Sample records for valosin-containing protein disease

  1. Identification of a novel valosin-containing protein polymorphism in late-onset Alzheimer's disease.

    PubMed

    Kaleem, M; Zhao, A; Hamshere, M; Myers, A J

    2007-01-01

    Recently, mutations in the valosin-containing protein gene (VCP) were found to be causative for a rare form of dementia [Watts GDJ, et al.: Nat Genet 2004;36:377-381]. This gene lies within a region on the genome that has been linked to late onset Alzheimer's disease (LOAD) [Myers A, et al.: Am J Med Genet 2002;114:233-242]. In this study, we investigated whether variation within VCP could account for the LOAD linkage peak on chromosome 9. We sequenced 188 individuals from the set of sibling pairs we had used to obtain the linkage results for chromosome 9 to look for novel polymorphisms that could explain the linkage signal. Any variant that was found was then typed in 2 additional sets of neuropathologically confirmed samples to look for associations with Alzheimer's disease. We found 2 variants when we sequenced VCP. One was a novel rare variant (R92H) and the other is already reported within the publicly available databases (rs10972300). Neither explained the chromosome 9 linkage signal for LOAD. We have found a novel rare variant within the VCP gene, but we did not find a variant that could explain the linkage signal for LOAD on chromosome 9. Copyright (c) 2007 S. Karger AG, Basel.

  2. The N-terminal Region of the Ubiquitin Regulatory X (UBX) Domain-containing Protein 1 (UBXD1) Modulates Interdomain Communication within the Valosin-containing Protein p97*

    PubMed Central

    Trusch, Franziska; Matena, Anja; Vuk, Maja; Koerver, Lisa; Knævelsrud, Helene; Freemont, Paul S.; Meyer, Hemmo; Bayer, Peter

    2015-01-01

    Valosin-containing protein/p97 is an ATP-driven protein segregase that cooperates with distinct protein cofactors to control various aspects of cellular homeostasis. Mutations at the interface between the regulatory N-domain and the first of two ATPase domains (D1 and D2) deregulate the ATPase activity and cause a multisystem degenerative disorder, inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia/amyotrophic lateral sclerosis. Intriguingly, the mutations affect only a subset of p97-mediated pathways correlating with unbalanced cofactor interactions and most prominently compromised binding of the ubiquitin regulatory X domain-containing protein 1 (UBXD1) cofactor during endolysosomal sorting of caveolin-1. However, how the mutations impinge on the p97-cofactor interplay is unclear so far. In cell-based endosomal localization studies, we identified a critical role of the N-terminal region of UBXD1 (UBXD1-N). Biophysical studies using NMR and CD spectroscopy revealed that UBXD1-N can be classified as intrinsically disordered. NMR titration experiments confirmed a valosin-containing protein/p97 interaction motif and identified a second binding site at helices 1 and 2 of UBXD1-N as binding interfaces for p97. In reverse titration experiments, we identified two distant epitopes on the p97 N-domain that include disease-associated residues and an additional interaction between UBXD1-N and the D1D2 barrel of p97 that was confirmed by fluorescence anisotropy. Functionally, binding of UBXD1-N to p97 led to a reduction of ATPase activity and partial protection from proteolysis. These findings indicate that UBXD1-N intercalates into the p97-ND1 interface, thereby modulating interdomain communication of p97 domains and its activity with relevance for disease pathogenesis. We propose that the polyvalent binding mode characterized for UBXD1-N is a more general principle that defines a subset of p97 cofactors. PMID:26475856

  3. The heavy metal cadmium induces valosin-containing protein (VCP)-mediated aggresome formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Changcheng; Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702; Biogratech Inc., Gaithersburg, MD 20878

    2008-05-01

    Cadmium (Cd{sup 2+}) is a heavy metal ion known to have a long biological half-life in humans. Accumulating evidence shows that exposure to Cd{sup 2+} is associated with neurodegenerative diseases characterized by the retention of ubiquitinated and misfolded proteins in the lesions. Here, we report that Cd{sup 2+} directly induces the formation of protein inclusion bodies in cells. The protein inclusion body is an aggresome, a major organelle for collecting ubiquitinated or misfolded proteins. Our results show that aggresomes are enriched in the detergent-insoluble fraction of Cd{sup 2+}-treated cell lysates. Proteomic analysis identified 145 proteins in the aggresome-enriched fractions. Onemore » of the proteins is the highly conserved valosin-containing protein (VCP), which has been shown to colocalize with aggresomes and bind ubiquitinated proteins through its N domain (1-200). Our subsequent examination of VCP's role in the formation of aggresomes induced by Cd{sup 2+} indicates that the C-terminal tail (no. 780-806) of VCP interacts with histone deacetylase HDAC6, a mediator for aggresome formation, suggesting that VCP participates in transporting ubiquitinated proteins to aggresomes. This function of VCP is impaired by inhibition of the deacetylase activity of HDAC6 or by over-expression of VCP mutants that do not bind ubiquitinated proteins or HDAC6. Our results indicate that Cd{sup 2+} induces the formation of protein inclusion bodies by promoting the accumulation of ubiquitinated proteins in aggresomes through VCP and HDAC6. Our delineation of the role of VCP in regulating cell responses to ubiquitinated proteins has important implications for understanding Cd{sup 2+} toxicity and associated diseases.« less

  4. Valosin-Containing Protein (VCP/p97) Is an Activator of Wild-Type Ataxin-3

    PubMed Central

    Laço, Mário N.; Cortes, Luisa; Travis, Sue M.; Paulson, Henry L.; Rego, A. Cristina

    2012-01-01

    Alterations in the ubiquitin-proteasome system (UPS) have been reported in several neurodegenerative disorders characterized by protein misfolding and aggregation, including the polylgutamine diseases. Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 is caused by a polyglutamine-encoding CAG expansion in the ATXN3 gene, which encodes a 42 kDa deubiquitinating enzyme (DUB), ataxin-3. We investigated ataxin-3 deubiquitinating activity and the functional relevance of ataxin-3 interactions with two proteins previously described to interact with ataxin-3, hHR23A and valosin-containing protein (VCP/p97). We confirmed ataxin-3 affinity for both hHR23A and VCP/p97. hHR23A and ataxin-3 were shown to co-localize in discrete nuclear foci, while VCP/p97 was primarily cytoplasmic. hHR23A and VCP/p97 recombinant proteins were added, separately or together, to normal and expanded ataxin-3 in in vitro deubiquitination assays to evaluate their influence on ataxin-3 activity. VCP/p97 was shown to be an activator specifically of wild-type ataxin-3, exhibiting no effect on expanded ataxin-3, In contrast, we observed no significant alterations in ataxin-3 enzyme kinetics or substrate preference in the presence of hHR23A alone or in combination with VCP. Based on our results we propose a model where ataxin-3 normally functions with its interactors to specify the cellular fate of ubiquitinated proteins. PMID:22970133

  5. E74-like factor 2 regulates valosin-containing protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Binglin; Tomita, Yasuhiko; Qiu, Ying

    2007-05-11

    Enhanced expression of valosin-containing protein (VCP) correlates with invasion and metastasis of cancers. To clarify the transcription mechanism of VCP, human and mouse genomic sequence was compared, revealing a 260 bp DNA sequence in the 5'-flanking region of VCP gene to be highly conserved between the two, in which binding motif of E74-like factor 2/new Ets-related factor (ELF2/NERF) was identified. Chromatin immunoprecipitation assay showed binding of ELF2/NERF to the 5'-flanking region of VCP gene. Knock-down of ELF2/NERF by siRNA decreased expression level of VCP. Viability of cells under tumor necrosis factor-alpha treatment significantly reduced in ELF2/NERF-knock-down breast cancer cell line.more » Immunohistochemical analysis on clinical breast cancer specimens showed a correlation of nuclear ELF2/NERF expression with VCP expression and proliferative activity of cells shown by Ki-67 immunohistochemistry. These findings indicate that ELF2/NERF promotes VCP transcription and that ELF2/NERF-VCP pathway might be important for cell survival and proliferation under cytokine stress.« less

  6. Altered expression of p97/Valosin containing protein and impaired autophagy in preeclamptic human placenta.

    PubMed

    Ozsoy, Asker Zeki; Cayli, Sevil; Sahin, Cansu; Ocakli, Seda; Sanci, Tuba Ozdemir; Ilhan, Delibas Bahri

    2018-07-01

    Autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation but the regulation of autophagy by ubiquitin proteasome pathway (UPP) proteins, p97/Valosin containing protein (VCP) and ubiquitin (Ub) have not been previuosly studied in preeclampsia. The objective of this study is to investigate the expression of UPP (p97/VCP and Ub), autophagosomal (p62 and LC3) and autolysosomal proteins (Lamp1 and Lamp2) in the normal and preeclamptic human placentas and to explore the regulatory mechanism of these proteins in autophagic pathway. Different portions of normal term placentas (n = 20) and preeclamptic placentas (n = 10) were snap-frozen in liquid nitrogen for Western blotting and coimmunoprecipitation and others were fixed-embedded in paraffin for immunohistochemistry. Colocalization and coimmunoprecipitation experiments were done for the detection of interaction between p97/VCP and autophagic proteins. Compared with normal placentas, expression of p97/VCP was significantly reduced; however accumulation of ubiquitinlated proteins were significantly increased in preeclamptic placentas. The expression of autophagosomal proteins (LC3-II and p62) were significantly increased and no significant alterations of the expression of autolysosomal proteins were observed in preeclamptic placentas. Additionally, p97/VCP was found to colocalized and interact with autophagosomal and autolysosomal markers in normal and preeclamptic placentas. Autophagosome maturation diminished and autophagosomes had decreased localization with lysosomal markers in preeclamptic human placentas. Decreased expression of p97/VCP and increased expression of Ub in preeclampsia might be related to impaired autophagy and pathophysiology of preeclampsia. Therefore, our study highlights an important potential relationship between p97/VCP and autophagic proteins in preeclampsia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Valosin containing protein (VCP) interacts with macrolide antibiotics without mediating their anti-inflammatory activities.

    PubMed

    Nujić, Krunoslav; Smith, Marjorie; Lee, Michael; Belamarić, Daniela; Tomašković, Linda; Alihodžić, Sulejman; Malnar, Ivica; Polančec, Denis; Schneider, Klaus; Eraković Haber, Vesna

    2012-02-29

    In addition to antibacterial activity, some macrolide antibiotics, such as azithromycin and clarithromycin, also exhibit anti-inflammatory properties in vitro and in vivo, although the targets and mechanism(s) of action remain unknown. The aim of the present study was to identify protein targets of azithromycin and clarithromycin which could potentially explain their anti-inflammatory effects. Using chemical proteomics approach, based on compound-immobilized affinity chromatography, valosin containing protein (VCP) was identified as a potential target of the macrolides. Validation studies confirmed the interaction of macrolides and VCP and gave some structural characteristics of this interaction. Cell based assays however, including the use of gene silencing and the study of VCP specific cellular functions in J774.A1 (murine macrophage) and IB3-1 (human cystic fibrotic epithelial) cell lines, failed to confirm an association between the binding of the macrolides to VCP and anti-inflammatory effects. These findings suggest the absence of an abundant high affinity protein target and the potential involvement of other biological molecules in the anti-inflammatory activity of macrolides. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  9. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus.

    PubMed

    Phongphaew, Wallaya; Kobayashi, Shintaro; Sasaki, Michihito; Carr, Michael; Hall, William W; Orba, Yasuko; Sawa, Hirofumi

    2017-01-15

    Valosin-containing protein (VCP) is classified as a member of the type II AAA + ATPase protein family. VCP functions in several cellular processes, including protein degradation, membrane fusion, vesicular trafficking and disassembly of stress granules. Moreover, VCP is considered to play a role in the replication of several viruses, albeit through different mechanisms. In the present study, we have investigated the role of VCP in West Nile virus (WNV) infection. Endogenous VCP expression was inhibited using either VCP inhibitors or by siRNA knockdown. It could be shown that the inhibition of endogenous VCP expression significantly inhibited WNV infection. The entry assay revealed that silencing of endogenous VCP caused a significant reduction in the expression levels of WNV-RNA compared to control siRNA-treated cells. This indicates that VCP may play a role in early steps either the binding or entry steps of the WNV life cycle. Using WNV virus like particles and WNV-DNA-based replicon, it could be demonstrated that perturbation of VCP expression decreased levels of newly synthesized WNV genomic RNA. These findings suggest that VCP is involved in early steps and during genome replication of the WNV life cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Complex of Fas-associated Factor 1 (FAF1) with Valosin-containing Protein (VCP)-Npl4-Ufd1 and Polyubiquitinated Proteins Promotes Endoplasmic Reticulum-associated Degradation (ERAD)*

    PubMed Central

    Lee, Jae-Jin; Park, Joon Kyu; Jeong, Jaeho; Jeon, Hyesung; Yoon, Jong-Bok; Kim, Eunice EunKyeong; Lee, Kong-Joo

    2013-01-01

    Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation. PMID:23293021

  11. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons

    PubMed Central

    Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Houlden, Henry

    2017-01-01

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP. Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. PMID:28360103

  12. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    PubMed

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Rapamycin and Chloroquine: The In Vitro and In Vivo Effects of Autophagy-Modifying Drugs Show Promising Results in Valosin Containing Protein Multisystem Proteinopathy

    PubMed Central

    Nalbandian, Angèle; Llewellyn, Katrina J.; Nguyen, Christopher; Yazdi, Puya G.; Kimonis, Virginia E.

    2015-01-01

    Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion body myopathy (hIBM) associated with Paget disease of bone (PDB), frontotemporal dementia (FTD), more recently termed multisystem proteinopathy (MSP). Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43)-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem proteinopathies can

  14. Immunoreactivity of valosin-containing protein in sporadic amyotrophic lateral sclerosis and in a case of its novel mutant.

    PubMed

    Ayaki, Takashi; Ito, Hidefumi; Fukushima, Hiroko; Inoue, Takeshi; Kondo, Takayuki; Ikemoto, Akito; Asano, Takeshi; Shodai, Akemi; Fujita, Takuji; Fukui, Satoshi; Morino, Hiroyuki; Nakano, Satoshi; Kusaka, Hirofumi; Yamashita, Hirofumi; Ihara, Masafumi; Matsumoto, Riki; Kawamata, Jun; Urushitani, Makoto; Kawakami, Hideshi; Takahashi, Ryosuke

    2014-12-10

    Mutations in the valosin-containing protein (VCP) gene were first found to cause inclusion- body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD). Mutations in the VCP gene were later reported to occur in familial amyotrophic lateral sclerosis (ALS). But the role of VCP in the neurodegenerative processes that occur in ALS remains unknown. The purpose of the present study was to elucidate the role of VCP in the neurodegeneration seen in sporadic and VCP mutant ALS. Immunohistochemistry demonstrated that the frequency of distinct VCP-positive nuclei of spinal motor neurons of patients with sporadic ALS (SALS) and the ALS with VCP novel mutation (ALS-VCP, M158V) was increased, compared with that of the control cases. No VCP-positive inclusion bodies were observed in SALS patients, a ALS-VCP patient or in control subjects. Neuropathologic examination of the ALS-VCP case showed loss of motor neurons, the presence of Bunina bodies, and degeneration of the corticospinal tracts. Bunina bodies detected in this case were confirmed to show immunohistochemical and ultrastructural features similar to those previously described. Furthermore, neuronal intracytoplasmic inclusions immunopositive for TAR DNA-binding protein 43 kDa (TDP-43), phosphorylated TDP-43, ubiquitin (Ub), p62, and optineurin were identified in the spinal and medullary motoneurons, but not in the neocortex. Gene analysis of this ALS-VCP patient confirmed the de novo mutation of M158V, which was not found in control cases; and bioinformatics using several in silico analyses showed possible damage to the structure of VCP. Immunocytochemical study of cultured cells showed increased cytoplasmic translocation of TDP-43 in cells transfected with several mutant VCP including our patient's compared with wild-type VCP. These findings support the idea that VCP is associated with the pathomechanism of SALS and familial ALS with a VCP mutation, presumably acting through a dominant

  15. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice.

    PubMed

    Rodriguez-Ortiz, Carlos J; Hoshino, Hitomi; Cheng, David; Liu-Yescevitz, Liqun; Blurton-Jones, Mathew; Wolozin, Benjamin; LaFerla, Frank M; Kitazawa, Masashi

    2013-08-01

    Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Valosin-containing protein VCP/p97 is essential for the intracellular development of Leishmania and its survival under heat stress.

    PubMed

    Guedes Aguiar, Bruno; Padmanabhan, Prasad K; Dumas, Carole; Papadopoulou, Barbara

    2018-06-12

    Valosin-containing protein (VCP)/p97/Cdc48 is one of the best-characterised type II cytosolic AAA+ ATPases most known for their role in ubiquitin-dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homologue (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, Leishmania infantum promastigotes can grow with less VCP. In contrast, growth of axenic and intracellular amastigotes is dramatically affected upon decreased LiVCP levels in heterozygous and temperature sensitive (ts) LiVCP mutants or the expression of dominant negative mutants known to specifically target the second conserved VCP ATPase domain, a major contributor of the VCP overall ATPase activity. Interestingly, these VCP mutants are also unable to survive heat stress, and a ts VCP mutant is defective in amastigote growth. Consistent with LiVCP's essential function in amastigotes, LiVCP messenger ribonucleic acid undergoes 3'Untranslated Region (UTR)-mediated developmental regulation, resulting in higher VCP expression in amastigotes. Furthermore, we show that parasite mutant lines expressing lower VCP levels or dominant negative VCP forms exhibit high accumulation of polyubiquitinated proteins and increased sensitivity to proteotoxic stress, supporting the ubiquitin-selective chaperone function of LiVCP. Together, these results emphasise the crucial role LiVCP plays under heat stress and during the parasite intracellular development. © 2018 John Wiley & Sons Ltd.

  17. The General Definition of the p97/Valosin-containing Protein (VCP)-interacting Motif (VIM) Delineates a New Family of p97 Cofactors*

    PubMed Central

    Stapf, Christopher; Cartwright, Edward; Bycroft, Mark; Hofmann, Kay; Buchberger, Alexander

    2011-01-01

    Cellular functions of the essential, ubiquitin-selective AAA ATPase p97/valosin-containing protein (VCP) are controlled by regulatory cofactors determining substrate specificity and fate. Most cofactors bind p97 through a ubiquitin regulatory X (UBX) or UBX-like domain or linear sequence motifs, including the hitherto ill defined p97/VCP-interacting motif (VIM). Here, we present the new, minimal consensus sequence RX5AAX2R as a general definition of the VIM that unites a novel family of known and putative p97 cofactors, among them UBXD1 and ZNF744/ANKZF1. We demonstrate that this minimal VIM consensus sequence is necessary and sufficient for p97 binding. Using NMR chemical shift mapping, we identified several residues of the p97 N-terminal domain (N domain) that are critical for VIM binding. Importantly, we show that cellular stress resistance conferred by the yeast VIM-containing cofactor Vms1 depends on the physical interaction between its VIM and the critical N domain residues of the yeast p97 homolog, Cdc48. Thus, the VIM-N domain interaction characterized in this study is required for the physiological function of Vms1 and most likely other members of the newly defined VIM family of cofactors. PMID:21896481

  18. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein.

    PubMed

    Bosque, Alberto; Dietz, Lisa; Gallego-Lleyda, Ana; Sanclemente, Manuel; Iturralde, María; Naval, Javier; Alava, María Angeles; Martínez-Lostao, Luis; Thierse, Hermann-Josef; Anel, Alberto

    2016-05-17

    We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion.

  19. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP).

    PubMed

    Long, Xin Hua; Zhou, Yun Fei; Peng, Ai Fen; Zhang, Zhi Hong; Chen, Xuan Yin; Chen, Wen Zhao; Liu, Jia Ming; Huang, Shan Hu; Liu, Zhi Li

    2015-05-01

    Previous studies demonstrated that increased Homo sapiens valosin-containing protein (VCP) may be involved in osteosarcoma (OS) metastasis. However, the underlying mechanism of VCP over-expression in OS remains unknown. In the present study, we found a significantly negative correlation between miR-129-5p and VCP protein expression in OS tissues with pulmonary metastasis (Spearman's rho, rs = -0.948). Bioinformatical prediction, Luciferase reporter assay, Western blot, and RT-PCR assays performed on OS cells indicated that VCP is a target of miR-129-5p. In addition, three CPG islands in the region of miR-129-5p promoter were detected by bioinformatical prediction, and significantly higher expression of miR-129-5p and lower methylation level of miR-129-2 gene in OS cells treated with 5-Aza-2'-deoxycytidine (a potent DNA demethylating agent) than in those untreated cells were observed. Furthermore, lower migratory and invasive ability was found in cells with elevated miR-129-5p than in those with decreased miR-129-5p. These findings indicated that increased miR-129-5p may be mediated by demethylation and inhibit OS cell migration and invasion by targeting VCP in OS, and targeting miR-129-5p/VCP signaling pathway may serve as a therapeutic strategy for OS management, although further studies will be necessary.

  20. Sorafenib Impedes Rift Valley Fever Virus Egress by Inhibiting Valosin-Containing Protein Function in the Cellular Secretory Pathway.

    PubMed

    Brahms, Ashwini; Mudhasani, Rajini; Pinkham, Chelsea; Kota, Krishna; Nasar, Farooq; Zamani, Rouzbeh; Bavari, Sina; Kehn-Hall, Kylene

    2017-11-01

    There is an urgent need for therapeutic development to combat infections caused by Rift Valley fever virus (RVFV), which causes devastating disease in both humans and animals. In an effort to repurpose drugs for RVFV treatment, our previous studies screened a library of FDA-approved drugs. The most promising candidate identified was the hepatocellular and renal cell carcinoma drug sorafenib. Mechanism-of-action studies indicated that sorafenib targeted a late stage in virus infection and caused a buildup of virions within cells. In addition, small interfering RNA (siRNA) knockdown studies suggested that nonclassical targets of sorafenib are important for the propagation of RVFV. Here we extend our previous findings to identify the mechanism by which sorafenib inhibits the release of RVFV virions from the cell. Confocal microscopy imaging revealed that glycoprotein Gn colocalizes and accumulates within the endoplasmic reticulum (ER) and the transport of Gn from the Golgi complex to the host cell membrane is reduced. Transmission electron microscopy demonstrated that sorafenib caused virions to be present inside large vacuoles inside the cells. p97/valosin-containing protein (VCP), which is involved in membrane remodeling in the secretory pathway and a known target of sorafenib, was found to be important for RVFV egress. Knockdown of VCP resulted in decreased RVFV replication, reduced Gn Golgi complex localization, and increased Gn ER accumulation. The intracellular accumulation of RVFV virions was also observed in cells transfected with siRNA targeting VCP. Collectively, these data indicate that sorafenib causes a disruption in viral egress by targeting VCP and the secretory pathway, resulting in a buildup of virions within dilated ER vesicles. IMPORTANCE In humans, symptoms of RVFV infection mainly include a self-limiting febrile illness. However, in some cases, infected individuals can also experience hemorrhagic fever, neurological disorders, liver failure, and

  1. Sequential Actions of the AAA-ATPase Valosin-containing Protein (VCP)/p97 and the Proteasome 19 S Regulatory Particle in Sterol-accelerated, Endoplasmic Reticulum (ER)-associated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase*

    PubMed Central

    Morris, Lindsey L.; Hartman, Isamu Z.; Jun, Dong-Jae; Seemann, Joachim; DeBose-Boyd, Russell A.

    2014-01-01

    Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates. PMID:24860107

  2. [Inclusion body myopathy with Paget's disease of bone and frontotemporal dementia].

    PubMed

    Hayashi, Yukiko

    2013-01-01

    Inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disease caused by mutations in the VCP gene. VCP encodes a well-conserved multifunctional protein, valosin containing protein (VCP), which has important roles in protein quality control via proteasome and autophagy, protein aggregation, quality control of mitochondria, cell proliferation, and so on. Clinically, muscle weakness is the most common symptom of which disease onset is around 40 years. Affected muscles are variable, and the patients are sometimes diagnosed as limb girdle muscular dystrophy or GNE myopathy. Muscle pathology shows characteristic features including cytoplasmic/nuclear inclusions, rimmed vacuoles, and disorganized myofibrills, together with neurogenic changes. Paget's disease of bone is reported to be observed in a half of the patients around the age of 40 years, but less common in Japanese patients. Frontotemporal dementia is seen around one third of the patients which appears nearly 10 years later than muscle or bone disease. In addition to cognitive dysfunctions, motor neuron involvement and cerebellar signs were also seen in our series. IBMPFD is not so rare disease as previously thought, but complicate clinical findings may make its diagnosis difficult.

  3. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  4. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  5. Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases.

    PubMed

    Zhou, Zhi-Dong; Saw, Wuan-Ting; Tan, Eng-King

    2017-09-01

    The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.

  6. Targeting protein homeostasis in sporadic inclusion body myositis.

    PubMed

    Ahmed, Mhoriam; Machado, Pedro M; Miller, Adrian; Spicer, Charlotte; Herbelin, Laura; He, Jianghua; Noel, Janelle; Wang, Yunxia; McVey, April L; Pasnoor, Mamatha; Gallagher, Philip; Statland, Jeffrey; Lu, Ching-Hua; Kalmar, Bernadett; Brady, Stefen; Sethi, Huma; Samandouras, George; Parton, Matt; Holton, Janice L; Weston, Anne; Collinson, Lucy; Taylor, J Paul; Schiavo, Giampietro; Hanna, Michael G; Barohn, Richard J; Dimachkie, Mazen M; Greensmith, Linda

    2016-03-23

    Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients more than 50 years of age. Previous therapeutic trials have targeted the inflammatory features of sIBM but all have failed. Because protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein (VCP) mice, which develop an inclusion body myopathy, treatment with arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated arimoclomol in an investigator-led, randomized, double-blind, placebo-controlled, proof-of-concept trial in sIBM patients and showed that arimoclomol was safe and well tolerated. Although arimoclomol improved some IBM-like pathology in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in the proof-of-concept patient trial. Copyright © 2016, American Association for the Advancement of Science.

  7. Targeting Protein Homeostasis in Sporadic Inclusion Body Myositis

    PubMed Central

    Ahmed, Mhoriam; Machado, Pedro M.; Miller, Adrian; Spicer, Charlotte; Herbelin, Laura; He, Jianghua; Noel, Janelle; Wang, Yunxia; McVey, April L.; Pasnoor, Mamatha; Gallagher, Philip; Statland, Jeffrey; Lu, Ching-Hua; Kalmar, Bernadett; Brady, Stefen; Sethi, Huma; Samandouras, George; Parton, Matt; Holton, Janice L.; Weston, Anne; Collinson, Lucy; Taylor, J. Paul; Schiavo, Giampietro; Hanna, Michael G.; Barohn, Richard J.; Dimachkie, Mazen M.; Greensmith, Linda

    2016-01-01

    Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients over age 50. Previous therapeutic trials have targeted the inflammatory features of sIBM, but all have failed. Since protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with Arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein VCP mice, which develop an inclusion body myopathy (IBM), treatment with Arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated the safety and tolerability of Arimoclomol in an investigator-lead, randomised, double-blind, placebo-controlled, proof-of-concept patient trial and gathered exploratory efficacy data which showed that Arimoclomol was safe and well tolerated. Although Arimoclomol improved some IBM-like pathology in vitro and in vivo in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in this proof of concept patient trial. PMID:27009270

  8. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation.

    PubMed

    Hsueh, Yi-Ping

    2012-03-26

    Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

  9. Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes

    PubMed Central

    Basso, Manuela; Pozzi, Silvia; Tortarolo, Massimo; Fiordaliso, Fabio; Bisighini, Cinzia; Pasetto, Laura; Spaltro, Gabriella; Lidonnici, Dario; Gensano, Francesco; Battaglia, Elisa; Bendotti, Caterina; Bonetto, Valentina

    2013-01-01

    Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread. PMID:23592792

  10. Frontotemporal Dementia: Implications for Understanding Alzheimer Disease

    PubMed Central

    Goedert, Michel; Ghetti, Bernardino; Spillantini, Maria Grazia

    2012-01-01

    Frontotemporal dementia (FTD) comprises a group of behavioral, language, and movement disorders. On the basis of the nature of the characteristic protein inclusions, frontotemporal lobar degeneration (FTLD) can be subdivided into the common FTLD-tau and FTLD-TDP as well as the less common FTLD-FUS and FTLD-UPS. Approximately 10% of cases of FTD are inherited in an autosomal-dominant manner. Mutations in seven genes cause FTD, with those in tau (MAPT), chromosome 9 open reading frame 72 (C9ORF72), and progranulin (GRN) being the most common. Mutations in MAPT give rise to FTLD-tau and mutations in C9ORF72 and GRN to FTLD-TDP. The other four genes are transactive response–DNA binding protein-43 (TARDBP), fused in sarcoma (FUS), valosin-containing protein (VCP), and charged multivesicular body protein 2B (CHMP2B). Mutations in TARDBP and VCP give rise to FTLD-TDP, mutations in FUS to FTLD-FUS, and mutations in CHMP2B to FTLD-UPS. The discovery that mutations in MAPT cause neurodegeneration and dementia has important implications for understanding Alzheimer disease. PMID:22355793

  11. Proteins containing expanded polyglutamine tracts and neurodegenerative disease

    PubMed Central

    Adegbuyiro, Adewale; Sedighi, Faezeh; Pilkington, Albert W.; Groover, Sharon; Legleiter, Justin

    2017-01-01

    Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been ten of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post translational modifications on aggregation, and a potential role for lipids membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed. PMID:28170216

  12. Protein Misfolding Diseases.

    PubMed

    Hartl, F Ulrich

    2017-06-20

    The majority of protein molecules must fold into defined three-dimensional structures to acquire functional activity. However, protein chains can adopt a multitude of conformational states, and their biologically active conformation is often only marginally stable. Metastable proteins tend to populate misfolded species that are prone to forming toxic aggregates, including soluble oligomers and fibrillar amyloid deposits, which are linked with neurodegeneration in Alzheimer and Parkinson disease, and many other pathologies. To prevent or regulate protein aggregation, all cells contain an extensive protein homeostasis (or proteostasis) network comprising molecular chaperones and other factors. These defense systems tend to decline during aging, facilitating the manifestation of aggregate deposition diseases. This volume of the Annual Review of Biochemistry contains a set of three articles addressing our current understanding of the structures of pathological protein aggregates and their associated disease mechanisms. These articles also discuss recent insights into the strategies cells have evolved to neutralize toxic aggregates by sequestering them in specific cellular locations.

  13. Toxicity and aggregation of the polyglutamine disease protein, ataxin-3 is regulated by its binding to VCP/p97 in Drosophila melanogaster.

    PubMed

    Ristic, Gorica; Sutton, Joanna R; Libohova, Kozeta; Todi, Sokol V

    2018-04-26

    Among the nine dominantly inherited, age-dependent neurodegenerative diseases caused by abnormal expansion in the polyglutamine (polyQ) repeat of otherwise unrelated proteins is Spinocerebellar Ataxia Type 3 (SCA3). SCA3 is caused by polyQ expansion in the deubiquitinase (DUB), ataxin-3. Molecular sequelae related to SCA3 remain unclear. Here, we sought to understand the role of protein context in SCA3 by focusing on the interaction between this DUB and Valosin-Containing Protein (VCP). VCP is bound directly by ataxin-3 through an arginine-rich area preceding the polyQ repeat. We examined the importance of this interaction in ataxin-3-dependent degeneration in Drosophila melanogaster. Our assays with new isogenic fly lines expressing pathogenic ataxin-3 with an intact or mutated VCP-binding site show that disrupting the ataxin-3-VCP interaction delays the aggregation of the toxic protein in vivo. Importantly, early on flies that express pathogenic ataxin-3 with a mutated VCP-binding site are indistinguishable from flies that do not express any SCA3 protein. Also, reducing levels of VCP through RNA-interference has a similar, protective effect to mutating the VCP-binding site of pathogenic ataxin-3. Based on in vivo pulse-chases, aggregated species of ataxin-3 are highly stable, in a manner independent of VCP-binding. Collectively, our results highlight an important role for the ataxin-3-VCP interaction in SCA3, based on a model that posits a seeding effect from VCP on pathogenic ataxin-3 aggregation and subsequent toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Molecular pathogenesis of Spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins

    PubMed Central

    Bin, Bum-Ho; Hojyo, Shintaro; Hosaka, Toshiaki; Bhin, Jinhyuk; Kano, Hiroki; Miyai, Tomohiro; Ikeda, Mariko; Kimura-Someya, Tomomi; Shirouzu, Mikako; Cho, Eun-Gyung; Fukue, Kazuhisa; Kambe, Taiho; Ohashi, Wakana; Kim, Kyu-Han; Seo, Juyeon; Choi, Dong-Hwa; Nam, Yeon-Ju; Hwang, Daehee; Fukunaka, Ayako; Fujitani, Yoshio; Yokoyama, Shigeyuki; Superti-Furga, Andrea; Ikegawa, Shiro; Lee, Tae Ryong; Fukada, Toshiyuki

    2014-01-01

    The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13G64D, in which Gly at amino acid position 64 is replaced by Asp, and ZIP13ΔFLA, which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13G64D and ZIP13ΔFLA protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS. PMID:25007800

  15. Structure and expression of a novel compact myelin protein – Small VCP-interacting protein (SVIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus

    2013-10-11

    Highlights: •SVIP (small p97/VCP-interacting protein) co-localizes with myelin basic protein (MBP) in compact myelin. •We determined that SVIP is an intrinsically disordered protein (IDP). •The helical content of SVIP increases dramatically during its interaction with negatively charged lipid membrane. •This study provides structural insight into interactions between SVIP and myelin membranes. -- Abstract: SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCPmore » were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.« less

  16. A Progressive Translational Mouse Model of Human VCP Disease: The VCP R155H/+ Mouse

    PubMed Central

    Nalbandian, Angèle; Llewellyn, Katrina J.; Badadani, Mallikarjun; Yin, Hong Z.; Nguyen, Christopher; Katheria, Veeral; Watts, Giles; Mukherjee, Jogeshwar; Vesa, Jouni; Caiozzo, Vincent; Mozaffar, Tahseen; Weiss, John H.; Kimonis, Virginia E.

    2012-01-01

    Introduction Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion Body Myopathy (hIBM) associated with Paget disease of bone (PDB), and frontotemporal dementia (FTD). More recently they have been linked to 2% of familial ALS cases. A knock-in mouse model offers the opportunity to study VCP-associated pathogenesis. Methods The VCPR155H/+ knock-in mouse model was assessed for muscle strength, immunohistochemical, Western, apoptosis, autophagy and MicroPET/CT imaging analyses. Results VCPR155H/+ mice developed significant progressive muscle weakness, and the quadriceps and brain developed progressive cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-II staining. MicroCT analyses revealed Paget-like lesions at the ends of long bones. Spinal cord demonstrated neurodegenerative changes, ubiquitin, and TDP-43 pathology of motor neurons. Discussion VCPR155H/+ knock-in mice represent an excellent pre-clinical model for understanding VCP-associated disease mechanisms and future treatments. PMID:23169451

  17. Role of p97/Valosin-containing protein (VCP) and Jab1/CSN5 in testicular ischaemia-reperfusion injury.

    PubMed

    Cayli, Sevil; Ocakli, Seda; Senel, Ufuk; Eyerci, Nilnur; Delibasi, Tuncay

    2016-02-01

    The most significant complication of testicular ischaemia is loss of the testis, which may lead to infertility. Testicular ischaemia damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated protein aggregates. Despite recent advances, the factors leading to impairment of spermatogenesis owing to testicular ischaemia remain poorly understood. This study was undertaken to gain insight into the cellular and molecular mechanism underlying torsion induced germ cell apoptosis. Male rats were subjected to 2 h torsion, and testes were examined at 2, 4, 12 and 24 h after torsion repair (reperfusion). Ischaemia-reperfusion (IR) of the testes resulted in apoptosis which was revealed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) technique. At 12 h after torsion repair germ cell loss reached peak, then decreased at 24 h repair. Western blotting showed that apoptotic proteins (active caspase 3, caspase 9 and Bax) gradually was upregulated at 12 h reperfusion, however anti-apoptotic protein (Bcl2) was downregulated in the relevant IR treatment. Furthermore, Jab1/CSN5 expression was gradually upregulated and p97/VCP expression was downregulated in IR injury according to western blotting and immunohistochemistry. To test further whether polyubiquitination was also involved in IR injury, the expression of polyubiquitinated proteins was examined, which showed that polyubiquitinated proteins were significantly increased in IR injury. These finding suggest that p97/VCP and Jab1/CSN5 provide a novel signaling pathway for testicular ischaemia and may play an important role in IR injury induced cell death in rat testis.

  18. An Italian family with inclusion-body myopathy and frontotemporal dementia due to mutation in the VCP gene.

    PubMed

    Gidaro, Teresa; Modoni, Anna; Sabatelli, Mario; Tasca, Giorgio; Broccolini, Aldobrando; Mirabella, Massimiliano

    2008-01-01

    Mutations of the valosin-containing protein gene (VCP) are responsible for autosomal-dominant hereditary inclusion-body myopathy associated with frontotemporal dementia and Paget's disease of bone. We identified the p.R155C missense mutation in the VCP gene segregating in an Italian family with three affected siblings, two of whom had a progressive myopathy associated with dementia, whereas one exhibited a progressive myopathy and preclinical signs of Paget's disease of bone. Our study demonstrates that VCP mutations are found in patients of Italian background and may lead to a variable clinical phenotype even within the same kinship.

  19. Relative increase in Alzheimer's disease of soluble forms of cerebral Abeta amyloid protein precursor containing the Kunitz protease inhibitory domain.

    PubMed

    Moir, R D; Lynch, T; Bush, A I; Whyte, S; Henry, A; Portbury, S; Multhaup, G; Small, D H; Tanzi, R E; Beyreuther, K; Masters, C L

    1998-02-27

    Although a number of studies have examined amyloid precursor protein (APP) mRNA levels in Alzheimer's disease (AD), no clear consensus has emerged as to whether the levels of transcripts for isoforms containing a Kunitz protease inhibitory (KPI)-encoded region are increased or decreased in AD. Here we compare AD and control brain for the relative amounts of APP protein containing KPI to APP protein lacking this domain. APP protein was purified from the soluble subcellular fraction and Triton X-100 membrane pellet extract of one hemisphere of AD (n = 10), normal (n = 7), and neurological control (n = 5) brains. The amount of KPI-containing APP in the purified protein samples was determined using two independent assay methods. The first assay exploited the inhibitory action of KPI-containing APP on trypsin. The second assay employed reflectance analysis of Western blots. The proportion of KPI-containing forms of APP in the soluble subcellular fraction of AD brains is significantly elevated (p < 0.01) compared with controls. Species containing a KPI domain comprise 32-41 and 76-77% of purified soluble APP from control and AD brains, respectively. For purified membrane-associated APP, 72-77 and 65-82% of control and AD samples, respectively, contain a KPI domain. Since KPI-containing species of APP may be more amyloidogenic (Ho, L., Fukuchi, K., and Yonkin, S. G. (1996) J. Biol. Chem. 271, 30929-30934), our findings support an imbalance of isoforms as one possible mechanism for amyloid deposition in sporadic AD.

  20. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    PubMed

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  1. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer.

    PubMed

    Fujisawa, Takao; Filippakopoulos, Panagis

    2017-04-01

    Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.

  2. Inference of domain-disease associations from domain-protein, protein-disease and disease-disease relationships.

    PubMed

    Zhang, Wangshu; Coba, Marcelo P; Sun, Fengzhu

    2016-01-11

    Protein domains can be viewed as portable units of biological function that defines the functional properties of proteins. Therefore, if a protein is associated with a disease, protein domains might also be associated and define disease endophenotypes. However, knowledge about such domain-disease relationships is rarely available. Thus, identification of domains associated with human diseases would greatly improve our understanding of the mechanism of human complex diseases and further improve the prevention, diagnosis and treatment of these diseases. Based on phenotypic similarities among diseases, we first group diseases into overlapping modules. We then develop a framework to infer associations between domains and diseases through known relationships between diseases and modules, domains and proteins, as well as proteins and disease modules. Different methods including Association, Maximum likelihood estimation (MLE), Domain-disease pair exclusion analysis (DPEA), Bayesian, and Parsimonious explanation (PE) approaches are developed to predict domain-disease associations. We demonstrate the effectiveness of all the five approaches via a series of validation experiments, and show the robustness of the MLE, Bayesian and PE approaches to the involved parameters. We also study the effects of disease modularization in inferring novel domain-disease associations. Through validation, the AUC (Area Under the operating characteristic Curve) scores for Bayesian, MLE, DPEA, PE, and Association approaches are 0.86, 0.84, 0.83, 0.83 and 0.79, respectively, indicating the usefulness of these approaches for predicting domain-disease relationships. Finally, we choose the Bayesian approach to infer domains associated with two common diseases, Crohn's disease and type 2 diabetes. The Bayesian approach has the best performance for the inference of domain-disease relationships. The predicted landscape between domains and diseases provides a more detailed view about the disease

  3. Blends of cysteine-containing proteins

    NASA Astrophysics Data System (ADS)

    Barone, Justin

    2005-03-01

    Many agricultural wastes are made of proteins such as keratin, lactalbumin, gluten, and albumin. These proteins contain the amino acid cysteine. Cysteine allows for the formation of inter-and intra-molecular sulfur-sulfur bonds. Correlations are made between the properties of films made from the proteins and the amino acid sequence. Blends of cysteine-containing proteins show possible synergies in physical properties at intermediate concentrations. FT-IR spectroscopy shows increased hydrogen bonding at intermediate concentrations suggesting that this contributes to increased physical properties. DSC shows limited miscibility and the formation of new crystalline phases in the blends suggesting that this too contributes.

  4. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats

    PubMed Central

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in

  5. [An electron microscopy study of the structure of polyelectrolyte microcapsules containing protein and containing no protein].

    PubMed

    Kazakova, L I; Dubrovskiĭ, A V; Moshkov, D A; Shabarchina, L I; Sukhorukov, B I

    2007-01-01

    Electron micrographs of ultrathin sections of polyelectrolyte microparticles containing protein and free from protein for the formation of which CaCO3 spherulites served as a core basis have been obtained and analyzed. Polyelectrolyte microparticles with the number of alternately layered polyelectrolyte layers of polystyrene sulfonate and polyallylamine from 6 to 11 have been studied. It follows from the data obtained that protein-free polyelectrolyte particles having the dimensions 4.5-5 mm are formations of an intricate internal organization, which consist of a set of threadlike and closed nanoelements of polyelectrolyte nature with a thickness of 20-30 nm. The particles containing six to eight polyelectrolyte layers lack the external envelope; therefore, they were called polyelectrolyte microspherulites. With the number of layers nine and more, when a polyelectrolyte envelope appears on the surface, they transfer into polyelectrolyte microcapsules. It was found that, in a protein-containing polyelectrolyte microcapsule, as distinct from protein-free polyelectrolyte microspherulite and microcapsule, polyelectrolytes are located only in the nearsurface layer, and the external spatially organized envelope restricts the internal volume filled with protein solution. As the number of polyelectrolyte layers increases, the thickness of the envelope increases. The reasons for such substantial differences in the structures of polyelectrolyte microcapsules formed on protein-containing and protein-free CaCO3 spherulite are discussed.

  6. Vectors for co-expression of an unrestricted number of proteins

    PubMed Central

    Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad

    2007-01-01

    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810

  7. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice.

    PubMed

    Conforti, Laura; Wilbrey, Anna; Morreale, Giacomo; Janeckova, Lucie; Beirowski, Bogdan; Adalbert, Robert; Mazzola, Francesca; Di Stefano, Michele; Hartley, Robert; Babetto, Elisabetta; Smith, Trevor; Gilley, Jonathan; Billington, Richard A; Genazzani, Armando A; Ribchester, Richard R; Magni, Giulio; Coleman, Michael

    2009-02-23

    The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration.

  8. VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation.

    PubMed

    Hirano, Makito; Nakamura, Yusaku; Saigoh, Kazumasa; Sakamoto, Hikaru; Ueno, Shuichi; Isono, Chiharu; Mitsui, Yoshiyuki; Kusunoki, Susumu

    2015-03-01

    Accumulating evidence has proven that mutations in the VCP gene encoding valosin-containing protein (VCP) cause inclusion body myopathy with Paget disease of the bone and frontotemporal dementia. This gene was later found to be causative for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, occurring typically in elderly persons. We thus sequenced the VCP gene in 75 Japanese patients with sporadic ALS negative for mutations in other genes causative for ALS and found a novel mutation, p.Arg487His, in 1 patient. The newly identified mutant as well as known mutants rendered neuronal cells susceptible to oxidative stress. The presence of the mutation in the Japanese population extends the geographic region for involvement of the VCP gene in sporadic ALS to East Asia. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Experiences from occupational exposure limits set on aerosols containing allergenic proteins.

    PubMed

    Nielsen, Gunnar D; Larsen, Søren T; Hansen, Jitka S; Poulsen, Lars K

    2012-10-01

    Occupational exposure limits (OELs) together with determined airborne exposures are used in risk assessment based managements of occupational exposures to prevent occupational diseases. In most countries, OELs have only been set for few protein-containing aerosols causing IgE-mediated allergies. They comprise aerosols of flour dust, grain dust, wood dust, natural rubber latex, and the subtilisins, which are proteolytic enzymes. These aerosols show dose-dependent effects and levels have been established, where nearly all workers may be exposed without adverse health effects, which are required for setting OELs. Our aim is to analyse prerequisites for setting OELs for the allergenic protein-containing aerosols. Opposite to the key effect of toxicological reactions, two thresholds, one for the sensitization phase and one for elicitation of IgE-mediated symptoms in sensitized individuals, are used in the OEL settings. For example, this was the case for flour dust, where OELs were based on dust levels due to linearity between flour dust and its allergen levels. The critical effects for flour and grain dust OELs were different, which indicates that conclusion by analogy (read-across) must be scientifically well founded. Except for subtilisins, no OEL have been set for other industrial enzymes, where many of which are high volume chemicals. For several of these, OELs have been proposed in the scientific literature during the last two decades. It is apparent that the scientific methodology is available for setting OELs for proteins and protein-containing aerosols where the critical effect is IgE sensitization and IgE-mediated airway diseases.

  10. Experiences from Occupational Exposure Limits Set on Aerosols Containing Allergenic Proteins

    PubMed Central

    Nielsen, Gunnar D.

    2012-01-01

    Occupational exposure limits (OELs) together with determined airborne exposures are used in risk assessment based managements of occupational exposures to prevent occupational diseases. In most countries, OELs have only been set for few protein-containing aerosols causing IgE-mediated allergies. They comprise aerosols of flour dust, grain dust, wood dust, natural rubber latex, and the subtilisins, which are proteolytic enzymes. These aerosols show dose-dependent effects and levels have been established, where nearly all workers may be exposed without adverse health effects, which are required for setting OELs. Our aim is to analyse prerequisites for setting OELs for the allergenic protein-containing aerosols. Opposite to the key effect of toxicological reactions, two thresholds, one for the sensitization phase and one for elicitation of IgE-mediated symptoms in sensitized individuals, are used in the OEL settings. For example, this was the case for flour dust, where OELs were based on dust levels due to linearity between flour dust and its allergen levels. The critical effects for flour and grain dust OELs were different, which indicates that conclusion by analogy (read-across) must be scientifically well founded. Except for subtilisins, no OEL have been set for other industrial enzymes, where many of which are high volume chemicals. For several of these, OELs have been proposed in the scientific literature during the last two decades. It is apparent that the scientific methodology is available for setting OELs for proteins and protein-containing aerosols where the critical effect is IgE sensitization and IgE-mediated airway diseases. PMID:22843406

  11. Lipid transfer proteins in the assembly of apoB-containing lipoproteins.

    PubMed

    Sirwi, Alaa; Hussain, M Mahmood

    2018-04-12

    A better understanding of intracellular lipoprotein assembly may help identify proteins with important roles in lipid disorders. ApoB-containing lipoproteins are macromolecular lipid and protein micelles that act as specialized transport vehicles for hydrophobic lipids. They are assembled predominantly in enterocytes and hepatocytes to transport dietary and endogenous fat, respectively, to different tissues. Assembly occurs in the endoplasmic reticulum and is dependent on lipid re-synthesis in the endoplasmic reticulum and on a chaperone, namely microsomal triglyceride transfer protein. Precursors for lipid synthesis are obtained from extracellular sources and from cytoplasmic lipid droplets. Microsomal triglyceride transfer protein is the major and essential lipid transfer protein that transfers phospholipids and triacylglycerols to nascent apoB for the assembly of lipoproteins. Assembly is aided by cell death-inducing DFF45-like effector B and by phospholipid transfer protein, which may facilitate additional deposition of triacylglycerols and phospholipids, respectively, to apoB. Here, we summarize the current understanding of the different steps in the assembly of apoB-containing lipoproteins and discuss the role of lipid transfer proteins in these steps to help identify new clinical targets for lipid-associated disorders, such as heart disease. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The p97-FAF1 Protein Complex Reveals a Common Mode of p97 Adaptor Binding*

    PubMed Central

    Ewens, Caroline A.; Panico, Silvia; Kloppsteck, Patrik; McKeown, Ciaran; Ebong, Ima-Obong; Robinson, Carol; Zhang, Xiaodong; Freemont, Paul S.

    2014-01-01

    p97, also known as valosin-containing protein, is a versatile participant in the ubiquitin-proteasome system. p97 interacts with a large network of adaptor proteins to process ubiquitylated substrates in different cellular pathways, including endoplasmic reticulum-associated degradation and transcription factor activation. p97 and its adaptor Fas-associated factor-1 (FAF1) both have roles in the ubiquitin-proteasome system during NF-κB activation, although the mechanisms are unknown. FAF1 itself also has emerging roles in other cell-cycle pathways and displays altered expression levels in various cancer cell lines. We have performed a detailed study the p97-FAF1 interaction. We show that FAF1 binds p97 stably and in a stoichiometry of 3 to 6. Cryo-EM analysis of p97-FAF1 yielded a 17 Å reconstruction of the complex with FAF1 above the p97 ring. Characteristics of p97-FAF1 uncovered in this study reveal common features in the interactions of p97, providing mechanistic insight into how p97 mediates diverse functionalities. PMID:24619421

  13. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  14. The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease.

