits of perennial ice. An unconformity within the layered deposits suggests a complex history of climate change during their time of deposition. A pole-girdling accumulation of dunes composed of very dark materials is revealed for the first time by the Viking cameras. The entire region is devoid of fresh impact craters. Rapid rates of erosion or deposition are implied. A scenario for polar geological evolution, involving two types of climate change, is proposed.

  4. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    NASA Astrophysics Data System (ADS)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  5. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  6. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  7. Participation in the Mars data analysis program: Global and regional studies of wind-indicators on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Thomas, P.

    1984-01-01

    Global and regional patterns on Mars were inferred from surface aeolian features, such as wind streaks and dune deposits, which were visible in Viking Orbiter images. Precise measurements of the dimensions of topographic obstacles, i.e., craters, hills, ridges, on Mars as well as their associated wind streaks were used to determine the aerodynamic shape of an obstacle affects near surface airflow. A classification of Martian wind streaks was developed on the basis of albedo contrast and the presence or absence of either topographic obstacles or sediment deposits at the point of origin of the wind streaks. It was concluded that local meteorological conditions, such as the stability of the atmospheric boundary layer, play a major role in determining why some Martian craters produce depositional wind streaks while others produce erosional ones.

  8. Regional Mapping and Spectral Analysis of Mounds in Acidalia Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Amador, E. S.; Allen, Carlton; Oehler, D. Z.

    2010-01-01

    Acidalia Planitia is a approx.3000 km diameter planum located in the northern plains of Mars. It is believed to be a sedimentary basin containing an accumulation of sediments brought by Hesperian outflow channels that drained the Highlands. A large number of high-albedo mounds have been identified across this basin [1-2] and understanding the process that formed them should help us understand the history of this region. Farrand et al. [2] showed that the mounds are dark in THEMIS (Thermal Emission Imaging System) nighttime IR (infrared) image data. This implies that the mounds have a lower thermal inertia than the surrounding plains (Fig. 1), suggesting that the material of the mounds is fine-grained or unconsolidated. Farrand et al. [2] also reviewed potential analogs for the mounds and concluded that a combination of mud volcanoes with evaporites around geysers or springs is most consistent with all the data. We have built on this work by creating regional maps of the features and analyzing CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data to see if there are mineralogical differences between the mounds and surrounding plains.

  9. Thermophysical properties of the MER and Beagle II landing site regions on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.; Hynek, Brian M.; Pelkey, Shannon M.; Mellon, Michael T.; Martínez-Alonso, Sara; Putzig, Nathaniel E.; Murphy, Nate; Christensen, Philip R.

    2006-08-01

    We analyzed remote-sensing observations of the Isidis Basin, Gusev Crater, and Meridiani Planum landing sites for Beagle II, MER-A Spirit, and MER-B Opportunity spacecraft, respectively. We emphasized the thermophysical properties using daytime and nighttime radiance measurements from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer and Mars Odyssey Thermal Emission Imaging System (THEMIS) and thermal inertias derived from nighttime data sets. THEMIS visible images, MGS Mars Orbiter Camera (MOC) narrow-angle images, and MGS Mars Orbiter Laser Altimeter (MOLA) data are incorporated as well. Additionally, the remote-sensing data were compared with ground-truth at the MER sites. The Isidis Basin surface layer has been shaped by aeolian processes and erosion by slope winds coming off of the southern highlands and funneling through notches between massifs. In the Gusev region, surface materials of contrasting thermophysical properties have been interpreted as rocks or bedrock, duricrust, and dust deposits; these are consistent with a complex geological history dominated by volcanic and aeolian processes. At Meridiani Planum the many layers having different thermophysical and erosional properties suggest periodic deposition of differing sedimentological facies possibly related to clast size, grain orientation and packing, or mineralogy.

  10. Bright Fans in Mars Cryptic Region Caused by Adiabatic Cooling of CO2 Gas Jets.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.; Langevin, Y.; Murchie, S.; Seelos, F.; Vincendon, M.

    2007-12-01

    Over the last decade, observations of the retreat of the southern seasonal cap of Mars have revealed the presence of exotic processes within an area now informally referred to as the cryptic region. The appearance of dark spots, fans, blotches, and halos have been a "hot" topic of scientific discussion since they were first observed by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) [Malin et al., 1998]. Further observations by the Mars Odyssey (ODY) Thermal Emission Imaging System (THEMIS) showed that the dark features remained cold throughout the early-to-mid spring, suggesting that these features were either CO2 ice or were in thermal contact with CO2 ice [Kieffer et al., 2006]. In this paper, we present observations in the near-infrared at spatial resolutions that have previously been unavailable. We present further evidence that many of these features in the cryptic region are the result of cold jets, as first described by Kieffer [2000, 2007]. The adiabatic cooling of gas spewing downwind from the jets produces CO2 frost, thus forming the bright fans. The bright fans appear to be devoid of H2O ice, thus further supporting the hypothesis that they are formed from the downwind settling of CO2 frost. In some areas, the bright fans are adjacent to dark fans and appear to start from common vertices, while in other areas, bright fan-like deposits occur without the strong presence of dark fans. References: Kieffer, H.H. (2000) Annual Punctuated CO2 Slab-Ice and Jets on Mars, International Conference on Mars Polar Science and Exploration, p. 93. Kieffer, H.H. et al. (2006) Nature, 442,793-796. Kieffer, H.H. (2007) JGR, in press. Malin, M.C., M.H. Carr, G.E. Danielson, M.E. Davies, W.K. Hartmann, A.P. Ingersoll, P.B. James, H. Masursky, A.S. McEwen, L.A. Soderblom, P. Thomas, J. Veverka, M.A. Caplinger, M.A. Ravine, and T.A. Soulanille (1998) Early views of the Martian surface from the Mars orbiter camera of Mars global surveyor, Science, 279, 1681-1685.

  11. Validation of the regional climate model MAR over the CORDEX Africa domain and comparison with other regional models using unpublished data set

    NASA Astrophysics Data System (ADS)

    Prignon, Maxime; Agosta, Cécile; Kittel, Christoph; Fettweis, Xavier; Michel, Erpicum

    2016-04-01

    In the framework of the CORDEX project, we have applied the regional model MAR over the Africa domain at a resolution of 50 km. ERA-Interim and NCEP-NCAR reanalysis have been used as 6 hourly forcing at the MAR boundaries over 1950-2015. While MAR was already been validated over the West Africa, it is the first time that MAR simulations are carried out at the scale of the whole continent. Unpublished daily measurements, covering the Sahel and more areas up South, with a large set of variables, are used as validation of MAR, other CORDEX-Africa RCMs and both reanalyses. Comparisons with the CRU and the ECA&D databases are also performed. The unpublished daily data set covers the period 1884-2006 and comes from 1460 stations. The measured variables are wind, evapotranspiration, relative humidity, insolation, rain, surface pressure, temperature, vapour pressure and visibility. It covers 23 countries: Algeria, Benin, Burkina, Canary Islands, Cap Verde, Central Africa, Chad, Congo, Ivory Coast, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Mali, Mauritania, Morocco, Niger, Nigeria, Senegal, Sudan and Togo.

  12. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime and Climate from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Kraft, M. D.; Kuzmin, R. O.; Bridges, N. T.

    1999-01-01

    Surface features related to the wind are observed in data from the Mars Pathfinder lander and from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions, one inferred to represent winds from the northeast which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions, and a second wind pattern oriented approx. 90 degrees to the first. This latter wind could be from the W-NW or from the E-SE and was responsible for cutting the ventifacts and modifying the crater rims. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, in which the original surface formed by sedimentary processes from Tiu and Ares Vallis events has been modified by repeated burial and exhumation.

  13. Geologic Map of the Hellas Region of Mars

    USGS Publications Warehouse

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified

  14. Quantitative topographic analysis as a guide to rover-based research on Mars

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Dietrich, W. E.; Parker, T. J.; Sumner, D. Y.; Williams, R. M. E.; Hayes, A.; Mangold, N.; Lewis, K. W.

    2014-12-01

    Satellite imagery of Mars now provides remarkable topographic data, often better than that on Earth in many countries. For decades, researchers have identified landforms on Mars that indicated the presence of gullies, rivers, deltas, fans, and lakes, pointing to the presence of surface waters, and the apparent necessity of an active hydrologic cycle involving rain or snow. Quantitative topographic analysis has provided a means to estimate volumes of runoff, sediment transport rates, and peak flow discharges, first using orbital imagery alone and then using laser altimetery coverage and higher resolution HiRISE (1 m/px), CTX (20 m/px) and HRSC (50 m/px) topography. Our detailed topographic analysis of the Peace Vallis fan near the Curiosity rover landing site in Gale Crater (Mars) suggested that the fan entered into a pre-existing enclosed basin that would likely contain lake sediments; sedimentary, mineralogical, and chemical analysis of this region, now named Yellowknife Bay, later found this to be the case, though debate remains on the exact origin and history of the deposit. The rover is currently heading to a 5 km high sedimentary mound (Aeolis Mons) with mineral signatures hypothesized to be the result of planet-wide changes in climate. Topographic features on the mound, which correspond in elevation with other large depositional features around the crater, suggest that a succession of lakes developed post-Noachian. Within Gale, we are in a unique position to determine the extent at which topography can tell us the evolutionary history of a place on another planet, since our hypotheses can actually be tested as the Curiosity rover makes its ascent up Aeolis Mons. Along the rover's traverse, we propose based on the geomorphic record that the sediments being examined were water soaked, perhaps several times under deep lakes, and that the rover will cross shorelines that may not be well-preserved, but are worth searching for. A quantitative topographic analysis

  15. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an

  16. History of plains resurfacing in the Scandia region of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Fortezzo, Corey M.; Hayward, Rosalyn K.; Rodriguez, J. Alexis P.; Skinner, James A.

    2011-01-01

    We present a preliminary photogeologic map of the Scandia region of Mars with the objective of reconstructing its resurfacing history. The Scandia region includes the lower section of the regional lowland slope of Vastitas Borealis extending about 500–1800 km away from Alba Mons into the Scandia sub-basin below −4800 m elevation. Twenty mapped geologic units express the diverse stratigraphy of the region. We particularly focus on the materials making up the Vastitas Borealis plains and its Scandia sub-region, where erosional processes have obscured stratigraphic relations and made the reconstruction of the resurfacing history particularly challenging. Geologic mapping implicates the deposition, erosion, and deformation/degradation of geologic units predominantly during Late Hesperian and Early Amazonian time (~3.6–3.3 Ga). During this time, Alba Mons was active, outflow channels were debouching sediments into the northern plains, and basal ice layers of the north polar plateau were accumulating. We identify zones of regional tectonic contraction and extension as well as gradation and mantling. Depressions and scarps within these zones indicate collapse and gradation of Scandia outcrops and surfaces at scales of meters to hundreds of meters. We find that Scandia Tholi display concentric ridges, rugged peaks, irregular depressions, and moats that suggest uplift and tilting of layered plains material by diapirs and extrusion, erosion, and deflation of viscous, sedimentary slurries as previously suggested. These appear to be long-lived features that both pre-date and post-date impact craters. Mesa-forming features may have similar origins and occur along the southern margin of the Scandia region, including near the Phoenix Mars Lander site. Distinctive lobate materials associated with local impact craters suggest impact-induced mobilization of surface materials. We suggest that the formation of the Scandia region features potentially resulted from crustal heating

  17. Ancient Giant Basin/Aquifer System in the Arabia Region, Mars

    NASA Technical Reports Server (NTRS)

    Dohm, James M.; Barlow, Nadine; Williams, Jean-Pierre; Baker, Victor R.; Anderson, Robert C.; Boynton, William V.; Fairen, Alberto G.; Hare, Trent M.

    2004-01-01

    Ancient geologic/hydrologic phenomena on Mars observed through the magnetic data [1,2] provide windows to the ancient past through the younger Argyre and Hellas impacts [e.g., 3,4], the northern plains basement [5], and the Tharsis and Elysium magmatic complexes (recently referred to as superplumes [6,7]). These signatures, coupled with highly degraded macrostructures (tectonic features that are tens to thousands of km-long [8]), reflect an energetic planet during its embryonic development (.5 Ga or so of activity) with an active dynamo and magnetosphere [1,2,6]. One such window into the ancient past occurs northwest of the Hellas impact basin in Arabia Terra. Arabia Terra is one of the few water-rich equatorial regions of Mars, as indicated through impact crater [9] and elemental [10,11] information. This region records many unique traits, including stratigraphy, topography, cratering record, structural character, geomorphology, and geophysical, elemental, albedo, and thermal inertia signatures. We interpret these to collectively indicate a possible ancient giant impact basin that later became an important aquifer, as it provided yet another source of water for the formation of putative water bodies that occupied the northern plains [12,13] and addresses possible water-related characteristics that may be observed at the Opportunity landing site. This basin is antipodal to Tharsis and estimated to be at least 3,000 km in diameter.

  18. SHARAD soundings and surface roughness at past, present, and proposed landing sites on Mars: Reflections at Phoenix may be attributable to deep ground ice

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Phillips, Roger J.; Campbell, Bruce A.; Mellon, Michael T.; Holt, John W.; Brothers, T. Charles

    2014-08-01

    We use the Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter to search for subsurface interfaces and characterize surface roughness at the landing sites of Viking Landers 1 and 2, Mars Pathfinder, the Mars Exploration Rovers Spirit and Opportunity, the Phoenix Mars lander, the Mars Science Laboratory Curiosity rover, and three other sites proposed for Curiosity. Only at the Phoenix site do we find clear evidence of subsurface radar returns, mapping out an interface that may be the base of ground ice at depths of ~15-66 m across 2900 km2 in the depression where the lander resides. At the Opportunity, Spirit, and candidate Curiosity sites, images and altimetry show layered materials tens to hundreds of meters thick extending tens to hundreds of kilometers laterally. These scales are well within SHARAD's resolution limits, so the lack of detections is attributable either to low density contrasts in layers of similar composition and internal structure or to signal attenuation within the shallowest layers. At each site, we use the radar return power to estimate surface roughness at scales of 10-100 m, a measure that is important for assessing physical properties, landing safety, and site trafficability. The strongest returns are found at the Opportunity site, indicating that Meridiani Planum is exceptionally smooth. Returns of moderate strength at the Spirit site reflect roughness more typical of Mars. Gale crater, Curiosity's ultimate destination, is the smoothest of the four proposed sites we examined, with Holden crater, Eberswalde crater, and Mawrth Vallis exhibiting progressively greater roughness.

  19. Application of Geographical Information System Arc/info Grid-Based Surface Hyrologic Modeling to the Eastern Hellas Region, Mars

    NASA Astrophysics Data System (ADS)

    Mest, S. C.; Harbert, W.; Crown, D. A.

    2001-05-01

    Geographical Information System GRID-based raster modeling of surface water runoff in the eastern Hellas region of Mars has been completed. We utilized the 0.0625 by 0.0625 degree topographic map of Mars collected by the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA) instrument to model watershed and surface runoff drainage systems. Scientific interpretation of these models with respect to ongoing geological mapping is presented in Mest et al., (2001). After importing a region of approximately 77,000,000 square kilometers into Arc/Info 8.0.2 we reprojected this digital elevation model (DEM) from a Mars sphere into a Mars ellipsoid. Using a simple cylindrical geographic projection and horizontal spatial units of decimal degrees and then an Albers projection with horizontal spatial units of meters, we completed basic hydrological modeling. Analysis of the raw DEM to determine slope, aspect, flow direction, watershed and flow accumulation grids demonstrated the need for correction of single pixel sink anomalies. After analysis of zonal elevation statistics associated with single pixel sinks, which identified 0.8 percent of the DEM points as having undefined surface water flow directions, we filled single pixel sink values of 89 meters or less. This correction is comparable with terrestrial DEMs that contain 0.9 percent to 4.7 percent of cells, which are sinks (Tarboton et al., 1991). The fill-corrected DEM was then used to determine slope, aspect, surface water flow direction and surface water flow accumulation. Within the region of interest 8,776 watersheds were identified. Using Arc/Info GRID flow direction and flow accumulation tools, regions of potential surface water flow accumulation were identified. These networks were then converted to a Strahler ordered stream network. Surface modeling produced Strahler orders one through six. As presented in Mest et al., (2001) comparisons of mapped features may prove compatible with drainage networks and

  20. Intimations of water on Mars.

    PubMed

    2000-08-01

    This photo essay contains images of Mars that propose evidence of the possible present or past existence of liquid water on Mars. Images were taken by the Mars Global Surveyor Mars Orbiter Camera. Images presented include: Polar Wall Pit region, consisting of gully landforms possibly caused by seepage and runoff of liquid water; Noachis Terra region, an area of gullies eroded into the wall of a meteor impact crater, where channels and related debris are seen, possibly formed by seepage, runoff, and debris flow; two images of Gorgonum Chaos region, one a series of troughs and layers of gullies and the other of gullies in a specific layer forming an alcove similar to an aquifer; Sirenum Fossae/Gorgonum Chaos mosaic of two images from this region of the southern hemisphere of Mars, showing 20 different channels coming down from a trough and their associated debris fans. Images and their enhancements are from NASA/JPL/Malin Space Science System.

  1. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  2. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  3. Ripple Belt

    NASA Technical Reports Server (NTRS)

    2006-01-01

    16 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows windblown materials that have collected and been shaped into large ripples in a valley in the Auqakuh Vallis system in northeastern Arabia Terra, Mars.

    Location near: 29.1oN, 299.6oW Image width: 2 km (1.2 mi) Illumination from: lower left Season: Northern Winter

  4. South Polar Region of Mars: Topography and Geology

    NASA Technical Reports Server (NTRS)

    Schenk, P. M.; Moore, J. M.

    1999-01-01

    The polar layered deposits of Mars represent potentially important volatile reservoirs and tracers for the planet's geologically recent climate history. Unlike the north polar cap, the uppermost surface of the bright residual south polar deposit is probably composed of carbon dioxide ice. It is unknown whether this ice extends through the entire thickness of the deposit. The Mars Polar Lander (MPL), launched in January 1999, is due to arrive in December 1999 to search for water and carbon dioxide on layered deposits near the south pole (SP) of Mars. Additional information is contained in the original extended abstract.

  5. Investigation of the relationship of crater depths and diameters in selected regions of Mars

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Jen

    2013-03-01

    Impact craters are common geomorphological features on Mars. The density of craters is different among various regions. Higher crater density means older terrain. Craters can be divided into two types by the interior morphology: simple and complex. The cavity of Simple craters is bowl-shape, and complex craters display various interior features, such as central peaks. The depth/diameter ratio (d/D) of simple craters is larger than that of complex craters. The transition diameter from simple to complex morphologies ranges between 5 and 10 km, and is commonly cited to be about 7 km in the equatorial regions and 6 km near the poles, but the exact value also could vary with terrain type. In this research, seven regions, Amazonis Planitia, Arabia Terra, Chryse Planitia, Hesperia Planum, Isidis Planitia, Solis/Syria/Sinai Planum, and Terra Sirenum, were selected to investigate the onset diameter of complex craters and the relationship of crater diameter and depth in these regions on Mars in order to understand how the geology affects crater d/D. The analysis revealed that the slopes of the d/D relations are different, and these are linked to the surface material in different regions. The onset diameters in young volcanic regions with stronger material are slightly higher than older volcanic regions, and much higher than that of volatile regions. The research proves the different geological units can affect the morphology and morphometry of craters.

  6. North polar region of Mars: Advances in stratigraphy, structure, and erosional modification

    USGS Publications Warehouse

    Tanaka, K.L.; Rodriguez, J.A.P.; Skinner, J.A.; Bourke, M.C.; Fortezzo, C.M.; Herkenhoff, K. E.; Kolb, E.J.; Okubo, C.H.

    2008-01-01

    We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (???3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly-layered Rupes Tenuis unit (Abrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. The second major episode of activity during the Middle to Late Amazonian (??? <1 Ga) began with a section of dark, sand-rich and light-toned ice-rich irregularly-bedded sequences (Planum Boreum cavi unit, Abbc) along with deposition of evenly-bedded light-toned ice- and moderate-toned dust-rich layers (Planum Boreum 1 unit, Abb1). These units have transgressive and gradational stratigraphic relationships. Materials in Olympia Planum underlying the dunes of Olympia Undae are interpreted to consist mostly of the Planum Boreum cavi unit (Abbc). Planum Boreum materials were then deeply eroded to form spiral troughs, Chasma Boreale, and marginal scarps that define the major aspects of the polar plateau's current regional topography. Locally- to regionally-extensive (though vertically minor) episodes

  7. Ripple Trap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image.

    Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  8. Geologic Map of MTM -40277, -45277, -40272, and -45272 Quadrangles, Eastern Hellas Planitia Region of Mars

    USGS Publications Warehouse

    Bleamaster, Leslie F.; Crown, David A.

    2010-01-01

    Hellas Planitia comprises the floor deposits of the Hellas basin, more than 2,000 km across and 8 km deep, which is located in the southern hemisphere's cratered highlands and is the largest well-preserved impact structure on the Martian surface. The circum-Hellas highlands represent a significant percentage of the southern hemisphere of Mars and have served as a locus for volcanic and sedimentary activity throughout Martian geologic time. Hellas basin topography has had a long-lasting influence, acting as Mars' deepest and second largest depositional sink, as a source for global dust storms, and as a forcing agent on southern hemisphere atmospheric circulation. The region lies in the Martian mid-latitude zone where geomorphic indicators of past, and possibly contemporary, ground ice are prominent. The highlands north of the basin show concentrations of Noachian valley networks, and those to the east show prominent lobate debris aprons that are considered to be geomorphic indicators of ground ice. Several studies have proposed that Hellas itself was the site of extensive glacial and lacustrine activity. Recent analyses of mineralogical information from Mars Express' OMEGA (Observatoire pour la Mineralogie, l'Eau les Glaces et l'Activite) and Mars Reconnaissance Orbiter's CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) reveal outcrops of hydrated phyllosilicates in the region, strengthening an already strong case for past aqueous activity in and around Hellas basin. Our mapping and evaluation of landforms and materials of the Hellas region from basin rim to floor provides further insight into Martian global climate regimes and into the abundance, distribution, and flux of volatiles through history. Mars Transverse Mercator (MTM) quadrangles -40277, -45277, -45272, and -40272 (lat 37.5 degrees S.-47.5 degrees S., long 270 degrees W.-280 degrees W.) cover the eastern portion of the Hellas basin including the boundary between its floor and rim, the distal

  9. Thermal studies of Martian channels and valleys using Termoskan data: New results

    NASA Technical Reports Server (NTRS)

    Betts, B. H.; Murray, B. C.

    1993-01-01

    The Termoskan instrument onboard the Phobos '88 spacecraft acquired the highest-spatial-resolution thermal data ever obtained for Mars. Included in the thermal images are 2 km/pixel midday observations of several major channel and valley systems, including significant portions of Shalbatana Vallis, Ravi Vallis, Al-Qahira Vallis, Ma'adim Vallis, the channel connecting Valles Marineris with Hydraotes Chaos, and channel material in Eos Chasma. Termoskan also observed small portions of the southern beginnings of Simud, Tiu, and Ares Valles and some channel material in Gangis Chasma. Simultaneous broad band visible data were obtained for all but Ma'adim Vallis. We find that most of the channels and valleys have higher inertias than their surroundings, consistent with Viking IRTM-based thermal studies of Martian channels. We see for the first time that thermal inertia boundaries closely match all flat channel floor boundaries. Combining Termoskan thermal data, relative observations from Termoskan visible channel data, Viking absolute bolometric albedos, and a thermal model of the Mars surface, we have derived lower bounds on channel thermal inertias. Lower bounds on typical channel thermal inertias range from 8.4 to 12.5 (10(exp -3) cal cm(exp -2) s(exp -1/2)K(exp -1)) (352 to 523 in SI units). Lower bounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 in SI units). Atmospheric and geometric effects are not sufficient to cause the inertia enhancements. We agree with previous researchers that localized, dark, high inertia areas within channels are likely eolian in nature. However, the Temloskan data show that eolian deposits do not fill the channels, nor are they responsible for the overall thermal inertia enhancement. Thermal homogeneity and strong correlation of thermal boundaries with the channel floor boundaries lead us to favor noneolian overall explanations.

  10. Spectral Anomalies in the 11 and 12 micron Region From the Mariner Mars 7 Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.

    2000-01-01

    Two hundred-forty infrared spectra acquired by the 1969 Mariner Mars 7 Infrared Spectrometer (IRS), spanning the wavelength region 1.8-14.4 micron (5550-690/cm), have recently been recovered and calibrated in both wavelength and intensity. An examination of these IRS spectra has revealed absorptions at 11.25 and 12.5 micron that have not previously been reported for Mars. A search of the literature and spectral data bases shows that materials that exhibit a doublet at 11.25 and 12.5 micron are rare. In this paper we examine potential causes for these features and include a detailed discussion of carbonates, goethite, CO2 ice, and water ice. CO2 ice and water ice measured in transmission do not exhibit bands that match those recorded at 11.25 and 12.5 micron for Mars, which indicates that CO2 or water ice clouds are not the source of these features. Since these bands show no clear correlation with atmospheric path length, they are most likely caused by a surface material. In the IRS database they appear to be exceptionally intense in the western part of the Hellas basin. Goethite exhibits bands that are a good spectral match, but confirming whether goethite causes the features will require additional studies of the 20-50 micron region. These studies will require laboratory measurements of weathering coatings and an examination of spectra recorded of Mars by the 1971 Mariner Mars Infrared Interferometer Spectrometer (IRIS; 5-50 micron 2000200/cm) and the 1996 Thermal Emission Spectrometer (TES; 6-50 micron 1667-200/cm).

  11. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  12. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    PubMed Central

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  13. The Dusty Dynamics Within a Regional Mars Dust Storm

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Pla-Garcia, Jorge; Leung, Cecilia

    2017-10-01

    There have never been in situ observations at or near the active lifting center of a regional dust storm on Mars. In the absence of in situ data, it is common to employ numerical models to provide guidance on the physical processes and conditions operating in an unobserved location or weather system. Consequently, the Mars Regional Atmospheric Modeling System (MRAMS) is employed to study the structure and dynamics of a simulated large regional storm using a fully interactive dust cycle. The simulations provide the first ever glimpse of the conditions that might occur inside one of these storms.The simulated storm shows extremely complex structure with narrow lifting centers and a variety of deep dust transport circulations. The active lifting centers are broadly into a mesoscale system in much the same way that thunderstorms on Earth can organize into mesoscale convective structures. In many of the active dusty plumes, the mixing ratio of dust peaks near the surface and drops off with height. Once lifted, the largest dust tends to sediment out while the smaller dust continues to be advected upward by the plume. This size-sorting process combined with entrainment of less dusty air tends to drive the mixing ratio profile to a maximum near the surface. In dusty plumes near the surface, the air temperature is as much as 20K colder than nearby areas. This is due to solar absorption higher in the dust column limiting direct heating deeper into the atmosphere. Overall, within the plume, there is an inversion, and although the top of the plume is warmer than below, it is near neutral buoyancy compared to the less dusty air on either side. Apparently, adiabatic cooling nearly offsets the expected positive heating perturbation at the top of the dusty plume. A very strong low level just forms in the vicinity of the storm, accompanied by system-wide negative pressure deficits and circulation patterns strongly suggestive of the wind-enhanced interaction of radiation and dust

  14. Mars Science Laboratory (MSL) : the US 2009 Mars rover mission

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Tampari, Leslie; Steltzner, Adam; Umland, Jeff

    2003-01-01

    The Mars Science Laboratory mission is the 2009 United States Mars Exploration Program rover mission. The MSL Project expects to complete its pre-Phase A definition activity this fiscal year (FY2003), investigations in mid-March 2004, launch in 2009, arrive at Mars in 2010 during Northern hemisphere summer and then complete a full 687 day Mars year of surface exploration. MSL will assess the potential for habitability (past and present) of a carefully selected landing region on Mars by exploring for the chemical building blocks of life, and seeking to understand quantitatively the chemical and physical environment with which these components have interacted over the geologic history of the planet. Thus, MSL will advance substantially our understanding of the history of Mars and potentially, its capacity to sustain life.

  15. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  16. Geologic history of the polar regions of Mars based on Mars Global survey data. I. Noachian and Hesperian Periods

    USGS Publications Warehouse

    Tanaka, K.L.; Kolb, E.J.

    2001-01-01

    During the Noachian Period, the south polar region of Mars underwent intense cratering, construction of three groups of volcanoes, widespread contractional deformation, resurfacing of low areas, and local dissection of valley networks; no evidence for polar deposits, ice sheets, or glaciation is recognized. South polar Hesperian geology is broadly characterized by waning impacts, volcanism, and tectonism. Emplacement of the polar Dorsa Argentea Formation (DAF) occurred during the Hesperian Period. Mars Orbiter Laser Altimeter topographic data and Mars Orbiter Camera images elucidate stratigraphic, morphologic, and topographic relations, permitting the dividing of the DAF into eight members, which surround and underlie about half of the Amazonian south polar layered deposits. The lobate fronts and lack of typical volcanic-flow morphology of the six plains units indicate that they may be made up of debris flows. We think that these flows, tens of meters to 200 m thick, may have originated by the discharge of huge volumes of slurry fluidized by ground water or liquid CO2, perhaps triggered by local impacts, igneous activity, or basal melting beneath polar deposits. The cavi and rugged members include irregular depressions that penetrate the subsurface; some of the pits have raised rims. The depressions may have formed by collapse due to expulsion of subsurface material in which local explosive activity built up the raised rims. Further, smaller eruptions of volatile-rich material may have resulted in narrow, sinuous channel deposits within aggrading fine-grained unconsolidated material perhaps produced by gaseous discharge of subsurface volatiles; preferential erosion of the latter material could have produced the Dorsa Argentea-type ginuous ridges associated mainly with the DAF. Alternatively, the ridges may be eskers, but the lack of associated glacial and fluvial morphologies casts doubt on this interpretation. The knobby, degraded materials forming Scandia Colles

  17. Geologic History of the Polar Regions of Mars Based on Mars Global Surveyor Data. I. Noachian and Hesperian Periods

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenneth L.; Kolb, Eric J.

    2001-11-01

    During the Noachian Period, the south polar region of Mars underwent intense cratering, construction of three groups of volcanoes, widespread contractional deformation, resurfacing of low areas, and local dissection of valley networks; no evidence for polar deposits, ice sheets, or glaciation is recognized. South polar Hesperian geology is broadly characterized by waning impacts, volcanism, and tectonism. Emplacement of the polar Dorsa Argentea Formation (DAF) occurred during the Hesperian Period. Mars Orbiter Laser Altimeter topographic data and Mars Orbiter Camera images elucidate stratigraphic, morphologic, and topographic relations, permitting the dividing of the DAF into eight members, which surround and underlie about half of the Amazonian south polar layered deposits. The lobate fronts and lack of typical volcanic-flow morphology of the six plains units indicate that they may be made up of debris flows. We think that these flows, tens of meters to 200 m thick, may have originated by the discharge of huge volumes of slurry fluidized by ground water or liquid CO 2, perhaps triggered by local impacts, igneous activity, or basal melting beneath polar deposits. The cavi and rugged members include irregular depressions that penetrate the subsurface; some of the pits have raised rims. The depressions may have formed by collapse due to expulsion of subsurface material in which local explosive activity built up the raised rims. Further, smaller eruptions of volatile-rich material may have resulted in narrow, sinuous channel deposits within aggrading fine-grained unconsolidated material perhaps produced by gaseous discharge of subsurface volatiles; preferential erosion of the latter material could have produced the Dorsa Argentea-type sinuous ridges associated mainly with the DAF. Alternatively, the ridges may be eskers, but the lack of associated glacial and fluvial morphologies casts doubt on this interpretation. The knobby, degraded materials forming Scandia Colles

  18. Styles and timing of volatile-driven activity in the eastern Hellas region of Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Bleamaster, Leslie F.; Mest, Scott C.