    PubMed

    Moorthi, Ranjani N; Armstrong, Cheryl L H; Janda, Kevin; Ponsler-Sipes, Kristen; Asplin, John R; Moe, Sharon M

    2014-01-01

    Chronic Kidney Disease (CKD) is associated with alterations in phosphorus excretion, and increases in fibroblast growth factor (FGF23) and parathyroid hormone (PTH). Plant protein-based phytate-bound phosphorus, is less bioavailable than that from animal sources. Our one-week study that was conducted previously showed that a nearly 100% plant protein-based diet benefits mineral metabolism in CKD; however, this diet may not be acceptable to patients. Here we hypothesize that a diet containing 70% protein from plants has similar efficacy and is tolerated by CKD patients. Thirteen subjects with CKD 3-4 received an omnivorous diet containing 70% protein from plants for 4 weeks. The primary outcome was change in 24 h urine phosphorus. Secondary outcomes were changes in serum phosphorus, FGF23, PTH, urine sodium excretion, grip strength and fat free mass. Repeated measures analysis of variance (ANOVA) was used to test differences in parameters over the 4 weeks. Mean age of subjects was 54.8 years. Median eGFR was 26 (IQR 14.7) ml/min/1.73 m(2). Over the 4-week period, urine phosphorus significantly decreased by 215 ± 232 mg/day (p < 0.001). No significant changes in serum FGF23, phosphorus or PTH were noted. Urine sodium and titratable acid decreased significantly on the diet. Hand grip strength and fat-free mass did not change. There were two hyperkalemia events both 5.8 mEq/l, corrected by food substitutions. No other adverse events were observed. A 70% plant protein diet is safe, tolerated, and efficacious in lowering urine phosphorus excretion and may be an alternative to phosphate binders. © 2015 S. Karger AG, Basel.

  15. The Effect of a Diet containing 70% Protein from Plants on Mineral Metabolism and Musculoskeletal Health in Chronic Kidney Disease

    PubMed Central

    Moorthi, Ranjani N; Armstrong, Cheryl L. H.; Janda, Kevin; Ponsler-Sipes, Kristen; Asplin, John R.; Moe, Sharon M

    2015-01-01

    Background Chronic Kidney Disease (CKD) is associated with alterations in phosphorus excretion, and increases in fibroblast growth factor (FGF23) and parathyroid hormone (PTH). Plant protein based phytate bound phosphorus, is less bioavailable than that from animal sources. Our prior one week study showed that a nearly 100% plant protein based diet benefits mineral metabolism in CKD; however this diet may not be acceptable to patients. Here we hypothesize that a diet containing 70% protein from plants has similar efficacy and is tolerated by CKD patients. Methods Thirteen subjects with CKD 3-4 received an omnivore diet containing 70% protein from plants for 4 weeks. The primary outcome was change in 24 hour urine phosphorus. Secondary outcomes were changes in serum phosphorus, FGF23, PTH, urine sodium excretion, grip strength and fat free mass. Repeated measures analysis of variance (ANOVA) was used to test differences in parameters over the 4 weeks. Results Mean age of subjects was 54.8 years. Median eGFR was 26 (IQR 14.7) ml/min/1.73m2. Over the 4 week period, urine phosphorus significantly decreased by 215±232 mg/day (p<0.001). No significant changes in serum FGF23, phosphorus or PTH were noted. Urine sodium and titratable acid decreased significantly on the diet. Hand grip strength and fat-free mass did not change. There were two hyperkalemia events both 5.8 meq/l, corrected by food substitutions. No other adverse events were observed. Conclusions A 70% plant protein diet is safe, tolerated, and efficacious in lowering urine phosphorus excretion and may be an alternative to phosphate binders. PMID:25613675

  16. Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.

    PubMed

    Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa

    Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.

  17. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    PubMed

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  18. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation.

    PubMed

    Di, Xiao-Jing; Wang, Ya-Juan; Han, Dong-Yun; Fu, Yan-Lin; Duerfeldt, Adam S; Blagg, Brian S J; Mu, Ting-Wei

    2016-04-29

    Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A Brazilian family with hereditary inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia.

    PubMed

    Fanganiello, R D; Kimonis, V E; Côrte, C C; Nitrini, R; Passos-Bueno, M R

    2011-04-01

    Inclusion body myopathy associated with Paget disease and frontotemporal dementia (IBMPFD) is a progressive and usually misdiagnosed autosomal dominant disorder. It is clinically characterized by a triad of features: proximal and distal myopathy, early onset Paget disease of bone (PDB), and frontotemporal dementia (FTD). It is caused by missense mutations in the valosin-containing protein (VCP) gene. We describe here the clinical and molecular findings of the first Brazilian family identified with IBMPFD. Progressive myopathy affecting the limb girdles was detected by clinical examination followed by muscle biopsy and creatine kinase measurement. PDB was suggested after anatomopathological bone examination and FTD was diagnosed by clinical, neuropsychological and language evaluations. Brain magnetic resonance revealed severe atrophy of the anterior temporal lobes, including the hippocampi. A R93C mutation in VCP was detected by direct sequencing screening in subject W (age 62) and in his mother. Four more individuals diagnosed with "dementia" were reported in this family. We also present a comprehensive genotype-phenotype correlation analysis of mutations in VCP in 182 patients from 29 families described in the literature and show that while IBM is a conspicuously penetrant symptom, PDB has a lower penetrance when associated with mutations in the AAAD1 domain and FTD has a lower penetrance when associated with mutations in the Junction (L1-D1) domain. Furthermore, the R93C mutation is likely to be associated with the penetrance of all the clinical symptoms of the triad.

  20. Functional insights from the distribution and role of homopeptide repeat-containing proteins

    PubMed Central

    Faux, Noel G.; Bottomley, Stephen P.; Lesk, Arthur M.; Irving, James A.; Morrison, John R.; de la Banda, Maria Garcia; Whisstock, James C.

    2005-01-01

    Expansion of “low complex” repeats of amino acids such as glutamine (Poly-Q) is associated with protein misfolding and the development of degenerative diseases such as Huntington's disease. The mechanism by which such regions promote misfolding remains controversial, the function of many repeat-containing proteins (RCPs) remains obscure, and the role (if any) of repeat regions remains to be determined. Here, a Web-accessible database of RCPs is presented. The distribution and evolution of RCPs that contain homopeptide repeats tracts are considered, and the existence of functional patterns investigated. Generally, it is found that while polyamino acid repeats are extremely rare in prokaryotes, several eukaryote putative homologs of prokaryote RCP—involved in important housekeeping processes—retain the repetitive region, suggesting an ancient origin for certain repeats. Within eukarya, the most common uninterrupted amino acid repeats are glutamine, asparagines, and alanine. Interestingly, while poly-Q repeats are found in vertebrates and nonvertebrates, poly-N repeats are only common in more primitive nonvertebrate organisms, such as insects and nematodes. We have assigned function to eukaryote RCPs using Online Mendelian Inheritance in Man (OMIM), the Human Reference Protein Database (HRPD), FlyBase, and Wormpep. Prokaryote RCPs were annotated using BLASTp searches and Gene Ontology. These data reveal that the majority of RCPs are involved in processes that require the assembly of large, multiprotein complexes, such as transcription and signaling. PMID:15805494

  1. Landscape of Pleiotropic Proteins Causing Human Disease: Structural and System Biology Insights.

    PubMed

    Ittisoponpisan, Sirawit; Alhuzimi, Eman; Sternberg, Michael J E; David, Alessia

    2017-03-01

    Pleiotropy is the phenomenon by which the same gene can result in multiple phenotypes. Pleiotropic proteins are emerging as important contributors to rare and common disorders. Nevertheless, little is known on the mechanisms underlying pleiotropy and the characteristic of pleiotropic proteins. We analyzed disease-causing proteins reported in UniProt and observed that 12% are pleiotropic (variants in the same protein cause more than one disease). Pleiotropic proteins were enriched in deleterious and rare variants, but not in common variants. Pleiotropic proteins were more likely to be involved in the pathogenesis of neoplasms, neurological, and circulatory diseases and congenital malformations, whereas non-pleiotropic proteins in endocrine and metabolic disorders. Pleiotropic proteins were more essential and had a higher number of interacting partners compared with non-pleiotropic proteins. Significantly more pleiotropic than non-pleiotropic proteins contained at least one intrinsically long disordered region (P < 0.001). Deleterious variants occurring in structurally disordered regions were more commonly found in pleiotropic, rather than non-pleiotropic proteins. In conclusion, pleiotropic proteins are an important contributor to human disease. They represent a biologically different class of proteins compared with non-pleiotropic proteins and a better understanding of their characteristics and genetic variants can greatly aid in the interpretation of genetic studies and drug design. © 2016 WILEY PERIODICALS, INC.

  2. Next Generation Sequencing and ALS: known genes, different phenotyphes.

    PubMed

    Campopiano, Rosa; Ryskalin, Larisa; Giardina, Emiliano; Zampatti, Stefania; Busceti, Carla L; Biagioni, Francesca; Ferese, Rosangela; Storto, Marianna; Gambardella, Stefano; Fornai, Francesco

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease clinically characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease, and over the last decade, identification of mutations in about 20 genes predisposing to these disorders has provided the means to better understand their pathogenesis. Next Generation sequencing (NGS) is an advanced high-throughput DNA sequencing technology which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic neurological and neurodegenerative diseases. These strategies allowed to rapidly identify disease-associated variants and genetic risk factors for both familial (fALS) and sporadic ALS (sALS), strongly contributing to the knowledge of the genetic architecture of ALS. Moreover, as the number of ALS genes grows, many of the proteins they encode are in intracellular processes shared with other known diseases, suggesting an overlapping of clinical and phatological features between different diseases. To emphasize this concept, the review focuses on genes coding for Valosin-containing protein (VPC) and two Heterogeneous nuclear RNA-binding proteins (HNRNPA1 and hnRNPA2B1), recently idefied through NGS, where different mutations have been associated in both ALS and other neurological and neurodegenerative diseases.

  3. Purification of proteins from solutions containing residual host cell proteins via preparative crystallization.

    PubMed

    Hekmat, Dariusch; Breitschwerdt, Peter; Weuster-Botz, Dirk

    2015-09-01

    To investigate quantitatively and reproducibly a scalable, preparative crystallization method in novel stirred tanks using three different protein solutions containing residual microbial host cell proteins (HCP). Lysozyme from solutions being spiked with up to 15% host cell proteins (HCP) (corresponding to 176,500 ppm) was crystallized within a 2.4-4.6 h at 93.7% yield using NaCl and glycerol. Lipase was crystallized under comparable conditions using NaCl and a mixture of two polyethylene glycols (PEG). Enhanced green fluorescent protein (eGFP) was overexpressed in E. coli yielding a solution containing 23% target protein. Residual HCP content after pre-treatment was 7-16%. eGFP was crystallized from these solutions within 1.75-4 h at 88.7% step yield using ethanol and the same mixture of two PEG as in the case of lipase. HCP contained in the solvent channels of the protein crystals could be removed by diffusive washing yielding final purities at or above 99%. Preparative crystallization can be carried out with fast kinetics and high yields from solutions containing residual impurities and may represent an attractive alternative purification method compared to preparative chromatography, especially at large production scales.

  4. The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein

    PubMed Central

    Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.

    2016-01-01

    LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497

  5. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  6. Reduction of erosion by protein-containing toothpastes.

    PubMed

    Jager, D H J; Vissink, A; Timmer, C J; Bronkhorst, E; Vieira, A M; Huysmans, M C D N J M

    2013-01-01

    To assess the effect of protein-containing toothpastes on the progression of dental erosion in situ (with pellicle) and in vitro (without pellicle). A combined split-mouth (extraoral water or toothpaste brushing) and crossover (type of toothpaste) setup was used. Two protein-containing (high/low concentrations of colostrum) and one nonprotein (placebo) toothpaste were investigated. Sixteen volunteers wore intraoral appliances containing 2 human enamel samples on 3 afternoons for pellicle growth during 90 min. One enamel sample was brushed for 5 s with one of the three toothpastes and subsequently exposed to a slurry of the corresponding toothpaste for 2 min. The other sample was exposed to water. Both samples were subsequently exposed to citric acid (extraorally). Loss of calcium and inorganic phosphate were determined. The same sequence of exposures was applied to 16 enamel samples in an in vitro setup without pellicle. With the in situ-formed pellicle, all toothpastes significantly reduced calcium loss compared to water brushing, although no significant differences were found among toothpastes (p = 0.073). For the loss of phosphate, a significant reduction could be found with the use of the high-protein toothpaste compared to the nonprotein toothpaste. Overall there were only slight differences between the toothpastes. Toothpaste effects were less clear in the in vitro experiment. The addition of proteins to toothpaste shows some promise for the prevention of erosion. Further research is needed to investigate the performance of the protein-containing toothpastes in longer in situ studies with regard to erosive wear. Copyright © 2012 S. Karger AG, Basel.

  7. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  8. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles

    PubMed Central

    Ray, Greeshma; Schmitt, Phuong Tieu

    2016-01-01

    ABSTRACT Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein

  9. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles.

    PubMed

    Ray, Greeshma; Schmitt, Phuong Tieu; Schmitt, Anthony P

    2016-01-20

    Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein interactions which enable

  10. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  11. Implication of Proteins Containing Tetratricopeptide Repeats in Conditional Virulence Phenotypes of Legionella pneumophila

    PubMed Central

    Bandyopadhyay, Purnima; Sumer, Eren U.; Jayakumar, Deepak; Liu, Shuqing; Xiao, Huifang

    2012-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates. PMID:22563053

  12. The VCP/p97 and YOD1 Proteins Have Different Substrate-dependent Activities in Endoplasmic Reticulum-associated Degradation (ERAD).

    PubMed

    Sasset, Linda; Petris, Gianluca; Cesaratto, Francesca; Burrone, Oscar R

    2015-11-20

    Endoplasmic reticulum-associated degradation (ERAD) is an essential quality control mechanism of the folding state of proteins in the secretory pathway that targets unfolded/misfolded polypeptides for proteasomal degradation. The cytosolic p97/valosin-containing protein is an essential ATPase for degradation of ERAD substrates. It has been considered necessary during retro-translocation to extract proteins from the endoplasmic reticulum that are otherwise supposed to accumulate in the endoplasmic reticulum lumen. The activity of the p97-associated deubiquitinylase YOD1 is also required for substrate disposal. We used the in vivo biotinylation retro-translocation assay in mammalian cells under conditions of impaired p97 or YOD1 activity to directly discriminate their requirements and diverse functions in ERAD. Using different ERAD substrates, we found that both proteins participate in two distinct retro-translocation steps. For CD4 and MHC-Iα, which are induced to degradation by the HIV-1 protein Vpu and by the CMV immunoevasins US2 and US11, respectively, p97 and YOD1 have a retro-translocation-triggering role. In contrast, for three other spontaneous ERAD model substrates (NS1, NHK-α1AT, and BST-2/Tetherin), p97 and YOD1 are required in the downstream events of substrate deglycosylation and proteasomal degradation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A structure- and chemical genomics-based approach for repositioning of drugs against VCP/p97 ATPase.

    PubMed

    Segura-Cabrera, Aldo; Tripathi, Reshmi; Zhang, Xiaoyi; Gui, Lin; Chou, Tsui-Fen; Komurov, Kakajan

    2017-03-21

    Valosin-containing protein (VCP/p97) ATPase (a.k.a. Cdc48) is a key member of the ER-associated protein degradation (ERAD) pathway. ERAD and VCP/p97 have been implicated in a multitude of human diseases, such as neurodegenerative diseases and cancer. Inhibition of VCP/p97 induces proteotoxic ER stress and cell death in cancer cells, making it an attractive target for cancer treatment. However, no drugs exist against this protein in the market. Repositioning of drugs towards new indications is an attractive alternative to the de novo drug development due to the potential for significantly shorter time to clinical translation. Here, we employed an integrative strategy for the repositioning of drugs as novel inhibitors of the VCP/p97 ATPase. We integrated structure-based virtual screening with the chemical genomics analysis of drug molecular signatures, and identified several candidate inhibitors of VCP/p97 ATPase. Importantly, experimental validation with cell-based and in vitro ATPase assays confirmed three (ebastine, astemizole and clotrimazole) out of seven tested candidates (~40% true hit rate) as direct inhibitors of VCP/p97 and ERAD. This study introduces an effective integrative strategy for drug repositioning, and identified new drugs against the VCP/p97/ERAD pathway in human diseases.

  14. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.

  15. Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia.

    PubMed

    Watts, G D J; Thomasova, D; Ramdeen, S K; Fulchiero, E C; Mehta, S G; Drachman, D A; Weihl, C C; Jamrozik, Z; Kwiecinski, H; Kaminska, A; Kimonis, V E

    2007-11-01

    Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD, OMIM 167320) has recently been attributed to eight missense mutations in valosin-containing protein (VCP). We report novel VCP mutations N387H and L198W in six individuals from two families who presented with proximal muscle weakness at a mean age of diagnosis of 40 years, most losing the ability to walk within a few years of onset. Electromyographic studies in four individuals were suggestive of 'myopathic' changes, and neuropathic pattern was identified in one individual in family 1. Muscle biopsy in four individuals showed myopathic changes characterized by variable fiber size, two individuals showing rimmed vacuoles and IBM-type cytoplasmic inclusions in muscle fibers, and electron microscopy in one individual revealing abundant intranuclear inclusions. Frontotemporal dementia associated with characteristic behavioral changes including short-term memory loss, language difficulty, and antisocial behavior was observed in three individuals at a mean age of 47 years. Detailed brain pathology in one individual showed cortical degenerative changes, most severe in the temporal lobe and hippocampus. Abundant ubiquitin-positive tau-, alpha-synuclein-, polyglutamine repeat-negative neuronal intranuclear inclusions and only rare intracytoplasmic VCP positive inclusions were seen. These new mutations may cause structural changes in VCP and provide some insight into the functional effects of pathogenic mutations.

  16. Decoding the disease-associated proteins encoded in the human chromosome 4.

    PubMed

    Chen, Lien-Chin; Liu, Mei-Ying; Hsiao, Yung-Chin; Choong, Wai-Kok; Wu, Hsin-Yi; Hsu, Wen-Lian; Liao, Pao-Chi; Sung, Ting-Yi; Tsai, Shih-Feng; Yu, Jau-Song; Chen, Yu-Ju

    2013-01-04

    Chromosome 4 is the fourth largest chromosome, containing approximately 191 megabases (~6.4% of the human genome) with 757 protein-coding genes. A number of marker genes for many diseases have been found in this chromosome, including genetic diseases (e.g., hepatocellular carcinoma) and biomedical research (cardiac system, aging, metabolic disorders, immune system, cancer and stem cell) related genes (e.g., oncogenes, growth factors). As a pilot study for the chromosome 4-centric human proteome project (Chr 4-HPP), we present here a systematic analysis of the disease association, protein isoforms, coding single nucleotide polymorphisms of these 757 protein-coding genes and their experimental evidence at the protein level. We also describe how the findings from the chromosome 4 project might be used to drive the biomarker discovery and validation study in disease-oriented projects, using the examples of secretomic and membrane proteomic approaches in cancer research. By integrating with cancer cell secretomes and several other existing databases in the public domain, we identified 141 chromosome 4-encoded proteins as cancer cell-secretable/shedable proteins. Additionally, we also identified 54 chromosome 4-encoded proteins that have been classified as cancer-associated proteins with successful selected or multiple reaction monitoring (SRM/MRM) assays developed. From literature annotation and topology analysis, 271 proteins were recognized as membrane proteins while 27.9% of the 757 proteins do not have any experimental evidence at the protein-level. In summary, the analysis revealed that the chromosome 4 is a rich resource for cancer-associated proteins for biomarker verification projects and for drug target discovery projects.

  17. Insights into Jumonji C-domain containing protein 6 (JMJD6): a multifactorial role in foot-and-mouth disease virus replication in cells.

    PubMed

    Lawrence, Paul; Rieder, Elizabeth

    2017-06-01

    The Jumonji C-domain containing protein 6 (JMJD6) has had a convoluted history, and recent reports indicating a multifactorial role in foot-and-mouth disease virus (FMDV) infection have further complicated the functionality of this protein. It was first identified as the phosphatidylserine receptor on the cell surface responsible for recognizing phosphatidylserine on the surface of apoptotic cells resulting in their engulfment by phagocytic cells. Subsequent study revealed a nuclear subcellular localization, where JMJD6 participated in lysine hydroxylation and arginine demethylation of histone proteins and other non-histone proteins. Interestingly, to date, JMDJ6 remains the only known arginine demethylase with a growing list of known substrate molecules. These conflicting associations rendered the subcellular localization of JMJD6 to be quite nebulous. Further muddying this area, two different groups illustrated that JMJD6 could be induced to redistribute from the cell surface to the nucleus of a cell. More recently, JMJD6 was demonstrated to be a host factor contributing to the FMDV life cycle, where it was not only exploited for its arginine demethylase activity, but also served as an alternative virus receptor. This review attempts to coalesce these divergent roles for a single protein into one cohesive account. Given the diverse functionalities already characterized for JMJD6, it is likely to continue to be a confounding protein resulting in much contention going into the near future.

  18. Impact of protein D-containing pneumococcal conjugate vaccines on non-typeable Haemophilus influenzae acute otitis media and carriage.

    PubMed

    Clarke, Christopher; Bakaletz, Lauren O; Ruiz-Guiñazú, Javier; Borys, Dorota; Mrkvan, Tomas

    2017-07-01

    Protein D-containing vaccines may decrease acute otitis media (AOM) burden and nasopharyngeal carriage of non-typeable Haemophilus influenzae (NTHi). Protein D-containing pneumococcal conjugate vaccine PHiD-CV (Synflorix, GSK Vaccines) elicits robust immune responses against protein D. However, the phase III Clinical Otitis Media and PneumoniA Study (COMPAS), assessing PHiD-CV efficacy against various pneumococcal diseases, was not powered to demonstrate efficacy against NTHi; only trends of protective efficacy against NTHi AOM in children were shown. Areas covered: This review aims to consider all evidence available to date from pre-clinical and clinical phase III studies together with further evidence emerging from post-marketing studies since PHiD-CV has been introduced into routine clinical practice worldwide, to better describe the clinical utility of protein D in preventing AOM due to NTHi and its impact on NTHi nasopharyngeal carriage. Expert commentary: Protein D is an effective carrier protein in conjugate vaccines and evidence gathered from pre-clinical, clinical and observational studies suggest that it also elicits immune response that can help to reduce the burden of AOM due to NTHi. There remains a need to develop improved vaccines for prevention of NTHi disease, which could be achieved by combining protein D with other antigens.

  19. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  20. Paired Helical Filaments of Inclusion-Body Myositis Muscle Contain RNA and Survival Motor Neuron Protein

    PubMed Central

    Broccolini, Aldobrando; Engel, W. King; Alvarez, Renate B.; Askanas, Valerie

    2000-01-01

    Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older persons. Pathologically, the muscle biopsy manifests various degrees of inflammation and specific vacuolar degeneration of muscle fibers characterized by paired helical filaments (PHFs) composed of phosphorylated tau. IBM vacuolated fibers also contain accumulations of several other Alzheimer-characteristic proteins. Molecular mechanisms leading to formation of the PHFs and accumulations of proteins in IBM muscle are not known. We report that the abnormal muscle fibers of IBM contained (i) acridine-orange-positive RNA inclusions that colocalized with the immunoreactivity of phosphorylated tau and (ii) survival motor neuron protein immunoreactive inclusions, which by immuno-electron microscopy were confined to paired helical filaments. This study demonstrates two novel components of the IBM paired helical filaments, which may lead to better understanding of their pathogenesis. PMID:10751338

  1. Paired helical filaments of inclusion-body myositis muscle contain RNA and survival motor neuron protein.

    PubMed

    Broccolini, A; Engel, W K; Alvarez, R B; Askanas, V

    2000-04-01

    Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older persons. Pathologically, the muscle biopsy manifests various degrees of inflammation and specific vacuolar degeneration of muscle fibers characterized by paired helical filaments (PHFs) composed of phosphorylated tau. IBM vacuolated fibers also contain accumulations of several other Alzheimer-characteristic proteins. Molecular mechanisms leading to formation of the PHFs and accumulations of proteins in IBM muscle are not known. We report that the abnormal muscle fibers of IBM contained (i) acridine-orange-positive RNA inclusions that colocalized with the immunoreactivity of phosphorylated tau and (ii) survival motor neuron protein immunoreactive inclusions, which by immuno-electron microscopy were confined to paired helical filaments. This study demonstrates two novel components of the IBM paired helical filaments, which may lead to better understanding of their pathogenesis.

  2. Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine

    2005-04-01

    Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.

  3. Heat shock protein-containing exosomes in mid-trimester amniotic fluids.

    PubMed

    Asea, Alexzander; Jean-Pierre, Claudel; Kaur, Punit; Rao, Preethi; Linhares, Iara M; Skupski, Daniel; Witkin, Steven S

    2008-10-01

    Exosomes are multivesicular bodies formed by inverse membrane budding into the lumen of an endocytic compartment. Fusion with the plasma membrane leads to their release into the external milieu. The incorporation of heat shock proteins into exosomes has been associated with immune regulatory activity. We have examined whether heat shock protein-containing exosomes are present in mid-trimester amniotic fluid. Exosomes were isolated from mid-trimester amniotic fluids by sequential low-speed and high-speed centrifugation followed by sucrose density gradient centrifugation. Biochemical characterization included floatation pattern in sucrose gradients, acetylcholinesterase (AChE) activity and Western blot analysis for exosome-containing proteins. Exosomes were present in each of 23 amniotic fluids tested. They banded at a density of 1.17g/ml in sucrose gradients, were positive for AChE activity and contained tubulin, the inducible 72kDa heat shock protein, Hsp72 and the constitutively expressed heat shock protein, Hsc73; they were negative for calnexin. Exosome concentrations correlated positively with the number of pregnancies. Heat shock protein-containing exosomes are constituents of mid-trimester amniotic fluids and may contribute to immune regulation within the amniotic cavity.

  4. Immunogenicity of a Prime-Boost Vaccine Containing the Circumsporozoite Proteins of Plasmodium vivax in Rodents

    PubMed Central

    Teixeira, Lais H.; Tararam, Cibele A.; Lasaro, Marcio O.; Camacho, Ariane G. A.; Ersching, Jonatan; Leal, Monica T.; Herrera, Sócrates; Bruna-Romero, Oscar; Soares, Irene S.; Nussenzweig, Ruth S.; Ertl, Hildegund C. J.; Nussenzweig, Victor

    2014-01-01

    Plasmodium vivax is the most widespread and the second most prevalent malaria-causing species in the world. Current measures used to control the transmission of this disease would benefit from the development of an efficacious vaccine. In the case of the deadly parasite P. falciparum, the recombinant RTS,S vaccine containing the circumsporozoite antigen (CSP) consistently protects 30 to 50% of human volunteers against infection and is undergoing phase III clinical trials in Africa with similar efficacy. These findings encouraged us to develop a P. vivax vaccine containing the three circulating allelic forms of P. vivax CSP. Toward this goal, we generated three recombinant bacterial proteins representing the CSP alleles, as well as a hybrid polypeptide called PvCSP-All-CSP-epitopes. This hybrid contains the conserved N and C termini of P. vivax CSP and the three variant repeat domains in tandem. We also generated simian and human recombinant replication-defective adenovirus vectors expressing PvCSP-All-CSP-epitopes. Mice immunized with the mixture of recombinant proteins in a formulation containing the adjuvant poly(I·C) developed high and long-lasting serum IgG titers comparable to those elicited by proteins emulsified in complete Freund's adjuvant. Antibody titers were similar in mice immunized with homologous (protein-protein) and heterologous (adenovirus-protein) vaccine regimens. The antibodies recognized the three allelic forms of CSP, reacted to the repeated and nonrepeated regions of CSP, and recognized sporozoites expressing the alleles VK210 and VK247. The vaccine formulations described in this work should be useful for the further development of an anti-P. vivax vaccine. PMID:24478093

  5. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    PubMed Central

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  6. Chaperonin-containing T-complex Protein 1 Subunit ζ Serves as an Autoantigen Recognized by Human Vδ2 γδ T Cells in Autoimmune Diseases.

    PubMed

    Chen, Hui; You, Hongqin; Wang, Lifang; Zhang, Xuan; Zhang, Jianmin; He, Wei

    2016-09-16

    Human γδ T cells recognize conserved endogenous and stress-induced antigens typically associated with autoimmune diseases. However, the role of γδ T cells in autoimmune diseases is not clear. Few autoimmune disease-related antigens recognized by T cell receptor (TCR) γδ have been defined. In this study, we compared Vδ2 TCR complementarity-determining region 3 (CDR3) between systemic lupus erythematosus (SLE) patients and healthy donors. Results show that CDR3 length distribution differed significantly and displayed oligoclonal characteristics in SLE patients when compared with healthy donors. We found no difference in the frequency of Jδ gene fragment usage between these two groups. According to the dominant CDR3δ sequences in SLE patients, synthesized SL2 peptides specifically bound to human renal proximal tubular epithelial cell line HK-2; SL2-Vm, a mutant V sequence of SL2, did not bind. We identified the putative protein ligand chaperonin-containing T-complex protein 1 subunit ζ (CCT6A) using SL2 as a probe in HK-2 cell protein extracts by affinity chromatography and liquid chromatography-electrospray ionization-tandem mass spectrometry analysis. We found CCT6A expression on the surface of HK-2 cells. Cytotoxicity of only Vδ2 γδ T cells to HK-2 cells was blocked by anti-CCT6A antibody. Finally, we note that CCT6A concentration was significantly increased in plasma of SLE and rheumatoid arthritis patients. These data suggest that CCT6A is a novel autoantigen recognized by Vδ2 γδ T cells, which deepens our understanding of mechanisms in autoimmune diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mechanisms of protein misfolding: Novel therapeutic approaches to protein-misfolding diseases

    NASA Astrophysics Data System (ADS)

    Salahuddin, Parveen; Siddiqi, Mohammad Khursheed; Khan, Sanaullah; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2016-11-01

    In protein misfolding, protein molecule acquires wrong tertiary structure, thereby induces protein misfolding diseases. Protein misfolding can occur through various mechanisms. For instance, changes in environmental conditions, oxidative stress, dominant negative mutations, error in post-translational modifications, increase in degradation rate and trafficking error. All of these factors cause protein misfolding thereby leading to diseases conditions. Both in vitro and in vivo observations suggest that partially unfolded or misfolded intermediates are particularly prone to aggregation. These partially misfolded intermediates aggregate via the interaction with the complementary intermediates and consequently enhance oligomers formation that grows into fibrils and proto-fibrils. The amyloid fibrils for example, accumulate in the brain and central nervous system (CNS) as amyloid deposits in the Parkinson's disease (PD), Alzheimer's disease (AD), Prion disease and Amylo lateral Sclerosis (ALS). Furthermore, tau protein shows intrinsically disorder conformation; therefore its interaction with microtubule is impaired and this protein undergoes aggregation. This is also underlying cause of Alzheimers and other neurodegenerative diseases. Treatment of such misfolding maladies is considered as one of the most important challenges of the 21st century. Currently, several treatments strategies have been and are being discovered. These therapeutic interventions partly reversed or prevented the pathological state. More recently, a new approach was discovered, which employs nanobodies that targets multisteps in fibril formation pathway that may possibly completely cure these misfolding diseases. Keeping the above views in mind in the current review, we have comprehensively discussed the different mechanisms underlying protein misfolding thereby leading to diseases conditions and their therapeutic interventions.

  8. Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies.

    PubMed

    Bourdenx, Mathieu; Koulakiotis, Nikolaos Stavros; Sanoudou, Despina; Bezard, Erwan; Dehay, Benjamin; Tsarbopoulos, Anthony

    2017-08-01

    Alzheimer's and Parkinson's diseases are the most prevalent neurodegenerative diseases that generate important health-related direct and indirect socio-economic costs. They are characterized by severe neuronal losses in several disease-specific brain regions associated with deposits of aggregated proteins. In Alzheimer's disease, β-amyloid peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein tau are the two main neuropathological lesions, while Parkinson's disease is defined by the presence of Lewy Bodies that are intraneuronal proteinaceous cytoplasmic inclusions. α-Synuclein has been identified as a major protein component of Lewy Bodies and heavily implicated in the pathogenesis of Parkinson's disease. In the past few years, evidence has emerged to explain how these aggregate-prone proteins can undergo spontaneous self-aggregation, propagate from cell to cell, and mediate neurotoxicity. Current research now indicates that oligomeric forms are probably the toxic species. This article discusses recent progress in the understanding of the pathogenesis of these diseases, with a focus on the underlying mechanisms of protein aggregation, and emphasizes the pathophysiological molecular mechanisms leading to cellular toxicity. Finally, we present the putative direct link between β-amyloid peptide and tau in causing toxicity in Alzheimer's disease as well as α-synuclein in Parkinson's disease, along with some of the most promising therapeutic strategies currently in development for those incurable neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Protein aggregates in Huntington’s disease

    PubMed Central

    Arrasate, Montserrat; Finkbeiner, Steven

    2014-01-01

    Huntington’s disease (HD) is an incurable neurodegenerative disease characterized by abnormal motor movements, personality changes, and early death. HD is caused by a mutation in the IT-15 gene that expands abnormally the number of CAG nucleotide repeats. As a result, the translated protein huntingtin contains disease-causing expansions of glutamines (polyQ) that make it prone to misfold and aggregate. While the gene and mutations that cause HD are known, the mechanisms underlying HD pathogenesis are not. Here we will review the state of knowledge of HD, focusing especially on a hallmark pathological feature—intracellular aggregates of mutant Htt called inclusion bodies (IBs). We will describe the role of IBs in the disease. We speculate that IB formation could be just one component of a broader coping response triggered by misfolded Htt whose efficacy may depend on the extent to which it clears toxic forms of mutant Htt. We will describe how IB formation might be regulated and which factors could determine different coping responses in different subsets of neurons. A differential regulation of IB formation as a function of the cellular context could, eventually, explain part of the neuronal vulnerability observed in HD. PMID:22200539

  10. Unfoldomics of human diseases: linking protein intrinsic disorder with diseases

    PubMed Central

    Uversky, Vladimir N; Oldfield, Christopher J; Midic, Uros; Xie, Hongbo; Xue, Bin; Vucetic, Slobodan; Iakoucheva, Lilia M; Obradovic, Zoran; Dunker, A Keith

    2009-01-01

    Background Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack stable tertiary and/or secondary structure yet fulfills key biological functions. The recent recognition of IDPs and IDRs is leading to an entire field aimed at their systematic structural characterization and at determination of their mechanisms of action. Bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. These activities complement the functions of structured proteins. IDPs and IDRs were shown to participate in both one-to-many and many-to-one signaling. Alternative splicing and posttranslational modifications are frequently used to tune the IDP functionality. Several individual IDPs were shown to be associated with human diseases, such as cancer, cardiovascular disease, amyloidoses, diabetes, neurodegenerative diseases, and others. This raises questions regarding the involvement of IDPs and IDRs in various diseases. Results IDPs and IDRs were shown to be highly abundant in proteins associated with various human maladies. As the number of IDPs related to various diseases was found to be very large, the concepts of the disease-related unfoldome and unfoldomics were introduced. Novel bioinformatics tools were proposed to populate and characterize the disease-associated unfoldome. Structural characterization of the members of the disease-related unfoldome requires specialized experimental approaches. IDPs possess a number of unique structural and functional features that determine their broad involvement into the pathogenesis of various diseases. Conclusion Proteins associated with various human diseases are enriched in intrinsic disorder. These disease-associated IDPs and IDRs are real, abundant, diversified, vital, and dynamic. These proteins and regions comprise the disease-related unfoldome, which covers a significant part

  11. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers.

    PubMed

    Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui

    2014-02-01

    Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Inhibition of Protein Carbamylation in Urea Solution Using Ammonium Containing Buffers

    PubMed Central

    Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui

    2013-01-01

    Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N-termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium containing buffers was developed to facilitate its application in proteomic research. PMID:24161613

  13. Architecture of the human interactome defines protein communities and disease networks

    PubMed Central

    Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade

    2017-01-01

    The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442

  14. Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity

    PubMed Central

    Al-Khodor, Souhaila; Price, Christopher T.; Kalia, Awdhesh; Kwaik, Yousef Abu

    2009-01-01

    Summary The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature and predominantly found in eukaryotic proteins. The genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses identified numerous genes encoding ANK-containing proteins that were proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells where they mimic or manipulate various host functions. Understanding the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions. PMID:19962898

  15. Patatin-like phospholipase domain-containing protein 3 (PNPLA3): A potential role in the association between liver disease and bipolar disorder.

    PubMed

    Kenneson, Aileen; Funderburk, Jennifer S

    2017-02-01

    Due to the increased prevalence of liver disease in patients with bipolar disorder, we examined the potential role of the patatin-like phospholipase domain-containing protein 3 (PNPLA3) variant among individuals with bipolar disorder and those with no mood disorder. We used the National Health and Nutrition Examination Survey (NHANES) database (aged 15-39 years) to identify a group of individuals with a bipolar diagnosis and a control group of individuals with no mood disorder. A total of 1931 individuals were randomly selected, one from each family containing information on the PNPLA3 genotype to be used in the analysis. Analyses revealed individuals with the recessive variant genotype (MM) had an adjusted odds ratio for bipolar disorder of about 4.6 compared to individuals with either IM or II genotypes of the PNPLA3 variant. Limitations of this study include the use of a lay-administered survey in for diagnosis of bipolar disorder in NHANES. The association between the PNPLA3 variant and bipolar disorder may help guide further work on medication effectiveness, treatment options, prevention approaches, and understanding potential medication side effects among specific subgroups of individuals with the MM genotype. Published by Elsevier B.V.

  16. Nanoparticles for Protein Sensing in Primary Containers: Interaction Analysis and Application.

    PubMed

    Pérez Medina Martínez, Víctor; Espinosa-de la Garza, Carlos E; Méndez-Silva, Diego A; Bolívar-Vichido, Mariana; Flores-Ortiz, Luis F; Pérez, Néstor O

    2018-05-01

    Silver nanoparticles (AgNPs) are known to interact with proteins, leading to modifications of the plasmonic absorption that can be used to monitor this interaction, entailing a promising application for sensing adsorption of therapeutic proteins in primary containers. First, transmission electron microscopy in combination with plasmonic absorption and light scattering responses were used to characterize AgNPs and protein-AgNP complexes, including its concentration dependence, using two therapeutic molecules as models: a monoclonal antibody (mAb) and a synthetic copolymer (SC). Upon interaction, a protein corona was formed around AgNPs with the consequent shifting and broadening of their characteristic surface plasmon resonance (SPR) band (400 nm) to 410 nm and longer wavelenghts. Additional studies revealed secondary and three-dimensional structure modifications of model proteins upon interaction with AgNPs by circular dichroism and fluorescence techniques, respectively. Based on the modification of the SPR condition of AgNPs upon interaction with proteins, we developed a novel protein-sensing application of AgNPs in primary containers. This strategy was used to conduct a compatibility assessment of model proteins towards five commercially available prefillable glass syringe (PFS) models. mAb- and SC-exposed PFSs showed that 74 and 94% of cases were positive for protein adsorption, respectively. Interestingly, protein adsorption on 15% of total tested PFSs was negligible (below the nanogram level). Our results highlight the need of a case-by-case compatibility assessment of therapeutic proteins and their primary containers. This strategy has the potential to be easily applied on other containers and implemented during early-stage product development by pharmaceutical companies and for routine use during batch release by packaging manufacturers.

  17. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    PubMed

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis*

    PubMed Central

    He, Jinshan; Zhu, Qianzheng; Wani, Gulzar; Sharma, Nidhi; Han, Chunhua; Qian, Jiang; Pentz, Kyle; Wang, Qi-en; Wani, Altaf A.

    2014-01-01

    Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis. PMID:25118285

  19. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene.

    PubMed

    Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G

    2009-09-01

    Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.

  20. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    PubMed

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  1. [Family of ribosomal proteins S1 contains unique conservative domain].

    PubMed

    Deriusheva, E I; Machulin, A V; Selivanova, O M; Serdiuk, I N

    2010-01-01

    Different representatives of bacteria have different number of amino acid residues in the ribosomal proteins S1. This number varies from 111 (Spiroplasma kunkelii) to 863 a.a. (Treponema pallidum). Traditionally and for lack of this protein three-dimensional structure, its architecture is represented as repeating S1 domains. Number of these domains depends on the protein's length. Domain's quantity and its boundaries data are contained in the specialized databases, such as SMART, Pfam and PROSITE. However, for the same object these data may be very different. For search of domain's quantity and its boundaries, new approach, based on the analysis of dicted secondary structure (PsiPred), was used. This approach allowed us to reveal structural domains in amino acid sequences of S1 proteins and at that number varied from one to six. Alignment of S1 proteins, containing different domain's number, with the S1 RNAbinding domain of Escherichia coli PNPase elicited a fact that in family of ribosomal proteins SI one domain has maximal homology with S1 domain from PNPase. This conservative domain migrates along polypeptide chain and locates in proteins, containing different domain's number, according to specified pattern. In this domain as well in the S1 domain from PNPase, residues Phe-19, Phe-22, His-34, Asp-64 and Arg-68 are clustered on the surface and formed RNA binding site.

  2. Introduction to Protein Structure through Genetic Diseases

    ERIC Educational Resources Information Center

    Schneider, Tanya L.; Linton, Brian R.

    2008-01-01

    An illuminating way to learn about protein function is to explore high-resolution protein structures. Analysis of the proteins involved in genetic diseases has been used to introduce students to protein structure and the role that individual mutations can play in the onset of disease. Known mutations can be correlated to changes in protein…

  3. Community of protein complexes impacts disease association

    PubMed Central

    Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia

    2012-01-01

    One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411

  4. Role of selenium-containing proteins in T cell and macrophage function

    PubMed Central

    Carlson, Bradley A.; Yoo, Min-Hyuk; Shrimali, Rajeev K.; Irons, Robert; Gladyshev, Vadim N.; Hatfield, Dolph L.; Park, Jin Mo

    2011-01-01

    Synopsis Selenium has been known for many years to have a role in boosting immune function, but the manner in which this element acts at the molecular level in host defense and inflammatory diseases is poorly understood. To elucidate the role of selenium-containing proteins in immune function, we knocked out the expression of this protein class in T cells or macrophages of mice by targeting the removal of the selenocysteine tRNA gene using loxP-Cre technology. Mice with selenoprotein-less T cells manifested reduced pools of mature and functional T cells in lymphoid tissues and an impairment in T cell-dependent antibody responses. Furthermore, selenoprotein deficiency in T cells led to an inability of these cells to suppress reactive oxygen species (ROS) production, which in turn affected their ability to proliferate in response to T cell receptor stimulation. Selenoprotein-less macrophages, on the other hand, manifested mostly normal inflammatory responses, but this deficiency resulted in an altered regulation in extracellular matrix-related gene expression and a diminished migration of macrophages in a protein gel matrix. These observations provided novel insights into the role of selenoproteins in immune function and tissue homeostasis. PMID:20576203

  5. Uncoupling Protein 2 and Metabolic Diseases

    PubMed Central

    Sreedhar, Annapoorna; Zhao, Yunfeng

    2017-01-01

    Mitochondria are fascinating organelles involved in various cellular-metabolic activities that are integral for mammalian development. Although they perform diverse, yet interconnected functions, mitochondria are remarkably regulated by complex signaling networks. Therefore, it is not surprising that mitochondrial dysfunction is involved in plethora of diseases, including neurodegenerative and metabolic disorders. One of the many factors that lead to mitochondrial-associated metabolic diseases is the uncoupling protein-2, a family of mitochondrial anion proteins present in the inner mitochondrial membrane. Since their discovery, uncoupling proteins have attracted considerable attention due to their involvement in mitochondrial-mediated oxidative stress and energy metabolism. This review attempts to provide a summary of recent developments in the field of uncoupling protein 2 relating to mitochondrial associated metabolic diseases. PMID:28351676

  6. Liposomes containing recombinant E protein vaccine against duck Tembusu virus in ducks.

    PubMed

    Ma, Tengfei; Liu, Yongxia; Cheng, Jia; Liu, Yanhan; Fan, Wentao; Cheng, Ziqiang; Niu, Xudong; Liu, Jianzhu

    2016-04-27

    To obtain an effective vaccine candidate against duck Tembusu viral (DTMUV) disease which causes egg-drop and great economical loss in the Chinese duck industry, liposome vaccines containing recombinant E protein were prepared and assessed in this study. The recombinant plasmid (PET28a-E) was constructed and transformed into BL21 (DE3) cells to produce E proteins. The recombinant E proteins were purified and entrapped by liposomes through reverse-phase evaporation. Eighty-four cherry valley ducks were randomly divided into seven groups and inoculated intramuscularly at one- or seven-day-old with liposomes-E protein or Freund's adjuvant-E protein vaccine. Blood samples were collected from the first week to the tenth week for serum antibody, plasma for viremia, as well as oropharyngeal and cloacal swabs for virus shedding analyses after being challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of duck Tembusu virus. Results showed that serum antibody level of the liposomes vaccine was higher than the Freund's adjuvant vaccine, and inoculating twice was superior to once; furthermore, the viremia and virus shedding tests also proved that the liposomes vaccine can provide complete protection against DTMUV challenge. These results demonstrated that the liposomes-E protein vaccine could be used as a potential candidate vaccine to prevent DTMUV infection in ducks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Purified horse milk exosomes contain an unpredictable small number of major proteins.

    PubMed

    Sedykh, Sergey E; Purvinish, Lada V; Monogarov, Artem S; Burkova, Evgeniya E; Grigor'eva, Alina E; Bulgakov, Dmitrii V; Dmitrenok, Pavel S; Vlassov, Valentin V; Ryabchikova, Elena I; Nevinsky, Georgy A

    2017-06-01

    Exosomes are 40-100 nm nanovesicles containing RNA and different proteins. Exosomes containing proteins, lipids, mRNAs, and microRNAs are important in intracellular communication and immune function. Exosomes from different sources are usually obtained by combination of centrifugation and ultracentrifugation and according to published data can contain from a few dozens to thousands of different proteins. Crude exosome preparations from milk of eighteen horses were obtained for the first time using several standard centrifugations. Exosome preparations were additionally purified by FPLC gel filtration. Individual preparations demonstrated different profiles of gel filtration showing well or bad separation of exosome peaks and one or two peaks of co-isolating proteins and their complexes. According to the electron microscopy, well purified exosomes displayed a typical exosome-like size (30-100 nm) and morphology. It was shown that exosomes may have several different biological functions, but detection of their biological functions may vary significantly depending on the presence of exosome contaminating proteins and proteins directly into exosomes. Exosome proteins were identified before and after gel filtration by MALDI MS and MS/MS spectrometry of protein tryptic hydrolyzates derived by SDS PAGE and 2D electrophoresis. The results of protein identification were unexpected: one or two peaks co-isolating proteins after gel-filtration mainly contained kappa-, beta-, alpha-S1-caseins and its precursors, but these proteins were not found in well-purified exosomes. Well-purified exosomes contained from five to eight different major proteins: CD81, CD63 receptors, beta-lactoglobulin and lactadherin were common to all preparations, while actin, butyrophilin, lactoferrin, and xanthine dehydrogenase were found only in some of them. The article describes the morphology and the protein content of major horse milk exosomes for the first time. Our results on the decrease of

  8. Mapping proteins to disease terminologies: from UniProt to MeSH

    PubMed Central

    Mottaz, Anaïs; Yip, Yum L; Ruch, Patrick; Veuthey, Anne-Lise

    2008-01-01

    Background Although the UniProt KnowledgeBase is not a medical-oriented database, it contains information on more than 2,000 human proteins involved in pathologies. However, these annotations are not standardized, which impairs the interoperability between biological and clinical resources. In order to make these data easily accessible to clinical researchers, we have developed a procedure to link diseases described in the UniProtKB/Swiss-Prot entries to the MeSH disease terminology. Results We mapped disease names extracted either from the UniProtKB/Swiss-Prot entry comment lines or from the corresponding OMIM entry to the MeSH. Different methods were assessed on a benchmark set of 200 disease names manually mapped to MeSH terms. The performance of the retained procedure in term of precision and recall was 86% and 64% respectively. Using the same procedure, more than 3,000 disease names in Swiss-Prot were mapped to MeSH with comparable efficiency. Conclusions This study is a first attempt to link proteins in UniProtKB to the medical resources. The indexing we provided will help clinicians and researchers navigate from diseases to genes and from genes to diseases in an efficient way. The mapping is available at: . PMID:18460185

  9. Discovering disease-associated genes in weighted protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  10. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway

    PubMed Central

    Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.

    2009-01-01

    Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158

  11. Immunogenicity of therapeutic proteins. Part 2: impact of container closures.

    PubMed

    Sharma, Basant

    2007-01-01

    Immunogenicity as a potential consequence of therapeutic protein administration is increasingly being scrutinized in the biopharmaceuticals industry, particularly with the imminent introduction of biosimilar products. Immunogenicity is an important safety aspect requiring rigorous investigation to fully appreciate its impact. Factors involved in product handling, such as storage temperature, light exposure, and shaking, have been implicated in immunogenicity, while container closure systems are no less important. Intended to provide a stable environment for the dosage form, container closures may also interact with a product, affecting performance and potentially enhancing immunogenicity. Glass surfaces, air-liquid interfaces, and lubricants can mediate protein denaturation, while phthalates in plastics and latex rubber are sources of extractables and leachates that may contaminate a product, causing allergic reactions and increasing immunogenicity. The manufacture of therapeutic proteins therefore requires rigorous safety evaluations not just in the context of the product, but also product containment.

  12. Point-of-care test for cervical cancer in LMICs.

    PubMed

    Mohammed, Sulma I; Ren, Wen; Flowers, Lisa; Rajwa, Bartek; Chibwesha, Carla J; Parham, Groesbeck P; Irudayaraj, Joseph M K

    2016-04-05

    Cervical cancer screening using Papanicolaou's smear test has been highly effective in reducing death from this disease. However, this test is unaffordable in low- and middle-income countries, and its complexity has limited wide-scale uptake. Alternative tests, such as visual inspection with acetic acid or Lugol's iodine and human papillomavirus DNA, are sub-optimal in terms of specificity and sensitivity, thus sensitive and affordable tests with high specificity for on-site reporting are needed. Using proteomics and bioinformatics, we have identified valosin-containing protein (VCP) as differentially expressed between normal specimens and those with cervical intra-epithelial neoplasia grade 2/3 (CIN2/CIN3+) or worse. VCP-specific immunohistochemical staining (validated by a point-of-care technology) provided sensitive (93%) and specific (88%) identification of CIN2/CIN3+ and may serve as a critical biomarker for cervical-cancer screening. Future efforts will focus on further refinements to enhance analytic sensitivity and specificity of our proposed test, as well as on prototype development.