    2005-12-01

    Recent analyses of Mars Global Surveyor and Mars Odyssey data sets provide new insights into the geologic evolution of the eastern Hellas region of Mars, in particular, the role of volatiles. Here, we present results of our recent work and integrate these with previous studies by various investigators to provide a synthesis of the history of volatile-driven activity of the region. We utilize high-resolution images from the Mars Orbiter Camera and Thermal Emission Imaging System combined with Mars Orbiter Laser Altimeter digital elevation models and profiles to examine fluvial systems that dissect the circum-Hellas highlands, to characterize stages in the development of the Dao, Niger, Harmakhis, and Reull Valles canyon systems, and to evaluate evidence for ancient lakes in Hellas Planitia. The occurrence of valley networks, dissected highland crater rims, and crater interior deposits such as layered plateaus suggests widespread ancient degradation of the circum-Hellas highlands. Canyon development, which represents subsequent more localized activity, may have included an early fluvial phase followed by the collapse and sapping dominated stages that, along with recent wall erosion and floor resurfacing, produced the currently observed morphologies. The prominent role of collapse and sapping along the east rim of Hellas, along with the presence of numerous channels extending toward the basin and sequences of finely layered deposits along the basin rim, suggests a volatile-rich substrate across a broad depositional shelf. The east rim of the basin was an accumulation zone for atmospheric volatiles and/or the edge of volatile-rich deposits associated with the basin floor. This evidence combined with topographic data and cratered terrain preservation around the basin is consistent with a lacustrine period or periods in early Martian history. The style, magnitude, and spatial extent of volatile-driven activity in eastern Hellas have varied considerably with time, and

  19. Igneous proceses and closed system evolution of the Tharsis region of Mars

    NASA Astrophysics Data System (ADS)

    Finnerty, A. A.; Phillips, R. J.; Banerdt, W. B.

    1988-09-01

    A quantitative petrologic model for the evolution of the Tharsis region on Mars is presented, which is consistent with global gravity and topography data. It is demonstrated that it is possible to form and support the topographic relief of the Tharsis plateau by a closed-system mass-conservative nearly isostatic process involving generation of magmas from a mantle source region. Extrusion and/or intrusion (or underplating) of such magmas allows low-pressure solidification, with a consequent increase in volume relative to that which would be possible in the high-pressure source region, leading to elevated topology. The distribution of densities with depth obtained by the model is quantitatively consistent with the isostatic models of Sleep and Phillips (1979, 1985).

  20. The geologic history of Margaritifer basin, Mars

    USGS Publications Warehouse

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  1. The geologic history of Margaritifer basin, Mars

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.

    2016-03-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  2. Viking: The exploration of Mars

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Photographs of the planet Mars generated by the Viking Mars program are presented and discussed. The Martian surface and its volcanoes receive particular attention. In addition, the atmosphere, temperature, surface craters, polar regions, and composition of Mars are briefly reviewed. Planetary evolution is considered. The highlights of the Mariner program for Mars are given.

  3. Stress history of the Tharsis Region, Mars

    NASA Technical Reports Server (NTRS)

    Francis, Robert A.

    1987-01-01

    The Tharsis topographic rise of Mars is roughly 5000 km wide and 10 km high and is believed to have originated more than 3.5 BY ago. Within its boundaries lie the four largest volcanoes on the planet. It is also the locus of a series of fracture traces which extend over approximately a hemisphere. The events leading to the formation of the Tharsis region continue to generate debate. Three geophysical models of the formation of Tharsis are now in general contention and each of these models has been used to predict a characteristic stress-field. These models are: the volcanic construct model, the isostatic compensation model, and the lithospheric uplift model. Each has been used by its proponents to predict some of the features observed in the Tharsis region but none accurately accounts for all of the fracture features observed. This is due, in part, to the use of fractures too young to be directly related to the origin of Tharsis. To constrain the origin of Tharsis, as opposed to its later history, one should look for the oldest fractures related to Tharsis and compare these to the predictions made by the models. Mapping of old terrains in and around the Tharsis rise has revealed 175 hitherto unknown old fracture features.

  4. Dynamic portrait of the region occupied by the Hungaria Asteroids: The influence of Mars

    NASA Astrophysics Data System (ADS)

    Correa-Otto, J. A.; Cañada-Assandri, M.

    2018-06-01

    The region occupied by the Hungaria asteroids has a high dynamical complexity. In this paper, we analyse the main dynamic structures and their influence on the known asteroids through the construction of maps of initial conditions. We evolve a set of test particles placed on a perfectly rectangular grid of initial conditions during 3 Myr under the gravitational influence of the Sun and eight planets, from Mercury to Neptune. Moreover, we use the method MEGNO in order to obtain a complete dynamical portrait of the region. A comparison of our maps with the distribution of real objects allows us to detect the main dynamical mechanisms acting in the domain under study such as mean-motion and secular resonances. Our main results is the existence of a small area inside a stable region where are placed the Hungaria asteroids. We found that the influence of Mars has an important role for the dynamic structure of the region, defining the limits for this population of asteroids. Our result is in agreement with previous studies, which have indicated the importance of the eccentricity of Mars for the stability of Hungaria asteroids. However, we found that the secular resonance resulting from the precession of perihelion due to a coupling with that of Jupiter proposed as limit for the Hungaria region could not be determinant for this population of asteroids.

  5. Tectonic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.

  6. Regional Studies of Highland-Lowland Age Differences Across the Mars Crustal Dichotomy Boundary

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; DeSoto, G. E.; Lazrus, R. M.

    2005-01-01

    Regional differences in crater retention ages (CRAs) across the Mars dichotomy boundary are compared to the global highland-lowland age difference previously determined from visible and buried impact basins based on MOLA-derived Quasi-Circular Depressions (QCDs). Here Western Arabia (WA) is compared with Ismenius Lacus (IL). We find the buried lowlands in the two regions have total CRAs essentially identical to the global average. Even more intriguing, the WA cratered terrain appears to have a CRA like that of the adjacent buried lowlands,

  7. Kasei Valles - False Color

    NASA Image and Video Library

    2015-01-07

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows a portion of Kasei Vallis.

  8. Volatile reservoirs below the surface of the Elysium region of Mars: Geomorphic evidence

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric H.; Hopler, Jennifer A.

    1987-01-01

    The Elysium volcanic province contains a variety of geomorphic evidence for the existence of large volatile reservoirs of subsurface volatiles. Study of these landforms yields insight into the distribution and size of these reservoirs and how they interact with the surface environment and will ultimately place constraints on the geometry, constitution, origin, time of formation, and temporal evolution of these important components of the Martian crust. Three principal types of landforms appear to be related to subsurface volatile reservoirs in the Elysium region of Mars: small outflow channels; large lahars; and vast expanses of knobby terranes around the margins of the Elysium dome. The evidence provided by these landforms is internally consistent with the presence of a large relatively shallow volatile reservoir in the Elysium region. If the geologic features described are reliable indicators of subsurface volatiles, they imply that: volatile reservoirs lie relatively close to the surface and underlie millions of sq km in this region; there is no apparent latitudinal variation in the depth or thickness of the volatile reservoirs; the precursors of the knobby terranes are or were important volatile reservoirs; volatiles may be lost in a variety of ways from these reservoirs; and volatiles were incorporated in an easily eroded surficial deposit in the middle history of Mars. The ultimate origin of water in this reservoir is uncertain. A model to explain the preferential entrapment of volatiles into the region's surface materials may be required.

  9. Evaluation of the Tindouf Basin Region in Southern Morocco as an Analog Site for Soil Geochemistry on Noachian Mars.

    PubMed

    Oberlin, Elizabeth A; Claire, Mark W; Kounaves, Samuel P

    2018-02-09

    Locations on Earth that provide insights into processes that may be occurring or may have occurred throughout martian history are often broadly deemed "Mars analog environments." As no single locale can precisely represent a past or present martian environment, it is important to focus on characterization of terrestrial processes that produce analogous features to those observed in specific regions of Mars or, if possible, specific time periods during martian history. Here, we report on the preservation of ionic species in soil samples collected from the Tindouf region of Morocco and compare them with the McMurdo Dry Valleys of Antarctica, the Atacama Desert in Chile, the martian meteorite EETA79001, and the in situ Mars analyses from the Phoenix Wet Chemistry Laboratory (WCL). The Moroccan samples show the greatest similarity with those from Victoria Valley, Beacon Valley, and the Atacama, while being consistently depleted compared to University Valley and enriched compared to Taylor Valley. The NO 3 /Cl ratios are most similar to Victoria Valley and Atacama, while the SO 4 /Cl ratios are similar to those from Beacon Valley, Victoria Valley, and the Atacama. While perchlorate concentrations in the Moroccan samples are typically lower than those found in samples of other analog sites, conditions in the region are sufficiently arid to retain oxychlorines at detectable levels. Our results suggest that the Tindouf Basin in Morocco can serve as a suitable analogue for the soil geochemistry and subsequent aridification of the Noachian epoch on Mars. Key Words: Mars analogues-Antarctica-Morocco-Oxyanions-Perchlorate-Nitrate. Astrobiology 18, xxx-xxx.

  10. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this region. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  11. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions

    NASA Technical Reports Server (NTRS)

    Ivanov, Anton B.

    2003-01-01

    The Mars Orbiter Camera (MOC) has been operating on board of the Mars Global Surveyor (MGS) spacecraft since 1998. It consists of three cameras - Red and Blue Wide Angle cameras (FOV=140 deg.) and Narrow Angle camera (FOV=0.44 deg.). The Wide Angle camera allows surface resolution down to 230 m/pixel and the Narrow Angle camera - down to 1.5 m/pixel. This work is a continuation of the project, which we have reported previously. Since then we have refined and improved our stereo correlation algorithm and have processed many more stereo pairs. We will discuss results of our stereo pair analysis located in the Mars Exploration rovers (MER) landing sites and address feasibility of recovering topography from stereo pairs (especially in the polar regions), taken during MGS 'Relay-16' mode.

  12. Thermal and albedo mapping of the north and south polar regions of Mars

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Keegan, K. D.

    1991-01-01

    The first maps are presented of the north and south polar regions of Mars. The thermal properties of the midlatitude regions from -60 deg to +60 deg latitude were mapped in previous studies. The presented maps complete the mapping of entire planet. The maps for the north and south polar regions were derived from Viking Infrared Thermal Mapper (IRTM) observations. Best fit thermal inertias were determined by comparing the available IRTM 20 micron channel brightness within a given region to surface temperatures computed by a diurnal and seasonal thermal model. The model assumes no atmospheric contributions to the surface heat balance. The resulting maps of apparent thermal inertia and average IRTM measured solar channel lambert albedo for the north and south polar regions from the poles to +/- 60 deg latitude.

  13. Glacial geology of the Hellas region on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S.; Strom, Robert G.; Johnson, Natasha

    1991-01-01

    A glacial geologic interpretation was recently presented for Argyre, which is herein extended to Hellas. This glacial event is believed to constitute an important link in a global cryohydric epoch of Middle Amazonian age. At glacial maximum, ice apparently extended far beyond the regions of Argyre and Hellas, and formed what is termed as the Austral Ice Sheet, an agglomeration of several ice domes and lobes including the Hellas Lobe. It is concluded that Hellas was apparently heavily glaciated. Also glaciation was young by Martian standards (Middle Amazonian), and ancient by terrestrial standards. Glaciation appears to have occurred during the same period that other areas on Mars were experiencing glaciation and periglacial activity. Glaciation seems to have occurred as a geological brief epoch of intense geomorphic activity in an era characterized by long periods of relative inactivity.

  14. Mars Stratigraphy Mission

    NASA Technical Reports Server (NTRS)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  15. Dust Devil Art

    NASA Technical Reports Server (NTRS)

    2005-01-01

    12 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark squiggles and streaks created by passing spring and summer dust devils near Pallacopas Vallis in the martian southern hemisphere.

    Location near: 53.9oS, 17.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  16. Mars @ ASDC

    NASA Astrophysics Data System (ADS)

    Carraro, Francesco

    "Mars @ ASDC" is a project born with the goal of using the new web technologies to assist researches involved in the study of Mars. This project employs Mars map and javascript APIs provided by Google to visualize data acquired by space missions on the planet. So far, visualization of tracks acquired by MARSIS and regions observed by VIRTIS-Rosetta has been implemented. The main reason for the creation of this kind of tool is the difficulty in handling hundreds or thousands of acquisitions, like the ones from MARSIS, and the consequent difficulty in finding observations related to a particular region. This led to the development of a tool which allows to search for acquisitions either by defining the region of interest through a set of geometrical parameters or by manually selecting the region on the map through a few mouse clicks The system allows the visualization of tracks (acquired by MARSIS) or regions (acquired by VIRTIS-Rosetta) which intersect the user defined region. MARSIS tracks can be visualized both in Mercator and polar projections while the regions observed by VIRTIS can presently be visualized only in Mercator projection. The Mercator projection is the standard map provided by Google. The polar projections are provided by NASA and have been developed to be used in combination with APIs provided by Google The whole project has been developed following the "open source" philosophy: the client-side code which handles the functioning of the web page is written in javascript; the server-side code which executes the searches for tracks or regions is written in PHP and the DB which undergoes the system is MySQL.

  17. Analysis of Ice-Related Intra-Crater Facies in Promethei Terra, Mars

    NASA Astrophysics Data System (ADS)

    Orgel, Csilla; Kereszturi, Ákos; van Gasselt, Stephan

    2014-05-01

    On Mars ice-related landforms have been identified at mid-latitudes between 30° and 50° in both hemispheres including the areas of Tempe Terra, Deuteronilus-Protonilus Mensae, Phlegra Montes and the rims of the southern-hemispheric impact basins Argyre and Hellas [1-7]. Our study area - informally termed hourglass-shaped crater [8] - is located near Reull Vallis on the eastern rim of the Hellas impact basin (39.0°S, 102.8°E). Impact-crater infill was described as debris-covered piedmont-type glacier [8] based on analysis of High Resolution Stereo Camera (HRSC) data, and implies a glacial origin with precipitation of ice during higher obliquity phases. Recent, higher-resolution image data such as data of the High Resolution Imaging Science Experiment (HiRISE) and the Context Imager (CTX) provide a more detailed picture of the lateral distribution of different small-scale surface features indicative of periglacial and/or glacial origin. The aim of this study is to identify qualitative and quantitative characteristics of these ice-related landforms and to separate sources of water ice and related processes. Initial age determinations based on impact-crater size-frequency statistics indicate an age of 3.4 Gyr for the impact-crater and an age of approximately 75 Myr for the infill [8]. In order to identify a possible sequence of surface-feature evolution we calculated the age distribution of four major surface units which span ages ages between 1-47 Myr. Along with detailed age information and a separation of different processes at this confined type location of Mars young-Amazonian landscape evolution and potential cyclic signals are being reconstructed to constrain climate evolution. Carr, M. H. & Schaber, G. G. 1977: Martian permafrost features.- J. Geophys. Res. 82, 4039-4054. Squyres, S. W. 1978: Martian fretted terrain: flow of erosional debris.- Icarus 34, 600-613. Squyres, S. W. 1979: The distribution of lobate debris aprons and similar flows on Mars.- J

  18. Permanent uplift in magmatic systems with application to the Tharsis region of Mars

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Sleep, N. H.; Banerdt, W. B.

    1990-04-01

    A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.

  19. Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae

    USGS Publications Warehouse

    Silvestro, S.; Vaz, D.A.; Fenton, L.K.; Geissler, P.E.

    2011-01-01

    We present evidence of widespread aeolian activity in the Arabia Terra/Meridiani region (Mars), where different kinds of aeolian modifications have been detected and classified. Passing from the regional to the local scale, we describe one particular dune field in Meridiani Planum, where two ripple populations are distinguished by means of different migration rates. Moreover, a consistent change in the ripple pattern is accompanied by significant dune advancement (between 0.4-1 meter in one Martian year) that is locally triggered by large avalanche features. This suggests that dune advancement may be common throughout the Martian tropics. ?? 2011 by the American Geophysical Union.

  20. Permanent uplift in magmatic systems with application to the Tharsis region of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Sleep, Norman H.; Banerdt, W. Bruce

    1990-01-01

    A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.

  1. Ancient Giant Basin/Aquifer System in the Arabia Region, Mars, and Its Influence on the Evolution of the Highland-Lowland Boundary

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Barlow, N. G.; Williams, Jean-Pierre; Ferris, J. C.; Miyamoto, H.; Baker, V. R.; Boynton, W. V.; Strom, R. G.; Rodriguez, Alexis; Fairen, Alberto G.

    2004-01-01

    Ancient geologic and hydrologic phenomena on Mars observed through the magnetic data provide windows to the ancient past through the younger Argyre and Hellas impacts, the northern plains basement and the rock materials that mantle the basement, and the Tharsis and Elysium magmatic complexes (recently referred to as superplumes). These signatures, coupled with highly degraded macrostructures (tectonic features that energetic planet during its embryonic development (0.5 Ga or so of activity) with an active dynamo and magnetosphere. One such window into the ancient past occurs northwest of the Hellas impact basin in Arabia Tern. Arabia Terra is one of the few water-rich equatorial regions of Mars, as indicated I through impact crater and elemental information. This region records many unique characteristics, including predominately Noachian materials, a highland-lowland boundary region that is distinct from other boundary regions, the presence of very few macrostructures when compared to the rest of the cratered highlands, the largest region of fretted terrain on Mars, outflow channels such as Mamers Valles that do not have obvious origins, and distinct albedo, thermal inertia, gravity, magnetic, and elemental signatures.

  2. Mars Operational Environmental Satellite (MOES): A post-Mars Observer discovery mission

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1993-01-01

    Mars Operational Environmental Satellite (MOES) is a Discovery concept mission that is designed to observe the global short-term weather phenomena on Mars in a systematic fashion. Even after the Mariner, Viking, and, soon, Mars Observer missions, crucial aspects of the martian atmosphere will remain unobserved systematically. Achieving a better understanding of the cycles of dust, water vapor, and ices on Mars requires detailed information about atmospheric transports of those quantities associated with the weather systems, particularly those arising in mid latitudes during fall and winter. It also requires a quantitive understanding of the processes responsible for the onset and evolution of dust storms on all scales. Whereas on Earth the system of geosynchronous and polar orbiting satellites provides continuous coverage of the weather systems, on Mars the time history of important events such as regional and global dust storms remains unobserved. To understand the transport of tracers in the martian atmosphere and particularly to identify their sources and sinks, it is necessary to have systematic global, synoptic observations that have yet to be attained. Clearly these requirements are not easy to achieve from a single spacecraft in orbit, but if we focus on specific regions of the planet, e.g., polar vs. low and mid latitudes, then it is possible to attain a nearly ideal coverage at a reasonable spatial and temporal resolution with a system of just two satellites. Mars Observer is about to yield good coverage of the polar latitudes, so we focus initially on the region not covered well in terms of diurnal coverage, and in terms of desired observations will provide the initial data for the numerical models of the martian weather and climate that can be verified only with better temporal and spatial data.

  3. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this regon. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  4. Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  5. Turbulent Lava Flow in Mars Athabasca Valles

    NASA Image and Video Library

    2010-01-11

    This combination of images, taken by NASA Mars Reconnaissance Orbiter, helped researchers analyze the youngest flood lava on Mars, which is in Athabasca Valles, in the Elysium Planitia region of equatorial Mars.

  6. Evolution of the Inca City region of Mars during southern spring.

    NASA Astrophysics Data System (ADS)

    Thomas, Nicolas; Hansen, Candice; Bridges, Nathan; McEwen, Alfred; Herkenhoff, Ken; Russell, Patrick

    MOC and THEMIS observations of the southern seasonal polar cap of Mars have provided evidence of the existence of venting from the sub-surface during early southern spring. Kieffer [JGR, 112, E08005, 2007] has presented a general model of the venting process. He emphasized, however, that regional variability of jet/geyser formation remains poorly understood. In this work we choose to investigate one specific region, namely the "Inca City" region of the seasonal polar cap (295.8E, 81.4S), using a time series of observations acquired by the High Resolution Imaging Sciences Experiment (HiRISE) onboard Mars Reconnaissance Orbiter. The Inca City area shows a wide variety of different phenomena. For example, many dark fans appear on the surface within 5 weeks of the time when sunlight first reaches this southern latitude. Most fans appear to be consistent with the concept of geyser formation with subsequent airfall of dark material (as described by Kieffer). We can, however, identify some fan structures within this region which appear to suggest near-surface flow. We also find that the directions of many observed fans follow the local topography. We suggest mechanisms by which this might occur. We also investigate the surface structures in this specific region and study their evolution through southern spring. We find, for example, that so-called "spiders" can be aligned in rows (possibly in response to local topography). We also observe variability in the structure of spiders which may indicate changes in local topography or in the local substrate over short length scales. On relatively steep slopes, fans can be observed although there is no obvious spider formation. At the end of spring, sloped surfaces becomes homogeneous in colour and brightness as the fan material coats the entire downslope surface. In early spring we also observe rocks with dark rings surrounding them which might be thought to indicate activity/venting. However, most of these do not evolve over

  7. Life on Mars

    NASA Technical Reports Server (NTRS)

    Soffen, G. A.

    1981-01-01

    The Viking biology experiments are examined. It is noted that the Viking missions did not find a terrestrial type of life at either of the two landing sites. This evidence may suggest that Mars is lifeless, but science demands a more rigorous proof; thus, it is still not known whether life exists on Mars. It is suggested that the Martian polar regions must be explored before a conclusive answer is possible; the permanent polar caps of Mars are frozen water and would act as a 'cold finger' of the planet to trap organic molecules.

  8. Mars Reconnaissance Orbiter Observes Changes

    NASA Image and Video Library

    2017-02-08

    NASA's Mars Reconnaissance Orbiter has been observing Mars in sharp detail for more than a decade, enabling it to document many types of changes, such as the way winds alter the appearance of this recent impact site. The space-rock impact that created this blast zone occurred sometime between September 2005 and February 2006, as bracketed by observations made with the Mars Orbiter Camera on NASA's Mars Global Surveyor spacecraft. The location is between two large volcanos, named Ascraeus Mons and Pavonis Mons, in a dusty area of the Tharsis region of Mars. During the period from 2007 to 2012, winds blowing through the pass between the volcanoes darkened some regions and brightened others, probably by removing and depositing dust. The view covers an area about 1.0 mile (1.6 kilometers) across, at 7 degrees north latitude, 248 degrees east longitude. North is toward the top. An animation is availalble at http://photojournal.jpl.nasa.gov/catalog/PIA21267

  9. Mars Atmospheric Temperature and Dust Storm Tracking

    NASA Image and Video Library

    2016-06-09

    This graphic overlays Martian atmospheric temperature data as curtains over an image of Mars taken during a regional dust storm. The temperature profiles extend from the surface to about 50 miles (80 kilometers) up. Temperatures are color coded, ranging from minus 243 degrees Fahrenheit (minus 153 degrees Celsius) where coded purple to minus 9 F (minus 23 C) where coded red. The temperature data and global image were both recorded on Oct. 18, 2014, by instruments on NASA's Mars Reconnaissance Orbiter: Mars Climate Sounder and Mars Color Imager. On that day a regional dust storm was active in the Acidalia Planitia region of northern Mars, at the upper center of this image. A storm from this area in typically travels south and grows into a large regional storm in the southern hemisphere during southern spring. That type of southern-spring storm and two other large regional dust storms repeat as a three-storm series most Martian years. The pattern has been identified from their effects on atmospheric temperature in a layer about 16 miles (25 kilometers) above the surface. http://photojournal.jpl.nasa.gov/catalog/PIA20747

  10. Feldspathic Rocks and Associated Mineral Phases on Mars: Evidence for Metamorphism?

    NASA Astrophysics Data System (ADS)

    Sessa, A. M.; Wray, J. J.

    2017-12-01

    It is widely accepted that the great majority of Martian crust is basaltic, suggesting that magmatic differentiation was not a key contributor to its production. However, remote sensing studies employing thermal emission imaging instruments aboard Mars Global Surveyor and Mars Odyssey, and recent in situ analyses performed by ChemCam onboard Curiosity, have indicated the presence of more silicic, feldspar-rich rocks with minimal mafics. Using the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), conceivably similar feldspathic rocks have been reported in other locations across the surface, which include: small outcrops located in the lower stratigraphic section of eastern Vallis Marineris; light-toned, polygonally fractured outcrops exposed within flat-floored craters; as well as other erosional or structural exposures (e.g., buttes, massifs, and crater rims). These previously observed occurrences can be classified as either 1) relatively unaltered rock spectrally dominated by feldspar or 2) an altered material in which CRISM detects feldspar in addition to Al, Fe, Mg-phyllosilicates and/or zeolites. Here we report on feldspathic outcrops that differ in their geologic setting from the previously identified occurrences in that they are associated with complex craters. These outcrops are accompanied by mineral phases that are relatively rare on Mars (i.e., analcime and other zeolites, chlorite, prehnite, mica, and carbonate) and may be indicative of hydrothermal or metamorphic processes. In these craters, feldspathic rocks can be found in and around the central uplift, in crater floor deposits, and in the ejecta, with tentative trends in associated mineralogy. These spatial, and mineralogical, relationships will be illustrated by CRISM RGB composite maps overlain on Context Camera imagery for select scenes. We also report new occurrences like those identified by Carter and Poulet (2013), where feldspar and Al-phyllosilicates are the most spectrally

  11. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    PubMed

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  12. Cracked Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    25 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows v-shaped troughs in the Hephaestus Fossae region of Mars. Light-toned, windblown ripples reside in the very lowest parts of the troughs, as well as on the cratered upland outside the troughs. Boulders and other types of debris, which were derived from the layered rock exposed near the top of the troughs, are seen resting on the trough floors and perched on the sloping trough walls.

    Location near: 21.1oN, 236.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  13. Vertical Distribution of Shallow Water in the Distinguishable Regions at Low and High Latitudes of Mars: Neutron Data Deconvolution of HEND

    NASA Technical Reports Server (NTRS)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretakov, V.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.; Saunders, R. S.; Drake, D.

    2003-01-01

    High Energy Neutron Detector (HEND) is the part of Gamma-Ray Spectrometer suite onboard NASA Mars Odyssey orbiter [1-4]. During 16 months of mapping stage of Odyssey mission HEND has accumulated the set of maps of neutron emission of Mars at more than seven decades of energies range from the Cadmium threshold of 0.4 eV up to 15 MeV. These maps present very large variations of neutrons at different regions of Mars and they also show quite strong changes along Martian seasons.

  14. Mars Sample Return: The Next Step Required to Revolutionize Knowledge of Martian Geological and Climatological History

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2012-01-01

    The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic

  15. Assessing Layered Materials in Gale Crater

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    2001-01-01

    The recent analysis of high resolution Mars Orbiter Camera (MOC) images of layered outcrops in equatorial regions reinforces two important ideas, which will probably eventually become paradigms, about Mars: 1) It has had a long, complex geologic history marked by change, as manifested in the different layers observed, and 2) Standing bodies of water existed for substantial lengths of time, indicating clement conditions possibly conducive to life. Although observations of layering and evidence for lakes and oceans has been reported for years based on Mariner 9 and Viking data, the MOC data show that this layering is much more pervasive and complex than previously thought. These layered sites are ideal for studying the geologic, and possibly biologic, history of Mars. Here, a layered site within Gale Crater is advocated as a Mars Exploration Rover (MER) target. This is one of the few layered areas within closed depressions (e.g., other craters and Vallis Marineris) that meets the landing site constraints and is accessible to both MER A and B.

  16. Conditions and Dynamics Within a Regional Mars Dust Storm

    NASA Astrophysics Data System (ADS)

    Rafkin, S. C.; Pla-García, J.; Leung, C. W. S.

    2017-12-01

    There have never been in situ observations at or near the active lifting center of a regional dust storm on Mars. In the absence of in situ data, it is common to employ numerical models to provide guidance on the physical processes and conditions operating in an unobserved location or weather system. Consequently, the Mars Regional Atmospheric Modeling System (MRAMS) is employed to study the structure and dynamics of a simulated large regional storm using a fully interactive dust cycle. The simulations provide the first ever glimpse of the conditions that might occur inside one of these storms. The simulated storm shows extremely complex structure, highly heterogeneous lifting centers, and a variety of deep dust transport circulations. The active lifting centers show broader organization into a mesoscale system in much the same way that thunderstorms on Earth can organize into mesoscale convective structures. In many of the active dust plumes, the mixing ratio of dust peaks near the surface and drops off with height. The surface mixing ratio maximum is partly due to the surface being the source of dust, with entrainment of less dusty air as the plume rises. However, it is also because the mixing ratio can be dominated by a few large dust aerosol, since the mass is proportional to the cubed of the radius. Once lifted, the largest dust tends to sediment out while the smaller dust continues to be advected upward by the plume. This size-sorting process tends to drive the mixing ratio profile to a maximum near the surface. In dusty plumes near the surface, the air temperature is as much as 20K colder than nearby areas. This is due to solar absorption higher in the dust column limiting direct heating deeper into the atmosphere. Overall, within the plume, there is an inversion, and although the top of the plume is warmer than below, it is near neutral buoyancy compared to the less dusty air on either side. Apparently, adiabatic cooling nearly offsets the expected positive

  17. Mars-GRAM Applications for Mars Science Laboratory Mission Site Selection Processes

    NASA Technical Reports Server (NTRS)

    Justh, Hilary; Justus, C. G.

    2007-01-01

    An overview is presented of the Mars-Global Reference Atmospheric Model (Mars-GRAM 2005) and its new features. One important new feature is the "auxiliary profile" option, whereby a simple input file is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Results are presented using auxiliary profiles produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) for three candidate Mars Science Laboratory (MSL) landing sites (Terby Crater, Melas Chasma, and Gale Crater). A global Thermal Emission Spectrometer (TES) database has also been generated for purposes of making 'Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude bins and 15 degree L(sub S) bins, for each of three Mars years of TES nadir data. Comparisons show reasonably good consistency between Mars-GRAM with low dust optical depth and both TES observed and mesoscale model simulated density at the three study sites. Mean winds differ by a more significant degree. Comparisons of mesoscale and TES standard deviations' with conventional Mars-GRAM values, show that Mars-GRAM density perturbations are somewhat conservative (larger than observed variability), while mesoscale-modeled wind variations are larger than Mars-GRAM model estimates. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  18. Physical properties of Deucalionis, Eos, Xanthe-type units in the central equatorial region of Mars

    NASA Technical Reports Server (NTRS)

    Strickland, Edwin L., III

    1992-01-01

    Classification and mapping of surficial units in the central equatorial region of Mars (30 degrees N to 20 degrees S, 57 degrees E to 75 degrees W) using enhanced color images and Mars Consortium data, identified three distinct, high albedo, relatively red surficial units in regions with intermediate to high thermal inertias. These units have distinctive properties and morphologies, occur in different, well-defined areas, and show different seasonal and secular patterns of albedo change. Deucalionis units occupy the classical albedo area of Deucalionis Regio, south of Meridiani Sinus and Sabaeus Sinus, and adjacent areas. Eos forms a bright band that separates the dark, relatively blue Meridiani-type units that dominate the southern part of the study area from intermediate albedo, relatively red Oxia units common in the north. Xanthe forms moderately bright, relatively red, Type 1B crater-streaks and uniform sheet-deposits in and adjacent to parts of Chryse Planitia, including the Viking 1 landing site. Xanthe is always associated with Oxia deposits, and has significantly lower albedos than the Eos materials, which it can be confused with.