  13. Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa

    PubMed Central

    Ikeda, Hanako Ohashi; Sasaoka, Norio; Koike, Masaaki; Nakano, Noriko; Muraoka, Yuki; Toda, Yoshinobu; Fuchigami, Tomohiro; Shudo, Toshiyuki; Iwata, Ayana; Hori, Seiji; Yoshimura, Nagahisa; Kakizuka, Akira

    2014-01-01

    Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa. PMID:25096051

  14. Disease-associated protein seeding suggests a dissociation between misfolded protein accumulation and neurodegeneration in prion disease

    PubMed Central

    Alibhai, James; Diack, Abigail; Manson, Jean

    2017-01-01

    ABSTRACT Chronic neurodegenerative diseases, such as prion diseases or Alzheimer's disease, are associated with progressive accumulation of host proteins which misfold and aggregate. Neurodegeneration is restricted to specific neuronal populations which show clear accumulation of misfolded proteins, whilst neighbouring neurons remain unaffected. Such data raise interesting questions about the vulnerability of specific neuronal populations to neurodegeneration and much research has concentrated only on the mechanisms of neurodegeneration in afflicted neuronal populations. An alternative, undervalued and almost completely unstudied question however is how and why neuronal populations are resilient to neurodegeneration. One potential answer is unaffected regions do not accumulate misfolded proteins, thus mechanisms of neurodegeneration do not become activated. In this perspectives, we discuss novel data from our laboratories which demonstrate that misfolded proteins do accumulate in regions of the brain which do not show evidence of neurodegeneration and further evidence that microglial responses may define the severity of neurodegeneration. PMID:29023184

  15. Structure–Function Relationships of Pre-Fibrillar Protein Assemblies in Alzheimer's Disease and Related Disorders

    PubMed Central

    Rahimi, F.; Shanmugam, A.; Bitan, G.

    2010-01-01

    Several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and prion diseases, are characterized pathognomonically by the presence of intra- and/or extracellular lesions containing proteinaceous aggregates, and by extensive neuronal loss in selective brain regions. Related non-neuropathic systemic diseases, e.g., light-chain and senile systemic amyloidoses, and other organ-specific diseases, such as dialysis-related amyloidosis and type-2 diabetes mellitus, also are characterized by deposition of aberrantly folded, insoluble proteins. It is debated whether the hallmark pathologic lesions are causative. Substantial evidence suggests that these aggregates are the end state of aberrant protein folding whereas the actual culprits likely are transient, pre-fibrillar assemblies preceding the aggregates. In the context of neurodegenerative amyloidoses, the proteinaceous aggregates may eventuate as potentially neuroprotective sinks for the neurotoxic, oligomeric protein assemblies. The pre-fibrillar, oligomeric assemblies are believed to initiate the pathogenic mechanisms that lead to synaptic dysfunction, neuronal loss, and disease-specific regional brain atrophy. The amyloid β-protein (Aβ), which is believed to cause Alzheimer's disease (AD), is considered an archetypal amyloidogenic protein. Intense studies have led to nominal, functional, and structural descriptions of oligomeric Aβ assemblies. However, the dynamic and metastable nature of Aβ oligomers renders their study difficult. Different results generated using different methodologies under different experimental settings further complicate this complex area of research and identification of the exact pathogenic assemblies in vivo seems daunting. Here we review structural, functional, and biological experiments used to produce and study pre-fibrillar Aβ assemblies, and highlight similar studies of proteins involved in related diseases. We discuss challenges that contemporary

  16. New partner proteins containing novel internal recognition motif for human Glutaminase Interacting Protein (hGIP)

    PubMed Central

    Zencir, Sevil; Banerjee, Monimoy; Dobson, Melanie J.; Ayaydin, Ferhan; Fodor, Elfrieda Ayaydin; Topcu, Zeki; Mohanty, Smita

    2013-01-01

    Regulation of gene expression in cells is mediated by protein-protein, DNA-protein and receptor-ligand interactions. PDZ (PSD-95/Discs-large/ZO-1) domains are protein–protein interaction modules. PDZ-containing proteins function in the organization of multi-protein complexes controlling spatial and temporal fidelity of intracellular signaling pathways. In general, PDZ proteins possess multiple domains facilitating distinct interactions. The human Glutaminase Interacting Protein (hGIP) is an unusual PDZ protein comprising entirely of a single PDZ domain and plays pivotal roles in many cellular processes through its interaction with the C-terminus of partner proteins. Here, we report the identification by yeast two-hybrid screening of two new hGIP-interacting partners, DTX1 and STAU1. Both proteins lack the typical C-terminal PDZ recognition motif but contain a novel internal hGIP recognition motif recently identified in a phage display library screen. Fluorescence resonance energy transfer and confocal microscopy analysis confirmed the in vivo association of hGIP with DTX1 and STAU1 in mammalian cells validating the previous discovery of S/T-X-V/L-D as a consensus internal motif for hGIP recognition. Similar to hGIP, DTX1 and STAU1 have been implicated in neuronal function. Identification of these new interacting partners furthers our understanding of GIP-regulated signaling cascades and these interactions may represent potential new drug targets in humans. PMID:23395680

  17. Differential regulation of amyloid-. beta. -protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.

    1988-02-01

    The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNAmore » in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.« less

  18. Replication Proteins and Human Disease

    PubMed Central

    Jackson, Andrew P.; Laskey, Ronald A.; Coleman, Nicholas

    2014-01-01

    In this article, we discuss the significance of DNA replication proteins in human disease. There is a broad range of mutations in genes encoding replication proteins, which result in several distinct clinical disorders that share common themes. One group of replication proteins, the MCMs, has emerged as effective biomarkers for early detection of a range of common cancers. They offer practical and theoretical advantages over other replication proteins and have been developed for widespread clinical use. PMID:23881941

  19. PDZ-containing proteins: alternative splicing as a source of functional diversity.

    PubMed

    Sierralta, Jimena; Mendoza, Carolina

    2004-12-01

    Scaffold proteins allow specific protein complexes to be assembled in particular regions of the cell at which they organize subcellular structures and signal transduction complexes. This characteristic is especially important for neurons, which are highly polarized cells. Among the domains contained by scaffold proteins, the PSD-95, Discs-large, ZO-1 (PDZ) domains are of particular relevance in signal transduction processes and maintenance of neuronal and epithelial polarity. These domains are specialized in the binding of the carboxyl termini of proteins allowing membrane proteins to be localized by the anchoring to the cytoskeleton mediated by PDZ-containing scaffold proteins. In vivo studies carried out in Drosophila have taught that the role of many scaffold proteins is not limited to a single process; thus, in many cases the same genes are expressed in different tissues and participate in apparently very diverse processes. In addition to the differential expression of interactors of scaffold proteins, the expression of variants of these molecular scaffolds as the result of the alternative processing of the genes that encode them is proving to be a very important source of variability and complexity on a main theme. Alternative splicing in the nervous system is well documented, where specific isoforms play roles in neurotransmission, ion channel function, neuronal cell recognition, and are developmentally regulated making it a major mechanism of functional diversity. Here we review the current state of knowledge about the diversity and the known function of PDZ-containing proteins in Drosophila with emphasis in the role played by alternatively processed forms in the diversity of functions attributed to this family of proteins.

  20. Mechanisms of Protein Seeding in Neurodegenerative Diseases

    PubMed Central

    Walker, Lary C.; Diamond, Marc I.; Duff, Karen E.; Hyman, Bradley T.

    2013-01-01

    Most age-associated neurodegenerative diseases involve the aggregation of specific proteins within the nervous system. In Alzheimer’s disease, the insidious pathogenic process begins many years before the symptoms emerge, and the lesions that characterize the disease – senile plaques and neurofibrillary tangles – ramify systematically through the brain. We review evidence that the β-amyloid and tau proteins, which aggregate to form senile plaques and neurofibrillary tangles, respectively, are induced to misfold and self-assemble by a process of templated conformational change that amplifies a toxic species. Recent data also indicate that the spread of these lesions from one site to another is mediated by the cellular uptake, transport and release of endogenous seeds formed by the cognate proteins. This simple pathogenic principle suggests that the formation, trafficking and metabolism of pathogenic protein seeds are promising therapeutic targets for Alzheimer’s disease and other neurodegenerative disorders. PMID:23599928

  1. Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer's disease.

    PubMed

    Selkoe, D J; Abraham, C R; Podlisny, M B; Duffy, L K

    1986-06-01

    During aging of the human brain, and particularly in Alzheimer's disease, progressive neuronal loss is accompanied by the formation of highly stable intra- and extraneuronal protein fibers. Using fluorescence-activated particle sorting, a method has been developed for purifying essentially to homogeneity the extracellular amyloid fibers that form the cores of senile plaques. The purified plaque cores each contain 60-130 pg of protein. Their amino acid composition shows abundant glycine, trace proline, and approximately 50% hydrophobic residues; it resembles that of enriched fractions of the paired helical filaments (PHF) that accumulate intraneuronally in Alzheimer's disease. Senile plaque amyloid fibers share with PHF insolubility in numerous protein denaturants and resistance to proteinases. However, treatment of either fiber preparation with concentrated (88%) formic acid or saturated (6.8 M) guanidine thiocyanate followed by sodium dodecyl sulfate causes disappearance of the fibers and releases proteins migrating at 5-7,000 and 11-15,000 Mr which appear to be dimerically related. Following their separation by size-exclusion HPLC, the proteins solubilized from plaque amyloid and PHF-enriched fractions have highly similar compositions and, on dialysis, readily aggregate into higher Mr polymers. Antibodies raised to the major low-Mr protein selectively label both plaque cores and vascular amyloid deposits in Alzheimer brain but do not stain neurofibrillary tangles, senile plaque neurites, or any other neuronal structure. Thus, extraneuronal amyloid plaque filaments in Alzheimer's disease are composed of hydrophobic low-Mr protein(s) which are also present in vascular amyloid deposits. Current evidence suggests that such protein(s) found in PHF-enriched fractions may derive from copurifying amyloid filaments rather than from PHF.

  2. Proteins with neomorphic moonlighting functions in disease.

    PubMed

    Jeffery, Constance J

    2011-07-01

    One gene can encode multiple protein functions because of RNA splice variants, gene fusions during evolution, promiscuous enzyme activities, and moonlighting protein functions. In addition to these types of multifunctional proteins, in which both functions are considered "normal" functions of a protein, some proteins have been described in which a mutation or conformational change imparts a second function on a protein that is not a "normal" function of the protein. We propose to call these new functions "neomorphic moonlighting functions". The most common examples of neomorphic moonlighting functions are due to conformational changes that impart novel protein-protein interactions resulting in the formation of protein aggregates in Alzheimers, Parkinsons disease, and the systemic amyloidoses. Other changes that can result in a neomorphic moonlighting function include a mutation in SMAD4 that causes the protein to bind to new promoters and thereby alter gene transcription patterns, mutations in two isocitrate dehydrogenase isoforms that impart a new catalytic activity, and mutations in dihydrolipoamide dehydrogenase that activate a hidden protease activity. These neomorphic moonlighting functions were identified because of their connection to disease. In the cases described herein, the new functions cause cancers or severe neurological impairment, although in most cases the mechanism by which the new function leads to disease is unknown. Copyright © 2011 Wiley Periodicals, Inc.

  3. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins

    PubMed Central

    Ardi, Veronica C.; Alexander, Leslie D.; Johnson, Victoria; McAlpine, Shelli R.

    2011-01-01

    Heat shock protein 90 (Hsp90) accounts for 1–2% of the total proteins in normal cells and functions as a molecular chaperone that folds, assembles, and stabilizes client proteins. Hsp90 is over-expressed (3–6-fold increase) in stressed cells, including cancer cells, and regulates over 200 client and co-chaperone proteins. Hsp90 client proteins are involved in a plethora of cellular signaling events including numerous growth and apoptotic pathways. Since pathway-specific inhibitors can be problematic in drug-resistant cancers, shutting down multiple pathways at once is a promising approach when developing new therapeutics. Hsp90’s ability to modulate many growth and signaling pathways simultaneously makes this protein an attractive target in the field of cancer therapeutics. Herein we present evidence that a small molecule modulates Hsp90 via binding between the N and middle domain and allosterically inhibiting the binding interaction between Hsp90 and four C-terminal binding client proteins: IP6K2, FKBP38, FKBP52, and HOP. These last three clients contain a tetratricopeptide-repeat (TPR) region, which is known to interact with the MEEVD sequence on the C-terminus of Hsp90. Thus, this small molecule modulates the activity between co-chaperones that contain TPR motifs and Hsp90’s MEEVD region. This mechanism of action is unique from that of all Hsp90 inhibitors currently in clinical trials where these molecules have no effect on proteins that bind to the C-terminus of Hsp90. Further, our small molecule induces a Caspase-3 dependent apoptotic event. Thus, we describe the mechanism of a novel scaffold that is a useful tool for studying cell-signaling events that result when blocking the MEEVD-TPR interaction between Hsp90 and co-chaperone proteins. PMID:21950602

  4. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?

    PubMed

    Bellingham, Shayne A; Guo, Belinda B; Coleman, Bradley M; Hill, Andrew F

    2012-01-01

    Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP) which is associated with Alzheimer's disease. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I and alpha-synuclein (involved in amyotrophic lateral sclerosis and Parkinson's disease, respectively) are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics, and diagnostics for these diseases.

  5. In silico analysis of Schmidtea mediterranea TIR domain-containing proteins.

    PubMed

    Tsoumtsa, Landry Laure; Sougoufora, Seynabou; Torre, Cedric; Lemichez, Emmanuel; Pontarotti, Pierre; Ghigo, Eric

    2018-09-01

    While genetic evidence points towards an absence of Toll-Like Receptors (TLRs) in Platyhelminthes, the Toll/IL-1 Receptor (TIR)-domains that drive the assembly of signalling complexes downstream TLR are present in these organisms. Here, we undertook the characterisation of the repertoire of TIR-domain containing proteins in Schmidtea mediterranea in order to gain valuable information on TLR evolution in metazoan. We report the presence of twenty proteins containing between one and two TIR domains. In addition, our phylogenetic-based reconstruction approach identified Smed-SARM and Smed-MyD88 as conserved TLR adaptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Protein degradation pathways in Parkinson's disease: curse or blessing.

    PubMed

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J

    2012-08-01

    Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.

  7. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment.

    PubMed

    Law, Mary E; Ferreira, Renan B; Davis, Bradley J; Higgins, Paul J; Kim, Jae-Sung; Castellano, Ronald K; Chen, Sixue; Luesch, Hendrik; Law, Brian K

    2016-08-05

    While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact.

  8. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    PubMed

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  9. Protein conformation and disease : pathological consequences of analogous mutations in homologous proteins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Pokkuluri, P. R.; Schiffer, M.

    2000-12-19

    The antibody light chain variable domain (V{sub L}){sup 1} and myelin protein zero (MPZ) are representatives of the functionally diverse immunoglobulin superfamily. The V{sub L} is a subunit of the antigen-binding component of antibodies, while MPZ is the major membrane-linked constituent of the myelin sheaths that coat peripheral nerves. Despite limited amino acid sequence homology, the conformations of the core structures of the two proteins are largely superimposable. Amino acid variations in V{sub L} account for various conformational disease outcomes, including amyloidosis. However, the specific amino acid changes in V{sub L} that are responsible for disease have been obscured bymore » multiple concurrent primary structure alterations. Recently, certain demyelination disorders have been linked to point mutations and single amino acid polymorphisms in MPZ. We demonstrate here that some pathogenic variations in MPZ correspond to changes suspected of determining amyloidosis in V{sub L}. This unanticipated observation suggests that studies of the biophysical origin of conformational disease in one member of a superfamily of homologous proteins may have implications throughout the superfamily. In some cases, findings may account for overt disease; in other cases, due to the natural repertoire of inherited polymorphisms, variations in a representative protein may predict subclinical impairment of homologous proteins.« less

  10. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated withmore » reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.« less

  11. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

    PubMed

    Brand, Thomas; Schindler, Roland

    2017-12-01

    The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A dominant sulfhydryl-containing protein in the outer membrane of Neisseria gonorrhoeae.

    PubMed Central

    Norrod, E P; Browne, S L; Feldweg, A; Leonard, J

    1993-01-01

    By using a method that labels sulfhydryl-containing proteins in situ, we have detected a major outer membrane protein of Neisseria gonorrhoeae at 41 kDa. A protein of this molecular mass has not previously been shown to be a major outer membrane protein in gonococci. In addition, a minor protein rich in cysteinyl residues was detected at 31.5 kDa. Images PMID:8432710

  13. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  14. Transfer buffer containing methanol can be reused multiple times in protein electrotransfer.

    PubMed

    Pettegrew, Colin J; Jayini, Renuka; Islam, M Rafiq

    2009-04-01

    We investigated the feasibility of repeated use of transfer buffer containing methanol in electrotransfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to polyvinylidene difluoride (PVDF) membrane using a prestained protein marker of broad molecular sizes. Transfer of the antitumor protein p53 in HEK293T cell extracts, using fresh and used transfer buffer, followed by detection with anti-p53 antibody was also performed to test detectability in immunoblot. Results from these experiments indicate that the transfer buffer can be reused at least five times and maintain a similar extent of protein transfer to PVDF membrane. Repeated use of the transfer buffer containing methanol will significantly reduce the volume of hazardous waste generated and its disposal cost as well as its adverse effect on environment.

  15. Sushi repeat-containing protein 1: a novel disease-associated molecule in cerebral amyloid angiopathy.

    PubMed

    Inoue, Yasuteru; Ueda, Mitsuharu; Tasaki, Masayoshi; Takeshima, Akari; Nagatoshi, Akihito; Masuda, Teruaki; Misumi, Yohei; Kosaka, Takayuki; Nomura, Toshiya; Mizukami, Mayumi; Matsumoto, Sayaka; Yamashita, Taro; Takahashi, Hitoshi; Kakita, Akiyoshi; Ando, Yukio

    2017-10-01

    Sporadic cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular amyloid beta (Aβ) deposits and causes cerebral hemorrhage and dementia. The exact molecules that co-accumulate with cerebrovascular Aβ deposits are still not fully known. In our study here, we performed proteomic analyses with microdissected leptomeningeal arteries and cerebral neocortical arterioles from 8 cases with severe CAA, 12 cases with mild CAA, and 10 control cases without CAA, and we determined the levels of highly expressed proteins in cerebral blood vessels in CAA. We focused on sushi repeat-containing protein 1 (SRPX1), which is specifically expressed in CAA-affected cerebral blood vessels. Because SRPX1, which is known as a tumor suppressor gene, reportedly induced apoptosis in tumor cells, we hypothesized that SRPX1 may play an important role in Aβ-induced apoptosis in CAA. Immunohistochemical studies revealed that SRPX1 co-accumulated with Aβ deposits in cerebral blood vessels of all autopsied cases with severe CAA. In contrast, no SRPX1 co-accumulated with Aβ deposits in senile plaques. Furthermore, we demonstrated that both Aβ40 and Aβ42 bound to SRPX1 in vitro and enhanced SRPX1 expression in primary cultures of cerebrovascular smooth muscle cells. SRPX1 enhanced caspase activity induced by Aβ40. Knockdown of SRPX1, in contrast, reduced the formation of Aβ40 accumulations and the activity of caspase in cultured cerebrovascular smooth muscle cells. SRPX1 may thus be a novel molecule that is up-regulated in cerebrovascular Aβ deposits and that may increase Aβ-induced cerebrovascular degeneration in CAA.

  16. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    PubMed

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  17. Structure-Based Prediction of Unstable Regions in Proteins: Applications to Protein Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-03-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and solution of the Poisson-Boltzmann equation. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  18. Protein recycling pathways in neurodegenerative diseases

    PubMed Central

    2014-01-01

    Many progressive neurodegenerative diseases, including Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal lobe dementia, are associated with the formation of insoluble intracellular proteinaceous inclusions. It is therefore imperative to understand the factors that regulate normal, as well as abnormal, protein recycling in neurons. Dysfunction of the ubiquitin-proteasome or autophagy pathways might contribute to the pathology of various neurodegenerative diseases. Induction of these pathways may offer a rational therapeutic strategy for a number of these diseases. PMID:25031631

  19. Characterization of a double WAP domain-containing protein from the red swamp crayfish Procambarus clarkii

    USDA-ARS?s Scientific Manuscript database

    Crustaceans express multiple whey acidic protein (WAP) domain containing proteins which are components of host immunity. In the present study, a new double WAP domain containing protein was identified from red swamp crayfish Procambarus clarkii, designated Pc-DWD. The ORF is 387 bp, encoding 128 ami...

  20. The inflammatory protein Pentraxin 3 in cardiovascular disease.

    PubMed

    Fornai, Francesco; Carrizzo, Albino; Forte, Maurizio; Ambrosio, Mariateresa; Damato, Antonio; Ferrucci, Michela; Biagioni, Francesca; Busceti, Carla; Puca, Annibale A; Vecchione, Carmine

    2016-01-01

    The acute phase protein Pentraxin 3 (PTX3) plays a non-redundant role as a soluble pattern recognition receptor for selected pathogens and it represents a rapid biomarker for primary local activation of innate immunity and inflammation. Recent evidence indicates that PTX3 exerts an important role in modulating the cardiovascular system in humans and experimental models. In particular, there are conflicting points concerning the effects of PTX3 in cardiovascular diseases (CVD) since several observations indicate a cardiovascular protective effect of PTX3 while others speculate that the increased plasma levels of PTX3 in subjects with CVD correlate with disease severity and with poor prognosis in elderly patients. In the present review, we discuss the multifaceted effects of PTX3 on the cardiovascular system focusing on its involvement in atherosclerosis, endothelial function, hypertension, myocardial infarction and angiogenesis. This may help to explain how the specific modulation of PTX3 such as the use of different dosing, time, and target organs could help to contain different vascular diseases. These opposite actions of PTX3 will be emphasized concerning the modulation of cardiovascular system where potential therapeutic implications of PTX3 in humans are discussed.

  1. Evolution of specifier proteins in glucosinolate-containing plants

    PubMed Central

    2012-01-01

    Background The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinases get mixed and glucosinolates are broken down to an array of biologically active compounds of which isothiocyanates are toxic to a wide range of organisms. Specifier proteins occur in some, but not all glucosinolate-containing plants and promote the formation of biologically active non-isothiocyanate products upon myrosinase-catalyzed glucosinolate breakdown. Results Based on a phytochemical screening among representatives of the Brassicales order, we selected candidate species for identification of specifier protein cDNAs. We identified ten specifier proteins from a range of species of the Brassicaceae and assigned each of them to one of the three specifier protein types (NSP, nitrile-specifier protein, ESP, epithiospecifier protein, TFP, thiocyanate-forming protein) after heterologous expression in Escherichia coli. Together with nine known specifier proteins and three putative specifier proteins found in databases, we subjected the newly identified specifier proteins to phylogenetic analyses. Specifier proteins formed three major clusters, named AtNSP5-cluster, AtNSP1-cluster, and ESP/TFP cluster. Within the ESP/TFP cluster, specifier proteins grouped according to the Brassicaceae lineage they were identified from. Non-synonymous vs. synonymous substitution rate ratios suggested purifying selection to act on specifier protein genes. Conclusions Among specifier proteins, NSPs represent the ancestral activity. The data support a monophyletic origin of ESPs from NSPs. The split between NSPs and ESPs/TFPs happened before the radiation of the core Brassicaceae. Future analyses have to show if TFP activity evolved from ESPs at least twice independently in different

  2. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins.

    PubMed

    Nick Pace, C; Huyghues-Despointes, Beatrice M P; Fu, Hailong; Takano, Kazufumi; Scholtz, J Martin; Grimsley, Gerald R

    2010-05-01

    The goal of this article is to gain a better understanding of the denatured state ensemble (DSE) of proteins through an experimental and computational study of their denaturation by urea. Proteins unfold to different extents in urea and the most hydrophobic proteins have the most compact DSE and contain almost as much secondary structure as folded proteins. Proteins that unfold to the greatest extent near pH 7 still contain substantial amounts of secondary structure. At low pH, the DSE expands due to charge-charge interactions and when the net charge per residue is high, most of the secondary structure is disrupted. The proteins in the DSE appear to contain substantial amounts of polyproline II conformation at high urea concentrations. In all cases considered, including staph nuclease, the extent of unfolding by urea can be accounted for using the data and approach developed in the laboratory of Wayne Bolen (Auton et al., Proc Natl Acad Sci 2007; 104:15317-15323).

  3. HDAPD: a web tool for searching the disease-associated protein structures

    PubMed Central

    2010-01-01

    Background The protein structures of the disease-associated proteins are important for proceeding with the structure-based drug design to against a particular disease. Up until now, proteins structures are usually searched through a PDB id or some sequence information. However, in the HDAPD database presented here the protein structure of a disease-associated protein can be directly searched through the associated disease name keyed in. Description The search in HDAPD can be easily initiated by keying some key words of a disease, protein name, protein type, or PDB id. The protein sequence can be presented in FASTA format and directly copied for a BLAST search. HDAPD is also interfaced with Jmol so that users can observe and operate a protein structure with Jmol. The gene ontological data such as cellular components, molecular functions, and biological processes are provided once a hyperlink to Gene Ontology (GO) is clicked. Further, HDAPD provides a link to the KEGG map such that where the protein is placed and its relationship with other proteins in a metabolic pathway can be found from the map. The latest literatures namely titles, journals, authors, and abstracts searched from PubMed for the protein are also presented as a length controllable list. Conclusions Since the HDAPD data content can be routinely updated through a PHP-MySQL web page built, the new database presented is useful for searching the structures for some disease-associated proteins that may play important roles in the disease developing process for performing the structure-based drug design to against the diseases. PMID:20158919

  4. Recombinant fusion protein and DNA vaccines against foot and mouth disease virus infection in guinea pig and swine.

    PubMed

    Huang, H; Yang, Z; Xu, Q; Sheng, Z; Xie, Y; Yan, W; You, Y; Sun, L; Zheng, Z

    1999-01-01

    In this study, we provide evidence that a recombinant fusion protein containing beta-galactosidase and a tandem repeat peptide of immunogenic dominant epitope of foot-and-mouth disease virus (FMDV) VP1 protein elicits high levels of neutralizing antibody and protects both guinea pigs and swine against infection. Vaccination with this fusion protein induced a FMDV-specific proliferative T-cell response and a neutralizing antibody response. The immunized guinea pigs and swine were protected against FMD type O virus infection. Two DNA plasmids expressing genes of foot-and-mouth disease were constructed. Both plasmids pBO1 and pCO1 contain a signal sequence of the swine immunoglobulin G (IgG) gene and fusion protein gene of pXZ84. The signal sequence and fusion protein gene were under the control of a metallothionein promoter in the case of the pBO1 plasmid and under the control of a cytomegalovirus immediate early promoter in the case of pCO1 plasmid. When pBO1 and pCO1 were inoculated intramuscularly into guinea pigs, both plasmids elicited a neutralizing antibody response and spleen cell proliferation increased following stimulation with FMDV antigen, but animals were not protected from viral challenge.

  5. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov; Osorio, Cristina; Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studiesmore » showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the

  6. Hereditary inclusion-body myopathies.

    PubMed

    Broccolini, Aldobrando; Mirabella, Massimiliano

    2015-04-01

    The term hereditary inclusion-body myopathies (HIBMs) defines a group of rare muscle disorders with autosomal recessive or dominant inheritance and presence of muscle fibers with rimmed vacuoles and collection of cytoplasmic or nuclear 15-21 nm diameter tubulofilaments as revealed by muscle biopsy. The most common form of HIBM is due to mutations of the GNE gene that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. This results in abnormal sialylation of glycoproteins that possibly leads to muscle fiber degeneration. Mutations of the valosin containing protein are instead responsible for hereditary inclusion-body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD), with these three phenotypic features having a variable penetrance. IBMPFD probably represents a disorder of abnormal cellular trafficking of proteins and maturation of the autophagosome. HIBM with congenital joint contractures and external ophthalmoplegia is due to mutations of the Myosin Heavy Chain IIa gene that exerts a pathogenic effect through interference with filament assembly or functional defects in ATPase activity. This review illustrates the clinical and pathologic characteristics of HIBMs and the main clues available to date concerning the possible pathogenic mechanisms and therapeutic perspectives of these disorders. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  8. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  9. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    PubMed

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  10. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    NASA Technical Reports Server (NTRS)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  11. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology

    PubMed Central

    Revett, Timothy J.; Baker, Glen B.; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid β peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid β and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid β production, but also amyloid β can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  12. Malfolded protein structure and proteostasis in lung diseases.

    PubMed

    Balch, William E; Sznajder, Jacob I; Budinger, Scott; Finley, Daniel; Laposky, Aaron D; Cuervo, Ana Maria; Benjamin, Ivor J; Barreiro, Esther; Morimoto, Richard I; Postow, Lisa; Weissman, Allan M; Gail, Dorothy; Banks-Schlegel, Susan; Croxton, Thomas; Gan, Weiniu

    2014-01-01

    Recent discoveries indicate that disorders of protein folding and degradation play a particularly important role in the development of lung diseases and their associated complications. The overarching purpose of the National Heart, Lung, and Blood Institute workshop on "Malformed Protein Structure and Proteostasis in Lung Diseases" was to identify mechanistic and clinical research opportunities indicated by these recent discoveries in proteostasis science that will advance our molecular understanding of lung pathobiology and facilitate the development of new diagnostic and therapeutic strategies for the prevention and treatment of lung disease. The workshop's discussion focused on identifying gaps in scientific knowledge with respect to proteostasis and lung disease, discussing new research advances and opportunities in protein folding science, and highlighting novel technologies with potential therapeutic applications for diagnosis and treatment.

  13. Ermelin, an endoplasmic reticulum transmembrane protein, contains the novel HELP domain conserved in eukaryotes.

    PubMed

    Suzuki, Akiko; Endo, Takeshi

    2002-02-06

    We have cloned a cDNA encoding a novel protein referred to as ermelin from mouse C2 skeletal muscle cells. This protein contained six hydrophobic amino acid stretches corresponding to transmembrane domains, two histidine-rich sequences, and a sequence homologous to the fusion peptides of certain fusion proteins. Ermelin also contained a novel modular sequence, designated as HELP domain, which was highly conserved among eukaryotes, from yeast to higher plants and animals. All these HELP domain-containing proteins, including mouse KE4, Drosophila Catsup, and Arabidopsis IAR1, possessed multipass transmembrane domains and histidine-rich sequences. Ermelin was predominantly expressed in brain and testis, and induced during neuronal differentiation of N1E-115 neuroblastoma cells but downregulated during myogenic differentiation of C2 cells. The mRNA was accumulated in hippocampus and cerebellum of brain and central areas of seminiferous tubules in testis. Epitope-tagging experiments located ermelin and KE4 to a network structure throughout the cytoplasm. Staining with the fluorescent dye DiOC(6)(3) identified this structure as the endoplasmic reticulum. These results suggest that at least some, if not all, of the HELP domain-containing proteins are multipass endoplasmic reticulum membrane proteins with functions conserved among eukaryotes.

  14. High Protein Diet and Huntington's Disease

    PubMed Central

    Wu, Yih-Ru; Chen, Pei; Tsai, Fuu-Jen; Yang, Chueh-Lien; Tsao, Ya-Tzu; Chang, Wen; Hsieh, I-Shan; Chern, Yijuang; Soong, Bing-Wen

    2015-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by the huntingtin (HTT) gene with expanded CAG repeats. In addition to the apparent brain abnormalities, impairments also occur in peripheral tissues. We previously reported that mutant Huntingtin (mHTT) exists in the liver and causes urea cycle deficiency. A low protein diet (17%) restores urea cycle activity and ameliorates symptoms in HD model mice. It remains unknown whether the dietary protein content should be monitored closely in HD patients because the normal protein consumption is lower in humans (~15% of total calories) than in mice (~22%). We assessed whether dietary protein content affects the urea cycle in HD patients. Thirty HD patients were hospitalized and received a standard protein diet (13.7% protein) for 5 days, followed by a high protein diet (HPD, 26.3% protein) for another 5 days. Urea cycle deficiency was monitored by the blood levels of citrulline and ammonia. HD progression was determined by the Unified Huntington’s Disease Rating Scale (UHDRS). The HPD increased blood citrulline concentration from 15.19 μmol/l to 16.30 μmol/l (p = 0.0378) in HD patients but did not change blood ammonia concentration. A 2-year pilot study of 14 HD patients found no significant correlation between blood citrulline concentration and HD progression. Our results indicated a short period of the HPD did not markedly compromise urea cycle function. Blood citrulline concentration is not a reliable biomarker of HD progression. PMID:25992839

  15. Protein-driven inference of miRNA–disease associations

    PubMed Central

    Mørk, Søren; Pletscher-Frankild, Sune; Palleja Caro, Albert; Gorodkin, Jan; Jensen, Lars Juhl

    2014-01-01

    Motivation: MicroRNAs (miRNAs) are a highly abundant class of non-coding RNA genes involved in cellular regulation and thus also diseases. Despite miRNAs being important disease factors, miRNA–disease associations remain low in number and of variable reliability. Furthermore, existing databases and prediction methods do not explicitly facilitate forming hypotheses about the possible molecular causes of the association, thereby making the path to experimental follow-up longer. Results: Here we present miRPD in which miRNA–Protein–Disease associations are explicitly inferred. Besides linking miRNAs to diseases, it directly suggests the underlying proteins involved, which can be used to form hypotheses that can be experimentally tested. The inference of miRNAs and diseases is made by coupling known and predicted miRNA–protein associations with protein–disease associations text mined from the literature. We present scoring schemes that allow us to rank miRNA–disease associations inferred from both curated and predicted miRNA targets by reliability and thereby to create high- and medium-confidence sets of associations. Analyzing these, we find statistically significant enrichment for proteins involved in pathways related to cancer and type I diabetes mellitus, suggesting either a literature bias or a genuine biological trend. We show by example how the associations can be used to extract proteins for disease hypothesis. Availability and implementation: All datasets, software and a searchable Web site are available at http://mirpd.jensenlab.org. Contact: lars.juhl.jensen@cpr.ku.dk or gorodkin@rth.dk PMID:24273243

  16. Trafficking regulation of proteins in Alzheimer’s disease

    PubMed Central

    2014-01-01

    The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD. PMID:24410826

  17. A canine model of Alzheimer's disease generated by overexpressing a mutated human amyloid precursor protein.

    PubMed

    Lee, Geun-Shik; Jeong, Yeon Woo; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Moon, Changjong; Hyun, Sang Hwan; Hwang, Kyu-Chan; Kim, Nam-Hyung; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk

    2014-04-01

    Canines are considered the most authentic model for studying multifactorial human diseases, as these animals typically share a common environment with man. Somatic cell nuclear transfer (SCNT) technology along with genetic engineering of nuclear donor cells provides a unique opportunity for examining human diseases using transgenic canines. In the present study, we generated transgenic canines that overexpressed the human amyloid precursor protein (APP) gene containing well-characterized familial Alzheimer's disease (AD) mutations. We successfully obtained five out of six live puppies by SCNT. This was confirmed by observing the expression of green fluorescence protein in the body as a visual transgenic marker and the overexpression of the mutated APP gene in the brain. The transgenic canines developed AD-like symptoms, such as enlarged ventricles, an atrophied hippocampus, and β-amyloid plaques in the brain. Thus, the transgenic canines we created can serve as a novel animal model for studying human AD.

  18. Distinct distal myopathy phenotype caused by VCP gene mutation in a Finnish family.

    PubMed

    Palmio, Johanna; Sandell, Satu; Suominen, Tiina; Penttilä, Sini; Raheem, Olayinka; Hackman, Peter; Huovinen, Sanna; Haapasalo, Hannu; Udd, Bjarne

    2011-08-01

    Inclusion body myopathy with Paget disease and frontotemporal dementia (IBMPFD) is caused by mutations in the valosin-containing protein (VCP) gene. We report a new distal phenotype caused by VCP gene mutation in a Finnish family with nine affected members in three generations. Patients had onset of distal leg muscle weakness and atrophy in the anterior compartment muscles after age 35, which caused a foot drop at age 50. None of the siblings had scapular winging, proximal myopathy, cardiomyopathy or respiratory problems during long-term follow-up. Three distal myopathy patients developed rapidly progressive dementia, became bedridden and died of cachexia and pneumonia and VCP gene mutation P137L (c.410C>T) was then identified in the family. Late onset autosomal dominant distal myopathy with rimmed vacuolar muscle pathology was not sufficient for exact diagnosis in this family until late-occurring dementia provided the clue for molecular diagnosis. VCP needs to be considered in the differential diagnostic work-up in patients with distal myopathy phenotype. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The role of heat shock proteins in kidney disease

    PubMed Central

    2016-01-01

    Abstract Heat Shock Proteins (HSP) belong to the family of intracellular proteins that are constitutively expressed and are upregulated by various stressors including heat, oxidative and chemical stress. HSP helps in reparative processes, including the refolding of damaged proteins and the removal of irreparably damaged proteins that would initiate cellular death or apoptosis. A growing body of evidence has expanded the role of HSP and defined their role in diseases such as neurodegenerative disorders, cancer, ischemic heart disease and kidney diseases. The protective role of HSP in ischemic renal injury has been described and HSP impairment has been noted in other forms of kidney injuries including post-transplant situation. Further research into the role of HSP in prevention of kidney injury is crucial if translation from the laboratory to patient bedside has to occur. This article aims to be a review of heat shock protein, and its relevance to kidney diseases. PMID:28191532

  20. Protein-protein interaction analysis of Alzheimer`s disease and NAFLD based on systems biology methods unhide common ancestor pathways.

    PubMed

    Karbalaei, Reza; Allahyari, Marzieh; Rezaei-Tavirani, Mostafa; Asadzadeh-Aghdaei, Hamid; Zali, Mohammad Reza

    2018-01-01

    Analysis reconstruction networks from two diseases, NAFLD and Alzheimer`s diseases and their relationship based on systems biology methods. NAFLD and Alzheimer`s diseases are two complex diseases, with progressive prevalence and high cost for countries. There are some reports on relation and same spreading pathways of these two diseases. In addition, they have some similar risk factors, exclusively lifestyle such as feeding, exercises and so on. Therefore, systems biology approach can help to discover their relationship. DisGeNET and STRING databases were sources of disease genes and constructing networks. Three plugins of Cytoscape software, including ClusterONE, ClueGO and CluePedia, were used to analyze and cluster networks and enrichment of pathways. An R package used to define best centrality method. Finally, based on degree and Betweenness, hubs and bottleneck nodes were defined. Common genes between NAFLD and Alzheimer`s disease were 190 genes that used construct a network with STRING database. The resulting network contained 182 nodes and 2591 edges and comprises from four clusters. Enrichment of these clusters separately lead to carbohydrate metabolism, long chain fatty acid and regulation of JAK-STAT and IL-17 signaling pathways, respectively. Also seven genes selected as hub-bottleneck include: IL6, AKT1, TP53, TNF, JUN, VEGFA and PPARG. Enrichment of these proteins and their first neighbors in network by OMIM database lead to diabetes and obesity as ancestors of NAFLD and AD. Systems biology methods, specifically PPI networks, can be useful for analyzing complicated related diseases. Finding Hub and bottleneck proteins should be the goal of drug designing and introducing disease markers.

  1. Structure prediction of polyglutamine disease proteins: comparison of methods

    PubMed Central

    2014-01-01

    Background The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is known about the structural changes induced by the expansion of the repeats. Computational methods can provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their performance before large scale prediction work is done. Results In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to predict the structure of the N-terminal fragment of a protein associated with Huntington's disease with 17 glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs better for the overall task. Conclusions Both I-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats. Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q diseases. PMID:25080018

  2. The Histone Database: an integrated resource for histones and histone fold-containing proteins

    PubMed Central

    Mariño-Ramírez, Leonardo; Levine, Kevin M.; Morales, Mario; Zhang, Suiyuan; Moreland, R. Travis; Baxevanis, Andreas D.; Landsman, David

    2011-01-01

    Eukaryotic chromatin is composed of DNA and protein components—core histones—that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins. Database URL: The Histone Sequence Database is freely available and can be accessed at http://research.nhgri.nih.gov/histones/. PMID:22025671

  3. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  4. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with

  5. Protein profile of Lupinus texensis phloem sap exudates: searching for Fe- and Zn-containing proteins.

    PubMed

    Lattanzio, Giuseppe; Andaluz, Sofía; Matros, Andrea; Calvete, Juan José; Kehr, Julia; Abadía, Anunciación; Abadía, Javier; López-Millán, Ana-Flor

    2013-08-01

    The aim of this study was to obtain a comprehensive overview of the phloem sap protein profile of Lupinus texensis, with a special focus on proteins binding Fe and Zn. L. texensis was chosen as model plant given the simplicity to obtain exudates from sieve elements. Protein profiling by 2DE revealed 249 spots, and 54 of them were unambiguously identified by MALDI-MS and ESI-MS/MS. The largest number of identified protein species belongs to protein modification/turnover and general metabolism (19-21%), followed by redox homeostasis (9%) and defense and cell structural components (7%). This protein profile is similar to that reported in other plant species, suggesting that the phloem sap proteome is quite conserved. Staining of 2DE gels for Fe-containing proteins and affinity chromatography experiments revealed the presence of two low molecular weight Fe-binding proteins in phloem sap: a metallothionein-like protein type 2B identified in the Fe-affinity chromatography, and a second protein identified with both Fe staining methods. This protein species had a molecular weight of 13.5 kDa, a pI of 5.6 and 51% homology to a phloem-specific protein from Medicago truncatula. Zinc affinity chromatography revealed four Zn-binding proteins in phloem sap, one belonging to the dehydrin family and three Zn finger proteins. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  7. Identification and characterization of GSRP-56, a novel Golgi-localized spectrin repeat-containing protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yuko; Katanosaka, Yuki; Iwata, Yuko

    2006-10-01

    Spectrin repeat (SR)-containing proteins are important for regulation of integrity of biomembranes, not only the plasma membrane but also those of intracellular organelles, such as the Golgi, nucleus, endo/lysosomes, and synaptic vesicles. We identified a novel SR-containing protein, named GSRP-56 (Golgi-localized SR-containing protein-56), by a yeast two-hybrid method, using a member of the transient receptor potential channel family, TRPV2, as bait. GSRP-56 is an isoform derived from a giant SR-containing protein, Syne-1 (synaptic nuclear envelope protein-1, also referred to as Nesprin-1 or Enaptin), predicted to be produced by alternative splicing. Immunological analysis demonstrated that this isoform is a 56-kDa protein,more » which is localized predominantly in the Golgi apparatus in cardiomyocytes and C2C12 myoblasts/myotubes, and we found that two SR domains were required both for Golgi targeting and for interaction with TRPV2. Interestingly, overexpression of GSRP-56 resulted in a morphological change in the Golgi structure, characterized by its enlargement of cis-Golgi marker antibody-staining area, which would result partly from fragmentation of Golgi membranes. Our findings indicate that GSRP-56 is a novel, particularly small Golgi-localized member of the spectrin family, which possibly play a role in maintenance of the Golgi structure.« less

  8. Activation of nucleotide-binding domain-like receptor containing protein 3 inflammasome in dendritic cells and macrophages by Streptococcus sanguinis.

    PubMed

    Saeki, Ayumi; Suzuki, Toshihiko; Hasebe, Akira; Kamezaki, Ryousuke; Fujita, Mari; Nakazawa, Futoshi; Shibata, Ken-Ichiro

    2017-03-01

    Streptococcus sanguinis is frequently isolated from the blood of patients with infective endocarditis and contributes to the pathology of this disease through induction of interleukin (IL)-1β responsible for the development of the disease. However, the mechanism of IL-1β induction remains unknown. In this study, S. sanguinis activated a murine dendritic cell (DC) to induce IL-1β and this activity was attenuated by silencing the mRNAs of nucleotide-binding domain-like receptor containing protein 3 (NLRP3) and caspase-1. S. sanguinis induced IL-1β production in murine bone marrow-derived macrophage, but this activity was significantly reduced in bone marrow-derived macrophages from NLRP3-, apoptosis-associated speck-like protein containing a caspase-recruitment domain-, and caspase-1-deficient mice. DC phagocytosed S. sanguinis cells, followed by the release of adenosine triphosphate (ATP). The ATP-degradating enzyme attenuated the release of ATP and IL-1β. The inhibitors for ATP receptor reduced IL-1β release in DC. These results strongly suggest that S. sanguinis has the activity to induce IL-1β through the NLRP3 inflammasome in macrophage and DC and interaction of purinergic receptors with ATP released is involved in expression of the activity. © 2016 John Wiley & Sons Ltd.

  9. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state

    NASA Astrophysics Data System (ADS)

    Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro

    2014-03-01

    Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell.

  10. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state

    PubMed Central

    Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro

    2014-01-01

    Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell. PMID:24658080

  11. Active-site-matched fluorescent probes for rapid and direct detection of vicinal-sulfydryl-containing peptides/proteins in living cells.

    PubMed

    Pan, Xiaohong; Liang, Ziye; Li, Jing; Wang, Shanshan; Kong, Fanpeng; Xu, Kehua; Tang, Bo

    2015-01-26

    Vicinal-sulfydryl-containing peptides/proteins (VSPPs) play a crucial role in human pathologies. Fluorescent probes that are capable of detecting intracellular VSPPs in vivo would be useful tools to explore the mechanisms of some diseases. In this study, by regulating the spatial separation of two maleimide groups in a fluorescent dye to match that of two active cysteine residues contained in the conserved amino acid sequence (-CGPC-) of human thioredoxin, two active-site-matched fluorescent probes, o-Dm-Ac and m-Dm-Ac, were developed for real-time imaging of VSPPs in living cells. As a result, the two probes can rapidly respond to small peptide models and reduced proteins, such as WCGPCK (W-6), WCGGPCK (W-7), and WCGGGPCK (W-8), reduced bovine serum albumin (rBSA), and reduced thioredoxin (rTrx). Moreover, o-Dm-Ac displays a higher binding sensitivity with the above-mentioned peptides and proteins, especially with W-7 and rTrx. Furthermore, o-Dm-Ac was successfully used to rapidly and directly detect VSPPs both in vitro and in living cells. Thus, a novel probe-design strategy was proposed and the synthesized probe applied successfully in imaging of target proteins in situ. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2013-03-12

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  13. The impact of the unfolded protein response on human disease

    PubMed Central

    Wang, Shiyu

    2012-01-01

    A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease. PMID:22733998

  14. Expression of APP pathway mRNAs and proteins in Alzheimer's disease.

    PubMed

    Matsui, Toshifumi; Ingelsson, Martin; Fukumoto, Hiroaki; Ramasamy, Karunya; Kowa, Hisatomo; Frosch, Matthew P; Irizarry, Michael C; Hyman, Bradley T

    2007-08-03

    In both trisomy 21 and rare cases of triplication of amyloid precursor protein (APP) Alzheimer's disease (AD) pathological changes are believed to be secondary to increased expression of APP. We hypothesized that sporadic AD may also be associated with changes in transcription of APP or its metabolic partners. To address this issue, temporal neocortex of 27 AD and 21 non-demented control brains was examined to assess mRNA levels of APP isoforms (total APP, APP containing the Kunitz protease inhibitor domain [APP-KPI] and APP770) and APP metabolic enzymatic partners (the APP cleaving enzymes beta-secretase [BACE] and presenilin-1 [PS-1], and putative clearance molecules, low-density lipoprotein receptor protein [LRP] and apolipoprotein E [apoE]). Furthermore, we evaluated how changes in APP at the mRNA level affect the amount of Tris buffer extractable APP protein and Abeta40 and 42 peptides in AD and control brains. As assessed by quantitative PCR, APP-KPI (p=0.007), APP770 (p=0.004), PS-1 (p=0.004), LRP (p=0.003), apoE (p=0.0002) and GFAP (p<0.0001) mRNA levels all increased in AD, and there was a shift from APP695 (a neuronal isoform) towards KPI containing isoforms that are present in glia as well. APP-KPI mRNA levels correlated with soluble APPalpha-KPI protein (sAPPalpha-KPI) levels measured by ELISA (tau=0.33, p=0.015 by Kendall's rank correlation); in turn, soluble APPalpha-KPI protein levels positively correlated with Tris-extractable, soluble Abeta40 (p=0.046) and 42 levels (p=0.007). The ratio of soluble APPalpha-KPI protein levels to total APP protein increased in AD, and also correlated with GFAP protein levels in AD. These results suggest that altered transcription of APP in AD is proportionately associated with Abeta peptide, may occur in the context of gliosis, and may contribute to Abeta deposition in sporadic AD.

  15. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    PubMed

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Mechanisms of protein-folding diseases at a glance.

    PubMed

    Valastyan, Julie S; Lindquist, Susan

    2014-01-01

    For a protein to function appropriately, it must first achieve its proper conformation and location within the crowded environment inside the cell. Multiple chaperone systems are required to fold proteins correctly. In addition, degradation pathways participate by destroying improperly folded proteins. The intricacy of this multisystem process provides many opportunities for error. Furthermore, mutations cause misfolded, nonfunctional forms of proteins to accumulate. As a result, many pathological conditions are fundamentally rooted in the protein-folding problem that all cells must solve to maintain their function and integrity. Here, to illustrate the breadth of this phenomenon, we describe five examples of protein-misfolding events that can lead to disease: improper degradation, mislocalization, dominant-negative mutations, structural alterations that establish novel toxic functions, and amyloid accumulation. In each case, we will highlight current therapeutic options for battling such diseases.

  17. The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway.

    PubMed

    Jeong, Ji-Hye; Nam, Yeon-Ju; Kim, Seok-Yong; Kim, Eung-Gook; Jeong, Jooyoung; Kim, Hyong Kyu

    2007-09-01

    There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.