  19. 'Mars-shine'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] 'Mars-shine' Composite

    NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.'

    Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses.

    Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow.

    With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10

  20. Weather Movie, Mars South Polar Region, March-April 2009 Close-up View

    NASA Image and Video Library

    2009-04-16

    This image shows the southern high-latitudes region of Mars from March 19 through April 14, 2009, a period when regional dust storms occurred along the retreating edge of carbon-dioxide frost in the seasonal south polar cap. Compared with a full-hemisphere view (see PIA11987), this view shows more details of where the dust clouds formed and how they moved around the planet. The movie combines hundreds of images from the Mars Color Imager (MARCI) camera on NASA's Mars Reconnaissance Orbiter. In viewing the movie, it helps to understand some of the artifacts produced by the nature of MARCI images when seen in animation. MARCI acquires images in swaths from pole-to-pole during the dayside portion of each orbit. The camera can cover the entire planet in just over 12 orbits, and takes about 1 day to accumulate this coverage. The indiviual swaths are assembled into a mosaic, and that mosaic is shown here wrapped onto a sphere. The blurry portions of the mosaic, seen to be "pinwheeling" around the planet in the movie, are the portions of adjacent images viewing obliquely through the hazy atmosphsere. Portions with sharper-looking details are the central part of an image, viewing more directly downward through less atmosphere than the obliquely viewed portions. MARCI has a 180-degree field of view, and Mars fills about 78 percent of that field of view when the camera is pointed down at the planet. However, the Mars Reconnaissance Orbiter often is pointed to one side or the other off its orbital track in order to acquire targeted observations by the higher-resolution imaging systems on the spacecraft. When such rolls exceed about 20 degrees, gaps occur in the mosaic of MARCI swaths. Also, dark gaps appear when data are missing, either because of irrecoverable data drops, or because not all the data have yet been transmitted from the spacecraft. It isn't easy to see the actual dust motion in the atmosphere in these images, owing to the apparent motion of these artifacts

  1. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  2. Studies of lava flows in the Tharsis region of Mars using SHARAD

    NASA Astrophysics Data System (ADS)

    Simon, Molly N.; Carter, Lynn M.; Campbell, Bruce A.; Phillips, Roger J.; Mattei, Stefania

    2014-11-01

    The Tharsis region of Mars is covered in volcanic flows that can stretch for tens to hundreds of kilometers. Radar measurements of the dielectric properties of these flows can provide information regarding their composition and density. SHARAD (shallow radar), a sounding radar on the Mars Reconnaissance Orbiter, detects basal interfaces beneath flows in some areas of Tharsis northwest and west of Ascraeus Mons, with additional detections south of Pavonis Mons. Comparisons with 12.6 cm ground-based radar images suggest that SHARAD detects basal interfaces primarily in dust or regolith-mantled regions. We use SHARAD data to estimate the real relative permittivity of the flows by comparing the measured time delay of returns from the subsurface with altimetry measurements of the flow heights relative to the surrounding plains. In cases where the subsurface interface is visible at different depths, spanning tens of meters, it is also possible to measure the loss tangent (tan δ) of the material. The permittivity values calculated range from 7.6 to 11.6, with an average of 9.6, while the mean loss tangent values range from 7.8 × 10-3 to 2.9 × 10-2 with an average of 1.0 × 10-2. These permittivity and loss tangent estimates for the flows northwest of Ascraeus Mons, west of Ascraeus Mons, and south of Pavonis Mons are consistent with the lab-measured values for dense, low-titanium basalt.

  3. Mars at Ls 137o

    NASA Technical Reports Server (NTRS)

    2006-01-01

    13 November 2006 These images capture what Mars typically looks like in mid-afternoon at Ls 137o. In other words, with the exception of occasional differences in weather and polar frost patterns, this is what the red planet looks like this month (November 2006).

    Six views are shown, including the two polar regions. These are composites of 24-26 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global mapping images acquired at red and blue wavelengths. The 'hole' over the south pole is an area where no images were obtained, because this polar region is enveloped in wintertime darkness.

    Presently, it is summer in the northern hemisphere and winter in the southern hemisphere. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Northern summer/southern winter begins at Ls 90o, northern autumn/southern spring start at Ls 180o, and northern winter/southern summer begin at Ls 270o.

    Ls 137o occurs in the middle of this month (November 2006). The pictures show how Mars appeared to the MOC wide angle cameras at a previous Ls 137o in March 2001. The six views are centered on the Tharsis region (upper left), Acidalia and Mare Eyrthraeum (upper right), Syrtis Major and Hellas (middle left), Elysium and Mare Cimmeria (middle right), the north pole (lower left), and the south pole (lower right).

  4. Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. A.

    2005-01-01

    Moore and Howard [1] reported the discovery of large alluvial fans in craters on Mars. Their initial survey from 0-30 S found that these fans clustered in three distinct regions and occurred at around the +1 km MOLA defined Mars datum. However, due to incomplete image coverage, Moore and Howard [1]could not conduct a comprehensive survey. They also recognized, though did not quantitatively address, gravity scaling issues. Here, we briefly discuss the identification of alluvial fans on Mars, then consider the general equations governing the deposition of alluvial fans and hypothesize a method for learning about grain size in alluvial fans on Mars.

  5. Mineralogy of the Pahrump Hills Region, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Vaniman, D. T.; Blake, D. F.; Chipera, S. J.; Morris, R. V.; Bish, D. L.; Cavanagh, P. D.; Achilles, C. N.; Bristow, T. F.; hide

    2015-01-01

    The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rocks in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September, 2014, and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three rock samples to its internal instruments, including the CheMin XRD/XRF. The three targets, Confidence Hills, Mojave 2, and Telegraph Peak, contain variable amounts of plagioclase, pyroxene, iron oxides, jarosite, phyllosilicates, and X-ray amorphous material. Hematite was predicted at the base of Mount Sharp from orbital visible/near-IR spectroscopy, and CheMin confirmed this detection. The presence of jarosite throughout Pahrump Hills suggests the sediments experienced acid-sulfate alteration, either in-situ or within the source region of the sediments. This acidic leaching environment is in stark contrast to the environment preserved within the Sheepbed mudstone on the plains of Gale crater. The minerals within Sheepbed, including Fe-saponite, indicate these sediments were deposited in a shallow lake with circumneutral pH that may have been habitable.

  6. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    NASA Technical Reports Server (NTRS)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  7. New Geologic Map of the Scandia Region of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Rodriquez, J. A. P.; Skinner, J. A., Jr.; Hayward, R. K.; Fortezzo, C.; Edmundson, K.; Rosiek, M.

    2009-01-01

    We have begun work on a sophisti-cated digital geologic map of the Scandia region (Fig. 1) at 1:3,000,000 scale based on post-Viking image and to-pographic datasets. Through application of GIS tools, we will produce a map product that will consist of (1) a printed photogeologic map displaying geologic units and relevant modificational landforms produced by tectonism, erosion, and collapse/mass wasting; (2) a landform geoda-tabase including sublayers of key landform types, attributed with direct measurements of their planform and to-pography using Mars Orbiter Laser Altimeter (MOLA) altimetry data and High-Resolution Stereo Camera (HRSC) digital elevation models (DEMs) and various image datasets; and (3) a series of digital, reconstructed paleostratigraphic and paleotopographic maps showing the inferred distribution and topographic form of materi-als and features during past ages

  8. Prospecting from Orbit

    NASA Image and Video Library

    2017-09-04

    The combination of morphological and topographic information from stereo images from NASA's Mars Reconnaissance Orbiter, as well as compositional data from near-infrared spectroscopy has been proven to be a powerful tool for understanding the geology of Mars. Beginning with the OMEGA instrument on the European Space Agency's Mars Express orbiter in 2003, the surface of Mars has been examined at near-infrared wavelengths by imaging spectrometers that are capable of detecting specific minerals and mapping their spatial extent. The CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument on our orbiter is a visible/near-infrared imaging spectrometer, and the HiRISE camera works together with it to document the appearance of mineral deposits detected by this orbital prospecting. Mawrth Vallis is one of the regions on Mars that has attracted much attention because of the nature and diversity of the minerals identified by these spectrometers. It is a large, ancient outflow channel on the margin of the Southern highlands and Northern lowlands. Both the OMEGA and CRISM instruments have detected clay minerals here that must have been deposited in a water-rich environment, probably more than 4 billion years ago. For this reason, Mawrth Vallis is one of the two candidate landing sites for the future Mars Express Rover Mission planned by the European Space Agency. This image was targeted on a location where the CRISM instrument detected a specific mineral called alunite, KAl3(SO4)2(OH)6. Alunite is a hydrated aluminum potassium sulfate, a mineral that is notable because it must have been deposited in a wet acidic environment, rich in sulfuric acid. Our image shows that the deposit is bright and colorful, and extensively fractured. The width of the cutout is 1.2 kilometers. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 60.1 centimeters (23.7 inches) per pixel (with 2 x 2 binning); objects on the order

  9. Geologic map of the MTM 85200 quadrangle, Olympia Rupes region of Mars

    USGS Publications Warehouse

    Skinner, James A.; Herkenhoff, Kenneth E.

    2012-01-01

    The north polar region of Mars is dominated by Planum Boreum, a roughly circular, domical plateau that rises >2,500 m above the surrounding lowland. Planum Boreum is >1,500 km in diameter, contains deep, curvilinear troughs and chasmata, isolated cavi, and marginal scarps and slopes. The north polar plateau is surrounded by low-lying and nearly horizontal plains of various surface texture, geologic origin, and stratigraphic significance. The MTM 85200 quadrangle spans 5° of latitude (lat 82.5° to 87.5° N.) and 40° of longitude (long 140° to 180° E.) within the eastern hemisphere of Mars. The quadrangle includes the high-standing Planum Boreum, curvilinear troughs of Boreales Scopuli, deep, sinuous scarps of Olympia Rupes, isolated and coalesced depressions of Olympia Cavi, margins of the circular polar erg Olympia Undae, and low-standing Olympia Planum. The surface of Planum Boreum within the MTM 85200 quadrangle is characterized by smoothly sculptured landforms with shallow slopes and variable relief at kilometer scales. Areas that are perennially covered with bright frost are generally smooth and planar at 100-m scales. However, MGS MOC and MRO HiRISE images show that much of the icy polar plateau is rough at decameter scale. The Martian polar plateaus are likely to contain a record of global climate history for >107 to as much as ~3 x 109 years. This record is partly observable as rhythmically layered deposits exposed in the curvilinear troughs of the north polar plateau, Planum Boreum. The north polar layered deposits are widely interpreted to be among the most youthful bedrock deposits on the Martian surface. These materials and their stratigraphic and structural relations provide a glimpse into some of the more recent geologic processes that have occurred on Mars. The ability of the massive polar deposits to periodically trap and release both volatiles and lithic particles may represent a globally important, recurring geologic process for Mars.

  10. Mars at Ls 121o

    NASA Technical Reports Server (NTRS)

    2006-01-01

    1 October 2006 These images capture what Mars typically looks like in mid-afternoon at L s 121o. In other words, with the exception of occasional differences in weather and polar frost patterns, this is what the red planet looks like this month (October 2006).

    Six views are shown, including the two polar regions. These are composites of 24-26 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global mapping images acquired at red and blue wavelengths. The 'hole' over the south pole is an area where no images were obtained, because this polar region is enveloped in wintertime darkness.

    Presently, it is summer in the northern hemisphere and winter in the southern hemisphere. Ls, solar longitude, a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Northern summer/southern winter begins at Ls 90o, northern autumn/southern spring start at Ls 180o, and northern winter/southern summer begin at Ls 270o.

    Ls 121o occurs in the middle of this month (October 2006). The pictures show how Mars appeared to the MOC wide angle cameras at a previous Ls 121o in February 2001. The six views are centered on the Tharsis region (upper left), Acidalia and Mare Eyrthraeum (upper right), Syrtis Major and Hellas (middle left), Elysium and Mare Cimmeria (middle right), the north pole (lower left), and the south pole (lower right).

  11. Considerations Taken in Developing the Frequency Assignment Guidelines for Communications in the Mars Region Provided in SFCG Recommendation 22-1, (SFCG Action Item No. 23/10)

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Peng, Ted; Sue, Miles K.

    2004-01-01

    In the 23'd Annual SFCG meeting in San Diego, CA, the SFCG created SFCG Action Item No. 23/10 to provide a readable summary of the work done by the Mars Interim Working Group (MIWG). The SFCG created the MIWG to develop a frequency plan for future Mars missions. The working group has produced a number of documents resulting in a recommendation, SFCG Rec 22-1 [1], titled Frequency Assignment Guidelines for Communications in Mars Region, including a frequency plan for the Mars Region. This document is prepared in response to the SFCG Action Item to provide an overview of the considerations taken when selecting the frequencies and to point out where detailed information of the considerations can be found.

  12. Morphological Analysis of Annual Recurrence of Dark Dune Spots on Southern Polar Region of Mars

    NASA Technical Reports Server (NTRS)

    Horvath, A.; Ganti, T.; Berczi, Sz.; Gesztesi, A.; Szathmary, E.

    2003-01-01

    Analysis of the Mars Global Surveyor narrow-angle images of the dark dune spots (DDSs) in three subsequent Martian winters and springs in Southern Polar Region resulted in the recognition that year by year DDSs reappeared on the same place with almost the same configuration. Comparison of the 1999 and 2001 high-resolution images showed a very interest recovery process.

  13. Assessment of Mars Pathfinder landing site predictions

    USGS Publications Warehouse

    Golombek, M.P.; Moore, H.J.; Haldemann, A.F.C.; Parker, T.J.; Schofield, J.T.

    1999-01-01

    Remote sensing data at scales of kilometers and an Earth analog were used to accurately predict the characteristics of the Mars Pathfinder landing site at a scale of meters. The surface surrounding the Mars Pathfinder lander in Ares Vallis appears consistent with orbital interpretations, namely, that it would be a rocky plain composed of materials deposited by catastrophic floods. The surface and observed maximum clast size appears similar to predictions based on an analogous surface of the Ephrata Fan in the Channeled Scabland of Washington state. The elevation of the site measured by relatively small footprint delay-Doppler radar is within 100 m of that determined by two-way ranging and Doppler tracking of the spacecraft. The nearly equal elevations of the Mars Pathfinder and Viking Lander 1 sites allowed a prediction of the atmospheric conditions with altitude (pressure, temperature, and winds) that were well within the entry, descent, and landing design margins. High-resolution (~38 m/pixel) Viking Orbiter 1 images showed a sparsely cratered surface with small knobs with relatively low slopes, consistent with observations of these features from the lander. Measured rock abundance is within 10% of that expected from Viking orbiter thermal observations and models. The fractional area covered by large, potentially hazardous rocks observed is similar to that estimated from model rock distributions based on data from the Viking landing sites, Earth analog sites, and total rock abundance. The bulk and fine-component thermal inertias measured from orbit are similar to those calculated from the observed rock size-frequency distribution. A simple radar echo model based on the reflectivity of the soil (estimated from its bulk density), and the measured fraction of area covered by rocks was used to approximate the quasi-specular and diffuse components of the Earth-based radar echos. Color and albedo orbiter data were used to predict the relatively dust free or unweathered

  14. Mars Global Geologic Mapping: Amazonian Results

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2008-01-01

    We are in the second year of a five-year effort to map the geology of Mars using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey imaging and altimetry datasets. Previously, we have reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. For example, we have seen how the multiple types and huge quantity of image data as well as more accurate and detailed altimetry data now available allow for broader and deeper geologic perspectives, based largely on improved landform perception, characterization, and analysis. Here, we describe early mapping results, which include updating of previous northern plains mapping [3], including delineation of mainly Amazonian units and regional fault mapping, as well as other advances.

  15. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2010-01-01

    Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the

  16. Digital mapping of the Mars Pathfinder landing site: Design, acquisition, and derivation of cartographic products for science applications

    USGS Publications Warehouse

    Gaddis, L.R.; Kirk, R.L.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Barrett, J.; Becker, K.; Decker, T.; Blue, J.; Cook, D.; Eliason, E.; Hare, T.; Howington-Kraus, E.; Isbell, C.; Lee, E.M.; Redding, B.; Sucharski, R.; Sucharski, T.; Smith, P.H.; Britt, D.T.

    1999-01-01

    The Imager for Mars Pathfinder (IMP) acquired more than 16,000 images and provided panoramic views of the surface of Mars at the Mars Pathfinder landing site in Ares Vallis. This paper describes the stereoscopic, multispectral IMP imaging sequences and focuses on their use for digital mapping of the landing site and for deriving cartographic products to support science applications of these data. Two-dimensional cartographic processing of IMP data, as performed via techniques and specialized software developed for ISIS (the U.S.Geological Survey image processing software package), is emphasized. Cartographic processing of IMP data includes ingestion, radiometric correction, establishment of geometric control, coregistration of multiple bands, reprojection, and mosaicking. Photogrammetric processing, an integral part of this cartographic work which utilizes the three-dimensional character of the IMP data, supplements standard processing with geometric control and topographic information [Kirk et al., this issue]. Both cartographic and photogrammetric processing are required for producing seamless image mosaics and for coregistering the multispectral IMP data. Final, controlled IMP cartographic products include spectral cubes, panoramic (360?? azimuthal coverage) and planimetric (top view) maps, and topographic data, to be archived on four CD-ROM volumes. Uncontrolled and semicontrolled versions of these products were used to support geologic characterization of the landing site during the nominal and extended missions. Controlled products have allowed determination of the topography of the landing site and environs out to ???60 m, and these data have been used to unravel the history of large- and small-scale geologic processes which shaped the observed landing site. We conclude by summarizing several lessons learned from cartographic processing of IMP data. Copyright 1999 by the American Geophysical Union.

  17. Possible recent and ancient glacial ice flow in the south polar region of Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1992-01-01

    Martian polar science began almost as soon as small telescopes were trained on the planet. The seasonal expansion and contraction of the polar caps and their high albedoes led most astronomers to think that water ice is the dominant constituent. In 1911 Lowell perceived a bluish band around the retreating edge of the polar caps, and interpreted it as water from melting polar ice and seasonal snow. An alternative idea in his time was that the polar caps consist of frozen carbonic acid. Lowell rejected the carbonic acid hypothesis on account of his blue band. He also pointed out that carbonic acid would sublimate rather than melt at confining pressures near and below one bar, hence, carbonic acid could not account for the blue band. In comparing Lowell's theories with today's knowledge, it is recognized that (1) sublimation is mainly responsible for the growth and contraction of Mars' polar caps, (2) carbon dioxide is a major component of the southern polar cap, and (3) Lowell's blue band was probably seasonal dust and/or clouds. Geomorphic evidence that glacial ice and glacial melt waters once flowed over broad areas of the southern polar region. Two aspects of the south polar region suggest possible glacial processes during two distinct eras in Mars' history.

  18. Local, Regional, and Global Albedo Variations on Mars From Recent Space-Based Observations: Implications for Future Human Explorers

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Wellington, D. F.

    2017-06-01

    We describe recent as well as historic albedo variations on Mars as observed by space-based telescopes, orbiters, and surface missions, and speculate that some regions might offer fewer dust-related problems for future human explorers than others.

  19. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  20. The mirage of Mars magnetosphere

    NASA Astrophysics Data System (ADS)

    Mordovskaya, V.

    The spacecraft Phobos 2 has been on the circular orbit around Mars at the distance of 2 Mars's radiuses for a whole month. There are a lot of data and so we can speak about some statistics. The dependence of the perturbed magnetic field in the Mars wake on the density of the ambient solar wind plasma is traced but the same dependence from the velocity is absent. The picture of the solar wind interaction with Martian obstacle is not typical for magnetosphere. For high plasma density the value of the perturbed magnetic field in the wake of Mars and its size increase considerably and the perturbed region swells. The magnetosphere of Earth is compressed in the same cases. This points out that Mars has the weak protective magnetic screen. The estimation of its size gives the value about 160-220 km. Because of the lack of the protective magnetic screen, it seems, the solar wind with the density lower than 1 cm-3 interacts with the Martian atmosphere directly. The density of the ambient plasma is usually about 1 cm-3 and the thickness of the skin layers exceeds the scale of the Martian protective magnetic screen, the field freely passes over. The magnetosphere of Mars "disappears". The existence of the regions of the rarefied plasma behind Mars, due to a shading of particles of the solar wind plasma is an argument in favors of the disappearance of the Martian magnetosphere.

  1. Mars on 25 December 2003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    8 January 2004 This is how Mars appeared to the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle system on 25 December 2003, the day that Beagle 2 and Mars Express reached the red planet. The large, dark region just left of center is Syrtis Major, a persistent low albedo terrain known to astronomers for nearly four centuries before the first spacecraft went to Mars. Immediately to the right (east) of Syrtis Major is the somewhat circular plain, Isidis Planitia. Beagle 2 arrived in Isidis Planitia only about 18 minutes before Mars Global Surveyor flew over the region and acquired a portion of this global view. Relative to other global images of Mars acquired by MGS over the past several martian years, the surface features were not as sharp and distinct on 25 December 2003 because of considerable haze kicked up by large dust storms in the western and southern hemispheres during th previous two weeks. The picture is a composite of several MGS MOC red and blue daily global images that have been map-projected and digitally wrapped to a sphere. Although the effect here is minor, inspection of this mosaic shows zones that appear smudged or blurry. The high dust opacity on 25 December impacted MOC's oblique viewing geometry toward the edges of each orbit's daily global mapping image, thus emphasizing the 'blurry' zones between images acquired on successive orbits.

  2. Niger Vallis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 24 September 2003

    Named for a great river in Africa, the martian version is a system of eroding channels that empties into the Hellas impact basin. One style of erosion is evident in this image, where the upper branches of the Niger are merging. Some process weakens the crust until it founders, producing large slump blocks that continue to erode. This process enlarges the channels and ultimately may lead to a single upper channel.

    Image information: VIS instrument. Latitude -34.7, Longitude 92.6 East (267.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. An interpretation of photometric parameters of bright desert regions of Mars and their dependence on wave length

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Meador, W. E.

    1977-01-01

    Photometric data from the bright desert areas of Mars were used to determine the dependence of the three photometric parameters of the photometric function on wavelength and to provide qualitative predictions about the physical properties of the surface. Knowledge of the parameters allowed the brightness of these areas of Mars to be determined for any scattering geometry in the wavelength range of 0.45 to 0.70 micron. The changes that occur in the photometric parameters due to changes in wavelength were shown to be consistent with their physical interpretations, and the predictions of surface properties were shown to be consistent with conditions expected to exist in these regions of Mars. The photometric function was shown to have potential as a diagnostic tool for the qualitative determination of surface properties, and the consistency of the behavior of the photometric parameters was considered to be support for the validity of the photometric function.

  4. Mars exploration advances: Missions to Mars - Mars base

    NASA Technical Reports Server (NTRS)

    Dejarnette, Fred R.; Mckay, Christopher P.

    1992-01-01

    An overview is presented of Mars missions and related planning with attention given to four mission architectures in the light of significant limitations. Planned unpiloted missions are discussed including the Mars Orbital Mapping Mission, the Mars Rover Sample Return, the Mars Aeronomy Orbiter, and the Mars Environmental Survey. General features relevant to the missions are mentioned including launch opportunities, manned-mission phases, and propulsion options. The four mission architectures are set forth and are made up of: (1) the Mars-exploration infrastructures; (2) science emphasis for the moon and Mars; (3) the moon to stay and Mars exploration; and (4) space resource utilization. The possibility of robotic missions to the moon and Mars is touched upon and are concluded to be possible by the end of the century. The ramifications of a Mars base are discussed with specific reference to habitability and base activities, and the human missions are shown to require a heavy-lift launcher and either chemical/aerobrake or nuclear-thermal propulsion system.

  5. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Golombek, M.P.; Haldemann, A.F.C.; Franklin, B.J.; Tanaka, K.L.; Lias, J.; Peer, B.

    2001-01-01

    Five main stages of radial and concentric structures formed around Tharsis from the Noachian through the Amazonian as determined by geologic mapping of 24,452 structures within the stratigraphic framework of Mars and by testing their radial and concentric orientations. Tectonic activity peaked in the Noachian (stage 1) around the largest center, Claritas, an elongate center extending more than 20?? in latitude and defined by about half of the total grabens which are concentrated in the Syria Planum, Thaumasia, and Tempe Terra regions. During the Late Noachian and Early Hesperian (stage 2), extensional structures formed along the length of present-day Valles Marineris and in Thaumasia (with a secondary concentration near Warrego Vallis) radial to a region just to the south of the central margin of Valles Marineris. Early Hesperian (stage 3) radial grabens in Pavonis, Syria, Ulysses, and Tempe Terra and somewhat concentric wrinkle ridges in Lunae and Solis Plana and in Thaumasia, Sirenum, Memnonia, and Amazonis are centered northwest of Syria with secondary centers at Thaumasia, Tempe Terra, Ulysses Fossae, and western Valles Marineris. Late Hesperian/Early Amazonian (stage 4) structures around Alba Patera, the northeast trending alignment of Tharsis Montes, and Olympus Mons appears centered on Alba Patera. Stage 5 structures (Middle-Late Amazonian) represent the last pulse of Tharsis-related activity and are found around the large shield volcanoes and are centered near Pavonis Mons. Tectonic activity around Tharsis began in the Noachian and generally decreased through geologic time to the Amazonian. Statistically significant radial distributions of structures formed during each stage, centered at different locations within the higher elevations of Tharsis. Secondary centers of radial structures during many of the stages appear related to previously identified local magmatic centers that formed at different times and locations throughout Tharsis. Copyright 2001 by

  6. Geologic Stratigraphy, Delta Morphology, and Regional History of Hypanis Delta, Mars

    NASA Astrophysics Data System (ADS)

    Adler, J.; Bell, J. F., III; Warner, N. H.; Fawdon, P.; Gupta, S.; Sefton-Nash, E.; Grindrod, P. M.; Davis, J.

    2016-12-01

    Hypanis is a large Noachian aged fan-shaped deposit that has been interpreted by many as being a delta in Xanthe Terra along the dichotomy boundary. The position of the putative delta at the edge of an open basin and its preserved morphology including potential access to bottomset beds had made Hypanis a compelling candidate future landing site for Mars 2020 and ExoMars. Its topographic location, without a clear local closed basin, may even imply a large northern sea. We further previous studies of Hypanis delta by 1) analyzing the stratigraphy of floor plains materials surrounding ancient deltaic deposits 2) conducting a survey of sedimentary bed strike and dip distribution, and 3) presenting a regional history model that includes a diversity of volcanic, sedimentary, tectonic, and impact processes identified. Hypanis delta has previously been dated at 3.8 Ga based on crater counts in the Hypanis Valles catchment and previous fluvial system analysis estimates 150 km3 of sediment deposited. We utilize 17 HiRISE and 8 CTX DTMs to measure fluvial and stratigraphic quantities, a CTX 5 m/pixel mosaic basemap (USGS), and THEMIS day/night IR images. We determine map unit stratigraphy (relative ages) from superposition and cross cutting relationships supported in our 3D models. We discuss periods of subaqueous sedimentation, fluvial migration, volcanic resurfacing, and multiple periods of erosion throughout the study region to explain the observed morphologies and inferred geologic timeline. Additional work focuses on newly discovered tectonic features prevalent in the low-lying plains unit. These 2 m wide linear features suggest orthogonal jointing and relatively recent faulting. We assess whether these features could be related to the cooling of Hesperian lava plains or isostatic uplift from a removed glacier or eroded landmass.

  7. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  8. CD-ROM publication of the Mars digital cartographic data base

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Eliason, E. M.; Soderblom, L. A.; Edwards, Kathleen; Wu, Sherman S. C.

    1991-01-01

    The recently completed Mars mosaicked digital image model (MDIM) and the soon-to-be-completed Mars digital terrain model (DTM) are being transcribed to optical disks to simplify distribution to planetary investigators. These models, completed in FY 1991, provide a cartographic base to which all existing Mars data can be registered. The digital image map of Mars is a cartographic extension of a set of compact disk read-only memory (CD-ROM) volumes containing individual Viking Orbiter images now being released. The data in these volumes are pristine in the sense that they were processed only to the extent required to view them as images. They contain the artifacts and the radiometric, geometric, and photometric characteristics of the raw data transmitted by the spacecraft. This new set of volumes, on the other hand, contains cartographic compilations made by processing the raw images to reduce radiometric and geometric distortions and to form geodetically controlled MDIM's. It also contains digitized versions of an airbrushed map of Mars as well as a listing of all feature names approved by the International Astronomical Union. In addition, special geodetic and photogrammetric processing has been performed to derive rasters of topographic data, or DTM's. The latter have a format similar to that of MDIM, except that elevation values are used in the array instead of image brightness values. The set consists of seven volumes: (1) Vastitas Borealis Region of Mars; (2) Xanthe Terra of Mars; (3) Amazonis Planitia Region of Mars; (4) Elysium Planitia Region of Mars; (5) Arabia Terra of Mars; (6) Planum Australe Region of Mars; and (7) a digital topographic map of Mars.

  9. Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole

    NASA Astrophysics Data System (ADS)

    Brown, A. J.; Wolff, M. J.

    2009-03-01

    We have used CRISM Emission Phase Function gimballed observations to investigate atmospheric dust/ice opacity and surface albedo in the south polar region for the first Mars year of MRO operations. This covers the MY28 "dust event" and cap recession.

  10. METHANE AND WATER ON MARS: MAPS OF ACTIVE REGIONS AND THEIR SEASONAL VARIABILITY

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.

    2009-12-01

    methane on Mars [1] and discovered two new band sys-tems of isotopic CO2 (at 3.3 and 3.7 μm) that can interfere with signatures of CH4 and HDO [3, 4]. The spectral signatures of these isotopic CO2 transitions may affect searches based on low spectral resolution methods, but they do not affect the searches reported herein. We present the spatial distributions of methane and water-vapor on Mars extracted from our seven-year spectral database, and we compare these with geological parameters. Both gases are depleted at vernal equinox but are enhanced in warm seasons (spring/summer), though often with dissimilar spatial distributions. In Northern Summer we observe a polar outburst of water but no methane, while in Southern Spring we observe release of abundant methane but little water. Regions of methane release appear mainly over ancient terrain (Noachian/Hesperian, older than 3 billion years) known to have a rich hydration history. [1] Mumma et al. (2009) Science 323:1041-1045. [2] Villanueva et al. (2009), submitted. [3] Villanueva et al. (2008) Icarus 195(1):34-44. [4] Villanueva et al. (2008) JQSRT 109(6):883-894.