  18. New valve and bonding designs for microfluidic biochips containing proteins.

    PubMed

    Lu, Chunmeng; Xie, Yubing; Yang, Yong; Cheng, Mark M-C; Koh, Chee-Guan; Bai, Yunling; Lee, L James; Juang, Yi-Je

    2007-02-01

    Two major concerns in the design and fabrication of microfluidic biochips are protein binding on the channel surface and protein denaturing during device assembly. In this paper, we describe new methods to solve these problems. A "fishbone" microvalve design based on the concept of superhydrophobicity was developed to replace the capillary valve in applications where the chip surface requires protein blocking to prevent nonspecific binding. Our experimental results show that the valve functions well in a CD-like ELISA device. The packaging of biochips containing pre-loaded proteins is also a challenging task since conventional sealing methods often require the use of high temperatures, electric voltages, or organic solvents that are detrimental to the protein activity. Using CO2 gas to enhance the diffusion of polymer molecules near the device surface can result in good bonding at low temperatures and low pressure. This bonding method has little influence on the activity of the pre-loaded proteins after bonding.

  19. UBXD4, a UBX-containing protein, regulates the cell surface number and stability of alpha3-containing nicotinic acetylcholine receptors.

    PubMed

    Rezvani, Khosrow; Teng, Yanfen; Pan, Yaping; Dani, John A; Lindstrom, Jon; García Gras, Eduardo A; McIntosh, J Michael; De Biasi, Mariella

    2009-05-27

    Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the alpha3 and alpha4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with alpha3-containing nAChRs (alpha3* nAChRs) expressed in HEK293 cells, PC12 cells, and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the alpha3beta2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining, and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of alpha3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the alpha3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of alpha3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the alpha3 subunit and, consequently, the number of receptors at the cell surface.

  20. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  1. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases.

    PubMed

    Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A

    2013-03-01

    The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via

  2. Plasma proteins predict conversion to dementia from prodromal disease

    PubMed Central

    Hye, Abdul; Riddoch-Contreras, Joanna; Baird, Alison L.; Ashton, Nicholas J.; Bazenet, Chantal; Leung, Rufina; Westman, Eric; Simmons, Andrew; Dobson, Richard; Sattlecker, Martina; Lupton, Michelle; Lunnon, Katie; Keohane, Aoife; Ward, Malcolm; Pike, Ian; Zucht, Hans Dieter; Pepin, Danielle; Zheng, Wei; Tunnicliffe, Alan; Richardson, Jill; Gauthier, Serge; Soininen, Hilkka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon

    2014-01-01

    Background The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia. Methods Three multicenter cohorts of cognitively healthy elderly, mild cognitive impairment (MCI), and AD participants with standardized clinical assessments and structural neuroimaging measures were used. Twenty-six candidate proteins were quantified in 1148 subjects using multiplex (xMAP) assays. Results Sixteen proteins correlated with disease severity and cognitive decline. Strongest associations were in the MCI group with a panel of 10 proteins predicting progression to AD (accuracy 87%, sensitivity 85%, and specificity 88%). Conclusions We have identified 10 plasma proteins strongly associated with disease severity and disease progression. Such markers may be useful for patient selection for clinical trials and assessment of patients with predisease subjective memory complaints. PMID:25012867

  3. Plasma proteins predict conversion to dementia from prodromal disease.

    PubMed

    Hye, Abdul; Riddoch-Contreras, Joanna; Baird, Alison L; Ashton, Nicholas J; Bazenet, Chantal; Leung, Rufina; Westman, Eric; Simmons, Andrew; Dobson, Richard; Sattlecker, Martina; Lupton, Michelle; Lunnon, Katie; Keohane, Aoife; Ward, Malcolm; Pike, Ian; Zucht, Hans Dieter; Pepin, Danielle; Zheng, Wei; Tunnicliffe, Alan; Richardson, Jill; Gauthier, Serge; Soininen, Hilkka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon

    2014-11-01

    The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia. Three multicenter cohorts of cognitively healthy elderly, mild cognitive impairment (MCI), and AD participants with standardized clinical assessments and structural neuroimaging measures were used. Twenty-six candidate proteins were quantified in 1148 subjects using multiplex (xMAP) assays. Sixteen proteins correlated with disease severity and cognitive decline. Strongest associations were in the MCI group with a panel of 10 proteins predicting progression to AD (accuracy 87%, sensitivity 85%, and specificity 88%). We have identified 10 plasma proteins strongly associated with disease severity and disease progression. Such markers may be useful for patient selection for clinical trials and assessment of patients with predisease subjective memory complaints. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The disease management approach to cost containment.

    PubMed

    Goldstein, R

    1998-01-01

    Disease management has been around a long time, certainly since Pasteur. Its initial focus was to eliminate or contain epidemics. In the 20th century, American public health scientists and officials have used disease management to address a high-risk, often poor population. Currently, the population-based principles of disease management, including disease prevention activities, are being applied to noninfectious diseases. Two examples of public health disease prevention strategies are vaccinations and chlorination of water. Hospitals are now providing post-hospital disease management programs for selected chronic conditions that account for a high volume of repeat admissions or emergency department visits, such as chronic heart failure, asthma, and cancer. In other words, hospitals are spending money on a program that, if done right, will reduce their inpatient revenues. They are doing so for various reasons (e.g., because they have established at-risk financial partnerships with their physicians, or possibly because other area hospitals are doing it, or possibly because they want to keep the ancillaries [x-rays, laboratory, pharmacy, ambulatory surgery, etc]). Regardless of the reasons, hospital case managers will be charged with referring qualified patients to both hospital-based and provider-based disease management programs.

  5. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand?

    PubMed

    Gouveia, Marisol; Xia, Ke; Colón, Wilfredo; Vieira, Sandra I; Ribeiro, Fernando

    2017-11-01

    Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma.

    PubMed

    Hall, Justin; Prabhakar, Shilpa; Balaj, Leonora; Lai, Charles P; Cerione, Richard A; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles present an attractive delivery vehicle for therapeutic proteins. They intrinsically contain many proteins which can provide information to other cells. Advantages include reduced immune reactivity, especially if derived from the same host, stability in biologic fluids, and ability to target uptake. Those from mesenchymal stem cells appear to be intrinsically therapeutic, while those from cancer cells promote tumor progression. Therapeutic proteins can be loaded into vesicles by overexpression in the donor cell, with oligomerization and membrane sequences increasing their loading. Examples of protein delivery for therapeutic benefit in pre-clinical models include delivery of: catalase for Parkinson's disease to reduce oxidative stress and thus help neurons to survive; prodrug activating enzymes which can convert a prodrug which crosses the blood-brain barrier into a toxic chemotherapeutic drug for schwannomas and gliomas; and the apoptosis-inducing enzyme, caspase-1 under a Schwann cell specific promoter for schwannoma. This therapeutic delivery strategy is novel and being explored for a number of diseases.

  7. ABI domain containing proteins contribute to surface protein display and cell division in Staphylococcus aureus

    PubMed Central

    Frankel, Matthew B.; Wojcik, Brandon; DeDent, Andrea C.; Missiakas, Dominique M.; Schneewind, Olaf

    2012-01-01

    Summary The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. PMID:20923422

  8. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    PubMed

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  9. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  10. Protein retention and liver aminotransferase activities in Atlantic salmon fed diets containing different energy sources

    USGS Publications Warehouse

    Fynn-Aikins, K.; Hughes, S.G.; Vandenberg, G.W.

    1995-01-01

    Atlantic salmon (Salmo salar) fingerlings (14.4 g) were fed diets containing either glucose, dextrin, raw corn starch and lipid, or a high protein U.S. Fish and Wildlife Service open-formula diet (ASD2-30) for 12 weeks. Significant differences in weight gain and feed: gain ratio were not observed among salmon fed the diets containing glucose, dextrin or ASD2-30. Diets containing dextrin and glucose supported greater protein retention and reduction in alanine aminotransferase activity than the other diets. Activity of aspartate aminotransferase was not affected by the dietary treatment. Protein retention correlated highly with alanine aminotransferase activity.

  11. Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis.

    PubMed

    Joseph, Nimesh; Al-Jassar, Caezar; Johnson, Christopher M; Andreeva, Antonina; Barnabas, Deepak D; Freund, Stefan M V; Gergely, Fanni; van Breugel, Mark

    2018-05-29

    Ciliopathies are a group of genetic disorders caused by a failure to form functional cilia. Due to a lack of structural information, it is currently poorly understood how ciliopathic mutations affect protein functionality to give rise to the underlying disease. Using X-ray crystallography, we show that the ciliopathy-associated centriolar protein CEP120 contains three C2 domains. The point mutations V194A and A199P, which cause Joubert syndrome (JS) and Jeune asphyxiating thoracic dystrophy (JATD), respectively, both reduce the thermostability of the second C2 domain by targeting residues that point toward its hydrophobic core. Genome-engineered cells homozygous for these mutations have largely normal centriole numbers but show reduced CEP120 levels, compromised recruitment of distal centriole markers, and deficient cilia formation. Our results provide insight into the disease mechanism of two ciliopathic mutations in CEP120, identify putative binding partners of CEP120 C2B, and suggest a complex genotype-phenotype relation of the CEP120 ciliopathy alleles. Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  12. Malfolded Protein Structure and Proteostasis in Lung Diseases

    PubMed Central

    Balch, William E.; Sznajder, Jacob I.; Budinger, Scott; Finley, Daniel; Laposky, Aaron D.; Cuervo, Ana Maria; Benjamin, Ivor J.; Barreiro, Esther; Morimoto, Richard I.; Postow, Lisa; Weissman, Allan M.; Gail, Dorothy; Banks-Schlegel, Susan; Croxton, Thomas

    2014-01-01

    Recent discoveries indicate that disorders of protein folding and degradation play a particularly important role in the development of lung diseases and their associated complications. The overarching purpose of the National Heart, Lung, and Blood Institute workshop on “Malformed Protein Structure and Proteostasis in Lung Diseases” was to identify mechanistic and clinical research opportunities indicated by these recent discoveries in proteostasis science that will advance our molecular understanding of lung pathobiology and facilitate the development of new diagnostic and therapeutic strategies for the prevention and treatment of lung disease. The workshop's discussion focused on identifying gaps in scientific knowledge with respect to proteostasis and lung disease, discussing new research advances and opportunities in protein folding science, and highlighting novel technologies with potential therapeutic applications for diagnosis and treatment. PMID:24033344

  13. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.

    PubMed

    Ciechanover, Aaron; Kwon, Yong Tae

    2015-03-13

    Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.

  14. Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease.

    PubMed

    Raaij, Sanne van; Swelm, Rachel van; Bouman, Karlijn; Cliteur, Maaike; Heuvel, Marius van den; Pertijs, Jeanne; Patel, Dominic; Bass, Paul; Goor, Harry van; Unwin, Robert; Srai, Surjit Kaila; Swinkels, Dorine

    2018-06-19

    Iron is suggested to play a detrimental role in the progression of chronic kidney disease (CKD). The kidney recycles iron back into the circulation. However, the localization of proteins relevant for physiological tubular iron handling and their potential role in CKD remain unclear. We examined associations between iron deposition, expression of iron handling proteins and tubular injury in kidney biopsies from CKD patients and healthy controls using immunohistochemistry. Iron was deposited in proximal (PT) and distal tubules (DT) in 33% of CKD biopsies, predominantly in pathologies with glomerular dysfunction, but absent in controls. In healthy kidney, PT contained proteins required for iron recycling including putative iron importers ZIP8, ZIP14, DMT1, iron storage proteins L- and H-ferritin and iron exporter ferroportin, while DT only contained ZIP8, ZIP14, and DMT1. In CKD, iron deposition associated with increased intensity of iron importers (ZIP14, ZIP8), storage proteins (L-, H-ferritin), and/or decreased ferroportin abundance. This demonstrates that tubular iron accumulation may result from increased iron uptake and/or inadequate iron export. Iron deposition associated with oxidative injury as indicated by heme oxygenase-1 abundance. In conclusion, iron deposition is relatively common in CKD, and may result from altered molecular iron handling and may contribute to renal injury.

  15. [Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene].

    PubMed

    Wang, Hui-Zhong; Zhao, Pei-Jie; Xu, Ji-Chen; Zhao, Huai; Zhang, Hong-Sheng

    2003-01-01

    Virus disease is a major cause that affects the quality and output of watermelon which is an important fruit in summer. So it is really urgent to develop disease resistance plants. But it takes a long time to breed such plants in conventional ways, and it is very difficult to get ideal result. With the development of plant genetic engineering, new ways have been found to breed plants with disease resistance. By using plant transgenic technique, much progress was been made in plant improvement. There are many successful cases of transgenic plants against corresponding virus disease through transferring coat protein gene. This paper reports the results of inheritance, segregation, expression of WMV-2 coat protein gene in inbred transgenic watermelon and its resistance to virus. Through PCR analysis of inbred plants, we found WMV-2 coat protein gene in the genome of progeny R1 separated with 3:1. After successive selection and identification of 4 generations, 8 transgenic pure lines with almost the same agronomic traits were obtained from 3 independent transformants of T7, T11 and T32. The result of Western blotting shows all 3 different transgenic lines of R4T7-1, R4T11-3 and R4T32-7 can produce coat protein. Disease resistance experiment on transgenic plants with WMV-2 shows that, compared with the control groups, transgenic plants can delay the disease infection and reduce the incidence and the symptoms of virus disease. And the transgenic line R4T32-7 expressed high resistance to infection by WMV-2, which lays a foundation for breeding of disease resistant varieties through plant transgenic technique.

  16. Dietary protein intake and chronic kidney disease.

    PubMed

    Ko, Gang Jee; Obi, Yoshitsugu; Tortorici, Amanda R; Kalantar-Zadeh, Kamyar

    2017-01-01

    High-protein intake may lead to increased intraglomerular pressure and glomerular hyperfiltration. This can cause damage to glomerular structure leading to or aggravating chronic kidney disease (CKD). Hence, a low-protein diet (LPD) of 0.6-0.8 g/kg/day is often recommended for the management of CKD. We reviewed the effect of protein intake on incidence and progression of CKD and the role of LPD in the CKD management. Actual dietary protein consumption in CKD patients remains substantially higher than the recommendations for LPD. Notwithstanding the inconclusive results of the 'Modification of Diet in Renal Disease' (MDRD) study, the largest randomized controlled trial to examine protein restriction in CKD, several prior and subsequent studies and meta-analyses appear to support the role of LPD on retarding progression of CKD and delaying initiation of maintenance dialysis therapy. LPD can also be used to control metabolic derangements in CKD. Supplemented LPD with essential amino acids or their ketoanalogs may be used for incremental transition to dialysis especially on nondialysis days. The LPD management in lieu of dialysis therapy can reduce costs, enhance psychological adaptation, and preserve residual renal function upon transition to dialysis. Adherence and adequate protein and energy intake should be ensured to avoid protein-energy wasting. A balanced and individualized dietary approach based on LPD should be elaborated with periodic dietitian counseling and surveillance to optimize management of CKD, to assure adequate protein and energy intake, and to avoid or correct protein-energy wasting.

  17. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    PubMed Central

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in

  18. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family.

    PubMed

    Deryusheva, Evgeniia I; Machulin, Andrey V; Selivanova, Olga M; Galzitskaya, Oxana V

    2017-04-01

    Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  20. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  1. Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase

    DOE PAGES

    Keereetaweep, Jantana; Liu, Hui; Zhai, Zhiyang; ...

    2018-04-06

    The first committed step in fatty acid synthesis is mediated by Acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback-regulated by short-term (reversible) and longer-term (irreversible) inhibition upon oversupply of fatty acids (FA) provided by Tween80 (predominantly containing oleic acid; 18:1). Biotin-Attachment-Domain-Containing (BADC) proteins are inactive analogs of biotin carboxyl transfer protein (BCCP) that lack biotin and their incorporation into ACCase downregulates it by displacing active (biotin-containing) BCCP subunits. Individual T-DNA insertion lines of BADC1, BADC2, and BADC3 were used to generate badc1badc2 and badc1badc3. The badc1badc3 mutant and wild-type exhibited normal growthmore » and development, however ACCase activity was 26% higher in badc1badc3 relative to wild-type and its seeds contained 30.1 %DW more FA and 32.6 %DW more TAG than wild-type. Cell suspension cultures were generated from leaves of badc1badc3 and wild-type plants to test whether BADC contributes to the irreversible phase of ACCase inhibition resulting from culture in medium containing 10mM Tween80. While the reversible phase of ACCase inhibition after two days of Tween80 feeding was equivalent for badc1badc3 and wild-type, the irreversible phase of inhibition following four days of Tween80 feeding was reduced by 50% in badc1badc3 relative to wild-type. In this work we present evidence for two important homeostatic roles for BADC proteins in downregulating ACCase activity: during normal growth and development, and by contributing to its long-term irreversible feedback inhibition resulting from oversupply of fatty acids.« less

  2. Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keereetaweep, Jantana; Liu, Hui; Zhai, Zhiyang

    The first committed step in fatty acid synthesis is mediated by Acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback-regulated by short-term (reversible) and longer-term (irreversible) inhibition upon oversupply of fatty acids (FA) provided by Tween80 (predominantly containing oleic acid; 18:1). Biotin-Attachment-Domain-Containing (BADC) proteins are inactive analogs of biotin carboxyl transfer protein (BCCP) that lack biotin and their incorporation into ACCase downregulates it by displacing active (biotin-containing) BCCP subunits. Individual T-DNA insertion lines of BADC1, BADC2, and BADC3 were used to generate badc1badc2 and badc1badc3. The badc1badc3 mutant and wild-type exhibited normal growthmore » and development, however ACCase activity was 26% higher in badc1badc3 relative to wild-type and its seeds contained 30.1 %DW more FA and 32.6 %DW more TAG than wild-type. Cell suspension cultures were generated from leaves of badc1badc3 and wild-type plants to test whether BADC contributes to the irreversible phase of ACCase inhibition resulting from culture in medium containing 10mM Tween80. While the reversible phase of ACCase inhibition after two days of Tween80 feeding was equivalent for badc1badc3 and wild-type, the irreversible phase of inhibition following four days of Tween80 feeding was reduced by 50% in badc1badc3 relative to wild-type. In this work we present evidence for two important homeostatic roles for BADC proteins in downregulating ACCase activity: during normal growth and development, and by contributing to its long-term irreversible feedback inhibition resulting from oversupply of fatty acids.« less

  3. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo.

    PubMed Central

    Kimber, Wendy A; Trinkle-Mulcahy, Laura; Cheung, Peter C F; Deak, Maria; Marsden, Louisa J; Kieloch, Agnieszka; Watt, Stephen; Javier, Ronald T; Gray, Alex; Downes, C Peter; Lucocq, John M; Alessi, Dario R

    2002-01-01

    PtdIns(3,4,5)P3 is an established second messenger of growth-factor and insulin-induced signalling pathways. There is increasing evidence that one of the immediate breakdown products of PtdIns(3,4,5)P3, namely PtdIns(3,4)P2, whose levels are elevated by numerous extracellular agonists, might also function as a signalling molecule. Recently, we identified two related pleckstrin-homology (PH)-domain-containing proteins, termed 'tandem-PH-domain-containing protein-1' (TAPP1) and TAPP2, which interacted in vitro with high affinity with PtdIns(3,4)P2, but did not bind PtdIns(3,4,5)P3 or other phosphoinositides. In the present study we demonstrate that stimulation of Swiss 3T3 or 293 cells with agonists that stimulate PtdIns(3,4)P2 production results in the marked translocation of TAPP1 to the plasma membrane. This recruitment is dependent on a functional PtdIns(3,4)P2-binding PH domain and is inhibited by wortmannin, a phosphoinositide 3-kinase inhibitor that prevents PtdIns(3,4)P2 generation. A search for proteins that interact with TAPP1 identified the multi-PDZ-containing protein termed 'MUPP1', a protein possessing 13 PDZ domains and no other known modular or catalytic domains [PDZ is postsynaptic density protein (PSD-95)/Drosophila disc large tumour suppressor (dlg)/tight junction protein (ZO1)]. We demonstrate that immunoprecipitation of endogenously expressed TAPP1 from 293-cell lysates results in the co-immunoprecipitation of endogenous MUPP1, indicating that these proteins are likely to interact with each other physiologically. We show that TAPP1 and TAPP2 interact with the 10th and 13th PDZ domain of MUPP1 through their C-terminal amino acids. The results of the present study suggest that TAPP1 and TAPP2 could function in cells as adapter proteins to recruit MUPP1, or other proteins that they may interact with, to the plasma membrane in response to signals that elevate PtdIns(3,4)P2. PMID:11802782

  4. Protein crystallography and infectious diseases.

    PubMed Central

    Verlinde, C. L.; Merritt, E. A.; Van den Akker, F.; Kim, H.; Feil, I.; Delboni, L. F.; Mande, S. C.; Sarfaty, S.; Petra, P. H.; Hol, W. G.

    1994-01-01

    The current rapid growth in the number of known 3-dimensional protein structures is producing a database of structures that is increasingly useful as a starting point for the development of new medically relevant molecules such as drugs, therapeutic proteins, and vaccines. This development is beautifully illustrated in the recent book, Protein structure: New approaches to disease and therapy (Perutz, 1992). There is a great and growing promise for the design of molecules for the treatment or prevention of a wide variety of diseases, an endeavor made possible by the insights derived from the structure and function of crucial proteins from pathogenic organisms and from man. We present here 2 illustrations of structure-based drug design. The first is the prospect of developing antitrypanosomal drugs based on crystallographic, ligand-binding, and molecular modeling studies of glycolytic glycosomal enzymes from Trypanosomatidae. These unicellular organisms are responsible for several tropical diseases, including African and American trypanosomiases, as well as various forms of leishmaniasis. Because the target enzymes are also present in the human host, this project is a pioneering study in selective design. The second illustrative case is the prospect of designing anti-cholera drugs based on detailed analysis of the structure of cholera toxin and the closely related Escherichia coli heat-labile enterotoxin. Such potential drugs can be targeted either at inhibiting the toxin's receptor binding site or at blocking the toxin's intracellular catalytic activity. Study of the Vibrio cholerae and E. coli toxins serves at the same time as an example of a general approach to structure-based vaccine design. These toxins exhibit a remarkable ability to stimulate the mucosal immune system, and early results have suggested that this property can be maintained by engineered fusion proteins based on the native toxin structure. The challenge is thus to incorporate selected epitopes

  5. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates

    PubMed Central

    Nguyen, Thang Van; Li, Jing; Lu, Chin-Chun (Jean); Mamrosh, Jennifer L.; Lu, Gang; Cathers, Brian E.; Deshaies, Raymond J.

    2017-01-01

    Glutamine synthetase (GS) plays an essential role in metabolism by catalyzing the synthesis of glutamine from glutamate and ammonia. Our recent study showed that CRBN, a direct protein target for the teratogenic and antitumor activities of immunomodulatory drugs such as thalidomide, lenalidomide, and pomalidomide, recognizes an acetyl degron of GS, resulting in ubiquitylation and degradation of GS in response to glutamine. Here, we report that valosin-containing protein (VCP)/p97 promotes the degradation of ubiquitylated GS, resulting in its accumulation in cells with compromised p97 function. Notably, p97 is also required for the degradation of all four known CRBN neo-substrates [Ikaros family zinc finger proteins 1 (IKZF1) and 3 (IKZF3), casein kinase 1α (CK1α), and the translation termination factor GSPT1] whose ubiquitylation is induced by immunomodulatory drugs. Together, these data point to an unexpectedly intimate relationship between the E3 ubiquitin ligase CRL4CRBN and p97 pathways. PMID:28320958

  6. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  7. UBXD4, a UBX containing protein, regulates the cell surface number and the stability of α3-containing nicotinic acetylcholine receptors

    PubMed Central

    Rezvani, Khosrow; Teng, Yanfen; Pan, Yaping; Dani, John A.; Lindstrom, Jon.; Gras, Eduardo A. Garcáa; McIntosh, J. Michael; De Biasi, Mariella.

    2010-01-01

    Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the α3 and α4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with α3-containing nAChRs (α3* nAChRs) expressed in HEK293 cells, PC12 cells and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the α3β2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of α3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the α3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of α3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the α3 subunit and, consequently, the number of receptors at the cell surface. PMID:19474315

  8. TRDistiller: a rapid filter for enrichment of sequence datasets with proteins containing tandem repeats.

    PubMed

    Richard, François D; Kajava, Andrey V

    2014-06-01

    The dramatic growth of sequencing data evokes an urgent need to improve bioinformatics tools for large-scale proteome analysis. Over the last two decades, the foremost efforts of computer scientists were devoted to proteins with aperiodic sequences having globular 3D structures. However, a large portion of proteins contain periodic sequences representing arrays of repeats that are directly adjacent to each other (so called tandem repeats or TRs). These proteins frequently fold into elongated fibrous structures carrying different fundamental functions. Algorithms specific to the analysis of these regions are urgently required since the conventional approaches developed for globular domains have had limited success when applied to the TR regions. The protein TRs are frequently not perfect, containing a number of mutations, and some of them cannot be easily identified. To detect such "hidden" repeats several algorithms have been developed. However, the most sensitive among them are time-consuming and, therefore, inappropriate for large scale proteome analysis. To speed up the TR detection we developed a rapid filter that is based on the comparison of composition and order of short strings in the adjacent sequence motifs. Tests show that our filter discards up to 22.5% of proteins which are known to be without TRs while keeping almost all (99.2%) TR-containing sequences. Thus, we are able to decrease the size of the initial sequence dataset enriching it with TR-containing proteins which allows a faster subsequent TR detection by other methods. The program is available upon request. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Parkinson's disease proteins: Novel mitochondrial targets for cardioprotection

    PubMed Central

    Mukherjee, Uma A.; Ong, Sang-Bing; Ong, Sang-Ging; Hausenloy, Derek J.

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death and disability worldwide. Therefore, novel therapeutic targets for protecting the heart against acute ischemia/reperfusion injury (IRI) are required to attenuate cardiomyocyte death, preserve myocardial function, and prevent the onset of heart failure. In this regard, a specific group of mitochondrial proteins, which have been linked to familial forms of Parkinson's disease (PD), may provide novel therapeutic targets for cardioprotection. In dopaminergic neurons of the substantia nigra, these PD proteins, which include Parkin, PINK1, DJ-1, LRRK2, and α-synuclein, play essential roles in preventing cell death—through maintaining normal mitochondrial function, protecting against oxidative stress, mediating mitophagy, and preventing apoptosis. These rare familial forms of PD may therefore provide important insights into the pathophysiology underlying mitochondrial dysfunction and the development of PD. Interestingly, these PD proteins are also present in the heart, but their role in myocardial health and disease is not clear. In this article, we review the role of these PD proteins in the heart and explore their potential as novel mitochondrial targets for cardioprotection. PMID:26481155

  10. [STUDY OF PROTECTIVE ACTIVITY OF PROTEIN-CONTAINING ANTIGENS OF STREPTOCOCCUS PNEUMONIAE IN A HETEROLOGOUS SYSTEM].

    PubMed

    Vorobiev, D S; Semenova, I B; Volokh, Yu V; Romanenko, E E; Baturo, A P; Mikhailova, N A

    2015-01-01

    Study protective activity of protein-containing antigens of pneumococcus, obtained from serotypes 6B, 10A, 14, 19F, 23F and 36R, against infection with heterologous strains of S. pneumoniae. S. pneumoniae strains of serotypes 3, 6B, 10A, 14, 19F, 23F and 36R, obtained from the collection of pneumococcus strains of Mechnikov RIVS, were used in the study. Protein-containing antigens of S. pneumoniae were isolated by acetone precipitations of supernatant fraction of culture medium. Protective activity of preparations of protein-containing antigens of pneumococcus as studied in experiments of active protection of BALb/c line mice. The data obtained give evidence, that protein-containing antigens of pneumococcus, isolated from serotypes 6B, 10A, 14, 19F and 23F, effectively protect animals from subsequent infection with a heterologous S. pneumoniae strain of serotype 3 No. 11/56. Protection was noted at a level from 80 to 100% (p ≤ 0.05). Similar protective effect was detected in another experiment in a group of mice, immunized with preparations of protein-containing antigens of pneumococcus, obtained from serotypes 6B and 36R, against infection with a heterologous S. pneumoniae strain of serotype 3 No. 11/56. Protection was noted at a level of 90% (p ≤ 0.05). The results of the experiments carried out allow to assume, that the main role in formation of cross-protection in experiments in animals is played by pneumococcus, proteins, that are a part of the studied preparations, and not polysaccharide antigens.

  11. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goena, M.; Santidrian, S.; Cuevillas, F.

    1986-03-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-//sup 14/C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesizedmore » protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects.« less

  12. Dietary Protein Intake and Chronic Kidney Disease

    PubMed Central

    Ko, Gang Jee; Obi, Yoshitsugu; Tortoricci, Amanda R.; Kalantar-Zadeh, Kamyar

    2018-01-01

    Purpose of review High protein intake may lead to increased intraglomerular pressure and glomerular hyperfiltration. This can cause damage to glomerular structure leading to or aggravating chronic kidney disease (CKD). Hence, a low protein diet (LPD) of 0.6–0.8 g/kg/day is often recommended for the management of CKD. We reviewed the effect of protein intake on incidence and progression of CKD and the role of LPD the CKD management. Recent findings Actual dietary protein consumption in CKD patients remain substantially higher than the recommendations for LPD. Notwithstanding the inconclusive results of the Modification of Diet in Renal Disease (MDRD) study, the largest randomized controlled trial to examine protein restriction in CKD, several prior and subsequent studies and meta-analyses including secondary analyses of the MDRD data appear to support the role of LPD on retarding progression of CKD and delaying initiation of maintenance dialysis therapy. LPD can also be used to control metabolic derangements in CKD. Supplemented LPD with essential amino acids or their keto-analogs may be used for incremental transition to dialysis especially in non-dialysis days. An LPD management in lieu of dialysis therapy can reduce costs, enhance psychological adaptation, and preserve residual renal function upon transition to dialysis. Adherence and adequate protein and energy intake should be ensured to avoid protein-energy wasting. Summary A balanced and individualized dietary approach based on LPD should be elaborated with periodic dietitian counselling and surveillance to optimize management of CKD, to assure adequate protein and energy intake and to avoid or correct protein-energy wasting. PMID:27801685

  13. A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases.

    PubMed

    Pratt, William B; Morishima, Yoshihiro; Gestwicki, Jason E; Lieberman, Andrew P; Osawa, Yoichi

    2014-11-01

    In an EBM Minireview published in 2010, we proposed that the heat shock protein (Hsp)90/Hsp70-based chaperone machinery played a major role in determining the selection of proteins that have undergone oxidative or other toxic damage for ubiquitination and proteasomal degradation. The proposal was based on a model in which the Hsp90 chaperone machinery regulates signaling by modulating ligand-binding clefts. The model provides a framework for thinking about the development of neuroprotective therapies for protein-folding diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and the polyglutamine expansion disorders, such as Huntington's disease (HD) and spinal and bulbar muscular atrophy (SBMA). Major aberrant proteins that misfold and accumulate in these diseases are "client" proteins of the abundant and ubiquitous stress chaperone Hsp90. These Hsp90 client proteins include tau (AD), α-synuclein (PD), huntingtin (HD), and the expanded glutamine androgen receptor (polyQ AR) (SBMA). In this Minireview, we update our model in which Hsp90 acts on protein-folding clefts and show how it forms a rational basis for developing drugs that promote the targeted elimination of these aberrant proteins. © 2014 by the Society for Experimental Biology and Medicine.

  14. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin.

    PubMed

    Dyson, M H; Rose, S; Mahadevan, L C

    2001-08-01

    Acetylated histones are generally associated with active chromatin. The bromodomain has recently been identified as a protein module capable of binding to acetylated lysine residues, and hence is able to mediate the recruitment of factors to acetylated chromatin. Functional studies of bromodomain-containing proteins indicate how this domain contributes to the activity of a number of nuclear factors including histone acetyltransferases and chromatin remodelling complexes. Here, we review the characteristics of acetyllysine-binding by bromodomains, discuss associated domains found in these proteins, and address the function of the bromodomain in the context of chromatin. Finally, the modulation of bromodomain binding by neighbouring post-translational modifications within histone tails might provide a mechanism through which combinations of covalent marks could exert control on chromatin function.

  15. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease.

    PubMed

    Micsenyi, Matthew C; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin; Walkley, Steven U

    2013-06-26

    Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2(-/-) mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin-proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2(-/-) neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation.

  16. Lysosomal Membrane Permeability Stimulates Protein Aggregate Formation in Neurons of a Lysosomal Disease

    PubMed Central

    Micsenyi, Matthew C.; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin

    2013-01-01

    Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2−/− mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin–proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2−/− neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation. PMID:23804102

  17. Expression of p24 gag protein of bovine leukemia virus in insect cells and its use in immunodetection of the disease.

    PubMed

    Larsen, Alejandra; Gonzalez, Ester Teresa; Serena, María Soledad; Echeverría, María Gabriela; Mortola, Eduardo

    2013-06-01

    Bovine leukemia is a common retroviral infection of cattle. The disease is characterized by a strong immunological response to several viral proteins, but the antibodies against p24 and gp51 are predominant. In this study, a recombinant baculovirus containing the gag gene p24 was constructed and the protein, used as antigen, analyzed by western blot and an indirect in-house rp24-ELISA test. This allowed detecting the presence of antibodies for bovine leukemia virus in a panel of cattle sera. The authentication of the protein expands its potential use for different medical applications, from improved diagnosis of the disease to source of antigens to be included in a subunit vaccine.

  18. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases

    PubMed Central

    Park, Solip; Yang, Jae-Seong; Shin, Young-Eun; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2011-01-01

    Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease-associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease-associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression. PMID:21613983

  19. Effect of temperature on the conformation of natively unfolded protein 4E-BP1 in aqueous and mixed solutions containing trifluoroethanol and hexafluoroisopropanol.

    PubMed

    Hackl, Ellen V

    2015-02-01

    Natively unfolded (intrinsically disordered) proteins have attracted growing attention due to their high abundance in nature, involvement in various signalling and regulatory pathways and direct association with many diseases. In the present work the combined effect of temperature and alcohols, trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP), on the natively unfolded 4E-BP1 protein was studied to elucidate the balance between temperature-induced folding and unfolding in intrinsically disordered proteins. It was shown that elevated temperatures induce reversible partial folding of 4E-BP1 both in buffer and in the mixed solutions containing denaturants. In the mixed solutions containing TFE (HFIP) 4E-BP1 adopts a partially folded helical conformation. As the temperature increases, the initial temperature-induced protein folding is replaced by irreversible unfolding/melting only after a certain level of the protein helicity has been reached. Onset unfolding temperature decreases with TFE (HFIP) concentration in solution. It was shown that an increase in the temperature induces two divergent processes in a natively unfolded protein--hydrophobicity-driven folding and unfolding. Balance between these two processes determines thermal behaviour of a protein. The correlation between heat-induced protein unfolding and the amount of helical content in a protein is revealed. Heat-induced secondary structure formation can be a valuable test to characterise minor changes in the conformations of natively unfolded proteins as a result of site-directed mutagenesis. Mutants with an increased propensity to fold into a structured form reveal different temperature behaviour.

  20. Interferon-γ-induced protein 10 in Lyme disease.

    PubMed

    Fallahi, P; Elia, G; Bonatti, A

    2017-01-01

    Lyme disease is an infectious disease caused by bacteria of the Borrelia type, that affects about 300,000 people a year in the USA and 65,000 people a year in Europe. Borrelia infection, and Lyme disease, following occupational exposure has been frequently reported in USA, Europe and Asia. The manifestations of Lyme disease include erythema migrans (EM), arthritis, neuroborrelliosis (NB), and others. Cytokines and chemokines primarily orchestrate leukocyte recruitment to the areas of Borrelia infection, and they are critical mediators of immune and inflammatory responses, in particular of the induction of interferon (IFN)-γ and IFN-γ dependent chemokines. In EM high levels of T helper (Th) 1 cells chemoattranctants [monokine induced by IFN-γ (MIG), IFN-γ-induced protein 10 (IP- 10), and IFN-inducible T cell alpha chemoattractant (I-TAC)] have been shown. Synovial tissues and fluids of patients with Lyme Arthritis (LA) (overall with antibiotic-refractory LA) contained exceptionally high levels of Th1 chemoattractants and cytokines, particularly MIG and IFN-γ. In NB concentrations of IP-10 and I-TAC in the cerebrospinal fluid (CSF) were significantly higher, suggesting that IP-10 and I-TAC create a chemokine gradient between the CSF and serum and recruite C-X-C chemokine receptor 3-expressing memory CD4+ T-cells into the CSF of these patients. A positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction has also been shown. These results suggest that IFN-γ dependent chemokines are important biomarkers to monitor the progression and diffusion of the disease in patients with Borrelia infection; further larger studies are needed.

  1. Protein components of the microRNA pathway and human diseases

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Summary MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and Fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases. PMID:19301657

  2. Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA.

    PubMed

    Dai, Xiaoxia; Wang, Tianlu; Gonzalez, Gwendolyn; Wang, Yinsheng

    2018-06-05

    N1-methyladenosine (m 1 A) is an important post-transcriptional modification in RNA; however, the exact biological role of m 1 A remains to be determined. By employing a quantitative proteomics method, we identified multiple putative protein readers of m 1 A in RNA, including several YTH domain family proteins. We showed that YTHDF1-3 and YTHDC1, but not YTHDC2, could bind directly to m 1 A in RNA. We also found that Trp 432 in YTHDF2, a conserved residue in the hydrophobic pocket of the YTH domain that is necessary for its binding to N 6 -methyladenosine (m 6 A), is required for its recognition of m 1 A. An analysis of previously published data revealed transcriptome-wide colocalization of YTH domain-containing proteins and m 1 A sites in HeLa cells, suggesting that YTH domain-containing proteins can bind to m 1 A in cells. Together, our results uncovered YTH domain-containing proteins as readers for m 1 A in RNA and provided new insight into the functions of m 1 A in RNA biology.

  3. Protein disorder in the human diseasome: unfoldomics of human genetic diseases

    PubMed Central

    Midic, Uros; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2009-01-01

    Background Intrinsically disordered proteins lack stable structure under physiological conditions, yet carry out many crucial biological functions, especially functions associated with regulation, recognition, signaling and control. Recently, human genetic diseases and related genes were organized into a bipartite graph (Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human disease network. Proc Natl Acad Sci U S A 104: 8685–8690). This diseasome network revealed several significant features such as the common genetic origin of many diseases. Methods and findings We analyzed the abundance of intrinsic disorder in these diseasome network proteins by means of several prediction algorithms, and we analyzed the functional repertoires of these proteins based on prior studies relating disorder to function. Our analyses revealed that (i) Intrinsic disorder is common in proteins associated with many human genetic diseases; (ii) Different disease classes vary in the IDP contents of their associated proteins; (iii) Molecular recognition features, which are relatively short loosely structured protein regions within mostly disordered sequences and which gain structure upon binding to partners, are common in the diseasome, and their abundance correlates with the intrinsic disorder level; (iv) Some disease classes have a significant fraction of genes affected by alternative splicing, and the alternatively spliced regions in the corresponding proteins are predicted to be highly disordered; and (v) Correlations were found among the various diseasome graph-related properties and intrinsic disorder. Conclusion These observations provide the basis for the construction of the human-genetic-disease-associated unfoldome. PMID:19594871

  4. Oral protein calorie supplementation for children with chronic disease.

    PubMed

    Francis, Damian K; Smith, Joanne; Saljuqi, Tawab; Watling, Ruth M

    2015-05-27

    Poor growth and nutritional status are common in children with chronic diseases. Oral protein calorie supplements are used to improve nutritional status in these children. These expensive products may be associated with some adverse effects, e.g. the development of inappropriate eating behaviour patterns. This is a new update of a Cochrane review last updated in 2009. To examine evidence that in children with chronic disease, oral protein calorie supplements alter daily nutrient intake, nutritional indices, survival and quality of life and are associated with adverse effects, e.g. diarrhoea, vomiting, reduced appetite, glucose intolerance, bloating and eating behaviour problems. Trials of oral protein calorie supplements in children with chronic diseases were identified through comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. Companies marketing these products were also contacted.Most recent search of the Group's Trials Register: 24 February 2015. Randomised or quasi-randomised controlled trials comparing oral protein calorie supplements for at least one month to increase calorie intake with existing conventional therapy (including advice on improving nutritional intake from food or no specific intervention) in children with chronic disease. We independently assessed the outcomes: indices of nutrition and growth; anthropometric measures of body composition; calorie and nutrient intake (total from oral protein calorie supplements and food); eating behaviour; compliance; quality of life; specific adverse effects; disease severity scores; and mortality; we also assessed the risk of bias in the included trials. Four studies (187 children) met the inclusion criteria. Three studies were carried out in children with cystic fibrosis and one study included children with paediatric malignant disease. Overall there was a low risk of bias for blinding and incomplete outcome data.Two studies had a high

  5. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    PubMed

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  6. Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films

    DOE PAGES

    Isaksson, Simon; Watkins, Erik Benjamin; Browning, Kathryn L.; ...

    2016-11-23

    Here, proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein–material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film tomore » match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic–inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.« less

  7. Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaksson, Simon; Watkins, Erik Benjamin; Browning, Kathryn L.

    Here, proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein–material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film tomore » match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic–inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.« less

  8. Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein*

    PubMed Central

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V.; Sampey, Gavin C.; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. PMID:24939845

  9. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90.

    PubMed

    Saha, Banishree; Momen-Heravi, Fatemeh; Furi, Istvan; Kodys, Karen; Catalano, Donna; Gangopadhyay, Anwesha; Haraszti, Reka; Satishchandran, Abhishek; Iracheta-Vellve, Arvin; Adejumo, Adeyinka; Shaffer, Scott A; Szabo, Gyongyi

    2018-05-01

    a functional role of circulating EVs containing heat shock protein 90 in mediating KC/MØ activation in the liver. (Hepatology 2018;67:1986-2000). © 2017 by the American Association for the Study of Liver Diseases.

  10. CanisOme--The protein signatures of Canis lupus familiaris diseases.

    PubMed

    Fernandes, Mónica; Rosa, Nuno; Esteves, Eduardo; Correia, Maria José; Arrais, Joel; Ribeiro, Paulo; Vala, Helena; Barros, Marlene

    2016-03-16

    Although the applications of Proteomics in Human Biomedicine have been explored for some time now, in animal and veterinary research, the potential of this resource has just started to be explored, especially when companion animal health is considered. In the last years, knowledge on the Canis lupus familiaris proteome has been accumulating in the literature and a resource compiling all this information and critically reviewing it was lacking. This article presents such a resource for the first time. CanisOme is a database of all proteins identified in Canis lupus familiaris tissues, either in health or in disease, annotated with information on the proteins present on the sample and on the donors. This database reunites information on 549 proteins, associated with 63 dog diseases and 33 dog breeds. Examples of how this information may be used to produce new hypothesis on disease mechanisms is presented both through the functional analysis of the proteins quantified in canine cutaneous mast cell tumors and through the study of the interactome of C. lupus familiaris and Leishmania infantum. Therefore, the usefulness of CanisOme for researchers looking for protein biomarkers in dogs and interested in a comprehensive analysis of disease mechanisms is demonstrated. This paper presents CanisOme, a database of proteomic studies with relevant protein annotation, allowing the enlightenment of disease mechanisms and the discovery of novel disease biomarkers for C. lupus familiaris. This knowledge is important not only for the improvement of animal health but also for the use of dogs as models for human health studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview.

    PubMed

    Pockley, A Graham; Henderson, Brian

    2018-01-19

    Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  12. A unified pathogenesis for kidney diseases, including genetic diseases and cancers, by the protein-homeostasis-system hypothesis.

    PubMed

    Lee, Kyung-Yil

    2017-06-01

    Every cell of an organism is separated and protected by a cell membrane. It is proposed that harmony between intercellular communication and the health of an organism is controlled by a system, designated the protein-homeostasis-system (PHS). Kidneys consist of a variety of types of renal cells, each with its own characteristic cell-receptor interactions and producing characteristic proteins. A functional union of these renal cells can be determined by various renal function tests, and harmonious intercellular communication is essential for the healthy state of the host. Injury to a kind of renal cells can impair renal function and induce an imbalance in total body health. Every acute or chronic renal disease has unknown etiologic substances that are responsible for renal cell injury at the molecular level. The immune/repair system of the host should control the etiologic substances acting against renal cells; if this system fails, the disease progresses to end stage renal disease. Each renal disease has its characteristic pathologic lesions where immune cells and immune proteins, such as immunoglobulins and complements, are infiltrated. These immune cells and immune proteins may control the etiologic substances involved in renal pathologic lesions. Also, genetic renal diseases and cancers may originate from a protein deficiency or malfunctioning protein under the PHS. A unified pathogenesis for renal diseases, including acute glomerulonephritis, idiopathic nephrotic syndrome, immunoglobulin A nephropathy, genetic renal diseases such as Alport syndrome, and malignancies such as Wilms tumor and renal cell carcinoma, is proposed using the PHS hypothesis.

  13. Direct Membrane Association Drives Mitochondrial Fission by the Parkinson Disease-associated Protein α-Synuclein*♦

    PubMed Central

    Nakamura, Ken; Nemani, Venu M.; Azarbal, Farnaz; Skibinski, Gaia; Levy, Jon M.; Egami, Kiyoshi; Munishkina, Larissa; Zhang, Jue; Gardner, Brooke; Wakabayashi, Junko; Sesaki, Hiromi; Cheng, Yifan; Finkbeiner, Steven; Nussbaum, Robert L.; Masliah, Eliezer; Edwards, Robert H.

    2011-01-01

    The protein α-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of α-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by α- than β- or γ-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. α-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease. PMID:21489994

  14. Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner*

    PubMed Central

    Luhtala, Natalie; Aslanian, Aaron; Yates, John R.; Hunter, Tony

    2017-01-01

    Glioblastomas (GBMs) are malignant brain tumors with a median survival of less than 18 months. Redundancy of signaling pathways represented within GBMs contributes to their therapeutic resistance. Exosomes are extracellular nanovesicles released from cells and present in human biofluids that represent a possible biomarker of tumor signaling state that could aid in personalized treatment. Herein, we demonstrate that mouse GBM cell-derived extracellular nanovesicles resembling exosomes from an H-RasV12 myr-Akt mouse model for GBM are enriched for intracellular signaling cascade proteins (GO: 0007242) and Ras protein signal transduction (GO: 0007265), and contain active Ras. Active Ras isolated from human and mouse GBM extracellular nanovesicles lysates using the Ras-binding domain of Raf also coprecipitates with ESCRT (endosomal sorting complex required for transport)-associated exosome proteins Vps4a and Alix. Although we initially hypothesized a role for active Ras protein signaling in exosome biogenesis, we found that GTP binding of K-Ras was dispensable for its packaging within extracellular nanovesicles and for the release of Alix. By contrast, farnesylation of K-Ras was required for its packaging within extracellular nanovesicles, yet expressing a K-Ras farnesylation mutant did not decrease the number of nanovesicles or the amount of Alix protein released per cell. Overall, these results emphasize the primary importance of membrane association in packaging of extracellular nanovesicle factors and indicate that screening nanovesicles within human fluids could provide insight into tissue origin and the wiring of signaling proteins at membranes to predict onset and behavior of cancer and other diseases linked to deregulated membrane signaling states. PMID:27909058

  15. Methods for Studying Interactions Between Atg8/LC3/GABARAP and LIR-Containing Proteins.

    PubMed

    Johansen, T; Birgisdottir, Å B; Huber, J; Kniss, A; Dötsch, V; Kirkin, V; Rogov, V V

    2017-01-01

    LC3/GABARAP proteins (LC3/GABARAPs) are mammalian orthologues of yeast Atg8, small ubiquitin (Ub)-like proteins (UBLs) whose covalent attachment to lipid membranes is crucial for the growth and closure of the double membrane vesicle called the autophagosome. In the past decade, it was demonstrated that Atg8/LC3/GABARAPs are also required for autophagic degradation of cargos in a selective fashion. Cargo selectivity is ensured by receptor proteins, such as p62/SQSTM1, NBR1, Cue5, Atg19, NIX, Atg32, NCOA4, and FAM134B, which simultaneously bind Atg8/LC3/GABARAPs and the cargo together, thereby linking the core autophagic machinery to the target structure: a protein, an organelle, or a pathogen. LC3-interacting regions (LIRs) are short linear motifs within selective autophagy receptors and some other structural and signaling proteins (e.g., ULK1, ATG13, FIP200, and Dvl2), which mediate binding to Atg8/LC3/GABARAPs. Identification and characterization of LIR-containing proteins have provided important insights into the biology of the autophagy pathway, and studying their interactions with the core autophagy machinery represents a growing area of autophagy research. Here, we present protocols for the identification of LIR-containing proteins, i.e., by yeast-two-hybrid screening, glutathione S-transferase (GST) pulldown experiments, and peptide arrays. The use of two-dimensional peptide arrays also represents a powerful method to identify the residues of the LIR motif that are critical for binding. We also describe a biophysical method for studying interactions between Atg8/LC3/GABARAP and LIR-containing proteins and a protocol for preparation and purification of LIR peptides. © 2017 Elsevier Inc. All rights reserved.

  16. Designed Proteins Induce the Formation of Nanocage-containing Extracellular Vesicles

    PubMed Central

    Votteler, Jörg; Ogohara, Cassandra; Yi, Sue; Hsia, Yang; Nattermann, Una; Belnap, David M.; King, Neil P.; Sundquist, Wesley I.

    2017-01-01

    Complex biological processes are often performed by self-organizing nanostructures comprising multiple classes of macromolecules, such as ribosomes (proteins and RNA) or enveloped viruses (proteins, nucleic acids, and lipids). Approaches have been developed for designing self-assembling structures consisting of either nucleic acids1,2 or proteins3–5, but strategies for engineering hybrid biological materials are only beginning to emerge6,7. Here, we describe the design of self-assembling protein nanocages that direct their own release from human cells inside small vesicles in a manner that resembles some viruses. We refer to these hybrid biomaterials as Enveloped Protein Nanocages (EPNs). Robust EPN biogenesis required protein sequence elements that encode three distinct functions: membrane binding, self-assembly, and recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery8. A variety of synthetic proteins with these functional elements induced EPN biogenesis, highlighting the modularity and generality of the design strategy. Biochemical and electron cryomicroscopic (cryo-EM) analyses revealed that one design, EPN-01, comprised small (~100 nm) vesicles containing multiple protein nanocages that closely matched the structure of the designed 60-subunit self-assembling scaffold9. EPNs that incorporated the vesicular stomatitis viral glycoprotein (VSV-G) could fuse with target cells and deliver their contents, thereby transferring cargoes from one cell to another. These studies show how proteins can be programmed to direct the formation of hybrid biological materials that perform complex tasks, and establish EPNs as a novel class of designed, modular, genetically-encoded nanomaterials that can transfer molecules between cells. PMID:27919066

  17. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.