  11. Multiprocess evolution of landforms in the Kharga Region, Egypt: Applications to Mars

    NASA Technical Reports Server (NTRS)

    Breed, C. S.; Mccauley, J. F.; Grolier, M. J.

    1984-01-01

    In order to understand better the polygenetic evolution of landforms on the martian surface, field studies were conducted in and around the Kharga Depression, Egypt. The Kharga region, on the eastern edge of Egypt's Western Desert, was subject to erosion under mostly hyperarid climatic conditions, punctuated by brief pluvial episodes of lesser aridity, since early Pleistocene time. The region contains numerous landforms analogous to features on the martian surface: yardangs carved in layered surficial deposits and in bedrock, invasive dune trains, wind-modified channels and interfluves, and depressions bounded by steep scarps. Like many of the topographic depresions on Mars, the Kharga Depression was invaded by crescentic dunes. In Egypt, stratigraphic relations between dunes, yardangs, mass-wasting debris, and wind-eroded flash-flood deposits record shifts in the relative effectiveness of wind, water, and mass-wasting processes as a function of climate change.

  12. Seasonal Atmospheric Argon Variability Measured in the Equatorial Region of Mars by the Mars Exploration Rover Alpha Particle X-Ray Spectrometers: Evidence for an Annual Argon-Enriched Front

    NASA Astrophysics Data System (ADS)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.

    2018-02-01

    The Mars Exploration Rover Opportunity (MER-B) has been exploring the surface of Mars since landing in 2004. Its Alpha Particle X-ray Spectrometer (APXS) is primarily used to interrogate the chemical composition of rocks and soil samples in situ. Additionally, the APXS has measured the atmosphere of Mars with a regular cadence, monitoring the change in relative atmospheric argon density. Atmospheric measurements with the MER-B APXS span over six Mars years providing an unprecedented level of statistics for careful study of the ubiquitous APXS spectral background. Several models were applied to high-frequency long-duration Spirit rover atmospheric APXS measurements. The most stable model with the least uncertainty was applied to the MER-B data set. Seasonal variation of 10-15% in equatorial atmospheric argon density was observed - in agreement with existing literature and global climate models. Unseen in previous work and global climate models, an abrupt deviation from the model-predicted annual mixing ratio was measured by the MER-B APXS around Ls 150. The sharp change, 10% over 10° Ls, provides strong evidence for a northward migrating front, enriched in argon, sourced from the south pole at the end of southern winter. A similar weaker front is possibly observed around Ls 325, sourced from the northern polar region.

  13. Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.

    1991-01-01

    Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.

  14. Airbag Tracks on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.

  15. Mars Odyssey All Stars: Cerberus Crack

    NASA Image and Video Library

    2010-12-09

    Geological faulting has opened cracks in the Cerberus region that slice through flat plains and mesas alike. This image is part of an All Star set marking the occasion of NASA Mars Odyssey as the longest-working Mars spacecraft in history.

  16. Lithospheric Structure from Mars Global Surveyor Topography and Gravity and Implications for the Early Thermal Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Smith, David E.; Tyler, G. Leonard; Aharonson, Oded; Balmino, Georges; Banerdt, W. B.; Head, James W.; Johnson, Catherine L.

    2000-01-01

    Regional variations in the thickness of the elastic lithosphere on Mars derived from a combined analysis of topography and gravity anomalies determined by Mars Global Surveyor provide new insight into the planet's thermal history.

  17. Evidence for Acid-Sulfate Alteration in the Pahrump Hills Region, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Bish, D. L.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Vaniman. D. T.; Chipera, S. J.; hide

    2015-01-01

    The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rock in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September 2014 and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three mudstone samples (targets Confidence Hills, Mojave 2, and Telegraph Peak) to its internal instruments, including the CheMin XRD/XRF.

  18. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  19. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia Anna; Paetzold, Martin; Häusler, Bernd; Hinson, David P.; Peter, Kerstin; Tyler, G. Leonard

    2017-10-01

    Atmospheric waves play a crucial role for the dynamics in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and the coupling of the different atmospheric regions on Mars.Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, and gravity waves). Atmospheric waves are also known to exist in the middle atmosphere of Mars (~70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars.Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to ~ 40-50 km) and electron density profiles in the ionosphere of Mars.Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement.A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations.The MaRS experiment is funded by DLR under grant 50QM1401.

  20. Enigmatic Sedimentary Deposits Within Partially Exhumed Impact Craters in the Aeolis Dorsa Region, Mars: Evidence for Past Crater Lakes

    NASA Astrophysics Data System (ADS)

    Peel, S. E.; Burr, D. M.

    2018-06-01

    We mapped enigmatic sedimentary deposits within five partially exhumed impact craters within the Aeolis Dorsa Region of Mars. Ten units have been identified and are found to be consistent with deposition within and adjacent to lacustrine systems.

  1. Goldstone/VLA 3.5cm Mars Radar Observations - "Stealths" and South Polar Regions

    NASA Astrophysics Data System (ADS)

    Butler, Bryan; Chizek, M. R.; Slade, M. A.; Haldemann, A. F.; Muhleman, D. O.; Mao, T. F.

    2006-09-01

    The opposition of Mars in 2003 provided a fantastic opportunity to use the combined Goldstone/VLA radar to probe the surface with the highest resolution ever obtained on Mars with that instrument (as good as 70 km). Observations were made on August 11, 19, 28, and September 8. Details of data reduction and analysis of the radar echoes from the volcanic regions of the planet are presented in a companion paper in these proceedings (Chizek et al.). We will present results related to "Stealth" (and other radar-dark regions of the planet, including the Argyre and Hellas Planitiae, and a region to the west of the Elysium Mons caldera), and the south polar residual and seasonal ice caps. The size, shape, and reflectivity characteristics of Stealth and "mega-Stealth" (Edgett et al. 1997) are reaffirmed, with a better viewing geometry of the western extent of the feature than had been obtained previously. It had been speculated previously that Hellas Planitia should also be radar dark - this is confirmed by our imaging, though the reflectivity is not as low as for Stealth. We find a new radar dark area to the west of Elysium Mons, which is likely an ash fall from that volcano (similar to the relationship between Stealth and the Tharsis volcanoes). The south polar residual ice cap is a very bright reflector, as seen previously, but we now also see a very bright reflection from the seasonal cap, not seen previously. The cap is not uniformly bright, however, and the extent of the bright reflection does not correspond to that expected from the retreat of the cap as measured either from albedo or thermal emission characteristics. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  2. Autonomous Science Analyses of Digital Images for Mars Sample Return and Beyond

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M.; Roush, T. L.

    1999-01-01

    program has been dubbed the "Grad Student on Mars Project". We envision, for example, an appropriately intelligent Athena-like rover at the Pathfinder landing site might be able to traverse over the ridge towards "Twin Peaks" to obtain better information on the stratigraphy of these "streamlined islands" or of the size, composition and morphology of boulders located on them. Along the traverse, the intelligent rover would collect and analyze images and obtain spectra of geologically interesting features or regions. The intelligent rover might also traverse further up Arcs Vallis, and find additional paleoflood stage indicators such as slackwater deposits. Recognizing additional regions where boulders are imbricated, noting changes in their size, distribution, morphology, composition and the associated changes in channel geometry would yield important information on the outflow channel's paleoflood history, Representative images and associated supporting data from these locations could be downlinked to Earth along with the data requested by scientists from the previous uplink opportunity. Our initial work has focused on recognizing geologically interesting portions of images. Here we summarize some of the algorithms to date.

  3. Viking orbiter views of Mars

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A.

    1980-01-01

    Images acquired by the Viking orbiters, beginning in 1976 are presented. The pictures represent only a small fraction of the many thousands taken, and were chosen to illustrate the diverse geology of Mars and its atmospheric phenomena. Specific topics discussed include the Viking mission and its objectives, a brief comparison of Earth and Mars, and surface features of Mars including the great equatorial canyons, channels, volcanic and deformational features, and craters. Martian moons, surface processes, polar regions, and the Martian atmosphere are also covered.

  4. Geologic Map of the MTM -30262 and -30267 Quadrangles, Hadriaca Patera Region of Mars

    USGS Publications Warehouse

    Crown, David A.; Greeley, Ronald

    2007-01-01

    Introduction Mars Transverse Mercator (MTM) -30262 and -30267 quadrangles cover the summit region and east margin of Hadriaca Patera, one of the Martian volcanoes designated highland paterae. MTM -30262 quadrangle includes volcanic deposits from Hadriaca Patera and Tyrrhena Patera (summit northeast of map area) and floor deposits associated with the Dao and Niger Valles canyon systems (south of map area). MTM -30267 quadrangle is centered on the caldera of Hadriaca Patera. The highland paterae are among the oldest, central-vent volcanoes on Mars and exhibit evidence for explosive eruptions, which make a detailed study of their geology an important component in understanding the evolution of Martian volcanism. Photogeologic mapping at 1:500,000-scale from analysis of Viking Orbiter images complements volcanological studies of Hadriaca Patera, geologic investigations of the other highland paterae, and an analysis of the styles and evolution of volcanic activity east of Hellas Planitia in the ancient, cratered highlands of Mars. This photogeologic study is an extension of regional geologic mapping east of Hellas Planitia. The Martian highland paterae are low-relief, areally extensive volcanoes exhibiting central calderas and radial channels and ridges. Four of these volcanoes, Hadriaca, Tyrrhena, Amphitrites, and Peneus Paterae, are located in the ancient cratered terrains surrounding Hellas Planitia and are thought to be located on inferred impact basin rings or related fractures. Based on analyses of Mariner 9 images, Potter (1976), Peterson (1977), and King (1978) suggested that the highland paterae were shield volcanoes formed by eruptions of fluid lavas. Later studies noted morphologic similarities between the paterae and terrestrial ash shields and the lack of primary lava flow features on the flanks of the volcanoes. The degraded appearances of Hadriaca and Tyrrhena Paterae and the apparently easily eroded materials composing their low, broad shields further

  5. First measurements of water and D/H on Mars with ExoMars / NOMAD

    NASA Astrophysics Data System (ADS)

    Villanueva, Geronimo Luis; Liuzzi, Giuliano; Mumma, Michael J.; Carine Vandaele, Ann; Thomas, Ian; Smith, Michael D.; Daerden, Frank; Ristic, Bojan; Patel, Manish; Bellucci, Giancarlo; Lopez-Moreno, Jose; NOMAD Team

    2017-10-01

    We present preliminary data collected by the high-resolution NOMAD (Nadir and Occultation for MArs Discovery) instrument onboard the ExoMars / Trace Gas Orbiter (TGO) targeting several lines of water (H2O), deuterated water (HDO) and carbon dioxide (CO2). TGO is the first spacecraft on Mars specifically tailored to search for trace constituents, with the NOMAD instrument providing high spectral resolution (λ/dλ~ 20,000) over the 2-5 um spectral region. Such capabilities allow us to probe with unprecedented accuracy and sensitivity a multitude of organic species (e.g., CH4, CH3OH, H2CO, C2H6) and to map isotopic signatures (e.g., D/H, 13C/12C) across the whole planet.In particular, isotopic ratios are among the most valuable indicators for the loss of volatiles from an atmosphere. Because the escape rates for each isotope are slightly different (larger for the lighter forms), over long times the atmosphere becomes enriched in the heavy isotopic forms. By probing the current isotopic ratios, one can then infer the amount of matter lost to space over the planet’s evolution. Deuterium fractionation also reveals information about the cycle of water on the planet and informs us of its stability on short- and long-term scales, including its release from active regions on Mars having a characteristic D/H signature.Upon its successful launch in March/2016, we acquired critical calibration data in Apr/2016 and in June/2016, while during the Mars-Orbit-Capture phase, we also acquired Mars nadir data in Nov/2016 and in Feb-Mar/2017. Full science operations are expected to start upon final orbit insertion in early 2018. In this paper, we report initial retrievals of water and D/H derived during the Mars-Orbit-Capture phase and discuss the prospects for mapping of isotopic signatures during the nominal science phase.

  6. Physical properties of Oxia/Lunae Planum and Arabia-type units in the central equatorial region of Mars

    NASA Technical Reports Server (NTRS)

    Strickland, Edwin L., III

    1992-01-01

    Classification and mapping of surficial units in the central equatorial region of Mars Consortium data identified the relatively dark but 'red' materials that cover Lunae Planum and surround the Meridiani materials of Oxia Palus inertia region of Arabia. Oxia Province consists of the regions dominated by the characteristically dark 'red' Oxia materials, but it includes darker streaks and splotches of relatively 'blue' Meridiani materials and brighter 'red' deposits of dust belonging to Eos Province (the bright 'red' border between Oxia and regional Meridiani deposits to the south) and Xanthe Province (the moderately bright 'red' dust deposits in western Chryse Planitia and its vicinity, including the VL-1 landing site). Two Oxia units were recognized: a darker unit present on Lunae Planum and east of Oxia Palus that have intermediate to high inertias. Oxia Province surrounds the extremely low thermal inertia Arabia Province in the east part of the study area, and occurs as isolated patches within Arabia (often including splotches of Meridiani materials within the Oxia patches). Arabia Province's materials have been widely interpreted as unconsolidated dust deposits which are currently forming at this stage of Mars' precessional climate cycle, although the persistence of stable, moderately strong albedo contracts among Arabia materials has not been addressed in those models. A systematic interpretation of Oxia and Arabia Province materials based on currently available remote sensing data is given.

  7. Pluto is the new Mars!

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Mckinnon, William B.; Spencer, John R.; Howard, Alan D.; Grundy, William M.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy

    2016-01-01

    Data from NASA's New Horizons encounter with Pluto in July 2015 revealed an astoundingly complex world. The surface seen on the encounter hemisphere ranged in age from ancient to recent. A vast craterless plain of slowly convecting solid nitrogen resides in a deep primordial impact basin, reminiscent of young enigmatic deposits in Mars' Hellas basin. Like Mars, regions of Pluto are dominated by valleys, though the Pluto valleys are thought to be carved by nitrogen glaciers. Pluto has fretted terrain and halo craters. Pluto is cut by tectonics of several different ages. Like Mars, vast tracts on Pluto are mantled by dust and volatiles. Just as on Mars, Pluto has landscapes that systematically vary with latitude due to past and present seasonal (and mega-seasonal) effects on two major volatiles. On Mars, those volatiles are H2O and CO2; on Pluto they are CH4 and N2. Like Mars, some landscapes on Pluto defy easy explanation. In the Plutonian arctic there is a region of large (approx. 40 km across) deep (approx. 3-4 km) pits that probably could not be formed by sublimation, or any other single process, alone. Equally bizarre is the Bladed terrain, which is composed of fields of often roughly aligned blade-like ridges covering the flanks and crests of broad regional swells. Topping the unexpected are two large mounds approximately150 km across, approx. 5-6 km high, with great central depressions at their summits. The central depressions are almost as deep as the mounds are tall. These mounds have many of the characteristics of volcanic mountains seen on Mars and elsewhere in the inner solar system. Hypotheses for the formation of these Plutonian mounds so far all have challenges, principally revolving around the need for H2O ice to support their relief and the difficulty imagining mechanisms that would mobilize H2O. From the perspective of one year after the encounter, our appreciation of the extent of Pluto's diversity and complexity is quite reminiscent of the

  8. Proceedings of the Seventh International Conference on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The oral and poster sessions of the SEVENTH INTERNATIONAL CONFERENCE ON MARS included; The Distribution and Context of Water-related Minerals on Mars; Poster Session: Mars Geology; Geology of the Martian Surface: Lithologic Variation, Composition, and Structure; Water Through Mars' Geologic History; Poster Session: Mars Water and the Martian Interior; Volatiles and Interior Evolution; The Martian Climate and Atmosphere: Variations in Time and Space; Poster Session: The Martian Climate and Current Processes; Modern Mars: Weather, Atmospheric Chemistry, Geologic Processes, and Water Cycle; Public Lecture: Mars Reconnaissance Orbiter's New View of the Red Planet; The North and South Polar Layered Deposits, Circumpolar Regions, and Changes with Time; Poster Session: Mars Polar Science, Astrobiology, Future Missions/Instruments, and Other Mars Science; Mars Astrobiology and Upcoming Missions; and Martian Stratigraphy and Sedimentology: Reading the Sedimentary Record.

  9. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region of Mars: Indications of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible post-flow tectonic subsidence on the Snake River Plain in Idaho.

  10. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  11. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice

    NASA Astrophysics Data System (ADS)

    Arvidson, Raymond E.

    2016-09-01

    The missions that have operated on the surface of Mars acquired data that complement observations acquired from orbit and provide information that would not have been acquired without surface measurements. Data from the Viking Landers demonstrated that soils have basaltic compositions, containing minor amounts of salts and one or more strong oxidants. Pathfinder with its rover confirmed that the distal portion of Ares Vallis is the site of flood-deposited boulders. Spirit found evidence for hydrothermal deposits surrounding the Home Plate volcanoclastic feature. Opportunity discovered that the hematite signature on Meridiani Planum as seen from orbit is due to hematitic concretions concentrated on the surface as winds eroded sulfate-rich sandstones that dominate the Burns formation. The sandstones originated as playa muds that were subsequently reworked by wind and rising groundwater. Opportunity also found evidence on the rim of the Noachian Endurance Crater for smectites, with extensive leaching along fractures. Curiosity acquired data at the base of Mount Sharp in Gale Crater that allows reconstruction of a sustained fluvial-deltaic-lacustrine system prograding into the crater. Smectites and low concentrations of chlorinated hydrocarbons have been identified in the lacustrine deposits. Phoenix, landing above the Arctic Circle, found icy soils, along with low concentrations of perchlorate salt. Perchlorate is considered to be a strong candidate for the oxidant found by the Viking Landers. It is also a freezing point depressant and may play a role in allowing brines to exist at and beneath the surface in more modern periods of time on Mars.

  12. Proposed Mars Surveyor Landing Sites in Northern Meridiani Sinus, Southern Elysium Planitia, and Argyre Planitia

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Edgett, K. S.

    1998-01-01

    Mars Surveyor Landing Site: Argyre Planitia (Proposed by T. J. Parker) Vital Statistics: (1) Latitude, Longitude: 55-56 S, 41-43 W. (2) Elevation (Viking): 1.0 km. (3) Viking Orbiter Image coverage: Excellent coverage by 40 m/pixel images (orbits 567B, 568B, and 569B). Excellent stereo coverage with large parallax angles over the entire landing site region, and much of central and southern Argyre. (4) Albedo: about .23-.24 (5) Block Abundance: No data (6) Fine-Component Thermal Inertia: No data The floors of both the Argyre and Hellas basins contain etched layered materials that are probably thick accumulations of channel or lacustrine sediments. The deposits in Hellas are much more eroded than those in Argyre, and Hellas lacks a channel outlet. Argyre is unique in that Uzboi Vallis flowed out of the basin, requiring overflow of a standing body of water within Argyre. This makes it the largest impact basin on Mars with channels both draining into it and flowing out from it. Hellas' channels may be catastrophic flood channels, whereas Argyre was fed by modest-scale valley networks, though the outlet at Uzboi Vallis was a catastrophic flood Highland craters and basins of this kind should be high-priority landing targets for missions intended to focus on the search for either prebiotic organic materials or even simple fossil microorganisms. Basins with internally-draining valley networks should be preferred over flood channels, as they could have provided the long-term influx of water favorable to the origin of life. (Catastrophic floods are not conducive to fossil preservation, due to their very short durations and high transportation energies). They also afford an opportunity to study the evolution of the planet's climate and volatiles during the period of time between the late Noachian and early Hesperian, when a drastic change from a proposed early warm, wet climate to one more closely resembling the modern environment is thought to have occurred. Large basin

  13. Water on Mars: A status report and suggestions for further study

    NASA Astrophysics Data System (ADS)

    Rummel, John; McKay, Christopher P.

    2016-07-01

    The most recent MEPAG review of Mars Special Regions (Rummel et al., 2014) contained the following statement, "Mars' average atmospheric pressure allows for liquid water when it exceeds that of the triple point of water, and at lower altitudes (e.g., Hellas and Argyre Basins) that is commonly the case. Higher temperatures and/or insolation may allow melting or condensation over limited areas for short time periods." Nonetheless, the US National Academies - European Science Foundation review of the MEPAG report disagreed with a preliminary statement regarding the potential for snow fallen on Mars to melt, and thus stated that, "The review committee asserts that pure liquid water simply cannot exist on Mars because the atmosphere is too dry to allow it. The partial pressure of atmospheric water vapor is typically less than 1 Pa near the surface of Mars, whereas the partial pressure of water vapor at the triple point of water is about 600 Pa." This paper will address the discrepancies between what the MEPAG paper actually asserted, and the validity of the arguments in each report and in the literature for and against liquid water on Mars - whether salty or pure (as the Mars-driven snow). Refs: Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; The [US] National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; European Science Foundation. (2015). Review of the MEPAG Report on Mars Special Regions. National Academy Press, Washington, DC. Rummel, J. D., Beaty, D. W., Jones, M. A., Bakermans, C., Barlow, N. G., Boston, P. J., ... & Wray, J. J. (2014). A New Analysis of Mars "Special Regions": Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology, 14, 887-968.

  14. Lunar and Planetary Science XXXV: Mars Geophysics

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) An Extraordinary Magnetic Field Map of Mars; 2) Mapping Weak Crustal Magnetic Fields on Mars with Electron Reflectometry; 3) Analytic Signal in the Interpretation of Mars Southern Highlands Magnetic Field; 4) Modeling of Major Martian Magnetic Anomalies: Further Evidence for Polar Reorientations During the Noachian; 5) An Improved Model of the Crustal Structure of Mars; 6) Geologic Evolution of the Martian Dichotomy and Plains Magnetization in the Ismenius Area of Mars; 7) Relaxation of the Martian Crustal Dichotomy Boundary in the Ismenius Region; 8) Localized Tharsis Loading on Mars: Testing the Membrane Surface Hypothesis; 9) Thermal Stresses and Tharsis Loading: Implications for Wrinkle Ridge Formation on Mars; 10) What Can be Learned about the Martian Lithosphere from Gravity and Topography Data? 11) A Gravity Analysis of the Subsurface Structure of the Utopia Impact Basin; 12) Mechanics of Utopia Basin on Mars; 13) Burying the 'Buried Channels' on Mars: An Alternative Explanation.

  15. Mars 2001 Cruise Phase Radiation Measurments

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Badhwar, G. D.

    1999-01-01

    Mars 2001 presents an exciting opportunity for advances in radiation risk management of a future human mission to Mars. The mission timing is particularly fortuitous, coming just after solar maxinuun, when there will be a high probability to observe significant solar particle events (SPEs). A major objective of this mission is to characterize the Martian radiation environment to support future human missions to Mars. In addition, the MARIE instruments on the Lander and Orbiter, designed to measure the energetic particle flux at Mars, can be used during the cruise phase to provide multipoint observations of SPEs in the critical region of the heliosphere (1 to 1.5 AU) needed to reduce the in-flight radiation risk to a future Mars-bound crew.

  16. Evolution of a Mars Airplane Concept for the ARES Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Guynn, Mark D.; Smith, Stephen C.; Parks, Robert W.; Gelhausen, Paul A.

    2004-01-01

    ARES (Aerial Regional-scale Environmental Survey of Mars) is a proposed Mars Scout mission using an airplane to provide high-value science measurements in the areas of atmospheric chemistry, surface geology and mineralogy, and crustal magnetism. The use of an airplane for robotic exploration of Mars has been studied for over 25 years. There are, however, significant challenges associated with getting an airplane to Mars and flying through the thin, carbon dioxide Martian atmosphere. The traditional wisdom for aircraft design does not always apply for this type of vehicle and geometric, aerodynamic, and mission constraints result in a limited feasible design space. The ARES airplane design is the result of a concept exploration and evolution involving a number of trade studies, downselects, and design refinements. Industry, university, and NASA partners initially proposed a number of different concepts, drawing heavily on past Mars airplane design experience. Concept downselects were conducted with qualitative evaluation and high level analyses, focused on the most important parameters for the ARES mission. Following a successful high altitude test flight of the basic configuration, additional design refinement led to the current design. The resulting Mars airplane concept enables the high-value science objectives of the ARES mission to be accomplished while also fulfilling the desire for a simple, low-risk design.

  17. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.; Bradak, B.; Chatzitheodoridis, E.; Ujvari, G.

    2016-11-01

    Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H2O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.

  18. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills.

    PubMed

    Kereszturi, A; Bradak, B; Chatzitheodoridis, E; Ujvari, G

    2016-11-01

    Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H 2 O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.

  19. Iron mineralogy of the surface of Mars from the 1 μm band spectral properties

    NASA Astrophysics Data System (ADS)

    Carrozzo, F. G.; Altieri, F.; Bellucci, G.; Poulet, F.; D'Aversa, E.; Bibring, J.-P.

    2012-10-01

    We study the 1 μm absorption from OMEGA/MEX spectra to map Martian iron mineralogy at a global scale. This band is covered on the left by the VNIR (visible and near infrared) OMEGA channel and on the right by the SWIR (short wavelengths infrared) one. We first perform a systematic spatial coregistration of the two channels after an improvement of the VNIR radiometric calibration. The update of the VNIR Instrumental Transfer Function (ITF) and the internal stray-light estimation is based on the spectra of the Phobos red units and of the water ice north polar cap of Mars, which have been fitted according to an iterative process. The level of the signal in the blue wavelength range, previously systematically overestimated due to a stray-light residual and the general shape of the spectrum for λ > 0.7 μm are improved . Global maps of the 1 μm signature have been derived from 9 new spectral indices. The largest values of the 1 μm band integral are found in Noachian terrains and in the dunes around the north polar cap. In the south polar region, an area centered at ˜155°W and ˜83°S is mapped as a distinctive spectral unit, dominated by pyroxene. The northern lowlands of Mars together with other dark terrains located in the northern hemisphere show very low values of some spectral indices due to the negative spectral slope in the NIR. This behavior is consistent with the presence of weathered basalts with a possible glassy or amorphous component. Among the hydrated terrains, the only ones that can be isolated by studying the 1 μm band are those located in Terra Meridiani, Aram Chaos and Capri Chasma, enriched in sulfate and hematite. On the other hand, the sulfates of the dark dunes surrounding the northern polar cap and the phyllosilicates of the bright hydrated deposits of Mawrth Vallis cannot be isolated combining the parameters used in this study. This suggests that their distinctive mineralogy does not affect the 1 μm band, remaining similar to the global

  20. Geologic Map of MTM 35337, 40337, and 45337 Quadrangles, Deuteronilus Mensae Region of Mars

    USGS Publications Warehouse

    Chuang, Frank C.; Crown, David A.

    2009-01-01

    Deuteronilus Mensae, first defined as an albedo feature at lat 35.0 deg N., long 5.0 deg E., by U.S. Geological Survey (USGS) and International Astronomical Union (IAU) nomenclature, is a gradational zone along the dichotomy boundary in the northern mid-latitudes of Mars. The boundary in this location includes the transition from the rugged cratered highlands of Arabia Terra to the northern lowland plains of Acidalia Planitia. Within Deuteronilus Mensae, polygonal mesas are prominent along with features diagnostic of Martian fretted terrain, including lobate debris aprons, lineated valley fill, and concentric crater fill. Lobate debris aprons, as well as the valley and crater fill deposits, are geomorphic indicators of ground ice, and their concentration in Deuteronilus Mensae is of great interest because of their potential association with Martian climate change. The paucity of impact craters on the surfaces of debris aprons and the presence of ice-cemented mantle material imply young (for example, Amazonian) surface ages that are consistent with recent climate change in this region of Mars. North of Deuteronilus Mensae are the northern lowlands, a potential depositional sink that may have had large standing bodies of water or an ocean in the past. The northern lowlands have elevations that are several kilometers below the ancient cratered highlands with significantly younger surface ages. The morphologic and topographic characteristics of the Deuteronilus Mensae region record a diverse geologic history, including significant modification of the ancient highland plateau and resurfacing of low-lying regions. Previous studies of this region have interpreted a complex array of geologic processes, including eolian, fluvial and glacial activity, coastal erosion, marine deposition, mass wasting, tectonic faulting, effusive volcanism, and hydrovolcanism. The origin and age of the Martian crustal dichotomy boundary are fundamental questions that remain unresolved at the

  1. Lunar and Planetary Science XXXV: Mars Volcanology and Tectonics

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session, "Mars Volcanology and Tectonics" include:Martian Shield Volcanoes; Estimating the Rheology of Basaltic Lava Flows; A Model for Variable Levee Formation Rates in an Active Lava Flow; Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion; Fractal Variation with Changing Line Length: A Potential Problem for Planetary Lava Flow Identification; Burfellshraun:A Terrestrial Analogue to Recent Volcanism on Mars; Lava Domes of the Arcadia Region of Mars; Comparison of Plains Volcanism in the Tempe Terra Region of Mars to the Eastern Snake River Plains, Idaho with Implications for Geochemical Constraints; Vent Geology of Low-Shield Volcanoes from the Central Snake River Plain, Idaho: Lessons for Mars and the Moon; Field and Geochemical Study of Table Legs Butte and Quaking Aspen Butte, Eastern Snake River Plain, Idaho: An Analog to the Morphology of Small Shield Volcanoes on Mars; Variability in Morphology and Thermophysical Properties of Pitted Cones in Acidalia Planitia and Cydonia Mensae; A Volcano Composed of Light-colored Layered Deposits on the Floor of Valles Marineris; Analysis of Alba Patera Flows: A Comparison of Similarities and Differences Geomorphologic Studies of a Very Long Lava Flow in Tharsis, Mars; Radar Backscatter Characteristics of Basaltic Flow Fields: Results for Mauna Ulu, Kilauea Volcano, Hawaii;and Preliminary Lava Tube-fed Flow Abundance Mapping on Olympus Mons.

  2. Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Araghi, Koorosh; Ess, Kim M.; Valencia, Lisa M.; Muscatello, Anthony C.; Calle, Carlos I.; Clark, Larry; Iacomini, Christie

    2014-01-01

    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU.

  3. Columbia Hills, Mars: aeolian features seen from the ground and orbit

    USGS Publications Warehouse

    Greeley, Ronald; Whelley, Patrick L.; Neakrase, Lynn D.V.; Arvidson, Raymond E.; Bridges, Nathan T.; Cabrol, Nathalie A.; Christensen, Philip R.; Di, Kaichang; Foley, Daniel J.; Golombek, Matthew P.; Herkenhoff, Kenneth; Knudson, Amy; Kuzmin, Ruslan O.; Li, Ron; Michaels, Timothy; Squyres, Steven W.; Sullivan, Robert; Thompson, Shane D.

    2008-01-01

    Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts.

  4. Columbia Hills, Mars: Aeolian features seen from the ground and orbit

    USGS Publications Warehouse

    Greeley, R.; Whelley, P.L.; Neakrase, L.D.V.; Arvidson, R. E.; Bridges, N.T.; Cabrol, N.A.; Christensen, P.R.; Di, K.; Foley, D.J.; Golombek, M.P.; Herkenhoff, K.; Knudson, A.; Kuzmin, R.O.; Li, R.; Michaels, T.; Squyres, S. W.; Sullivan, R.; Thompson, S.D.

    2008-01-01

    Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places, into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim. Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts. Copyright 2008 by the American Geophysical Union.

  5. Observations of the Proton Aurora on Mars With SPICAM on Board Mars Express

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Gérard, J.-C.; Hubert, B.; Rodriguez, L.; Montmessin, F.

    2018-01-01

    We report observations of the proton aurora at Mars, obtained with the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet spectrograph on board Mars Express between 2004 and 2011. This is a third type of UV aurora that is discovered on Mars, in addition to the discrete and diffuse nightside aurora. It is observed only on the dayside as it is produced by the direct interaction of solar wind protons with the upper atmosphere. The auroral signature is an enhancement of the Lyman-α emission in the order of a few kilorayleighs. The proton aurora features peak emissions around 120 to 150 km. From the full SPICAM database, limb observations have been investigated and six clear cases have been found. We identify either coronal mass ejections and/or corotating interaction regions as triggers for each of these events.

  6. MGS Mars Orbiter Laser Altimeter (MOLA) - Mars/Earth Relief Comparison

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Comparison of the cross-sectional relief of the deepest portion of the Grand Canyon (Arizona) on Earth versus a Mars Orbiter Laser Altimeter (MOLA) view of a common type of chasm on Mars in the western Elysium region. The MOLA profile was collected during the Mars Global Surveyor Capture Orbit Calibration Pass on September 15, 1997. The Grand Canyon topography is shown as a trace with a measurement every 295 feet (90 meters) along track, while that from MOLA reflects measurements about every 970 feet (400 meters) along track. The slopes of the steep inner canyon wall of the Martian feature exceed the angle of repose, suggesting relative youth and the potential for landslides. The inner wall slopes of the Grand Canyon are less than those of the Martian chasm, reflecting the long period of erosion necessary to form its mile-deep character on Earth.

  7. The MarsQuest Education Project

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Lee, S. W.

    1998-09-01

    The upcoming decade of Mars exploration will provide numerous opportunities for a variety of educational efforts. One of these, MarsQuest, is a travelling exhibition being developed by the Space Science Institute with partial funding from NSF and NASA. MarsQuest's Education and Outreach Program will take advantage of the many Mars-related educational resources currently available, as well as those in the planning stages. Materials reflecting the exhibit content will be disseminated to teachers at sites where the exhibit is visiting and via presentations at annual and regional meetings of the National Science Teachers Association, and via a web site containing interactive educational resources. The goals of the MarsQuest Education Program are to: 1) Make use of the rich educational resources and coincident occurrence of ongoing Mars missions; 2) Captivate broad public interest in Mars exploration and use it to promote scientific literacy; 3) Provide opportunities for teachers, students, and families to connect in real-time to the Mars missions, the people involved, and the science experiments underway; 4) Enhance the overall education experience of the MarsQuest exhibition. The MarsQuest Education Program is focused on teacher training/enhancement and parental involvement. The main mechanism for teacher enhancement and encouragement of parental participation will be through two education workshops organized by MarsQuest personnel at each host site. The first will target museum staff and "master" K-12 teachers. The second will target local K-12 teachers. The MarsQuest Education Program will also provide museum staff, exhibit liaisons, and astronomy volunteers information on offering one-day workshops designed for family groups. The MarsQuest project will provide a wide ranging dissemination effort, ultimately reaching an estimated two to three million people during its three-year tour.

  8. Orbital identification of carbonate-bearing rocks on Mars

    USGS Publications Warehouse

    Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Poulet, F.; Bishop, J.L.; Brown, A.J.; Calvin, W.M.; Clark, R.N.; Des Marais, D.J.; Milliken, R.E.; Roach, L.H.; Roush, T.L.; Swayze, G.A.; Wray, J.J.

    2008-01-01

    Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.

  9. Relationship Between Topography and the Eastern Equatorial Hydrogen Signal on Mars

    NASA Astrophysics Data System (ADS)

    Clevy, J. R.; Elphic, R. C.; Feldman, W. C.; Kattenhorn, S. A.

    2005-12-01

    Epithermal neutron flux data received from the Neutron Spectrometer, part of the Gamma Ray Spectrometer suite on board NASA's Mars Odyssey, indicates elevated equatorial hydrogen deposits partially encircle the Schiaparelli Basin. Deconvolution of the hydrogen signal statistically increased the resolution over the spectrometer's original 600 km footprint. The resulting map of hydrogen concentrations was further refined by ignoring all data <8.9% Water Equivalent Hydrogen (WEH). In so doing, this study provides the most detailed map to date of the hydrogen concentration maxima in this region and serves as a guide for future exploration. Projecting the Eastern Equatorial Hydrogen map onto the digital elevation model for the Schiaparelli Basin reveals several areas of interest. For simplification, these areas are identified by clock position relative to Schiaparelli. At the twelve o'clock position, a maximum exceeding 10% WEH occupies the upper, northern slope of a saddle between Henry Crater and unnamed craters west of Henry. Viking images of the nameless craters demonstrate wind streaks from the north veer to the southwest here, following topography. Surface drainage channels are apparent on the slope below the local WEH maximum. The 2:30 maximum lies over Tuscaloosa Crater and Verde Vallis. This >10% WEH maximum has the greatest aerial extent, roughly 200 km in diameter. At 5 o'clock, the fringing range adjacent to Brazos Valles lies within the surficially dark region called Sinus Sabaeus. It should be noted that projection of the albedo map over the terrain reveals dark grains concentrating in low areas, presumably having moved short distances by wind and gravity. The absence or presence of these grains does not seem to affect the measured WEH concentration as the signal's local maximum, about 10.2%, crosses areas of high and low albedo without an increase or decrease in signal strength. At 6 o'clock, two 10.4% WEH maxima line the north-facing slope of another

  10. Early Mars: A regional assessment of denudation chronology

    NASA Technical Reports Server (NTRS)

    Maxwell, T. A.; Craddock, R. A.

    1993-01-01

    Within the oldest highland units on Mars, the record of crater degradation indicates that fluvial resurfacing was responsible for modifying the Noachian through middle-Hesperian crater population. Based on crater frequency in the Noachian cratered terrain, age/elevation relations suggest that the highest exposures of Noachian dissected and plateau units became stabilized first, followed by successively lower units. In addition, studies of drainage networks indicate that the frequency of Noachian channels is greatest at high elevations. Together, these observations provide strong evidence of atmospheric involvement in volatile recycling. The long time period of crater modification also suggests that dendritic highland drainage was not simply the result of sapping by release of juvenile water, because the varied geologic units as well as the elevation dependence of stability ages makes it unlikely that subsurface recycling could provide a continuous supply of water for channel formation by sapping. While such geomorphic constraints on volatile history have been established by crater counts and stratigraphic relations using the 1:2M photomosaic series, photogeologic age relationships at the detailed level are needed to establish a specific chronology of erosion and sedimentation. Age relations for discrete erosional slopes and depositional basins will help refine ages of fluvial degradation, assess effectiveness of aeolian processes, and provide a regional chronology of fluvial events.

  11. Physical Diversity of Phyllosilicate Deposits at the MSL Candidate Landing Sites

    NASA Astrophysics Data System (ADS)

    Fergason, R. L.

    2008-12-01

    The identification of phyllosilicates on Mars implies aqueous activity at the time of their formation and is important for understanding the history of Martian water and the past habitability of Mars. In addition, a significant fraction of the global water budget of Mars may be locked into clay mineral deposits within the Martian crust. As a result, six out of seven final landing sites being considered for the Mars Science Laboratory are sites where phyllosilicates have been identified in CRISM and OMEGA data. The physical characteristics of these materials, as identified using thermal inertia data, are an important component for understanding the geologic history of these deposits. Thermal inertia values provide information regarding effective particle size and help to constrain the possible presence of duricrust, rocks, and exposed bedrock at these locations. These identified physical characteristics suggest the degree of resistivity to erosion, which has implications for the post-emplacement modification of these deposits. At the aforementioned six locations (Nili Fossae Trough, Holden Crater, Mawrth Vallis, Miyamoto crater, southern Meridiani Planum, and Gale crater) the physical properties were quantified using THEMIS-derived thermal inertia data to characterize the physical properties at each site and identify the presence or absence of physical diversity among these materials. I identified a wide range of surface properties at these locations ranging from indurated surfaces intermixed with unconsolidated aeolian material (thermal inertia of 150-460 J m-2 K-1 s- 1/2) at Mawrth Vallis, to exposures of in-place bedrock and the presence of rocky material (thermal inertia exceeding 800 J m-2 K-1 s-1/2) in Gale crater. In addition, the surface texture and morphologic features observed in high-resolution visible images (such as narrow-angle MOC, HiRISE, and CTX) are dissimilar across these phyllosilicate exposures, and confirm the interpretation of thermal inertia

  12. Characterization of Terrain in the Mars Surveyor 2001 Landing Site Latitude and Elevation Region Using Mapping Phase Mars Global Surveyor MOC Images

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Edgett, K. S.; Parker, T. J.

    1999-01-01

    One of the original objectives of the Mars Orbiter Camera (MOC), as proposed in 1985, was to acquire observations to be used in assessing future spacecraft landing sites. Images obtained by the Mars Global Surveyor MOC since March 1999 provide the highest resolution views (1.5-4.5 m/pixel) of the planet ever seen. We have been examining these new data to develop a general view of what Mars is like at meter-scale within the latitudes and elevations that are accessible to the Mars Surveyor 2001 lander. Our goal is to provide guidance to the 2001 landing site selection process, rather than to use MOC images to recommend a specific landing site.

  13. Rocky terrain & airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of very rocky terrain at the Ares Vallis landing site, along with the lander's deflated airbags, were imaged by the Imager for Mars Pathfinder (IMP) before its deployment on Sol 2. The metallic object at the bottom is a bracket for the IMP's release mechanism.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Dawn Sumner, geologist, University of California, Davis speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  15. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grant, geologist, Smithsonian National Air and Space Museum in Washington, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  16. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    NASA chief scientist, Dr. Waleed Abdalati, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  17. Geomorphic investigation of craters in Alba Mons, Mars: Implications for Late Amazonian glacial activity in the region

    NASA Astrophysics Data System (ADS)

    Sinha, Rishitosh K.; Vijayan, S.

    2017-09-01

    Evidence for mid-high latitude glacial episodes existing within the Late Amazonian history of Mars has been reported from analysis of variety of glacial/periglacial landforms and their stratigraphic relationships. In this study, using the Context Camera (CTX) images, we have surveyed the interior of craters within the Alba Mons region of Mars (30°-60°N; 80°-140°W) to decipher the presence of ice-related flow features. The primary goals of this study are to (1) suggest from observations that the flow features identified in the interior of Alba Mons craters have flow characteristic possibly different from concentric crater fill (CCF) landforms and (2) interpret the extent of glacial activity that led to formation of flow features with respect to previously described mid-latitude ice-related landforms. Our geomorphic investigation revealed evidence for the presence of tongue-like or lobate shaped ice-related flow feature from the interior of ∼346 craters in the study region. The presence of ring-mold crater morphologies and brain-terrain texture preserved on the surface of flow features suggests that they are possibly formed of near-surface ice-rich bodies. We found that these flow features tend to form inside both the smaller (<5 km) and larger (>5 km) diameter craters emplaced at a wide range of elevation (from ∼ -3.3 km to 6.1 km). The measurement of overall length and flow direction of flow features is suggestive that they are similar to pole-facing small-scale lobate debris apron (LDA) formed inside craters. Crater size-frequency distribution of these small-scale LDAs reveals a model age of ∼10-100 Ma. Together with topographic and geomorphic observations, orientation measurements, and distribution within the study region, we suggest that the flow features (identified as pole-facing small-scale LDAs in the interior of craters) have flow characteristic possibly different from CCF landforms. Our observations and findings support the results of previous

  18. Escape from Mars

    NASA Image and Video Library

    2017-07-10

    This image from NASA's Mars Reconnaissance Orbiter shows one of millions of small (10s of meters in diameter) craters and their ejecta material that dot the Elysium Planitia region of Mars. The small craters were likely formed when high-speed blocks of rock were thrown out by a much larger impact (about 10-kilometers in diameter) and fell back to the ground. Some of these blocks may actually escape Mars, which is how we get samples in the form of meteorites that fall to Earth. Other ejected blocks have insufficient velocity, or the wrong trajectory, to escape the Red Planet. As such, when one of these high-speed blocks impacts the surface, it makes what is called a "secondary" crater. These secondaries can form dense "chains" or "rays," which are radial to the crater that formed them. https://photojournal.jpl.nasa.gov/catalog/PIA21769

  19. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  20. Glacial Ice Deposits in Mid-Latitudes of Mars

    NASA Image and Video Library

    2010-03-02

    NASA Mars Reconnaissance Orbiter has detected widespread deposits of glacial ice in the mid-latitudes of Mars. This map of a region known as Deuteronilus Mensae, in the northern hemisphere, shows locations of the detected ice deposits in blue.

  1. MarCOs, Mars and Earth

    NASA Image and Video Library

    2018-03-29

    An artist's rendering of the twin Mars Cube One (MarCO) spacecraft flying over Mars with Earth in the distance. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- flown in deep space. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22316

  2. Near-Mars space

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Brace, L. H.

    1991-05-01

    The prevalent attributes of near-Mars space are described: the ambient interplanetary environment, the ionosphere, the upper atmosphere, and more remote regions that are affected by the presence of Mars. The descriptions are based on existing Martian data and/or models constructed from measurements made near Venus. Specific attention is given to the features of solar wind interaction with magnetospheric and ionospheric obstacles. The high-altitude plasma and field environment, the energetic particle environment, the ionosphere environment, and the neutral upper atmosphere environment are described with extensive graphic information, based on existing measurements collected from nine Martian missions. The ionospheric obstacle is assumed to prevail as a mechanism for describing the scenario. Martian perturbation of solar wind is theorized to be of a relatively small order. A distinctive local energetic particle population of planetary origin is shown to result from the direct interaction of solar wind plasma. This phenomenon is considered evidence of the important scavenging of planetary elements from Mars. The absence of a planetary dipole field around Mars, like its low gravity and distance from the sun, is considered important in determining the environment of this earthlike laboratory.

  3. Could Mars be dark and altered?

    USGS Publications Warehouse

    Calvin, Wendy M.

    1998-01-01

    There is a long known dichotomy in the martian albedo, with an associated, but mostly assumed, mineralogical split as well. The bright red regions are inferred to be weathered, oxidized dust and the dark grey regions unaltered volcanic material. A number of recent analyses suggest this division is unnaturally simplistic and the association of many dark regions with the former presence of water requires a re‐examination of the spectra in light of potential alteration minerals. I present an alternate interpretation of the reflectance spectral characteristics of some dark regions on Mars that includes dark layer silicates. If their presence is confirmed on Mars this will have implications for sequestration of current and past volatile inventories, clues to the extent and type of geochemical weathering, and potential zones where bacterial life forms may have emerged.

  4. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  5. Eridania Basin: An ancient paleolake floor as the next landing site for the Mars 2020 rover

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Rossato, Sandro; Carter, John; Baratti, Emanuele; Pozzobon, Riccardo; Erculiani, Marco Sergio; Coradini, Marcello; McBride, Karen

    2016-09-01

    The search for traces of past Martian life is directly connected to ancient paleolakes, where ponding water or low-energy water fluxes were present for long time intervals. The Eridania paleolakes system, located along the 180° meridian, is one of the largest lacustrine environments that were once present on Mars. Morphological features suggest that it was constituted by connected depressions filled by water to maximum depths of ∼2400 m and a volume of at least 562,000 km3. We focused our attention on the northern side of the Eridania Basin, where high-albedo, uneven patches of material characterized by the absence of dust are present. Based on OMEGA and CRISM orbital imaging spectroscopy data, a large clay-bearing unit has been identified there. In particular, a set of aqueous minerals in present in the stratigraphy, being visible through erosional windows in the first several tens of meters of the sedimentary sequence. Below this capping unit, a thin Al-rich clay stratum attributable to Al-smectite and/or kaolins is present. This overlies a Fe-rich clay stratum, attributable to the nontronite smectite. At the base of the mineralogic sequence a stratum that could be either a zeolite or more likely a hydrated sulfate is present. In addition, small deposits of alunite (a rare phase on Mars), and jarosite are here found at several locations. Such stratigraphy is interpreted as originating from a surface weathering process similar to terrestrial abiotic pedogenesis; nonetheless, possible exobiologic processes can be also invoked to explain it. NASA's Spirit rover landed on Gusev crater in 2004, near the mouth of the Ma'adim Vallis, which connects this crater with the considered paleolakes system. The Eridania site provides the unique opportunity to complete the measurements obtained in Gusev crater, while investigating the exposed mineralogical sequence in its depositionary setting. In addition, the extremely favorable landing parameters, such as elevation, slope

  6. MARS-OZ - A Design for a Simulated Mars Base in the Australian Outback

    NASA Astrophysics Data System (ADS)

    Willson, D.; Clarke, J. D. A.; Murphy, G.

    Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

  7. The Specters of Mars

    NASA Image and Video Library

    2017-07-13

    This image from NASA's Mars Reconnaissance Orbiter shows Malea Planum,a polar region in the Southern hemisphere of Mars, directly south of Hellas Basin, which contains the lowest point of elevation on the planet. The region contains ancient volcanoes of a certain type, referred to as "paterae." Patera is the Latin word for a shallow drinking bowl, and was first applied to volcanic-looking features, with scalloped-edged calderas. Malea is also a low-lying plain, known to be covered in dust. These two pieces of information provide regional context that aid our understanding of the scene and features contained in our image. The area rises gradually to a ridge (which can be seen in this Context Camera image) and light-colored dust is blown away by gusts of the Martian wind, which accelerate up the slope to the ridge, leading to more sharp angles of contact between light and dark surface materials. https://photojournal.jpl.nasa.gov/catalog/PIA21784

  8. A Human Bird Eye View of Mars

    NASA Image and Video Library

    2016-09-08

    There have been several proposals to send people to Mars but not land them on the surface. Instead, they would either fly by Mars once and return to Earth, or orbit Mars for a period of time. Would they at least get spectacular naked-eye views of the Martian surface? Some parts of Mars would be interesting: for example the polar ice caps, and the bright (dust-covered) regions would be seen reasonably well, although the color is very uniform. The dark (low reflectance) regions of Mars are some of the most interesting and important regions studied by our orbiters and rovers, but they would appear very bland to humans outside of the planet's atmosphere. This is because the thin atmosphere of Mars is quite bright and dusty, so when looking at dark surface areas, most of what you would see is scattered light from the atmospheric dust, and the surface would have a very low contrast. It would also appear reddish, even if the surface materials are not reddish, from the scattered light. Here is an example from the Nili Patera region of Mars, a candidate future landing site. At the top is an approximation of the natural color as seen by people with normal color vision -- almost no surface detail is visible. In the middle is the standard HiRISE IRB color product, consisting of the infrared, red, and blue-green images displayed as red, green, and blue, respectively, and with a min-max stretch applied to each color. In other words, the darkest pixel in the entire image is set to black, the brightest pixel is set to white, and all others are linearly interpolated. At bottom is an enhanced color product, in which each bandpass is given a linear stretch for the local subimage, sometimes saturating a small percentage of data to black or white to give the rest of the scene more contrast, followed by color saturation enhancement. Now we can see a diversity of colors that distinguish different surface units: dust, sand, and rocks with different minerals. http

  9. Mars

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H. (Editor); Jakosky, Bruce M. (Editor); Snyder, Conway W. (Editor); Matthews, Mildred S. (Editor)

    1992-01-01

    The present volume on Mars discusses visual, photographic and polarimetric telescopic observations, spacecraft exploration of Mars, the origin and thermal evolution of Mars, and the bulk composition, mineralogy, and internal structure of the planet. Attention is given to Martian gravity and topography, stress and tectonics on Mars, long-term orbital and spin dynamics of Mars, and Martian geodesy and cartography. Topics addressed include the physical volcanology of Mars, the canyon system on planet, Martian channels and valley networks, and ice in the Martian regolith. Also discussed are Martian aeolian processes, sediments, and features, polar deposits of Mars, dynamics of the Martian atmosphere, and the seasonal behavior of water on Mars.

  10. Thermal and albedo mapping of the north and south polar regions of Mars

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Keegan, K. D.

    1991-01-01

    The first maps of the thermal properties of the north and south polar region of Mars are presented. The maps complete the mapping of the entire planet. The maps for the north polar region were derived from Viking Infrared Thermal Mapper (IRTM) observations obtained from 10 Jun. to 30 Sep. 1978. This period corresponds to the early summer season in the north, when the north residual water ice cap was exposed, and the polar surface temperatures were near their maximum. The maps in the south were derived from observations obtained between 24 Aug. to 23 Sep. 1977. This period corresponds to the late summer season in the south, when the seasonal polar cap had retreated to close to its residual configuration, and the second global dust storm of 1977 had largely subsided. The major results concerning the following topics are summarized: (1) surface water ice; (2) polar dune material; and (3) dust deposits.

  11. Mars Express Seen by Mars Global Surveyor

    NASA Image and Video Library

    2005-05-19

    This picture of the European Space Agency Mars Express spacecraft by the Mars Orbiter Camera on NASA Mars Global Surveyor is from the first successful imaging of any spacecraft orbiting Mars taken by another spacecraft orbiting Mars.

  12. Detailed mapping of surface units on Mars with HRSC color data

    NASA Astrophysics Data System (ADS)

    Combe, J.-Ph.; Wendt, L.; McCord, T. B.; Neukum, G.

    2008-09-01

    Introduction: Making use of HRSC color data Mapping outcrops of clays, sulfates and ferric oxides are basis information to derive the climatic, tectonic and volcanic evolution of Mars, especially the episodes related to the presence of liquid water. The challenge is to resolve spatially the outcrops and to distinguish these components from the globally-driven deposits like the iron oxide-rich bright red dust and the basaltic dark sands. The High Resolution Stereo Camera (HRSC) onboard Mars-Express has five color filters in the visible and near infrared that are designed for visual interpretation and mapping various surface units [1]. It provides also information on the topography at scale smaller than a pixel (roughness) thanks to the different geometry of observation for each color channel. The HRSC dataset is the only one that combines global coverage, 200 m/pixel spatial resolution or better and filtering colors of light. The present abstract is a work in progress (to be submitted to Planetary and Space Science) that shows the potential and limitations of HRSC color data as visual support and as multispectral images. Various methods are described from the most simple to more complex ones in order to demonstrate how to make use of the spectra, because of the specific steps of processing they require [2-4]. The objective is to broaden the popularity of HRSC color data, as they could be used more widely by the scientific community. Results prove that imaging spectrometry and HRSC color data complement each other for mapping outcrops types. Example regions of interest HRSC is theoretically sensitive to materials with absorption features in the visible and near-infrared up to 1 μm. Therefore, oxide-rich red dust and basalts (pyroxenes) can be mapped, as well as very bright components like water ice [5, 6]. Possible detection of other materials still has to be demonstrated. We first explore regions where unusual mineralogy appears clearly from spectral data. Hematite

  13. Inspecting Soils Across Mars

    NASA Image and Video Library

    2012-12-03

    This graph compares the elemental composition of typical soils at three landing regions on Mars: Gusev Crater, from Spirit; Meridiani Planum, from Opportunity; and now Gale Crater, where NASA newest Curiosity rover is currently investigating.

  14. Scalloped Terrain Led to Finding of Buried Ice on Mars

    NASA Image and Video Library

    2016-11-22

    This vertically exaggerated view shows scalloped depressions in Mars Utopia Planitia region, prompting using ground-penetrating radar aboard NASA Mars Reconnaissance Orbiter to check for underground ice.

  15. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    Aram Chaos, Mars is a crater 280 kilometers in diameter with elevations circa. minus 2 to minus 3 kilometers below datum that provides a compelling landing site for future human explorers as it features multiple scientific regions of interest (ROI) paired with a rich extensible Resource ROI that features poly-hydrated sulfates [1]. The geologic history of Aram Chaos suggests several past episodes of groundwater recharge and infilling by liquid water, ice, and other materials [1-3]. The creation of the fractured region with no known terrestrial equivalent may have been caused by melting of deep ice reservoirs that triggered the collapse of terrain followed by catastrophic water outflows over the region. Aram Chaos is of particular scientific interest because it is hypothesized that the chaotic terrain may be the source of water that contributed to the creation of nearby valleys such as Ares Vallis flowing toward Chryse Planitia. The liquid water was likely sourced as groundwater and therefore represents water derived from a protected subsurface environment making it a compelling astrobiological site [2]. The past history of water is also represented by high concentrations of hematite, Fe-oxyhydroxides, mono-hydrated and poly-hydrated sulfates [1, 2]. Poly-hydrated sulfates are likely to contain abundant water that evolves at temperatures below 500 degrees Centigrade thus conferring Aram Chaos a potentially high value for early in-situ resource utilization (ISRU) [4]. The geologic history also calls for future prospecting of deep ice deposits and possibly liquid water via deep drilling. The most recent stratigraphic units in the central part of Aram Chaos are not fractured, and are part of a dome-shaped formation that features bright, poorly-consolidated material that contains both hydrated sulfates and ferric oxides according to OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) data [5]. These surface material characteristics are

  16. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (right), mission manager and Mars Science Laboratory (MSL) engineer, Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference, as Michael Meyer, Mars Exploration Program lead scientist looks on, at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL, or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  17. Spiders from Mars?

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003

    No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  18. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  19. Geologic map of the MTM 85080 Quadrangle, Chasma Boreale Region of Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.

    2003-01-01

    The polar deposits on Mars probably record martian climate history over the last 107 to 109 years (for example, Thomas and others, 1992). The area shown on this map includes polar layered deposits and polar ice, as well as some outcrops of older, underlying terrain. This quadrangle was mapped using Viking Orbiter images in order to study the relations among erosional and depositional processes on the north polar layered deposits and to compare them with the results of previous 1:500,000-scale mapping of the south polar layered deposits. Published geologic maps of the north polar region of Mars are based on images acquired by Mariner 9 and the Viking Orbiters. The extent of the layered deposits and other units varies among previous maps, in particular within Chasma Boreale. The present map agrees most closely with the map by Dial and Dohm (1994): the mantle material is exposed farther north than mapped by Tanaka and Scott (1987). The polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units-dust mantle and dark material-were mapped in the south polar region by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. Viking Orbiter rev 726, 768, and 771 color mosaics (taken during the northern summer of 1978) were constructed and used to identify similar color/albedo units in the north polar region, including the dark, saltating material that appears to have sources within the layered deposits. However, no dark material has been recognized in this map area. No significant difference in color exists between the layered deposits and the mantle material mapped by Dial and Dohm (1994), indicating that they are either composed of the same materials or are both covered by eolian debris. Therefore, in this map area the color mosaics are most useful for identifying areas of partial frost cover. Because the resolution of the color mosaics is not sufficient to map the color/albedo units in

  20. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    NASA Technical Reports Server (NTRS)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  1. Geologic map of the northern plains of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Hare, Trent M.

    2005-01-01

    The northern plains of Mars cover nearly a third of the planet and constitute the planet's broadest region of lowlands. Apparently formed early in Mars' history, the northern lowlands served as a repository both for sediments shed from the adjacent ancient highlands and for volcanic flows and deposits from sources within and near the lowlands. Geomorphic evidence for extensive tectonic deformation and reworking of surface materials through release of volatiles occurs throughout the northern plains. In the polar region, Planum Boreum contains evidence for the accumulation of ice and dust, and surrounding dune fields suggest widespread aeolian transport and erosion. The most recent regional- and global-scale maps describing the geology of the northern plains are largely based on Viking Orbiter image data (Dial, 1984; Witbeck and Underwood, 1984; Scott and Tanaka, 1986; Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka and others, 1992a; Rotto and Tanaka, 1995; Crumpler and others, 2001; McGill, 2002). These maps reveal highland, plains, volcanic, and polar units based on morphologic character, albedo, and relative ages using local stratigraphic relations and crater counts. This geologic map of the northern plains is the first published map that covers a significant part of Mars using topography and image data from both the Mars Global Surveyor and Mars Odyssey missions. The new data provide a fresh perspective on the geology of the region that reveals many previously unrecognizable units, features, and temporal relations. In addition, we adapted and instituted terrestrial mapping methods and stratigraphic conventions that we think result in a clearer and more objective map. We focus on mapping with the intent of reconstructing the history of geologic activity within the northern plains, including deposition, volcanism, erosion, tectonism, impact cratering, and other processes with the aid of comprehensive crater-density determinations. Mapped areas include all

  2. Using MGS TES Data to Understand Water Cycling in Mars' North Polar Region

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Hale, A. S.; Bass, D. S.; Smith, M. D.

    2003-01-01

    The Martian water cycle is one of the three annual cycles on Mars, dust and CO2 being the other two. Despite the fact that detailed spacecraft data, including global and annual coverage in a variety of wavelengths, have been taken of Mars spanning more than 25 years, there are many outstanding questions regarding the water cycle. There is very little exposed water on Mars today, in either the atmosphere or on the surface although there is geological evidence of catastrophic flooding and continuously running water in past epochs in Mars' history as well as recent (within about 10,000 years ago) evidence for running water in the form of gullies. While there is little water in the atmosphere, water- ice clouds do form and produce seasonal clouds caused by general circulation and by storms. These clouds may in turn be controlling the cycling of the water within the general circulation.

  3. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Bussey, Ben; Hoffman, Stephen J.

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. Studies related to Mars surface operations and related system capabilities have led to the current definition of an EZ as well as ROIs. An EZ is a collection of ROIs that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Workshop results will be used to prepare for

  4. Hubble Takes Mars Portrait Near Close Approach

    NASA Image and Video Library

    2017-12-08

    Mars is looking mighty fine in this portrait nabbed by the Hubble Space Telescope on a near close approach! Read more: go.nasa.gov/1rWYiBT The Hubble Space Telescope is more well known for its picturesque views of nebulae and galaxies, but it's also useful for studying our own planets, including Mars. Hubble imaged Mars on May 12, 2016 - ten days before Mars would be on the exact opposite side of the Earth from the Sun. Bright, frosty polar caps, and clouds above a vivid, rust-colored landscape reveal Mars as a dynamic seasonal planet in this NASA Hubble Space Telescope view taken on May 12, 2016, when Mars was 50 million miles from Earth. The Hubble image reveals details as small as 20 to 30 miles across. The large, dark region at far right is Syrtis Major Planitia, one of the first features identified on the surface of the planet by seventeenth-century observers. Christiaan Huygens used this feature to measure the rotation rate of Mars. (A Martian day is about 24 hours and 37 minutes.) Today we know that Syrtis Major is an ancient, inactive shield volcano. Late-afternoon clouds surround its summit in this view. A large oval feature to the south of Syrtis Major is the bright Hellas Planitia basin. About 1,100 miles across and nearly five miles deep, it was formed about 3.5 billion years ago by an asteroid impact. The orange area in the center of the image is Arabia Terra, a vast upland region in northern Mars that covers about 2,800 miles. The landscape is densely cratered and heavily eroded, indicating that it could be among the oldest terrains on the planet. Dried river canyons (too small to be seen here) wind through the region and empty into the large northern lowlands. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute) #nasagoddard #mars #hubble #space NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics

  5. Multi-band search for volcanic outgassing in the Tharsis and Syrtis Major regions on Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain S. J.