    PubMed

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V; Sampey, Gavin C; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-08-08

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease.

    PubMed

    Chen, Hanqing; Shen, Feng; Sherban, Alex; Nocon, Allison; Li, Yu; Wang, Hua; Xu, Ming-Jiang; Rui, Xianliang; Han, Jinyan; Jiang, Bingbing; Lee, Donghwan; Li, Na; Keyhani-Nejad, Farnaz; Fan, Jian-Gao; Liu, Feng; Kamat, Amrita; Musi, Nicolas; Guarente, Leonard; Pacher, Pal; Gao, Bin; Zang, Mengwei

    2018-02-19

    Alcoholic liver disease (ALD) is characterized by lipid accumulation and liver injury. However, how chronic alcohol consumption causes hepatic lipid accumulation remains elusive. The present study demonstrates that activation of the mechanistic target of rapamycin complex 1 (mTORC1) plays a causal role in alcoholic steatosis, inflammation, and liver injury. Chronic-plus-binge ethanol feeding led to hyperactivation of mTORC1, as evidenced by increased phosphorylation of mTOR and its downstream kinase S6 kinase 1 (S6K1) in hepatocytes. Aberrant activation of mTORC1 was likely attributed to the defects of the DEP domain-containing mTOR-interacting protein (DEPTOR) and the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1) in the liver of chronic-plus-binge ethanol-fed mice and in the liver of patients with ALD. Conversely, adenoviral overexpression of hepatic DEPTOR suppressed mTORC1 signaling and ameliorated alcoholic hepatosteatosis, inflammation, and acute-on-chronic liver injury. Mechanistically, the lipid-lowering effect of hepatic DEPTOR was attributable to decreased proteolytic processing, nuclear translocation, and transcriptional activity of the lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1). DEPTOR-dependent inhibition of mTORC1 also attenuated alcohol-induced cytoplasmic accumulation of the lipogenic regulator lipin 1 and prevented alcohol-mediated inhibition of fatty acid oxidation. Pharmacological intervention with rapamycin alleviated the ability of alcohol to up-regulate lipogenesis, to down-regulate fatty acid oxidation, and to induce steatogenic phenotypes. Chronic-plus-binge ethanol feeding led to activation of SREBP-1 and lipin 1 through S6K1-dependent and independent mechanisms. Furthermore, hepatocyte-specific deletion of SIRT1 disrupted DEPTOR function, enhanced mTORC1 activity, and exacerbated alcoholic fatty liver, inflammation, and liver injury in mice. The dysregulation of SIRT1

  19. Inferring drug-disease associations based on known protein complexes.

    PubMed

    Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.

  20. Soy Protein Alleviates Hypertension and Fish Oil Improves Diastolic Heart Function in the Han:SPRD-Cy Rat Model of Cystic Kidney Disease.

    PubMed

    Ibrahim, Naser H M; Thandapilly, Sijo J; Jia, Yong; Netticadan, Thomas; Aukema, Harold

    2016-05-01

    Abnormalities in cardiac structure and function are very common among people with chronic kidney disease, in whom cardiovascular disease is the major cause of death. Dietary soy protein and fish oil reduce kidney disease progression in the Han:SPRD-Cy model of cystic renal disease. However, the effects of these dietary interventions in preventing alterations in cardiac structure and function due to kidney disease (reno-cardiac syndrome) in a cystic kidney disease model are not known. Therefore, weanling Han:SPRD-Cy diseased (Cy/+) and normal (+/+) rats were given diets containing either casein or soy protein, and either soy or fish oil in a three-way design for 8 weeks. Diseased rats had larger hearts, augmented left ventricular mass, and higher systolic and mean arterial blood pressure compared to the normal rats. Assessment of cardiac function using two-dimensional guided M-mode and pulse-wave Doppler echocardiography revealed that isovolumic relaxation time was prolonged in the diseased compared to normal rats, reflecting a diastolic heart dysfunction, and fish oil prevented this elevation. Soy protein resulted in a small improvement in systolic and mean arterial pressure but did not improve diastolic heart function, while fish oil prevented diastolic heart dysfunction in this model of cystic kidney disease.

  1. Enhanced vulnerability of human proteins towards disease-associated inactivation through divergent evolution.

    PubMed

    Medina-Carmona, Encarnación; Fuchs, Julian E; Gavira, Jose A; Mesa-Torres, Noel; Neira, Jose L; Salido, Eduardo; Palomino-Morales, Rogelio; Burgos, Miguel; Timson, David J; Pey, Angel L

    2017-09-15

    Human proteins are vulnerable towards disease-associated single amino acid replacements affecting protein stability and function. Interestingly, a few studies have shown that consensus amino acids from mammals or vertebrates can enhance protein stability when incorporated into human proteins. Here, we investigate yet unexplored relationships between the high vulnerability of human proteins towards disease-associated inactivation and recent evolutionary site-specific divergence of stabilizing amino acids. Using phylogenetic, structural and experimental analyses, we show that divergence from the consensus amino acids at several sites during mammalian evolution has caused local protein destabilization in two human proteins linked to disease: cancer-associated NQO1 and alanine:glyoxylate aminotransferase, mutated in primary hyperoxaluria type I. We demonstrate that a single consensus mutation (H80R) acts as a disease suppressor on the most common cancer-associated polymorphism in NQO1 (P187S). The H80R mutation reactivates P187S by enhancing FAD binding affinity through local and dynamic stabilization of its binding site. Furthermore, we show how a second suppressor mutation (E247Q) cooperates with H80R in protecting the P187S polymorphism towards inactivation through long-range allosteric communication within the structural ensemble of the protein. Our results support that recent divergence of consensus amino acids may have occurred with neutral effects on many functional and regulatory traits of wild-type human proteins. However, divergence at certain sites may have increased the propensity of some human proteins towards inactivation due to disease-associated mutations and polymorphisms. Consensus mutations also emerge as a potential strategy to identify structural hot-spots in proteins as targets for pharmacological rescue in loss-of-function genetic diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please

  2. BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.

    PubMed

    Alves, Daniel Berretta Moreira; Bingle, Lynne; Bingle, Colin David; Lourenço, Silvia Vanessa; Silva, Andréia Aparecida; Pereira, Débora Lima; Vargas, Pablo Agustin

    2017-01-16

    The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.

  3. Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover.

    PubMed

    Zhu, Xiongwei; Castellani, Rudy J; Moreira, Paula I; Aliev, Gjumrakch; Shenk, Justin C; Siedlak, Sandra L; Harris, Peggy L R; Fujioka, Hisashi; Sayre, Lawrence M; Szweda, Pamela A; Szweda, Luke I; Smith, Mark A; Perry, George

    2012-02-01

    Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp.

    PubMed

    Durán, David; Imperial, Juan; Palacios, José; Ruiz-Argüeso, Tomás; Göttfert, Michael; Zehner, Susanne; Rey, Luis

    2018-03-01

    Several genes coding for proteins with metal ion-inducible autocleavage (MIIA) domains were identified in type III secretion system tts gene clusters from draft genomes of recently isolated Bradyrhizobium spp. MIIA domains have been first described in the effectors NopE1 and NopE2 of Bradyrhizobium diazoefficiens USDA 110. All identified genes are preceded by tts box promoter motifs. The identified proteins contain one or two MIIA domains. A phylogenetic analysis of 35 MIIA domain sequences from 16 Bradyrhizobium strains revealed four groups. The protein from Bradyrhizobium sp. LmjC strain contains a single MIIA domain and was designated MdcE (MdcELmjC). It was expressed as a fusion to maltose-binding protein (MalE) in Escherichia coli and subsequently purified by affinity chromatography. Recombinant MalE-MdcELmjC-Strep protein exhibited autocleavage in the presence of Ca2+, Cu2+, Cd2+ and Mn2+, but not in the presence of Mg2+, Ni2+ or Co2+. Site-directed mutagenesis at the predicted cleavage site abolished autocleavage activity of MdcELmjC. An LmjC mdcE- mutant was impaired in the ability to nodulate Lupinus angustifolius and Macroptilium atropurpureum. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases

    NASA Astrophysics Data System (ADS)

    Bucciantini, Monica; Giannoni, Elisa; Chiti, Fabrizio; Baroni, Fabiana; Formigli, Lucia; Zurdo, Jesús; Taddei, Niccolò; Ramponi, Giampietro; Dobson, Christopher M.; Stefani, Massimo

    2002-04-01

    A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.

  6. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    PubMed

    James, Claire D; Roberts, Sally

    2016-01-18

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  7. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.

    PubMed

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 ( BCL-2-associated athanogene 3 ). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer's disease (tau-protein), Huntington's disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  8. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases

    PubMed Central

    de Sain, Mara; Rep, Martijn

    2015-01-01

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835

  9. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  10. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline.

    PubMed

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C

    2011-12-21

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.

  11. Inferring drug-disease associations based on known protein complexes

    PubMed Central

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949

  12. Proteasomal and lysosomal protein degradation and heart disease.

    PubMed

    Wang, Xuejun; Robbins, Jeffrey

    2014-06-01

    In the cell, the proteasome and lysosomes represent the most important proteolytic machineries, responsible for the protein degradation in the ubiquitin-proteasome system (UPS) and autophagy, respectively. Both the UPS and autophagy are essential to protein quality and quantity control. Alterations in cardiac proteasomal and lysosomal degradation are remarkably associated with most heart disease in humans and are implicated in the pathogenesis of congestive heart failure. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteasomal functional insufficiency or lysosomal insufficiency as a major pathogenic factor in the heart. This review article highlights some recent advances in the research into proteasome and lysosome protein degradation in relation to cardiac pathology and examines the emerging evidence for enhancing degradative capacities of the proteasome and/or lysosome as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy". Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Functional Foods Containing Whey Proteins

    USDA-ARS?s Scientific Manuscript database

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  14. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein.

    PubMed

    Nabhan, Joseph F; Hu, Ruoxi; Oh, Raymond S; Cohen, Stanley N; Lu, Quan

    2012-03-13

    Mammalian cells are capable of delivering multiple types of membrane capsules extracellularly. The limiting membrane of late endosomes can fuse with the plasma membrane, leading to the extracellular release of multivesicular bodies (MVBs), initially contained within the endosomes, as exosomes. Budding viruses exploit the TSG101 protein and endosomal sorting complex required for transport (ESCRT) machinery used for MVB formation to mediate the egress of viral particles from host cells. Here we report the discovery of a virus-independent cellular process that generates microvesicles that are distinct from exosomes and which, like budding viruses, are produced by direct plasma membrane budding. Such budding is driven by a specific interaction of TSG101 with a tetrapeptide PSAP motif of an accessory protein, arrestin domain-containing protein 1 (ARRDC1), which we show is localized to the plasma membrane through its arrestin domain. This interaction results in relocation of TSG101 from endosomes to the plasma membrane and mediates the release of microvesicles that contain TSG101, ARRDC1, and other cellular proteins. Unlike exosomes, which are derived from MVBs, ARRDC1-mediated microvesicles (ARMMs) lack known late endosomal markers. ARMMs formation requires VPS4 ATPase and is enhanced by the E3 ligase WWP2, which interacts with and ubiquitinates ARRDC1. ARRDC1 protein discharged into ARMMs was observed in co-cultured cells, suggesting a role for ARMMs in intercellular communication. Our findings reveal an intrinsic cellular mechanism that results in direct budding of microvesicles from the plasma membrane, providing a formal paradigm for the evolutionary recruitment of ESCRT proteins in the release of budding viruses.

  15. Protein Mediated Oxidative Stress in Patients with Diabetes and its Associated Neuropathy: Correlation with Protein Carbonylation and Disease Activity Markers

    PubMed Central

    Almogbel, Ebtehal

    2017-01-01

    Introduction Free radicals have been implicated as Diabetes Mellitus (DM) contributors in type 2 DM and its associated Diabetes Mellitus Neuropathy (DMN). However, the potential for protein mediated oxidative stress to contribute disease pathogenesis remains largely unexplored. Aim To investigate the status and contribution of protein mediated oxidative stress in patients with DM or DMN and to explore whether oxidative protein modification has a role in DM progression to DM associated neuropathy. Materials and Methods Sera from 42 DM and 37 DMN patients with varying levels of disease activities biomarkers (HbA1C, patients’ age or disease duration) and 21 age- and sex-matched healthy controls were evaluated for serum levels of protein mediated oxidative stress. Results Serum analysis showed significantly higher levels of protein carbonyl contents in both DM and DMN patients compared with healthy controls. Importantly, not only was there an increased number of subjects positive for protein carbonylation, but also the levels of protein carbonyl contents were significantly higher among DM and DMN patients, whose HbA1C were ≥8.8 as compared with patients with lower HbA1C (HbA1C<8.8). Similar pattern of protein carbonyls formation was also observed with patients’ ages or with patient’s disease durations, suggesting a possible relationship between protein oxidation and disease progression. Furthermore, sera from DMN patients had higher levels of protein carbonylation compared with non-neuropathic DM patients’ sera, suggesting an involvement of protein oxidation in the progression of diabetes to diabetes neuropathy. Conclusion These findings support an association between protein oxidation and DM or DMN progression. The stronger response observed in patients with higher HbA1C or patients’ ages or disease durations suggests, that protein mediated oxidative stress may be useful in evaluating the progression of DM and its associated DMN and in elucidating the

  16. Human alpha beta hydrolase domain containing protein 11 and its yeast homolog are lipid hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Madhuri; Srinivasan, Malathi; Rajasekharan, Ram

    Mammalian alpha/beta hydrolase domain (ABHD) family of proteins have emerged as key regulators of lipid metabolism and are found to be associated with human diseases. Human α/β-hydrolase domain containing protein 11 (ABHD11) has recently been predicted as a potential biomarker for human lung adenocarcinoma. In silico analyses of the ABHD11 protein sequence revealed the presence of a conserved lipase motif GXSXG. However, the role of ABHD11 in lipid metabolism is not known. To understand the biological function of ABHD11, we heterologously expressed the human ABHD11 in budding yeast, Saccharomyces cerevisiae. In vivo [{sup 14}C]acetate labeling of cellular lipids in yeast cellsmore » overexpressing ABHD11 showed a decrease in triacylglycerol content. Overexpression of ABHD11 also alters the molecular species of triacylglycerol in yeast. Similar activity was observed in its yeast homolog, Ygr031w. The role of the conserved lipase motif in the hydrolase activity was proven by the mutation of all conserved amino acid residues of GXSXG motif. Collectively, our results demonstrate that human ABHD11 and its yeast homolog YGR031W have a pivotal role in the lipid metabolism. - Highlights: • Overexpression of ABHD11 protein and its yeast homolog Ygr031w cause a reduction in triacylglycerol levels in yeast. • The reduction in triacylglycerol is due to the presence of lipase motif GXSXG. • Overexpression of ABHD11 and Ygr031w alters the molecular species of triacylglycerol.« less

  17. High-Throughput Multiplexed Quantitation of Protein Aggregation and Cytotoxicity in a Huntington’s Disease Model

    PubMed Central

    Titus, Steven A; Southall, Noel; Marugan, Juan; Austin, Christopher P; Zheng, Wei

    2012-01-01

    A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation. PMID:23346268

  18. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice.

    PubMed

    Xu, You-hai; Xu, Kui; Sun, Ying; Liou, Benjamin; Quinn, Brian; Li, Rong-hua; Xue, Ling; Zhang, Wujuan; Setchell, Kenneth D R; Witte, David; Grabowski, Gregory A

    2014-08-01

    Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid β-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of β-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of β-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28-40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aβ-aggregates) in nGD. © The Author 2014. Published by Oxford University

  19. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.

    PubMed

    Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.

  20. Potential approaches for heterologous prion protein treatment of prion diseases

    PubMed Central

    Seelig, Davis M.; Goodman, Patricia A.; Skinner, Pamela J.

    2016-01-01

    ABSTRACT Prion diseases, or transmissible spongiform encephalopathies (TSEs) are progressive, fatal neurodegenerative diseases with no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPres). The efficiency of this conversion is predicated upon a number of factors, most notably a strong homology between cellular PrPC and PrPres. In our recently published study, we infected mice with the RML-Chandler strain of scrapie and treated them with heterologous hamster prion proteins. This treatment was seen to reduce clinical signs of prion disease, to delay the onset of clinical symptoms and to prolong survival. In this current article we discuss potential mechanisms of action of treatment with heterologous prion proteins. We also discuss potential extensions of these studies using a heterologous rabbit PrP-based treatment strategy or a peptide based strategy, and improvement of treatment delivery including a lentiviral-based system. PMID:26636482

  1. Fructose-Containing Sugars and Cardiovascular Disease12

    PubMed Central

    Rippe, James M; Angelopoulos, Theodore J

    2015-01-01

    Cardiovascular disease (CVD) is the single largest cause of mortality in the United States and worldwide. Numerous risk factors have been identified for CVD, including a number of nutritional factors. Recently, attention has been focused on fructose-containing sugars and their putative link to risk factors for CVD. In this review, we focus on recent studies related to sugar consumption and cardiovascular risk factors including lipids, blood pressure, obesity, insulin resistance, diabetes, and the metabolic syndrome. We then examine the scientific basis for competing recommendations for sugar intake. We conclude that although it appears prudent to avoid excessive consumption of fructose-containing sugars, levels within the normal range of human consumption are not uniquely related to CVD risk factors with the exception of triglycerides, which may rise when simple sugars exceed 20% of energy per day, particularly in hypercaloric settings. PMID:26178027

  2. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease

    PubMed Central

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate. PMID:28680391

  3. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease: Brain protein O-GlcNAcylation in Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sheng; Yang, Feng; Petyuk, Vladislav A.

    Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could bemore » attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.« less

  4. Phrase Mining of Textual Data to Analyze Extracellular Matrix Protein Patterns Across Cardiovascular Disease.

    PubMed

    Liem, David Alexandre; Murali, Sanjana; Sigdel, Dibakar; Shi, Yu; Wang, Xuan; Shen, Jiaming; Choi, Howard; Caufield, J Harry; Wang, Wei; Ping, Peipei; Han, Jiawei

    2018-05-18

    Extracellular matrix (ECM) proteins have been shown to play important roles regulating multiple biological processes in an array of organ systems, including the cardiovascular system. By using a novel bioinformatics text-mining tool, we studied six categories of cardiovascular disease (CVD), namely ischemic heart disease (IHD), cardiomyopathies (CM), cerebrovascular accident (CVA), congenital heart disease (CHD), arrhythmias (ARR), and valve disease (VD), anticipating novel ECM protein-disease and protein-protein relationships hidden within vast quantities of textual data. We conducted a phrase-mining analysis, delineating the relationships of 709 ECM proteins with the six groups of CVDs reported in 1,099,254 abstracts. The technology pipeline known as Context-aware Semantic Online Analytical Processing (CaseOLAP) was applied to semantically rank the association of proteins to each and all six CVDs, performing analyses to quantify each protein-disease relationship. We performed principal component analysis and hierarchical clustering of the data, where each protein is visualized as a six dimensional vector. We found that ECM proteins display variable degrees of association with the six CVDs; certain CVDs share groups of associated proteins whereas others have divergent protein associations. We identified 82 ECM proteins sharing associations with all six CVDs. Our bioinformatics analysis ascribed distinct ECM pathways (via Reactome) from this subset of proteins, namely insulin-like growth factor regulation and interleukin-4 and interleukin-13 signaling, suggesting their contribution to the pathogenesis of all six CVDs. Finally, we performed hierarchical clustering analysis and identified protein clusters associated with a targeted CVD; analyses revealed unexpected insights underlying ECM-pathogenesis of CVDs.

  5. Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation.

    PubMed

    Valiente-Gabioud, Ariel A; Miotto, Marco C; Chesta, María E; Lombardo, Verónica; Binolfi, Andres; Fernández, Claudio O

    2016-05-17

    The aggregation of proteins into toxic conformations plays a critical role in the development of different neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Creutzfled-Jakob's disease (CJD). These disorders share a common pathological mechanism that involves the formation of aggregated protein species including toxic oligomers and amyloid fibrils. The aggregation of alpha-synuclein (αS) in PD and the amyloid beta peptide (Aβ) and tau protein in AD results in neuronal death and disease onset. In the case of CJD, the misfolding of the physiological prion protein (PrP) induces a chain reaction that results in accumulation of particles that elicit brain damage. Currently, there is no preventive therapy for these diseases and the available therapeutic approaches are based on the treatment of the symptoms rather than the underlying causes of the disease. Accordingly, the aggregation pathway of these proteins represents a useful target for therapeutic intervention. Therefore, understanding the mechanism of amyloid formation and its inhibition is of high clinical importance. The design of small molecules that efficiently inhibit the aggregation process and/or neutralize its associated toxicity constitutes a promising tool for the development of therapeutic strategies against these disorders. In this accounts, we discuss current knowledge on the anti-amyloid activity of phthalocyanines and their potential use as drug candidates in neurodegeneration. These tetrapyrrolic compounds modulate the amyloid assembly of αS, tau, Aβ, and the PrP in vitro, and protect cells from the toxic effects of amyloid aggregates. In addition, in scrapie-infected mice, these compounds showed important prophylactic antiscrapie properties. The structural basis for the inhibitory effect of phthalocyanines on amyloid filament assembly relies on specific π-π interactions between the aromatic ring system of these molecules and aromatic residues in the

  6. Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease.

    PubMed

    Fujita, Kengo; Ito, Hidefumi; Nakano, Satoshi; Kinoshita, Yoshimi; Wate, Reika; Kusaka, Hirofumi

    2008-10-01

    This report concerns an immunohistochemical investigation on RNA-related proteins in the basophilic inclusions (BIs) from patients with adult-onset atypical motor neuron disease. Formalin-fixed, paraffin-embedded sections of the motor cortex and the lumbar spinal cord were examined. The BIs appeared blue in color with H&E and Nissl stain, and pink with methylgreen-pyronin stain. Ribonuclease pretreatment abolished the methylgreen-pyronin staining, suggesting that the BIs contained RNA. Immunohistochemically, the BIs were distinctly labeled with the antibodies against poly(A)-binding protein 1, T cell intracellular antigen 1, and ribosomal protein S6. These proteins are essential constituents of stress granules. In contrast, the BIs were not immunoreactive for ribosomal protein L28 and decapping enzyme 1, which are core components of transport ribonucleoprotein particles and processing bodies, respectively. Moreover, the BIs were not immunopositive for TDP-43. Our results imply that translation attenuation could be involved in the processes of BI formation in this disorder.

  7. Interaction between the AAA ATPase p97/VCP and a concealed UBX domain in the copper transporter ATP7A is associated with motor neuron degeneration.

    PubMed

    Yi, Ling; Kaler, Stephen G

    2018-05-18

    The copper-transporting ATPase ATP7A contains eight transmembrane domains and is required for normal human copper homeostasis. Mutations in the ATP7A gene may lead to infantile-onset cerebral degeneration (Menkes disease); occipital horn syndrome (OHS), a related but much milder illness; or an adult-onset isolated distal motor neuropathy. The ATP7A missense mutation T994I is located in the sixth transmembrane domain of ATP7A, represents one of the variants associated with the latter phenotype, and is associated with an abnormal interaction with p97/valosin-containing protein (VCP), a hexameric AAA ATPase (ATPase associated with diverse cellular activities) with multiple biological functions. In this study, we further characterized this interaction and discovered a concealed UBX domain in the third lumenal loop of ATP7A, between its fifth and sixth transmembrane domains. We show that the T994I substitution results in conformational exposure of the UBX domain, which then binds the N-terminal domain of p97/VCP. We also show that this abnormal interaction occurs at or near the cell plasma membrane. The UBX domain has a conserved hydrophobic FP (Phe-Pro) motif, and substitution with di-alanine abrogated the interaction and restored the proper intracellular localization of ATP7A in the trans -Golgi network. Using protein MS, we identified potential coordinating components of the ATP7A T994I -p97 complex, including NSFL1 cofactor (NSF1C or p47) that may be relevant to the pathophysiology and clinical effects associated with ATP7A T994I Our study represents the first report of p97/VCP binding to a UBX domain that is not normally exposed, resulting in an aberrant protein-protein interaction leading to motor neuron degeneration.

  8. Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential.

    PubMed

    Thompson, Brian R; Metzger, Joseph M

    2014-09-01

    The cardiac sarcomere is the functional unit for myocyte contraction. Ordered arrays of sarcomeric proteins, held in stoichiometric balance with each other, respond to calcium to coordinate contraction and relaxation of the heart. Altered sarcomeric structure-function underlies the primary basis of disease in multiple acquired and inherited heart disease states. Hypertrophic and restrictive cardiomyopathies are caused by inherited mutations in sarcomeric genes and result in altered contractility. Ischemia-mediated acidosis directly alters sarcomere function resulting in decreased contractility. In this review, we highlight the use of acute genetic engineering of adult cardiac myocytes through stoichiometric replacement of sarcomeric proteins in these disease states with particular focus on cardiac troponin I. Stoichiometric replacement of disease causing mutations has been instrumental in defining the molecular mechanisms of hypertrophic and restrictive cardiomyopathy in a cellular context. In addition, taking advantage of stoichiometric replacement through gene therapy is discussed, highlighting the ischemia-resistant histidine-button, A164H cTnI. Stoichiometric replacement of sarcomeric proteins offers a potential gene therapy avenue to replace mutant proteins, alter sarcomeric responses to pathophysiologic insults, or neutralize altered sarcomeric function in disease. © 2014 Wiley Periodicals, Inc.

  9. Plasma levels of selenium-containing proteins in Inuit adults from Nunavik.

    PubMed

    Achouba, Adel; Dumas, Pierre; Ouellet, Nathalie; Lemire, Mélanie; Ayotte, Pierre

    2016-11-01

    Selenium (Se) is highly abundant in marine foods traditionally consumed by Inuit of Nunavik (Northern Quebec, Canada) and accordingly, their Se intake is among the highest in the world. However, little is known regarding the biological implications of this high Se status in this Arctic indigenous population. We used a method combining affinity chromatography and inductively coupled plasma-mass spectrometry with quantification by post-column isotope dilution to determine total Se levels and concentrations of Se-containing proteins in archived plasma samples of Inuit adults who participated to the 2004 Nunavik Inuit Health Survey (N = 852). Amounts of mercury (Hg) associated with Se-containing proteins were also quantified. Results show that glutathione peroxidase 3 (GPx3), selenoprotein P (SelP) and selenoalbumin (SeAlb) represented respectively 25%, 52% and 23% of total plasma Se concentrations. In addition, small amounts of Hg co-eluted with each Se-containing protein and up to 50% of plasma Hg was associated to SelP. Total plasma Se concentrations (median = 139 μg L− 1; interquartile range (IQR) = 22.7 μg L− 1) were markedly lower and less variable than whole blood Se concentration (median = 261 μg L− 1, IQR = 166 μg L− 1). A non linear relation was observed between whole blood Se and plasma Se levels, with plasma Se concentrations leveling off at approximately 200 μg L− 1, whereas 16% and 3% of individuals exhibited whole blood concentrations higher than 500 μg L− 1 and 1000 μg L− 1, respectively. In contrast, a linear relationship was previously reported in communities consuming Brazil nuts which are rich Se, mainly present as selenomethionine. This suggests that a different selenocompound, possibly selenoneine, is present in the Arctic marine food chain and accumulates in the blood cellular fraction of Inuit.

  10. A traditional evolutionary history of foot-and-mouth disease viruses in Southeast Asia challenged by analyses of non-structural protein coding sequences

    USDA-ARS?s Scientific Manuscript database

    Molecular epidemiology and evolution of foot-and-mouth disease virus (FMDV) are widely studied using genomic sequences encoding VP1, the capsid protein containing the most relevant antigenic domains. Although sequencing of the full viral genome is not used as a routine diagnostic or surveillance too...

  11. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response.

    PubMed

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H

    2014-04-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.

  12. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response

    PubMed Central

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    2014-01-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) – and thus generally restoring the disturbed protein homeostasis associated with such diseases – has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or ‘barcoded’ by a different set of HSPs that can rescue specific types of aggregation. Some of these ‘non-canonical’ HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated – so-called chaperonopathies – which are also discussed in this Review. PMID:24719117

  13. A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease.

    PubMed

    Xiong, Huaqi; Chen, Yongxiong; Yi, Yajun; Tsuchiya, Karen; Moeckel, Gilbert; Cheung, Joseph; Liang, Dan; Tham, Kyi; Xu, Xiaohu; Chen, Xing-Zhen; Pei, York; Zhao, Zhizhuang Jeo; Wu, Guanqing

    2002-07-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-p12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. We recently identified a novel gene in this genetic interval from kidney cDNA, using cloning strategies. The gene PKHD1 (PKHD1-tentative) encodes a novel 3396-amino-acid protein with no apparent homology with any known proteins. We named its gene product "tigmin" because it contains multiple TIG domains, which usually are seen in proteins containing immunoglobulin-like folds. PKHD1 encodes an 11.6-kb transcript and is composed of 61 exons spanning an approximately 365-kb genomic region on chromosome 6p12-p11.2 adjacent to the marker D6S1714. Northern blot analyses demonstrated that the gene has discrete bands with one peak signal at approximately 11 kb, indicating that PKHD1 is likely to have multiple alternative transcripts. PKHD1 is highly expressed in adult and infant kidneys and weakly expressed in liver in northern blot analysis. This expression pattern parallels the tissue involvement observed in ARPKD. In situ hybridization analysis further revealed that the expression of PKHD1 in the kidney is mainly localized to the epithelial cells of the collecting duct, the specific tubular segment involved in cyst formation in ARPKD. These features of PKHD1 make it a strong positional candidate gene for ARPKD.

  14. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Oral protein calorie supplementation for children with chronic disease

    PubMed Central

    Francis, Damian K; Smith, Joanne; Saljuqi, Tawab; Watling, Ruth M

    2015-01-01

    Background Poor growth and nutritional status are common in children with chronic diseases. Oral protein calorie supplements are used to improve nutritional status in these children. These expensive products may be associated with some adverse effects, e.g. the development of inappropriate eating behaviour patterns. This is a new update of a Cochrane review last updated in 2009. Objectives To examine evidence that in children with chronic disease, oral protein calorie supplements alter daily nutrient intake, nutritional indices, survival and quality of life and are associated with adverse effects, e.g. diarrhoea, vomiting, reduced appetite, glucose intolerance, bloating and eating behaviour problems. Search methods Trials of oral protein calorie supplements in children with chronic diseases were identified through comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. Companies marketing these products were also contacted. Most recent search of the Group's Trials Register: 24 February 2015. Selection criteria Randomised or quasi-randomised controlled trials comparing oral protein calorie supplements for at least one month to increase calorie intake with existing conventional therapy (including advice on improving nutritional intake from food or no specific intervention) in children with chronic disease. Data collection and analysis We independently assessed the outcomes: indices of nutrition and growth; anthropometric measures of body composition; calorie and nutrient intake (total from oral protein calorie supplements and food); eating behaviour; compliance; quality of life; specific adverse effects; disease severity scores; and mortality; we also assessed the risk of bias in the included trials. Main results Four studies (187 children) met the inclusion criteria. Three studies were carried out in children with cystic fibrosis and one study included children with paediatric malignant disease

  16. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease

    PubMed Central

    Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.

    2016-01-01

    Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  17. A TALE-inspired computational screen for proteins that contain approximate tandem repeats

    PubMed Central

    Krwawicz, Joanna

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832

  18. Dynamin-Related Protein 1 and Mitochondrial Fragmentation in Neurodegenerative Diseases

    PubMed Central

    Reddy, P. Hemachandra; Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Shirendeb, Ulziibat; Mao, Peizhong

    2010-01-01

    The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of X in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others’, we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage. PMID:21145355

  19. Association of innate defense proteins BPIFA1 and BPIFB1 with disease severity in COPD

    PubMed Central

    De Smet, Elise G; Seys, Leen JM; Verhamme, Fien M; Vanaudenaerde, Bart M; Brusselle, Guy G; Bingle, Colin D; Bracke, Ken R

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal inflammatory response in the lungs caused by the inhalation of noxious particles and gases. The airway epithelium has a protective function against these harmful agents by maintaining a physical barrier and by secreting defensive proteins, such as bactericidal/permeability-increasing fold-containing (BPIF) proteins, BPIFA1 and BPIFB1. However, inconsistent data regarding BPIFA1 expression in smokers and COPD patients have been reported to date. Therefore, we investigated the expression of BPIFA1 and BPIFB1 in a large cohort of never-smokers and smokers with and without COPD, both on the messenger RNA (mRNA) level in lung tissue and on the protein level in airway epithelium. Furthermore, we examined the correlation between BPIFA1 and BPIFB1 levels, goblet cell hyperplasia, and lung function measurements. BPIFA1 and BPIFB1 mRNA expressions were significantly increased in stage III–IV COPD patients compared with stage II COPD patients and subjects without COPD. In addition, protein levels in COPD patients were significantly increased in comparison with subjects without COPD. BPIFA1 and BPIFB1 levels were inversely correlated with measurements of airflow limitation and positively correlated with goblet cell hyperplasia. In addition, by the use of immunofluorescence double staining, we demonstrated the expression of BPIFB1 in goblet cells. In conclusion, we show that BPIFA1 and BPIFB1 levels are elevated in COPD patients and correlate with disease severity. PMID:29296079

  20. Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder

    PubMed Central

    Vacic, Vladimir; Markwick, Phineus R. L.; Oldfield, Christopher J.; Zhao, Xiaoyue; Haynes, Chad; Uversky, Vladimir N.; Iakoucheva, Lilia M.

    2012-01-01

    The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new

  1. Ubiquilin-1 and protein quality control in Alzheimer disease.

    PubMed

    El Ayadi, Amina; Stieren, Emily S; Barral, José M; Boehning, Darren

    2013-01-01

    Single nucleotide polymorphisms in the ubiquilin-1 gene may confer risk for late-onset Alzheimer disease (AD). We have shown previously that ubiquilin-1 functions as a molecular chaperone for the amyloid precursor protein (APP) and that protein levels of ubiquilin-1 are decreased in the brains of AD patients. We have recently found that ubiquilin-1 regulates APP trafficking and subsequent secretase processing by stimulating non-degradative ubiquitination of a single lysine residue in the cytosolic domain of APP. Thus, ubiquilin-1 plays a central role in regulating APP biosynthesis, trafficking and ultimately toxicity. As ubiquilin-1 and other ubiquilin family members have now been implicated in the pathogenesis of numerous neurodegenerative diseases, these findings provide mechanistic insights into the central role of ubiquilin proteins in maintaining neuronal proteostasis.

  2. Exploring the mechanistic insights of Cas scaffolding protein family member 4 with protein tyrosine kinase 2 in Alzheimer's disease by evaluating protein interactions through molecular docking and dynamic simulations.

    PubMed

    Hassan, Mubashir; Shahzadi, Saba; Alashwal, Hany; Zaki, Nazar; Seo, Sung-Yum; Moustafa, Ahmed A

    2018-05-22

    Cas scaffolding protein family member 4 and protein tyrosine kinase 2 are signaling proteins, which are involved in neuritic plaques burden, neurofibrillary tangles, and disruption of synaptic connections in Alzheimer's disease. In the current study, a computational approach was employed to explore the active binding sites of Cas scaffolding protein family member 4 and protein tyrosine kinase 2 proteins and their significant role in the activation of downstream signaling pathways. Sequential and structural analyses were performed on Cas scaffolding protein family member 4 and protein tyrosine kinase 2 to identify their core active binding sites. Molecular docking servers were used to predict the common interacting residues in both Cas scaffolding protein family member 4 and protein tyrosine kinase 2 and their involvement in Alzheimer's disease-mediated pathways. Furthermore, the results from molecular dynamic simulation experiment show the stability of targeted proteins. In addition, the generated root mean square deviations and fluctuations, solvent-accessible surface area, and gyration graphs also depict their backbone stability and compactness, respectively. A better understanding of CAS and their interconnected protein signaling cascade may help provide a treatment for Alzheimer's disease. Further, Cas scaffolding protein family member 4 could be used as a novel target for the treatment of Alzheimer's disease by inhibiting the protein tyrosine kinase 2 pathway.

  3. Mathematical Modeling of Protein Misfolding Mechanisms in Neurological Diseases: A Historical Overview.

    PubMed

    Carbonell, Felix; Iturria-Medina, Yasser; Evans, Alan C

    2018-01-01

    Protein misfolding refers to a process where proteins become structurally abnormal and lose their specific 3-dimensional spatial configuration. The histopathological presence of misfolded protein (MP) aggregates has been associated as the primary evidence of multiple neurological diseases, including Prion diseases, Alzheimer's disease, Parkinson's disease, and Creutzfeldt-Jacob disease. However, the exact mechanisms of MP aggregation and propagation, as well as their impact in the long-term patient's clinical condition are still not well understood. With this aim, a variety of mathematical models has been proposed for a better insight into the kinetic rate laws that govern the microscopic processes of protein aggregation. Complementary, another class of large-scale models rely on modern molecular imaging techniques for describing the phenomenological effects of MP propagation over the whole brain. Unfortunately, those neuroimaging-based studies do not take full advantage of the tremendous capabilities offered by the chemical kinetics modeling approach. Actually, it has been barely acknowledged that the vast majority of large-scale models have foundations on previous mathematical approaches that describe the chemical kinetics of protein replication and propagation. The purpose of the current manuscript is to present a historical review about the development of mathematical models for describing both microscopic processes that occur during the MP aggregation and large-scale events that characterize the progression of neurodegenerative MP-mediated diseases.

  4. beta. -Amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkoe, D.J.; Podlisny, M.B.; Joachim, C.L.

    1988-10-01

    Progressive cerebral deposition of extracellular filaments composed of the {beta}-amyloid protein ({beta}AP) is a constant feature of Alzheimer disease (AD). Since the gene on chromosome 21 encoding the {beta}AP precursor ({beta}APP) is not known to be altered in AD, transcriptional or posttranslational changes may underlie accelerated {beta}AP deposition. Using two antibodies to the predicted carboxyl terminus of {beta}APP, the authors have identified the native {beta}APP in brain and nonneural human tissues as a 110- to 135-kDa protein complex that is insoluble in buffer and found in various membrane-rich subcellular fractions. These proteins are relatively uniformly distributed in adult brain, abundantmore » in fetal brain, and detected in nonneural tissues that contain {beta}APP mRNA. Similarly sized proteins occur in rat, cow, and monkey brain and in cultured human HL-60 and HeLa cells; the precise patterns in the 110- to 135-kDa range are heterogeneous among various tissues and cell lines. They conclude that the highly conserved {beta}APP molecule occurs in mammalian tissues as a heterogeneous group of membrane-associated proteins of {approx} 120 kDa. Detection of the nonamyloidogenic carboxyl terminus within plaques suggests that proteolytic processing of the {beta}APP into insoluble filaments occurs locally in cortical regions that develop {beta}-amyloid deposits with age.« less

  5. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    NASA Astrophysics Data System (ADS)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  6. Design of tryptophan-containing mutants of the symmetrical Pizza protein for biophysical studies.

    PubMed

    Noguchi, Hiroki; Mylemans, Bram; De Zitter, Elke; Van Meervelt, Luc; Tame, Jeremy R H; Voet, Arnout

    2018-03-18

    β-propeller proteins are highly symmetrical, being composed of a repeated motif with four anti-parallel β-sheets arranged around a central axis. Recently we designed the first completely symmetrical β-propeller protein, Pizza6, consisting of six identical tandem repeats. Pizza6 is expected to prove a useful building block for bionanotechnology, and also a tool to investigate the folding and evolution of β-propeller proteins. Folding studies are made difficult by the high stability and the lack of buried Trp residues to act as monitor fluorophores, so we have designed and characterized several Trp-containing Pizza6 derivatives. In total four proteins were designed, of which three could be purified and characterized. Crystal structures confirm these mutant proteins maintain the expected structure, and a clear redshift of Trp fluorescence emission could be observed upon denaturation. Among the derivative proteins, Pizza6-AYW appears to be the most suitable model protein for future folding/unfolding kinetics studies as it has a comparable stability as natural β-propeller proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Dipeptidyl Peptidase 10 (DPP10789): A Voltage Gated Potassium Channel Associated Protein Is Abnormally Expressed in Alzheimer's and Other Neurodegenerative Diseases

    PubMed Central

    Gai, Wei-Ping; Abbott, Catherine A.

    2014-01-01

    The neuropathological features associated with Alzheimer's disease (AD) include the presence of extracellular amyloid-β peptide-containing plaques and intracellular tau positive neurofibrillary tangles and the loss of synapses and neurons in defined regions of the brain. Dipeptidyl peptidase 10 (DPP10) is a protein that facilitates Kv4 channel surface expression and neuronal excitability. This study aims to explore DPP10789 protein distribution in human brains and its contribution to the neurofibrillary pathology of AD and other tauopathies. Immunohistochemical analysis revealed predominant neuronal staining of DPP10789 in control brains, and the CA1 region of the hippocampus contained strong reactivity in the distal dendrites of the pyramidal cells. In AD brains, robust DPP10789 reactivity was detected in neurofibrillary tangles and plaque-associated dystrophic neurites, most of which colocalized with the doubly phosphorylated Ser-202/Thr-205 tau epitope. DPP10789 positive neurofibrillary tangles and plaque-associated dystrophic neurites also appeared in other neurodegenerative diseases such as frontotemporal lobar degeneration, diffuse Lewy body disease, and progressive supranuclear palsy. Occasional DPP10789 positive neurofibrillary tangles and neurites were seen in some aged control brains. Western blot analysis showed both full length and truncated DPP10789 fragments with the later increasing significantly in AD brains compared to control brains. Our results suggest that DPP10789 is involved in the pathology of AD and other neurodegenerative diseases. PMID:25025038

  8. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein

    PubMed Central

    Pivot-Pajot, Christophe; Caron, Cécile; Govin, Jérôme; Vion, Alexandre; Rousseaux, Sophie; Khochbin, Saadi

    2003-01-01

    The association between histone acetylation and replacement observed during spermatogenesis prompted us to consider the testis as a source for potential factors capable of remodelling acetylated chromatin. A systematic search of data banks for open reading frames encoding testis-specific bromodomain-containing proteins focused our attention on BRDT, a testis-specific protein of unknown function containing two bromodomains. BRDT specifically binds hyperacetylated histone H4 tail depending on the integrity of both bromodomains. Moreover, in somatic cells, the ectopic expression of BRDT triggered a dramatic reorganization of the chromatin only after induction of histone hyperacetylation by trichostatin A (TSA). We then defined critical domains of BRDT involved in its activity. Both bromodomains of BRDT, as well as flanking regions, were found indispensable for its histone acetylation-dependent remodelling activity. Interestingly, we also observed that recombinant BRDT was capable of inducing reorganization of the chromatin of isolated nuclei in vitro only when the nuclei were from TSA-treated cells. This assay also allowed us to show that the action of BRDT was ATP independent, suggesting a structural role for the protein in the remodelling of acetylated chromatin. This is the first demonstration of a large-scale reorganization of acetylated chromatin induced by a specific factor. PMID:12861021

  9. A comparative study of disease genes and drug targets in the human protein interactome

    PubMed Central

    2015-01-01

    Background Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. Results In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. Conclusions The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing. PMID:25861037

  10. A comparative study of disease genes and drug targets in the human protein interactome.

    PubMed

    Sun, Jingchun; Zhu, Kevin; Zheng, W; Xu, Hua

    2015-01-01

    Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing.

  11. Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other synucleinopathies.

    PubMed

    Ebrahimi-Fakhari, Darius; Saidi, Laiq-Jan; Wahlster, Lara

    2013-12-05

    Changes in protein metabolism are key to disease onset and progression in many neurodegenerative diseases. As a prime example, in Parkinson's disease, folding, post-translational modification and recycling of the synaptic protein α-synuclein are clearly altered, leading to a progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. Altered protein folding is one of the first steps of an increasingly understood cascade in which α-synuclein forms complex oligomers and finally distinct protein aggregates, termed Lewy bodies and Lewy neurites. In neurons, an elaborated network of chaperone and co-chaperone proteins is instrumental in mediating protein folding and re-folding. In addition to their direct influence on client proteins, chaperones interact with protein degradation pathways such as the ubiquitin-proteasome-system or autophagy in order to ensure the effective removal of irreversibly misfolded and potentially pathogenic proteins. Because of the vital role of proper protein folding for protein homeostasis, a growing number of studies have evaluated the contribution of chaperone proteins to neurodegeneration. We herein review our current understanding of the involvement of chaperones, co-chaperones and chaperone-mediated autophagy in synucleinopathies with a focus on the Hsp90 and Hsp70 chaperone system. We discuss genetic and pathological studies in Parkinson's disease as well as experimental studies in models of synucleinopathies that explore molecular chaperones and protein degradation pathways as a novel therapeutic target. To this end, we examine the capacity of chaperones to prevent or modulate neurodegeneration and summarize the current progress in models of Parkinson's disease and related neurodegenerative disorders.

  12. Altered cell-matrix associated ADAM proteins in Alzheimer disease.

    PubMed

    Gerst, J L; Raina, A K; Pirim, I; McShea, A; Harris, P L; Siedlak, S L; Takeda, A; Petersen, R B; Smith, M A

    2000-03-01

    Alterations in cell-matrix 'contact' are often related to a disruption of cell cycle regulation and, as such, occur variously in neoplasia. Given the recent findings showing cell cycle alterations in Alzheimer disease, we undertook a study of ADAM-1 and 2 (A Disintegrin And Metalloprotease), developmentally-regulated, integrin-binding, membrane-bound metalloproteases. Our results show that whereas ADAM-1 and 2 are found in susceptible hippocampal neurons in Alzheimer disease, these proteins were not generally increased in similar neuronal populations in younger or age-matched controls except in association with age-related neurofibrillary alterations. This increase in both ADAM-1 and 2 in cases of Alzheimer disease was verified by immunoblot analysis (P < 0.05). An ADAM-induced loss of matrix integration would effectively "reset" the mitotic clock and thereby stimulate re-entry into the cell cycle in neurons in Alzheimer disease. Furthermore, given the importance of integrins in maintaining short-term memory, alterations in ADAM proteins or their proteolytic activity could also play a proximal role in the clinico-pathological manifestations of Alzheimer disease. Copyright 2000 Wiley-Liss, Inc.

  13. Ménage à trois: the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins.

    PubMed

    Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin

    2014-01-01

    Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defense gene transcription.

  14. Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110

    PubMed Central

    Kuo, Y; Ren, S; Lao, U; Edgar, B A; Wang, T

    2013-01-01

    A network of heat-shock proteins mediates cellular protein homeostasis, and has a fundamental role in preventing aggregation-associated neurodegenerative diseases. In a Drosophila model of polyglutamine (polyQ) disease, the HSP40 family protein, DNAJ-1, is a superior suppressor of toxicity caused by the aggregation of polyQ containing proteins. Here, we demonstrate that one specific HSP110 protein, 70 kDa heat-shock cognate protein cb (HSC70cb), interacts physically and genetically with DNAJ-1 in vivo, and that HSC70cb is necessary for DNAJ-1 to suppress polyglutamine-induced cell death in Drosophila. Expression of HSC70cb together with DNAJ-1 significantly enhanced the suppressive effects of DNAJ-1 on polyQ-induced neurodegeneration, whereas expression of HSC70cb alone did not suppress neurodegeneration in Drosophila models of either general polyQ disease or Huntington's disease. Furthermore, expression of a human HSP40, DNAJB1, together with a human HSP110, APG-1, protected cells from polyQ-induced neural degeneration in flies, whereas expression of either component alone had little effect. Our data provide a functional link between HSP40 and HSP110 in suppressing the cytotoxicity of aggregation-prone proteins, and suggest that HSP40 and HSP110 function together in protein homeostasis control. PMID:24091676

  15. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide

    NASA Astrophysics Data System (ADS)

    Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza

    2015-05-01

    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred

  16. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators

    PubMed Central

    Uversky, Vladimir N.

    2014-01-01

    Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases. PMID:25988147

  17. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus.

    PubMed

    Hansen, T S; Andreasen, P H; Dreisig, H; Højrup, P; Nielsen, H; Engberg, J; Kristiansen, K

    1991-09-15

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.

  18. Effects of high-protein diet containing isolated whey protein in rats submitted to resistance training of aquatic jumps.

    PubMed

    Avila, Eudes Thiago Pereira; da Rosa Lima, Thiago; Tibana, Ramires Alsamir; de Almeida, Paula Caroline; Fraga, Géssica Alves; de Souza Sena, Mariana; Corona, Luiz Felipe Petusk; Navalta, James Wilfred; Rezaei, Sajjad; Ghayomzadeh, Morteza; Damazo, Amílcar Sabino; Prestes, Jonato; Voltarelli, Fabrício Azevedo

    2018-02-13

    Isolated whey protein (IWP) can decrease body fat compared with other protein sources. The present study verified the effects of high protein diet (HD) containing IWP on several parameters of rats subjected to resistance training (RT). Thirty-two male Wistar rats (60 days of age) were separated into four groups (n = 8/group): sedentary normoproteic (IWP 14%; SN); sedentary hyperproteic (IWP 35%; SH); trained normoproteic (IWP 14%; TN), and trained hyperproteic (WPI 35%; TH). Relative tissue/organ weight (g): perirenal and retroperitoneal adipose tissues were lower in SH and TH compared with SN (no difference to TN); omental and subcutaneous adipose tissues were higher in SN compared with SH. Epididymal adipose tissue was higher in SN compared with other groups. Heart weight was higher in TH compared with TN and SN, but not SH; kidney and liver higher in TH and SH compared with SN and TN; gastrocnemius lower in SN compared with other groups; soleus higher in SH in relation to other groups. The triglycerides levels (mg/dL) was reduced in the TH groups compared with SH, TN, and SN. There were no changes both in the concentrations of adiponectin and leptin and in the protein expression of GLUT-4 and p70 s6k . HD containing WPI improved body composition, increased the weight of the heart, kidneys, liver and gastrocnemius and soleus muscles; however, this diet maintained the normal histomorphology of muscle and liver and, when associated with RT, reduced the serum levels of triglycerides. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Prioritisation of associations between protein domains and complex diseases using domain-domain interaction networks.

    PubMed

    Wang, W; Zhang, W; Jiang, R; Luan, Y

    2010-05-01

    It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.

  20. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    PubMed

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. © 2015 American Society for Nutrition.

  1. The therapeutic potential of G-protein coupled receptors in Huntington's disease.

    PubMed

    Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle

    2010-11-01

    Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Cathepsins L and Z Are Critical in Degrading Polyglutamine-containing Proteins within Lysosomes*

    PubMed Central

    Bhutani, Nidhi; Piccirillo, Rosanna; Hourez, Raphael; Venkatraman, Prasanna; Goldberg, Alfred L.

    2012-01-01

    In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins. PMID:22451661

  3. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    PubMed

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  4. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Immunogenicity of Newcastle Disease Virus Vectors Expressing Norwalk Virus Capsid Protein in the Presence or Absence of VP2 Protein

    PubMed Central

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.

    2015-01-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695

  6. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew.

    PubMed Central

    Freeman, R M; Plutzky, J; Neel, B G

    1992-01-01

    src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw) and their similar patterns of expression suggest that SH-PTP2 is the human corkscrew homolog. Sequence comparisons between SH-PTP2, SH-PTP1, corkscrew, and other SH2-containing proteins suggest the existence of a subfamily of SH2 domains found specifically in PTPs, whereas comparison of the PTP domains of the SH2-containing PTPs with other tyrosine phosphatases suggests the existence of a subfamily of PTPs containing SH2 domains. Since corkscrew, a member of the terminal class signal transduction pathway, acts in concert with D-raf to positively transduce the signal generated by the receptor tyrosine kinase torso, these findings suggest several mechanisms by which SH-PTP2 may participate in mammalian signal transduction. Images PMID:1280823

  7. Co-purification of arrestin like proteins with alpha-enolase from bovine myocardial tissues and the possible role in heart diseases as an autoantigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirshahi, M., E-mail: massoud.mirshahi@inserm.fr; Le Marchand, S.

    Aim: Previously, we reported that visual arrestin co-purified with glycolytic enzymes. The aim of this study was to analyze the co-purification of arrestin like proteins (ALP) in bovine cardiac tissues with enolases. Methods: The soluble extract of bovine myocardial tissues from different regions such as left and right atriums and ventricles of the bovine heart (n = 3) was analyzed by ACA-34 gel filtration, immuno-affinity column, SDS-PAGE, ELISA, western blot and a sandwich immune assay for quantification of ALP and sequence analysis. Results: We observed that; 1) The cardiac muscle contained a 50 kDa ALP at a concentration of 751 pg/mg of soluble proteinmore » extract, 2) ALP purified, by immunoaffinity, contained alpha-enolase of 48 kDa confirmed by protein sequence analysis; 3) Cardiomyocyte cells exposed to anti arrestin and anti enolase monoclonal antibodies showed decreased proliferation in vitro, 4) High level of autoantibodies were detected by ELISA (3.57% for arrestin and 9.12% for α-enolase) in serum of patients with infarcted heart disease. Conclusion: We suggest a possible interaction between ALP and alpha-enolases yielding a complex that may be involved in the induction of cardiac autoimmune diseases. - Highlights: • We examine a possible interaction between arrestin like protein and alpha-enolases in cardiomyocyte. • We demonstrated the effect of antibodies against arrestin and enolase on cardiomyocyte cell proliferation. • We suggest that this proteins complex may be involved in the induction of cardiac autoimmune diseases.« less

  8. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...1 July 2015- 30 June 2016 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a... kidney targeted microbubble/ultrasound-mediated plasmid delivery. We will also examine non-targeted CRT knockdown in these mice. Aim 2.b: We will

  9. The immunomodulating V and W proteins of Nipah virus determine disease course.

    PubMed

    Satterfield, Benjamin A; Cross, Robert W; Fenton, Karla A; Agans, Krystle N; Basler, Christopher F; Geisbert, Thomas W; Mire, Chad E

    2015-06-24

    The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course.

  10. Dendritic protein synthesis in the normal and diseased brain

    PubMed Central

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  11. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  12. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs.

    PubMed

    Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane

    2014-06-01

    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs

    PubMed Central

    Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane

    2014-01-01

    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3–RRM4 block is the main platform mediating the stable association with the H12–H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP–RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. PMID:24748666

  14. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.

    PubMed

    Zhu, Jie; Qin, Yufang; Liu, Taigang; Wang, Jun; Zheng, Xiaoqi

    2013-01-01

    Identification of gene-phenotype relationships is a fundamental challenge in human health clinic. Based on the observation that genes causing the same or similar phenotypes tend to correlate with each other in the protein-protein interaction network, a lot of network-based approaches were proposed based on different underlying models. A recent comparative study showed that diffusion-based methods achieve the state-of-the-art predictive performance. In this paper, a new diffusion-based method was proposed to prioritize candidate disease genes. Diffusion profile of a disease was defined as the stationary distribution of candidate genes given a random walk with restart where similarities between phenotypes are incorporated. Then, candidate disease genes are prioritized by comparing their diffusion profiles with that of the disease. Finally, the effectiveness of our method was demonstrated through the leave-one-out cross-validation against control genes from artificial linkage intervals and randomly chosen genes. Comparative study showed that our method achieves improved performance compared to some classical diffusion-based methods. To further illustrate our method, we used our algorithm to predict new causing genes of 16 multifactorial diseases including Prostate cancer and Alzheimer's disease, and the top predictions were in good consistent with literature reports. Our study indicates that integration of multiple information sources, especially the phenotype similarity profile data, and introduction of global similarity measure between disease and gene diffusion profiles are helpful for prioritizing candidate disease genes. Programs and data are available upon request.

  15. Ceruloplasmin: Macromolecular Assemblies with Iron-Containing Acute Phase Proteins

    PubMed Central

    Samygina, Valeriya R.; Sokolov, Alexey V.; Bourenkov, Gleb; Petoukhov, Maxim V.; Pulina, Maria O.; Zakharova, Elena T.; Vasilyev, Vadim B.; Bartunik, Hans; Svergun, Dmitri I.

    2013-01-01

    Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage. PMID:23843990

  16. Amyloid precursor protein mRNA levels in Alzheimer's disease brain.

    PubMed

    Preece, Paul; Virley, David J; Costandi, Moheb; Coombes, Robert; Moss, Stephen J; Mudge, Anne W; Jazin, Elena; Cairns, Nigel J

    2004-03-17

    Insoluble beta-amyloid deposits in Alzheimer's disease (AD) brain are proteolytically derived from the membrane bound amyloid precursor protein (APP). The APP gene is differentially spliced to produce isoforms that can be classified into those containing a Kunitz-type serine protease inhibitor domain (K(+), APP(751), APP(770), APRP(365) and APRP(563)), and those without (K(-), APP(695) and APP(714)). Given the hypothesis that Abeta is a result of aberrant catabolism of APP, differential expression of mRNA isoforms containing protease inhibitors might play an active role in the pathology of AD. We took 513 cerebral cortex samples from 90 AD and 81 control brains and quantified the mRNA isoforms of APP with TaqMan real-time RT-PCR. After adjustment for age at death, brain pH and gender we found a change in the ratio of KPI(+) to KPI(-) mRNA isoforms of APP. Three separate probes, designed to recognise only KPI(+) mRNA species, gave increases of between 28% and 50% in AD brains relative to controls (p=0.002). There was no change in the mRNA levels of KPI-(APP 695) (p=0.898). Therefore, whilst KPI-mRNA levels remained stable the KPI(+) species increased specifically in the AD brains.

  17. Degradation of misfolded proteins by autophagy: is it a strategy for Huntington's disease treatment?

    PubMed

    Lin, Fang; Qin, Zheng-Hong

    2013-01-01

    Autophagy is a degradation pathway for long-lived cytoplasmic proteins, protein complexes, or damaged organelles. The accumulation and aggregation of misfolded proteins are hallmarks of several neurodegenerative diseases. Many researchers have reported that autophagy degrades disease-causing misfolded and aggregated proteins, including mutant huntingtin (Htt) in Huntington's disease, mutant synuclein in familial Parkingson's disease, mutant Cu, Zn-Superoxide dismutase (SOD1) in familial amyotrophic lateral sclerosis. In this review, we will bring up new evidence to elucidate the involvement of autophagy in degradation of mutant Htt, discuss the mechanisms regulating the degradation of mutant Htt by autophagy and the therapeutic effects of drugs that enhance autophagy to improve clearance of mutant Htt. We propose that enhancement of autophagy by drugs may be a strategy to treat or retard progression of Huntington's disease.

  18. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    PubMed

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins?

    PubMed

    Lambrecht, Stijn; Juchtmans, Nele; Elewaut, Dirk

    2014-02-01

    Heat-shock proteins (HSPs) are molecular chaperones that are highly conserved between species. In recent decades it has become clear that these proteins play an important role in the pathogenesis of inflammatory and degenerative joint diseases by (dys)regulating the immune system and by direct effects on the stromal tissues of the joint. In this review we discuss current insights into the expression pattern of HSPs in connective tissues, the direct biological role of HSPs in stromal tissues and the potential clinical applications.

  20. Deregulation of protein translation control, a potential game-changing hypothesis for Parkinson's disease pathogenesis.

    PubMed

    Taymans, Jean-Marc; Nkiliza, Aurore; Chartier-Harlin, Marie-Christine

    2015-08-01

    Protein translation is one of the most fundamental and exquisitely controlled processes in biology, and is energetically demanding. The deregulation of this process is deleterious to cells, as demonstrated by several diseases caused by mutations in protein translation machinery. Emerging evidence now points to a role for protein translation in the pathogenesis of Parkinson's disease (PD); a debilitating neurodegenerative movement disorder. In this paper, we propose a hypothesis that protein translation machinery, PD-associated proteins and PD pathology are connected in a functional network linking cell survival to protein translation control. This hypothesis is a potential game changer in the field of the molecular pathogenesis of PD, with implications for the development of PD diagnostics and disease-modifying therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cloned Viral Protein Vaccine for Foot-and-Mouth Disease: Responses in Cattle and Swine

    NASA Astrophysics Data System (ADS)

    Kleid, Dennis G.; Yansura, Daniel; Small, Barbara; Dowbenko, Donald; Moore, Douglas M.; Grubman, Marvin J.; McKercher, Peter D.; Morgan, Donald O.; Robertson, Betty H.; Bachrach, Howard L.

    1981-12-01

    A DNA sequence coding for the immunogenic capsid protein VP3 of foot-and-mouth disease virus A12, prepared from the virion RNA, was ligated to a plasmid designed to express a chimeric protein from the Escherichia coli tryptophan promoter-operator system. When Escherichia coli transformed with this plasmid was grown in tryptophan-depleted media, approximately 17 percent of the total cellular protein was found to be an insoluble and stable chimeric protein. The purified chimeric protein competed equally on a molar basis with VP3 for specific antibodies to foot-and-mouth disease virus. When inoculated into six cattle and two swine, this protein elicited high levels of neutralizing antibody and protection against challenge with foot-and-mouth disease virus.

  2. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Lipton, Stuart A.

    2015-01-01

    At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. In contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. Here we highlight protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent posttranslational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics. PMID:26707925

  3. [Perthes disease--results of a containment-oriented therapy concept].

    PubMed

    Rühmann, O; Lazović, D; Wirth, C J; Gossé, F; Franke, J

    1997-01-01

    In a retrospective study a treatment concept for Perthes' disease dependent on the containment was applied. 49 hips of 41 children (9 female, 32 male) were treated between 01. 01. 1990 and 31. 12. 1995. In our concept of treatment a varus femoral osteotomy was performed in 28 cases with not contained hips or less than 4/5 coverage of the femoral head (X-ray/MRI). The other 21 well contained hips with 4/5 coverage or more were treated conservatively with physiotherapy and in case of joint effusion and pain additionally with the use of crutches (partial weight bearing) and anti-inflammatory medication. The average age in the non-operative group at the time of first investigation was 4 years and 9 months (3 y./1 m. to 7 y./1 m.) and 6 years and 3 months (4 y/2 m. to 10 y/0 m.) at our last examination (mean follow up 17.7 months, range of 6 to 72 months). At the time of indication for a varus femoral osteotomy the patients had an average age 6 years and 1 month (3 y./6 m. to 10 y./2 m.), the mean age at the last postoperative examination was 7 years and 11 months (4 y./8 m. to 12 y./5 m.) with an average follow up of 21.5 months (6 to 77 months). For the conservatively treated children we achieved good results (still well contained hips with 4/5 coverage, no decrease of function, no increase of pain) in 85.7% (18 of 21 cases). In 85.7% (24 of 28 cases) we found good results (well contained hips, increase of coverage, no decrease of function, no increase of pain) in the operation group. The presented concept of therapy in Perthes' disease was practicable for all patients and included the possibility of decision for operative or non-operative treatment. In both groups we achieved good results in 85.7% of the cases.

  4. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K [Castro Valley, CA

    2009-10-13

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  5. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K [Castro Valley, CA

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  6. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1.

    PubMed

    Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S

    1997-03-01

    The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.

  7. Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling.

    PubMed

    Wang, Juexin; Luttrell, Joseph; Zhang, Ning; Khan, Saad; Shi, NianQing; Wang, Michael X; Kang, Jing-Qiong; Wang, Zheng; Xu, Dong

    2016-01-01

    Protein structure prediction and modeling provide a tool for understanding protein functions by computationally constructing protein structures from amino acid sequences and analyzing them. With help from protein prediction tools and web servers, users can obtain the three-dimensional protein structure models and gain knowledge of functions from the proteins. In this chapter, we will provide several examples of such studies. As an example, structure modeling methods were used to investigate the relation between mutation-caused misfolding of protein and human diseases including epilepsy and leukemia. Protein structure prediction and modeling were also applied in nucleotide-gated channels and their interaction interfaces to investigate their roles in brain and heart cells. In molecular mechanism studies of plants, rice salinity tolerance mechanism was studied via structure modeling on crucial proteins identified by systems biology analysis; trait-associated protein-protein interactions were modeled, which sheds some light on the roles of mutations in soybean oil/protein content. In the age of precision medicine, we believe protein structure prediction and modeling will play more and more important roles in investigating biomedical mechanism of diseases and drug design.

  8. Identification of Staphylococcal Nuclease Domain-containing 1 (SND1) as a Metadherin-interacting Protein with Metastasis-promoting Functions*

    PubMed Central

    Blanco, Mario Andres; Alečković, Maša; Hua, Yuling; Li, Tuo; Wei, Yong; Xu, Zhen; Cristea, Ileana M.; Kang, Yibin

    2011-01-01

    Metastasis is the deadliest and most poorly understood feature of malignant diseases. Recent work has shown that Metadherin (MTDH) is overexpressed in over 40% of breast cancer patients and promotes metastasis and chemoresistance in experimental models of breast cancer progression. Here we applied mass spectrometry-based screen to identify staphylococcal nuclease domain-containing 1 (SND1) as a candidate MTDH-interacting protein. After confirming the interaction between SND1 and MTDH, we tested the role of SND1 in breast cancer and found that it strongly promotes lung metastasis. SND1 was further shown to promote resistance to apoptosis and to regulate the expression of genes associated with metastasis and chemoresistance. Analyses of breast cancer clinical microarray data indicated that high expression of SND1 in primary tumors is strongly associated with reduced metastasis-free survival in multiple large scale data sets. Thus, we have uncovered SND1 as a novel MTDH-interacting protein and shown that it is a functionally and clinically significant mediator of metastasis. PMID:21478147

  9. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation.

    PubMed

    Janesch, Bettina; Koerdt, Andrea; Messner, Paul; Schäffer, Christina

    2013-01-01

    Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcus pluton, the causative agent of European foulbrood (EFB). Paenibacillus alvei CCM 2051(T) is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051(T).

  10. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    PubMed

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  11. [Association between patatin-like phospholipase domain-containing protein 3 gene rs738409 polymorphism and non-alcoholic fatty liver disease susceptibility: a meta-analysis].

    PubMed

    Wu, Pengbo; Shu, Yongxiang; Guo, Fang; Luo, Hesheng; Zhang, Guo; Tan, Shiyun

    2015-01-01

    To explore the association between patatin-like phospholipase domain-containing protein 3(PNPLA3) gene rs738409 polymorphism and the susceptibility of non-alcoholic fatty liver disease(NAFLD). Data bases were comprehensively searched to retrace all the related studies on the association between PNPLA3 gene rs738409 polymorphism and susceptibility. Of NAFLD, the pooled OR with 95% CI of the association between PNPLA3 gene rs738409 polymorphism and NAFLD susceptibility were performed using different genetic models. Subgroup analysis based on the source of population and sensitivity analysis was performed to detect the stability of results. 28 original studies with 6 216 patients and 8 218 controls were involved in the final combination of data. Findings from the meta-analyses showed that there were strong associations between PNPLA3 gene rs738409 polymorphism and the susceptibility of NAFLD, under different genetic model comparisons[GG vs. CC:OR = 2.42, 95%CI:1.83-3.21, P < 0.001;CG vs. CC:OR = 1.28, 95%CI:1.15-1.43, P < 0.001;CG+GG vs. CC:OR = 1.31, 95%CI:1.17-1.46, P < 0.001; GG vs. CC+GC:OR = 2.26, 95%CI:1.76-2.90, P < 0.001]. Similar results were found in both Asian and Caucasian populations. Results from the Meta-analysis strongly suggested that there appeared significant association between PNPLA3 gene rs738409 polymorphism and the susceptibility of NAFLD.

  12. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide.

    PubMed

    Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza

    2015-05-21

    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the 'personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.

  13. Reviving the protein quality control system: therapeutic target for cardiac disease in the elderly.

    PubMed

    Meijering, Roelien A M; Henning, Robert H; Brundel, Bianca J J M

    2015-04-01

    It has been firmly established that ageing constitutes a principal risk factor for cardiac disease. Currently, the underlying mechanisms of ageing that contribute to the initiation or acceleration of cardiac disease are essentially unresolved. Prevailing theories of ageing center on the loss of cellular protein homeostasis, by either design (genetically) or "wear and tear" (environmentally). Either or both ways, the normal protein homeostasis in the cell is affected, resulting in aberrant and misfolded proteins. Should such misfolded proteins escape the protein quality control (PQC) system, they become proteotoxic and accelerate the loss of cellular integrity. Impairment of PQC plays a prominent role in the pathophysiology of ageing-related neurodegenerative disorders such as Parkinson's, Huntington׳s, and Alzheimer׳s disease. The concept of an impaired PQC driving ageing-related diseases has recently been expanded to cardiac diseases, including atrial fibrillation, cardiac hypertrophy, and cardiomyopathy. In this review, we provide a brief overview of the PQC system in relation to ageing and discuss the emerging concept of the loss of PQC in cardiomyocytes as a trigger for cardiac disease. Finally, we discuss the potential of boosting the PQC system as an innovative therapeutic target to treat cardiac disease in the elderly. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Differential accumulation of proteins in oil palms affected by fatal yellowing disease

    PubMed Central

    do Nascimento, Sidney Vasconcelos; Magalhães, Marcelo Murad; Cunha, Roberto Lisboa; Costa, Paulo Henrique de Oliveira; Alves, Ronnie Cley de Oliveira; de Oliveira, Guilherme Corrêa

    2018-01-01

    There is still no consensus on the true origin of fatal yellowing, one of the most important diseases affecting oil palm (Elaeis guineensis Jacq.) plantations. This study involved two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D-UPLC-MSE) analyses to identify changes in protein profiles of oil palms affected by FY disease. Oil palm roots were sampled from two growing areas. Differential accumulation of proteins was assessed by comparing plants with and without symptoms and between plants at different stages of FY development. Most of the proteins identified with differential accumulation were those related to stress response and energy metabolism. The latter proteins include the enzymes alcohol dehydrogenase and aldehyde dehydrogenase, related to alcohol fermentation, which were identified in plants with and without symptoms. The presence of these enzymes suggests an anaerobic condition before or during FY. Transketolase, isoflavone reductase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, S-adenosylmethionine synthase, aldehyde dehydrogenase and ferritin, among others, were identified as potential marker proteins and could be used to guide selection of FY-tolerant oil palm genotypes or to understand the source of this anomaly. When comparing different stages of FY, we observed high accumulation of alcohol dehydrogenase and other abiotic stress related-proteins at all disease stages. On the other hand, biological stress-related proteins were more accumulated at later stages of the disease. These results suggest that changes in abiotic factors can trigger FY development, creating conditions for the establishment of opportunistic pathogens. PMID:29621343

  15. Multiplexed salivary protein profiling for patients with respiratory diseases using fiber-optic bundles and fluorescent antibody-based microarrays.

    PubMed

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-01

    Over the past 40 years, the incidence and prevalence of respiratory diseases have increased significantly throughout the world, damaging economic productivity and challenging health care systems. Current diagnoses of different respiratory diseases generally involve invasive sampling methods such as induced sputum or bronchoalveolar lavage that are uncomfortable, or even painful, for the patient. In this paper, we present a platform incorporating fiber-optic bundles and antibody-based microarrays to perform multiplexed protein profiling of a panel of six salivary biomarkers for asthma and cystic fibrosis (CF) diagnosis. The platform utilizes an optical fiber bundle containing approximately 50,000 individual 4.5 μm diameter fibers that are chemically etched to create microwells in which modified microspheres decorated with monoclonal capture antibodies can be deposited. On the basis of a sandwich immunoassay format, the array quantifies human vascular endothelial growth factor (VEGF), interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), epidermal growth factor (EGF), matrix metalloproteinase 9 (MMP-9), and interleukin-1 beta (IL-1β) salivary biomarkers in the subpicomolar range. Saliva supernatants collected from 291 individuals (164 asthmatics, 71 CF patients, and 56 healthy controls (HC)) were analyzed on the platform to profile each group of patients using this six-analyte suite. It was found that four of the six proteins were observed to be significantly elevated (p < 0.01) in asthma and CF patients compared with HC. These results demonstrate the potential to use the multiplexed protein array platform for respiratory disease diagnosis.

  16. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia)

    PubMed Central

    2013-01-01

    Background Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. Results Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. Conclusions Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early

  17. Amyloid β-protein oligomers and Alzheimer’s disease

    PubMed Central

    2013-01-01

    The oligomer cascade hypothesis, which states that oligomers are the initiating pathologic agents in Alzheimer’s disease, has all but supplanted the amyloid cascade hypothesis, which suggested that fibers were the key etiologic agents in Alzheimer’s disease. We review here the results of in vivo, in vitro and in silico studies of amyloid β-protein oligomers, and discuss important caveats that should be considered in the evaluation of these results. This article is divided into four sections that mirror the main approaches used in the field to better understand oligomers: (1) attempts to locate and examine oligomers in vivo in situ; that is, without removing these species from their environment; (2) studies involving oligomers extracted from human or animal tissues and the subsequent characterization of their properties ex vivo; (3) studies of oligomers that have been produced synthetically and studied using a reductionist approach in relatively simple in vitro biophysical systems; and (4) computational studies of oligomers in silico. These multiple orthogonal approaches have revealed much about the molecular and cell biology of amyloid β-protein. However, as informative as these approaches have been, the amyloid β-protein oligomer system remains enigmatic. PMID:24289820

  18. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis.

    PubMed

    Gang, Qiang; Bettencourt, Conceição; Machado, Pedro M; Brady, Stefen; Holton, Janice L; Pittman, Alan M; Hughes, Deborah; Healy, Estelle; Parton, Matthew; Hilton-Jones, David; Shieh, Perry B; Needham, Merrilee; Liang, Christina; Zanoteli, Edmar; de Camargo, Leonardo Valente; De Paepe, Boel; De Bleecker, Jan; Shaibani, Aziz; Ripolone, Michela; Violano, Raffaella; Moggio, Maurizio; Barohn, Richard J; Dimachkie, Mazen M; Mora, Marina; Mantegazza, Renato; Zanotti, Simona; Singleton, Andrew B; Hanna, Michael G; Houlden, Henry

    2016-11-01

    Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases.

    PubMed

    Gryszczyńska, Bogna; Formanowicz, Dorota; Budzyń, Magdalena; Wanic-Kossowska, Maria; Pawliczak, Elżbieta; Formanowicz, Piotr; Majewski, Wacław; Strzyżewski, Krzysztof Wojciech; Kasprzak, Magdalena P; Iskra, Maria

    2017-01-01

    The main question of this study was to evaluate the intensity of oxidative protein modification shown as advanced oxidation protein products (AOPP) and carbonylated proteins, expressed as protein carbonyl content (C=O) in abdominal aortic aneurysms (AAA), aortoiliac occlusive disease (AIOD), and chronic kidney disease (CKD). The study was carried out in a group of 35 AAA patients and 13 AIOD patients. However, CKD patients were divided into two groups: predialysis (PRE) included 50 patients or hemodialysis (HD) consisted of 34 patients. AOPP and C=O were measured using colorimetric assay kit, while C-reactive protein concentration was measured by high-sensitivity assay (hsCRP). The concentration of AOPP in both AAA and AIOD groups was higher than in PRE and HD groups according to descending order: AAA~AIOD > HD > PRE. The content of C=O was higher in the PRE group in comparison to AIOD and AAA according to the descending order: PRE~HD > AAA~AIOD. AAA, AIOD, and CKD-related atherosclerosis (PRE and HD) contribute to the changes in the formation of AOPP and C=O. They may promote modification of proteins in a different way, probably due to the various factors that influence oxidative stress here.

  20. Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids

    PubMed Central

    Quemin, Emmanuelle R. J.; Pietilä, Maija K.; Oksanen, Hanna M.; Forterre, Patrick; Rijpstra, W. Irene C.; Schouten, Stefan; Bamford, Dennis H.; Prangishvili, David

    2015-01-01

    ABSTRACT Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have conducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic membrane, likely during progeny egress. IMPORTANCE Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and

  1. The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins.

    PubMed

    An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M

    2008-09-05

    Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.

  2. The Unfolded Protein Response in Chronic Obstructive Pulmonary Disease

    PubMed Central

    2016-01-01

    Accumulation of nonfunctional and potentially cytotoxic, misfolded proteins in chronic obstructive pulmonary disease (COPD) is believed to contribute to lung cell apoptosis, inflammation, and autophagy. Because of its fundamental role as a quality control system in protein metabolism, the “unfolded protein response” (UPR) is of potential importance in the pathogenesis of COPD. The UPR comprises a series of transcriptional, translational, and post-translational processes that decrease protein synthesis while enhancing protein folding capacity and protein degradation. Several studies have suggested that the UPR contributes to lung cell apoptosis and lung inflammation in at least some subjects with human COPD. However, information on the prevalence of the UPR in subjects with COPD, the lung cells that manifest a UPR, and the role of the UPR in the pathogenesis of COPD is extremely limited and requires additional study. PMID:27115948

  3. The Unfolded Protein Response in Chronic Obstructive Pulmonary Disease.

    PubMed

    Kelsen, Steven G

    2016-04-01

    Accumulation of nonfunctional and potentially cytotoxic, misfolded proteins in chronic obstructive pulmonary disease (COPD) is believed to contribute to lung cell apoptosis, inflammation, and autophagy. Because of its fundamental role as a quality control system in protein metabolism, the "unfolded protein response" (UPR) is of potential importance in the pathogenesis of COPD. The UPR comprises a series of transcriptional, translational, and post-translational processes that decrease protein synthesis while enhancing protein folding capacity and protein degradation. Several studies have suggested that the UPR contributes to lung cell apoptosis and lung inflammation in at least some subjects with human COPD. However, information on the prevalence of the UPR in subjects with COPD, the lung cells that manifest a UPR, and the role of the UPR in the pathogenesis of COPD is extremely limited and requires additional study.

  4. A BEN-domain-containing protein associates with heterochromatin and represses transcription.

    PubMed

    Sathyan, Kizhakke M; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2011-09-15

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.

  5. A BEN-domain-containing protein associates with heterochromatin and represses transcription

    PubMed Central

    Sathyan, Kizhakke M.; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2011-01-01

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression. PMID:21914818

  6. Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk?12

    PubMed Central

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-01-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. PMID:26567196

  7. Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets

    PubMed Central

    Satterfield, Benjamin A.; Cross, Robert W.; Fenton, Karla A.; Borisevich, Viktoriya; Agans, Krystle N.; Deer, Daniel J.; Graber, Jessica; Basler, Christopher F.; Mire, Chad E.

    2016-01-01

    ABSTRACT Nipah virus (NiV) is a highly lethal paramyxovirus that recently emerged as a causative agent of febrile encephalitis and severe respiratory disease in humans. The ferret model has emerged as the preferred small-animal model with which to study NiV disease, but much is still unknown about the viral determinants of NiV pathogenesis, including the contribution of the C protein in ferrets. Additionally, studies have yet to examine the synergistic effects of the various P gene products on pathogenesis in animal models. Using recombinant NiVs (rNiVs), we examine the sole contribution of the NiV C protein and the combined contributions of the C and W proteins in the ferret model of NiV pathogenesis. We show that an rNiV void of C expression resulted in 100% mortality, though with limited respiratory disease, like our previously reported rNiV void of W expression; this finding is in stark contrast to the attenuated phenotype observed in previous hamster studies utilizing rNiVs void of C expression. We also observed that an rNiV void of both C and W expression resulted in limited respiratory disease; however, there was severe neurological disease leading to 60% mortality, and the surviving ferrets demonstrated sequelae similar to those for human survivors of NiV encephalitis. IMPORTANCE Nipah virus (NiV) is a human pathogen capable of causing lethal respiratory and neurological disease. Many human survivors have long-lasting neurological impairment. Using a ferret model, this study demonstrated the roles of the NiV C and W proteins in pathogenesis, where lack of either the C or the W protein independently decreased the severity of clinical respiratory disease but did not decrease lethality. Abolishing both C and W expression, however, dramatically decreased the severity of respiratory disease and the level of destruction of splenic germinal centers. These ferrets still suffered severe neurological disease: 60% succumbed to disease, and the survivors experienced

  8. Prion protein immunocytochemistry helps to establish the true incidence of prion diseases.

    PubMed

    Lantos, P L; McGill, I S; Janota, I; Doey, L J; Collinge, J; Bruce, M T; Whatley, S A; Anderton, B H; Clinton, J; Roberts, G W

    1992-11-23

    Creutzfeldt-Jakob disease (CJD) and Gerstmann-Strüssler-Scheinker disease (GSSD) are transmissible spongiform encephalopathies or prion diseases affecting man. It has been reported that prion diseases may occur without the histological hallmarks of spongiform encephalopathies: vacuolation of the cerebral grey matter, neuronal loss and astrocytosis. These cases without characteristic neuropathology may go undiagnosed and consequently the true incidence of transmissible dementias is likely to have been under-estimated. Immunocytochemistry using antibodies to prion protein gives positive staining of these cases, albeit the pattern of immunostaining differs from that seen in typical forms. Accumulation of prion protein is a molecular hallmark of prion diseases, and thus a reproducible, speedy and cost-efficient immunocytochemical screening of unusual dementias may help to establish the true incidence of prion diseases.

  9. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  10. Most consumed processed foods by patients on hemodialysis: Alert for phosphate-containing additives and the phosphate-to-protein ratio.

    PubMed

    Watanabe, Marcela T; Araujo, Raphael M; Vogt, Barbara P; Barretti, Pasqual; Caramori, Jacqueline C T

    2016-08-01

    Hyperphosphatemia is common in patients with chronic kidney disease (CKD) stages IV and V because of decreased phosphorus excretion. Phosphatemia is closely related to dietary intake. Thus, a better understanding of sources of dietary phosphate consumption, absorption and restriction, particularly inorganic phosphate found in food additives, is key to prevent consequences of this complication. Our aims were to investigate the most commonly consumed processed foods by patients with CKD on hemodialysis, to analyze phosphate and protein content of these foods using chemical analysis and to compare these processed foods with fresh foods. We performed a cross-sectional descriptive analytical study using food frequency questionnaires to rank the most consumed industrialized foods and beverages. Total phosphate content was determined by metavanadate colorimetry, and nitrogen content was determined by the Kjeldahl method. Protein amounts were estimated from nitrogen content. The phosphate-to-protein ratio (mg/g) was then calculated. Processed meat protein and phosphate content were compared with the nutritional composition of fresh foods using the Brazilian Food Composition Table. Phosphate measurement results were compared with data from the Food Composition Table - Support for Nutritional Decisions. An α level of 5% was considered significant. Food frequency questionnaires were performed on 100 patients (mean age, 59 ± 14 years; 57% male). Phosphate additives were mentioned on 70% of the product labels analyzed. Proteins with phosphate-containing additives provided approximately twice as much phosphate per gram of protein compared with that of fresh foods (p < 0.0001). Protein and phosphate content of processed foods are higher than those of fresh foods, as well as phosphate-to-protein ratio. A better understanding of phosphate content in foods, particularly processed foods, may contribute to better control of phosphatemia in patients with CKD. Copyright © 2016

  11. Differential effects of human SP-A1 and SP-A2 variants on phospholipid monolayers containing surfactant protein B

    PubMed Central

    Wang, Guirong; Taneva, Svetla; Keough, Kevin M.W.; Floros, Joanna

    2010-01-01

    Summary Surfactant protein A (SP-A), the most abundant protein in the lung alveolar surface, has multiple activities, including surfactant-related functions. SP-A is required for the formation of tubular myelin and the lung surface film. The human SP-A locus consists of two functional SP-A genes, SP-A1 and SP-A2, with a number of alleles characterized for each gene. We have found that the human in vitro expressed variants, SP-A1 (6A2) and SP-A2 (1A0), and the coexpressed SP-A1/SP-A2 (6A2/1A0) protein have a differential influence on the organization of phospholipid monolayers containing surfactant protein B (SP-B). Lipid films containing SP-B and SP-A2 (1A0) showed surface features similar to those observed in lipid films with SP-B and native human SP-A. Fluorescence images revealed the presence of characteristic fluorescent probe-excluding clusters coexisting with the traditional lipid liquid-expanded and liquid-condensed phase. Images of the films containing SP-B and SP-A1 (6A2) showed different distribution of the proteins. The morphology of lipid films containing SP-B and the coexpressed SP-A1/SP-A2 (6A2/1A0) combined features of the individual films containing the SP-A1 or SP-A2 variant. The results indicate that human SP-A1 and SP-A2 variants exhibit differential effects on characteristics of phospholipid monolayers containing SP-B. This may differentially impact surface film activity. PMID:17678872

  12. Prediction of Body Fluids where Proteins are Secreted into Based on Protein Interaction Network

    PubMed Central

    Hu, Le-Le; Huang, Tao; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Determining the body fluids where secreted proteins can be secreted into is important for protein function annotation and disease biomarker discovery. In this study, we developed a network-based method to predict which kind of body fluids human proteins can be secreted into. For a newly constructed benchmark dataset that consists of 529 human-secreted proteins, the prediction accuracy for the most possible body fluid location predicted by our method via the jackknife test was 79.02%, significantly higher than the success rate by a random guess (29.36%). The likelihood that the predicted body fluids of the first four orders contain all the true body fluids where the proteins can be secreted into is 62.94%. Our method was further demonstrated with two independent datasets: one contains 57 proteins that can be secreted into blood; while the other contains 61 proteins that can be secreted into plasma/serum and were possible biomarkers associated with various cancers. For the 57 proteins in first dataset, 55 were correctly predicted as blood-secrete proteins. For the 61 proteins in the second dataset, 58 were predicted to be most possible in plasma/serum. These encouraging results indicate that the network-based prediction method is quite promising. It is anticipated that the method will benefit the relevant areas for both basic research and drug development. PMID:21829572

  13. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  14. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    PubMed

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  15. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M

    2012-01-01

    The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.

  16. iLIR@viral: A web resource for LIR motif-containing proteins in viruses.

    PubMed

    Jacomin, Anne-Claire; Samavedam, Siva; Charles, Hannah; Nezis, Ioannis P

    2017-10-03

    Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.

  17. Ferritin: the protein nanocage and iron biomineral in health and in disease.

    PubMed

    Theil, Elizabeth C

    2013-11-04

    At the center of iron and oxidant metabolism is the ferritin superfamily: protein cages with Fe(2+) ion channels and two catalytic Fe/O redox centers that initiate the formation of caged Fe2O3·H2O. Ferritin nanominerals, initiated within the protein cage, grow inside the cage cavity (5 or 8 nm in diameter). Ferritins contribute to normal iron flow, maintenance of iron concentrates for iron cofactor syntheses, sequestration of iron from invading pathogens, oxidant protection, oxidative stress recovery, and, in diseases where iron accumulates excessively, iron chelation strategies. In eukaryotic ferritins, biomineral order/crystallinity is influenced by nucleation channels between active sites and the mineral growth cavity. Animal ferritin cages contain, uniquely, mixtures of catalytically active (H) and inactive (L) polypeptide subunits with varied rates of Fe(2+)/O2 catalysis and mineral crystallinity. The relatively low mineral order in liver ferritin, for example, coincides with a high percentage of L subunits and, thus, a low percentage of catalytic sites and nucleation channels. Low mineral order facilitates rapid iron turnover and the physiological role of liver ferritin as a general iron source for other tissues. Here, current concepts of ferritin structure/function/genetic regulation are discussed and related to possible therapeutic targets such as mini-ferritin/Dps protein active sites (selective pathogen inhibition in infection), nanocage pores (iron chelation in therapeutic hypertransfusion), mRNA noncoding, IRE riboregulator (normalizing the ferritin iron content after therapeutic hypertransfusion), and protein nanovessels to deliver medicinal or sensor cargo.

  18. G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease

    PubMed Central

    Kwon, Michelle; Pavlov, Tengis S.; Nozu, Kandai; Rasmussen, Shauna A.; Ilatovskaya, Daria V.; Lerch-Gaggl, Alexandra; North, Lauren M.; Kim, Hyunho; Qian, Feng; Sweeney, William E.; Avner, Ellis D.; Blumer, Joe B.; Staruschenko, Alexander; Park, Frank

    2012-01-01

    Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1V/V mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1+/+ and Gpsm1+/− mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease. PMID:23236168

  19. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein.

    PubMed Central

    Stevenson, S C; Rollence, M; Marshall-Neff, J; McClelland, A

    1997-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange

  20. Drug Discovery Targeting Bromodomain-Containing Protein 4

    PubMed Central

    2017-01-01

    BRD4, the most extensively studied member of the BET family, is an epigenetic regulator that localizes to DNA via binding to acetylated histones and controls the expression of therapeutically important gene regulatory networks through the recruitment of transcription factors to form mediator complexes, phosphorylating RNA polymerase II, and by its intrinsic histone acetyltransferase activity. Disrupting the protein–protein interactions between BRD4 and acetyl-lysine has been shown to effectively block cell proliferation in cancer, cytokine production in acute inflammation, and so forth. To date, significant efforts have been devoted to the development of BRD4 inhibitors, and consequently, a dozen have progressed to human clinical trials. Herein, we summarize the advances in drug discovery and development of BRD4 inhibitors by focusing on their chemotypes, in vitro and in vivo activity, selectivity, relevant mechanisms of action, and therapeutic potential. Opportunities and challenges to achieve selective and efficacious BRD4 inhibitors as a viable therapeutic strategy for human diseases are also highlighted. PMID:28195723

  1. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains.

    PubMed

    Mitchell, Carter A; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2012-04-17

    Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Nonribosomal peptide synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain. Our lab recently determined the structure of an engineered two-domain NRPS containing fused adenylation and carrier domains. This structure adopted a domain-swapped dimer that illustrated the interface between these two domains. To continue our investigation, we now examine PA1221, a natural two-domain protein from Pseudomonas aeruginosa. We have determined the amino acid specificity of this new enzyme and used domain specific mutations to demonstrate that loading the downstream carrier domain within a single protein molecule occurs more quickly than loading of a nonfused carrier domain intermolecularly. Finally, we have determined crystal structures of both apo- and holo-PA1221 proteins, the latter using a valine-adenosine vinylsulfonamide inhibitor that traps the adenylation domain-carrier domain interaction. The protein adopts an interface similar to that seen with the prior adenylation domain-carrier protein construct. A comparison of these structures with previous structures of multidomain NRPSs suggests that a large conformational change within the NRPS adenylation domains guides the carrier domain into the active site for thioester formation.

  2. Studies of Transgenic Mosquitoes in Disease-Endemic Countries: Preparation of Containment Facilities

    PubMed Central

    Mutunga, James Mutuku; Diabaté, Abdoulaye; Namountougou, Moussa; Coulibaly, Mamadou B.; Sylla, Lakamy; Kayondo, Jonathan; Balyesima, Victor; Clark, Lorna; Benedict, Mark Q.; Raymond, Peter

    2018-01-01

    Abstract Novel approaches to area-wide control of vector species offer promise as additional tools in the fight against vectored diseases. Evaluation of transgenic insect strains aimed at field population control in disease-endemic countries may involve international partnerships and should be done in a stepwise approach, starting with studies in containment facilities. The preparations of both new-build and renovated facilities are described, including working with local and national regulations regarding land use, construction, and biosafety requirements, as well as international guidance to fill any gaps in regulation. The examples given are for containment categorization at Arthropod Containment Level 2 for initial facility design, classification of wastes, and precautions during shipping. Specific lessons were derived from preparations to evaluate transgenic (non-gene drive) mosquitoes in West and East African countries. Documented procedures and the use of a non-transgenic training strain for trial shipments and culturing were used to develop competence and confidence among the African facility staff, and along the chain of custody for transport. This practical description is offered to support other research consortia or institutions preparing containment facilities and operating procedures in conditions where research on transgenic insects is at an early stage. PMID:29337662

  3. Studies of Transgenic Mosquitoes in Disease-Endemic Countries: Preparation of Containment Facilities.

    PubMed

    Quinlan, M Megan; Mutunga, James Mutuku; Diabaté, Abdoulaye; Namountougou, Moussa; Coulibaly, Mamadou B; Sylla, Lakamy; Kayondo, Jonathan; Balyesima, Victor; Clark, Lorna; Benedict, Mark Q; Raymond, Peter

    2018-01-01

    Novel approaches to area-wide control of vector species offer promise as additional tools in the fight against vectored diseases. Evaluation of transgenic insect strains aimed at field population control in disease-endemic countries may involve international partnerships and should be done in a stepwise approach, starting with studies in containment facilities. The preparations of both new-build and renovated facilities are described, including working with local and national regulations regarding land use, construction, and biosafety requirements, as well as international guidance to fill any gaps in regulation. The examples given are for containment categorization at Arthropod Containment Level 2 for initial facility design, classification of wastes, and precautions during shipping. Specific lessons were derived from preparations to evaluate transgenic (non-gene drive) mosquitoes in West and East African countries. Documented procedures and the use of a non-transgenic training strain for trial shipments and culturing were used to develop competence and confidence among the African facility staff, and along the chain of custody for transport. This practical description is offered to support other research consortia or institutions preparing containment facilities and operating procedures in conditions where research on transgenic insects is at an early stage.

  4. [Molecular cloning and characterization of a novel Clonorchis sinensis antigenic protein containing tandem repeat sequences].

    PubMed

    Liu, Qian; Xu, Xue-Nian; Zhou, Yan; Cheng, Na; Dong, Yu-Ting; Zheng, Hua-Jun; Zhu, Yong-Qiang; Zhu, Yong-Qiang

    2013-08-01

    To find and clone new antigen genes from the lambda-ZAP cDNA expression library of adult Clonorchis sinensis, and determine the immunological characteristics of the recombinant proteins. The cDNA expression library of adult C. sinensis was screened by pooled sera of clonorchiasis patients. The sequences of the positive phage clones were compared with the sequences in EST database, and the full-length sequence of the gene (Cs22 gene) was obtained by RT-PCR. cDNA fragments containing 2 and 3 times tandem repeat sequences were generated by jumping PCR. The sequence encoding the mature peptide or the tandem repeat sequence was respectively cloned into the prokaryotic expression vector pET28a (+), and then transformed into E. coli Rosetta DE3 cells for expression. The recombinant proteins (rCs22-2r, rCs22-3r, rCs22M-2r, and rCs22M-3r) were purified by His-bind-resin (Ni-NTA) affinity chromatography. The immunogenicity of rCs22-2r and rCs22-3r was identified by ELISA. To evaluate the immunological diagnostic value of rCs22-2r and rCs22-3r, serum samples from 35 clonorchiasis patients, 31 healthy individuals, 15 schistosomiasis patients, 15 paragonimiasis westermani patients and 13 cysticercosis patients were examined by ELISA. To locate antigenic determinants, the pooled sera of clonorchiasis patients and healthy persons were analyzed for specific antibodies by ELISA with recombinant protein rCs22M-2r and rCs22M-3r containing the tandem repeat sequences. The full-length sequence of Cs22 antigen gene of C. sinensis was obtained. It contained 13 times tandem repeat sequences of EQQDGDEEGMGGDGGRGKEKGKVEGEDGAGEQKEQA. Bioinformatics analysis indicated that the protein (Cs22) belonged to GPI-anchored proteins family. The recombinant proteins rCs22-2r and rCs22-3r showed a certain level of immunogenicity. The positive rate by ELISA coated with the purified PrCs22-2r and PrCs22-3r for sera of clonorchiasis patients both were 45.7% (16/35), and 3.2% (1/31) for those of healthy

  5. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  6. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    NASA Astrophysics Data System (ADS)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  7. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM).

    PubMed

    Schubert, Erik; Florin, Nicole; Duthie, Fraser; Henning Brewitz, H; Kühl, Toni; Imhof, Diana; Hagelueken, Gregor; Schiemann, Olav

    2015-07-01

    The role of heme as a cofactor in enzymatic reactions has been studied for a long time and in great detail. Recently it was discovered that heme can also serve as a signalling molecule in cells but so far only few examples of this regulation have been studied. In order to discover new potentially heme-regulated proteins, we screened protein sequence databases for bacterial proteins that contain sequence features like a Cysteine-Proline (CP) motif, which is known for its heme-binding propensity. Based on this search we synthesized a series of these potential heme regulatory motifs (HRMs). We used cw EPR spectroscopy to investigate whether these sequences do indeed bind to heme and if the spin state of heme is changed upon interaction with the peptides. The corresponding proteins of two potential HRMs, FeoB and GlpF, were expressed and purified and their interaction with heme was studied by cw EPR and UV-Visible (UV-Vis) spectroscopy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Expression of Anaplasma marginale ankyrin repeat-containing proteins during infection of the mammalian host and tick vector

    USDA-ARS?s Scientific Manuscript database

    Using searches of the NCBI conserved domain database and SMART genomic architecture analysis, we identified three ankyrin repeat-containing genes in Anaplasma marginale: AM705, AM926 and AM638. Recombinant protein was used to immunize mice and generate fusion hybridomas secreting protein-specific mo...

  9. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

    USDA-ARS?s Scientific Manuscript database

    Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study,...

  11. Identification of selenium-containing proteins in HEK 293 kidney cells using multiple chromatographies, LC-ICPMS and nano-LC-ESIMS.

    PubMed

    Chitta, Karnakar R; Landero-Figueroa, Julio A; Kodali, Phanichand; Caruso, Joseph A; Merino, Edward J

    2013-09-30

    Our previous studies using HeLa and HEK 293 cells demonstrated that selenomethionine, SeMet, exerts more of an antagonistic effect on arsenic than other selenium species. These studies attributed the antagonistic effect of SeMet to decreased levels of reactive oxygen species, ROS, changes in protein phosphorylation and possible incorporation of SeMet into proteins. The present study employs a metallomics approach to identify the selenium-containing proteins in HEK 293 cells raised with SeMet. The proteins were screened and separated using two dimensional high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICPMS), size exclusion chromatography (SEC) and reversed-phase chromatography (RPC). The Se-containing proteins were identified by peptide mapping using nano-HPLC-Chip-electrospray ionization mass spectrometry (ESIMS). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study.

    PubMed

    Huang, Rui; Ripstein, Zev A; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E; Rubinstein, John L

    2016-07-19

    The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.

  13. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of innoculation

    USDA-ARS?s Scientific Manuscript database

    In a companion study, we reported that the cellular Jumonji-C Domain containing Protein 6 (JMJD6) protein is involved in an alternate integrin- and HS-independent pathway of FMDV infection in CHO cells. Here, we investigated the JMJD6 localization in animal tissues from cattle infected with either ...

  14. Peptide-containing nerve fibres in the gut wall in Crohn's disease.

    PubMed Central

    Sjölund, K; Schaffalitzky, O B; Muckadell, D E; Fahrenkrug, J; Håkanson, R; Peterson, B G; Sundler, F

    1983-01-01

    Neurones containing VIP, substance P, or enkephalin were studied by immunocytochemistry in intestinal specimens from 27 patients with Crohn's disease. Also several endocrine cell systems in the gut were examined. The results were compared with those from a control group of 26 patients. The relative frequency of various endocrine cells did not differ overtly from that in controls. Vasoactive intestinal polypeptide and substance P nerve fibres were distributed in all layers of the gut wall, including the submucosal and myenteric plexuses, whereas enkephalin fibres were restricted to the smooth muscle layer and the myenteric plexus. The distribution and frequency of the peptide-containing nerve fibres were the same in Crohn's disease patients as in control patients. A proportion of these nerve fibres, however, were notably coarse in the Crohn's disease patients. This was particularly apparent in the afflicted parts of the intestine although it was noted also in non-afflicted parts. The concentration of VIP and substance P (expressed as pmol/g wet weight) did not, however, exceed that of the control group. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6192043

  15. Structure of the human DNA-repair protein RAD52 containing surface mutations.

    PubMed

    Saotome, Mika; Saito, Kengo; Onodera, Keiichi; Kurumizaka, Hitoshi; Kagawa, Wataru

    2016-08-01

    The Rad52 protein is a eukaryotic single-strand DNA-annealing protein that is involved in the homologous recombinational repair of DNA double-strand breaks. The isolated N-terminal half of the human RAD52 protein (RAD52(1-212)) forms an undecameric ring structure with a surface that is mostly positively charged. In the present study, it was found that RAD52(1-212) containing alanine mutations of the charged surface residues (Lys102, Lys133 and Glu202) is highly amenable to crystallization. The structure of the mutant RAD52(1-212) was solved at 2.4 Å resolution. The structure revealed an association between the symmetry-related RAD52(1-212) rings, in which a partially unfolded, C-terminal region of RAD52 extended into the DNA-binding groove of the neighbouring ring in the crystal. The alanine mutations probably reduced the surface entropy of the RAD52(1-212) ring and stabilized the ring-ring association observed in the crystal.

  16. Environmental radon daughters reveal pathognomonic changes in the brain proteins and lipids in patients with Alzheimer's disease and Parkinson's disease, and cigarette smokers.

    PubMed

    Momcilović, B; Alkhatib, H A; Duerre, J A; Cooley, M A; Long, W M; Harris, R T; Lykken, G I

    1999-12-01

    This paper presents an investigation of the retention of environmental radon daughters, 210Po (alpha particle emitting radio-nuclide) and 210Bi (beta particle emitting radio-nuclide), in lipid and protein fractions of the cortical grey and subcortical white matter from the frontal and temporal brain lobes of patients who had suffered from Alzheimer's disease or Parkinson's disease, of cigarette smokers, and of control subjects. 210Po and 210Bi radioactivity increased tenfold in the cortical grey and subcortical white protein fraction in patients with Alzheimer's disease and smokers, and tenfold in the cortical grey and subcortical white lipid fraction in patients with Parkinson's disease. Free radicals generated by radon daughters may add to the severity of the radio-chemical injury to the brain astrocytes. The pathognomonic distribution of radon daughters to lipids in patients with Parkinson's disease and to proteins in patients with Alzheimer's disease was attributed to high chlorine affinity of radon daughters. The changes in the membrane protein pores, channels, and gates in patients with Alzheimer's disease and in the lipid bilayer in patients with Parkinson's disease are at the core of what the authors think are two systemic brain diseases.

  17. The Use of Protein-Protein Interactions for the Analysis of the Associations between PM2.5 and Some Diseases.

    PubMed

    Zhang, Qing; Zhang, Pei-Wei; Cai, Yu-Dong

    2016-01-01

    Nowadays, pollution levels are rapidly increasing all over the world. One of the most important pollutants is PM2.5. It is known that the pollution environment may cause several problems, such as greenhouse effect and acid rain. Among them, the most important problem is that pollutants can induce a number of serious diseases. Some studies have reported that PM2.5 is an important etiologic factor for lung cancer. In this study, we extensively investigate the associations between PM2.5 and 22 disease classes recommended by Goh et al., such as respiratory diseases, cardiovascular diseases, and gastrointestinal diseases. The protein-protein interactions were used to measure the linkage between disease genes and genes that have been reported to be modulated by PM2.5. The results suggest that some diseases, such as diseases related to ear, nose, and throat and gastrointestinal, nutritional, renal, and cardiovascular diseases, are influenced by PM2.5 and some evidences were provided to confirm our results. For example, a total of 18 genes related to cardiovascular diseases are identified to be closely related to PM2.5, and cardiovascular disease relevant gene DSP is significantly related to PM2.5 gene JUP.

  18. Disease Containment Strategies based on Mobility and Information Dissemination.

    PubMed

    Lima, A; De Domenico, M; Pejovic, V; Musolesi, M

    2015-06-02

    Human mobility and social structure are at the basis of disease spreading. Disease containment strategies are usually devised from coarse-grained assumptions about human mobility. Cellular networks data, however, provides finer-grained information, not only about how people move, but also about how they communicate. In this paper we analyze the behavior of a large number of individuals in Ivory Coast using cellular network data. We model mobility and communication between individuals by means of an interconnected multiplex structure where each node represents the population in a geographic area (i.e., a sous-préfecture, a third-level administrative region). We present a model that describes how diseases circulate around the country as people move between regions. We extend the model with a concurrent process of relevant information spreading. This process corresponds to people disseminating disease prevention information, e.g., hygiene practices, vaccination campaign notices and other, within their social network. Thus, this process interferes with the epidemic. We then evaluate how restricting the mobility or using preventive information spreading process affects the epidemic. We find that restricting mobility does not delay the occurrence of an endemic state and that an information campaign might be an effective countermeasure.

  19. The Role of the N-Domain in the ATPase Activity of the Mammalian AAA ATPase p97/VCP*

    PubMed Central

    Niwa, Hajime; Ewens, Caroline A.; Tsang, Chun; Yeung, Heidi O.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97A232E, having three times higher activity. Further mutagenesis of p97A232E shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97A232E suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive. PMID:22270372

  20. Enhanced biocontrol activity of Rhodotorula mucilaginosa cultured in media containing chitosan against postharvest diseases in strawberries: possible mechanisms underlying the effect.

    PubMed

    Zhang, Hongyin; Ge, Lingling; Chen, Keping; Zhao, Lina; Zhang, Xiaoyun

    2014-05-07

    The effect of Rhodotorula mucilaginosa cultured in media containing chitosan on its antogonistic activity against postharvest diseases of strawberries and the possible mechanisms involved are discussed. Two-dimensional gel electrophoresis were applied in the analysis of the proteins of R. mucilaginosa in response to chitosan. Compared with the application of R. mucilaginosa alone, the biocontrol efficacy of the yeast combined with 0.5% chitosan was enhanced greatly, with significant increase in chitinase activity of antagonistic yeast, polyphenoloxidase, peroxidase, phenylalanine ammonia lyase, chitinase and β-1,3-glucanase activity, and with an inhibition of lipid peroxidation of strawberries. The population of R. mucilaginosa harvested from NYDB amended with chitosan at 0.5% increased rapidly in strawberry wounds compared with those harvested from NYDB without chitosan. In the cellular proteome, several differentially expressed proteins were identified, most of which were related to basic metabolism.

  1. Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets.

    PubMed

    Satterfield, Benjamin A; Cross, Robert W; Fenton, Karla A; Borisevich, Viktoriya; Agans, Krystle N; Deer, Daniel J; Graber, Jessica; Basler, Christopher F; Geisbert, Thomas W; Mire, Chad E

    2016-07-15

    Nipah virus (NiV) is a highly lethal paramyxovirus that recently emerged as a causative agent of febrile encephalitis and severe respiratory disease in humans. The ferret model has emerged as the preferred small-animal model with which to study NiV disease, but much is still unknown about the viral determinants of NiV pathogenesis, including the contribution of the C protein in ferrets. Additionally, studies have yet to examine the synergistic effects of the various P gene products on pathogenesis in animal models. Using recombinant NiVs (rNiVs), we examine the sole contribution of the NiV C protein and the combined contributions of the C and W proteins in the ferret model of NiV pathogenesis. We show that an rNiV void of C expression resulted in 100% mortality, though with limited respiratory disease, like our previously reported rNiV void of W expression; this finding is in stark contrast to the attenuated phenotype observed in previous hamster studies utilizing rNiVs void of C expression. We also observed that an rNiV void of both C and W expression resulted in limited respiratory disease; however, there was severe neurological disease leading to 60% mortality, and the surviving ferrets demonstrated sequelae similar to those for human survivors of NiV encephalitis. Nipah virus (NiV) is a human pathogen capable of causing lethal respiratory and neurological disease. Many human survivors have long-lasting neurological impairment. Using a ferret model, this study demonstrated the roles of the NiV C and W proteins in pathogenesis, where lack of either the C or the W protein independently decreased the severity of clinical respiratory disease but did not decrease lethality. Abolishing both C and W expression, however, dramatically decreased the severity of respiratory disease and the level of destruction of splenic germinal centers. These ferrets still suffered severe neurological disease: 60% succumbed to disease, and the survivors experienced long-term neurological

  2. The effect of disease on human cardiac protein expression profiles in paired samples from right and left ventricles

    PubMed Central

    2014-01-01

    Background Cardiac diseases (e.g. coronary and valve) are associated with ventricular cellular remodeling. However, ventricular biopsies from left and right ventricles from patients with different pathologies are rare and thus little is known about disease-induced cellular remodeling in both sides of the heart and between different diseases. We hypothesized that the protein expression profiles between right and left ventricles of patients with aortic valve stenosis (AVS) and patients with coronary artery disease (CAD) are different and that the protein profile is different between the two diseases. Left and right ventricular biopsies were collected from patients with either CAD or AVS. The biopsies were processed for proteomic analysis using isobaric tandem mass tagging and analyzed by reverse phase nano-LC-MS/MS. Western blot for selected proteins showed strong correlation with proteomic analysis. Results Proteomic analysis between ventricles of the same disease (intra-disease) and between ventricles of different diseases (inter-disease) identified more than 500 proteins detected in all relevant ventricular biopsies. Comparison between ventricles and disease state was focused on proteins with relatively high fold (±1.2 fold difference) and significant (P < 0.05) differences. Intra-disease protein expression differences between left and right ventricles were largely structural for AVS patients and largely signaling/metabolism for CAD. Proteins commonly associated with hypertrophy were also different in the AVS group but with lower fold difference. Inter-disease differences between left ventricles of AVS and CAD were detected in 9 proteins. However, inter-disease differences between the right ventricles of CAD and AVS patients were associated with differences in 73 proteins. The majority of proteins which had a significant difference in one ventricle compared to the other pathology also had a similar trend in the adjacent ventricle. Conclusions This work

  3. Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics.

    PubMed

    Hadley, Kevin C; Rakhit, Rishi; Guo, Hongbo; Sun, Yulong; Jonkman, James E N; McLaurin, Joanne; Hazrati, Lili-Naz; Emili, Andrew; Chakrabartty, Avijit

    2015-09-29

    Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROIs) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin-fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the photo-tag: 4-benzoylbenzyl-glycyl-hexahistidine. Confocal imaging along with two photon excitation are used to covalently couple photo-tags to all proteins within each ROI, to a resolution of 0.67 µm in the xy-plane and 1.48 µm axially. After tissue solubilization, photo-tagged proteins are isolated and identified by mass spectrometry. As a test case, we examined amyloid plaques in an Alzheimer's disease (AD) mouse model and a post-mortem AD case, confirming known plaque constituents and discovering new ones. STOMP can be applied to various biological samples including cell lines, primary cell cultures, ex vivo specimens, biopsy samples, and fixed post-mortem tissue.

  4. Multiscale Modelling of Relationships between Protein Classes and Drug Behavior Across all Diseases Using the CANDO Platform

    PubMed Central

    Samudrala, Ram

    2015-01-01

    We have examined the effect of eight different protein classes (channels, GPCRs, kinases, ligases, nuclear receptors, proteases, phosphatases, transporters) on the benchmarking performance of the CANDO drug discovery and repurposing platform (http://protinfo.org/cando). The first version of the CANDO platform utilizes a matrix of predicted interactions between 48278 proteins and 3733 human ingestible compounds (including FDA approved drugs and supplements) that map to 2030 indications/diseases using a hierarchical chem and bio-informatic fragment based docking with dynamics protocol (> one billion predicted interactions considered). The platform uses similarity of compound-proteome interaction signatures as indicative of similar functional behavior and benchmarking accuracy is calculated across 1439 indications/diseases with more than one approved drug. The CANDO platform yields a significant correlation (0.99, p-value < 0.0001) between the number of proteins considered and benchmarking accuracy obtained indicating the importance of multitargeting for drug discovery. Average benchmarking accuracies range from 6.2 % to 7.6 % for the eight classes when the top 10 ranked compounds are considered, in contrast to a range of 5.5 % to 11.7 % obtained for the comparison/control sets consisting of 10, 100, 1000, and 10000 single best performing proteins. These results are generally two orders of magnitude better than the average accuracy of 0.2% obtained when randomly generated (fully scrambled) matrices are used. Different indications perform well when different classes are used but the best accuracies (up to 11.7% for the top 10 ranked compounds) are achieved when a combination of classes are used containing the broadest distribution of protein folds. Our results illustrate the utility of the CANDO approach and the consideration of different protein classes for devising indication specific protocols for drug repurposing as well as drug discovery. PMID:25694071

  5. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  6. The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster.

    PubMed

    Wiley, Sandra E; Paddock, Mark L; Abresch, Edward C; Gross, Larry; van der Geer, Peter; Nechushtai, Rachel; Murphy, Anne N; Jennings, Patricia A; Dixon, Jack E

    2007-08-17

    The outer mitochondrial membrane protein mitoNEET was discovered as a binding target of pioglitazone, an insulin-sensitizing drug of the thiazolidinedione class used to treat type 2 diabetes (Colca, J. R., McDonald, W. G., Waldon, D. J., Leone, J. W., Lull, J. M., Bannow, C. A., Lund, E. T., and Mathews, W. R. (2004) Am. J. Physiol. 286, E252-E260). We have shown that mitoNEET is a member of a small family of proteins containing a 39-amino-acid CDGSH domain. Although the CDGSH domain is annotated as a zinc finger motif, mitoNEET was shown to contain iron (Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P., and Dixon, J. E. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 5318-5323). Optical and electron paramagnetic resonance spectroscopy showed that it contained a redox-active pH-labile Fe-S cluster. Mass spectrometry showed the loss of 2Fe and 2S upon cofactor extrusion. Spectroscopic studies of recombinant proteins showed that the 2Fe-2S cluster was coordinated by Cys-3 and His-1. The His ligand was shown to be involved in the observed pH lability of the cluster, indicating that loss of this ligand via protonation triggered release of the cluster. mitoNEET is the first identified 2Fe-2S-containing protein located in the outer mitochondrial membrane. Based on the biophysical data and domain fusion analysis, mitoNEET may function in Fe-S cluster shuttling and/or in redox reactions.

  7. Specific Nongluten Proteins of Wheat Are Novel Target Antigens in Celiac Disease Humoral Response

    PubMed Central

    2014-01-01

    While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat. PMID:25329597

  8. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-08-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner.more » Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.« less

  9. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease

    PubMed Central

    LaPash Daniels, Christine M.; Paffenroth, Elizabeth; Austin, Elizabeth V.; Glebov, Konstantin; Lewis, Diana; Walter, Jochen; Messing, Albee

    2015-01-01

    Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation. In addition, lithium has also been reported to decrease activation of the transcription factor STAT3, which is a regulator of GFAP transcription and astrogliogenesis. Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. Mice with the Gfap-R236H point mutation were fed lithium food pellets for 4 to 8 weeks. Four weeks of treatment with LiCl at 0.5% in food pellets decreased GFAP protein and transcripts in several brain regions, although with mild side effects and some mortality. Extending the duration of treatment to 8 weeks resulted in higher mortality, and again with a decrease in GFAP in the surviving animals. Indicators of autophagy, such as LC3, were not increased, suggesting that lithium may decrease levels of GFAP through other pathways. Lithium reduced the levels of phosphorylated STAT3, suggesting this as one pathway mediating the effects on GFAP. In conclusion, lithium has the potential to decrease GFAP levels in Alexander disease, but with a narrow therapeutic window separating efficacy and toxicity. PMID:26378915

  10. Reduced miR-512 and the Elevated Expression of Its Targets cFLIP and MCL1 Localize to Neurons With Hyperphosphorylated Tau Protein in Alzheimer Disease.

    PubMed

    Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J

    2015-10-01

    The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.

  11. Infectious Prion Protein Alters Manganese Transport and Neurotoxicity in a Cell Culture Model of Prion Disease

    PubMed Central

    Martin, Dustin P.; Anantharam, Vellareddy; Jin, Huajun; Witte, Travis; Houk, Robert; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2011-01-01

    Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases. PMID:21871919

  12. A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN

    PubMed Central

    Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia

    2014-01-01

    Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881

  13. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Whelan, James

    2012-02-17

    In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases

    PubMed Central

    Castillo, Virginia; Ventura, Salvador

    2009-01-01

    Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882

  15. Evaluation of fusion protein cleavage site sequences of Newcastle disease virus in genotype matched vaccines.

    PubMed

    Kim, Shin-Hee; Chen, Zongyan; Yoshida, Asuka; Paldurai, Anandan; Xiao, Sa; Samal, Siba K

    2017-01-01

    Newcastle disease virus (NDV) causes a devastating poultry disease worldwide. Frequent outbreaks of NDV in chickens vaccinated with conventional live vaccines suggest a need to develop new vaccines that are genetically matched against circulating NDV strains, such as the genotype V virulent strains currently circulating in Mexico and Central America. In this study, a reverse genetics system was developed for the virulent NDV strain Mexico/01/10 strain and used to generate highly attenuated vaccine candidates by individually modifying the cleavage site sequence of fusion (F) protein. The cleavage site sequence of parental virus was individually changed to those of the avirulent NDV strain LaSota and other serotypes of avian paramyxoviruses (APMV serotype-2, -3, -4, -6, -7, -8, and -9). In general, these mutations affected cell-to-cell fusion activity in vitro and the efficiency of the F protein cleavage and made recombinant Mexico/01/10 (rMex) virus highly attenuated in chickens. When chickens were immunized with the rMex mutant viruses and challenged with the virulent parent virus, there was reduced challenge virus shedding compared to birds immunized with the heterologous vaccine strain LaSota. Among the vaccine candidates, rMex containing the cleavage site sequence of APMV-2 induced the highest neutralizing antibody titer and completely protected chickens from challenge virus shedding. These results show the role of the F protein cleavage site sequence of each APMV type in generating genotype V-matched vaccines and the efficacy of matched vaccine strains to provide better protection against NDV strains currently circulating in Mexico.

  16. Plasma Amyloid β-Protein and C-reactive Protein in Relation to the Rate of Progression of Alzheimer Disease

    PubMed Central

    Locascio, Joseph J.; Fukumoto, Hiroaki; Yap, Liang; Bottiglieri, Teodoro; Growdon, John H.; Hyman, Bradley T.; Irizarry, Michael C.

    2008-01-01

    Objective To examine whether plasma markers of amyloid precursor protein metabolism (amyloid β-protein ending in Val-40 [Aβ40] and Ala-42 [Aβ42]), inflammation (high-sensitivity C-reactive protein), and folic acid metabolism (folic acid, vitamin B12, and total homocysteine levels) are associated with the rate of cognitive and functional decline in persons with Alzheimer disease. Design Longitudinal study across a mean (SD) of 4.2 (2.6) years with assessments at approximately 6- to 12- month intervals. Setting Out patient care. Patients A cohort of 122 patients having a clinical diagnosis of probable Alzheimer disease, each with at least 2 assessments across time. Main Outcome Measures Scores on the cognitive Information-Memory-Concentration subscale of the Blessed Dementia Scale and the functional Weintraub Activities of Daily Living Scale. Results Low plasma levels of Aβ40, Aβ42, and high-sensitivity C-reactive protein were associated with a significantly more rapid cognitive decline, as indexed using the Blessed Dementia Scale, than were high levels. Low levels of Aβ42 and high-sensitivity C-reactive protein were significantly associated with more rapid functional decline on the Weintraub Activities of Daily Living Scale than were high levels. These plasma markers contributed about 5% to 12% of the variance accounted for on the Blessed Dementia Scale and the Activities of Daily Living Scale by fixed-effects predictors. Measures of folic acid metabolism were not associated with changes on either the Blessed Dementia Scale or the Activities of Daily Living Scale. Conclusions Plasma markers of amyloid precursor protein metabolism and C-reactive protein may be associated with the rate of cognitive and functional decline in patients with Alzheimer disease. PMID:18541797

  17. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    PubMed

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  18. Comparison of protein profiles of beech bark disease-resistant or beech bark disease-susceptible American beech

    Treesearch

    Mary E. Mason; Marek Krasowski; Judy Loo; Jennifer. Koch

    2011-01-01

    Proteomic analysis of beech bark proteins from trees resistant and susceptible to beech bark disease (BBD) was conducted. Sixteen trees from eight geographically isolated stands, 10 resistant (healthy) and 6 susceptible (diseased/infested) trees, were studied. The genetic complexity of the sample unit, the sampling across a wide geographic area, and the complexity of...

  19. The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases.

    PubMed

    Mack, Ines; Hector, Andreas; Ballbach, Marlene; Kohlhäufl, Julius; Fuchs, Katharina J; Weber, Alexander; Mall, Marcus A; Hartl, Dominik

    2015-12-01

    Chitin, after cellulose, the second most abundant biopolymer on earth, is a key component of insects, fungi, and house-dust mites. Lower life forms are endowed with chitinases to defend themselves against chitin-bearing pathogens. Unexpectedly, humans were also found to express chitinases as well as chitinase-like proteins that modulate immune responses. Particularly, increased levels of the chitinase-like protein YKL-40 have been associated with severe asthma, cystic fibrosis, and other inflammatory disease conditions. Here, we summarize and discuss the potential role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases.

  20. Greater mortality and morbidity in extremely preterm infants fed a diet containing cow milk protein products.

    PubMed

    Abrams, Steven A; Schanler, Richard J; Lee, Martin L; Rechtman, David J

    2014-01-01

    Provision of human milk has important implications for the health and outcomes of extremely preterm (EP) infants. This study evaluated the effects of an exclusive human milk diet on the health of EP infants during their stay in the neonatal intensive care unit. EP infants <1,250 g birth weight received a diet consisting of either human milk fortified with a human milk protein-based fortifier (HM) (n=167) or a diet containing variable amounts of milk containing cow milk-based protein (CM) (n=93). Principal outcomes were mortality, necrotizing enterocolitis (NEC), growth, and duration of parenteral nutrition (PN). Mortality (2% versus 8%, p=0.004) and NEC (5% versus 17%, p=0.002) differed significantly between the HM and CM groups, respectively. For every 10% increase in the volume of milk containing CM, the risk of sepsis increased by 17.9% (p<0.001). Growth rates were similar between groups. The duration of PN was 8 days less in the subgroup of infants receiving a diet containing <10% CM versus ≥10% CM (p<0.02). An exclusive human milk diet, devoid of CM-containing products, was associated with lower mortality and morbidity in EP infants without compromising growth and should be considered as an approach to nutritional care of these infants.

  1. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    PubMed

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    PubMed Central

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  3. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions.

    PubMed

    Bunney, Tom D; Cole, Ambrose R; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W; Katan, Matilda

    2014-12-02

    Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein,HYPE, which has remained poorly characterized.Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of auto AMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition.

  4. Optimal combinations of acute phase proteins for detecting infectious disease in pigs.

    PubMed

    Heegaard, Peter M H; Stockmarr, Anders; Piñeiro, Matilde; Carpintero, Rakel; Lampreave, Fermin; Campbell, Fiona M; Eckersall, P David; Toussaint, Mathilda J M; Gruys, Erik; Sorensen, Nanna Skall

    2011-03-17

    The acute phase protein (APP) response is an early systemic sign of disease, detected as substantial changes in APP serum concentrations and most disease states involving inflammatory reactions give rise to APP responses. To obtain a detailed picture of the general utility of porcine APPs to detect any disease with an inflammatory component seven porcine APPs were analysed in serum sampled at regular intervals in six different experimental challenge groups of pigs, including three bacterial (Actinobacillus pleuropneumoniae, Streptococcus suis, Mycoplasma hyosynoviae), one parasitic (Toxoplasma gondii) and one viral (porcine respiratory and reproductive syndrome virus) infection and one aseptic inflammation. Immunochemical analyses of seven APPs, four positive (C-reactive protein (CRP), haptoglobin (Hp), pig major acute phase protein (pigMAP) and serum amyloid A (SAA)) and three negative (albumin, transthyretin, and apolipoprotein A1 (apoA1)) were performed in the more than 400 serum samples constituting the serum panel. This was followed by advanced statistical treatment of the data using a multi-step procedure which included defining cut-off values and calculating detection probabilities for single APPs and for APP combinations. Combinations of APPs allowed the detection of disease more sensitively than any individual APP and the best three-protein combinations were CRP, apoA1, pigMAP and CRP, apoA1, Hp, respectively, closely followed by the two-protein combinations CRP, pigMAP and apoA1, pigMAP, respectively. For the practical use of such combinations, methodology is described for establishing individual APP threshold values, above which, for any APP in the combination, ongoing infection/inflammation is indicated.

  5. Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease.

    PubMed

    Wang, Xianli; Dong, Chuanming; Sun, Lixin; Zhu, Liang; Sun, Chenxi; Ma, Rongjie; Ning, Ke; Lu, Bing; Zhang, Jinfu; Xu, Jun

    2016-11-18

    Aging is characterized by a progressive decline in the function of adult tissues which can lead to neurodegenerative disorders. However, little is known about the correlation between protein changes in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative proteomics and ingenuity pathway analysis were used to evaluate the significant age-related alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the early detection of differences in gene expression and the potential risk of neurological disease, which is beneficial in the prevention of the diseases.

  6. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease.

    PubMed

    Geuens, Thomas; De Winter, Vicky; Rajan, Nicholas; Achsel, Tilmann; Mateiu, Ligia; Almeida-Souza, Leonardo; Asselbergh, Bob; Bouhy, Delphine; Auer-Grumbach, Michaela; Bagni, Claudia; Timmerman, Vincent

    2017-01-11

    The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3'- and 5'-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.

  7. Wood adhesives containing proteins and carbohydrates

    USDA-ARS?s Scientific Manuscript database

    In recent years there has been resurgent interest in using biopolymers as sustainable and environmentally friendly ingredients in wood adhesive formulations. Among them, proteins and carbohydrates are the most commonly used. In this chapter, an overview is given of protein-based and carbohydrate-...

  8. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.

    PubMed

    Li, Min; Li, Qi; Ganegoda, Gamage Upeksha; Wang, JianXin; Wu, FangXiang; Pan, Yi

    2014-11-01

    Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further propose an improved algorithm SPGOranker by integrating the semantic similarity of GO annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR. The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.

  9. A Bromodomain-Containing Protein from Tomato Specifically Binds Potato Spindle Tuber Viroid RNA In Vitro and In Vivo

    PubMed Central

    Martínez de Alba, Angel Emilio; Sägesser, Rudolf; Tabler, Martin; Tsagris, Mina

    2003-01-01

    For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed. PMID:12915580

  10. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    PubMed

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.

  11. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  12. The Popeye Domain Containing Genes and Their Function as cAMP Effector Proteins in Striated Muscle.

    PubMed

    Brand, Thomas

    2018-03-13

    The Popeye domain containing (POPDC) genes encode transmembrane proteins, which are abundantly expressed in striated muscle cells. Hallmarks of the POPDC proteins are the presence of three transmembrane domains and the Popeye domain, which makes up a large part of the cytoplasmic portion of the protein and functions as a cAMP-binding domain. Interestingly, despite the prediction of structural similarity between the Popeye domain and other cAMP binding domains, at the protein sequence level they strongly differ from each other suggesting an independent evolutionary origin of POPDC proteins. Loss-of-function experiments in zebrafish and mouse established an important role of POPDC proteins for cardiac conduction and heart rate adaptation after stress. Loss-of function mutations in patients have been associated with limb-girdle muscular dystrophy and AV-block. These data suggest an important role of these proteins in the maintenance of structure and function of striated muscle cells.

  13. Retinol Binding Protein 4 in children with Inflammatory Bowel Disease: a negative correlation with the disease activity.

    PubMed

    Roma, E; Krini, M; Hantzi, E; Sakka, S; Panayiotou, I; Margeli, A; Papassotiriou, I; Kanaka-Gantenbein, C

    2012-10-01

    Retinol Binding Protein-4 (RBP-4), the action of which was initially thought to be only the transport of vitamin A, is a major circulating adipocytokine involved in the inflammation. We evaluated the serum RBP-4 levels in children with inflammatory bowel disease (IBD) and correlated them with transthyretin (TTR), inflammation markers, disease activity, and body mass index (BMI). In 41 children of mean age 11.9 ± 3.6 years (range 5-17.7 y) with IBD (19 with Crohn's disease (CD) and 22 with Ulcerative colitis (UC) serum RBP-4, TTR, Amyloid A (SAA), C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), disease activity and BMI were prospectively determined and compared with those of 42 matched controls. No difference in the RBP-4 and TTR serum levels, between patients and controls as well as between active and remission state of the disease was noticed. A negative correlation of serum RBP-4 with the disease activity, SAA and ESR and a positive correlation with TTR was found, but no significant correlation with CRP or BMI was found. Inflammation markers were significantly increased in patients compared to controls and had a positive correlation with the disease activity. RBP-4 negatively correlated with disease activity of children with IBD probably indicating a protective anti-inflammatory mechanism of action in addition to transport of vitamin A.

  14. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  15. Scaffold optimization in discontinuous epitope containing protein mimics of gp120 using smart libraries.

    PubMed

    Mulder, Gwenn E; Quarles van Ufford, H Linda C; van Ameijde, Jeroen; Brouwer, Arwin J; Kruijtzer, John A W; Liskamp, Rob M J

    2013-04-28

    A diversity of protein surface discontinuous epitope mimics is now rapidly and efficiently accessible. Despite the important role of protein-protein interactions involving discontinuous epitopes in a wide range of diseases, mimicry of discontinuous epitopes using peptide-based molecules remains a major challenge. Using copper(I) catalyzed azide-alkyne cycloaddition (CuAAC), we have developed a general and efficient method for the synthesis of collections of discontinuous epitope mimics. Up to three different cyclic peptides, representing discontinuous epitopes in HIV-gp120, were conjugated to a selection of scaffold molecules. Variation of the scaffold molecule, optimization of the ring size of the cyclic peptides and screening of the resulting libraries for successful protein mimics led to an HIV gp120 mimic with an IC50 value of 1.7 μM. The approach described here provides rapid and highly reproducible access to clean, smart libraries of very complex bio-molecular constructs representing protein mimics for use as synthetic vaccines and beyond.

  16. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease.

    PubMed

    Jacek, Elzbieta; Tang, Kevin S; Komorowski, Lars; Ajamian, Mary; Probst, Christian; Stevenson, Brian; Wormser, Gary P; Marques, Adriana R; Alaedini, Armin

    2016-02-01

    Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata.

    PubMed

    Li, Shu; Sun, Penglin; Williams, Justin Stephen; Kao, Teh-hui

    2014-03-01

    The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.

  18. UDoNC: An Algorithm for Identifying Essential Proteins Based on Protein Domains and Protein-Protein Interaction Networks.

    PubMed

    Peng, Wei; Wang, Jianxin; Cheng, Yingjiao; Lu, Yu; Wu, Fangxiang; Pan, Yi

    2015-01-01

    Prediction of essential proteins which are crucial to an organism's survival is important for disease analysis and drug design, as well as the understanding of cellular life. The majority of prediction methods infer the possibility of proteins to be essential by using the network topology. However, these methods are limited to the completeness of available protein-protein interaction (PPI) data and depend on the network accuracy. To overcome these limitations, some computational methods have been proposed. However, seldom of them solve this problem by taking consideration of protein domains. In this work, we first analyze the correlation between the essentiality of proteins and their domain features based on data of 13 species. We find that the proteins containing more protein domain types which rarely occur in other proteins tend to be essential. Accordingly, we propose a new prediction method, named UDoNC, by combining the domain features of proteins with their topological properties in PPI network. In UDoNC, the essentiality of proteins is decided by the number and the frequency of their protein domain types, as well as the essentiality of their adjacent edges measured by edge clustering coefficient. The experimental results on S. cerevisiae data show that UDoNC outperforms other existing methods in terms of area under the curve (AUC). Additionally, UDoNC can also perform well in predicting essential proteins on data of E. coli.

  19. Surfactant Protein D in Respiratory and Non-Respiratory Diseases

    PubMed Central

    Sorensen, Grith L.

    2018-01-01

    Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases

  20. Amino acid supplementation of calf milk replacers containing plasma protein.

    PubMed

    Morrison, S Y; Campbell, J M; Drackley, J K

    2017-06-01

    We determined the effects of calf milk replacers containing 0, 5, or 10% bovine plasma protein (PP), either without or with the supplemental amino acids (AA) Ile and Thr, on growth and health of male Holstein calves (n = 104) for 56 d. Milk replacers were formulated to contain 22% crude protein (CP), 20% fat, and 2.0% Lys. Milk replacers (12.5% solids) were fed at a rate of 1.5% of body weight (BW) on a dry matter basis during wk 1 and 1.75% of BW beginning on d 8. Starter was introduced on d 36 so that effects of PP and AA balance in milk replacers could be isolated. Intake, respiratory scores, and fecal scores were measured daily. Body weight and stature were measured weekly and blood serum samples were obtained during wk 4. Treatments had no effects on intakes of dry matter, CP, or metabolizable energy. During wk 6 and 8, BW was less as PP inclusion increased without AA supplementation compared with the other treatments. In wk 7, calves fed the higher level of PP without AA had lower BW than calves fed either the lower level of PP without supplemented AA or the higher inclusion of PP with supplemented AA. Average daily gain and gain:feed were lowest for calves fed the higher inclusion of PP without supplemented AA; heart girth in wk 7 was smallest for those calves. During the first 21 d, occurrence of scours was greater in calves fed the control milk replacer than in calves fed milk replacers containing the higher inclusion of PP either without or with supplemental AA. Occurrence of scours was also greater for the lower inclusion of PP compared with the higher inclusion of PP when AA were supplemented. Throughout the 56-d experiment, the chance of antibiotic treatment was greater for calves fed the control milk replacer than for all other treatments except the higher inclusion of PP without supplemental AA. Additionally, chance of antibiotic treatment was greater for the higher inclusion of PP without supplemental AA than for other milk replacers with PP. Calves

  1. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.

    PubMed

    Zhu, Zhenbao; Zhao, Cui; Yi, Jianhua; Liu, Ning; Cao, Yuangang; Decker, Eric A; McClements, David Julian

    2018-05-02

    The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.4% w/v Tween 20 (pH 3 and pH 7). The protein surface load, magnitude of the ξ-potential, and mean particle diameter of the emulsions decreased as the Tween 20 concentration was increased, indicating the whey proteins were displaced by this nonionic surfactant. The whey proteins were displaced from the lipid droplet surfaces more readily at pH 3 than at pH 7, which may have been due to differences in the conformation or interactions of the proteins at the droplet surfaces at different pH values. Emulsions stabilized by whey proteins alone had relatively low lipid oxidation rates when incubated in the dark at 45 °C for up to 8 days, as determined by measuring lipid hydroperoxides and 2-thiobarbituric acid-reactive substances (TBARS). Conversely, the whey proteins themselves were rapidly oxidized, as shown by carbonyl formation, intrinsic fluorescence, sulfhydryl group loss, and electrophoresis measurements. Displacement of whey proteins from the interface by Tween 20 reduced protein oxidation but promoted lipid oxidation. These results indicated that the adsorbed proteins were more prone to oxidation than the nonadsorbed proteins, and therefore, they could act as better antioxidants. Protein oxidation was faster, while lipid oxidation was slower at pH 3 than at pH 7, which was attributed to a higher antioxidant activity of whey proteins under acidic conditions. These results highlight the importance of interfacial composition and solution pH on the oxidative stability of emulsions containing mixed emulsifiers.

  2. Co-localisation of advanced glycation end products and D-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy.

    PubMed

    Kaji, Yuichi; Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-08-01

    Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (N(ε)-carboxy(methyl)-L-lysine, pyrraline and pentosidine) and D-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. In all GDLD specimens, strong immunoreactivity to AGE and D-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or D-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Abnormally accumulated proteins rich in AGE and D-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD.

  3. A Small-scale Model to Assess the Risk of Leachables from Single-use Bioprocess Containers through Protein Quality Characterization.

    PubMed

    Xiao, Nina J; Medley, Colin D; Shieh, Ian C; Downing, Gregory; Pizarro, Shelly; Liu, Jun; Patel, Ankit R

    Leachables from single-use bioprocess containers (BPCs) are a source of process-related impurities that have the potential to alter product quality of biotherapeutics and affect patient health. Leachables often exist at very low concentrations, making it difficult to detect their presence and challenging to assess their impact on protein quality. A small-scale stress model based on assessing protein stability was developed to evaluate the potential risks associated with storing biotherapeutics in disposable bags caused by the presence of leachables. Small-scale BPCs were filled with protein solution at high surface area-to-volume ratios (≥3× the surface area-to-volume ratio of manufacturing-scale BPCs) and incubated at stress temperatures (e.g., 25 °C or 30 °C for up to 12 weeks) along with an appropriate storage vessel (e.g., glass vial or stainless steel) as a control for side-by-side comparison. Changes in protein size variants measured by size exclusion chromatography, capillary electrophoresis, and particle formation for two monoclonal antibodies using both the small-scale stress model and a control revealed a detrimental effect of gamma-irradiated BPCs on protein aggregation and significant BPC difference between earlier and later batches. It was found that preincubation of the empty BPCs prior to protein storage improved protein stability, suggesting the presence of volatile or heat-sensitive leachables (heat-labile or thermally degraded). In addition, increasing the polysorbate 20 concentration lowered, but did not completely mitigate, the leachable-protein interactions, indicating the presence of a hydrophobic leachable. Overall, this model can inform the risk of BPC leachables on biotherapeutics during routine manufacturing and assist in making decisions on the selection of a suitable BPC for the manufacturing process by assessing changes in product quality. Leachables from single-use systems often exist in small quantities and are difficult to

  4. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases.

    PubMed

    Cabral-Marques, Otavio; Riemekasten, Gabriela

    2017-11-01

    G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.

  5. Advanced X-ray Spectroscopic Methods for Studying Iron-Sulfur-Containing Proteins and Model Complexes.

    PubMed

    DeBeer, Serena

    2018-01-01

    In this chapter, a brief overview of X-ray spectroscopic methods that may be utilized to obtain insight into the geometric and electronic structure of iron-sulfur proteins is provided. These methods include conventional methods, such as metal and ligand K-edge X-ray absorption, as well as more advanced methods including nonresonant and resonant X-ray emission. In each section, the basic information content of the spectra is highlighted and important experimental considerations are discussed. Throughout the chapter, recent applications to iron-sulfur-containing models and proteins are highlighted. © 2018 Elsevier Inc. All rights reserved.

  6. Thick Filament Protein Network, Functions, and Disease Association.

    PubMed

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  7. Large differences in proportions of harmful and benign amino acid substitutions between proteins and diseases.

    PubMed

    Schaafsma, Gerard C P; Vihinen, Mauno

    2017-07-01

    Genes and proteins are known to have differences in their sensitivity to alterations. Despite numerous sequencing studies, proportions of harmful and harmless substitutions are not known for proteins and groups of proteins. To address this question, we predicted the outcome for all possible single amino acid substitutions (AASs) in nine representative protein groups by using the PON-P2 method. The effects on 996 proteins were studied and vast differences were noticed. Proteins in the cancer group harbor the largest proportion of harmful variants (42.1%), whereas the non-disease group of proteins not known to have a disease association and not involved in the housekeeping functions had the lowest number of harmful variants (4.2%). Differences in the proportions of the harmful and benign variants are wide within each group, but they still show clear differences between the groups. Frequently appearing protein domains show a wide spectrum of variant frequencies, whereas no major protein structural class-specific differences were noticed. AAS types in the original and variant residues showed distinctive patterns, which are shared by all the protein groups. The observations are relevant for understanding genetic bases of diseases, variation interpretation, and for the development of methods for that purpose. © 2017 Wiley Periodicals, Inc.

  8. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    PubMed Central

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  9. Evidence that a proposed repeated segment of glutamine residues is expressed in the Huntington disease protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jou, Y.S.; Myers, R.M.

    1994-09-01

    Huntington disease (HD) appears to be caused by a mutation that results in an expanded number of CAG repeats at the 5{prime} end of the gene. The nucleotide sequence of the gene and cDNA clones predicts a 347 kd protein that contains a stretch of polyglutamine, encoded by the CAG repeat, located 17 amino acids downstream from the proposed translation initiation site. Because understanding the mechanisms of the pathology of HD depends on whether the CAG-repeat is expressed in the protein, we used antibodies directed against portions of the predicted HD gene product to probe the structure of the proteinmore » in tissue culture cells. Two peptides, one located amino-terminal to the proposed polyglutamine stretch (hd1 peptide FESLKSFQQ from amino acids 11-19) and one located in the carboxy-terminal half of the predicted protein (hd2 peptide QQPRNKPLK from amino acids 2531-2539), were used to elicit polyclonal antibodies in NZW rabbits. We affinity-purified the antibodies and used them to analyze the HD protein. Both antisera specifically recognize the peptides used to elicit them, as well as the appropriate portions of the HD protein expressed in E. coli. Western blot analysis showed that both antisera recognize a protein with an apparent molecular weight of approximately 350,000 in human, monkey, rat and mouse cell lines, including two neutronal cell lines. These results, in combination with immunoprecipitation experiments, suggest strongly that the proposed polyglutamine stretch is indeed translated in the HD protein and is evolutionarily conserved in various mammalian species.« less

  10. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    PubMed

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  11. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  12. Streptococcus pyogenes strains containing emm12 and emm55 possess a novel gene coding for distantly related SIC protein.

    PubMed

    Hartas, J; Sriprakash, K S

    1999-01-01

    Streptococcus pyogenes infection and acute glomerulonephritis (AGN), a non-suppurtave disease, are endemic in the Aboriginal people of the Northern Territory (NT) of Australia. Vir typing, a locus-specific polymerase chain reaction (PCR)-based typing method [Gardiner, Hartas, Currie et al PCR Meth Appl 1995 4: 288-93], has revealed high divergence among the NT streptococcal strains. A total of 76 Vir types (VTs) representing about 95% of the NT isolates were screened for sic, a gene for streptococcal inhibitor of complement function, by PCR and hybridization. This revealed that seven VTs are positive for sic, and there are two classes of the gene: those closely related to sic (CRS) originally described by Akesson, Sjoholm & Bjorck [ J. Biol. Chem. 1996 271: 1081-8] and those distantly related to sic (DRS). Among the CRS-positive VTs, VT16, VT78 and VT91 have emm (gene for M protein) encoding type 1 M protein or related specificity, and VT8 and VT101 contain emm57 or related alleles. Chromosomal location of CRS in emm57 is different from that in emm1 or related strains. The DRS-positive VT18 and VT52 contained emm55 and emm12 respectively, which are phylogenetically related. Strains of S. pyogenes types 1, 12, 55 and 57 are known to be associated with AGN. Restricted distribution of CRS and DRS among the M types historically associated with AGN suggests that these sic alleles may have a role in AGN pathogenesis. Copyright 1999 Academic Press.

  13. Small Heat Shock Proteins in Redox Metabolism: Implications for Cardiovascular Diseases

    PubMed Central

    Christians, Elisabeth S.; Ishiwata, Takahiro; Benjamin, Ivor J.

    2012-01-01

    A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. PMID:22710345

  14. Variably Protease-Sensitive Prionopathy: A New Sporadic Disease of the Prion Protein

    PubMed Central

    Zou, Wen-Quan; Puoti, Gianfranco; Xiao, Xiangzhu; Yuan, Jue; Qing, Liuting; Cali, Ignazio; Shimoji, Miyuki; Langeveld, Jan P. M.; Castellani, Rudy; Notari, Silvio; Crain, Barbara; Schmidt, Robert E.; Geschwind, Michael; DeArmond, Stephen J.; Cairns, Nigel J.; Dickson, Dennis; Honig, Lawrence; Torres, Juan Maria; Mastrianni, James; Capellari, Sabina; Giaccone, Giorgio; Belay, Ermias D.; Schonberger, Lawrence B.; Cohen, Mark; Perry, George; Kong, Qingzhong; Parchi, Piero; Tagliavini, Fabrizio; Gambetti, Pierluigi

    2011-01-01

    Objective The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are either homozygous for methionine (129MM) or heterozygous for methionine/valine (129MV). Methods Fifteen affected subjects with 129MM, 129MV, and 129VV underwent comparative evaluation at the National Prion Disease Pathology Surveillance Center for clinical, histopathologic, immunohistochemical, genotypical, and PrP characteristics. Results Disease duration (between 22 and 45 months) was significantly different in the 129VV and 129MV subjects. Most other phenotypic features along with the PrP electrophoretic profile were similar but distinguishable in the 3 129 genotypes. A major difference laid in the sensitivity to protease digestion of the disease-associated PrP, which was high in 129VV but much lower, or altogether lacking, in 129MV and 129MM. This difference prompted the substitution of the original designation with “variably protease-sensitive prionopathy” (VPSPr). None of the subjects had mutations in the PrP gene coding region. Interpretation Because all 3 129 genotypes are involved, and are associated with distinguishable phenotypes, VPSPr becomes the second sporadic prion protein disease with this feature after Creutzfeldt-Jakob disease, originally reported in 1920. However, the characteristics of the abnormal prion protein suggest that VPSPr is different from typical prion diseases, and perhaps more akin to subtypes of Gerstmann-Sträussler-Scheinker disease. PMID:20695009

  15. Estimation of daily protein intake based on spot urine urea nitrogen concentration in chronic kidney disease patients.

    PubMed

    Kanno, Hiroko; Kanda, Eiichiro; Sato, Asako; Sakamoto, Kaori; Kanno, Yoshihiko

    2016-04-01

    Determination of daily protein intake in the management of chronic kidney disease (CKD) requires precision. Inaccuracies in recording dietary intake occur, and estimation from total urea excretion presents hurdles owing to the difficulty of collecting whole urine for 24 h. Spot urine has been used for measuring daily sodium intake and urinary protein excretion. In this cross-sectional study, we investigated whether urea nitrogen (UN) concentration in spot urine can be used to predict daily protein intake instead of the 24-h urine collection in 193 Japanese CKD patients (Stages G1-G5). After patient randomization into 2 datasets for the development and validation of models, bootstrapping was used to develop protein intake estimation models. The parameters for the candidate multivariate regression models were male gender, age, body mass index (BMI), diabetes mellitus, dyslipidemia, proteinuria, estimated glomerular filtration rate, serum albumin level, spot urinary UN and creatinine level, and spot urinary UN/creatinine levels. The final model contained BMI and spot urinary UN level. The final model was selected because of the higher correlation between the predicted and measured protein intakes r = 0.558 (95 % confidence interval 0.400, 0.683), and the smaller distribution of the difference between the measured and predicted protein intakes than those of the other models. The results suggest that UN concentration in spot urine may be used to estimate daily protein intake and that a prediction formula would be useful for nutritional control in CKD patients.

  16. Recombinant small glutamine-rich tetratricopeptide repeat-containing protein of Leishmania infantum: Potential vaccine and diagnostic application against visceral leishmaniasis.

    PubMed

    Dias, Daniel S; Ribeiro, Patrícia A F; Martins, Vívian T; Lage, Daniela P; Portela, Áquila S B; Costa, Lourena E; Salles, Beatriz C S; Lima, Mariana P; Ramos, Fernanda F; Santos, Thaís T O; Caligiorne, Rachel B; Chávez-Fumagalli, Miguel A; Silveira, Julia A G; Magalhães-Soares, Danielle F; Gonçalves, Denise U; Oliveira, Jamil S; Roatt, Bruno M; Duarte, Mariana C; Menezes-Souza, Daniel; Silva, Eduardo S; Galdino, Alexsandro S; Machado-de-Ávila, Ricardo A; Teixeira, Antonio L; Coelho, Eduardo A F

    2017-11-01

    Different Leishmania proteins have been evaluated in order to find a potential vaccine candidate or diagnostic marker capable of providing long lasting protection against infection or helping to identify infected mammalian hosts, respectively. However, just few molecules have fulfilled all the requirements to be evaluated. In the current study, we evaluated the prophylactic and diagnostic value against visceral leishmaniasis (VL) of a small glutamine-rich tetratricopeptide repeat-containing (SGT) protein from Leishmania infantum species. In a first step, the immune response elicited by the immunization using the recombinant protein (rSGT) plus saponin was evaluated in BALB/c mice. Immunized animals had a low parasitism in all evaluated organs. They developed a specific Th1 immune response, which was based on protein-specific production of IFN-γ, IL-12 and GM-CSF, and a humoral response dominated by antibodies of the IgG2a isotype. Both CD4 + and CD8 + T cells contributed to the IFN-γ production, showing that both T cell subtypes contribute to the resistance against infection. Regarding its value as a diagnostic marker, rSGT showed maximum sensitivity and specificity to serologically identify L. infantum-infected dog and human sera. No cross-reactivity with sera from humans or dogs that had other diseases was found. Although further studies are necessary to validate these findings, data showed here suggest immunogenicity of rSGT and its protective effect against murine VL, as well as its potential for the serodiagnosis of human and canine VL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease.

    PubMed

    Esposito, Giuseppe; Cirillo, Carla; Sarnelli, Giovanni; De Filippis, Daniele; D'Armiento, Francesco Paolo; Rocco, Alba; Nardone, Gerardo; Petruzzelli, Raffaella; Grosso, Michela; Izzo, Paola; Iuvone, Teresa; Cuomo, Rosario

    2007-09-01

    Enteric glia participates to the homeostasis of the gastrointestinal tract. In the central nervous system, increased expression of astroglial-derived S100B protein has been associated with the onset and maintaining of inflammation. The role of enteric glial-derived S100B protein in gastrointestinal inflammation has never been investigated in humans. In this study, we evaluated the expression of S100B and its relationship with nitric oxide production in celiac disease. Duodenal biopsy specimens from untreated and on gluten-free diet patients with celiac disease and controls were respectively processed for S100B and inducible nitric oxide synthase (iNOS) protein expression and nitrite production. To evaluate the direct involvement of S100B in the inflammation, control biopsy specimens were exposed to exogenous S100B, and iNOS protein expression and nitrite production were measured. We also tested gliadin induction of S100B-dependent inflammation in cultured biopsy specimens deriving from on gluten-free diet patients in the absence or presence of the specific S100B antibody. S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production were significantly increased in untreated patients but not in on gluten-free diet patients vs controls. Addition of S100B to control biopsy specimens resulted in a significant increase of iNOS protein expression and nitrite production. In celiac disease patients but not in controls biopsy specimens, gliadin challenge significantly increased S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production, but these effects were completely inhibited by S100B antibody. Enteric glial-derived S100B is increased in the duodenum of patients with celiac disease and plays a role in nitric oxide production.

  18. Protein-energy nutritional status and kidney disease-specific quality of life in hemodialysis patients.

    PubMed

    Mazairac, Albert H A; de Wit, G Ardine; Penne, E Lars; van der Weerd, Neelke C; Grooteman, Muriel P C; van den Dorpel, Marinus A; Nubé, Menso J; Buskens, Erik; Lévesque, Renée; Ter Wee, Piet M; Bots, Michiel L; Blankestijn, Peter J

    2011-09-01

    Health-related quality of life (HRQOL) is an important outcome in dialysis care. Previous research has related protein-energy nutritional status to generic HRQOL domains, but it is still not clear as to how it relates to HRQOL domains that are unique to hemodialysis patients. Therefore, our aim was to study the relation between protein-energy nutritional status and kidney disease-specific HRQOL domains in hemodialysis patients. This was a cross-sectional study. This study was performed at multiple centers. We evaluated the first 590 hemodialysis patients who had enrolled in the Convective Transport Study. We measured protein-energy nutritional status by using the Subjective Global Assessment, albumin, normalized nitrogen appearance, creatinine, body mass index, and cholesterol. HRQOL was assessed by using the Kidney Disease Quality Of Life-Short Form. In all, 83% of the cohort was found to be well-nourished on the basis of the Subjective Global Assessment. Multiple nutritional parameters were positively related to the physical summary of generic HRQOL and to the following kidney disease-specific HRQOL scales: the effects of the kidney disease on daily life, the burden of the kidney disease, and overall health. This study showed that, even in predominantly well-nourished hemodialysis patients, protein-energy nutritional status was significantly related to kidney disease-specific HRQOL. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. In-depth proteomic analysis of carp (Cyprinus carpio L) spermatozoa.

    PubMed

    Dietrich, Mariola A; Arnold, Georg J; Fröhlich, Thomas; Ciereszko, Andrzej

    2014-12-01

    Using a combination of protein fractionation by one-dimensional gel electrophoresis and high performance liquid chromatography-electrospray ionization tandem mass spectrometry, we identified 348 proteins in carp spermatozoa, most of which were for the first time identified in fish. Dynein, tubulin, HSP90, HSP70, HSP60, adenosylhomocysteinase, NKEF-B, brain type creatine kinase, mitochondrial ATP synthase, and valosin containing enzyme represent high abundance proteins in carp spermatozoa. These proteins are functionally related to sperm motility and energy production as well as the protection of sperm against oxidative injury and stress. Moreover, carp spermatozoa are equipped with functionally diverse proteins involved in signal transduction, transcription, translation, protein turnover and transport. About 15% of proteins from carp spermatozoa identified here were also detected in seminal plasma which may be a result of leakage from spermatozoa into seminal plasma, adsorption of seminal plasma proteins on spermatozoa surface, and expression in both spermatozoa and cells secreting seminal plasma proteins. The availability of a catalog of carp sperm proteins provides substantial advances for an understanding of sperm function and for future development of molecular diagnostic tests of carp sperm quality, the evaluation of which is currently limited to certain parameters such as sperm count, morphology and motility or viability. The mass spectrometry data are available at ProteomeXchange with the dataset identifier PXD000877 (DOI: http://dx.doi.org/10.6019/PXD000877). Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    PubMed

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  1. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  2. Mixed compared with single-source proteins in high-protein diets affect kidney structure and function differentially in obese fa/fa Zucker rats.

    PubMed

    Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2017-02-01

    Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.

  3. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.

    2008-05-10

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganizationmore » of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV ({approx} 5 log) and VSV ({approx} 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells.« less

  4. Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer's disease.

    PubMed

    Grégoire, C; Marco, S; Thimonier, J; Duplan, L; Laurine, E; Chauvin, J P; Michel, B; Peyrot, V; Verdier, J M

    2001-07-02

    Neurodegenerative diseases are characterized by the presence of filamentous aggregates of proteins. We previously established that lithostathine is a protein overexpressed in the pre-clinical stages of Alzheimer's disease. Furthermore, it is present in the pathognomonic lesions associated with Alzheimer's disease. After self-proteolysis, the N-terminally truncated form of lithostathine leads to the formation of fibrillar aggregates. Here we observed using atomic force microscopy that these aggregates consisted of a network of protofibrils, each of which had a twisted appearance. Electron microscopy and image analysis showed that this twisted protofibril has a quadruple helical structure. Three-dimensional X-ray structural data and the results of biochemical experiments showed that when forming a protofibril, lithostathine was first assembled via lateral hydrophobic interactions into a tetramer. Each tetramer then linked up with another tetramer as the result of longitudinal electrostatic interactions. All these results were used to build a structural model for the lithostathine protofibril called the quadruple-helical filament (QHF-litho). In conclusion, lithostathine strongly resembles the prion protein in its dramatic proteolysis and amyloid proteins in its ability to form fibrils.

  5. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases.

    PubMed

    Chiti, Fabrizio; Calamai, Martino; Taddei, Niccolo; Stefani, Massimo; Ramponi, Giampietro; Dobson, Christopher M

    2002-12-10

    Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.

  6. Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs).

    PubMed

    Leung, Amy; Murphy, George J

    2016-01-01

    Familial transthyretin amyloidosis (ATTR) is an autosomal dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR, protein secreted from the liver aggregates and forms fibrils in target organs, chiefly the heart and peripheral nervous system, highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here, we describe detailed methodologies for the directed differentiation of protein folding disease-specific iPSCs into hepatocytes that produce mutant protein, and neural-lineage cells often targeted in disease. Methodologies are also described for the construction of multisystem models and drug screening using iPSCs.

  7. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  8. The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy.

    PubMed

    Liu, Xuezhao; Li, Yang; Wang, Xin; Xing, Ruxiao; Liu, Kai; Gan, Qiwen; Tang, Changyong; Gao, Zhiyang; Jian, Youli; Luo, Shouqing; Guo, Weixiang; Yang, Chonglin

    2017-05-01

    Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak-Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder. © 2017 Liu et al.

  9. The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy

    PubMed Central

    Xing, Ruxiao; Tang, Changyong; Gao, Zhiyang

    2017-01-01

    Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak–Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder. PMID:28404643

  10. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  11. Zona pellucida-binding protein 2 (ZPBP2) and several proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties.

    PubMed

    Torabi, F; Bogle, O A; Estanyol, J M; Oliva, R; Miller, D

    2017-12-01

    Are there novel hyaladherins in human sperm? Zona pellucida-binding protein 2 (ZPBP2), containing a Link-like hyaluronic acid (HA)-binding domain, and several other proteins containing BX7B motifs, such as ADAM32 and Midkine, may be novel hyaladherins with HA-binding properties. HA-binding proteins (hyaladherins), which can bind HA surrounding the cumulus-oophorus complex, are distinct from hyases such as PH 20 (SPAM1) and are expressed by mature spermatozoa. Although HABP1 and CD44 are reasonably well characterized hyaladherins and the former has been implicated in sperm-oocyte interactions, the overall significance of sperm hyaladherins for male fertility is still poorly understood. This was a laboratory-based investigation into human sperm hyaladherins undertaken as part of a three year PhD programme sponsored by the EU Marie Curie Training network, Reprotrain. Protein homogenates of sperm obtained from young men of unknown fertility (N = 4) were partitioned into HA-binding and non-binding fractions by a protein affinity 'panning' method; their subsequent characterization was by liquid chromatography-tandem mass spectrometry (LC-MS-MS) and partitioning behaviour was confirmed by western blotting. Sequences of proteins from both fractions were submitted to PDBsum to look for orthologous entries (PDB codes) and all returned codes were queried against the matching protein using SAS (Sequences Annotated by Structure) looking for structural similarities between them. A systematic search for other common features of hyaladherins was also undertaken. The presence of BX7B sequence motifs found in several well-described hyaladherins including RHAMM was used to assess efficacy of potential hyaladherin partitioning by the HA substrate. The data showed that 50% (14/28) and 34.5% (28/81) of proteins in the bound and unbound fractions, respectively, contained these motifs (one-tailed Z-score = 1.45; P = 0.074), indicating weak discrimination by the substrate. Querying PDBsum

  12. Co-localisation of advanced glycation end products and d-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy

    PubMed Central

    Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-01-01

    Purpose Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Methods Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (Nɛ-carboxy(methyl)-l-lysine, pyrraline and pentosidine) and d-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. Results In all GDLD specimens, strong immunoreactivity to AGE and d-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or d-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Conclusions Abnormally accumulated proteins rich in AGE and d-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD. PMID:22694960

  13. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease.

    PubMed

    Fouque, D; Kalantar-Zadeh, K; Kopple, J; Cano, N; Chauveau, P; Cuppari, L; Franch, H; Guarnieri, G; Ikizler, T A; Kaysen, G; Lindholm, B; Massy, Z; Mitch, W; Pineda, E; Stenvinkel, P; Treviño-Becerra, A; Trevinho-Becerra, A; Wanner, C

    2008-02-01

    The recent research findings concerning syndromes of muscle wasting, malnutrition, and inflammation in individuals with chronic kidney disease (CKD) or acute kidney injury (AKI) have led to a need for new terminology. To address this need, the International Society of Renal Nutrition and Metabolism (ISRNM) convened an expert panel to review and develop standard terminologies and definitions related to wasting, cachexia, malnutrition, and inflammation in CKD and AKI. The ISRNM expert panel recommends the term 'protein-energy wasting' for loss of body protein mass and fuel reserves. 'Kidney disease wasting' refers to the occurrence of protein-energy wasting in CKD or AKI regardless of the cause. Cachexia is a severe form of protein-energy wasting that occurs infrequently in kidney disease. Protein-energy wasting is diagnosed if three characteristics are present (low serum levels of albumin, transthyretin, or cholesterol), reduced body mass (low or reduced body or fat mass or weight loss with reduced intake of protein and energy), and reduced muscle mass (muscle wasting or sarcopenia, reduced mid-arm muscle circumference). The kidney disease wasting is divided into two main categories of CKD- and AKI-associated protein-energy wasting. Measures of chronic inflammation or other developing tests can be useful clues for the existence of protein-energy wasting but do not define protein-energy wasting. Clinical staging and potential treatment strategies for protein-energy wasting are to be developed in the future.

  14. Redox Proteomics: A Key Tool for New Insights into Protein Modification with Relevance to Disease.

    PubMed

    Butterfield, D Allan; Perluigi, Marzia

    2017-03-01

    Oxidatively modified proteins are characterized by elevations in protein-resident carbonyls or 3-nitrotyrosine, measures of protein oxidation, or protein bound reactive alkenals such as 4-hydroxy-2-nonenal, a measure of lipid peroxidation. Oxidatively modified proteins nearly always have altered structure and function. Redox proteomics is that branch of proteomics used to identify oxidized proteins and determine the extent and location of oxidative modifications in the proteomes of interest. This technique nearly always employs mass spectrometry as the major platform to achieve the goals of identifying the target proteins. Once identified, oxidatively modified proteins can be placed in specific molecular pathways to provide insights into protein oxidation and human disease. Both original research and review articles are included in this Forum on Redox Proteomics. The topics related to redox proteomics range from basic chemistry of sulfur radical-induced redox modifications in proteins, to the thiol secretome and inflammatory network, to reversible thiol oxidation in proteomes, to the role of glutamine synthetase in peripheral and central environments on inflammation and insulin resistance, to bioanalytical aspects of tyrosine nitrated proteins, to protein oxidation in human smokers and models thereof, and to Alzheimer disease, including articles on the brain ubiquitinylome and the "triangle of death" composed of oxidatively modified proteins involved in energy metabolism, mammalian target of rampamycin activation, and the proteostasis network. This Forum on Redox Proteomics is both timely and a critically important resource to highlight one of the key tools needed to better understand protein structure and function in oxidative environments in health and disease. Antioxid. Redox Signal. 26, 277-279.

  15. Structural Investigation of a Phosphorylation-Catalyzed, Isoaspartate-Free, Protein Succinimide: Crystallographic Structure of Post-Succinimide His15Asp Histidine-Containing Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napper, Scott; Prasad, Lata; Delbaere, Louis T.J.

    2008-09-08

    Aspartates and asparagines can spontaneously cyclize with neighboring main-chain amides to form succinimides. These succinimides hydrolyze to a mixture of isoaspartate and aspartate products. Phosphorylation of aspartates is a common mechanism of protein regulation and increases the propensity for succinimide formation. Although typically regarded as a form of protein damage, we hypothesize succinimides could represent an effective mechanism of phosphoaspartate autophosphatase activity, provided hydrolysis is limited to aspartate products. We previously reported the serendipitous creation of a protein, His15Asp histidine-containing protein (HPr), which undergoes phosphorylation-catalyzed formation of a succinimide whose hydrolysis is seemingly exclusive for aspartate formation. Here, through themore » high-resolution structure of postsuccinimide His15Asp HPr, we confirm the absence of isoaspartate residues and propose mechanisms for phosphorylation-catalyzed succinimide formation and its directed hydrolysis to aspartate. His15Asp HPr represents the first characterized protein example of an isoaspartate-free succinimide and lends credence to the hypothesis that intramolecular cyclization could represent a physiological mechanism of autophosphatase activity. Furthermore, this indicates that current strategies for succinimide evaluation, based on isoaspartate detection, underestimate the frequencies of these reactions. This is considerably significant for evaluation of protein stability and integrity.« less

  16. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

    PubMed

    Kauwe, John S K; Bailey, Matthew H; Ridge, Perry G; Perry, Rachel; Wadsworth, Mark E; Hoyt, Kaitlyn L; Staley, Lyndsay A; Karch, Celeste M; Harari, Oscar; Cruchaga, Carlos; Ainscough, Benjamin J; Bales, Kelly; Pickering, Eve H; Bertelsen, Sarah; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2014-10-01

    Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10-10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal

  17. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases.

    PubMed

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2017-09-04

    Progression of pathology in neurodegenerative diseases is hypothesized to be a non-cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a "donor cell" that is the source of misfolded aggregates to an "acceptor cell" in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer's, Huntington's, and Parkinson's diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies. © 2017 Victoria and Zurzolo.

  18. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases

    PubMed Central

    Victoria, Guiliana Soraya

    2017-01-01

    Progression of pathology in neurodegenerative diseases is hypothesized to be a non–cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a “donor cell” that is the source of misfolded aggregates to an “acceptor cell” in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer’s, Huntington’s, and Parkinson’s diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies. PMID:28724527

  19. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1.

    PubMed

    Csorba, Tibor; Lózsa, Rita; Hutvágner, György; Burgyán, József

    2010-05-01

    RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double-stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein-protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA-induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre-programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high-molecular-weight complex, suggesting the existence of a multi-protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA-RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co-expressed AGO1 in both the presence and absence of P0.

  20. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    PubMed Central

    Rivera-Hernandez, Tania; Pandey, Manisha; Henningham, Anna; Cole, Jason; Choudhury, Biswa; Cork, Amanda J.; Gillen, Christine M.; Ghaffar, Khairunnisa Abdul; West, Nicholas P.; Silvestri, Guido; Good, Michael F.; Moyle, Peter M.; Toth, Istvan; Nizet, Victor; Batzloff, Michael R.

    2016-01-01

    ABSTRACT Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. PMID:27302756

  1. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  2. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice.

    PubMed

    Avan, Amir; Tavakoly Sany, Seyedeh Belin; Ghayour-Mobarhan, Majid; Rahimi, Hamid Reza; Tajfard, Mohammad; Ferns, Gordon

    2018-06-22

    Cardiovascular disease is the most common cause of morbidity and mortality globally. Epidemiological studies using high-sensitivity assays for serum C-reactive protein have shown a consistent association between cardiovascular disease risk and serum C-reactive protein concentrations. C-reactive protein is a biomarker for inflammation, and has been established in clinical practice as an independent risk factor for cardiovascular disease events. There is evidence that serum C-reactive protein is an excellent biomarker of cardiovascular disease and is also an independent and strong predictor of adverse cardiovascular events. Further characterization of the impact and influence of lifestyle exposures and genetic variation on the C-reactive protein response to cardiovascular disease events may have implications for the therapeutic approaches to reduce cardiovascular disease events. This review summarizes the studies that have examined the association between serum C-reactive protein and the risk of cardiovascular disease. We also discuss the impact of independent factors and C-reactive protein genetic polymorphisms on baseline plasma C-reactive protein levels. © 2018 Wiley Periodicals, Inc.

  3. Vitamin D binding protein isoforms as candidate predictors of disease extension in childhood arthritis

    PubMed Central

    Gibson, David S.; Newell, Keri; Evans, Alexandra N.; Finnegan, Sorcha; Manning, Gwen; Scaife, Caitriona; McAllister, Catherine; Pennington, Stephen R.; Duncan, Mark W.; Moore, Terry L.; Rooney, Madeleine E.

    2012-01-01

    Introduction. Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic autoimmune diseases with variable clinical outcomes. We investigated whether the synovial fluid (SF) proteome could distinguish a subset of patients in whom disease extends to affect a large number of joints. Methods. SF samples from 57 patients were obtained around time of initial diagnosis of JIA, labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression verified by immunochemical methods. Protein glycosylation status was confirmed by hydrophilic interaction liquid chromatography. Results. A truncated isoform of vitamin D binding protein (VDBP) is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p < 0.05). Furthermore, sialylated forms of immunopurified synovial VDBP were significantly reduced in extended oligoarticular patients (p < 0.005). Conclusion. Reduced conversion of VDBP to a macrophage activation factor may be used to stratify patients to determine risk of disease extension in JIA patients. PMID:22771520

  4. Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease.

    PubMed

    Lygirou, Vasiliki; Latosinska, Agnieszka; Makridakis, Manousos; Mullen, William; Delles, Christian; Schanstra, Joost P; Zoidakis, Jerome; Pieske, Burkert; Mischak, Harald; Vlahou, Antonia

    2018-04-17

    Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for further use in CVD multi-omics integrative analysis. LC-MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Following label-free quantification, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Differential expression was defined based on identification confidence (≥ 2 peptides per protein), statistical significance (Mann-Whitney p value ≤ 0.05) and a minimum of twofold change. Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identified proteins (838 proteins based on ≥ 2 peptides). Pathway annotation confirmed the functional relevance of the findings (representation of complement cascade, fibrin clot formation, platelet degranulation, etc.). Correlation of the relative abundance of the proteins identified in the discovery set with their reported concentrations in the PPD was significant, confirming the validity of the quantification method. The discovery set analysis revealed 100 differentially expressed proteins between cases and controls, 39 of which were verified (≥ twofold change) in the test set. These included proteins already studied in the context of CVD (such as apolipoprotein B, alpha-2-macroglobulin), as well as novel findings (such as low density lipoprotein receptor related

  5. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases

    PubMed Central

    Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.

    2016-01-01

    RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393

  6. Construction and Structural Analysis of Tethered Lipid Bilayer Containing Photosynthetic Antenna Proteins for Functional Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu

    2011-07-11

    The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAY), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RCmore » within the tethered membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.« less

  7. Amyloid Precursor Protein Processing and Alzheimer’s Disease

    PubMed Central

    O’Brien, Richard J.; Wong, Philip C.

    2011-01-01

    Alzheimer’s disease (AD), the leading cause of dementia worldwide, is characterized by the accumulation of the β-amyloid peptide (Aβ) within the brain along with hyperphosphorylated and cleaved forms of the microtubule-associated protein tau. Genetic, biochemical, and behavioral research suggest that physiologic generation of the neurotoxic Aβ peptide from sequential amyloid precursor protein (APP) proteolysis is the crucial step in the development of AD. APP is a single-pass transmembrane protein expressed at high levels in the brain and metabolized in a rapid and highly complex fashion by a series of sequential proteases, including the intramembranous γ-secretase complex, which also process other key regulatory molecules. Why Aβ accumulates in the brains of elderly individuals is unclear but could relate to changes in APP metabolism or Aβ elimination. Lessons learned from biochemical and genetic studies of APP processing will be crucial to the development of therapeutic targets to treat AD. PMID:21456963

  8. RIP-seq analysis of eukaryotic Sm proteins identifies three major categories of Sm-containing ribonucleoproteins

    PubMed Central

    2014-01-01

    Background Sm proteins are multimeric RNA-binding factors, found in all three domains of life. Eukaryotic Sm proteins, together with their associated RNAs, form small ribonucleoprotein (RNP) complexes important in multiple aspects of gene regulation. Comprehensive knowledge of the RNA components of Sm RNPs is critical for understanding their functions. Results We developed a multi-targeting RNA-immunoprecipitation sequencing (RIP-seq) strategy to reliably identify Sm-associated RNAs from Drosophila ovaries and cultured human cells. Using this method, we discovered three major categories of Sm-associated transcripts: small nuclear (sn)RNAs, small Cajal body (sca)RNAs and mRNAs. Additional RIP-PCR analysis showed both ubiquitous and tissue-specific interactions. We provide evidence that the mRNA-Sm interactions are mediated by snRNPs, and that one of the mechanisms of interaction is via base pairing. Moreover, the Sm-associated mRNAs are mature, indicating a splicing-independent function for Sm RNPs. Conclusions This study represents the first comprehensive analysis of eukaryotic Sm-containing RNPs, and provides a basis for additional functional analyses of Sm proteins and their associated snRNPs outside of the context of pre-mRNA splicing. Our findings expand the repertoire of eukaryotic Sm-containing RNPs and suggest new functions for snRNPs in mRNA metabolism. PMID:24393626

  9. Molecular characterization of amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.

    PubMed

    Esmaelizad, Majid; Jelokhani-Niaraki, Saber; Hashemnejad, Khadije; Kamalzadeh, Morteza; Lotfi, Mohsen

    2011-12-01

    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3D(pol)) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3D(pol) coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp(26)→Glu substitution in a beta sheet located within a small groove of the 3D(pol) protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.

  10. Effect of fusion protein cleavage site sequence on generation of a genotype VII Newcastle disease virus vaccine.

    PubMed

    Manoharan, Vinoth K; Varghese, Berin P; Paldurai, Anandan; Samal, Siba K

    2018-01-01

    Newcastle disease (ND) causes severe economic loss to poultry industry worldwide. Frequent outbreaks of ND in commercial chickens vaccinated with live vaccines suggest a need to develop improved vaccines that are genetically matched against circulating Newcastle disease virus (NDV) strains. In this study, the fusion protein cleavage site (FPCS) sequence of NDV strain Banjarmasin/010 (Banj), a genotype VII NDV, was individually modified using primer mutagenesis to those of avian paramyxovirus (APMV) serotypes 2, 7 and 8 and compared with the recombinant Banjarmasin (rBanj) with avirulent NDV LaSota cleavage site (rBanj-LaSota). These FPCS mutations changed the in vitro cell-to-cell fusion activity and made rBanj FPCS mutant viruses highly attenuated in chickens. When chickens immunized with the rBanj FPCS mutant viruses and challenged with the virulent Banj, there was reduced challenge virus shedding observed compared to chickens immunized with the heterologous vaccine strain LaSota. Among the genotype VII NDV Banj vaccine candidates, rBanj-LaSota and rBanj containing FPCS of APMV-8 induced highest neutralizing antibody titers and protected chickens with reduced challenge virus shedding. These results show the effect of the F protein cleavage site sequence in generating genotype VII matched NDV vaccines.

  11. Protein and glycoprotein content of lymphocystis disease virus (LCDV).

    PubMed

    García-Rosado, Esther; Castro, Dolores; Cano, Irene; Alonso, M Carmen; Pérez-Prieto, Sara I; Borrego, Juan J

    2004-06-01

    The polypeptide and glycoprotein composition of eight strains of the fish-pathogenic lymphocystis disease virus (LCDV) isolated from gilt-head seabream (Sparus aurata), blackspot seabream (Pagellus bogaraveo), and sole (Solea senegalensis) were determined. The protein electrophoretic patterns of all LCDV isolates were quite similar regardless of the host fish, showing two major proteins (79.9 and 55.6 kDa) and a variable number of minor proteins. Three groups of LCDV isolates were distinguished according to the number and molecular masses of the minor proteins. Eight glycoproteins were detected inside viral particles of LCDV 2, LCDV 3 and LCDV 5 isolates, but only seven glycoproteins were found inside viral particles of LCDV 1, LCDV 4, LCDV 6, LCDV 7, and LCDV 11 isolates and the reference virus ATCC VR 342 by using five lectins. LCDV glycoproteins were mainly composed of mannose and sialic acid. These glycoproteins could be part of an external viral envelope probably derived from the host cell membrane.

  12. High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification.

    PubMed Central

    Hailat, N; Keim, D R; Melhem, R F; Zhu, X X; Eckerskorn, C; Brodeur, G M; Reynolds, C P; Seeger, R C; Lottspeich, F; Strahler, J R

    1991-01-01

    The gene encoding a novel protein designated nm23-H1, which was recently identified as identical to the A subunit of nucleotide diphosphate kinase from human erythrocytes, has been proposed to play a role in tumor metastasis suppression. We report that untreated neuroblastoma tumors contain a cellular polypeptide (Mr = 19,000) designated p19, identified in two-dimensional electrophoretic gels, which occurs at significantly higher levels (P = 0.0001) in primary tumors containing amplified N-myc gene. The partial amino acid sequence obtained for p19 is identical to the sequence of the human nm23-H1 protein. An antibody to the A subunit of erythrocyte nucleotide diphosphate kinase reacted exclusively with p19. In this study, significantly higher levels of p19/nm23 occurred in primary neuroblastoma tumors from patients with advanced stages (III and IV) relative to tumors from patients with limited stages (I and II) of the disease. Even among patients with a single copy of the N-myc gene, tumors from patients with stages III and IV had statistically significantly higher levels of p19/nm23 than tumors from patients with stages I and II. Our findings indicate that, in contrast to a proposed role for nm23-H1 as a tumor metastasis suppressor, increased p19/nm23 protein in neuroblastoma is correlated with features of the disease that are associated with aggressive tumors. Therefore, nm23-H1 may have distinct if not opposite roles in different tumors. Images PMID:2056128

  13. The Protein Disease Database of human body fluids: II. Computer methods and data issues.

    PubMed

    Lemkin, P F; Orr, G A; Goldstein, M P; Creed, G J; Myrick, J E; Merril, C R

    1995-01-01

    The Protein Disease Database (PDD) is a relational database of proteins and diseases. With this database it is possible to screen for quantitative protein abnormalities associated with disease states. These quantitative relationships use data drawn from the peer-reviewed biomedical literature. Assays may also include those observed in high-resolution electrophoretic gels that offer the potential to quantitate many proteins in a single test as well as data gathered by enzymatic or immunologic assays. We are using the Internet World Wide Web (WWW) and the Web browser paradigm as an access method for wide distribution and querying of the Protein Disease Database. The WWW hypertext transfer protocol and its Common Gateway Interface make it possible to build powerful graphical user interfaces that can support easy-to-use data retrieval using query specification forms or images. The details of these interactions are totally transparent to the users of these forms. Using a client-server SQL relational database, user query access, initial data entry and database maintenance are all performed over the Internet with a Web browser. We discuss the underlying design issues, mapping mechanisms and assumptions that we used in constructing the system, data entry, access to the database server, security, and synthesis of derived two-dimensional gel image maps and hypertext documents resulting from SQL database searches.

  14. Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA.

    PubMed

    Shishova, Kseniya V; Lavrentyeva, Elena A; Dobrucki, Jurek W; Zatsepina, Olga V

    2015-01-15

    It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Antibody classes & subclasses induced by mucosal immunization of mice with Streptococcus pyogenes M6 protein & oligodeoxynucleotides containing CpG motifs.

    PubMed

    Teloni, R; von Hunolstein, C; Mariotti, S; Donati, S; Orefici, G; Nisini, R

    2004-05-01

    Type-specific antibodies against M protein are critical for human protection as they enhance phagocytosis and are protective. An ideal vaccine for the protection against Streptococcus pyogenes would warrant mucosal immunity, but mucosally administered M-protein has been shown to be poorly immunogenic in animals. We used a recombinant M type 6 protein to immunize mice in the presence of synthetic oligodeoxynucleotides containing CpG motifs (immunostimulatory sequences: ISS) or cholera toxin (CT) to explore its possible usage in a mucosal vaccine. Mice were immunized by intranasal (in) or intradermal (id) administration with four doses at weekly intervals of M6-protein (10 microg/mouse) with or without adjuvant (ISS, 10 microg/mouse or CT, 0,5 microg/mouse). M6 specific antibodies were measured by enzyme linked immunosorbent assay using class and subclass specific monoclonal antibodies. The use of ISS induced an impressive anti M-protein serum IgG response but when id administered was not detectable in the absence of adjuvant. When used in, M-protein in the presence of both ISS and CT induced anti M-protein IgA in the bronchoalveolar lavage, as well as specific IgG in the serum. IgG were able to react with serotype M6 strains of S. pyogenes. The level of antibodies obtained by immunizing mice in with M-protein and CT was higher in comparison to M-protein and ISS. The analysis of anti-M protein specific IgG subclasses showed high levels of IgG1, IgG2a and IgG2b, and low levels of IgG3 when ISS were used as adjuvant. Thus, in the presence of ISS, the ratio IgG2a/IgG1 and (IgG2a+IgG3)/IgG1 >1 indicated a type 1-like response obtained both in mucosally or systemically vaccinated mice. Our study offers a reproducible model of anti-M protein vaccination that could be applied to test new antigenic formulations to induce an anti-group A Streptococcus (GAS) vaccination suitable for protection against the different diseases caused by this bacterium.

  16. A Dynamic Analysis of Secretory Granules Containing Proteins Involved In Learning

    NASA Astrophysics Data System (ADS)

    Prahl, Louis; Simon, Alex; Jacobs, Conor; Fulwiler, Audrey; Hilken, Lindsay; Scalettar, Bethe; Lochner, Janis

    2010-10-01

    Formation and encoding of long-term memories requires a series of structural changes at synapses, or sites of neuronal communication, in the hippocampus; these changes are mediated by neuromodulatory proteins and serve to strengthen synapses to improve communication. Two prominent neuromodulators, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), are copackaged into secretory granules (SGs) in the body of nerve cells and are transported to distal synapses by motor proteins. At synapses, particularly presynaptic sites, the fate of tPA and BDNF is largely unknown. Motivated by this, and by recent data implicating presynaptic BDNF in early phases of learning, we used fluorescence microscopy to elucidate dynamic properties of presynaptic tPA and BDNF. We find that presynaptic SGs containing tPA and/or BDNF undergo Brownian and anomalous diffusive motion that, in 75% of cases, is so slow that it typically would be classified as immobility. These results suggest that tPA and BDNF are retained at presynaptic sites to facilitate their corelease and role in learning.

  17. Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease.

    PubMed

    Watanabe, Hitoshi; Inaba, Yuka; Kimura, Kumi; Asahara, Shun-Ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Motoyama, Takayasu; Tachibana, Nobuhiko; Kaneko, Shuichi; Kohno, Mitsutaka; Inoue, Hiroshi

    2017-01-01

    As the prevalence of nonalcoholic fatty liver disease (NAFLD), including steatosis and nonalcoholic steatohepatitis, is increasing, novel dietary approaches are required for the prevention and treatment of NAFLD. We evaluated the potential of mung bean protein isolate (MuPI) to prevent NAFLD progression. In Expts. 1 and 2, the hepatic triglyceride (TG) concentration was compared between 8-wk-old male mice fed a high-fat diet (61% of energy from fat) containing casein, MuPI, and soy protein isolate and an MuPI-constituent amino acid mixture as a source of amino acids (18% of energy) for 4 wk. In Expt. 3, hepatic fatty acid synthase (Fasn) expression was evaluated in 8-wk-old male Fasn-promoter-reporter mice fed a casein- or MuPI-containing high-fat diet for 20 wk. In Expt. 4, hepatic fibrosis was examined in 8-wk-old male mice fed an atherogenic diet (61% of energy from fat, containing 1.3 g cholesterol/100 g diet) containing casein or MuPI (18% of energy) as a protein source for 20 wk. In the high fat-diet mice, the hepatic TG concentration in the MuPI group decreased by 66% and 47% in Expt. 1 compared with the casein group (P < 0.001) and the soy protein isolate group (P = 0.001), respectively, and decreased by 56% in Expt. 2 compared with the casein group (P = 0.011). However, there was no difference between the MuPI-constituent amino acid mixture and casein groups in Expt. 2. In Expt. 3, Fasn-promoter-reporter activity and hepatic TG concentration were lower in the MuPI group than in those fed casein (P < 0.05). In Expt. 4, in mice fed an atherogenic diet, hepatic fibrosis was not induced in the MuPI group, whereas it developed overtly in the casein group. MuPI potently reduced hepatic lipid accumulation in mice and may be a potential foodstuff to prevent NAFLD onset and progression. © 2017 American Society for Nutrition.

  18. Integrated organotypic slice cultures and RT-QuIC (OSCAR) assay: implications for translational discovery in protein misfolding diseases

    USDA-ARS?s Scientific Manuscript database

    Protein misfolding is a key pathological event in neurodegenerative diseases like prion diseases, synucleinopathies, and tauopathies that are collectively termed protein misfolding disorders (PMD). Prions are a prototypic model to study protein aggregation biology and therapeutic development. Attemp...

  19. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.

    PubMed

    Graf, Anja; Ablinger, Elisabeth; Peters, Silvia; Zimmer, Andreas; Hook, Sarah; Rades, Thomas

    2008-02-28

    Two pseudo-ternary systems comprising isopropyl myristate, soybean lecithin, water, ethanol and either decyl glucoside (DG) or capryl-caprylyl glucoside (CCG) as surfactant were investigated for their potential to form microemulsion templates to produce nanoparticles as drug delivery vehicles for proteins and peptides. All microemulsion and nanoparticle compounds used were pharmaceutically acceptable and biocompatible. Phase diagrams were established and characterized using polarizing light microscopy, viscosity, conductivity, electron microscopy, differential scanning calorimetry and self-diffusion NMR. An area in the phase diagrams containing optically isotropic, monophasic systems was designated as the microemulsion region and systems therein identified as solution-type microemulsions. Poly(alkylcyanoacrylate) nanoparticles prepared by interfacial polymerisation from selected microemulsions ranged from 145 to 660nm in size with a unimodal size distribution depending on the type of monomer (ethyl (2) or butyl (2) cyanoacrylate) and microemulsion template. Generally larger nanoparticles were formed by butyl (2) cyanoacrylate. Insulin was added as a model protein and did not alter the physicochemical behaviour of the microemulsions or the morphology of the nanoparticles. However, insulin-loaded nanoparticles in the CCG containing system decreased in size when using butyl (2) cyanoacrylate. This study shows that microemulsions containing sugar-based surfactants are suitable formulation templates for the formation of nanoparticles to deliver peptides.

  20. The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus.

    PubMed

    Dai, Xinghong; Yu, Xuekui; Gong, Hao; Jiang, Xiaohong; Abenes, Gerrado; Liu, Hongrong; Shivakoti, Sakar; Britt, William J; Zhu, Hua; Liu, Fenyong; Zhou, Z Hong

    2013-08-01

    Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting "SCP-deficient" viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion.

  1. Genome-wide predicting disease-related protein complexes by walking on the heterogeneous network based on data integration and laplacian normalization.

    PubMed

    Liu, Zhiming; Luo, Jiawei

    2017-08-01

    Associating protein complexes to human inherited diseases is critical for better understanding of biological processes and functional mechanisms of the disease. Many protein complexes have been identified and functionally annotated by computational and purification methods so far, however, the particular roles they were playing in causing disease have not yet been well determined. In this study, we present a novel method to identify associations between protein complexes and diseases. First, we construct a disease-protein heterogeneous network based on data integration and laplacian normalization. Second, we apply a random walk with restart on heterogeneous network (RWRH) algorithm on this network to quantify the strength of the association between proteins and the query disease. Third, we sum over the scores of member proteins to obtain a summary score for each candidate protein complex, and then rank all candidate protein complexes according to their scores. With a series of leave-one-out cross-validation experiments, we found that our method not only possesses high performance but also demonstrates robustness regarding the parameters and the network structure. We test our approach with breast cancer and select top 20 highly ranked protein complexes, 17 of the selected protein complexes are evidenced to be connected with breast cancer. Our proposed method is effective in identifying disease-related protein complexes based on data integration and laplacian normalization. Copyright © 2017. Published by Elsevier Ltd.

  2. Molecular cloning, structural analysis, and expression of a human IRLB, MYC promoter-binding protein: new DENN domain-containing protein family emerges.

    PubMed

    Semova, Natalia; Kapanadze, Bagrat; Corcoran, Martin; Kutsenko, Alexei; Baranova, Ancha; Semov, Alexandre

    2003-09-01

    IRLB was originally identified as a partial cDNA clone, encoding a 191-aa protein binding the interferon-stimulated response element (ISRE) in the P2 promoter of human MYC. Here, we cloned the full-size IRLB using different bioinformatics tools and an RT-PCR approach. The full-size gene encompasses 131 kb within chromosome 15q22 and consists of 32 exons. IRLB is transcribed as a 6.6-kb mRNA encoding a protein of 1865 aa. IRLB is ubiquitously expressed and its expression is regulated in a growth- and cell cycle-dependent manner. In addition to the ISRE-binding domain IRLB contains a tripartite DENN domain, a nuclear localization signal, two PPRs, and a calmodulin-binding domain. The presence of DENN domains predicts possible interactions of IRLB with GTPases from the Rab family or regulation of growth-induced MAPKs. Strongly homologous proteins were identified in all available vertebrate genomes as well as in Caenorhabditis elegans and Drosophila melanogaster. In human and mouse a family of IRLB proteins exists, consisting of at least three members.

  3. A double built-in containment strategy for production of recombinant proteins in transgenic rice.

    PubMed

    Zhang, Xianwen; Wang, Dongfang; Zhao, Sinan; Shen, Zhicheng

    2014-01-01

    Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice.

  4. Investigation of non-corrin cobalt(II)-containing sites in protein structures of the Protein Data Bank.

    PubMed

    Abriata, Luciano Andres

    2013-04-01

    Protein X-ray structures with non-corrin cobalt(II)-containing sites, either natural or substituting another native ion, were downloaded from the Protein Data Bank and explored to (i) describe which amino acids are involved in their first ligand shells and (ii) analyze cobalt(II)-donor bond lengths in comparison with previously reported target distances, CSD data and EXAFS data. The set of amino acids involved in Co(II) binding is similar to that observed for catalytic Zn(II) sites, i.e. with a large fraction of carboxylate O atoms from aspartate and glutamate and aromatic N atoms from histidine. The computed Co(II)-donor bond lengths were found to depend strongly on structure resolution, an artifact previously detected for other metal-donor distances. Small corrections are suggested for the target bond lengths to the aromatic N atoms of histidines and the O atoms of water and hydroxide. The available target distance for cysteine (Scys) is confirmed; those for backbone O and other donors remain uncertain and should be handled with caution in refinement and modeling protocols. Finally, a relationship between both Co(II)-O bond lengths in bidentate carboxylates is quantified.

  5. Subcellular localization and characterization of G protein-coupled receptor homolog from lymphocystis disease virus isolated in China.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Zhang, Jing; Gui, Jianfang; Zhang, Qiya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325 amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.

  6. C-reactive protein as a predictor of disease in smokers and former smokers: a review

    PubMed Central

    Tonstad, S; Cowan, J L

    2009-01-01

    Background: Cigarette smoking is a classical and a major risk factor in the development of several diseases with an inflammatory component, including cardiovascular disease and chronic obstructive pulmonary disease. Improvements in assays for protein markers of inflammation have led to many studies on these factors and their roles in disease. Aims: C-reactive protein (CRP) is one such marker and this review focuses on the evidence for using CRP as a diagnostic marker and how levels of this protein are modified according to the smoking status of the patient, both in terms of the current amount of cigarettes smoked and how CRP levels change following smoking cessation. Conclusions: Assay of CRP levels may be useful in monitoring disease progression and determining risk of future cardiovascular complications. However, as this marker is also an indicator of acute inflammation and challenges to the immune system, some caution must be exercised in interpreting the available data on CRP levels in patients with different chronic comorbidities. PMID:19732183

  7. Virus-like particles vaccine containing Clonorchis sinensis tegumental protein induces partial protection against Clonorchis sinensis infection.

    PubMed

    Lee, Dong-Hun; Kim, Ah-Ra; Lee, Su-Hwa; Quan, Fu-Shi

    2017-12-29

    Human clonorchiasis, caused by the infection of Clonorchis sinensis, is one of the major health problems in Southeast Asia. However, vaccine efficacy against C. sinensis infection remains largely unknown. In this study, for the first time, we generated virus-like particles (VLPs) vaccine containing the C. sinensis tegumental protein 22.3 kDa (CsTP 22.3) and the influenza matrix protein (M1) as a core protein, and investigated the vaccine efficacy in Sprague-Dawley rats. Intranasal immunization of VLPs vaccine induced C. sinensis-specific IgG, IgG2a and IgG2c in the sera and IgA responses in the feces and intestines. Notably, upon challenge infection with C. sinensis metacercariae, significantly lower adult worm loads (70.2%) were measured in the liver of rats immunized with VLPs, compared to those of naïve rats. Furthermore, VLPs immunization induced antibody secreting cells (ASC) responses and CD4+/CD8+ T cell responses in the spleen. Our results indicated that VLPs vaccine containing C. sinensis CsTP 22.3 kDa provided partial protection against C. sisnensis infection. Thus, VLPs could be a potential vaccine candidate against C. sinensis.

  8. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology.

    PubMed

    Allison, W Ted; DuVal, Michèle G; Nguyen-Phuoc, Kim; Leighton, Patricia L A

    2017-10-24

    Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrP C , is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.

  9. [Motor protein Kinesin-6 and ischemic heart disease].

    PubMed

    Koroleva, O S; Zateĭshchikov, D A

    2010-01-01

    The review describes possible role of kinesins in development of coronary heart disease and efficacy of treatment with statins. Fourty five kinesins are represented in human body making up a superfamily of universal and simplest motor proteins which are expressed almost in all tissues. Level of kinesin 6 is 5% higher than expression of other kinesins in some segments of coronary arteries and it is relatively low in organs playing unknown role in susceptibility to atherosclerosis. As a result of several genoms wide association studies the role of polymorphic marker Thr719Arg of kinesin 6 gene in development of ischemic heart disease, myocardial infarction, and in efficacy of therapy with statins was revealed.

  10. Recombinant Protein Production from TPO Gen Cloning and Expression for Early Detection of Autoimmune Thyroid Diseases

    NASA Astrophysics Data System (ADS)

    Aulanni'am, Aulanni'am; Kinasih Wuragil, Dyah; Wahono Soeatmadji, Djoko; Zulkarnain; Marhendra, Agung Pramana W.

    2018-01-01

    Autoimmune Thyroid Disease (AITD) is an autoimmune disease that has many clinical symptoms but is difficult to detect at the onset of disease progression. Most thyroid autoimmune disease patients are positive with high titre of thyroid autoantibodies, especially thyroid peroxidase (TPO). The detection AITD are still needed because these tests are extremely high cost and have not regularly been performed in most of clinical laboratories. In the past, we have explored the autoimmune disease marker and it has been developed as source of polyclonal antibodies from patient origin. In the current study, we develop recombinant protein which resulted from cloning and expression of TPO gene from normal person and AITD patients. This work flows involves: DNA isolation and PCR to obtain TPO gene from human blood, insertion of TPO gene to plasmid and transformation to E. coli BL21, Bacterial culture to obtain protein product, protein purification and product analysis. This products can use for application to immunochromatography based test. This work could achieved with the goal of producing autoimmune markers with a guaranteed quality, sensitive, specific and economically. So with the collaboration with industries these devices could be used for early detection. Keywords: recombinant protein, TPO gene, Autoimmune thyroid diseases (AITD)ction of the diseases in the community.

  11. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    PubMed Central

    Ludwig, Linda B; Ambrus, Julian L; Krawczyk, Kristie A; Sharma, Sanjay; Brooks, Stephen; Hsiao, Chiu-Bin; Schwartz, Stanley A

    2006-01-01

    Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ) protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). Results Inspection of published sequences revealed a potential transcription initiator element (INR) situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR) suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s) could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s) were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK) sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP) sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The novel HAPs are

  12. Alzheimer's Disease and Prion Protein

    PubMed Central

    Zhou, Jiayi; Liu, Bingqian

    2013-01-01

    Summary Alzheimer's disease (AD) is a devastating neurodegenerative disease with progressive loss of memory and cognitive function, pathologically hallmarked by aggregates of the amyloid-beta (Aβ) peptide and hyperphosphorylated tau in the brain. Aggregation of Aβ under the form of amyloid fibrils has long been considered central to the pathogenesis of AD. However, recent evidence has indicated that soluble Aβ oligomers, rather than insoluble fibrils, are the main neurotoxic species in AD. The cellular prion protein (PrPC) has newly been identified as a cell surface receptor for Aβ oligomers. PrPC is a cell surface glycoprotein that plays a key role in the propagation of prions, proteinaceous infectious agents that replicate by imposing their abnormal conformation to PrPC molecules. In AD, PrPC acts to transduce the neurotoxic signals arising from Aβ oligomers, leading to synaptic failure and cognitive impairment. Interestingly, accumulating evidence has also shown that aggregated Aβ or tau possesses prion-like activity, a property that would allow them to spread throughout the brain. In this article, we review recent findings regarding the function of PrPC and its role in AD, and discuss potential therapeutic implications of PrPC-based approaches in the treatment of AD. PMID:25343100

  13. Immunogenicity of a recombinant fusion protein of tandem repeat epitopes of foot-and-mouth disease virus type Asia 1 for guinea pigs.

    PubMed

    Zhang, Q; Yang, Y Q; Zhang, Z Y; Li, L; Yan, W Y; Jiang, W J; Xin, A G; Lei, C X; Zheng, Z X

    2002-01-01

    In this study, the sequences of capsid protein VPI regions of YNAs1.1 and YNAs1.2 isolates of foot-and-mouth disease virus (FMDV) were analyzed and a peptide containing amino acids (aa) 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia I was assumed to contain B and T cell epitopes, because it is hypervariable and includes a cell attachment site RGD located in the G-H loop. The DNA fragments encoding aa 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia 1 were chemically synthesized and ligated into a tandem repeat of aa 133-158-20 approximately 34-133-158. In order to enhance its immunogenicity, the tandem repeat was inserted downstream of the beta-galactosidase gene in the expression vector pWR590. This insertion yielded a recombinant expression vector pAS1 encoding the fusion protein. The latter reacted with sera from FMDV type Asia 1-infected animals in vitro and elicited high levels of neutralizing antibodies in guinea pigs. The T cell proliferation in immunized animals increased following stimulation with the fusion protein. It is reported for the first time that a recombinant fusion protein vaccine was produced using B and T cell epitopes of FMDV type Asia 1 and that this fusion protein was immunogenic. The fusion protein reported here can serve as a candidate of fusion epitopes for design of a vaccine against FMDV type Asia 1.

  14. High-sensitive factor I and C-reactive protein based biomarkers for coronary artery disease.

    PubMed

    Zhao, Qing; Du, Jian-Shi; Han, Dong-Mei; Ma, Ying

    2014-01-01

    An analysis of high-sensitive factor I and C-reactive proteins as biomarkers for coronary artery disease has been performed from 19 anticipated cohort studies that included 21,567 participants having no information about coronary artery disease. Besides, the clinical implications of statin therapy initiated due to assessment of factor I and C-reactive proteins have also been modeled during studies. The measure of risk discrimination (C-index) was increased (by 0.0101) as per the prognostic model for coronary artery disease with respect to sex, smoking status, age, blood pressure, total cholesterol level along with diabetic history characteristic parameters. The C-index was further raised by 0.0045 and 0.0053 when factor I and C-reactive proteins based information were added, respectively which finally predicted 10-year risk categories as: high (> 20%), medium (10% to < 20%), and low (< 10%) risks. We found 2,254 persons (among 15,000 adults (age ≥ 45 years)) would initially be classified as being at medium risk for coronary artery disease when only conventional risk factors were used as calculated risk. Besides, persons with a predicted risk of more than 20% as well as for persons suffering from other risk factors (i.e. diabetes), statin therapy was initiated (irrespective of their decade old predicted risk). We conclude that under current treatment guidelines assessment of factor I and C-reactive proteins levels (as biomarker) in people at medium risk for coronary artery disease could prevent one additional coronary artery disease risk over a period a decade for every 390-500 people screened.

  15. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed Central

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. PMID:8764013

  16. Sorghum Proteins: The Concentration, Isolation, Modification and Food Applications of Kafirins

    USDA-ARS?s Scientific Manuscript database

    Celiac disease is a serious condition affecting millions of individuals. Those afflicted with these illnesses are resigned to a lifelong avoidance of products containing gluten, the storage protein found in cereal grains wheat, rye and barley. Since many food products contain gluten, these individ...

  17. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    PubMed

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Diagnosing Sporadic Creutzfeldt-Jakob Disease: Accuracy of CSF 14-3-3 Protein Test of the Spinal Fluid

    MedlinePlus

    ... JAKOB DISEASE: ACCURACY OF THE 14-3-3 PROTEIN TEST OF THE SPINAL FLUID This information sheet ... help you understand how the 14-3-3 protein test helps in diagnosing sporadic Creutzfeldt-Jakob disease ( ...

  19. Functionality of alternative protein in gluten-free product development.

    PubMed

    Deora, Navneet Singh; Deswal, Aastha; Mishra, Hari Niwas

    2015-07-01

    Celiac disease is an immune-mediated disease triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley, and other closely related cereal grains. The current treatment for celiac disease is life-long adherence to a strict gluten-exclusion diet. The replacement of gluten presents a significant technological challenge, as it is an essential structure-building protein, which is necessary for formulating high-quality baked goods. A major limitation in the production of gluten-free products is the lack of protein functionality in non-wheat cereals. Additionally, commercial gluten-free mixes usually contain only carbohydrates, which may significantly limit the amount of protein in the diet. In the recent past, various approaches are attempted to incorporate protein-based ingredients and to modify the functional properties for gluten-free product development. This review aims to the highlight functionality of the alternative protein-based ingredients, which can be utilized for gluten-free product development both functionally as well as nutritionally. © The Author(s) 2014.

  20. In vitro evolution of high-titer, virus-like vesicles containing a single structural protein

    PubMed Central

    Rose, Nina F.; Buonocore, Linda; Schell, John B.; Chattopadhyay, Anasuya; Bahl, Kapil; Liu, Xinran; Rose, John K.

    2014-01-01

    Self-propagating, infectious, virus-like vesicles (VLVs) are generated when an alphavirus RNA replicon expresses the vesicular stomatitis virus glycoprotein (VSV G) as the only structural protein. The mechanism that generates these VLVs lacking a capsid protein has remained a mystery for over 20 years. We present evidence that VLVs arise from membrane-enveloped RNA replication factories (spherules) containing VSV G protein that are largely trapped on the cell surface. After extensive passaging, VLVs evolve to grow to high titers through acquisition of multiple point mutations in their nonstructural replicase proteins. We reconstituted these mutations into a plasmid-based system from which high-titer VLVs can be recovered. One of these mutations generates a late domain motif (PTAP) that is critical for high-titer VLV production. We propose a model in which the VLVs have evolved in vitro to exploit a cellular budding pathway that is hijacked by many enveloped viruses, allowing them to bud efficiently from the cell surface. Our results suggest a basic mechanism of propagation that may have been used by primitive RNA viruses lacking capsid proteins. Capsids may have evolved later to allow more efficient packaging of RNA, greater virus stability, and evasion of innate immunity. PMID:25385608