    We carried out the first and most comprehensive to date (2015), ground-based, semisimultaneous, multi-band and multi-species search for sulphuretted gases (SO2, H2S, OCS and SO) above the Tharsis and Syrtis volcanic regions on Mars. The submillimeter search extended between 23 November 2011 and 25 May 2014 which corresponded to Mars' mid Northern Spring and mid Northern Summer seasons (Ls = 34 - 135°). SO2, SO and H2S were targeted at their rotational transitions at 346.652 GHz, 304.078 GHz and 300.505 GHz, respectively, using the high-resolution heterodyne receiver Barney on the 10.4 m single-dish antenna of the Caltech Submillimeter Observatory (CSO), and SO2 at HARP on the 15 m James Clerk Maxwell Telescope (JCMT) at Maunakea, Hawai'i. No sulphuretted gases were detected. We infer 2sigma upper limits across the disk of the planet using the CSO of 1.1 ppb, 0.7 ppb and 1.3 ppb for SO2, SO and H2S, respectively, and 3.1 ppb on SO2 using the JCMT. The infrared search covered OCS in its combination band (nu1+nu3) at 3.42 mum (2924 cm -1), during Mars' late Northern Spring and mid Northern Summer seasons, spanning Ls= 43° and Ls= 145°, between 15 Dec. 2011 and 13 June 2014, using the high resolution infrared spectrometer CSHELL on the 3 m NASA Infrared Telescope Facility (IRTF). No absorption of atmospheric OCS has been detected, and we infer a 2sigma upper limit of 0.8 ppb on OCS. Our current limit 1.1 ppb for SO2 yields an outgassing rate of less than 55 tons/day. Compared to two terrestrial analogs, we would have been able to detect any volcanic release that is more than 4% the size of Kilauea (Hawai'i) or one twentieth the size of the Masaya volcano (Nicaragua). The mass rate of magma that is able to degas 55 tons of SO2 per day is estimated as 37 kilotons of magma per day, or 12,000 m3 per day (0.14 m3/s). The non-detection of any of the sulfur compounds in the atmosphere of Mars provides limits to the level of current volcanic activity in the crust of Mars.

  6. Analysis of Mars Mid-Latitude Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Dougherty, Ian; McClanahan, Tim

    2010-02-01

    In 2008, the Mars Reconnaissance Orbiters Shallow Subsurface Radar Detector detected radar evidence of ice in mountainside formations known as lobate debris aprons (LDA) in the mid-latitude regions of Mars. Using the accumulation of 7 years of neutron maps from Mars Odyssey Orbiters high energy neutron detector (HEND), we search for evidence of an increase in epithermal neutrons in these same lobe-like structures. This pattern of neutron flux is indicative of the presence of water ice. Through t-means and f-variance testing, we compare the amount of epithermal neutrons in the LDAs with the amount of epithermal neutrons in the surrounding background regions which we assume to be dry. Our preliminary results indicate that the presence of water ice is highly probable in the aforementioned LDAs. Our research will help validate the previous study which has been performed on the LDAs, as well as provide potential targets for future exploration of water on Mars. )

  7. Analysis of Mars Mid-Latitude Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Dougherty, Ian; McClanahan, Tim

    2010-03-01

    In 2008, the Mars Reconnaissance Orbiters Shallow Subsurface Radar Detector detected radar evidence of ice in mountainside formations known as lobate debris aprons (LDA) in the mid-latitude regions of Mars. Using the accumulation of 7 years of neutron maps from Mars Odyssey Orbiters high energy neutron detector (HEND), we search for evidence of an increase in epithermal neutrons in these same lobe-like structures. This pattern of neutron flux is indicative of the presence of water ice. Through t-means and f-variance testing, we compare the amount of epithermal neutrons in the LDAs with the amount of epithermal neutrons in the surrounding background regions which we assume to be dry. Our preliminary results indicate that the presence of water ice is highly probable in the aforementioned LDAs. Our research will help validate the previous study which has been performed on the LDAs, as well as provide potential targets for future exploration of water on Mars.

  8. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    In the Payload Hazardous Servicing Facility resides one of the Mars Exploration Rovers, MER-2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  9. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility look over the Mars Exploration Rover -2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  10. Second International Conference on Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains abstracts that were presented at the Second International Conference on Mars Polar Science and Exploration, August 21-25, 2000. The abstracts of the presentations given are listed. Presentations were given on the advances in technology, data analysis of past and current missions, and new instruments destined for Mars. Particular attention was paid to the polar regions and what they reveal about Mars.

  11. Formation and disruption of aquifers in southwestern Chryse Planitia, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Kargel, J.S.; Dohm, J.M.; Kuzmin, R.; Fairen, A.G.; Sasaki, S.; Komatsu, G.; Schulze-Makuch, D.; Jianguo, Y.

    2007-01-01

    We present geologic evidence suggesting that after the development of Mars' cryolithosphere, the formation of aquifers in southwestern Chryse Planitia and their subsequent disruption led to extensive regional resurfacing during the Late Hesperian, and perhaps even during the Amazonian. In our model, these aquifers formed preferentially along thrust faults associated with wrinkle ridges, as well as along fault systems peripheral to impact craters. The characteristics of degraded wrinkle ridges and impact craters in southwestern Chryse Planitia indicate a profound role of subsurface volatiles and especially liquid water in the upper crust (the upper one hundred to a few thousands of meters). Like lunar wrinkle ridges, the martian ones are presumed to mark the surface extensions of thrust faults, but in our study area the wrinkle ridges are heavily modified. Wrinkle ridges and nearby plains have locally undergone collapse, and in other areas they are associated with domical intrusions we interpret as mud volcanoes and mud diapirs. In at least one instance, a sinuous valley emanates from a modified wrinkle ridge, further indicating hydrological influences on these thrust-fault-controlled features. A key must be the formation of volatile-rich crust. Primary crustal formation and differentiation incorporated juvenile volatiles into the global crust, but the crustal record here was then strongly modified by the giant Chryse impact. The decipherable rock record here begins with the Chryse impact and continues with the resulting basin's erosion and infilling, which includes outflow channel activity. We propose that in Simud Vallis surface flow dissection into the base of the cryolithosphere-produced zones where water infiltrated and migrated along SW-dipping strata deformed by the Chryse impact, thereby forming an extensive aquifer in southwestern Chryse Planitia. In this region, compressive stresses produced by the rise of Tharsis led to the formation of wrinkle ridges

  12. Mars At Opposition

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These NASA Hubble Space Telescope views provide the most detailed complete global coverage of the red planet Mars ever seen from Earth. The pictures were taken on February 25, 1995, when Mars was at a distance of 65 million miles (103 million km).

    To the surprise of researchers, Mars is cloudier than seen in previous years. This means the planet is cooler and drier, because water vapor in the atmosphere freezes out to form ice-crystal clouds. Hubble resolves Martian surface features with a level of detail only exceeded by planetary probes, such as impact craters and other features as small as 30 miles (50 kilometers) across.

    [Tharsis region] - A crescent-shaped cloud just right of center identifies the immense shield volcano Olympus Mons, which is 340 miles (550 km) across at its base. Warm afternoon air pushed up over the summit forms ice-crystal clouds downwind from the volcano. Farther to the east (right) a line of clouds forms over a row of three extinct volcanoes which are from north to south: Ascraeus Mons, Pavonis Mons, Arsia Mons. It's part of an unusual, recurring 'W'-shaped cloud formation that once mystified earlier ground-based observers.

    [Valles Marineris region] - The 16 mile-high volcano Ascraeus Mons pokes through the cloud deck along the western (left) limb of the planet. Other interesting geologic features include (lower left) Valles Marineris, an immense rift valley the length of the continental United States. Near the image center lies the Chryse basin made up of cratered and chaotic terrain. The oval-looking Argyre impact basin (bottom) appears white due to clouds or frost.

    [Syrtis Major region] - The dark 'shark fin' feature left of center is Syrtis Major. Below it the giant impact basin Hellas. Clouds cover several great volcanos in the Elysium region near the eastern (right) limb. As clearly seen in the Hubble images, past dust storms in Mars' southern hemisphere have scoured the plains of fine light dust and transported the dust

  13. Multiple Instruments Used for Mars Carbon Estimate

    NASA Image and Video Library

    2015-09-02

    Researchers estimating the amount of carbon held in the ground at the largest known carbonate-containing deposit on Mars utilized data from three different NASA Mars orbiters. Each image in this pair covers the same area about 36 miles (58 kilometers) wide in the Nili Fossae plains region of Mars' northern hemisphere. The tally of carbon content in the rocks of this region is a key piece in solving a puzzle of how the Martian atmosphere has changed over time. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere. The image on the left presents data from the Thermal Emission Imaging System (THEMIS) instrument on NASA's Mars Odyssey orbiter. The color coding indicates thermal inertia -- the property of how quickly a surface material heats up or cools off. Sand, for example (blue hues), cools off quicker after sundown than bedrock (red hues) does. The color coding in the image on the right presents data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on NASA's Mars Reconnaissance Orbiter. From the brightness at many different wavelengths, CRISM data can indicate what minerals are present on the surface. In the color coding used here, green hues are consistent with carbonate-bearing materials, while brown or yellow hues are olivine-bearing sands and locations with purple hues are basaltic in composition. The gray scale base map is a mosaic of daytime THEMIS infrared images. Annotations point to areas with different surface compositions. The scale bar indicates 20 kilometers (12.4 miles). http://photojournal.jpl.nasa.gov/catalog/PIA19816

  14. Mineral abundances at the final four curiosity study sites and implications for their formation

    NASA Astrophysics Data System (ADS)

    Poulet, F.; Carter, J.; Bishop, J. L.; Loizeau, D.; Murchie, S. M.

    2014-03-01

    A component of the landing site selection process for the Mars Science Laboratory (MSL) involved the presence of phyllosilicates as the main astrobiological targets. Gale crater was selected as the MSL landing site from among 4 down selected study sites (Gale, Eberswalde and Holden craters, Mawrth Vallis) that addressed the primary scientific goal of assessing the past habitability of Mars. A key constraint on the formation process of these phyllosilicate-bearing deposits is in the precise mineralogical composition. We present a reassessment of the mineralogy of the sites combined with a determination of the modal mineralogy of the major phyllosilicate-bearing deposits of the four final study sites from the modeling of near-infrared spectra using a radiative transfer model. The largest abundance of phyllosilicates (30-70%) is found in Mawrth Vallis, the lowest one in Eberswalde (<25%). Except for Mawrth Vallis, the anhydrous phases (plagioclase, pyroxenes and martian dust) are the dominant phases, suggesting formation conditions with a lower alteration grade and/or a post-formation mixing with anhydrous phases. The composition of Holden layered deposits (mixture of saponite and micas with a total abundance in the range of 25-45%) suggests transport and deposition of altered basalts of the Noachian crust without major chemical transformation. For Eberswalde, the modal mineralogy is also consistent with detrital clays, but the presence of opaline silica indicates that an authigenic formation occurred during the deposition. The overall composition including approximately 20-30% smectite detected by MSL in the rocks of Yellow-knife Bay area interpreted to be material deposited on the floor of Gale crater by channels (http://www.nasa.gov/mission_pages/msl/news/msl20130312.html).

  15. Mars Observer Lecture: Mars Orbit Insertion

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne R. (Personal Name)

    1993-01-01

    The Mars Observer mission spacecraft was primarily designed for exploring Mars and the Martian environment. The Mars Observer was launched on September 25, 1992. The spacecraft was lost in the vicinity of Mars on August 21, 1993 when the spacecraft began its maneuvering sequence for Martian orbital insertion. This videotape shows a lecture by Suzanne R. Dodd, the Mission Planning Team Chief for the Mars Observer Project. Ms Dodd begins with a brief overview of the mission and the timeline from the launch to orbital insertion. Ms Dodd then reviews slides showing the trajectory of the spacecraft on its trip to Mars. Slides of the spacecraft being constructed are also shown. She then discusses the Mars orbit insertion and the events that will occur to move the spacecraft from the capture orbit into a mapping orbit. During the trip to Mars, scientists at JPL had devised a new strategy, called Power In that would allow for an earlier insertion into the mapping orbit. The talk summarizes this strategy, showing on a slide the planned transition orbits. There are shots of the Martian moon, Phobos, taken from the Viking spacecraft, as Ms Dodd explains that the trajectory will allow the orbiter to make new observations of that moon. She also explains the required steps to prepare for mapping after the spacecraft has achieved the mapping orbit around Mars. The lecture ends with a picture of Mars from the Observer on its approach to the planet.

  16. Geologic Mapping in the Hesperia Planum Region of Mars

    NASA Technical Reports Server (NTRS)

    Gregg, Tracy K. P.; Crown, David A.

    2010-01-01

    Hesperia Planum, characterized by a high concentration of mare-type wrinkle ridges and ridge rings, encompasses > 2 million square km in the southern highlands of Mars. The most common interpretation is that the plains were emplaced as "flood" lavas with total thicknesses of <3 km [4-10]. The wrinkle ridges on its surface make Hesperia Planum the type locale for "Hesperian-aged ridged plains" on Mars, and wrinkle-ridge formation occurred in more than one episode. Hesperia Planum s stratigraphic position and crater-retention age define the base of the Hesperian System. However, preliminary results of geologic mapping reveal that the whole of Hesperia Planum is unlikely to be composed of the same materials, emplaced at the same geologic time. To unravel these complexities, we are generating a 1:1.5M-scale geologic map of Hesperia Planum and its surroundings. To date, we have identified 4 distinct plains units within Hesperia Planum and are attempting to determine the nature and relative ages of these materials.

  17. Mars Soil-Based Resource Processing and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Mueller, R. P.

    2015-01-01

    The ability to extract and process resources at the site of exploration into products and services, commonly referred to as In Situ Resource Utilization (ISRU), can have significant benefits for robotic and human exploration missions. In particular, the ability to use in situ resources to make propellants, fuel cell reactants, and life support consumables has been shown in studies to significantly reduce mission mass, cost, and risk, while enhancing or enabling missions not possible without the incorporation of ISRU. In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study. For the first time in a large scale Mars architecture study, water from Mars soil was considered as a potential resource. At the time of the study, knowledge of water resources (their form, concentration, and distribution) was extremely limited. Also, due to lack of understanding of how to apply planetary protection rules and requirements to ISRU soil-based excavation and processing, an extremely conservative approach was incorporated where only the top several centimeters of ultraviolet (UV) radiated soil could be processed (assumed to be 3% water by mass). While results of the Mars DRA 5.0 study showed that combining atmosphere processing to make oxygen and methane with soil processing to extract water provided the lowest mission mass, atmosphere processing to convert carbon dioxide (CO2) into oxygen was baselined for the mission since it was the lowest power and risk option. With increased knowledge and further clarification of Mars planetary protection rules, and the recent release of the Mars Exploration Program Analysis Group (MEPAG) report on "Special Regions and the Human Exploration of Mars", it is time to reexamine potential water resources on Mars, options for soil processing to extract water, and the implications with respect to planetary protection and Special Regions on Mars.

  18. Tenth Anniversary Image from Camera on NASA Mars Orbiter

    NASA Image and Video Library

    2012-02-29

    NASA Mars Odyssey spacecraft captured this image on Feb. 19, 2012, 10 years to the day after the camera recorded its first view of Mars. This image covers an area in the Nepenthes Mensae region north of the Martian equator.

  19. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  20. Improvement of Mars Surface Snow Albedo Modeling in LMD Mars GCM With SNICAR

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M. G.; Millour, E.

    2018-03-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) CO2 snow albedo values based on the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 snow albedos interactively in the model. Using the new diagnostic capabilities of this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. Over snow-covered regions, SNICAR-MGCM simulates mean albedo that is higher by about 0.034 than prescribed values in the original-MGCM. Globally, shortwave flux into the surface decreases by 1.26 W/m2, and net CO2 snow deposition increases by about 4% with SNICAR-MGCM over one Martian annual cycle as compared to the original-MGCM simulations. SNICAR integration reduces the mean global surface temperature and the surface pressure of Mars by about 0.87% and 2.5%, respectively. Changes in albedo also show a similar distribution to dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to the original-MGCM. Dust substantially darkens Mars's cryosphere, thereby reducing its impact on the global shortwave energy budget by more than half, relative to the impact of pure snow.

  1. Mars Orbiter Camera Views the 'Face on Mars' - Best View from Viking

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.

    The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.

    This Viking Orbiter image is one of the best Viking pictures of the area Cydonia where the 'Face' is located. Marked on the image are the 'footprint' of the high resolution (narrow angle) Mars Orbiter Camera image and the area seen in enlarged views (dashed box). See PIA01440-1442 for these images in raw and processed form.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. Proceedings of the Fourth International Conference on Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Sessions in this conference include: Mars polar geology and glaciology; Mars and terrestrial radar investigations; Observations, nature, and evolution of the Martian seasonal polar caps; Mars' residual south polar cap; Climate change, ice core analysis, and the redistribution of volatiles on Mars; errestrial Mars analog environments; The Phoenix Scout mission and the nature of the near-polar environment; Moderated Discussion: Key Issues Regarding Phoenix Scout Mission and the nature of the near-polar environment; Panel Discussion: Key Issues in Mars Polar Science and Exploration; Mars Reconnaissance Orbiter investigations of the Martian polar regions and climate; Mars Polar Scout Mission concepts; and Panel Discussion: New perspectives on Mars polar science and exploration

  3. Proposed Mars Surveyor landing sites in northern Meridiani Sinus, southern Elysium Planitia, and Argyre Planitia

    NASA Astrophysics Data System (ADS)

    Parker, T. J.; Edgett, K. S.

    1998-01-01

    landing ellipse between them but still provide access to one or more of them and to the margin of the Elysium plains material. Post-2001 Mars Surveyor Landing Site: Argyre Planitia (Proposed by T. J. Parker) Vital Statistics: *Latitude, Longitude: 55-56°S, 41-43°W. *Elevation (Viking): 1.0 km. *Viking Orbiter Image coverage: Excellent coverage by 40 m/pixel images (orbits 567B, 568B, 569B). Excellent stereo coverage with large parallax angles over the entire landing site region, and much of central and southern Argyre. *Albedo: ~0.23â0.24 *Block Abundance: No data *Fine-Component Thermal Inertia: No data The floors of both the Argyre and Hellas basins contain etched layered materials that are probably thick accumulations of channel or lacustrine sediments [9, 10]. The deposits in Hellas are much more eroded than those in Argyre, and Hellas lacks a channel outlet. Argyre is unique in that Uzboi Vallis flowed out of the basin, requiring overflow of a standing body of water within Argyre [11]. This makes it the largest impact basin on Mars with channels both draining into it and flowing out from it. Hellas' channels may be catastrophic flood channels, whereas Argyre was fed by modest-scale valley networks, though the outlet at Uzboi Vallis was a catastrophic flood. Highland craters and basins of this kind should be high-priority landing targets for missions intended to focus on the search for either prebiotic organic materials or even simple fossil microorganisms. Basins with internally-draining valley networks should be preferred over flood channels, as they could have provided the long-term influx of water favorable to the origin of life. (Catastrophic floods are not conducive to fossil preservation, due to their very short durations and high transportation energies). They also afford an opportunity to study the evolution of the planet's climate and volatiles during the period of time between the late Noachian and early Hesperian, when a drastic change from a proposed

  4. 2018 Giant Dust Storm on Mars

    NASA Image and Video Library

    2018-06-13

    This set of images from NASA's Mars Reconnaissance Orbiter (MRO) shows a fierce, giant dust storm is kicking up on Mars, with rovers on the surface indicated as icons. The spread of the storm can be seen in the salmon-colored overlay. These images from MRO's Mars Color Imager start from May 31, when the dust event was first detected, and go through June 11, 2018. MRO creates global maps of Mars but roll maneuvers for targeted observations produce gaps in the coverage, which appear as black gores in the maps. On some days there are data drops where partial or full orbits of coverage are missing. Green and purple observed in the south polar region indicate saturated pixels. Latitude is indicated along the vertical axis. Longitude is indicated along the horizontal axis. https://photojournal.jpl.nasa.gov/catalog/PIA22519

  5. Mariner Mars 1971 project. Volume 2: Preliminary science results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data from six Mariner Mars experiments are presented. Television reconnaissance of Mars and its satellites yielded information on atmospheric phenomena, surface features of the South Polar region, geology, and satellite astronomy. Other experiments involved infrared spectroscopy and radiometry; ultraviolet spectrometry; S band occultation for observing the atmosphere, ionosphere, and topography of Mars; and the use of celestial mechanics, to determine the gravity field pole direction of the planet.

  6. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.

  7. Mars: Atmosphere

    NASA Astrophysics Data System (ADS)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  8. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Gehring, A. U.

    1992-01-01

    Iron-enriched smectites have been suggested as important mineral compounds of the Martian soil. They were shown to comply with the chemical analysis of the Martian soil, to simulate many of the findings of the Viking Labeled Release Experiments on Mars, to have spectral reflectance in the VIS-NIR strongly resembling the bright regions on Mars. The analogy with Mars soil is based, in a number of aspects, on the nature and behavior of the iron oxides and oxyhydroxides deposited on the surface of the clay particles. A summary of the properties of these iron phases and some recent findings are presented. Their potential relevance to Mars surface processes is discussed.

  9. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility work on components of the Mars Exploration Rovers. In the center is a lander. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  10. Foehn and temperature-based melt patterns over the Larsen C Ice Shelf as simulated by the MAR regional climate model

    NASA Astrophysics Data System (ADS)

    Datta, R.; Tedesco, M.; Agosta, C.; Fettweis, X.; Kuipers Munneke, P.; van den Broeke, M. R.

    2017-12-01

    Surface melting has been implicated in the collapse of Antarctic Peninsula ice shelves, most dramatically in the Larsen A (1995) and Larsen B (2002) ice shelves. In July of this year, a rift in the remaining Larsen C ice shelf broke away one of the largest icebergs ever recorded. Ice-shelf retreat is likely related to strong atmospheric warming in this area, by means of hydrofracturing and possibly by the warming atmosphere itself. According the hydrofracture mechanism, meltwater produced during anomalously warm summers infiltrates and deepens pre-existent crevasses, leading to the eventual break-up of the ice shelf. In addition to region-wide warming, melting in the East Antarctic Peninsula can be caused by frequent intrusions of westerly foehn winds. The remaining Larsen C ice shelf, as well as glaciers previously feeding to the former Larsen B ice shelf, are therefore vulnerable to both (a) the atmospheric circulation patterns that influence foehn wind frequency and intensity and (b) regional interannual temperature trends. We discuss spatial patterns of meltwater production in the northeast basin of the Antarctic Peninsula as modeled by the Modèle Atmosphérique Régionale (MAR) at a 10km resolution between 2001 and 2014. The timeseries associated with these patterns are used to identify interannual changes in the frequency of foehn-induced melt, and compare foehn-induced melting to melt associated with regional warming. Melt occurrence in MAR is evaluated against multiple satellite datasets and near-surface automatic weather station data from three sites. Finally, we discuss the seasonal depth to which meltwater percolates into the snowpack (as modeled by MAR) because of the potential influence of meltwater on both warming and densification of the ice shelf.

  11. Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

    1992-01-01

    Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

  12. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  13. Mars-NEXT - A future step in the European exploration of Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, Agustin

    The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from

  14. Mars-Next - a Future Step in the European Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, A. F.

    2008-09-01

    The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic

  15. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

    PubMed

    Fairén, Alberto G; Dohm, James M; Rodríguez, J Alexis P; Uceda, Esther R; Kargel, Jeffrey; Soare, Richard; Cleaves, H James; Oehler, Dorothy; Schulze-Makuch, Dirk; Essefi, Elhoucine; Banks, Maria E; Komatsu, Goro; Fink, Wolfgang; Robbins, Stuart; Yan, Jianguo; Miyamoto, Hideaki; Maruyama, Shigenori; Baker, Victor R

    2016-02-01

    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.

  16. Aram Chaos: A Long Lived Subsurface Aqueous Environment with Strong Water Resource Potential for Human Missions on Mars

    NASA Astrophysics Data System (ADS)

    Sibille, L.; Mueller, R. P.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-10-01

    Aram Chaos is a 280-km-wide near-circular structure near the outflow channel Ares Vallis and Aureum Chaos. It is a compelling landing site for human explorers featuring multiple science ROIs with a compelling resource ROI with polyhydrated sulfates.

  17. Cryptic Terrain on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    There is an enigmatic region near the south pole of Mars known as the 'cryptic' terrain. It stays cold in the spring, even as its albedo darkens and the sun rises in the sky.

    This region is covered by a layer of translucent seasonal carbon dioxide ice that warms and evaporates from below. As carbon dioxide gas escapes from below the slab of seasonal ice it scours dust from the surface. The gas vents to the surface, where the dust is carried downwind by the prevailing wind.

    The channels carved by the escaping gas are often radially organized and are known informally as 'spiders' (figure 1).

    Observation Geometry Image PSP_003179_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 01-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 245.9 km (153.7 miles). At this distance the image scale is 49.2 cm/pixel (with 2 x 2 binning) so objects 148 cm across are resolved. The image shown here has been map-projected to 50 cm/pixel . The image was taken at a local Mars time of 06:19 PM and the scene is illuminated from the west with a solar incidence angle of 78 degrees, thus the sun was about 12 degrees above the horizon. At a solar longitude of 210.8 degrees, the season on Mars is Northern Autumn.

  18. Time-variable and static gravity field of Mars from MGS, Mars Odyssey, and MRO

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-04-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have significantly contributed to the determination of global high-resolution global gravity fields of Mars for the last 16 years. All three spacecraft were located in sun-synchronous, near-circular polar mapping orbits for their primary mission phases at different altitudes and Local Solar Time (LST). X-Band tracking data have been acquired from the NASA Deep Space Network (DSN) providing information on the time-variable and static gravity field of Mars. MGS operated between 1999 and 2006 at 390 km altitude. ODY and MRO are still orbiting Mars with periapsis altitudes of 400 km and 255 km, respectively. Before entering these mapping phases, all three spacecraft collected radio tracking data at lower altitudes (˜170-200 km) that help improve the resolution of the gravity field of Mars in specific regions. We analyzed the entire MGS radio tracking data set, and ODY and MRO radio data until 2015. These observations were processed using a batch least-squares filter through the NASA GSFC GEODYN II software. We combined all 2- and 3-way range rate data to estimate the global gravity field of Mars to degree and order 120, the seasonal variations of gravity harmonic coefficients C20, C30, C40 and C50 and the Love number k2. The gravity contribution of Mars atmospheric pressures on the surface of the planet has been discerned from the time-varying and static gravity harmonic coefficients. Surface pressure grids computed using the Mars-GRAM 2010 atmospheric model, with 2.5° x2.5° spatial and 2-h resolution, are converted into gravity spherical harmonic coefficients. Consequently, the estimated gravity and tides provide direct information on the solid planet. We will present the new Goddard Mars Model (GMM-3) of Mars gravity field in spherical harmonics to degree and order 120. The solution includes the Love number k2 and the 3-frequencies (annual, semi-annual, and tri

  19. The Mars Pathfinder Mission and Science Results

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.

    1999-01-01

    Mars Pathfinder, the first low-cost, quick Discovery class mission to be completed, successfully landed on the surface of Mars on July 4, 1997, deployed and navigated a small rover, and collected data from 3 science instruments and 10 technology experiments. The mission operated on Mars for 3 months and returned 2.3 Gbits of new data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. The rover traversed 100 m clockwise around the lander, exploring about 200 square meters of the surface. The mission captured the imagination of the public, and garnered front page headlines during the first week. A total of about 566 million internet "hits" were registered during the first month of the mission, with 47 million "hits" on July 8th alone, making the Pathfinder landing by far the largest internet event in history at the time. Pathfinder was the first mission to deploy a rover on Mars. It carried a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provided a calibration point or "ground truth" for orbital remote sensing observations. The combination of spectral imaging of the landing area by the lander camera, chemical analyses aboard the rover, and close-up imaging of colors, textures and fabrics with the rover cameras offered the potential of identifying rocks (petrology and mineralogy). With this payload, a landing site in Ares Vallis was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enabled addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early Martian environment and its subsequent evolution. The 3 instruments and rover allowed seven areas of scientific investigation: the

  20. Mars Global Coverage by Context Camera on MRO

    NASA Image and Video Library

    2017-03-29

    In early 2017, after more than a decade of observing Mars, the Context Camera (CTX) on NASA's Mars Reconnaissance Orbiter (MRO) surpassed 99 percent coverage of the entire planet. This mosaic shows that global coverage. No other camera has ever imaged so much of Mars in such high resolution. The mosaic offers a resolution that enables zooming in for more detail of any region of Mars. It is still far from the full resolution of individual CTX observations, which can reveal the shapes of features smaller than the size of a tennis court. As of March 2017, the Context Camera has taken about 90,000 images since the spacecraft began examining Mars from orbit in late 2006. In addition to covering 99.1 percent of the surface of Mars at least once, this camera has observed more than 60 percent of Mars more than once, checking for changes over time and providing stereo pairs for 3-D modeling of the surface. http://photojournal.jpl.nasa.gov/catalog/PIA21488

  1. Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model

    NASA Astrophysics Data System (ADS)

    Fettweis, Xavier; Box, Jason E.; Agosta, Cécile; Amory, Charles; Kittel, Christoph; Lang, Charlotte; van As, Dirk; Machguth, Horst; Gallée, Hubert

    2017-04-01

    With the aim of studying the recent Greenland ice sheet (GrIS) surface mass balance (SMB) decrease relative to the last century, we have forced the regional climate MAR (Modèle Atmosphérique Régional; version 3.5.2) model with the ERA-Interim (ECMWF Interim Re-Analysis; 1979-2015), ERA-40 (1958-2001), NCEP-NCARv1 (National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis version 1; 1948-2015), NCEP-NCARv2 (1979-2015), JRA-55 (Japanese 55-year Reanalysis; 1958-2014), 20CRv2(c) (Twentieth Century Reanalysis version 2; 1900-2014) and ERA-20C (1900-2010) reanalyses. While all these forcing products are reanalyses that are assumed to represent the same climate, they produce significant differences in the MAR-simulated SMB over their common period. A temperature adjustment of +1 °C (respectively -1 °C) was, for example, needed at the MAR boundaries with ERA-20C (20CRv2) reanalysis, given that ERA-20C (20CRv2) is ˜ 1 °C colder (warmer) than ERA-Interim over Greenland during the period 1980-2010. Comparisons with daily PROMICE (Programme for Monitoring of the Greenland Ice Sheet) near-surface observations support these adjustments. Comparisons with SMB measurements, ice cores and satellite-derived melt extent reveal the most accurate forcing datasets for the simulation of the GrIS SMB to be ERA-Interim and NCEP-NCARv1. However, some biases remain in MAR, suggesting that some improvements are still needed in its cloudiness and radiative schemes as well as in the representation of the bare ice albedo. Results from all MAR simulations indicate that (i) the period 1961-1990, commonly chosen as a stable reference period for Greenland SMB and ice dynamics, is actually a period of anomalously positive SMB (˜ +40 Gt yr-1) compared to 1900-2010; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120-year common period; (iii) before 1960, both ERA

  2. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument

    USGS Publications Warehouse

    Mustard, J.F.; Murchie, S.L.; Pelkey, S.M.; Ehlmann, B.L.; Milliken, R.E.; Grant, J. A.; Bibring, J.-P.; Poulet, F.; Bishop, J.; Dobrea, E.N.; Roach, L.; Seelos, F.; Arvidson, R. E.; Wiseman, S.; Green, R.; Hash, C.; Humm, D.; Malaret, E.; McGovern, J.A.; Seelos, K.; Clancy, T.; Clark, R.; des Marais, D.; Izenberg, N.; Knudson, A.; Langevin, Y.; Martin, T.; McGuire, P.; Morris, Robert; Robinson, M.; Roush, T.; Smith, M.; Swayze, G.; Taylor, H.; Titus, T.; Wolff, M.

    2008-01-01

    Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L’Eau, les Glaces et l’Activitié) instrument1,2, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity3) were specific to surface environments during the earliest era of Mars’s history4. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)4 of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.

  3. Three-and-a-Half Mars Years of Surface Albedo Changes Observed by the Mars Reconnaissance Orbiter MARCI Investigation

    NASA Astrophysics Data System (ADS)

    Wellington, D. F.; Bell, J. F.

    2013-12-01

    The Mars Color Imager (MARCI) wide-angle camera aboard the Mars Reconnaissance Orbiter (MRO) has gathered over three-and-a-half Mars years' worth of observations at approximately 1 km/pixel resolution. The MARCI instrument has seven bands in the ultraviolet, visible, and near-infrared, five of which (the longer wavelength 420, 550, 600, 650, and 750 nm bands) are amenable to observations of surface albedo (the two short-wave ultraviolet bands are primarily intended for ozone measurements). MRO's near-polar orbit and MARCI's wide angle field-of-view (180°) allows it to make almost daily observations of large portions of the planet. As a global multi-year dataset, the MARCI observations are well-suited to examining surface albedo changes on both local and regional scales, including investigating any repeatability and seasonality in such changes. Because Mars displays considerable interannual variability, long-term continuous observations such as MARCI's are necessary in order to adequately describe and distinguish typical surface variance from unusual and longer-term secular changes. We have produced time-lapse animations of sections of the Martian surface from calibrated, map-projected, and mosaicked MARCI observations, altogether comprising the surface of Mars within +/- 65 degrees of the equator. These animations show many albedo changes that have occurred on the surface since 2006, including changes in traditionally variable regions such as Syrtis Major, Alcyonius, Hyblaeus, and Cerberus, as well as a dramatic brightening of Propontis and variations in the appearance and orientation of mesoscale linear streaks in Amazonis. Many regions show alternating periods of dust deposition and removal that, while not producing a persistent change in the surface albedo, nevertheless yield information on the local near-surface conditions that drive these variations. We present a descriptive classification of the types and locations of surface albedo changes observed on Mars

  4. Biogenic catalysis of soil formation on Mars?

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.

    1998-01-01

    The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.

  5. The origin of channels and associated deposits in the Elysium region of Mars

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric H.; Hoppin, Richard A.

    1987-01-01

    Photogeological studies of the Elysium volcanic province of Mars show that its sinuous channels are part of a large deposit which probably was emplaced as a series of huge volcanic debris flows or lahars. The suggestion is based on evidence that the lahars were : (1) gravity-driven mass flow deposits (lobate outlines, steep snouts, smooth medial channels and rough lateral deposits--the deposits narrow and widen in accord with topography, and they extend downslope); (2) wet (channeled surfaces, drainage features); and (3) associated with volcanism (the deposits and channels extend from a system of fractures which fed lava flows). It is conceivable that heat associated with magmatism melted ground ice below the Elysium volcanoes, formed a muddy slurry which issued out of regional fractures and spread over the adjoining plain.

  6. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  7. Identification of a Spectrally and Thermophysically Unique Region in Northern Amazonis Planitia, Mars: Surface Analysis using TES and THEMIS Data

    NASA Astrophysics Data System (ADS)

    Rogers, D.; Christensen, P. R.

    2002-12-01

    An intermediate-albedo (0.23-0.24) region located in northeastern Amazonis Planitia (approximately 900 km2 in area, centered at 40§N, 150§W) has been discovered to have a unique combination of certain spectral and thermophysical properties. The range of thermal inertia values for this region is 40-150 J/m2Ks1/2. On Mars, these values are usually indicative of a thick deposit of very fine-grained material (<63 microns) [1]. However, unlike typical dust deposits on Mars, this region exhibits moderate spectral contrast, with surface emissivity values ranging from 0.94-0.97 near 1030 cm-1. These emissivity values are uncharacteristic of fine-grained material [e.g., 2]. The modal mineralogy obtained by linear deconvolution of selected emissivity spectra from at least four different orbits over this region is not different than that reported for the Acidalia Planitia andesitic surface [3], within the mineral abundance detection limit estimated for TES [4]. However, the atmospherically-corrected surface spectral shape is distinct from the surface spectra common to Acidalia Planitia [3], Syrtis Major [3, 4], Sinus Meridiani [5] and Nili Fossae [6]. A spectral index was developed that describes the shape of a concave-down portion of the surface spectrum near 900 cm-1. A global 4 pixel-per-degree map of this index shows that the spectral character is unique to this region on Mars. MOC and THEMIS visible images available for this area show a uniform geomorphology consisting of parallel sinuous features trending NW-SE. Finally, THEMIS IR images show a sharp temperature contact that corresponds with the boundary of this area in the spectral index map. There are likely to be other explanations for reconciling the low thermal inertia with high spectral feature depth, however a favored hypothesis for this anomalous surface is that it is composed of a consolidated but highly porous material. This and other interpretations for this region will be discussed. References: [1] Kieffer

  8. Mars Analog Research and Technology Experiment (MARTE): A Simulated Mars Drilling Mission to Search for Subsurface Life at the Rio Tinto, Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David

    2003-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.

  9. The new Mars: The discoveries of Mariner 9

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.; Raper, O.

    1974-01-01

    The Mariner 9 encounter with Mars is extensively documented with photographs taken by the satellite's onboard cameras, and an attempt is made to explain the observed Martian topography in terms of what is known about the geomorphological evolution of the earth. Early conceptions about the Mars surface are compared with more recent data made available by the Mariner 9 cameras. Other features of the planet Mars which are specifically discussed include the volcanic regions, the surface channels, the polar caps and layered terrain, the Martian atmosphere, and the planet's two moons--Phobos and Deimos.

  10. Mars Exploration Rovers: 4 Years on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.

  11. CO2 Condensation Models for Mars

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R.

    2004-01-01

    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  12. Spectroscopy and Photometry of Mars Trojans

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Binzel, R. P.; Howell, E. S.; Bus, S. J.; Grier, J. A.

    2003-01-01

    Mars is the only terrestrial planet known to have co-orbiting "Trojan" asteroids. We have obtained visible and near-IR reflectance spectra of three of these objects: 5261 Eureka and 1998 VF31 in the L5 region and 1999 UJ7 in the L4 region. We also obtained JHK spectrophotometry and a visible lightcurve for 5261 Eureka. The asteroid 5261 Eureka has a visible spectrum that is classified as Sr in the Bus taxonomy, and has infrared colors consistent with the A-class asteroids. The data for 1998 VF31 have a restricted wavelength range, but are most consistent with the Sr or Sa class, though we note a marginal consistency with the D class. We can rule out a C-class classification. 1999 UJ7 has an X-class or T-class spectrum, which is unlike that of the other two Mars Trojans. The photometric data for Eureka are limited, but we can constrain the period to longer than 5 hours (likely 5.556 hours) and lightcurve amplitude of at least 0.15 magnitude at this viewing geometry. The spectral differences among the Mars Trojans suggests that either they did not all form at their present solar distances or that they have not always been at their present sizes. 0 2003 Elsevier Inc. All rights reserved. Keywords: Asteroids; Asteroids, composition; Spectroscopy; Satellites of Mars

  13. Landscape of Former Lakes and Streams on Northern Mars

    NASA Image and Video Library

    2016-09-15

    Valleys younger than better-known ancient valley networks on Mars are evident on the landscape in the northern Arabia Terra region of Mars, particularly in the area mapped here with color-coded topographical information overlaid onto a photo mosaic. The area includes a basin informally named "Heart Lake" at upper left (northwest). Data from the Mars Orbiter Laser Altimeter (MOLA) on NASA's Mars Global Surveyor orbiter are coded here as white and purple for lower elevations, yellow for higher elevation. The elevation information is combined with a mosaic of images from the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter, covering an area about 120 miles (about 190 kilometers) wide. The mapped area is centered near 35.91 degrees north latitude, 1 degree east longitude on Mars. These lakes and streams held water several hundred million years after better-known ancient lake environments on Mars, according to 2016 findings. http://photojournal.jpl.nasa.gov/catalog/PIA20838

  14. Wet Mars, Dry Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  15. Mars Aeronomy Observer: Report of the Science Working Team

    NASA Technical Reports Server (NTRS)

    Hunten, Donald M.; Slavin, James A.; Brace, Lawrence H.; Deming, Drake; Frank, Louis A.; Grebowsky, Joseph M.; Haberle, Robert M.; Hanson, William B.; Intriligator, Devrie S.; Killeen, Timothy L.; hide

    1986-01-01

    The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region.

  16. New Model for Ionospheric Irregularities at Mars

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  17. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  18. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  19. Rocks Here Sequester Some of Mars Early Atmosphere

    NASA Image and Video Library

    2015-09-02

    This view combines information from two instruments on NASA's Mars Reconnaissance Orbiter to map color-coded composition over the shape of the ground in a small portion of the Nili Fossae plains region of Mars' northern hemisphere. This site is part of the largest known carbonate-rich deposit on Mars. In the color coding used for this map, green indicates a carbonate-rich composition, brown indicates olivine-rich sands, and purple indicates basaltic composition. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere by sequestering the carbon in the rocks. An analysis of the amount of carbon contained in Nili Fossae plains estimated the total at no more than twice the amount of carbon in the modern atmosphere of Mars, which is mostly carbon dioxide. That is much more than in all other known carbonate on Mars, but far short of enough to explain how Mars could have had a thick enough atmosphere to keep surface water from freezing during a period when rivers were cutting extensive valley networks on the Red Planet. Other possible explanations for the change from an era with rivers to dry modern Mars are being investigated. This image covers an area approximately 1.4 miles (2.3 kilometers) wide. A scale bar indicates 500 meters (1,640 feet). The full extent of the carbonate-containing deposit in the region is at least as large as Delaware and perhaps as large as Arizona. The color coding is from data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), in observation FRT0000C968 made on Sept. 19, 2008. The base map showing land shapes is from the High Resolution Imaging Science Experiment (HiRISE) camera. It is one product from HiRISE observation ESP_010351_2020, made July 20, 2013. http://photojournal.jpl.nasa.gov/catalog/PIA19817

  20. Geologic map of MTM -15027, -20027, -25027, and -25032 quadrangles, Margaritifer Terra region of Mars

    USGS Publications Warehouse

    Irwin, Rossman P.; Grant, John A.

    2013-01-01

    Mars Transverse Mercator (MTM) quadrangles −15027, −20027, −25027, and −25032 (lat 12.5°−28° S., long 330°−335° E. and lat 22.5°−28° S., long 324.5°−330° E.) in southwestern Margaritifer Terra include diverse erosional landforms, sedimentary deposits, and tectonic structures that record a long geologic and geomorphic history. The northeastern regional slope of the pre-Noachian crustal dichotomy (as expressed along the Chryse trough) and structures of the informally named Middle Noachian or older Holden and Ladon impact basins dominate the topography of the map area. A series of mesoscale outflow channels, Uzboi, Ladon, and Morava Valles, integrated these formerly enclosed basins by overflow and incision around the Noachian/Hesperian transition, although some flooding may have occurred earlier. The area includes excellent examples of Late Noachian to Hesperian valley networks, dissected crater rims, alluvial fans, deltas, and light-toned layered deposits, particularly in Holden and Eberswalde craters. Structural forms include Tharsis-radial grabens, Hesperian wrinkle ridges, floor-fractured impact craters, and severely disrupted chaotic terrains. These well-preserved landforms and sedimentary deposits represent multiple erosional epochs and discrete flooding events, which provide significant insight into the geomorphic processes and climate change on early Mars.

  1. Model of Mars-Bound MarCO CubeSat

    NASA Image and Video Library

    2015-06-12

    Engineers for NASA's MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. MarCO is the first interplanetary mission using CubeSat technologies for small spacecraft. The briefcase-size MarCO twins will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration mission to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission

  2. Mars-NEXT - A future major step in the European exploration of Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, A.

    2009-04-01

    The Mars-NEXT concept represents a new mission to Mars within the Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2018 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic

  3. Mars One; creating a human settlement on Mars

    NASA Astrophysics Data System (ADS)

    Wielders, A.; Lansdorp, B.; Flinkenflögel, S.; Versteeg, B.; Kraft, N.; Vaandrager, E.; Wagensveld, M.; Dogra, A.; Casagrande, B.; Aziz, N.

    2013-09-01

    Mars One will take humanity to Mars in 2023, to establish a permanent settlement from which human kind will prosper, learn, and grow. Before the first crew lands, Mars One will have established a habitable, sustainable outpost designed to receive new astronauts every two years. To accomplish this, Mars One has developed a precise, realistic plan based entirely upon proven technologies. It is both economically and logistically feasible, and already underway with the aggregation and appointment of hardware suppliers and experts in space exploration. In this paper Mars One discusses the benefits of the mission for planetary science in general and Mars studies in particular. Furthermore potential contributions from the planetary community to the Mars One project will be identified.

  4. ESA's Mars Program: European Plans for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Forget, Francois

    2005-01-01

    A viewgraph presentation on the European Space Agency Mars Exploration Program is shown. The topics include: 1) History:Mars Exploration in Europe; 2) A few preliminary results from Mars Express; 3) A new instrument:Radar MARSIS; and 4) European Mars Exploration in the future?

  5. Planetary Protection for Polar Mars Missions

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.

    2003-01-01

    The picture of Mars that is emerging from the Mars Global Surveyor and Odyssey results contrasts markedly from that portrayed shortly after the Viking missions ended. Particularly intriguing is the abundance of water ice seen both in the polar caps themselves, and in lower latitudes outside of the polar regions. Along with the new data comes a heightened consideration of the potential for biological contamination that may be carried by future missions, and its possible effects. Particularly challenging are scenarios where missions carrying perennial heat sources of high capacity and longevity (e.g., Radioisotope Thermoelectric Generators) could, by non-nominal landings or other mission operations be introduced to close contact with water ice on Mars - potentially forming Earthlike environments that could accommodate the growth of contaminant organisms.

  6. Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS)

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Häusler, B.; Tyler, G. L.; Andert, T.; Asmar, S. W.; Bird, M. K.; Dehant, V.; Hinson, D. P.; Rosenblatt, P.; Simpson, R. A.; Tellmann, S.; Withers, P.; Beuthe, M.; Efimov, A. I.; Hahn, M.; Kahan, D.; Le Maistre, S.; Oschlisniok, J.; Peter, K.; Remus, S.

    2016-08-01

    The Mars Express spacecraft is operating in Mars orbit since early 2004. The Mars Express Radio Science Experiment (MaRS) employs the spacecraft and ground station radio systems (i) to conduct radio occultations of the atmosphere and ionosphere to obtain vertical profiles of temperature, pressure, neutral number densities and electron density, (ii) to conduct bistatic radar experiments to obtain information on the dielectric and scattering properties of the surface, (iii) to investigate the structure and variation of the crust and lithosphere in selected target areas, (iv) to determine the mass, bulk and internal structure of the moon Phobos, and (v) to track the MEX radio signals during superior solar conjunction to study the morphology of coronal mass ejections (CMEs). Here we report observations, results and discoveries made in the Mars environment between 2004 and 2014 over almost an entire solar cycle.

  7. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  8. Identifying Surface Changes on HRSC Images of the Mars South Polar Residual CAP (sprc)

    NASA Astrophysics Data System (ADS)

    Putri, Alfiah Rizky Diana; Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2016-06-01

    The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS), Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), and Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC) on board of the European Space Agency (ESA) Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004), including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007). The South Polar Residual Cap (SPRC) does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004), spider-like channels (Piqueux et al., 2003) and so-called Swiss Cheese Terrain (Titus et al., 2004). Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015). HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain

  9. Evidence for an Ancient Periglacial Climate in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Fairén, A. G.; Oehler, D. Z.; Mangold, N.; Hallet, B.; Le Deit, L.; Williams, A.; Sletten, R. S.; Martínez-Frías, J.

    2016-12-01

    Decameter-scale polygons occur extensively in the lower Peace Vallis Fan of Gale crater, in the Bedded Fractured (BF) Unit, north of Yellowknife Bay (YKB) that was examined and drilled by the Curiosity rover. To gain insight into the origin of these polygons, we studied image data from the Context (CTX) and High Resolution Imaging Science Experiment (HiRISE) cameras on Mars Reconnaissance Orbiter and compared results to the geology of the fan. The polygons are 4 to 30 m across, square to rectangular, and defined by 0.5 to 4 m-wide linear troughs that probably reflect cm-wide, quasi-vertical fractures below the surface. Polygon networks are typically orthogonal systems, with occasional circularly organized patterns, hundreds of meters across. We evaluated multiple hypotheses for the origin of the polygons and concluded that thermal-contraction fracturing during cooling of ice-rich permafrost is most consistent with the sedimentary nature of the BF Unit, the morphology/geometry of the polygons, their restriction to the coarse-grained Gillespie Lake Member, and geologic context. Most of these polygons are confined to the Hesperian BF Unit and appear to be ancient, though individual polygon fractures may have been reactivated in more recent periods, perhaps due to stresses developed with exhumation or as the planet grew colder and drier. Some of the circular networks resemble ice-wedge polygons in thermokarst depressions and collapsed pingos, as seen in periglacial environments of the Arctic. An analog to collapsed pingos could be supported by modeling work of Andrews-Hanna et al. (2012, LPSC; 2012, 3rd Conf. Early Mars) suggesting that Gale was uniquely positioned for significant influx of ground water early its history. Also, results from Curiosity demonstrating limited chemical weathering and a past freshwater lake in YKB (Grotzinger et al., 2014, Science 343) would be consistent with an early periglacial setting. Our conclusions support an ancient, cold and wet

  10. Mars Odyssey Seen by Mars Global Surveyor

    NASA Image and Video Library

    2005-05-19

    This view is an enlargement of an image of NASA Mars Odyssey spacecraft taken by the Mars Orbiter Camera aboard NASA Mars Global Surveyor while the two spacecraft were about 90 kilometers 56 miles apart.

  11. The Vertical Dust Profile Over Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.

    2017-12-01

    We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.

  12. Mars Underground News.

    NASA Astrophysics Data System (ADS)

    Edgett, K.

    Contents: Next entry to Mars (Mars Pathfinder and the microrover Sojourner). Hello, Mars, we're back! Mars Global Surveyor update. The Mars program - 2001 and beyond. Schedule of missions to Mars (as of June 11, 1997). Mars on the Web.

  13. Evaluating Mars Science Laboratory Landing Sites with the Mars Global Reference Atmospheric Model (Mars-GRAM 2005)

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Justus, C. G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL) [1]. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) Thermal Emission Spectrometer (TES) mapping years 1 and 2, with Mars-GRAM data coming from NASA Ames Mars General Circulation Model (MGCM) results driven by observed TES dust optical depth or (2) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated [2] against Radio Science data, and both nadir and limb data from TES [3]. There are several new features included in Mars-GRAM 2005. The first is the option to use input data sets from MGCM model runs that were designed to closely simulate conditions observed during the first two years of TES observations at Mars. The TES Year 1 option includes values from April 1999 through January 2001. The TES Year 2 option includes values from February 2001 through December 2002. The second new feature is the option to read and use any auxiliary profile of temperature and density versus altitude. In exercising the auxiliary profile Mars-GRAM option, values from the auxiliary profile replace data from the original MGCM databases. Some examples of auxiliary profiles include data from TES nadir or limb observations and Mars mesoscale model output at a particular

  14. First THEMIS Image of Mars

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This thermal infrared image was acquired by Mars Odyssey's thermal emission imaging system on October 30, 2001, as the spacecraft orbited Mars on its ninth revolution around the planet. The image was taken as part of the calibration and testing process of the camera system.

    This image shows the temperature of Mars in one of the 10 thermal infrared filters. The spacecraft was approximately 22,000 kilometers (about 13,600 miles) above the planet looking down toward the south pole of Mars when this image was acquired.

    It is late spring in the martian southern hemisphere. The extremely cold, circular feature shown in blue is the martian south polar carbon dioxide ice cap at a temperature of about -120 oC (-184 o F). The cap is more than 900 kilometers (540 miles) in diameter at this time and will continue to shrink as summer progresses. Clouds of cooler air blowing off the cap can be seen in orange extending across the image to the left of the cap. The cold region in the lower right portion of the image shows the nighttime temperatures of Mars, demonstrating the 'night-vision' capability of the camera system to observe Mars even when the surface is in darkness. The warmest regions occur near local noontime. The ring of mountains surrounding the 900-kilometer (540-mile) diameter impact basin Argyre can be seen in the early afternoon in the upper portion of the image. The thin blue crescent along the upper limb of the planet is the martian atmosphere.

    This image covers a length of over 6,500 kilometers (3,900 miles) spanning the planet from limb to limb, with a resolution of approximately 5.5 kilometers per pixel (3.4 miles per pixel), or picture elements, at the point directly beneath the spacecraft. The Odyssey's infrared camera is planned to have a resolution of 100 meters per pixel (about 300 feet per pixel) from its mapping orbit.

    JPL manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging

  15. Mars Global Geologic Mapping: About Half Way Done

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2009-01-01

    We are in the third year of a five-year effort to map the geology of Mars using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey imaging and altimetry datasets. Previously, we have reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. For example, we have seen how the multiple types and huge quantity of image data as well as more accurate and detailed altimetry data now available allow for broader and deeper geologic perspectives, based largely on improved landform perception, characterization, and analysis. Here, we describe mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map.

  16. Apparent thermal inertia and the surface heterogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.

  17. Future projections of the climate and surface mass balance of Svalbard with the regional climate model MAR

    NASA Astrophysics Data System (ADS)

    Lang, C.; Fettweis, X.; Erpicum, M.

    2015-01-01

    We have performed future projections of the climate and surface mass balance (SMB) of Svalbard with the MAR regional climate model forced by the MIROC5 global model, following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of the melt around 2050, with a larger melt increase in the south compared to the north of the archipelago and the ice caps. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a strong winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. At the end of the century (2070-2099 mean), SMB is projected to be negative over the entire Svalbard and, by 2085, all glaciated regions of Svalbard are predicted to undergo net ablation, meaning that, under the RCP8.5 scenario, all the glaciers and ice caps are predicted to start their irreversible retreat before the end of the 21st century.

  18. Three Mars Years of Surface Albedo Changes Observed by the Mars Reconnaissance Orbiter MARCI Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Wellington, D. F.; Anderson, R. B.; Wolff, M. J.; Supulver, K. D.; Cantor, B. A.; Malin, M. C.

    2012-12-01

    The NASA Mars Reconnaissance Orbiter (MRO) spacecraft has been in its prime mapping orbit of the Red Planet since November 2006, a little over three Mars years. MRO's Mars Color Imager (MARCI) investigation has been acquiring wide-angle, approximately 1 km/pixel resolution multispectral images (from the UV to the short-wave near-IR) throughout the mission from the spacecraft's 300 km circular polar orbit. As of fall 2012, MARCI has acquired more than 25,000 image sequences, with its 180 degree field of view covering local solar times of approximately 15:00 +/- 2 hours at the equator. These images can be merged and map projected to provide near-global imaging coverage of Mars for almost every sol of the mission. These maps have been used to characterize and monitor changes in seasonal and interannual dust and water ice cloud opacity, growth and decay of local- to global-scale dust storms, and polar cap growth and recession. The data are also well-suited for studying small- to large-scale changes in surface albedo markings, important for understanding the nature of aeolian transport of dust and sand in the current Martian environment, as well as for modeling the radiative influence of the darker (warmer) or brighter (cooler) surface on local-scale atmospheric circulation and storm systems. We are using calibrated, map-projected, coregistered subsets of MARCI images to characterize and investigate surface albedo changes in a number of specific regions of interest, based on past Viking Orbiter, Hubble Space Telescope, and Mars Global Surveyor images of changing large-scale surface albedo patterns over recent decades, as well as recent surface missions that have characterized small-scale changes in surface albedo. Specific areas of study of large-scale changes include the dark areas Syrtis Major, Acidalia, Cimmeria, Sirenum, and Solis Lacus, and our initial focus areas for small-scale variations include regions in and around the landing sites of the Mars Exploration

  19. Mars Color Imager (MARCI) on the Mars Climate Orbiter

    USGS Publications Warehouse

    Malin, M.C.; Bell, J.F.; Calvin, W.; Clancy, R.T.; Haberle, R.M.; James, P.B.; Lee, S.W.; Thomas, P.C.; Caplinger, M.A.

    2001-01-01

    The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (???6 x 6 x 12 cm, including baffle; <500 g), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The Wide Angle (WA) camera will have the capability to map Mars in five visible and two ultraviolet spectral bands at a resolution of better than 8 km/pixel under the worst case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at 1/3 scale-height resolution. The Medium Angle (MA) camera is designed to study selected areas of Mars at regional scale. From 400 km altitude its 6?? FOV, which covers ???40 km at 40 m/pixel, will permit all locations on the planet except the poles to be accessible for image acquisitions every two mapping cycles (roughly 52 sols). Eight spectral channels between 425 and 1000 nm provide the ability to discriminate both atmospheric and surface features on the basis of composition. The primary science objectives of MARCI are to (1) observe Martian atmospheric processes at synoptic scales and mesoscales, (2) study details of the interaction of the atmosphere with the surface at a variety of scales in both space and time, and (3) examine surface features characteristic of the evolution of the Martian climate over time. MARCI will directly address two of the three high-level goals of the Mars Surveyor Program: Climate and Resources. Life, the third goal, will be addressed indirectly through the environmental factors associated with the other two goals. Copyright 2001 by the American

  20. The moment of inertia and isostasy of Mars

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.

    1977-01-01

    The systematic and large deviation of the gravitational equipotential surface (EPS) of Mars from a spheroid of revolution suggests a description of Mars in terms of a spheroid nearly in isostatic equilibrium with an extra mass in the Tharsis region. The displacement from Mars and the shape of the spheroid are calculated by using this description and a Mars gravity model. The EPS is represented as a contour map of its height above the spheroid. This representation provides the first clear demonstration that the Hellas depression coincides with a depression in the EPS. The disequilibrium contribution of Tharsis to the coefficient J2 of the second-degree harmonics of gravitational potential of Mars is estimated to be (126 + or - 5) times 10 to the minus 6th. The optical flattening and dynamic flattening calculated on this basis are in substantially better agreement than are those calculated in the usual way.

  1. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  2. Mars-Gram Validation with Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many b4ars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Arizona Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science (RS) and Thermal Emission Spectrometer (TES) data. RS data from 2480 profiles were used, covering latitudes 75deg S to 72deg N, surface to approx. 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160deg and 265-310deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, measured RS density varied by about a factor of 2.5 over the range of latitudes and Ls values observed. Evaluated at matching positions and times, average RS/Mars-GRAM density ratios were generally lf0.05, except at heights above approx. 25 km and latitudes above approx.50deg N. Average standard deviation of RS/Mars-GRAM density ratio was 6%. TES data were used covering surface to approx. 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of Mars global dust storm). Depending on season, TES data covered latitudes 85deg S to 85deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (> 45deg N), or at most altitudes in the southern hemisphere at Ls approx. 90 and 180deg). Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approx. 6

  3. Topographic map of the Coronae Montes region of Mars - MTM 500k -35/087E OMKTT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszca, Donna M.

    2005-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetrically using Viking Orbiter stereo image pairs. The contour interval is 250 m. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  4. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  5. Thermal inertia and surface heterogeneity on Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  6. Physical sense of massive development of low density minerals on the highly standing southern hemisphere of Mars

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    of chlorides - they can indicate at widespread NaCl depositions (Mars Odyssey orbiter, M. Osterloo team of the Univ. of Hawaii, 2008). Zeolites replacing feldspathoids were predicted [4] and were reported among other not dense hydrated minerals [5] So, massive development of low density materials on the highlands serves as an effective tool for diminishing the angular momentum of the highly standing continental segment. References: [1] Kochemasov G. G. (2004) Mars and Earth: two dichotomies - one cause // In Workshop on "Hemispheres apart: the origin and modification of the martian crustal dichotomy", LPI Contribution # 1203, Lunar and Planetary Institute, Houston, p. 37. [2] Kochemasov G.G. (1995) Possibility of highly contrasting rock types at martian highland/lowland contact // Golombek M.P., Edgett K.S., Rice J.W.Jr. (eds) Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Field Trips to the Channeled Scabland, Washington. LPI Tech. Rpt. 95-01. Pt. 1. Lunar and Planetary Inst., Houston, 1995. (63 p.), P. 18-19; [3] Kochemasov G.G. (2001) The composition of the martian highlands as a factor of their effective uplifting, destruction and production of voluminous debris // In: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs, LPI contrib. #1101, Lunar & Planetary Inst., Houston, 35-36. [4] Kochemasov G.G.(2006)(abs.), posted Feb. 2006 in a Workshop on Martian Water: Surface and Subsurface, NASA Ames Research Center, Moffett Field, Calif., Febr. 23-24, 2006 at http://es.ucsc.edu/~fnimmo/website/mars2006.html. mars2006.html>. [5] Ehlmann B.L., Mustard J.F., Murchie S.L. (2009) Extensive aqueous alternation of Mars' earliest crust: recent results from NASA's CRISM hyperspectral imager & implications for planetary habitability // Vernadsky-Brown Microsymposium 50, Mosow, Russia, Oct. 12-14, 2009, abstract m50_11.

  7. Science strategy for human exploration of Mars.

    PubMed

    Stoker, C R; McKay, C P; Haberle, R M; Andersen, D T

    1992-01-01

    The scientific objectives of Mars exploration can be framed within the overarching theme of exploring Mars as another home for life, both for evidence of past or present life on Mars, and as a potential future home for human life. The two major areas of research within this theme are: 1) determining the relationship between planetary evolution, climate change, and life, and 2) determining the habitability of Mars. Within this framework, this paper discusses the exploration objectives for exobiology, climatology and atmospheric science, geology, and martian resource assessment. Human exploration will proceed in four major phases: 1) Precursor missions which will obtain environmental knowledge necessary for human exploration, 2) Emplacement phase which includes the first few human landings where crews will explore the local area of the landing site; 3) Consolidation phase missions where a permanent base will be constructed and crews will be capable of detailed exploration over regional scales; 4) Utilization phase, in which a continuously occupied permanent Mars base exists and humans will be capable of detailed global exploration of the martian surface. The phases of exploration differ primarily in the range and capabilities of human mobility. In the emplacement phase, an unpressurized rover, similar to the Apollo lunar rover, will be used and will have a range of a few tens of kilometers. In the Consolidation phase, mobility will be via a pressurized all-terrain vehicle capable of expeditions from the base site of several weeks duration. In the Utilization phase, humans will be capable of several months long expeditions to any point on the surface of Mars using a suborbital rocket equipped with habitat, lab, and return vehicle. Because of human mobility limitations, it is important to extend the range and duration of exploration in all phases by using teleoperated rover vehicles. Site selection for human missions to Mars must consider the multi-decade time frame of

  8. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-05

    Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these

  9. Active and Recent Volcanism and Hydrogeothermal Activity on Mars

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.; Cantor, B. A.; Harrison, T. N.; Kennedy, M. R.; Lipkaman, L. J.; Malin, M. C.; Posiolova, L. V.; Shean, D. E.

    2010-10-01

    There are no active volcanoes or geysers on Mars today, nor in the very recent past. Since 1997, we have sought evidence from targeted narrow angle camera images and daily, global wide angle images for active or very recent (decades to < 10 Ma) volcanism or hydrogeothermal events on Mars. Despite > 11 years of daily global imaging and coverage of > 60% of Mars at ≤ 6 m/pixel (with the remaining < 40% largely outside of volcanic regions), we have found no such evidence, although one lava field in Aeolis (5°N, 220°W) stands out as possibly the site of the most recent volcanism. Authors of impact crater size-frequency studies suggest some volcanic landforms on Mars are as young as tens to hundreds of Ma. This interpreted youth has implications for understanding the internal geophysical state of Mars and has encouraged those seeking sources for trace gases (methane) in the atmosphere and those seeking "warm havens for life” (Jakosky 1996, New Scientist 150, 38-42). We targeted thousands of Mars Global Surveyor (MGS) MOC and Mars Reconnaissance Orbiter (MRO) CTX (and HiRISE) images to examine volcanic regions; we also studied every MGS MOC and MRO MARCI wide angle image. For evidence of active volcanism, we sought eruption plumes, new vents, new tephra deposits, and new volcanogenic flows not observed in earlier images. For recent volcanism, we sought volcanogenic flows with zero or few superposed impact craters and minimal regolith development or superposed eolian sediment. Targets included all volcanic landforms identified in research papers as "recent” as well as areas speculated to have exhibited eruptive plumes. An independent search for endogenic heat sources, a key Mars Odyssey THEMIS objective, has also not produced a positive result (Christensen et al. 2005, P24A-01, Eos, Trans. Am. Geophys. Union 86/52).

  10. Candidate Mars Surveyor Landing Sites Near Apollinaris Patera

    NASA Astrophysics Data System (ADS)

    Gulick, Virginia C.

    1999-06-01

    Regions near Apollinaris Patera are proposed for consideration as Mars Surveyor landing sites. Gulick (1998) proposed this region at the First Mars Surveyor Landing Site workshop; Bulmer and Gregg (1998) provided additional support. Apollinaris Patera is situated on the highlands/lowlands boundary at 8.5S, 186W. The volcano itself has been mapped as Hesperian in age. The regions surrounding Apollinaris show evidence for volcanism, volcano-ice interactions, and erosion by water. Numerous valleys modified by fluvial processes dissect a large fan structure emanating from the southern flank of the volcano. Sapping valleys have formed along the southern terminus of the fan structure. Regions near Apollinaris Patera provide a unique opportunity to sample outcrop lithologies ranging from highland Noachian basement rocks, to Hesperian aged lava flows, channel and flood plain materials, to Amazonian volcanic, ash and channel deposits.

  11. Candidate Mars Surveyor Landing Sites Near Apollinaris Patera

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    1999-01-01

    Regions near Apollinaris Patera are proposed for consideration as Mars Surveyor landing sites. Gulick (1998) proposed this region at the First Mars Surveyor Landing Site workshop; Bulmer and Gregg (1998) provided additional support. Apollinaris Patera is situated on the highlands/lowlands boundary at 8.5S, 186W. The volcano itself has been mapped as Hesperian in age. The regions surrounding Apollinaris show evidence for volcanism, volcano-ice interactions, and erosion by water. Numerous valleys modified by fluvial processes dissect a large fan structure emanating from the southern flank of the volcano. Sapping valleys have formed along the southern terminus of the fan structure. Regions near Apollinaris Patera provide a unique opportunity to sample outcrop lithologies ranging from highland Noachian basement rocks, to Hesperian aged lava flows, channel and flood plain materials, to Amazonian volcanic, ash and channel deposits.

  12. Environmental Assurance Program for the Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Man, Kin F.; Natour, Maher C.; Hoffman, Alan R.

    2008-01-01

    The Phoenix Mars mission involves delivering a stationary science lander on to the surface of Mars in the polar region within the latitude band 65 deg N to 72 deg N. Its primary objective is to perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, subsurface, and atmosphere. The Phoenix spacecraft was launched on August 4, 2007 and will arrive at Mars in May 2008. The lander includes a suite of seven (7) science instruments. This mission is baselined for up to 90 sols (Martian days) of digging, sampling, and analysis. Operating at the Mars polar region creates a challenging environment for the Phoenix landed subsystems and instruments with Mars surface temperature extremes between -120 deg C to 25 deg C and diurnal thermal cycling in excess of 145 deg C. Some engineering and science hardware inside the lander were qualification tested up to 80 deg C to account for self heating. Furthermore, many of the hardware for this mission were inherited from earlier missions: the lander from the Mars Surveyor Program 2001 (MSP'01) and instruments from the MSP'01 and the Mars Polar Lander. Ensuring all the hardware was properly qualified and flight acceptance tested to meet the environments for this mission required defining and implementing an environmental assurance program that included a detailed heritage review coupled with tailored flight acceptance testing. A heritage review process with defined acceptance success criteria was developed and is presented in this paper together with the lessons learned in its implementation. This paper also provides a detailed description of the environmental assurance program of the Phoenix Mars mission. This program includes assembly/subsystem and system level testing in the areas of dynamics, thermal, and electromagnetic compatibility, as well as venting/pressure, dust, radiation, and meteoroid analyses to meet the challenging environment of this mission.

  13. Where on Mars Does Carbon Dioxide Frost Form Often?

    NASA Image and Video Library

    2016-07-08

    This map shows the frequency of carbon dioxide frost's presence at sunrise on Mars, as a percentage of days year-round. Carbon dioxide ice more often covers the ground at night in some mid-latitude regions than in polar regions, where it is generally absent for much of summer and fall. Color coding is based on data from the Mars Climate Sounder instrument on NASA's Mars Reconnaissance Orbiter. A color-key bar below the map shows how colors correspond to frequencies. Yellow indicates high frequencies, identifying areas where carbon dioxide ice is present on the ground at night during most of the year. Blue identifies areas where it is rarely present; red is intermediate. Areas without color coding are regions where carbon dioxide frost is not detected at any time of year. The areas with highest frequency of overnight carbon dioxide frost correspond to regions with surfaces of loose dust, which do not retain heat well, compared to rockier areas. Those areas also have some of the highest mid-afternoon temperatures on the planet. The dust surface heats up and cools off rapidly. http://photojournal.jpl.nasa.gov/catalog/PIA20758

  14. First Data from Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Mars Climate Sounder, an instrument on NASA's Mars Reconnaissance Orbiter designed to monitor daily changes in the global atmosphere of Mars, made its first observations of Mars on March 24, 2006.

    These tests were conducted to demonstrate that the instrument could, if needed, support the mission's aerobraking maneuvers (dips into the atmosphere to change the shape of the orbit) by providing hemisphere-scale coverage of atmospheric activity. The instrument scanned nine arrays of detectors four times across the entire disc of the planet, including the north pole, from an altitude of about 45,000 kilometers (28,000 miles). This is about 150 times farther away than the spacecraft will be during its main science phase. At this great range, the planet appears only 40 pixels wide, as suggested by the pixilation of the images. However, this is sufficient to identify regional dust storms in the lower atmosphere. Regional dust storms could perturb atmospheric densities at the higher altitudes (about 100 kilometers or 60 miles) where the orbiter will conduct more than 500 aerobraking passes during the next six months. Such storms are rare in the current season on Mars, early northern spring, and no large storms are present as the orbiter prepares for the start of aerobraking.

    Each of the Mars Climate Sounder's arrays looks in a different wavelength band, and three of the resulting images are shown here. The view on the left is from data collected in a broad spectral band (wavelengths of 0.3 microns to 3 microns) for reflected sunlight. The view in the center is from data collected in the 12-micron thermal-infrared band. This band was chosen to sense infrared radiation from the surface when the atmosphere is clear and from dust clouds when it is not. The view on the right is from data collected at 15 microns, a longer-wavelength band still in the thermal-infrared part of the spectrum. At this wavelength, carbon dioxide, the main ingredient in Mars

  15. The Exploration of Mars and the Improvement of Living Conditions in Western Asian Countries

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Space is the new frontier. The exploration of a new world, Mars, has been giving people on Earth valuable comparative information about climatic and geological processes occurring here on our home planet. With the Viking 1 and 2, Mars Global Surveyor, Mars Odyssey, Mars Reconnaissance Orbiter, Sojourner, Spirit, Opportunity, Curiosity, etc., spacecrafts, which explored the Red Planet we obtained a great deal information about the extremely arid soil and dry air of Mars in the present, and its watery condition in the distant past. Now there is a decade-long, program of robotic exploration of the martian atmosphere and soil - the 'Mars Surveyor Program', which is a series of small, cheap and fast spacecrafts, carrying very few scientific instruments, to be launched about every two years. Here in this paper, under the principles in the United Nations' Agenda 21, we comment on this new phase of Mars exploration under development, which began in 1996, and its benefits to living conditions in developing countries with desert regions. A peaceful regular research of the arid Mars, will help us to understand much better the dynamics of formation of dry regions here on Earth. We suggest that, if the developing countries participate in that program, they will achieve the scientific understanding to create a practical technology, with which they will acquire ways to future transform their arid areas into a more humid places, and to slow the process of desertification of other regions. This, using their own natural resources and own scientific personnel. That would strongly benefit the living conditions in Western Asian countries, which have many desert regions.

  16. High-resolution reflectance spectra of Mars in the 2.3-μm region: evidence for the mineral scapolite

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Singer, Robert B.; Pollack, James B.

    1990-01-01

    patially resolved reflectance spectra of Mars in the 2.2- to 2.4-μm spectral region were obtained in August 1988 using the NASA 3-m Infrared Telescope Facility. The spectra show weak absorption features due to Martian atmospheric carbon monoxide and a surface mineral. Both CO and the mineral absorptions are composed of overlapping narrow features, but in many locations, such as Hellas, Chryse, Eden, and Moab, the mineral absorptions are quite strong, at least 3 times stronger than at the most absorbing wavelengths of CO near 2.33 μm. Therefore CO complicates the analysis of the surface mineral but does not always overwhelm its signature. Model removal of the Martian atmospheric CO has been performed, and the remaining absorption bands are identified as scapolite. Relatively strong absorptions that match bands in the spectrum of scapolite and have little or no CO absorption interference are seen near 2.41, 2.39, and 2.29 μm. Absorption also occurs at the scapolite bands at 2.36 and 2.33 μm, but the analysis is complicated by uncertainty in the atmospheric CO removal at these wavelengths. Weaker scapolite bands are seen at 2.44 and 2.23 μm where there is virtually no atmospheric interference. The scapolite bands observed on Mars are due to HCO3− and HSO4− ions in the scapolite structure. The bicarbonate and bisulfate contents appear to vary with location: the scapolite in Hellas is more bisulfate-rich relative to that in the Chryse/Moab/Eden area. Other locations contain little (Arabia, Syrtis Major, Hellespontica, and Isidis) or no scapolite (e.g., Margaritifer, Ausonia, and Erythraeum). The calculated abundances are unconstrained because the amounts of HCO3− and HSO4− in the Martian scapolites as well as their grain sizes are not known. If the scapolites contain about 3 wt % of each, near the maximum possible, the scapolite abundances probably range from about 5 wt % scapolite at Eden and Hellas; 3–5% at Chryse, Moab, and Oxia Palus; 2–3% at

  17. Solar Storm Triggers Whole-Planet Aurora at Mars

    NASA Image and Video Library

    2017-09-29

    These images show the sudden appearance of a bright aurora on Mars during a solar storm in September 2017. The purple-white color scheme shows the intensity of ultraviolet light seen on Mars' night side before (left) and during (right) the event. A simulated image of Mars for the same time and orientation has been added, with the dayside crescent visible on the right. The auroral emission appears brightest at the edges of the planet where the line of sight passes along the length of the glowing atmosphere layer. The data are from observations by the Imaging Ultraviolet Spectrograph instrument (IUVS) on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. Note that, unlike auroras on Earth, the Martian aurora is not concentrated at the planet's polar regions. This is because Mars has no strong magnetic field like Earth's to concentrate the aurora near the poles. https://photojournal.jpl.nasa.gov/catalog/PIA21855

  18. Computer-Design Drawing for NASA 2020 Mars Rover

    NASA Image and Video Library

    2016-07-15

    NASA's 2020 Mars rover mission will go to a region of Mars thought to have offered favorable conditions long ago for microbial life, and the rover will search for signs of past life there. It will also collect and cache samples for potential return to Earth, for many types of laboratory analysis. As a pioneering step toward how humans on Mars will use the Red Planet's natural resources, the rover will extract oxygen from the Martian atmosphere. This 2016 image comes from computer-assisted-design work on the 2020 rover. The design leverages many successful features of NASA's Curiosity rover, which landed on Mars in 2012, but it adds new science instruments and a sampling system to carry out the new goals for the mission. http://photojournal.jpl.nasa.gov/catalog/PIA20759

  19. Outcrops In Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 October 2004 Aram Chaos is the name of an approximately 275 km (171 mi) diameter impact crater near Ares Vallis, roughly half way between the Mars Exploration Rover, Opportunity, site in Meridiani Planum and the easternmost troughs of the Valles Marineris. The Aram Chaos crater is partially filled with a thick accumulation of layered rock. Erosion has exposed light- and dark-toned rock materials in the basin. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small area exhibiting some of the rock outcrops in Aram Chaos. The light-toned rocks may be sedimentary in origin. This image is located near 4.0oN, 20.6oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  20. Revised coordinates of the Mars Orbiter Laser Altimeter (MOLA) footprints

    NASA Astrophysics Data System (ADS)

    Annibali, S.; Stark, A.; Gwinner, K.; Hussmann, H.; Oberst, J.

    2017-09-01

    We revised the Mars Orbiter Laser Altimeter (MOLA) footprint locations (i.e. areocentric body-fixed latitude and longitude), using updated trajectory models for the Mars Global Surveyor and updated rotation parameters of Mars, including precession, nutation and length-of-day variation. We assess the impact of these updates on the gridded MOLA maps. A first comparison reveals that even slight corrections to the rotational state of Mars can lead to height differences up to 100 m (in particular in regions with high slopes, where large interpolation effects are expected). Ultimately, we aim at independent measurements of the rotation parameters of Mars. We co-register MOLA profiles to digital terrain models from stereo images (stereo DTMs) and measure offsets of the two data sets.

  1. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  2. Constraints on Environmental Conditions on Mars during Periods of Alluvial Fan Formation: Results from Landform Evolution Modeling

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.

    2015-12-01

    As depositional systems forming within enclosed crater basins, the Late Noachian and Hesperian -aged [1] alluvial fans on Mars (including the Peace Vallis fan in Gale crater) may be representative of the last vestiges of widespread fluvial activity on the planet's surface, an era during which the climate transitioned from a wetter early Mars to the cold and dry planet we observe today. We have constructed a landform evolution model that combines sediment transport with channel avulsion to study the evolution of a fan-forming channel network over timescales of decades to hundreds of thousands of years. We aim to address two related questions: (1) what were the characteristics of water discharge (flow magnitude and duration); and (2) what are the associated implications for the responsible climatic environment (e.g. amount and frequency of precipitation sourcing the fans). The model uses a cellular network with a grid spacing set equal to the channel width. Two end-members of sediment are transported through the channel network: gravel bedload and fine grained material that is deposited overbank as a function of distance and elevation difference from an active channel. Overbank deposition creates channel levees, which must be overtopped for the channel to undergo an avulsion. By recording the relative amounts of bedload and overbank deposition, the 3-D stratigraphy is recorded as the fan is constructed. Using measures such as channel width, relative proportions of channel versus overbank deposited sediment, and frequency of channel branching, output is statistically compared with digital elevation models that we been produced from high-resolution CTX and HiRISE stereo pairs. Our modeling suggests that the fans formed from many flow events over many thousands of years, in agreement with estimations based on geomorphological observations by [2]. We are continuing to refine the model to test for varying patterns of precipitation, duricrusts, and limits on sediment

  3. Teleoperation from Mars Orbit: A proposal for Human Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    For a human expedition to Mars, a case can be made that the best strategy for initial exploration is not to actually land the humans on Mars, but to put the humans into Mars orbit and operate on the surface by the technology of teleoperation. This will provide the results of human exploration, but at greatly reduced risk and cost. Teleoperation of Mars surface robots from a Mars-orbital habitat will operation near real time operation with minimum time delay, giving a virtual presence on the surface. By use of teleoperation, it is possible to vastly simplify the surface exploration mission. We now have no need to develop a human-rated Mars Lander and Mars Ascent Vehicle, and we can send geologists & biologists on the mission; not VTOL pilots. It is a cheaper, simpler, and safer way to explore, and hence it will be a faster way to explore. It has the excitement of being there, at a fraction of the price. Tele-exploration from Mars orbit also allows human (virtual) presence at a wide variety of locations. With an orbital base controlling surface telerobotics, human explorers are not stuck with one base location, but can explore all over Mars. They can explore the polar caps and also near-equatorial canyon regions, from the same orbiting base. This frees the mission from landing site constraints. With no need to select a "grab bag" site that contains a large number of geologically diverse features at or near a single location; it is now possible go to all the best sites-- paleolake sites, river beds, volcanic calderas, lava tube sites, layered terrain, canyons, possible shoreline features, the North and South poles. A near-polar inclination 24-hr 39-minute period Mars orbit, for example, will put the orbital station in line-of-sight of a given region for about 8 hours per day-- one teleoperation shift. Since present day life could exist on Mars, planetary protection is also needed to preserve the (possible) fragile Mars biosphere from competition from ferocious Earth

  4. The Meteorological Experiment on the Mars Surveyor '98 Polar Lander

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1999-01-01

    When it lands on Mars on December 3, 1999, the Mars Surveyor '98 Mars Polar Lander (MPL) will provide the first opportunity to make in-situ measurements of the near-surface weather climate, and volatile inventory in the Martian south polar region. To make the most of this opportunity, the MPL's Mars Volatiles and Climate Surveyor (MVACS) payload includes the most comprehensive complement of meteorological instruments ever sent to Mars. Like the Viking and the Mars Pathfinder Lander, the MVACS Meteorological (Met) package includes sensors for measuring atmospheric pressures, temperatures, and wind velocities. This payload also includes a 2-channel tunable diode laser spectrometer for in-situ measurements of the atmospheric water vapor abundance near the ground, and improved instruments for measuring the relative abundances of oxygen isotopes (in water vapor and CO2) and a surface temperature probe for measuring the surface and sub-surface temperatures. This presentation will provide a brief overview of the environmental conditions anticipated at the surface in the Martian regions. We will then provide an over-view of the MVACS Met instrument and describe the MET sensors in detail, including their principle of operation, range, resolution, accuracy, sampling strategy, heritage, accommodation on the Lander, and their control and data handling system. Finally, we will describe the operational sequences, resource requirements, and the anticipated data volumes for each of the Met instruments.

  5. Solar Cycle/Seasonal Variations of H, D, H2 and He Distributions and Escape on Mars as Determined by the Mars Thermosphere Global Circulation Model (MTGCM)

    NASA Technical Reports Server (NTRS)

    Bougher, Stephen

    2005-01-01

    The Mars Thermosphere General Circulation Model (MTGCM) was exercised for Ls = 90 (aphelion) solar minimum, and Ls = 270 perihelion) solar maximum conditions. Simulated MTGCM outputs (i.e. helium density distributions) were compared to those previously observed for Earth and Venus. Winter polar night bulges of helium are predicted on Mars, similar to those observed on the nightside of Venus and in the winter polar regions of Earth. A poster on this research was presented at the European Geophysical Society Meeting (EGS) in 2003. This research paves the way for what might be expected in the polar night regions of Mars during upcoming aerobraking and mapping Campaigns. Lastly, Mars thermosphere (approx. 100-130 km) winter polar warming was observed at high Northern latitudes during the perihelion season, but not at high Southern latitudes during the opposite aphelion season. Presumably, the Mars thermospheric circulation is responsible for the dynamically controlled heating needed to warm polar night temperatures above radiative equilibrium values. Again, MTGCM simulations were conducted for Ls = 90 and Ls = 270 conditions; polar temperatures were examined and found to be much warmer at Northern high latitudes (perihelion) than at Southern high latitudes (aphelion), similar to Mars aerobraking datasets. The Mars thermospheric circulation is found to be stronger during perihelion solstice conditions than during aphelion conditions, owing to both stronger seasonal solar and dust heating during Mars perihelion. An invited talk was given at the Spring AGU 2004 on this research. A forthcoming GRL paper was drafted on this same topic, but not submitted before the termination of this 1-year grant.

  6. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., answers a reporter's question at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  7. Mars Exploration Rover (MER) aeroshell

    NASA Image and Video Library

    2003-01-31

    In the Payload Hazardous Servicing Facility, workers prepare the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  8. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas F.; Blake, David F.

    2014-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and

  9. Present-day heat flow model of Mars

    PubMed Central

    Parro, Laura M.; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier

    2017-01-01

    Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m−2, with an average value of 19 mW m−2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7–0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic. PMID:28367996

  10. The Mars Color Imager (MARCI) on the Mars Climate Orbiter

    NASA Astrophysics Data System (ADS)

    Malin, M. C.; Calvin, W.; Clancy, R. T.; Haberle, R. M.; James, P. B.; Lee, S. W.; Thomas, P. C.; Caplinger, M. A.

    2001-08-01

    The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (~6 × 6 × 12 cm, including baffle; <500 g), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 × 1000 pixel, low noise). The Wide Angle (WA) camera will have the capability to map Mars in five visible and two ultraviolet spectral bands at a resolution of better than 8 km/pixel under the worst case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at 13 scale-height resolution. The Medium Angle (MA) camera is designed to study selected areas of Mars at regional scale. From 400 km altitude its 6° FOV, which covers ~40 km at 40 m/pixel, will permit all locations on the planet except the poles to be accessible for image acquisitions every two mapping cycles (roughly 52 sols). Eight spectral channels between 425 and 1000 nm provide the ability to discriminate both atmospheric and surface features on the basis of composition. The primary science objectives of MARCI are to (1) observe Martian atmospheric processes at synoptic scales and mesoscales, (2) study details of the interaction of the atmosphere with the surface at a variety of scales in both space and time, and (3) examine surface features characteristic of the evolution of the Martian climate over time. MARCI will directly address two of the three high-level goals of the Mars Surveyor Program: Climate and Resources. Life, the third goal, will be addressed indirectly through the environmental factors

  11. Wet-based glaciation in Phlegra Montes, Mars.

    NASA Astrophysics Data System (ADS)

    Gallagher, Colman; Balme, Matt

    2016-04-01

    Eskers are sinuous landforms composed of sediments deposited from meltwaters in ice-contact glacial conduits. This presentation describes the first definitive identification of eskers on Mars still physically linked with their parent system (1), a Late Amazonian-age glacier (~150 Ma) in Phlegra Montes. Previously described Amazonian-age glaciers on Mars are generally considered to have been dry based, having moved by creep in the absence of subglacial water required for sliding, but our observations indicate significant sub-glacial meltwater routing. The confinement of the Phlegra Montes glacial system to a regionally extensive graben is evidence that the esker formed due to sub-glacial melting in response to an elevated, but spatially restricted, geothermal heat flux rather than climate-induced warming. Now, however, new observations reveal the presence of many assemblages of glacial abrasion forms and associated channels that could be evidence of more widespread wet-based glaciation in Phlegra Montes, including the collapse of several distinct ice domes. This landform assemblage has not been described in other glaciated, mid-latitude regions of the martian northern hemisphere. Moreover, Phlegra Montes are flanked by lowlands displaying evidence of extensive volcanism, including contact between plains lava and piedmont glacial ice. These observations provide a rationale for investigating non-climatic forcing of glacial melting and associated landscape development on Mars, and can build on insights from Earth into the importance of geothermally-induced destabilisation of glaciers as a key amplifier of climate change. (1) Gallagher, C. and Balme, M. (2015). Eskers in a complete, wet-based glacial system in the Phlegra Montes region, Mars, Earth and Planetary Science Letters, 431, 96-109.

  12. Mars Lower Thermosphere Variability from Odyssey and MRO Aerobraking Measurements

    NASA Astrophysics Data System (ADS)

    Forbes, J. M.; Zhang, X.

    2017-12-01

    During the aerobraking phases of the Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) missions, accelerometer measurements of total mass density at periapsis altitudes near 105 km were made in Mars' polar regions (> 75o latitude) during Northern Hemisphere winter (MO, Ls = 288-297) and Southern Hemisphere winter (MRO, Ls = 69-87). These measurements cover overlapping local times spanning nearly 8 hours. Prior to the local time transition, the MO and MRO accelerometers sample the high-latitude regions at nearly the same latitudes (70-85o) and same local times (1800-1900), and after the transition periapsis precesses relatively quickly (over roughly 20-30 sols) from 80o to 20o latitude in each hemisphere while keeping the local time constant near 0200-0300 LT. These observations offer the unprecedented opportunity to compare and contrast the behaviors of Mars' polar and middle latitude regions under similar geographic, altitude and local time conditions in the two hemispheres (albeit during different years), which is the focus of this paper. Particularly noteworthy are the slow (mostly eastward) migrations of longitudinal features in both MO and MRO data, which suggest modulations of non-migrating tides by planetary waves with periods of order 15-20 days.

  13. Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    López-Valverde, Miguel A.; Gerard, Jean-Claude; González-Galindo, Francisco; Vandaele, Ann-Carine; Thomas, Ian; Korablev, Oleg; Ignatiev, Nikolai; Fedorova, Anna; Montmessin, Franck; Määttänen, Anni; Guilbon, Sabrina; Lefevre, Franck; Patel, Manish R.; Jiménez-Monferrer, Sergio; García-Comas, Maya; Cardesin, Alejandro; Wilson, Colin F.; Clancy, R. T.; Kleinböhl, Armin; McCleese, Daniel J.; Kass, David M.; Schneider, Nick M.; Chaffin, Michael S.; López-Moreno, José Juan; Rodríguez, Julio

    2018-02-01

    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere.

  14. Topographical Context of Phoenix Landing Region

    NASA Image and Video Library

    2007-08-02

    This area was designated Region D in the process of evaluating potential landing sites for NASA Phoenix Mars Lander. The topographical information is from the Mars Orbiter Laser Altimeter on NASA Mars Global Surveyor orbiter.

  15. Colonization Mars-like environment with extreme microalgae

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Li, Xiaoyan; Liu, Yongding; Chen, Lanzhou

    2012-07-01

    We had investigated the colonization of soils in Mars-like environments in Chinese deserts by phototrophs. Some extreme cyanobacteria and algae strains were collected and mass-cultured in desert regions to investigated their ability to artificially form desert crusts. These crusts had the capacity to resist sand storm erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration and settlement, particularly in confined spaces such as greenhouses. In this paper we describe experiments on the formation of artificial desert crusts and we discuss the implications of these approaches for the local amelioration of desert conditions on Mars, which is essential to establish CELSS in habitat. These approaches might also be applicable to the interior of lunar habitats. Finally, more ambitiously, our findings may be a first step in addressing the issues of terraforming larger areas of the surface of Mars.

  16. An Overview of Mars Vicinity Transportation Concepts for a Human Mars Mission

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.; Kos, Larry

    1998-01-01

    To send a piloted mission to Mars, transportation systems must be developed for the Earth to Orbit, trans Mars injection (TMI), capture into Mars orbit, Mars descent, surface stay, Mars ascent, trans Earth injection (TEI), and Earth return phases. This paper presents a brief overview of the transportation systems for the Human Mars Mission (HMM) only in the vicinity of Mars. This includes: capture into Mars orbit, Mars descent, surface stay, and Mars ascent. Development of feasible mission scenarios now is important for identification of critical technology areas that must be developed to support future human missions. Although there is no funded human Mars mission today, architecture studies are focusing on missions traveling to Mars between 2011 and the early 2020's.

  17. Mars Polar Cap During Transition Phase Instrument Checkout

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the last week of September and the first week or so of October 2006, scientific instruments on NASA's Mars Reconnaissance Orbiter were turned on to acquire test information during the transition phase leading up to full science operations. The mission's primary science phase will begin the first week of November 2006, following superior conjunction. (Superior conjunction is where a planet goes behind the sun as viewed from Earth.) Since it is very difficult to communicate with a spacecraft when it is close to the sun as seen from Earth, this checkout of the instruments was crucial to being ready for the primary science phase of the mission.

    Throughout the transition-phase testing, the Mars Color Imager (MARCI) acquired terminator (transition between nighttime and daytime) to terminator swaths of color images on every dayside orbit, as the spacecraft moved northward in its orbit. The south polar region was deep in winter shadow, but the north polar region was illuminated the entire Martian day. During the primary mission, such swaths will be assembled into global maps that portray the state of the Martian atmosphere -- its weather -- as seen every day and at every place at about 3 p.m. local solar time. After the transition phase completed, most of the instruments were turned off, but the Mars Climate Sounder and MARCI have been left on. Their data will be recorded and played back to Earth following the communications blackout associated with conjunction.

    Combined with wide-angle image mosaics taken by the Mars Orbiter Camera on NASA's Mars Global Surveyor at 2 p.m. local solar time, the MARCI maps will be used to track motions of clouds.

    This image is a composite mosaic of four polar views of Mars, taken at midnight, 6 a.m., noon, and 6 p.m. local Martian time. This is possible because during summer the sun is always shining in the polar region. It shows the mostly water-ice perennial cap (white area), sitting atop the north polar layered

  18. Seasonal erosion and restoration of Mars' northern polar dunes.

    PubMed

    Hansen, C J; Bourke, M; Bridges, N T; Byrne, S; Colon, C; Diniega, S; Dundas, C; Herkenhoff, K; McEwen, A; Mellon, M; Portyankina, G; Thomas, N

    2011-02-04

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO(2) seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  19. Seasonal erosion and restoration of Mars' northern polar dunes

    USGS Publications Warehouse

    Hansen, C.J.; Bourke, M.; Bridges, N.T.; Byrne, S.; Colon, C.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Mellon, M.; Portyankina, G.; Thomas, N.

    2011-01-01

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO 2 seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  20. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-15

    This VIS image highlights the dune form/dune density aspects of Olypmia Undae. In the center there is a brighter, diagonal region of few dunes. These dunes are the arc or crescent shape of barchan dunes. As more sand becomes available the barchan dunes begin to merge into transverse dunes. The region of dunes surrounding the bright swath still have the underlying surface visible, and the transverse dunes have a lace-like layout. In the regions with a significant abundance of sand have developed the tightly packed transverse dunes with the wave-like distribution. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds