Sample records for valproic acid inhibits

  1. Valproic acid promotes human hair growth in in vitro culture model.

    PubMed

    Jo, Seong Jin; Choi, Soon-Jin; Yoon, Sun-Young; Lee, Ji Yeon; Park, Won-Seok; Park, Phil-June; Kim, Kyu Han; Eun, Hee Chul; Kwon, Ohsang

    2013-10-01

    β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. To determine the effect of VPA on human hair growth. We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Valproic acid induced hyperammonaemic encephalopathy.

    PubMed

    Amanat, Saima; Shahbaz, Naila; Hassan, Yasmin

    2013-01-01

    To observe clinical and laboratory features of valproic acid-induced hyperammonaemic encephalopathy in patients taking valproic acid. Observational study was conducted at the Neurology Department, Dow University of Health Sciences, Civil Hospital, Karachi, from February 26, 2010 to March 20, 2011. Ten patients on valproic acid therapy of any age group with idiopathic or secondary epilepsy, who presented with encephalopathic symptoms, were registered and followed up during the study. Serum ammonia level, serum valproic acid level, liver function test, cerebrospinal fluid examination, electroencephalogram and brain imaging of all the patients were done. Other causes of encephalopathy were excluded after clinical and appropriate laboratory investigations. Microsoft Excell 2007 was used for statistical analysis. Hyperammonaemia was found in all patients with encephalopathic symptoms. Rise in serum ammonia was independent of dose and serum level of valproic acid. Liver function was also found to be normal in 80% (n = 8) of the patients. Valproic acid was withdrawn in all patients. Three (30%) patients improved only after the withdrawal of valproic acid. Six (60%) patients improved after L-Carnitine replacement, one (10%) after sodium benzoate. On followup, serum ammonia had reduced to normal in five (50%) patients and to more than half of the baseline level in two (20%) patients. Three (30%) patients were lost to followup after complete clinical improvement. Within therapeutic dose and serum levels, valproic acid can cause symptomatic hyperammonaemia resulting in encephalopathy. All patients taking valproic acid presenting with encephalopathic symptoms must be monitored for the condition.

  3. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).

    PubMed

    Ushigome, F; Takanaga, H; Matsuo, H; Tsukimori, K; Nakano, H; Ohtani, H; Sawada, Y

    2001-04-13

    Valproic acid is an anticonvulsant widely used for the treatment of epilepsy. However, valproic acid is known to show fetal toxicity, including teratogenicity. In the present study, to elucidate the mechanisms of valproic acid transport across the blood-placental barrier, we carried out transcellular transport and uptake experiments with human placental choriocarcinoma epithelial cells (BeWo cells) in culture. The permeability coefficient of [3H]valproic acid in BeWo cells for the apical-to-basolateral flux was greater than that for the opposite flux, suggesting a higher unidirectional transport in the fetal direction. The uptake of [3H]valproic acid from the apical side was temperature-dependent and enhanced under acidic pH. In the presence of 50 microM carbonyl cyanide p-trifluoromethoxylhydrazone, the uptake of [3H]valproic acid was significantly reduced. A metabolic inhibitor, 10 mM sodium azide, also significantly reduced the uptake of [3H]valproic acid. Therefore, valproic acid is actively transported in a pH-dependent manner on the brush-border membrane of BeWo cells. Kinetic analysis of valproic acid uptake revealed the involvement of a non-saturable component and a saturable component. The Michaelis constant for the saturable transport (K(t)) was smaller under acidic pH, suggesting a proton-linked active transport mechanism for valproic acid in BeWo cells. In the inhibitory experiments, some short-chain fatty acids, such as acetic acid, lactic acid, propanoic acid and butyric acid, and medium-chain fatty acids, such as hexanoic acid and octanoic acid, inhibited the uptake of [3H]valproic acid. The uptake of [3H]valproic acid was also significantly decreased in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, salicylic acid and furosemide, which are well-known inhibitors of the anion exchange system. Moreover, p-aminohippuric acid significantly reduced the uptake of [3H]valproic acid. These results suggest that an active transport

  4. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells

    PubMed Central

    Göttlicher, Martin; Minucci, Saverio; Zhu, Ping; Krämer, Oliver H.; Schimpf, Annemarie; Giavara, Sabrina; Sleeman, Jonathan P.; Lo Coco, Francesco; Nervi, Clara; Pelicci, Pier Giuseppe; Heinzel, Thorsten

    2001-01-01

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  5. Valproic Acid

    MedlinePlus

    ... and spinal cord and can also cause lower intelligence in babies exposed to valproic acid before birth. ... acid. Talk to your doctor about birth control methods that will work for you. If you become ...

  6. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice.

    PubMed

    Mackenzie, Gerardo G; Huang, Liqun; Alston, Ninche; Ouyang, Nengtai; Vrankova, Kvetoslava; Mattheolabakis, George; Constantinides, Panayiotis P; Rigas, Basil

    2013-01-01

    New agents are needed to treat pancreatic cancer, one of the most lethal human malignancies. We synthesized phospho-valproic acid, a novel valproic acid derivative, (P-V; MDC-1112) and evaluated its efficacy in the control of pancreatic cancer. P-V inhibited the growth of human pancreatic cancer xenografts in mice by 60%-97%, and 100% when combined with cimetidine. The dominant molecular target of P-V was STAT3. P-V inhibited the phosphorylation of JAK2 and Src, and the Hsp90-STAT3 association, suppressing the activating phosphorylation of STAT3, which in turn reduced the expression of STAT3-dependent proteins Bcl-xL, Mcl-1 and survivin. P-V also reduced STAT3 levels in the mitochondria by preventing its translocation from the cytosol, and enhanced the mitochondrial levels of reactive oxygen species, which triggered apoptosis. Inhibition of mitochondrial STAT3 by P-V was required for its anticancer effect; mitochondrial STAT3 overexpression rescued animals from the tumor growth inhibition by P-V. Our results indicate that P-V is a promising candidate drug against pancreatic cancer and establish mitochondrial STAT3 as its key molecular target.

  7. Somnambulism due to probable interaction of valproic acid and zolpidem.

    PubMed

    Sattar, S Pirzada; Ramaswamy, Sriram; Bhatia, Subhash C; Petty, Frederick

    2003-10-01

    To report a case of somnambulism due to a probable interaction between valproic acid and zolpidem in a patient with no prior personal or family history of somnambulism. A 47-year-old white man with a history of bipolar disorder was being maintained on citalopram 40 mg once daily and zolpidem 5 mg at bedtime. During treatment, he developed manic symptoms and was started on adjunctive valproic acid therapy. Soon after this, he developed episodes of somnambulism, which stopped when valproic acid was discontinued. On rechallenge with valproic acid, somnambulism returned. To our knowledge, this is the first report in the literature describing a probable interaction between valproic acid and zolpidem leading to somnambulism. Even though valproic acid has been associated with sleep changes, there are no published reports of somnambulism with this agent. Zolpidem has been associated with somnambulism, but our patient did not experience this when he was on zolpidem monotherapy. However, within 2 days of starting adjunctive valproic acid, sleepwalking occurred. It stopped after valproic acid was withdrawn. On rechallenge with valproic acid, sleepwalking recurred. However, when zolpidem was discontinued and valproic acid was continued, somnambulism did not occur. An assessment on the Naranjo probability scale suggests probable pharmacokinetic or pharmacodynamic interactions between the 2 medications. Valproic acid and zolpidem are generally safe medications that are commonly prescribed and often used together. No interactions have been previously reported with combined use of valproic acid and zolpidem. This case suggests a probable interaction between these 2 agents that can have a serious consequence, somnambulism. This could be frightening to patients and put them in danger. Recognition of such interactions that place patients at risk for potentially serious adverse events is imperative for appropriate care.

  8. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  9. Adverse drug reactions induced by valproic acid.

    PubMed

    Nanau, Radu M; Neuman, Manuela G

    2013-10-01

    Valproic acid is a widely-used first-generation antiepileptic drug, prescribed predominantly in epilepsy and psychiatric disorders. VPA has good efficacy and pharmacoeconomic profiles, as well as a relatively favorable safety profile. However, adverse drug reactions have been reported in relation with valproic acid use, either as monotherapy or polytherapy with other antiepileptic drugs or antipsychotic drugs. This systematic review discusses valproic acid adverse drug reactions, in terms of hepatotoxicity, mitochondrial toxicity, hyperammonemic encephalopathy, hypersensitivity syndrome reactions, neurological toxicity, metabolic and endocrine adverse events, and teratogenicity. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Thrombotic microangiopathy associated with Valproic acid toxicity.

    PubMed

    Hebert, Sean A; Bohan, Timothy P; Erikson, Christian L; Swinford, Rita D

    2017-08-03

    Thrombotic microangiopathy (TMA) is a serious, sometimes life-threatening disorder marked by the presence of endothelial injury and microvascular thrombi. Drug-induced thrombotic microangiopathy (DI-TMA) is one specific TMA syndrome that occurs following drug exposure via drug-dependent antibodies or direct tissue toxicity. Common examples include calcineurin inhibitors Tacrolimus and Cyclosporine and antineoplastics Gemcitabine and Mitomycin. Valproic acid has not been implicated in DI-TMA. We present the first case of a patient meeting clinical criteria for DI-TMA following admission for valproic acid toxicity. An adolescent male with difficult to control epilepsy was admitted for impaired hepatic function while on valproic acid therapy. On the third hospital day, he developed severe metabolic lactic acidosis and multiorgan failure, prompting transfer to the pediatric intensive care unit. Progressive anemia and thrombocytopenia instigated an evaluation for thrombotic microangiopathy, where confirmed by concomitant hemolysis, elevated lactate dehydrogenase (LDH), low haptoglobin, and concurrent oliguric acute kidney injury. Thrombotic thrombocytopenic purpura was less likely with adequate ADAMTS13. Discontinuing valproic acid reversed the anemia, thrombocytopenia, and normalized the LDH and haptoglobin, supporting a drug-induced cause for the TMA. To the best of our knowledge, this is the first report of drug-induced TMA from valproic acid toxicity.

  11. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yingying; Chen, Xi; Yu, Dehai

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phasemore » blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.« less

  12. Valproic Acid and Pregnancy

    MedlinePlus

    ... in the treatment of epilepsy, and to treat bipolar disorder and migraines. I have been taking valproic acid ... that women with seizure disorders and women with bipolar disorder might have menstrual problems and difficulty getting pregnant. ...

  13. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Beneden, Katrien, E-mail: kvbenede@vub.ac.be; Geers, Caroline; Pauwels, Marina

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as didmore » the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.« less

  14. Drug interaction between phenytoin and valproic acid in a child with refractory epilepsy: a case report.

    PubMed

    Carvalho, Indira Valadê; Carnevale, Renata Cavalcanti; Visacri, Marília Berlofa; Mazzola, Priscila Gava; de Fátima Lopes Ambrósio, Rosiane; dos Reis, Marcelo Conrado; de Queiroz, Rachel Alvarenga; Moriel, Patricia

    2014-04-01

    There are no published reports on pediatric phenytoin toxicity, resulting from the drug interaction between phenytoin and valproic acid. A 12-year-old patient with refractory epilepsy syndrome presented with phenytoin toxicity, following a concomitant treatment with phenytoin, valproic acid, and lamotrigine. The phenytoin concentration detected in the capsules used by the patient was in accordance with the prescribed dose and was appropriate for the age and weight of the patient. However, a supratherapeutic phenytoin serum concentration was observed (21.92 µg phenytoin/mL of blood). Consequently, the phenytoin dose was reduced, and the patient was monitored; 24 hours later the patient did not present with any signs/symptoms of toxicity. Despite the appropriate phenytoin concentration in the capsules, the patient presented with phenytoin toxicity. This toxicity likely resulted from the drug interaction between phenytoin and valproic acid that leads to phenytoin displacement from plasmatic proteins and inhibits phenytoin metabolism, thereby increasing the concentration of free drug in the serum.

  15. Valproic Acid Suppositories for Management of Seizures for Geriatric Patients.

    PubMed

    DiScala, Sandra L; Tran, Nhi N; Silverman, Michael A

    This case describes the use of valproic acid suppositories for secondary seizure prophylaxis in a geriatric veteran with a feeding and swallowing disorder. The effectiveness of valproic acid suppositories is outlined to reinforce the need for compounding pharmacies to have this formulation available to meet the needs of geriatric patients.

  16. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  17. Permeation across hydrated DPPC lipid bilayers: simulation of the titrable amphiphilic drug valproic acid.

    PubMed

    Ulander, Johan; Haymet, A D J

    2003-12-01

    Valproic acid is a short branched fatty acid used as an anticonvulsant drug whose therapeutic action has been proposed to arise from membrane-disordering properties. Static and kinetic properties of valproic acid interacting with fully hydrated dipalmitoyl phosphatidylcholine lipid bilayers are studied using molecular-dynamics simulations. We calculate spatially resolved free energy profiles and local diffusion coefficients using the distance between the bilayer and valproic acid respective centers-of-mass along the bilayer normal as reaction coordinate. To investigate the pH dependence, we calculate profiles for the neutral valproic acid as well as its water-soluble anionic conjugate base valproate. The local diffusion constants for valproate/valproic acid along the bilayer normal are found to be approximately 10(-6) to 10(-5) cm2 s(-1). Assuming protonation of valproic acid upon association with--or insertion into--the lipid bilayer, we calculate the permeation coefficient to be approximately 2.0 10(-3) cm s(-1), consistent with recent experimental estimates of fast fatty acid transport. The ability of the lipid bilayer to sustain local defects such as water intrusions stresses the importance of going beyond mean field and taking into account correlation effects in theoretical descriptions of bilayer translocation processes.

  18. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: a potential drug for bipolar disorder

    PubMed Central

    Modi, Hiren R.; Basselin, Mireille; Taha, Ameer Y.; Li, Lei O.; Coleman, Rosalind A.; Bialer, Meir; Rapoport, Stanley I.

    2013-01-01

    Background Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation-reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain acyl-CoA synthetase (Acsl)-4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl-4 catalyzed acylation, and thus have potential anti-BD action. Methods Rat Acsl4-flag protein was expressed in E. coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis-Menten kinetics. Results Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect. Conclusions PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients. PMID:23354024

  19. Effects of cytarabine on activation of human T cells - cytarabine has concentration-dependent effects that are modulated both by valproic acid and all-trans retinoic acid.

    PubMed

    Ersvaer, Elisabeth; Brenner, Annette K; Vetås, Kristin; Reikvam, Håkon; Bruserud, Øystein

    2015-05-02

    Cytarabine is used in the treatment of acute myeloid leukemia (AML). Low-dose cytarabine can be combined with valproic acid and all-trans retinoic acid (ATRA) as AML-stabilizing treatment. We have investigated the possible risk of immunotoxicity by this combination. We examined the effects of cytarabine combined with valproic acid and ATRA on in vitro activated human T cells, and we tested cytarabine at concentrations reached during in vivo treatment with high doses, conventional doses and low doses. T cells derived from blood donors were activated in vitro in cell culture medium alone or supplemented with ATRA (1 μM), valproic acid (500 or 1000 μM) or cytarabine (0.01-44 μM). Cell characteristics were assessed by flow cytometry. Supernatants were analyzed for cytokines by ELISA or Luminex. Effects on primary human AML cell viability and proliferation of low-dose cytarabine (0.01-0.5 μM) were also assessed. Statistical tests include ANOVA and Cluster analyses. Only cytarabine 44 μM had both antiproliferative and proapoptotic effects. Additionally, this concentration increased the CD4:CD8 T cell ratio, prolonged the expression of the CD69 activation marker, inhibited CD95L and heat shock protein (HSP) 90 release, and decreased the release of several cytokines. In contrast, the lowest concentrations (0.35 and 0.01 μM) did not have or showed minor antiproliferative or cytotoxic effects, did not alter activation marker expression (CD38, CD69) or the release of CD95L and HSP90, but inhibited the release of certain T cell cytokines. Even when these lower cytarabine concentrations were combined with ATRA and/or valproic acid there was still no or minor effects on T cell viability. However, these combinations had strong antiproliferative effects, the expression of both CD38 and CD69 was altered and there was a stronger inhibition of the release of FasL, HSP90 as well as several cytokines. Cytarabine (0.01-0.05 μM) showed a dose-dependent antiproliferative effect on

  20. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells.

    PubMed

    Langlands, Alistair J; Carroll, Thomas D; Chen, Yu; Näthke, Inke

    2018-02-15

    More than 90% of colorectal cancers carry mutations in Apc that drive tumourigenesis. A 'just-right' signalling model proposes that Apc mutations stimulate optimal, but not excessive Wnt signalling, resulting in a growth advantage of Apc mutant over wild-type cells. Reversal of this growth advantage constitutes a potential therapeutic approach. We utilised intestinal organoids to compare the growth of Apc mutant and wild-type cells. Organoids derived from Apc Min/+ mice recapitulate stages of intestinal polyposis in culture. They eventually form spherical cysts that reflect the competitive growth advantage of cells that have undergone loss of heterozygosity (LOH). We discovered that this emergence of cysts was inhibited by Chiron99021 and Valproic acid, which potentiates Wnt signalling. Chiron99021 and Valproic acid restrict the growth advantage of Apc mutant cells while stimulating that of wild-type cells, suggesting that excessive Wnt signalling reduces the relative fitness of Apc mutant cells. As a proof of concept, we demonstrated that Chiron99021-treated Apc mutant organoids were rendered susceptible to TSA-induced apoptosis, while wild-type cells were protected.

  1. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals.

    PubMed

    Zhao, Y; You, W; Zheng, J; Chi, Y; Tang, W; Du, R

    2016-11-01

    Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, the investigation about the molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The objective of the present study is to investigate the effects of valproic acid (VPA), a histone deacetylase inhibitor, on the angiogenesis of cervical cancer. The effects and mechanisms of VPA on in vitro angiogenesis and vascular endothelial growth factor (VEGF) expression of human cervical cancer HeLa and SiHa cells were investigated. Our present study reveals that 1 mM VPA can significantly inhibit the in vitro angiogenic potential and VEGF expression of human cervical cancer HeLa and SiHa cells. Further, the transcription and protein levels of hypoxia inducible factor-1α (HIF-1α), and not HIF-1β, are significantly inhibited in VPA-treated cervical cancer cells. Over expression of HIF-1α can obviously reverse VPA-induced VEGF down regulation. VPA-treatment decreases the activation of Akt and ERK1/2 in both HeLa and SiHa cells in a time-dependent manner. The inhibitor of Akt (LY 294002) or ERK1/2 (PD98059) can inhibit VEGF alone and cooperatively reinforce the suppression effects of VPA on HIF-1α and VEGF expression. Collectively, our data reveal that the inhibition of PI3K/Akt and ERK1/2 signals are involved in VPA-induced HIF-1α and VEGF suppression of cervical cancer cells.

  2. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pharmacoepidemiologic investigation of a clonazepam-valproic acid interaction by mixed effect modeling using routine clinical pharmacokinetic data in Japanese patients.

    PubMed

    Yukawa, E; Nonaka, T; Yukawa, M; Higuchi, S; Kuroda, T; Goto, Y

    2003-12-01

    Non-linear Mixed Effects Modeling (NONMEM) was used to estimate the effects of clonazepam-valproic acid interaction on clearance values using 576 serum levels collected from 317 pediatric and adult epileptic patients (age range, 0.3-32.6 years) during their clinical routine care. Patients received the administration of clonazepam and/or valproic acid. The final model describing clonazepam clearance was CL = 144.0 TBW-0.172 1.14VPA, where CL is total body clearance (mL/kg/h); TBW is total body weight (kg); VPA = 1 for concomitant administration of valproic acid and VPA = zero otherwise. The final model describing valproic acid clearance was CL (mL/kg/h) = 17.2 TBW-0.264 DOSE0.159 0.821CZP 0.896GEN, where DOSE is the daily dose of valproic acid (mg/kg/day); CZP = 1 for concomitant administration of clonazepam and CZP = zero otherwise; GEN = 1 for female and GEN = zero otherwise. Concomitant administration of clonazepam and valproic acid resulted in a 14% increase in clonazepam clearance, and a 17.9% decrease in valproic acid clearance.

  4. The effect of a histone deacetylase inhibitor - valproic acid - on nucleoli in human leukaemic myeloblasts.

    PubMed

    Smetana, K; Zápotocký, M

    2010-01-01

    The present study was undertaken to provide more information on nucleolar changes induced by a histone deacetylase inhibitor such as valproic acid in leukaemic myeloblasts at the single-cell level. For this study, RNA in nucleoli was visualized by a simple but sensitive cytochemical procedure in unfixed cytospins of short-term bone marrow cultures from patients suffering from acute myeloid leukaemia. Valproic acid in leukaemic myeloblasts markedly reduced the nucleolar size and also produced significant transformation of "active" to "resting" and "inactive" nucleoli that reflected the alteration of the nucleolar transcription in sensitive myeloblasts. On this occasion it should be added that valproic acid significantly increased the incidence of altered myeloblasts that changed to apoptotic cells or apoptotic bodies and cell ghosts. In contrast to the above-mentioned decreased nucleolar size, the nucleolar RNA concentration, expressed by computerassisted RNA image densitometry in valproic acidtreated myeloblasts, was not significantly changed. The results of the present study clearly indicated that the nucleolar size and transformation of "active" to "sleeping" or "inactive" nucleoli are convenient markers of the sensitivity and alteration of leukaemic myeloblasts produced by a histone deacetylase inhibitor, valproic acid, at the single-cell level.

  5. Valproic acid inhibits epithelial‑mesenchymal transition in renal cell carcinoma by decreasing SMAD4 expression.

    PubMed

    Mao, Shaowei; Lu, Guoliang; Lan, Xiaopeng; Yuan, Chuanwei; Jiang, Wei; Chen, Yougen; Jin, Xunbo; Xia, Qinghua

    2017-11-01

    Renal cell carcinoma (RCC) is the most common malignancy in urogenital neoplasms worldwide. According to previous studies, valproic acid (VPA), an anticonvulsant drug, can suppress tumor metastasis and decrease the expression level of Mothers against decapentaplegic homolog 4 (SMAD4) and therefore may inhibit epithelial‑mesenchymal transition (EMT), which is responsible for cancer metastasis. However, the association between VPA, EMT and SMAD4 in RCC metastasis remains obscure. In the present study, it was demonstrated that in the RCC cell lines 786‑O and Caki‑1 treated with VPA, the neural (N)‑cadherin, vimentin and SMAD4 protein and mRNA levels were decreased, accompanied with an increase in expression of epithelial (E)‑cadherin. Silencing SMAD4 expression decreased the expression of EMT markers, including N‑cadherin and simultaneously upregulated E‑cadherin in RCC cell lines. SMAD4 overexpression counteracted the VPA‑mediated EMT‑inhibitory effect (P<0.05). The present study demonstrates that VPA inhibited EMT in RCC cells via altering SMAD4 expression. In addition, immunohistochemical staining demonstrated that transforming growth factor‑β (TGF‑β) and low expression of SMAD4 was associated with a lower Fuhrman grade and low expression of transcription intermediary factor 1‑γ was associated with a higher tumor Fuhrman grade (P<0.05), Therefore, based on the regulatory effect of SMAD4 on EMT‑associated transcription factors, SMAD4 which can form a SMAD3/SMAD4 complex induced by TGF‑β, could be a potential anticancer drug target inhibiting tumor invasion and metastasis in RCC.

  6. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  7. Effect of time, injury, age and ethanol on interpatient variability in valproic acid pharmacokinetics after traumatic brain injury.

    PubMed

    Anderson, Gail D; Temkin, Nancy R; Awan, Asaad B; Winn, H Richard; Winn, Richard H

    2007-01-01

    magnitude of the induction of CL was increased with decreased albumin concentrations, in addition to the presence of ethanol on admission, increased severity of head injury, tube feeding and total parenteral nutrition (TPN). The magnitude of induction of CL(u) was increased by older age, presence of ethanol on admission, increased severity of head injury, tube feeding, TPN, and if the patient had a post-injury neurosurgical procedure. The time to normalisation of CL(u) was significantly longer in patients with head injury plus other injuries compared with those with head injury alone. As has been reported with other drugs, TBI results in a significant increase in the metabolism of valproic acid. The patient factors identified in this study that resulted in an increase in the magnitude and time course of the induction of CL(u) (ethanol, older age, presence of a neurosurgical procedure, severity of TBI and presence of multiple non-TBI injuries) have all been reported to cause a shift to the anti-inflammatory mediators IL-4 and IL-10. This suggests that the increase in hepatic metabolism after TBI may be due to the increased presence of anti-inflammatory mediators in contrast to the inhibition effect of the pro-inflammatory mediators in non-TBI inflammation and infection.

  8. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish

    PubMed Central

    Bailey, Jordan M.; Oliveri, Anthony N.; Karbhari, Nishika; Brooks, Roy A.J.; De La Rocha, Amberlene J.; Janardhan, Sheila; Levin, Edward D.

    2015-01-01

    BACKGROUND Moderate to severe dysregulation in retinoid signaling during early development is associated with a constellation of physical malformations and/or neural tube defects, including spina bifida. It is thought that more subtle dysregulation of this system, which might be achievable via dietary (i.e. hypervitaminosis A) or pharmacological (i.e. valproic acid) exposure in humans, will manifest on behavioral domains including sociability, without overt physical abnormalities. METHODS During early life, zebrafish were exposed to low doses of two chemicals that disrupt retinoid signaling. From 0-5 dpf, larvae were reared in aqueous solutions containing retinoic acid (0, 0.02, 0.2 or 2 nM) or valproic acid (0, 0.5, 5.0 or 50 uM). One cohort of zebrafish was assessed using a locomotor activity screen at 6-dpf; another was reared to adulthood and assessed using a neurobehavioral test battery (startle habituation, novel tank exploration, shoaling, and predator escape/avoidance). RESULTS There was no significant increase in the incidence of physical malformation among exposed fish compared to controls. Both retinoic acid and valproic acid exposures during development disrupted larval activity with persisting behavioral alterations later in life, primarily manifesting as decreased social affiliation. CONCLUSIONS Social behavior and some aspects of motor function were altered in exposed fish; the importance of examining emotional or psychological consequences of early life exposure to retinoid acting chemicals is discussed. PMID:26439099

  9. Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA.

    PubMed

    Lin, Chih-Ming; Thajeb, Peterus

    2007-03-01

    Epilepsy is one of the most common presentations of patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). MELAS is typically caused by an A-to-G substitution at nucleotide position 3243 of mitochondrial DNA. Valproic acid, a common anticonvulsant, can actually increase the frequency of seizures in individuals with MELAS. Here, we report a single case-study of a 38-year-old man who presented with focal seizures and had MELAS Syndrome due to the A3243G mitochondrial DNA mutation. Manifestation of epilepsia partialis continua was aggravated by use of valproic acid. Convulsions abated after discontinuation of valproic acid. Our experience suggests that valproic acid should be avoided for the treatment of epilepsy in individuals with mitochondrial disease.

  10. Valproic acid (VPA) inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4.

    PubMed

    Lan, Xiaopeng; Lu, Guoliang; Yuan, Chuanwei; Mao, Shaowei; Jiang, Wei; Chen, Yougen; Jin, Xunbo; Xia, Qinghua

    2016-01-01

    The epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. Previous studies have reported that valproic acid (VPA) suppresses prostate carcinoma (PCa) cell metastasis and down-regulates SMAD4 protein levels, which is the key molecule in TGF-β-induced EMT. However, the correlation between VPA and the EMT in PCa remains uncertain. Markers of the EMT in PCa cells and xenografts were molecularly assessed after VPA treatment. The expression and mono-ubiquitination of SMAD4 were also analyzed. After transfection with plasmids that express SMAD4 or short hairpin RNA for SMAD4 down-regulation, markers of EMT were examined to confirm whether VPA inhibits the EMT of PCa cells through the suppression of SMAD4. VPA induced the increase in E-cadherin (p < 0.05), and the decrease in N-cadherin (p < 0.05) and Vimentin (p < 0.05), in PCa cells and xenografts. SMAD4 mRNA and protein levels were repressed by VPA (p < 0.05), whereas the level of mono-ubiquitinated SMAD4 was increased (p < 0.05). SMAD4 knockdown significantly increased E-cadherin expression in PC3 cells, but SMAD4 over-expression abolished the VPA-mediated EMT-inhibitory effect. VPA inhibits the EMT in PCa cells via the inhibition of SMAD4 expression and the mono-ubiquitination of SMAD4. VPA could serve as a promising agent in PCa treatment, with new strategies based on its diverse effects on posttranscriptional regulation.

  11. Effect of carbamezapine and valproic acid on bone mineral density, IGF-I and IGFBP-3.

    PubMed

    Kumandas, Sefer; Koklu, Esad; Gümüs, Hakan; Koklu, Selmin; Kurtoglu, Selim; Karakukcu, Musa; Keskin, Mehmet

    2006-04-01

    To examine the effect of carbamezapine and valproate on bone mineral density (BMD), IGF-I and IGFBP-3 levels in children. The effects of at least 2 years valproic acid and carbamazepine therapy on BMD were evaluated in a cross-sectional and retrospective study. All children were ambulatory, prepubertal, and had normal activity and nutritionally adequate diets. Ambulatory epileptic patients were divided into two groups. Thirty-three patients (group 1; 17 boys, 16 girls; mean age: 8.8 +/- 2.0 years) were treated with valproic acid and 33 patients were treated with carbamazepine (group 2; 20 boys, 13 girls; mean age: 9.7 +/- 1.6 years). The control group consisted of 22 healthy children (13 boys, 9 girls; mean age: 8.9 +/- 2.3 years), who were age- and sex-matched with the patient groups. Children with metabolic bone disease, growth and neurological impairment, signs of malnutrition, or any chronic disease were excluded from the study. BMD values at lumbar spine in both the carbamazepine (-1.69 +/- 0.85 mean L1-4 BMD z-scores, mean 35.5 +/- 12.8 months treatment, and 19,478.6 +/- 6,301.3 mg/kg cumulative dose) and valproic acid (-1.28 +/- 0.80 mean L1-4 BMD z-scores, mean 33.7 +/- 15.0 months treatment, and 22,852.4 +/- 12,477.4 mg/kg cumulative dose) groups were significantly lower than that of the control group (-0.23 +/- 0.87 mean L1-4 BMD z-score). Serum ALP and PTH levels were significantly higher in the carbamazepine-treated group (65.4 +/- 21.1 pg/ml, 767 +/- 267 U/l, respectively) than those of the valproic acid-treated (39.1 +/- 12.8 pg/ml, 561 +/- 166 U/l, respectively) and control groups (36.3 +/- 4.9 pg/ml, 487 +/- 82 U/l, respectively). Serum 25-hydroxyvitamin D of the carbamazepine-treated group (9.8 +/- 3.2 microg/l) was significantly lower than the other groups (15.1 +/- 3.5, 16.6 +/- 4.7 microg/l, respectively). There were eight and 13 patients with plasma intact PTH above reference values in groups 1 and 2, respectively. Valproic acid and

  12. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice weremore » treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.« less

  13. Antimetastatic Efficacy of the Combination of Caffeine and Valproic Acid on an Orthotopic Human Osteosarcoma Cell Line Model in Nude Mice.

    PubMed

    Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Murakami, Takashi; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2017-03-01

    We have previously reported that caffeine can enhance chemotherapy efficacy of bone and soft tissue sarcoma via cell-cycle perturbation. Valproic acid has histone deacetylase (HDAC) inhibitory activity. We have also reported the anti-tumor efficacy of combination treatment with caffeine and valproic acid against osteosarcoma primary tumors in a cell-line orthotopic mouse model. In this study, we performed combination treatment of caffeine and valproic acid on osteosarcoma cell lines in vitro and in spontaneous and experimental lung metastasis mouse models of osteosarcoma. Survival of 143B-RFP human osteosarcoma cells after exposure to caffeine and valproic acid for 72 hours was determined using the WST-8 assay. IC 50 values and combination indices were calculated. Mouse models of primary osteosarcoma and spontaneous lung metastasis were obtained by orthotopic intra-tibial injection of 143B-RFP cells. Valproic acid, caffeine, and combination of both drugs were administered from day 7, five times a week, for four weeks. Six weeks after orthotopic injection, lung samples were excised and observed with a fluorescence imaging system. A mouse model of experimental lung metastasis was obtained by tail vein injection of 143B-RFP cells. The mice were treated with these agents from day 0, five times a week for four weeks. Both caffeine and valproic acid caused concentration-dependent cell kill in vitro. Synergistic efficacy of the combination treatment was observed. In the spontaneous lung-metastasis model, the number of lung metastasis was 9.0±2.6 in the untreated group (G1); 10.8±2.9 in the caffeine group (G2); 10.0±3.1 in the valproic-acid group (G3); and 3.0±1.1 in the combination group (G4); (p=6.78E-5 control vs. combination; p=0.006 valproic acid vs. combination; p=0.003 caffeine vs. combination). In the experimental lung-metastasis model, the combination group significantly reduced lung metastases and improved overall survival (p=0.0005). Efficacy of the

  14. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTTmore » assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.« less

  15. Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug.

    PubMed

    Tomson, Torbjörn; Battino, Dina; Perucca, Emilio

    2016-02-01

    Since the serendipitous discovery of its anticonvulsant properties more than 50 years ago, valproic acid has become established as an effective broad-spectrum antiepileptic drug that is particularly useful for the management of generalised epilepsies, for which treatment alternatives are few. However, during the past few years increasing evidence has accumulated that intake of valproic acid during pregnancy is associated with a significant risk of dose-dependent teratogenic effects and impaired postnatal cognitive development in children. Because of these risks, valproic acid should not be used as a first-line drug in women of childbearing potential whenever equally or more effective alternative drugs are available-as in the case of focal epilepsy. In some generalised epilepsy syndromes, such as juvenile myoclonic epilepsy, valproic acid has better documented efficacy than alternative drugs and drug selection should be a shared decision between the clinician and the informed patient based on careful risk-benefit assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Role of SMAD4 in the mechanism of valproic acid's inhibitory effect on prostate cancer cell invasiveness.

    PubMed

    Jiang, Wei; Zheng, Yi; Huang, Zhongxian; Wang, Muwen; Zhang, Yinan; Wang, Zheng; Jin, Xunbo; Xia, Qinghua

    2014-05-01

    To investigate the influence of the histone deacetylase inhibitor valproic acid (VPA) on SMAD4 expression and invasive ability of prostate cancer cell lines. DU145 and PC3 cell lines were treated with 0, 2, and 5 mMol/l of VPA; invasion of DU145 and PC3 cells were then examined by transwell assay. Immunohistochemistry and Western blot were used to examine SMAD4 protein expression in DU145 and PC3 cells. Compared with controls, VPA significantly suppressed invasiveness in both PC3 and DU145 cells in a dose-dependent way (P < 0.05). VPA also inhibited AKT protein (which was regarded as an effective indicator here), and meanwhile, SMAD4 expression was down-regulated after VPA treatment in a dose-dependent manner in both DU145 (P < 0.05) and PC3 (P < 0.01) cells. Valproic acid could suppress invasiveness of prostate cancer cell lines PC3 and Du145, possibly through multiple pathways other than the SAMD4 pathway. This implies that VPA treatment combined with other SMAD4 enhancers could form a basis for a novel prostate cancer treatment.

  17. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    PubMed

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of

  19. Placebo-Controlled Trial of Valproic Acid Versus Risperidone in Children 3–7 Years of Age with Bipolar I Disorder

    PubMed Central

    Scheffer, Russell E.; Monroe, Erin; Delgado, Sergio; Altaye, Mekibib; Lagory, Denise

    2015-01-01

    Abstract Objective: The objective of this study was to determine the efficacy and safety of valproic acid versus risperidone in children, 3–7 years of age, with bipolar I disorder (BPD), during a mixed or manic episode. Methods: Forty-six children with Diagnostic and Statistical Manual of Mental Disorders. 4th ed., Text Revision (DSM-IV-TR) diagnosis of bipolar disorder, manic, hypomanic, or mixed episode, were recruited over a 6 year period from two academic outpatient programs for a double-blinded, placebo-controlled trial in which subjects were randomized in a 2:2:1 ratio to risperidone solution, valproic acid, or placebo. Results: After 6 weeks of treatment, the least-mean Young Mania Rating Scale (YMRS) total scores change, adjusted for baseline YMRS scores, from baseline by treatment group was: Valproic acid 10.0±2.46 (p=0.50); risperidone 18.82±1.55 (p=0.008); and placebo 4.29±3.56 (F=3.93, p=0.02). The mixed models for repeated measure (MMRM) analysis found a significant difference for risperidone-treated subjects versus placebo treated subjects (p=0.008) but not for valproic acid-treated subjects versus placebo-treated subjects (p=0.50). Treatment with risperidone over 6 weeks led to increased prolactin levels, liver functions, metabolic measures, and weight/body mass index (BMI). Treatment with valproic acid led to increases in weight/BMI and decreases in total red blood cells (RBC), hemoglobin, and hematocrit. Conclusions: In this small sample of preschool children with BPD, risperidone demonstrated clear efficacy versus placebo, whereas valproic acid did not. The laboratory and weight findings suggest that younger children with BPD are more sensitive to the effects of both of these psychotropics, and that, therefore, frequent laboratory and weight monitoring are warranted. PMID:25978742

  20. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    PubMed

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. Copyright © 2016 the American Physiological Society.

  1. Evaluation ofserum free carnitine/acylcarnitine levels and left ventricular systolic functions in children with idiopathic epilepsy receiving valproic acid.

    PubMed

    Kulhas Celik, Ilknur; Tasdemir, Haydar Ali; Ince, Hülya; Celik, Halil; Sungur, Metin

    2018-07-01

    In the study, the effect of valproic acid on serum free/acylcarnitine levels and left ventricular systolic function in pediatric patients with idiopathic epilepsy receiving valproic acid was investigated. Patients receiving valproic acid treatment for six months between January 2012 and December 2012 were evaluated. Blood samples were obtained from the participants twice (pretreatment and the sixth month of treatment) and serum-free and acylcarnitine levels (from C2 to C18:1-OH) were measured using tandem mass spectrometry. Cardiac functions (ejection fraction, shortening fraction, cardiac output, left ventricular systolic and diastolic diameters, left atrial diameter, aortic diameter, cardiac output, and myocardial performance index) were evaluated by echocardiography simultaneously. A total of fourty patients, 23 female (57.5%) and 17 male (42.5%), with the diagnosis of idiopathic epilepsy and receiving valproic acid monotherapy were studied. Comparison of serum-free and acylcarnitine levels measured pretreatment and sixth month of treatment revealed a decrease in average C0 and C5:1 (respectively p < 0.001, p = 0.013) and an increase in C2, C3, C5-OH, C8:1 and C4-DC levels (respectively p < 0.001, p < 0.001, p = 0.019, p = 0.013, p < 0.001). Other serum acylcarnitine levels did not change significantly (p > 0.05). No difference was observed in concurrent echocardiographic measurements of left ventricular systolic function (p > 0.05). The study demonstrated that valproic acid treatment results in low levels of free carnitine and changes in some acylcarnitine subgroups but has no influence on left ventricular systolic function. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid.

    PubMed

    Rinaldi, Tania; Silberberg, Gilad; Markram, Henry

    2008-04-01

    Exposure to valproic acid (VPA) during embryogenesis can cause several teratogenic effects, including developmental delays and in particular autism in humans if exposure occurs during the third week of gestation. We examined the postnatal effects of embryonic exposure to VPA on microcircuit properties of juvenile rat neocortex using in vitro electrophysiology. We found that a single prenatal injection of VPA on embryonic day 11.5 causes a significant enhancement of the local recurrent connectivity formed by neocortical pyramidal neurons. The study of the biophysical properties of these connections revealed weaker excitatory synaptic responses. A marked decrease of the intrinsic excitability of pyramidal neurons was also observed. Furthermore, we demonstrate a diminished number of putative synaptic contacts in connection between layer 5 pyramidal neurons. Local hyperconnectivity may render cortical modules more sensitive to stimulation and once activated, more autonomous, isolated, and more difficult to command. This could underlie some of the core symptoms observed in humans prenatally exposed to valproic acid.

  3. Valproic Acid Influences MTNR1A Intracellular Trafficking and Signaling in a β-Arrestin 2-Dependent Manner.

    PubMed

    Hong, Ling-juan; Jiang, Quan; Long, Sen; Wang, Huan; Zhang, Ling-di; Tian, Yun; Wang, Cheng-kun; Cao, Jing-jing; Tao, Rong-rong; Huang, Ji-yun; Liao, Mei-hua; Lu, Ying-mei; Fukunaga, Kohji; Zhou, Nai-ming; Han, Feng

    2016-03-01

    Valproate exposure is associated with increased risks of autism spectrum disorder. To date, the mechanistic details of disturbance of melatonin receptor subtype 1 (MTNR1A) internalization upon valproate exposure remain elusive. By expressing epitope-tagged receptors (MTNR1A-EGFP) in HEK-293 and Neuro-2a cells, we recorded the dynamic changes of MTNR1A intracellular trafficking after melatonin treatment. Using time-lapse confocal microscopy, we showed in living cells that valproic acid interfered with the internalization kinetics of MTNR1A in the presence of melatonin. This attenuating effect was associated with a decrease in the phosphorylation of PKA (Thr197) and ERK (Thr202/Tyr204). VPA treatment did not alter the whole-cell currents of cells with or without melatonin. Furthermore, fluorescence resonance energy transfer imaging data demonstrated that valproic acid reduced the melatonin-initiated association between YFP-labeled β-arrestin 2 and CFP-labeled MTNR1A. Together, we suggest that valproic acid influences MTNR1A intracellular trafficking and signaling in a β-arrestin 2-dependent manner.

  4. [Mechanisms of action and biochemical toxicology of valproic acid].

    PubMed

    Strolin Benedetti, M; Rumigny, J F; Dostert, P

    1984-01-01

    The first part of this article presents the hypotheses of the mechanism of action of the anti-epileptic drug, valproic acid (VPA). In the case of the GABAergic hypothesis, two major types of mechanism of action have been proposed, one at the pre-synaptic level, the other at the post-synaptic level. The action at the pre-synaptic level brings into play one or more enzymes of the GABA shunt. The action at the postsynaptic level consists of the potentiation of the inhibitory effect of GABA by VPA. This has justified the examination of the possible action of VPA at the level of the postsynaptic GABAergic receptor complex. The non-GABAergic hypotheses have been also considered to explain the anti-epileptic action of VPA, one hypothesis depends on the effects of VPA directly on the membrane, another hypothesis brings into play aspartate, and finally a hypothesis depending on the inhibition of aldehyde reductases. The second part of this article concerns the possible mechanism for the undesirable effects of VPA such as hyperammonaemia, hepatotoxicity and hypoglycaemia. The role played by beta- and omega-oxidation of VPA in the explanation of the undesirable effects of this molecule is particularly discussed.

  5. Three amino acid derivatives of valproic acid: design, synthesis, theoretical and experimental evaluation as anticancer agents.

    PubMed

    Luna-Palencia, Gabriela R; Martinez-Ramos, Federico; Vasquez-Moctezuma, Ismael; Fragoso-Vazquez, Manuel Jonathan; Mendieta-Wejebe, Jessica Elena; Padilla-Martínez, Itzia I; Sixto-Lopez, Yudibeth; Mendez-Luna, David; Trujillo-Ferrara, Jose; Meraz-Rios, Marco A; Fonseca-Sabater, Yadira; Correa-Basurto, Jose

    2014-01-01

    Valproic acid (VPA) is extensively used as an anticonvulsive agent and as a treatment for other neurological disorders. It has been shown that VPA exerts an anti-proliferative effect on several types of cancer cells by inhibiting the activity of histone deacetylases (HDACs), which are involved in replication and differentiation processes. However, VPA has some disadvantages, among which are poor water solubility and hepatotoxicity. Therefore, the aim of the present study was to design and synthesize three derivatives of VPA to improve its physicochemical properties and anti-proliferative effects. For this purpose, the amino acids aspartic acid, glutamic acid and proline were added to the molecular structure of VPA. Docking and molecular dynamics simulations were used to determine the mode of recognition of these three derivatives by different conformations of HDAC8. This receptor was used as the specific target because of its high affinity for this type of substrate. The results demonstrate that, compared to VPA, the test compounds bind to different sites on the enzyme and that hydrogen bonds and hydrophobic interactions play key roles in this difference. The IC50 values of the VPA derivatives, experimentally determined using HeLa cells, were in the mM range. This result indicates that the derivatives have greater antiproliferative effects than the parent compound. Hence, these results suggest that these amino acid derivatives may represent a good alternative for anticancer treatment.

  6. Histone deacetylase inhibitor valproic acid affects plasmacytoid dendritic cells phenotype and function.

    PubMed

    Arbez, Jessy; Lamarthée, Baptiste; Gaugler, Béatrice; Saas, Philippe

    2014-08-01

    Plasmacytoid dendritic cells (PDC) represent a rare subset of dendritic cells specialized in the production of type I IFN in response to microbial pathogens. Recent data suggested that histone deacetylase (HDAC) inhibitors possess potent immunomodulatory properties both in vitro and in vivo. In this study, we assayed the ability of the HDAC inhibitor, valproic acid (VPA), to influence the phenotype and functional properties of human PDC isolated from peripheral blood. We showed that VPA inhibited the production of IFN-α and the proinflammatory cytokines TNF-α and IL-6 by CpG-activated PDC. VPA also affected the phenotype of PDC by reducing the expression of costimulatory molecules induced by CpG activation. Moreover, VPA reduced the capacity of CpG-stimulated PDC to promote CD4(+) T cell proliferation and IFN-γ production, while enhancing the proportion of IL-10 positive T cells. These results suggest that HDAC inhibition by VPA alters essential human PDC functions, highlighting the need for monitoring immune functions in cancer patients receiving HDAC inhibitors, but also making these drugs attractive therapies in inflammatory, and autoimmune diseases implicating PDC. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid.

    PubMed

    Nicolini, Chiara; Ahn, Younghee; Michalski, Bernadeta; Rho, Jong M; Fahnestock, Margaret

    2015-01-20

    The molecular mechanisms underlying autistic behaviors remain to be elucidated. Mutations in genes linked to autism adversely affect molecules regulating dendritic spine formation, function and plasticity, and some increase the mammalian target of rapamycin, mTOR, a regulator of protein synthesis at spines. Here, we investigated whether the Akt/mTOR pathway is disrupted in idiopathic autism and in rats exposed to valproic acid, an animal model exhibiting autistic-like behavior. Components of the mTOR pathway were assayed by Western blotting in postmortem fusiform gyrus samples from 11 subjects with idiopathic autism and 13 controls and in valproic acid versus saline-exposed rat neocortex. Additionally, protein levels of brain-derived neurotrophic factor receptor (TrkB) isoforms and the postsynaptic organizing molecule PSD-95 were measured in autistic versus control subjects. Full-length TrkB, PI3K, Akt, phosphorylated and total mTOR, p70S6 kinase, eIF4B and PSD-95 were reduced in autistic versus control fusiform gyrus. Similarly, phosphorylated and total Akt, mTOR and 4E-BP1 and phosphorylated S6 protein were decreased in valproic acid- versus saline-exposed rats. However, no changes in 4E-BP1 or eIF4E were found in autistic brains. In contrast to some monogenic disorders with high rates of autism, our data demonstrate down-regulation of the Akt/mTOR pathway, specifically via p70S6K/eIF4B, in idiopathic autism. These findings suggest that disruption of this pathway in either direction is widespread in autism and can have adverse consequences for synaptic function. The use of valproic acid, a histone deacetylase inhibitor, in rats successfully modeled these changes, implicating an epigenetic mechanism in these pathway disruptions.

  8. An Evaluation of Peripapillary Retinal Nerve Fiber Layer Thickness in Children With Epilepsy Receiving Treatment of Valproic Acid.

    PubMed

    Dereci, Selim; Koca, Tuğba; Akçam, Mustafa; Türkyilmaz, Kemal

    2015-07-01

    We investigated the peripapillary retinal nerve fiber layer thickness with optical coherence tomography in epileptic children receiving valproic acid monotherapy. The study was conducted on children aged 8-16 years who were undergoing valproic acid monotherapy for epilepsy. The study group comprised a total of 40 children who met the inclusion criteria and 40 healthy age- and sex-matched children as a control group. Children with at least a 1-year history of epilepsy and taking 10-40 mg/kg/day treatment were included in the study. Peripapillary retinal nerve fiber layer thickness measurements were performed using Cirrus HD optical coherence tomography. All children and parents were informed about the study and informed consent was obtained from the parents of all the participants. The study group included 21 girls and 19 boys with a mean age of 10.6 ± 2.3 years. According to the results of optical coherence tomography measurements, the mean peripapillary retinal nerve fiber layer thickness was 91.6 ± 9.7 in the patient group and 95.5 ± 7.4 μm in the control group (P < 0.05). The superior peripapillary retinal nerve fiber layer thickness was 112.0 ± 13.2 in the patient group and 120.0 ± 14.7 μm in the control group (P < 0.02). According to the results of both measurements, the peripapillary retinal nerve fiber layer thickness was significantly lower in the patient group. Neither color vision loss nor visual field examination abnormality could be documented. According to the optical coherence tomography measurements, the average and superior peripapillary retinal nerve fiber layer thicknesses were thinner in patients with epilepsy who were receiving valproic acid monotherapy compared with healthy children. This situation can lead to undesirable results in terms of eye health. New studies are needed to investigate whether these findings are the result of epilepsy or can be attributed to valproic acid and whether there are adverse effects of

  9. Standard dose valproic acid does not cause additional cognitive impact in a rodent model of intractable epilepsy.

    PubMed

    Jellett, Adam P; Jenks, Kyle; Lucas, Marcella; Scott, Rod C

    2015-02-01

    Children with epilepsy face significant cognitive and behavioral impairments. These impairments are due to a poorly characterized interaction between the underlying etiology, the effect of seizures and the effect of medication. The large variation in these factors make understanding the main drivers of cognitive impairment in humans extremely difficult. Therefore, we investigated the cognitive effect of seizures and the antiepileptic drug valproic acid in a rodent model of cortical dysplasia. Rats were divided into seizure-receiving and non-receiving groups. Rats experienced frequent early life seizures using the flurothyl inhalation method: 50 seizures between postnatal day 5 and 15 and then one seizure a day following that. Rats were further divided into drug-treated and vehicle treated groups. Valproic acid treated animals were treated from 5 days preceding behavioral testing in the Morris water maze at a clinically relevant concentration. We show here that the main driver of cognitive impairments are the brain malformations, and that persistent seizures in animals with brain malformations and valproic acid caused no additional impact. These findings suggest that neither an appropriate dose of a standard antiepileptic drug or intractable seizures worsen cognition associated with a malformation of cortical development and that alternative treatment strategies to improve cognition are required. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro.

    PubMed

    Lv, Lei; Han, Xiang; Sun, Yan; Wang, Xin; Dong, Qiang

    2012-02-01

    Previous studies have found that valproic acid (VPA), a histone deacetylases (HDAC) inhibitor, improves outcomes in a rat model of spinal cord injury (SCI). The study here aimed to further illuminate the neuroprotective effects of VPA against SCI, both in vivo and in vitro. First, spinal cord injury was performed in rats using NYU impactor. Delayed VPA injection (8 h following SCI) significantly accelerated locomotor recovery. VPA therapy also suppressed SCI-induced hypoacetylation of histone and promoted expressions of BDNF and GDNF. Next, the influence of VPA on axonal growth inhibited by a myelin protein was tested. Neurons from embryonic spinal cord or hippocampus were cultured on plates coated with Nogo-A peptide, and escalating concentrations of VPA were added into the cultures. VPA treatment, in a concentration dependent manner, allowed neurons to overcome Nogo-A inhibition of neurite outgrowth. Meanwhile, VPA exposure increased the level of histone acetylation and expression of BDNF in spinal neurons. Cumulatively, these findings indicate that VPA is possibly a promising medication and deserves translational trials for spinal cord injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Effects of Switching from Depakene to Generic Valproic Acid on Individuals with Mental Retardation.

    ERIC Educational Resources Information Center

    Vadney, Victor J.; Kraushaar, Kevin W.

    1997-01-01

    Comparison of brand-name Depakene with generic valproic acid medication to control seizures in 64 subjects with mental retardation living in an intermediate care facility found no statistically significant differences in seizures or blood levels. Results suggest use of the generic medication can result in substantial cost savings. (Author/DB)

  12. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors.

    PubMed

    Kang, Jaeseung; Kim, Eunjoon

    2015-01-01

    Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs). Previous studies have identified enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits.

  13. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  14. Valproic Acid in Women and Girls of Childbearing Age.

    PubMed

    Gotlib, Dorothy; Ramaswamy, Rachel; Kurlander, Jacob E; DeRiggi, Alana; Riba, Michelle

    2017-09-01

    The aim of this paper is to evaluate recent literature on valproic acid (VPA) in women and girls of childbearing age and to emphasize new findings. Recent research confirms VPAs teratogenicity and risk of hormone disruption. VPA exposure in utero increases the risk for a variety of major congenital malformations (MCMs), reduced IQ and behavioral problems. In girls and women, VPA increases the risk of hormone abnormalities, obesity, and polycystic ovarian syndrome (PCOS). Despite guidelines recommending caution, VPA use continues to be prescribed to reproductive-aged women and girls. Despite significant and well-documented risk, adherence to guidelines in VPA use in reproductive-aged girls and women remains low.

  15. [Influence of valproic acid (depakine I.V.) on human placenta metabolism--experimental model].

    PubMed

    Semczuk-Sikora, Anna; Rogowska, Wanda; Semczuk, Marian

    2003-08-01

    The pregnancy in women with epilepsy is associated with an increased incidence of congenital malformations in offspring. Currently, anti-epileptic drugs (AEDs) are concerned to be a major etiologic factor of abnormal fetal development but the pathomechanism of teratogenicity of AEDs is complex and not well understood. The purpose of this study was to evaluate an influence of one of the AED-valproic acid (VPA) on placental metabolism (glucose consumption and lactate production). Term human placental cotyledons were perfused in vitro using a recycling perfusion of maternal and fetal circulations. A total 18 placentas were perfused either with 75 micrograms/ml of VPA (therapeutic dose) or with 225 micrograms/ml of VPA (toxic dose). Eight placentas were perfused with a medium without VPA and served as controls. During 2.5 h of experiment, both maternal and fetal glucose consumption and lactate production were measured every 30 minutes. The introduction of different concentrations of VPA into the perfusion system did not effect placental glucose consumption and lactate production rates in both maternal and fetal compartments. The teratogenic effect of valproic acid is not associated with metabolic disturbances of glucose or lactate in the placental tissue.

  16. Valproic acid attenuates acute lung injury induced by ischemia-reperfusion in rats.

    PubMed

    Wu, Shu-Yu; Tang, Shih-En; Ko, Fu-Chang; Wu, Geng-Chin; Huang, Kun-Lun; Chu, Shi-Jye

    2015-06-01

    Evidence reveals that histone deacetylase (HDAC) inhibition has potential for the treatment of inflammatory diseases. The protective effect of HDAC inhibition involves multiple mechanisms. Heme oxygenase-1 (HO-1) is protective in lung injury as a key regulator of antioxidant response. The authors examined whether HDAC inhibition provided protection against ischemia-reperfusion (I/R) lung injury in rats by up-regulating HO-1 activity. Acute lung injury was induced by producing 40 min of ischemia followed by 60 min of reperfusion in isolated perfused rat lungs. The rats were randomly allotted to control group, I/R group, or I/R + valproic acid (VPA) group with or without an HO-1 activity inhibitor (zinc protoporphyrin IX) (n = 6 per group). I/R caused significant increases in the lung edema, pulmonary arterial pressure, lung injury scores, tumor necrosis factor-α, and cytokine-induced neutrophil chemoattractant-1 concentrations in bronchoalveolar lavage fluid. Malondialdehyde levels, carbonyl contents, and myeloperoxidase-positive cells in lung tissue were also significantly increased. I/R stimulated the degradation of inhibitor of nuclear factor-κB-α, nuclear translocation of nuclear factor-κB, and up-regulation of HO-1 activity. Furthermore, I/R decreased B-cell lymphoma-2, heat shock protein 70, acetylated histone H3 protein expression, and increased the caspase-3 activity in the rat lungs. In contrast, VPA treatment significantly attenuated all the parameters of lung injury, oxidative stress, apoptosis, and inflammation. In addition, VPA treatment also enhanced HO-1 activity. Treatment with zinc protoporphyrin IX blocked the protective effect of VPA. VPA protected against I/R-induced lung injury. The protective mechanism may be partly due to enhanced HO-1 activity following HDAC inhibition.

  17. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    PubMed Central

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  18. Synthesis of valproic acid amides of a melatonin derivative, a piracetam and amantadine for biological tests.

    PubMed

    Chatterjie, N; Alexander, G; Wang, H

    2001-10-01

    Three new amide derivatives of valproic acid have been synthesized and characterized by spectrophotometric studies. The rationale for the preparation of such agents has been based on the observation that chemical combination of the anticonvulsant pharmacophore, valproic acid with amine moieties produces more effective and less toxic amides. The amine components selected in this work also exhibit neuroactivity with the prospect of these agents being biologically active in controlling not just seizures and but also possessing neuroprotective properties. We report here the synthesis and properties of the valproylamides of 5-methoxytryptamine, related to melatonin (1), of N-substituted 2-pyrrolidinone related to piracetam (2), and of adamantylamine related to amantadine (3). In preliminary tests these compounds showed low toxicity and a variety of anticonvulsive properties, including a delay in onset of activity. These compounds and their derivatives are now available to be tested additionally for control of subclinical seizures, enhancement of cognition, behavior modification and alleviation of symptoms and disorders due to neuronal damage.

  19. The quantitative effect of serum albumin, serum urea, and valproic acid on unbound phenytoin concentrations in children.

    PubMed

    ter Heine, Rob; van Maarseveen, Erik M; van der Westerlaken, Monique M L; Braun, Kees P J; Koudijs, Suzanne M; Berg, Maarten J Ten; Malingré, Mirte M

    2014-06-01

    Dosing of phenytoin is difficult in children because of its variable pharmacokinetics and protein binding. Possible covariates for this protein binding have mostly been univariately investigated in small, and often adult, adult populations. We conducted a study to identify and quantify these covariates in children. We extracted data on serum phenytoin concentrations, albumin, triglycerides, urea, total bilirubin and creatinine concentrations and data on coadministration of valproic acid or carbamazepine in 186 children. Using nonlinear mixed effects modeling the effects of covariates on the unbound phenytoin fraction were investigated. Serum albumin, serum urea concentrations, and concomitant valproic acid use significantly influenced the unbound phenytoin fraction. For clinical practice, we recommend that unbound phenytoin concentrations are measured routinely. However, if this is impossible, we suggest to use our model to calculate the unbound concentration. In selected children, close treatment monitoring and dose reductions should be considered to prevent toxicity. © The Author(s) 2013.

  20. In vivo effects of naproxen, salicylic acid, and valproic acid on the pharmacokinetics of trichloroethylene and metabolites in rats.

    PubMed

    Rouhou, Mouna Cheikh; Charest-Tardif, Ginette; Haddad, Sami

    2015-01-01

    It was recently demonstrated that some drugs modulate in vitro metabolism of trichloroethylene (TCE) in humans and rats. The objective was to assess in vivo interactions between TCE and three drugs: naproxen (NA), valproic acid (VA), and salicylic acid (SA). Animals were exposed to TCE by inhalation (50 ppm for 6 h) and administered a bolus dose of drug by gavage, equivalent to 10-fold greater than the recommended daily dose. Samples of blood, urine, and collected tissues were analyzed by headspace gas chromatography coupled to an electron capture detector for TCE and metabolites (trichloroethanol [TCOH] and trichloroacetate [TCA]) levels. Coexposure to NA and TCE significantly increased (up to 50%) total and free TCOH (TCOHtotal and TCOHfree, respectively) in blood. This modulation may be explained by an inhibition of glucuronidation. VA significantly elevated TCE levels in blood (up to 50%) with a marked effect on TCOHtotal excretion in urine but not in blood. In contrast, SA produced an increase in TCOHtotal levels in blood at 30, 60, and 90 min and urine after coexposure. Data confirm in vitro observations that NA, VA, and SA affect in vivo TCE kinetics. Future efforts need to be directed to evaluate whether populations chronically medicated with the considered drugs display greater health risks related to TCE exposure.

  1. Different Resuscitation Strategies and Novel Pharmacologic Treatment with Valproic Acid in Traumatic Brain Injury

    DTIC Science & Technology

    2017-07-25

    which would thereby preserve long - term platelet function. Dekker et al. (2014a) demonstrated that the addition of VPA to FFP resuscita- tion results in...pharmacologic resuscitation: Results of a long - term survival study in a swine polytrauma model. Journal of Trauma, 70, 636–645. Anglin, C. O., Spence...Alam, H. B. (2015b). Addition of low-dose valproic acid to saline resuscita- tion provides neuroprotection and improves long - term outcomes in a large

  2. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET

    PubMed Central

    Kim, Sung Won; Hooker, Jacob M.; Otto, Nicola; Win, Khaing; Muench, Lisa; Shea, Colleen; Carter, Pauline; King, Payton; Reid, Alicia E.; Volkow, Nora D.; Fowler, Joanna S.

    2013-01-01

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profile. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using 11CO2 and the appropriate Grignard reagents. [11C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity was the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA>VPA>PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [11C]BA showed relatively high uptake in spleen and pancreas whereas [11C]PBA showed high uptake in liver and heart. Notably, [11C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects. PMID:23906667

  3. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET.

    PubMed

    Kim, Sung Won; Hooker, Jacob M; Otto, Nicola; Win, Khaing; Muench, Lisa; Shea, Colleen; Carter, Pauline; King, Payton; Reid, Alicia E; Volkow, Nora D; Fowler, Joanna S

    2013-10-01

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profiles. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using (11)CO2 and the appropriate Grignard reagents. [(11)C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity were the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA>VPA>PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [(11)C]BA showed relatively high uptake in spleen and pancreas whereas [(11)C]PBA showed high uptake in liver and heart. Notably, [(11)C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects. © 2013.

  4. The valproic acid-induced rodent model of autism.

    PubMed

    Nicolini, Chiara; Fahnestock, Margaret

    2018-01-01

    Autism is a lifelong neurodevelopmental disorder characterized by impairments in social communication and interaction and by repetitive patterns of behavior, interests and activities. While autism has a strong genetic component, environmental factors including toxins, pesticides, infection and drugs are known to confer autism susceptibility, likely by inducing epigenetic changes. In particular, exposure to valproic acid (VPA) during pregnancy has been demonstrated to increase the risk of autism in children. Furthermore, rodents prenatally exposed to this drug display behavioral phenotypes characteristics of the human condition. Indeed, in utero exposure of rodents to VPA represents a robust model of autism exhibiting face, construct and predictive validity. This model might better represent the many cases of idiopathic autism which are of environmental/epigenetic origins than do transgenic models carrying mutations in single autism-associated genes. The VPA model provides a valuable tool to investigate the neurobiology underlying autistic behavior and to screen for novel therapeutics. Here we review the VPA-induced rodent model of autism, highlighting its importance and reliability as an environmentally-induced animal model of autism. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The effects of peritoneal dialysis on the single dose and steady state pharmacokinetics of valproic acid in a uremic epileptic child.

    PubMed

    Orr, J M; Farrell, K; Abbott, F S; Ferguson, S; Godolphin, W J

    1983-01-01

    The pharmacokinetics of valproic acid (VPA) have been studied during peritoneal dialysis in a uremic male epileptic child following a single 500 mg dose and after multiple doses over 5 months (700 mg daily) of valproic acid as the syrup. Serum level decline was biphasic in both instances with a terminal half-life of 27.2 after the single dose and 10.2 h at steady-state. Total serum clearance was 0.0236 l/h/kg after the single dose and increased to 0.0408 l/h/kg after 5 months. Free (intrinsic) serum clearances were 0.1489 and 0.1518 l/h/kg and serum free fractions were 0.224 and 0.272 respectively for the single dose and steady-state studies. Peritoneal dialysis for periods of 12 or 24 h removed an average of 4.5% of the VPA dose.

  6. Neonatal episodic hypoglycemia: a finding of valproic acid withdrawal.

    PubMed

    Çoban, Dilek; Kurtoğlu, Selim; Akın, Mustafa Ali; Akçakuş, Mustafa; Güneş, Tamer

    2010-01-01

    The treatment of epilepsy during pregnancy is a worldwide problem. Drugs need to be used to control seizures in the mothers. In utero, exposure to valproic acid (VPA) and phenytoin (PH) may cause congenital malformations and also withdrawal symptoms such as irritability, jitteriness and symptoms of hypoglycemia. We present here a newborn with episodic hypoglycemia due to in utero exposure to VPA and PH. The mother was diagnosed as having complex partial epilepsy and was treated with PH (200 mg/day) and VPA (600 mg/day). The offspring developed jitteriness on the second day of life. The infant was hypoglycemic (32 mg/dl). These findings were accepted as withdrawal symptoms, since serum levels of VPA and PH were 37.8 μg/ml (50-100 μg/ml) and 6.37 μg/dl (10-20 μg/ml), respectively. Measurement of blood glucose is important and should be carefully monitored in infants exposed to antiepileptics in utero.

  7. MicroRNA-134 plasma levels before and after treatment with valproic acid for epilepsy patients

    PubMed Central

    Wang, Xiaofeng; Luo, Yifeng; Liu, Shuangxi; Tan, Liming; Wang, Sanhu; Man, Rongyong

    2017-01-01

    Background Temporal lobe epilepsy is the second most common neurological disorders characterized by recurrent spontaneous seizures. MicroRNAs play a vital role in regulating synaptic plasticity, brain development and post-transcriptional expression of proteins. In both animal models of epilepsy and human patients, miR-134, a brain-specific microRNA has recently been identified as a potential regulator of epileptogenesis. Methods microRNA identified as targets for the actions of valproic acid (VPA) are known to have important effects in brain function. In this study, 59 new-onset epilepsy patients and 20 controls matched by sex and age were enrolled. Patients with a score < 3 were allocated into the mild group, 3-5 into the moderate group and >5 into the severe group. The plasma miRNA-134 level was quantitatively measured using real-time PCR. Results Plasma miRNA-134 level in new-onset epilepsy patients was significantly up-regulated when compared with that in healthy controls, and then considerably down-regulated after oral intake of valproic acid medication. The up-regulated plasma miRNA-134 levels may be directly associated with the pathophysiology and severity of epilepsy. Conclusion Plasma miRNA-134 in epilepsy may be considered as a potential peripheral biomarker that responds to the incidence of epilepsy and associates with use of anti-epilepsy drugs. PMID:29069823

  8. Pharmacological interaction between valproic acid and carbapenem: what about levels in pediatrics?

    PubMed

    Miranda Herrero, M Concepción; Alcaraz Romero, Andrés J; Escudero Vilaplana, Vicente; Fernández Lafever, Sarah Nicole; Fernández-Llamazares, Cecilia Martínez; Barredo Valderrama, Estibaliz; Vázquez López, María; de Castro, Pedro

    2015-03-01

    Valproic acid (VPA) is the most commonly used antiepileptic drug in pediatric patients, but its major drawback is its multiple pharmacological interactions. To study children who had been simultaneously treated with carbapenems and valproic acid, considering drug levels, pharmacological interactions and clinical follow-up. Retrospective study of children who simultaneously received treatment with VPA and carbapenems between January 2003 and December 2011. Demographic variables, indication of treatment, dose, VPA plasma levels, interactions, clinical manifestations and medical management were analyzed. 28 children with concomitant treatment with both drugs were included in the study. 64.3% were males. 78.6% of the interactions were observed in the Intensive Care Unit. 60.7% of children had been previously treated VPA and its major indication were generalized seizures. Basal plasma levels of VPA were recorded in 53% and at 24 h after admittance in 60%. "40% of basal VPA levels were below therapeutic range prior to the administration of carbapenem. After the introduction of carbapenem 88% of level determinations were below therapeutic range". 54.5% of the patients that were chronically receiving VPA and had good control of epilepsy before admission had seizures during the coadministration. One patient that was on VPA before admission but with bad control of epilepsy worsened, and one patient that acutely received VPA did not achieve seizure freedom. In these cases it was necessary to either increase VPA dose or change to a different antiepileptic drug. Little is known about the mechanism of pharmacologic interactions between carbapenems and VPA, but it leads to a reduction in plasma levels that may cause a loss of seizure control, so simultaneous use of both drugs should be avoided when possible. If not, VPA levels should be monitored. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. Combined effects of a high-fat diet and chronic valproic acid treatment on hepatic steatosis and hepatotoxicity in rats

    PubMed Central

    Zhang, Li-fang; Liu, Ling-sheng; Chu, Xiao-man; Xie, Hao; Cao, Li-juan; Guo, Cen; A, Ji-ye; Cao, Bei; Li, Meng-jie; Wang, Guang-ji; Hao, Hai-ping

    2014-01-01

    Aim: To investigate the potential interactive effects of a high-fat diet (HFD) and valproic acid (VPA) on hepatic steatosis and hepatotoxicity in rats. Methods: Male SD rats were orally administered VPA (100 or 500 mg·kg−1·d−1) combined with HFD or a standard diet for 8 weeks. Blood and liver samples were analyzed to determine lipid levels and hepatic function biomarkers using commercial kit assays. Low-molecular-weight compounds in serum, urine and bile samples were analyzed using a metabonomic approach based on GC/TOF-MS. Results: HFD alone induced extensive hepatocyte steatosis and edema in rats, while VPA alone did not cause significant liver lesions. VPA significantly aggravated HFD-induced accumulation of liver lipids, and caused additional spotty or piecemeal necrosis, accompanied by moderate infiltration of inflammatory cells in the liver. Metabonomic analysis of serum, urine and bile samples revealed that HFD significantly increased the levels of amino acids, free fatty acids (FFAs) and 3-hydroxy-butanoic acid, whereas VPA markedly decreased the levels of amino acids, FFAs and the intermediate products of the tricarboxylic acid cycle (TCA) compared with the control group. HFD aggravated VPA-induced inhibition on lipid and amino acid metabolism. Conclusion: HFD magnifies VPA-induced impairment of mitochondrial β-oxidation of FFAs and TCA, thereby increases hepatic steatosis and hepatotoxicity. The results suggest the patients receiving VPA treatment should be advised to avoid eating HFD. PMID:24442146

  10. Enhancement of HIV-1 VLP production using gene inhibition strategies.

    PubMed

    Fuenmayor, Javier; Cervera, Laura; Rigau, Cristina; Gòdia, Francesc

    2018-05-01

    Gag polyprotein from HIV-1 is able to generate virus-like particles (VLPs) when recombinantly expressed in animal cell platforms. HIV-1 VLP production in HEK293 cells can be improved by the use of different strategies for increasing product titers. One of them is the so-called extended gene expression (EGE), based on repeated medium exchanges and retransfections of the cell culture to prolong the production phase. Another approach is the media supplementation with gene expression enhancers such as valproic acid and caffeine, despite their detrimental effect on cell viability. Valproic acid is a histone deacetylase inhibitor while caffeine has a phosphodiesterase inhibition effect. Here, the combination of the EGE protocol with additive supplementation to maximize VLP production is first tested. As an alternative to the direct additive supplementation, the replacement of these chemical additives by iRNA for obtaining the same inhibition action is also tested. The combination of the EGE protocol with caffeine and valproic acid supplementation resulted in a 1.5-fold improvement in HIV-1 VLP production compared with the EGE protocol alone, representing an overall 18-fold improvement over conventional batch cultivation. shRNAs encoded in the expression vector were tested to substitute valproic acid and caffeine. This novel strategy enhanced VLP production by 2.3 fold without any detrimental effect on cell viability (91.7%) compared with the batch cultivation (92.0%). Finally, the combination of shRNA with EGE resulted in more than 15.6-fold improvement compared with the batch standard protocol traditionally used. The methodology developed enables the production of high titers of HIV-1 VLPs avoiding the toxic effects of additives.

  11. Effects of amoxicillin/clavulanic acid on the pharmacokinetics of valproic acid

    PubMed Central

    Lee, Soo-Yun; Huh, Wooseong; Jung, Jin Ah; Yoo, Hye Min; Ko, Jae-Wook; Kim, Jung-Ryul

    2015-01-01

    Valproic acid (VPA) is mainly metabolized via glucuronide, which is hydrolyzed by β-glucuronidase and undergoes enterohepatic circulation. Amoxicillin/clavulanic acid (AMC) administration leads to decreased levels of β-glucuronidase-producing bacteria, suggesting that these antibiotics could interrupt enterohepatic circulation and thereby alter the pharmacokinetics of VPA. This study aimed to evaluate the effects of AMC on the pharmacokinetics of VPA. This was an open-label, two-treatment, one-sequence study in 16 healthy volunteers. Two treatments were evaluated; treatment VPA, in which a single dose of VPA 500 mg was administered, and treatment AMC + VPA, in which multiple doses of AMC 500/125 mg were administered three times daily for 7 days and then a single dose of VPA was administered. Blood samples were collected up to 48 hours. Pharmacokinetic parameters were calculated using noncompartmental methods. Fifteen subjects completed the study. Systemic exposures and peak concentrations of VPA were slightly lower with treatment AMC + VPA than with treatment VPA (AUClast, 851.0 h·mg/L vs 889.6 h·mg/L; Cmax, 52.1 mg/L vs 53.0 mg/L). There were no significant between-treatment effects on pharmacokinetics (95% confidence interval [CI]) of AUClast and Cmax (95.7 [85.9–106.5] and 98.3 [91.6–105.6], respectively). Multiple doses of AMC had no significant effects on the pharmacokinetics of VPA; thus, no dose adjustment is necessary. PMID:26309401

  12. Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells.

    PubMed

    Lawrence, Johnathan E; Steele, Christopher J; Rovin, Richard A; Belton, Robert J; Winn, Robert J

    2016-03-01

    Extent of resection of glioblastoma (GBM) correlates with overall survival. Fluorescence-guided resection (FGR) using 5-aminolevulinic acid (5-ALA) can improve the extent of resection. Unfortunately not all patients given 5-ALA accumulate sufficient quantities of protoporphyrin IX (PpIX) for successful FGR. In this study, we investigated the effects of dexamethasone, desipramine, phenytoin, valproic acid, and levetiracetam on the production and accumulation of PpIX in U87MG cells. All of these drugs, except levetiracetam, reduce the total amount of PpIX produced by GBM cells (p < 0.05). When dexamethasone is mixed with another drug (desipramine, phenytoin, valproic acid or levetiracetam) the amount of PpIX produced is further decreased (p < 0.01). However, when cells are analyzed for PpIX cellular retention, dexamethasone accumulated significantly more PpIX than the vehicle control (p < 0.05). Cellular retention of PpIX was not different from controls in cells treated with dexamethasone plus desipramine, valproic acid or levetiracetam, but was significantly less for dexamethasone plus phenytoin (p < 0.01). These data suggest that medications given before and during surgery may interfere with PpIX accumulation in malignant cells. At this time, levetiracetam appears to be the best medication in its class (anticonvulsants) for patients undergoing 5-ALA-mediated FGR.

  13. Valproic acid ameliorates C. elegans dopaminergic neurodegeneration with implications for ERK-MAPK signaling.

    PubMed

    Kautu, Bwarenaba B; Carrasquilla, Alejandro; Hicks, Matthew L; Caldwell, Kim A; Caldwell, Guy A

    2013-04-29

    Parkinson's disease (PD) is a currently incurable neurodegenerative disorder that affects the aging population. The loss of dopaminergic neurons in the substantia nigra is one of the pathological features of PD. The precise causes of PD remain unresolved but evidence supports both environmental and genetic contributions. Current efforts for the treatment of PD are directed toward the discovery of compounds that show promise in impeding age-dependent neurodegeneration in PD patients. Alpha-synuclein (α-Syn) is a human protein that is mutated in specific populations of patients with familial PD. Overexpression of α-Syn in animal models of PD replicates key symptoms of PD, including neurodegeneration. Here, we use the nematode Caenorhabditis elegans as a model system, whereby α-Syn toxicity causes dopaminergic neurodegeneration, to test the capacity of valproic acid (VA) to protect neurons. The results of our study showed that treatment of nematodes with moderate concentrations of VA significantly protects dopaminergic neurons against α-Syn toxicity. Consistent with previously established knowledge related to the mechanistic action of VA in the cell, we showed through genetic analysis that the neuroprotection conferred by VA is inhibited by cell-specific depletion of the C. elegans ortholog of the MAP extracellular signal-regulated kinase (ERK), MPK-1, in the dopaminergic neurons. These findings suggest that VA may exert its neuroprotective effect via ERK-MAPK, or alternately could act with MAPK signaling to additively provide dopaminergic neuroprotection. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.

    PubMed

    Kim, Ji-Woon; Seung, Hana; Kim, Ki Chan; Gonzales, Edson Luck T; Oh, Hyun Ah; Yang, Sung Min; Ko, Mee Jung; Han, Seol-Heui; Banerjee, Sourav; Shin, Chan Young

    2017-02-01

    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Valproic acid downregulates RBP4 and elicits hypervitaminosis A-teratogenesis--a kinetic analysis on retinol/retinoic acid homeostatic system.

    PubMed

    Chuang, Chao-Ming; Chang, Chi-Huang; Wang, Hui-Er; Chen, Kuan-Chou; Peng, Chiung-Chi; Hsieh, Chiu-Lan; Peng, Robert Y

    2012-01-01

    Valproic acid (VPA) is an antiepileptic and anti-migraine prophylactic drug. VPA exhibits two severe side effects, namely acute liver toxicity and teratogenicity. These side effects are usually seen at the genetic and somatic levels. The cited action mechanisms involve inhibition of histone deacetylase, hypofolatenemia, hyperhomocysteinemia, and reactive oxidative stress. The proteomic information associated with VPA teratogenicity is still unavailable. We hypothesized that proteomic analysis might help us identify functional proteins that could be relevantly affected by VPA, and this phenomenon could be very sensitive in early embryonic stage, resulting in VPA teratogenicity. Proteomic analysis on the chicken embryos at Hamburger and Hamilton (HH) stage 28 showed that there were significant downregulations of ovotransferrins, carbonic anhydrase-2, retinol binding protein-4 (RBP4), NADH cytochrome b5 reductase 2 (CYB5R2), apolipoprotein A1, and protein SET, together with upregulation of 60S ribosomal protein L22. Among these, RBP4 was the most significantly downregulated (-32%). Kinetic analysis suggested that this situation could trigger hypervitaminosis A (+39.3%), a condition that has been well known to induce teratogenesis.. This is the first report showing that VPA dowregulates RBP4. Our finding not only has led to a possible mechanism of VPA teratogenesis, but also has initiated new preventive strategies for avoiding VPA teratogeneis.

  16. Valproic Acid Downregulates RBP4 and Elicits Hypervitaminosis A-Teratogenesis—A Kinetic Analysis on Retinol/Retinoic Acid Homeostatic System

    PubMed Central

    Chuang, Chao-Ming; Chang, Chi-Huang; Wang, Hui-Er; Chen, Kuan-Chou; Peng, Chiung-Chi; Hsieh, Chiu-Lan; Peng, Robert Y.

    2012-01-01

    Background Valproic acid (VPA) is an antiepileptic and anti-migraine prophylactic drug. VPA exhibits two severe side effects, namely acute liver toxicity and teratogenicity. These side effects are usually seen at the genetic and somatic levels. The cited action mechanisms involve inhibition of histone deacetylase, hypofolatenemia, hyperhomocysteinemia, and reactive oxidative stress. The proteomic information associated with VPA teratogenicity is still unavailable. We hypothesized that proteomic analysis might help us identify functional proteins that could be relevantly affected by VPA, and this phenomenon could be very sensitive in early embryonic stage, resulting in VPA teratogenicity. Methodology/Principal Findings Proteomic analysis on the chicken embryos at Hamburger and Hamilton (HH) stage 28 showed that there were significant downregulations of ovotransferrins, carbonic anhydrase-2, retinol binding protein-4 (RBP4), NADH cytochrome b5 reductase 2 (CYB5R2), apolipoprotein A1, and protein SET, together with upregulation of 60S ribosomal protein L22. Among these, RBP4 was the most significantly downregulated (−32%). Kinetic analysis suggested that this situation could trigger hypervitaminosis A (+39.3%), a condition that has been well known to induce teratogenesis.. Conclusions/Significance This is the first report showing that VPA dowregulates RBP4. Our finding not only has led to a possible mechanism of VPA teratogenesis, but also has initiated new preventive strategies for avoiding VPA teratogeneis. PMID:23028466

  17. Gas chromatography-electron ionization-mass spectrometry quantitation of valproic acid and gabapentin, using dried plasma spots, for therapeutic drug monitoring in in-home medical care.

    PubMed

    Ikeda, Kayo; Ikawa, Kazuro; Yokoshige, Satoko; Yoshikawa, Satoshi; Morikawa, Norifumi

    2014-12-01

    A simple and sensitive gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) method using dried plasma spot testing cards was developed for determination of valproic acid and gabapentin concentrations in human plasma from patients receiving in-home medical care. We have proposed that a simple, easy and dry sampling method is suitable for in-home medical patients for therapeutic drug monitoring. Therefore, in the present study, we used recently developed commercially available easy handling cards: Whatman FTA DMPK-A and Bond Elut DMS. In-home medical care patients can collect plasma using these simple kits. The spots of plasma on the cards were extracted into methanol and then evaporated to dryness. The residues were trimethylsilylated using N-methyl-N-trimethylsilyltrifluoroacetamide. For GC-EI-MS analysis, the calibration curves on both cards were linear from 10 to 200 µg/mL for valproic acid, and from 0.5 to 10 µg/mL for gabapentin. Intra- and interday precisions in plasma were both ≤13.0% (coefficient of variation), and the accuracy was between 87.9 and 112% for both cards within the calibration curves. The limits of quantification were 10 µg/mL for valproic acid and 0.5 µg/mL for gabapentin on both cards. We believe that the present method will be useful for in-home medical care. Copyright © 2014 John Wiley & Sons, Ltd.

  18. In utero exposure to valproic acid changes sleep in juvenile rats: a model for sleep disturbances in autism.

    PubMed

    Cusmano, Danielle M; Mong, Jessica A

    2014-09-01

    To determine whether sleep disturbances are found in the valproic acid model of autism spectrum disorders (ASD). Comparative study for sleep behavior, sleep architecture, electroencephalogram (EEG) spectral analysis, and glutamic acid decarboxylase (GAD) 65/67 protein expression in juvenile rats exposed to valproic acid (VPA), sodium salt, or saline in utero. N/A. Juvenile (postnatal day 32) male and female Sprague-Dawley rats. In utero exposure to either saline or 400 mg/kg VPA administered intraperitoneally to the dams on gestational day 12.5. On postnatal days 22-24, all rats were implanted with transmitters to record EEG and electromyogram (EMG) activity. During the light phase, when nocturnal animals are typically quiescent, the VPA-exposed animals spent significantly more time in wake (∼35 min) and significantly less time in non-rapid eye movement (NREM) sleep (∼26 min) compared to the saline controls. Furthermore, spectral analysis of the EEG revelled that VPA-exposed animals exhibited increased high-frequency activity during wake and rapid eye movement (REM) sleep and reduced theta power across all vigilance states. Interestingly, the gamma-aminobutyric acid (GABA)-ergic system, which modulates the induction and maintenance of sleep states, was also disrupted, with reduced levels of both GAD 65 and GAD67 in the cortical tissue of VPA-exposed animals compared to saline controls. To date, the current animal models of ASD have been underutilized in the investigation of associated sleep disturbances. The VPA animal model recapitulates aspects of sleep disruptions reported clinically, providing a tool to investigate cellular and molecular dysregulation contributing to sleep disruptions in ASD. © 2014 Associated Professional Sleep Societies, LLC.

  19. Middle and inner ear malformations in two siblings exposed to valproic acid during pregnancy: a case report.

    PubMed

    Van Houtte, Evelyne; Casselman, Jan; Janssens, Sandra; De Kegel, Alexandra; Maes, Leen; Dhooge, Ingeborg

    2014-11-01

    Valproic acid (VPA) is a known teratogenic drug. Exposure to VPA during the pregnancy can lead to a distinct facial appearance, a cluster of major and minor anomalies and developmental delay. In this case report, two siblings with fetal valproate syndrome and a mild conductive hearing loss were investigated. Radiologic evaluation showed middle and inner ear malformations in both children. Audiologic, vestibular and motor examination was performed. This is the first case report to describe middle and inner ear malformations in children exposed to VPA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. PI3K/AKT/mTOR Signaling Mediates Valproic Acid-Induced Neuronal Differentiation of Neural Stem Cells through Epigenetic Modifications.

    PubMed

    Zhang, Xi; He, Xiaosong; Li, Qingqing; Kong, Xuejian; Ou, Zhenri; Zhang, Le; Gong, Zhuo; Long, Dahong; Li, Jianhua; Zhang, Meng; Ji, Weidong; Zhang, Wenjuan; Xu, Liping; Xuan, Aiguo

    2017-05-09

    Although valproic acid (VPA), has been shown to induce neuronal differentiation of neural stem cells (NSCs), the underlying mechanisms remain poorly understood. Here we investigated if and how mammalian target of rapamycin (mTOR) signaling is involved in the neuronal differentiation of VPA-induced NSCs. Our data demonstrated that mTOR activation not only promoted but also was necessary for the neuronal differentiation of NSCs induced by VPA. We further found that inhibition of mTOR signaling blocked demethylation of neuron-specific gene neurogenin 1 (Ngn1) regulatory element in induced cells. These are correlated with the significant alterations of passive DNA demethylation and the active DNA demethylation pathway in the Ngn1 promoter, but not the suppression of lysine-specific histone methylation and acetylation in the promoter region of Ngn1. These findings highlight a potentially important role for mTOR signaling, by working together with DNA demethylation, to influence the fate of NSCs via regulating the expression of Ngn1 in VPA-induced neuronal differentiation of NSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas

    PubMed Central

    Li, Junwei; Bonifati, Serena; Hristov, Georgi; Marttila, Tiina; Valmary-Degano, Séverine; Stanzel, Sven; Schnölzer, Martina; Mougin, Christiane; Aprahamian, Marc; Grekova, Svitlana P; Raykov, Zahari; Rommelaere, Jean; Marchini, Antonio

    2013-01-01

    The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas. PMID:24092664

  2. The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid, reduce inflammatory IL-1β and TNF-α expression in rat hippocampus.

    PubMed

    Gómez, Carlos D; Buijs, Rudolf M; Sitges, María

    2014-09-01

    In the present study, the effects of the two classical anti-epileptic drugs, carbamazepine and valproic acid, and the non-classical anti-seizure drug vinpocetine were investigated on the expression of the pro-inflammatory cytokines IL-1β and TNF-α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti-seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro-convulsive agents 4-aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti-seizure drugs on seizures and on the concomitant rise in pro-inflammatory cytokine expression induced by 4-aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL-1β and TNF-α from basal conditions, and the increase in both pro-inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL-1β and TNF-α expression induced by LPS. Tonic-clonic seizures induced either by 4-aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL-1β and TNF-α markedly. 4-aminopyridine-induced changes were reduced by all the tested anti-seizure drugs, although valproic acid was less effective. We conclude that the anti-seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation. The mechanism of action of anti-seizure drugs like vinpocetine and carbamazepine involves a decrease in Na(+) channels permeability. We here propose that this mechanism of action also involves a decrease in cerebral inflammation. © 2014 International Society for Neurochemistry.

  3. Valproic acid treatment attenuates caspase-3 activation and improves survival after lethal burn injury in a rodent model.

    PubMed

    Luo, Hong-Min; Hu, Sen; Bai, Hui-Ying; Wang, Hai-Bin; Du, Ming-Hua; Lin, Zhi-Long; Ma, Li; Wang, Huan; Lv, Yi; Sheng, Zhi-Yong

    2014-01-01

    Burn injury may result in multiple organ dysfunction partially because of apoptotic cell death. The authors have previously shown that valproic acid (VPA) improves survival in a dog burn model. The aim of this study is to examine whether a VPA improves survival in a rodent burn model and whether this was because of inhibition of cell apoptosis. Rats were subjected to third-degree 55% TBSA burns and randomized to treatment with a VPA (300 mg/kg) or normal saline. One group of animals was monitored for 12 hours for survival analysis; another group was killed at 6 hours after injury, and brains, hearts, and blood samples were harvested for examination. Plasma creatine kinase (CK)-MB activities and neuron-specific enolase (NSE) levels were measured to evaluate the cardiac and brain damages. The effects of a VPA on acetylation of histone H3 and caspase-3 activation were also evaluated. Major burn injury resulted in a significant decrease in the acetylation of histone H3, and there was an increase in plasma CK-MB activities, NSE concentrations, and tissue levels of activated caspase-3. A VPA treatment significantly increased the acetylation of histone H3 and survival of the animals after major burn injury. In addition, a VPA treatment significantly attenuated the plasma CK-MB activities, an NSE concentrations, and inhibited caspase-3 activation after major burn injury. These results indicate that a VPA can attenuate cardiac and brain injury, and can improve survival in a rodent model of lethal burn injury. These protective effects may be mediated in part through the inhibition of caspase-3 activation.

  4. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder.

    PubMed

    Kumar, Hariom; Sharma, B M; Sharma, Bhupesh

    2015-12-01

    Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All

  5. Valproic acid and nonalcoholic fatty liver disease: A possible association?

    PubMed Central

    Farinelli, Edoardo; Giampaoli, David; Cenciarini, Anja; Cercado, Ephraim; Verrotti, Alberto

    2015-01-01

    Valproic acid (VPA) is one of the most prescribed drugs in children with newly diagnosed epilepsy. Weight gain and obesity have been observed as side effects of VPA. These are often linked with other metabolic disturbances such as development of insulin resistance, dyslipidemia, metabolic syndrome (MetS) and non-alcoholic fatty liver disease or nonalcoholic fatty liver disease (NAFLD). NAFLD refers to a group of liver disorders with marked hepatic steatosis. It is associated with an increased incidence of cardiovascular diseases and overall reduced life expectancy. NAFLD occurs in 20%-25% of the general population and it is known to be the most common cause of chronic liver disease. NAFLD therefore represents a major public health issue worldwide. This study reviews and summarizes relevant literature that supports the existence of an association between VPA therapy and the development of NAFLD in children. Long-term VPA-therapy appears to be associated with an increased risk of developing NAFLD. Further studies are needed to clarify the pathogenic mechanisms that lie behind this association and to standardize the options for the use of this drug in overweight patients and in those with risks for developing MetS and NAFLD. PMID:26019740

  6. Prevention of valproic acid-induced neural tube defects by sildenafil citrate.

    PubMed

    Tiboni, Gian Mario; Ponzano, Adalisa

    2015-08-15

    This study was undertaken to test the effects of sildenafil citrate (SC), a type 5 phosphodiesterase inhibitor, on valproic acid (VPA)-induced teratogenesis. On gestation day (GD) 8, ICR (CD-1) mice were treated by gastric intubation with SC at 0 (vehicle), 1.0, 2.5, 5.0 or 10mg/kg. One hour later, animals received a teratogenic dose of VPA (600mg/kg) or vehicle. Developmental endpoints were evaluated near the end of gestation. Twenty-eighth percent of fetuses exposed to VPA had neural tube defects (exencephaly). Pretreatment with SC at 2.5, 5.0 or 10mg/kg significantly reduced the rate of VPA-induced exencephaly to 15.9%, 13.7%, and 10.0%, respectively. Axial skeletal defects were observed in 75.8% of VPA-exposed fetuses. Pre-treatment with SC at 10mg/kg, but not at lower doses, significantly decreased the rate of skeletally affected fetuses to 61.6%. These results show that SC, which prolongs nitric oxide (NO) signaling action protects from VPA-induced teratogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Soybean greatly reduces valproic acid plasma concentrations: A food–drug interaction study

    PubMed Central

    Marahatta, Anu; Bhandary, Bidur; Jeong, Seul-Ki; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-01-01

    The aim of this study was to investigate the effects of soy on the pharmacokinetics and pharmacodynamics of valproic acid (VPA). In a preclinical study, rats were pretreated with two different amounts of soy extract for five days (150 mg/kg and 500 mg/kg), which resulted in decreases of 57% and 65% in the Cmax of VPA, respectively. AUC of VPA decreased to 83% and 70% in the soy pretreatment groups. Interestingly, the excretion rate of VPA glucuronide (VPAG) was higher in the soy-fed groups. Levels of UDP-glucuronosyltransferase (UGT) UGT1A3, UGT1A6, UGT2B7 and UGT2B15 were elevated in the soy-treated group, and GABA concentrations were elevated in the brain after VPA administration. However, this was less pronounced in soy extract pretreated group than for the untreated group. This is the first study to report the effects of soy pretreatment on the pharmacokinetics and pharmacodynamics of VPA in rodents. PMID:24618639

  8. Soybean greatly reduces valproic acid plasma concentrations: a food-drug interaction study.

    PubMed

    Marahatta, Anu; Bhandary, Bidur; Jeong, Seul-Ki; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-03-12

    The aim of this study was to investigate the effects of soy on the pharmacokinetics and pharmacodynamics of valproic acid (VPA). In a preclinical study, rats were pretreated with two different amounts of soy extract for five days (150 mg/kg and 500 mg/kg), which resulted in decreases of 57% and 65% in the Cmax of VPA, respectively. AUC of VPA decreased to 83% and 70% in the soy pretreatment groups. Interestingly, the excretion rate of VPA glucuronide (VPAG) was higher in the soy-fed groups. Levels of UDP-glucuronosyltransferase (UGT) UGT1A3, UGT1A6, UGT2B7 and UGT2B15 were elevated in the soy-treated group, and GABA concentrations were elevated in the brain after VPA administration. However, this was less pronounced in soy extract pretreated group than for the untreated group. This is the first study to report the effects of soy pretreatment on the pharmacokinetics and pharmacodynamics of VPA in rodents.

  9. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks.

    PubMed

    Sgadò, Paola; Rosa-Salva, Orsola; Versace, Elisabetta; Vallortigara, Giorgio

    2018-04-12

    Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks. We then assessed their spontaneous social predispositions by comparing approach responses to a stimulus containing a face configuration, a stuffed hen, vs. a scrambled version of it. We found that this social predisposition was abolished in VPA-treated chicks, whereas experience-dependent mechanisms associated with filial imprinting were not affected. Our results suggest a specific effect of VPA on the development of biologically-predisposed social orienting mechanisms, opening new perspectives to investigate the neurobiological mechanisms involved in early ASD symptoms.

  10. Early-onset absence epilepsy aggravated by valproic acid: a video-EEG report.

    PubMed

    Belcastro, Vincenzo; Caraballo, Roberto Horacio; Romeo, Antonino; Striano, Pasquale

    2013-12-01

    Early-onset absence epilepsy refers to patients with absence seizures beginning before age 4 and comprises a heterogeneous group of epilepsies. Onset of absence seizures in the first year of life is very rare. We report a boy with absence seizures with onset at age 11 months, whose seizures increased in frequency after the introduction of valproic acid (VPA) treatment and substantially improved upon cessation of treatment. The mechanism of seizure worsening did not involve VPA toxicity, encephalopathy, Glut-1 deficiency or overdosage, and the reason for absence seizure aggravation remained unclear. The patient showed complete control of absence seizures with levetiracetam treatment and the course was benign, both in terms of seizure control and neuropsychological aspects. The similar overall electroclinical picture and outcome between children with early-onset absences and those with CAE support the view that these conditions are a continuum within the wide spectrum of IGE. [Published with video sequences].

  11. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamparter, Christina L.

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 hmore » induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase

  12. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice.

    PubMed

    Ono, Tetsuo; Li, Chong; Mizutani, Eiji; Terashita, Yukari; Yamagata, Kazuo; Wakayama, Teruhiko

    2010-12-01

    Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.

  13. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas.

    PubMed

    Li, Junwei; Bonifati, Serena; Hristov, Georgi; Marttila, Tiina; Valmary-Degano, Séverine; Stanzel, Sven; Schnölzer, Martina; Mougin, Christiane; Aprahamian, Marc; Grekova, Svitlana P; Raykov, Zahari; Rommelaere, Jean; Marchini, Antonio

    2013-10-01

    The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  14. The Embryonic Stem Cell Test as Tool to Assess Structure-Dependent Teratogenicity: The Case of Valproic Acid

    PubMed Central

    Riebeling, Christian; Pirow, Ralph; Becker, Klaus; Buesen, Roland; Eikel, Daniel; Kaltenhäuser, Johanna; Meyer, Frauke; Nau, Heinz; Slawik, Birgitta; Visan, Anke; Volland, Jutta; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-01-01

    Teratogenicity can be predicted in vitro using the embryonic stem cell test (EST). The EST, which is based on the morphometric measurement of cardiomyocyte differentiation and cytotoxicity parameters, represents a scientifically validated method for the detection and classification of chemicals according to their teratogenic potency. Furthermore, an abbreviated protocol applying flow cytometry of intracellular marker proteins to determine differentiation into the cardiomyocyte lineage is available. Although valproic acid (VPA) is in worldwide clinical use as antiepileptic drug, it exhibits two severe side effects, i.e., teratogenicity and hepatotoxicity. These limitations have led to extensive research into derivatives of VPA. Here we chose VPA as model compound to test the applicability domain and to further evaluate the reliability of the EST. To this end, we study six closely related congeners of VPA and demonstrate that both the standard and the molecular flow cytometry-based EST are well suited to indicate differences in the teratogenic potency among VPA analogs that differ only in chirality or side chain length. Our data show that identical results can be obtained by using the standard EST or a shortened protocol based on flow cytometry of intracellular marker proteins. Both in vitro protocols enable to reliably determine differentiation of murine stem cells toward the cardiomyocyte lineage and to assess its chemical-mediated inhibition. PMID:21227905

  15. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity. © The Author(s) 2014.

  16. Dispensability of Annual Laboratory Follow-Up After More than 2 Years of Valproic Acid Use: A Systematic Review.

    PubMed

    Meijboom, Rosanne W; Grootens, Koen P

    2017-11-01

    The necessity of annual laboratory follow-up in patients treated with valproic acid (VPA) is controversial. We investigated the need for annual laboratory follow-up of liver enzymes, electrolytes, and full blood count (FBC) in patients treated with VPA. A systematic search in Evidence-Based Medicine Reviews (EBMR), MEDLINE, and EMBASE was undertaken in December 2016 to identify all published articles investigating or citing valproic acid, liver function disorders, electrolyte disorders, and FBC deviations. This review included 108 articles. As the number of participants and duration of the study was not adequate in most studies to detect rare adverse events, studies did not demonstrate a clear prevalence of hepatotoxicity. While a transient increase of transaminases is common and seldom harmful, severe hepatotoxicity is a rare phenomenon and is not prevented by routine laboratory monitoring. VPA had no relevant effect on serum calcium, sodium, potassium, and albumin. The prevalence of FBC varied from 0.6 to 27.8%, occurred mostly in the first 2 years of therapy, and was usually asymptomatic. Long-term monitoring in VPA treatment is only necessary when there have been dose adjustments, co-medication switches, or co-morbidity. In uncomplicated cases, annual laboratory follow-up may be discontinued after 2 years of VPA treatment. Encouraging patients to be vigilant is more effective in the detection of hepatotoxicity than laboratory testing. Follow-up of FBC at 3-6 months, 1 year, and 2 years after start or after a dose increase of VPA or interacting medication is sufficient.

  17. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    PubMed

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma.

    PubMed

    Yang, Qiwei; Tian, Yufeng; Liu, Shuqing; Zeine, Rana; Chlenski, Alexandre; Salwen, Helen R; Henkin, Jack; Cohn, Susan L

    2007-02-15

    In the pediatric cancer neuroblastoma, clinically aggressive disease is associated with increased levels of angiogenesis stimulators and high vascular index. We and others have hypothesized that blocking angiogenesis may be effective treatment for this pediatric malignancy. However, little is known about the efficacy of antiangiogenic agents in pediatric malignancies. Recently, promising results have been reported in an adult phase I study of ABT-510, a peptide derivative of the natural angiogenic inhibitor thrombospondin-1. Histone deacetylase inhibitors, such as valproic acid (VPA), have also been shown to have antiangiogenic activity in several cancer models. In this study, we evaluated the effects of ABT-510 and VPA on neuroblastoma tumor growth and angiogenesis. Although only VPA was capable of blocking the proliferation of neuroblastoma cells and inducing neuroblastoma cell apoptosis in vitro, treatment with VPA or ABT-510 alone significantly suppressed the growth of neuroblastoma xenografts established from two different MYCN-amplified cell lines. Combination therapy more effectively inhibited the growth of small neuroblastoma xenografts than single-agent treatment, and in animals with large xenografts, total cessation of tumor growth was achieved with this treatment approach. The microvascular density was significantly reduced in the xenografts treated with combination therapy compared with controls or tumors treated with single agents. In addition, the number of structurally abnormal vessels was reduced, suggesting that these agents may "normalize" the tumor vasculature. Our results indicate that ABT-510 combined with VPA may be an effective antiangiogenic treatment strategy for children with high-risk neuroblastoma.

  19. Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures.

    PubMed

    Lego, Denise; Plaumann, Markus; Trantzschel, Thomas; Bargon, Joachim; Scheich, Henning; Buntkowsky, Gerd; Gutmann, Torsten; Sauer, Grit; Bernarding, Johannes; Bommerich, Ute

    2014-07-01

    Parahydrogen-induced polarization (PHIP) is a promising new tool for medical applications of MR, including MRI. The PHIP technique can be used to transfer high non-Boltzmann polarization, derived from parahydrogen, to isotopes with a low natural abundance or low gyromagnetic ratio (e.g. (13)C), thus improving the signal-to-noise ratio by several orders of magnitude. A few molecules acting as metabolic sensors have already been hyperpolarized with PHIP, but the direct hyperpolarization of drugs used to treat neurological disorders has not been accomplished until now. Here, we report on the first successful hyperpolarization of valproate (valproic acid, VPA), an important and commonly used antiepileptic drug. Hyperpolarization was confirmed by detecting the corresponding signal patterns in the (1)H NMR spectrum. To identify the optimal experimental conditions for the conversion of an appropriate VPA precursor, structurally related molecules with different side chains were analyzed in different solvents using various catalytic systems. The presented results include hyperpolarized (13)C NMR spectra and proton images of related systems, confirming their applicability for MR studies. PHIP-based polarization enhancement may provide a new MR technique to monitor the spatial distribution of valproate in brain tissue and to analyze metabolic pathways after valproate administration. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Ciliary body toxicities of systemic oxcarbazepine and valproic acid treatments: electron microscopic study.

    PubMed

    Göktaş, Güleser; Aktaş, Zeynep; Erdoğan, Deniz; Seymen, Cemile Merve; Karaca, Emine Esra; Cansu, Ali; Serdaroğlu, Ayşe; Kaplanoğlu, Gülnur Take

    2015-01-01

    Ciliary body is responsible for humour aqueous production in posterior chamber. Valproic acid (VPA) has been widely used for the treatment of epilepsy and other neuropsychiatric diseases such as bipolar disease and major depression. Oxcarbazepine (OXC) is a new anti-epileptic agent that has been used recently for childhood epilepsies such as VPA. In this study, we aimed to investigate the effects of VPA and OXC treatments used as antiepileptic in ciliary body by electron microscopy. In our study, 40 Wistar rats (21 days old) were divided equally into four groups which were applied saline (group 1), VPA (group 2), OXC (group 3) and VPA + OXC (group 4). The as-prepared ocular tissues were characterized by transmission electron microscopy (TEM) technique in scanning and transmission electron microscopy (SEM-TEM) (Carl Zeiss EVO LS10). The results confirmed that VPA caused dense ciliary body degeneration. Additionally, ciliary body degeneration in group 4 was supposed to be due to VPA treatment. Ciliary body damage and secondary outcomes should be considered in patients with long-term VPA therapy.

  1. High-Flux Hemodialysis and Levocarnitine in the Treatment of Severe Valproic Acid Intoxication

    PubMed Central

    Temel, V.; Arikan, Müge; Temel, G.

    2013-01-01

    Valproic acid (VPA) intoxication incidence is increasing, because of the use of VPA in psychiatric disorders. The most common finding of VPA intoxication is central nervous system depression which leads to coma and respiratory depression. Pancreatitis, hyperammonemia, metabolic, and bone marrow failure (thrombocytopenia and leukopenia) have also been described. Treatment is mainly supportive. We present the case of an 18-year-old female patient, who made an attempt to autolysis with VPA. Our patient's VPA plasma level was very high (924 μg/mL), confirming that it was a severe intoxication. Our treatment including levocarnitine (50 mg/kg per day for 3 days), and high-flux hemodialysis was performed for four hours. The patient's hemodynamic status and mental function improved in conjunction with the acute reduction in VPA concentrations. Her subsequent hospital course was complicated by transient thrombocytopenia and levocarnitine induced hypophosphatemia. By day 6, the patient's laboratory values had completely normalized, and she was transferred to an inpatient psychiatric facility for continuing therapy. PMID:23762657

  2. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    PubMed

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  3. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    PubMed Central

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  4. Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts

    PubMed Central

    Sitarz, Kamil S.; Elliott, Hannah R.; Karaman, Betül S.; Relton, Caroline; Chinnery, Patrick F.; Horvath, Rita

    2014-01-01

    Valproic acid (VPA) is a widely used antiepileptic drug and also prescribed to treat migraine, chronic headache and bipolar disorder. Although it is usually well tolerated, a severe hepatotoxic reaction has been repeatedly reported after VPA administration. A profound toxic reaction on administration of VPA has been observed in several patients carrying POLG mutations, and heterozygous genetic variation in POLG has been strongly associated with VPA-induced liver toxicity. Here we studied the effect of VPA in fibroblasts of five patients carrying pathogenic mutations in the POLG gene. VPA administration caused a significant increase in the expression of POLG and several regulators of mitochondrial biogenesis. It was further supported by elevated mtDNA copy numbers. The effect of VPA on mitochondrial biogenesis was observed in both control and patient cell lines, but the capacity of mutant POLG to increase the expression of mitochondrial genes and to increase mtDNA copy numbers was less effective. No evidence of substantive differences in DNA methylation across the genome was observed between POLG mutated patients and controls. Given the marked perturbation of gene expression observed in the cell lines studied, we conclude that altered DNA methylation is unlikely to make a major contribution to POLG-mediated VPA toxicity. Our data provide experimental evidence that VPA triggers increased mitochondrial biogenesis by altering the expression of several mitochondrial genes; however, the capacity of POLG-deficient liver cells to address the increased metabolic rate caused by VPA administration is significantly impaired. PMID:24725338

  5. Association between the blood concentrations of ammonia and carnitine/amino acid of schizophrenic patients treated with valproic acid.

    PubMed

    Ando, Masazumi; Amayasu, Hideaki; Itai, Takahiro; Yoshida, Hisahiro

    2017-01-01

    Administration of valproic acid (VPA) is complicated with approximately 0.9% of patients developing hyperammonemia, but the pathogenesis of this adverse effect remains to be clarified. The aim of the present study was to search for mechanisms associated with VPA-induced hyperammonemia in the light of changes in serum amino acids concentrations associated with the urea cycle of schizophrenic patients. Blood samples (10 mL) were obtained from 37 schizophrenic patients receiving VPA for the prevention of violent behaviors in the morning after overnight fast. Blood concentrations of ammonia, VPA, free carnitine, acyl-carnitine, and 40 amino acids including glutamate and citrulline were measured for each patient. Univariate and multivariate regression analyses were performed to identify amino acids or concomitantly administered drugs that were associated with variability in the blood concentrations of ammonia. The blood ammonia level was positively correlated with the serum glutamate concentration ( r  = 0.44, p  < 0.01) but negatively correlated with glutamine ( r  = -0.41, p  = 0.01), citrulline ( r  = -0.42, p  = 0.01), and glycine concentrations ( r  = -0.54, p  < 0.01). It was also revealed that the concomitant administration of the mood stabilizers ( p  = 0.04) risperidone ( p  = 0.03) and blonanserin ( p  < 0.01) was positively associated with the elevation of the blood ammonia level. We hypothisized that VPA would elevate the blood ammonia level of schizophrenic patients. The observed changes in serum amino acids are compatible with urea cycle dysfunction, possibly due to reduced carbamoyl-phosphate synthase 1 (CPS1) activity. We conclude that VPA should be prudently prescribed to schizophrenic patients, particularly those receiving mood stabilizers or certain antipsychotics.

  6. Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid

    PubMed Central

    Juliandi, Berry; Tanemura, Kentaro; Igarashi, Katsuhide; Tominaga, Takashi; Furukawa, Yusuke; Otsuka, Maky; Moriyama, Noriko; Ikegami, Daigo; Abematsu, Masahiko; Sanosaka, Tsukasa; Tsujimura, Keita; Narita, Minoru; Kanno, Jun; Nakashima, Kinichi

    2015-01-01

    Summary Prenatal exposure to valproic acid (VPA), an established antiepileptic drug, has been reported to impair postnatal cognitive function in children born to VPA-treated epileptic mothers. However, how these defects arise and how they can be overcome remain unknown. Using mice, we found that comparable postnatal cognitive functional impairment is very likely correlated to the untimely enhancement of embryonic neurogenesis, which led to depletion of the neural precursor cell pool and consequently a decreased level of adult neurogenesis in the hippocampus. Moreover, hippocampal neurons in the offspring of VPA-treated mice showed abnormal morphology and activity. Surprisingly, these impairments could be ameliorated by voluntary running. Our study suggests that although prenatal exposure to antiepileptic drugs such as VPA may have detrimental effects that persist until adulthood, these effects may be offset by a simple physical activity such as running. PMID:26677766

  7. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    PubMed

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  8. Topiramate increases the risk of valproic acid-induced encephalopathy.

    PubMed

    Noh, Young; Kim, Dong Wook; Chu, Kon; Lee, Soon-Tae; Jung, Keun-Hwa; Moon, Hye-Jin; Lee, Sang Kun

    2013-01-01

    Metabolic encephalopathy is a rare but serious complication of valproic acid (VPA) therapy that usually presents with impaired consciousness or increased seizure frequency. Although it has been suggested that topiramate (TPM) increases the risk of VPA-induced encephalopathy, the additional risk in patients receiving TPM therapy has not been evaluated. We reviewed all adult patients who took VPA between January 2005 and February 2009 at the Seoul National University Hospital and identified patients with VPA-induced encephalopathy based on clinical and electroencephalography (EEG) data. Information on sex, age, serum ammonia level, serum VPA level, liver function test, and EEG was collected from patient registry and medical data. We enrolled 8,372 patients who received VPA therapy and 1,236 patients who received VPA/TPM combination therapy. We identified 11 patients with VPA-induced encephalopathy (0.13%), 7 of whom received a combination therapy of VPA and TPM. The odds ratio of VPA-induced encephalopathy with TPM over that without TPM was 10.16. There were no significant differences in sex distribution, number of antiepileptic agents, ammonia level, VPA serum level, underlying diseases, dosage of VPA, duration of VPA treatment, treatment of encephalopathy, and outcomes between the two groups. Our study showed that the prevalence of VPA-induced encephalopathy is approximately 0.1% among patients treated with VPA and that the risk of this condition, although still low, can increase by approximately 10 times in the presence of TPM therapy. Based on these results, we suggest that TPM should be carefully used in patients receiving VPA treatment. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  9. Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis.

    PubMed

    Kutlu, O; Karaguzel, E; Gurgen, S G; Okatan, A E; Kutlu, S; Bayraktar, C; Kazaz, I O; Eren, H

    2016-05-01

    We investigated the therapeutic effects of valproic acid (VPA) on erectile dysfunction and reducing penile fibrosis in streptozocin (STZ)-induced diabetic rats. Eighteen male rats were divided into three experimental groups (Control, STZ-DM, STZ-DM plus VPA) and diabetes was induced by transperitoneal single dose STZ. Eight weeks after, VPA and placebo treatments were given according to groups for 15 days. All rats were anesthetised for the measurement of in vivo erectile response to cavernous nerve stimulation. Afterward penes were evaluated histologically in terms of immune labelling scores of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Slides were also evaluated in terms of collagen/smooth muscle ratio and penile apoptosis. After the treatment with VPA, erectile responses were found as improved when compared with STZ-DM rats but not statistically meaningful. eNOS and VEGF immune expressions diminished in penile corpora of STZ-DM rats and improved with VPA treatment. VPA led to decrease in TGF-β1 expression and collagen content of diabetic rats' penes. Penile apoptosis was not diminished with VPA. In conclusion, VPA treatment seems to be effective for reducing penile fibrosis in diabetic rats and more prolonged treatment period may enhance erectile functions. © 2015 Blackwell Verlag GmbH.

  10. Severe Hyponatremia Due to Valproic Acid Toxicity.

    PubMed

    Gupta, Ena; Kunjal, Ryan; Cury, James D

    2015-09-01

    Hyponatremia is a very commonly encountered clinical entity with potentially dangerous effects and for which many precipitating factors have been identified. We present a case of valproic acid (VPA) overdose causing profound hyponatremia, with one of the lowest serum sodium levels ever documented in literature. A 54-year-old woman with hypothyroidism, hypertension and bipolar disorder presented with somnolence after intentionally ingesting 7,500 mg VPA. She was drowsy but easily arousable with no hemodynamic compromise and an unremarkable physical exam. There was no clinical suspicion for organic neurological or pulmonary disease, adrenal insufficiency or volume depletion. She was found to have a serum sodium of 99 mEq/L, low plasma osmolality (211 mOsm/kg H2O), and high urine osmolality (115 mOsm/kg H2O). Her urine sodium was 18 mEq/L. She was euthyroid (TSH: 3.06 mIU/L) and compliant with thyroxine replacement. She was admitted to the intensive care unit for close monitoring and VPA was withheld. Over 36 hours her VPA level fell from 59.3 mg/L to 22.8 mg/L, serum sodium steadily rose to 125 mEq/L and there was concomitant improvement in her mental status. At 72 hours, she was transferred for an inpatient psychiatric evaluation and her sodium level was 135 mEq/L. She luckily did not experience any seizures or decline in neurological function. The clinical presentation in this patient is consistent with the syndrome of inappropriate antidiuretic hormone secretion (SIADH) leading to a dramatic fall in sodium to a level of 99 mEq/L. Chronic VPA use has been associated with SIADH and chronic hyponatremia. Review of records in this patient from 1 year prior revealed that her last measured sodium level was 127 mEq/L. It is therefore most likely that our case is one of acute on chronic hyponatremia provoked by VPA overdose in the setting of chronic VPA use. Whilst our patient's course was relatively benign, this case illustrates a rare consequence of VPA toxicity, which

  11. Challenges for Detecting Valproic Acid in a Nontargeted Urine Drug Screening Method.

    PubMed

    Pope, Jeffrey D; Black, Marion J; Drummer, Olaf H; Schneider, Hans G

    2017-08-01

    Valproic acid (VPA) is a widely prescribed medicine, and acute toxicity is possible. As such, it should be included in any nontargeted urine drug screening method. In many published liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) methods, VPA is usually measured using a pseudo-multiple reaction monitoring (MRM) transition. We investigate a simple ultra-high-performance liquid chromatography-quadrupole time-of-flight (QTof) approach to detect the presence of VPA with more confidence. Three commercially sourced VPA metabolites were characterized and added to a nontargeted high-resolution MS urine drug screening method. All analyses were performed on a Waters Xevo G2-XS LC-QTof in negative electrospray ionization mode. The mass detector was operated in MS mode, and data were processed with UNIFI software. Sixty-eight patient urine samples, which were previously identified by a well-established gas chromatography-MS method as containing VPA, were analyzed on the Waters Xevo G2-XS LC-QTof, to validate this approach. VPA metabolite standards were characterized, and their detection data were added to the broad drug screening library. VPA metabolites were readily detectable in the urine of patients taking VPA. The inclusion of characterized VPA metabolites provides a simple and reliable method enabling the detection of VPA in nontargeted urine drug screening.

  12. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    PubMed

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  13. Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid.

    PubMed

    Juliandi, Berry; Abematsu, Masahiko; Sanosaka, Tsukasa; Tsujimura, Keita; Smith, Austin; Nakashima, Kinichi

    2012-01-01

    Within the developing mammalian cortex, neural progenitors first generate deep-layer neurons and subsequently more superficial-layer neurons, in an inside-out manner. It has been reported recently that mouse embryonic stem cells (mESCs) can, to some extent, recapitulate cortical development in vitro, with the sequential appearance of neurogenesis markers resembling that in the developing cortex. However, mESCs can only recapitulate early corticogenesis; superficial-layer neurons, which are normally produced in later developmental periods in vivo, are under-represented. This failure of mESCs to reproduce later corticogenesis in vitro implies the existence of crucial factor(s) that are absent or uninduced in existing culture systems. Here we show that mESCs can give rise to superficial-layer neurons efficiently when treated with valproic acid (VPA), a histone deacetylase inhibitor. VPA treatment increased the production of Cux1-positive superficial-layer neurons, and decreased that of Ctip2-positive deep-layer neurons. These results shed new light on the mechanisms of later corticogenesis. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  14. Crying and suicidal, but not depressed. Pseudobulbar affect in multiple sclerosis successfully treated with valproic acid: Case report and literature review.

    PubMed

    Johnson, Bridgette; Nichols, Scott

    2015-12-01

    Pseudobulbar affect/emotional incontinence is a potentially disabling condition characterized by expressions of affect or emotions out of context from the normal emotional basis for those expressions. This condition can result in diagnostic confusion and unrelieved suffering when clinicians interpret the emotional expressions at face value. In addition, the nomenclature, etiology, and treatment for this condition remain unclear in the medical literature. We report the case of a 60-year-old woman with multiple sclerosis who was referred to an inpatient psychiatry unit with complaints of worsening depression along with hopelessness, characterized by unrelenting crying. Our investigation showed that her symptoms were caused by pseudobulbar affect/emotional incontinence stemming from multiple sclerosis. The patient's history of multiple sclerosis and the fact that she identified herself as depressed only because of her incessant crying suggested that her symptoms might be due to the multiple sclerosis rather than to a depressive disorder. Magnetic resonance imaging demonstrated a new plaque consistent with multiple sclerosis lateral to her corpus callosum. Her symptoms resolved completely within three days on valproic acid but returned after she was cross-tapered to dextromethorphan plus quinidine, which is the FDA-approved treatment for this condition. This case provides important additional information to the current literature on pseudobulbar affect/emotional incontinence. The existing literature suggests a selective serotonin reuptake inhibitor (SSRI) and dextromethorphan/quinidine (Nuedexta) as first-line treatments; however, our patient was taking an SSRI at the time of presentation without appreciable benefit, and her symptoms responded to valproic acid but not to the dextromethorphan/quinidine. In addition, the case and the literature review suggest that the current nomenclature for this constellation of symptoms can be misleading.

  15. Neurofibromatosis 2 tumor suppressor, the gene induced by valproic acid, mediates neurite outgrowth through interaction with paxillin.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Kusakawa, Shinji; Torii, Tomohiro; Mizutani, Reiko; Sanbe, Atsushi; Nakajima, Hideki; Kiyokawa, Nobutaka; Tanoue, Akito

    2008-07-01

    Valproic acid (VPA), the drug for bipolar disorder and epilepsy, has a potent ability to induce neuronal differentiation, yet comparatively little is presently known about the underlying mechanism. We previously demonstrated that c-Jun N-terminal kinase (JNK) phosphorylation of the focal adhesion protein paxillin mediates differentiation in N1E-115 neuroblastoma cells. Here, we show that VPA up-regulates the neurofibromatosis type 2 (NF2) tumor suppressor, merlin, to regulate neurite outgrowth through the interaction with paxillin. The inhibition of merlin function by its knockdown or expression of merlin harboring the Gln-538-to-Pro mutation, a naturally occurring NF2 missense mutation deficient in linking merlin to the actin cytoskeleton, decreases VPA-induced neurite outgrowth. Importantly, the expression of merlin by itself is not sufficient to induce neurite outgrowth, which requires co-expression with paxillin, the binding partner of merlin. In fact, the missense mutation Trp-60-to-Cys or Phe-62-to-Ser, that is deficient in binding to paxillin, reduces neurite outgrowth induced by VPA. In addition, co-expression of a paxillin construct harboring the mutation at the JNK phosphorylation site with merlin results in blunted induction of the outgrowth. We also find that the first LIM domain of paxillin is a major binding region with merlin and that expression of the isolated first LIM domain blocks the effects of VPA. Furthermore, similar findings that merlin regulates neurite outgrowth through the interaction with paxillin have been observed in several kinds of neuronal cells. These results suggest that merlin is an as yet unknown regulator of neurite outgrowth through the interaction with paxillin, providing a possibly common mechanism regulating neurite formation.

  16. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells

    PubMed Central

    FORTSON, WENDELL S.; KAYARTHODI, SHUBHALAXMI; FUJIMURA, YASUO; XU, HUALI; MATTHEWS, ROLAND; GRIZZLE, WILLIAM E.; RAO, VEENA N.; BHAT, GANAPATHY K.; REDDY, E. SHYAM P.

    2012-01-01

    An ETS family member, ETS Related Gene (ERG) is involved in the Ewing family of tumors as well as leukemias. Rearrangement of the ERG gene with the TMPRSS2 gene has been identified in the majority of prostate cancer patients. Additionally, overexpression of ERG is associated with un- favorable prognosis in prostate cancer patients similar to leukemia patients. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate transcription as well as epigenetic status of genes through acetylation of both histones and transcription factors. Deregulation of HATs and HDACs is frequently seen in various cancers, including prostate cancer. Many cellular oncogenes as well as tumor viral proteins are known to target either or both HATs and HDACs. Several studies have demonstrated that there are alterations of HDAC activity in prostate cancer cells. Recently, we found that ERG binds and inhibits HATs, which suggests that ERG is involved in deregulation of protein acetylation. Additionally, it has been shown that ERG is associated with a higher expression of HDACs. In this study, we tested the effect of the HDAC inhibitors valproic acid (VPA) and trichostatin-A (TSA) on ERG-positive prostate cancer cells (VCaP). We found that VPA and TSA induce apoptosis, upregulate p21/Waf1/CIP1, repress TMPRSS2-ERG expression and affect acetylation status of p53 in VCaP cells. These results suggest that HDAC inhibitors might restore HAT activity through two different ways: by inhibiting HDAC activity and by repressing HAT targeting oncoproteins such as ERG. PMID:21519790

  18. Gadd45a, the gene induced by the mood stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E-115 neuroblastoma cells.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Murabe, Mayu; Fujiwara, Yoko; Sanbe, Atsushi; Fujita, Yuko; Murase, Shoko; Tanoue, Akito

    2007-05-15

    Valproic acid (VPA), a mood stabilizer and anticonvulsant, has a variety of neurotrophic functions; however, less is known about how VPA regulates neurite outgrowth. Here, using N1E-115 neuroblastoma cells as the model, we show that VPA upregulates Gadd45a to trigger activation of the downstream JNK cascade controlling neurite outgrowth. VPA induces the phosphorylation of c-Jun N-terminal kinase (JNK) and the substrate paxillin, while VPA induction of neurite outgrowth is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) or a paxillin construct harboring a Ser 178-to-Ala mutation at the JNK phosphorylation. Transfection of Gadd45a, acting through the effector MEKK4, leads to the phosphorylation of the JNK cascade. Conversely, knockdown of Gadd45a with siRNA reduces the effect of VPA. Taken together, these results suggest that upregulation of Gadd45a explains one of the mechanisms whereby VPA induces the neurotrophic effect, providing a new role of Gadd45a in neurite outgrowth.

  19. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats.

    PubMed

    Qin, Liyan; Dai, Xufang; Yin, Yunhou

    2016-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, limited verbal communication and repetitive behaviors. Recent studies have demonstrated that Wnt signaling and mTOR signaling play important roles in the pathogenesis of ASD. However, the relationship of these two signaling pathways in ASD remains unclear. We assessed this question using the valproic acid (VPA) rat model of autism. Our results demonstrated that VPA exposure activated mTOR signaling and suppressed autophagy in the prefrontal cortex, hippocampus and cerebellum of autistic model rats, characterized by enhanced phospho-mTOR and phospho-S6 and decreased Beclin1, Atg5, Atg10, LC3-II and autophagosome formation. Rapamycin treatment suppressed the effect of VPA on mTOR signaling and ameliorated the autistic-like behaviors of rats in our autism model. The administration of VPA also activated Wnt signaling through up-regulating beta-catenin and phospho-GSK3beta. Suppression of the Wnt pathway by sulindac relieved autistic-like behaviors and attenuated VPA-induced mTOR signaling activation in autistic model rats. Our results demonstrate that VPA exposure sequentially activates Wnt signaling and mTOR signaling in rats. Suppression of the Wnt signaling pathway relieves autistic-like behaviors partially by deactivating the mTOR signaling pathway in VPA-exposed rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Valproic acid improves the tolerance for the stress in learned helplessness rats.

    PubMed

    Kobayashi, H; Iwata, M; Mitani, H; Yamada, T; Nakagome, K; Kaneko, K

    2012-04-01

    In this study, we investigated whether previously stressed rats with learned helplessness (LH) paradigm could recover from depressive-like behavior four weeks after the exposure, and also whether chronic treatment with valproic acid (VPA) could prevent behavioral despair due to the second stress on days 54 in these animals. Four weeks after induction of LH, we confirmed behavioral remission in the previously stressed rats. Two-way analysis of variance (ANOVA) performed with two factors, pretreatment (LH or Control) and drug (VPA or Saline), revealed a significant main effect of the drug on immobility time in forced swimming test. Post hoc test showed a shorter immobility time in the LH+VPA group than in the LH+Saline group. Immunohistochemical study of synapsin I showed a significant effect of drug by pretreatment interaction on immunoreactivity of synapsin I in the hippocampus: its expression levels in the regions were higher in the LH+VPA group than in the LH+Saline group. These results suggest that VPA could prevent the reappearance of stress-induced depressive-like behaviors in the rats recovering from prior stress, and that the drug-induced presynaptic changes in the expression of synapsin I in the hippocampus of LH animals might be related to improved tolerance toward the stress. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  2. Valproic acid exhibits different cell growth arrest effect in three HPV-positive/negative cervical cancer cells and possibly via inducing Notch1 cleavage and E6 downregulation.

    PubMed

    Feng, Shuyu; Yang, Yue; Lv, Jingyi; Sun, Lichun; Liu, Mingqiu

    2016-07-01

    We investigated the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, and the mechanism of VPA-induced growth inhibition on three cervical cancer cell lines with different molecular and genetic background. We found that VPA induced proliferation suppression, cell apoptosis and cell cycle arrest in all tested cell lines, with an increase of Notch1 active form ICN1 as a tumor suppressor and its target gene HES1. Noteworthy, blocking of Notch signaling with DAPT resulted in growth inhibition in ICN1-overexpressing CaSki and HT-3 cells. Thus, endogenous Notch signaling may be necessary for survival of ICN1-overexpressing cervical cancer cell lines. Furthermore, G1 phase arrest was induced in HeLa and CaSki cells by VPA while G2 phase arrest was induced in HT-3 cells, suggesting different mechanism in this cycle arrest. We also found VPA suppressed oncogene E6 in a Notch-independent manner, and induced significant apoptosis in E6-overexpressing HPV positive CaSki cells. Cell morphological change was also observed in HeLa and HT-3 cell lines after VPA treatment with an upregulation of EMT transcription factor Snail1. Notch signaling inhibitor DAPT partly reversed VPA-induced Snail1 upregulation in HeLa cells. This discovery supports that VPA may induce EMT at least partly via Notch activation.

  3. Valproic Acid Induces Telomerase Reverse Transcriptase Expression during Cortical Development.

    PubMed

    Kim, Ki Chan; Choi, Chang Soon; Gonzales, Edson Luck T; Mabunga, Darine Froy N; Lee, Sung Hoon; Jeon, Se Jin; Hwangbo, Ram; Hong, Minha; Ryu, Jong Hoon; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2017-10-01

    The valproic acid (VPA)-induced animal model is one of the most widely utilized environmental risk factor models of autism. Autism spectrum disorder (ASD) remains an insurmountable challenge among neurodevelopmental disorders due to its heterogeneity, unresolved pathological pathways and lack of treatment. We previously reported that VPA-exposed rats and cultured rat primary neurons have increased Pax6 expression during post-midterm embryonic development which led to the sequential upregulation of glutamatergic neuronal markers. In this study, we provide experimental evidence that telomerase reverse transcriptase (TERT), a protein component of ribonucleoproteins complex of telomerase, is involved in the abnormal components caused by VPA in addition to Pax6 and its downstream signals. In embryonic rat brains and cultured rat primary neural progenitor cells (NPCs), VPA induced the increased expression of TERT as revealed by Western blot, RT-PCR, and immunostainings. The HDAC inhibitor property of VPA is responsible for the TERT upregulation. Chromatin immunoprecipitation revealed that VPA increased the histone acetylation but blocked the HDAC1 binding to both Pax6 and Tert genes. Interestingly, the VPA-induced TERT overexpression resulted to sequential upregulations of glutamatergic markers such as Ngn2 and NeuroD1, and inter-synaptic markers such as PSD-95, α-CaMKII, vGluT1 and synaptophysin. Transfection of Tert siRNA reversed the effects of VPA in cultured NPCs confirming the direct involvement of TERT in the expression of those markers. This study suggests the involvement of TERT in the VPA-induced autistic phenotypes and has important implications for the role of TERT as a modulator of balanced neuronal development and transmission in the brain.

  4. A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode.

    PubMed

    Zabardasti, Abedin; Afrouzi, Hossein; Talemi, Rasoul Pourtaghavi

    2017-07-01

    In this work, we have prepared a nano-material modified pencil graphite electrode for the sensing of valproic acid (VA) by immobilization 3-aminopropyletriethoxy silane coated magnetic nanoparticles (APTES-MNPs) on the pencil graphite surface (PGE). Electrochemical studies indicated that the APTES-MNPs efficiently increased the electron transfer kinetics between VA and the electrode and the free NH 2 groups of the APTES on the outer surface of magnetic nanoparticles can interact with carboxyl groups of VA. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for VA determination. Under the optimized conditions, the reduction peak current of VA is found to be proportional to its concentration in the range of 1.0 (±0.2) to 100.0 (±0.3) ppm with a detection limit of 0.4 (±0.1) ppm. The whole sensor fabrication process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods with using [Fe(CN) 6 ] 3-/4- as an electrochemical redox indicator. The prepared modified electrode showed several advantages such as high sensitivity, selectivity, ease of preparation and good repeatability, reproducibility and stability. The proposed method was applied to determination of valproic acid in blood plasma samples and the obtained results were satisfactory accurate. Copyright © 2017. Published by Elsevier B.V.

  5. Alterations in the endocannabinoid system in the rat valproic acid model of autism.

    PubMed

    Kerr, D M; Downey, L; Conboy, M; Finn, D P; Roche, M

    2013-07-15

    The endocannabinoid system plays a crucial role in regulating emotionality and social behaviour, however it is unknown whether this system plays a role in symptoms associated with autism spectrum disorders. The current study evaluated if alterations in the endocannabinoid system accompany behavioural changes in the valproic acid (VPA) rat model of autism. Adolescent rats prenatally exposed to VPA exhibited impaired social investigatory behaviour, hypoalgesia and reduced lococmotor activity on exposure to a novel aversive arena. Levels of the endocananbinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG) in the hippocampus, frontal cortex or cerebellum were not altered in VPA- versus saline-exposed animals. However, the expression of mRNA for diacylglycerol lipase α, the enzyme primarily responsible for the synthesis of 2-AG, was reduced in the cerebellum of VPA-exposed rats. Furthermore, while the expression of mRNA for the 2-AG-catabolising enzyme monoacylglycerol lipase was reduced, the activity of this enzyme was increased, in the hippocampus of VPA-exposed animals. CB1 or CB2 receptor expression was not altered in any of the regions examined, however VPA-exposed rats exhibited reduced PPARα and GPR55 expression in the frontal cortex and PPARγ and GPR55 expression in the hippocampus, additional receptor targets of the endocannabinoids. Furthermore, tissue levels of the fatty acid amide hydrolase substrates, AEA, oleoylethanolamide and palmitoylethanolamide, were higher in the hippocampus of VPA-exposed rats immediately following social exposure. These data indicate that prenatal VPA exposure is associated with alterations in the brain's endocannabinoid system and support the hypothesis that endocannabinoid dysfunction may underlie behavioural abnormalities observed in autism spectrum disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia.

    PubMed

    Main, Stacey L; Kulesza, Randy J

    2017-01-06

    Autism spectrum disorder (ASD) is a developmental brain disorder characterized by restricted and repetitive patterns of behavior, social and communication defects, and is commonly associated with difficulties with motor coordination. The etiology of ASD, while mostly idiopathic, has been linked to hereditary factors and teratogens, such as valproic acid (VPA). VPA is used clinically to treat epilepsy, mood disorders, and in the prevention of migraines. The use of VPA during pregnancy significantly increases the risk of ASD in the offspring. Neuropathological studies show decreased cerebellar function in patients with ASD, resulting in gait, balance and coordination impairments. Herein, we have exposed pregnant rats to a repeated oral dose of VPA on embryonic days 10 and 12 and performed a detailed investigation of the structure and function of the cerebellar vermis. We found that throughout all ten lobules of the cerebellar vermis, Purkinje cells were significantly smaller and expression of the calcium binding protein calbindin (CB) was significantly reduced. We also found that dendritic arbors of Purkinje cells were shorter and less complex. Additionally, animals exposed to a repeated dose of VPA performed significantly worse in a number of motor tasks, including beam walking and the rotarod. These results suggest that repeated embryonic exposure to VPA induces significant cerebellar dysfunction and is an effective animal model to study the cerebellar alterations in ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Early valproic acid exposure alters functional organization in the primary visual cortex

    PubMed Central

    Pohl-Guimaraes, Fernanda; Krahe, Thomas E.; Medina, Alexandre E.

    2018-01-01

    Epilepsy is one of the most common neurologic disorders and affects 0.5 to 1% of pregnant women. The use of antiepileptic drugs, which is usually continued throughout pregnancy, can cause in offspring mild to severe sensory deficits. Neuronal selectivity to stimulus orientation is a basic functional property of the visual cortex that is crucial for perception of shapes and borders. Here we investigate the effects of early exposure to valproic acid (Val) and levetiracetam (Lev), commonly used antiepileptic drugs, on the development of cortical neuron orientation selectivity and organization of cortical orientation columns. Ferrets pups were exposed to Val (200 mg/kg), Lev (100 mg/kg) or saline every other day between postnatal day (P) 10 and P30, a period roughly equivalent to the third trimester of human gestation. Optical imaging of intrinsic signals or single-unit recordings were examined at P42–P84, when orientation selectivity in the ferret cortex has reached a mature state. Optical imaging of intrinsic signals revealed decreased contrast of orientation maps in Val-but not Lev- or saline-treated animals. Moreover, single-unit recordings revealed that early Val treatment also reduced orientation selectivity at the cellular level. These findings indicate that Val exposure during a brief period of development disrupts cortical processing of sensory information at a later age and suggest a neurobiological substrate for some types of sensory deficits in fetal anticonvulsant syndrome. PMID:21215743

  8. Early valproic acid exposure alters functional organization in the primary visual cortex.

    PubMed

    Pohl-Guimaraes, Fernanda; Krahe, Thomas E; Medina, Alexandre E

    2011-03-01

    Epilepsy is one of the most common neurologic disorders and affects 0.5 to 1% of pregnant women. The use of antiepileptic drugs, which is usually continued throughout pregnancy, can cause in offspring mild to severe sensory deficits. Neuronal selectivity to stimulus orientation is a basic functional property of the visual cortex that is crucial for perception of shapes and borders. Here we investigate the effects of early exposure to valproic acid (Val) and levetiracetam (Lev), commonly used antiepileptic drugs, on the development of cortical neuron orientation selectivity and organization of cortical orientation columns. Ferrets pups were exposed to Val (200mg/kg), Lev (100mg/kg) or saline every other day between postnatal day (P) 10 and P30, a period roughly equivalent to the third trimester of human gestation. Optical imaging of intrinsic signals or single-unit recordings were examined at P42-P84, when orientation selectivity in the ferret cortex has reached a mature state. Optical imaging of intrinsic signals revealed decreased contrast of orientation maps in Val- but not Lev- or saline-treated animals. Moreover, single-unit recordings revealed that early Val treatment also reduced orientation selectivity at the cellular level. These findings indicate that Val exposure during a brief period of development disrupts cortical processing of sensory information at a later age and suggest a neurobiological substrate for some types of sensory deficits in fetal anticonvulsant syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Valproic acid attenuates nitric oxide and interleukin-1β production in lipopolysaccharide-stimulated iron-rich microglia.

    PubMed

    Mairuae, Nootchanat; Cheepsunthorn, Poonlarp

    2018-04-01

    Iron accumulation in activated microglia has been consistently reported in neurodegenerative diseases. Previous results suggest that these cells facilitate neuroinflammation leading to neuronal cell death. Therefore, chemical compounds that alleviate the activation of iron-rich microglia may result in neuroprotection. In the present study, the effect of valproic acid (VPA) on microglial activation under iron-rich conditions was investigated. BV-2 microglial cells were exposed to lipopolysaccharide (LPS; 1 µg/ml) and iron (300 µg/ml) with or without VPA (1.6 mM). The results demonstrated that VPA attenuated the activation of iron-rich BV2 cells induced by LPS by down-regulating the mRNA expression of inducible nitric oxide (NO) synthase and interleukin 1β (IL-1β; P<0.01), to ultimately reduce the production of NO and IL-1β (P<0.01). These events were accompanied by an attenuation in the nuclear translocation of nuclear factor-κB p65 subunit (P<0.01). These findings suggest that VPA may be therapeutically useful for attenuating the activation of iron-rich microglia.

  10. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min-Ho; Kim, Mingoo; Lee, Byung-Hoon

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceridemore » concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.« less

  11. Interaction between valproic acid and aspirin in epileptic children: serum protein binding and metabolic effects.

    PubMed

    Orr, J M; Abbott, F S; Farrell, K; Ferguson, S; Sheppard, I; Godolphin, W

    1982-05-01

    In five of six epileptic children who were taking 18 to 49 mg/kg/day valproic acid (VPA), the steady-state serum free fractions of VPA rose from 12% to 43% when antipyretic doses of aspirin were also taken. Mean total VPA half-life (t1/2) rose from 10.4 +/- 2.7 to 12.9 +/- 1.8 hr and mean free VPA t1/2 rose from 6.7 +/- to 2.1 to 8.9 +2- 3.0 hr when salicylate was present in the serum. The in vitro albumin binding association constant (ka) for VPA was decreased by salicylate, but the in vivo ka value was not affected. The 12-hr (trough) concentrations of both free and total VPA were higher in the presence of serum salicylate in five of six patients. Renal excretion of unchanged VPA decreased in five of six patients, but the VPA carboxyl conjugate metabolite-excretion patterns were not consistently affected. Salicylate appeared to displace VPA from serum albumin in vivo, but the increased VPA t1/2 and changes in VPA elimination patterns suggest that serum salicylate also altered VPA metabolism.

  12. Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder.

    PubMed

    Anshu, Kumari; Nair, Ajay Kumar; Kumaresan, U D; Kutty, Bindu M; Srinath, Shoba; Laxmi, T Rao

    2017-12-01

    Attention is foundational to efficient perception and optimal goal driven behavior. Intact attentional processing is crucial for the development of social and communication skills. Deficits in attention are therefore likely contributors to the core pathophysiology of autism spectrum disorder (ASD). Clinical evidence in ASD is suggestive of impairments in attention and its control, but the underlying mechanisms remain elusive. We examined sustained, spatially divided attention in a prenatal valproic acid (VPA) model of ASD using the 5-choice serial reaction time task (5-CSRTT). As compared to controls, male and female VPA rats had progressively lower accuracy and higher omissions with increasing attentional demands during 5-CSRTT training, and showed further performance decrements when subjected to parametric task manipulations. It is noteworthy that although VPA exposure induced attentional deficits in both sexes, there were task parameter specific sex differences. Importantly, we did not find evidence of impulsivity or motivational deficits in VPA rats but we did find reduced social preference, as well as sensorimotor deficits that suggest pre-attentional information processing impairments. Importantly, with fixed rules, graded difficulty levels, and more time, VPA rats could be successfully trained on the attentional task. To the best of our knowledge, this is the first study examining attentional functions in a VPA model. Our work underscores the need for studying both sexes in ASD animal models and validates the use of the VPA model in the quest for mechanistic understanding of aberrant attentional functions and for evaluating suitable therapeutic targets. Autism Res 2017, 10: 1929-1944. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. We studied rats prenatally exposed to valproic acid (VPA), an established rodent model of autism. Both male and female VPA rats had a range of attentional impairments with sex-specific characteristics

  13. Topical valproic acid increases the hair count in male patients with androgenetic alopecia: a randomized, comparative, clinical feasibility study using phototrichogram analysis.

    PubMed

    Jo, Seong Jin; Shin, Hyoseung; Park, Young Woon; Paik, Seung Hwan; Park, Won Seok; Jeong, Yeon Su; Shin, Hong Ju; Kwon, Ohsang

    2014-04-01

    Valproic acid (VPA), a widely used anticonvulsant, inhibits glycogen synthase kinase 3β and activates the Wnt/β-catenin pathway, which is associated with hair growth cycle and anagen induction. To assess the efficacy of topical VPA for treating androgenetic alopecia (AGA), we performed a randomized, double-blind, placebo-controlled clinical trial. Male patients with moderate AGA underwent treatment with either VPA (sodium valproate, 8.3%) or placebo spray for 24 weeks. The primary end-point for efficacy was the change in hair count during treatment, which was assessed by phototrichogram analysis. Of the 40 patients enrolled in the study, 27 (n = 15, VPA group; n = 12, placebo group) completed the entire protocol with good compliance. No statistical differences in age, hair loss duration and total hair count at baseline were found between the groups. The mean change in total hair count was significantly higher in the VPA group than in the placebo group (P = 0.047). Both groups experienced mostly mild and self-limited adverse events, but their differences in prevalence rates were similar between the two groups (P = 0.72). A subject treated with topical VPA developed ventricular tachycardia, but it did not seem to be related to the VPA spray. Topical VPA increased the total hair counts of our patients; therefore, it is a potential treatment option for AGA. © 2014 Japanese Dermatological Association.

  14. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice.

    PubMed

    Yamaguchi, Hiroshi; Hara, Yuta; Ago, Yukio; Takano, Erika; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-08-30

    We recently demonstrated that prenatal exposure to valproic acid (VPA) at embryonic day 12.5 causes autism spectrum disorder (ASD)-like phenotypes such as hypolocomotion, anxiety-like behavior, social deficits and cognitive impairment in mice and that it decreases dendritic spine density in the hippocampal CA1 region. Previous studies show that some abnormal behaviors are improved by environmental enrichment in ASD rodent models, but it is not known whether environmental enrichment improves cognitive impairment. In the present study, we examined the effects of early environmental enrichment on behavioral abnormalities and neuromorphological changes in prenatal VPA-treated mice. We also examined the role of dendritic spine formation and synaptic protein expression in the hippocampus. Mice were housed for 4 weeks from 4 weeks of age under either a standard or enriched environment. Enriched housing was found to increase hippocampal brain-derived neurotrophic factor mRNA levels in both control and VPA-exposed mice. Furthermore, in VPA-treated mice, the environmental enrichment improved anxiety-like behavior, social deficits and cognitive impairment, but not hypolocomotion. Prenatal VPA treatment caused loss of dendritic spines in the hippocampal CA1 region and decreases in mRNA levels of postsynaptic density protein-95 and SH3 and multiple ankyrin repeat domains 2 in the hippocampus. These hippocampal changes were improved by the enriched housing. These findings suggest that the environmental enrichment improved most ASD-like behaviors including cognitive impairment in the VPA-treated mice by enhancing dendritic spine function. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  16. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid.

    PubMed

    Roullet, F I; Wollaston, L; Decatanzaro, D; Foster, J A

    2010-10-13

    Experiments in rodents have indicated that maternal valproic acid (VPA) exposure has permanent adverse effects upon neurological and behavioral development. In humans, prenatal exposure to VPA can induce fetal valproate syndrome, which has been associated with autism. The present study examined mouse pups exposed in utero to VPA, measuring physical development, olfactory discrimination, and social behavior as well as expression of plasticity-related genes, brain derived neurotrophic factor (BDNF) and NMDA receptor subunits NR2A and NR2B. VPA-exposed mice showed delayed physical development, impaired olfactory discrimination, and dysfunctional pre-weaning social behavior. In situ hybridization experiments revealed lower cortical expression of BDNF mRNA in VPA animals. These results support the validity of the VPA mouse model for human autism and suggest that alterations in plasticity-related genes may contribute to the behavioral phenotype. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal.

    PubMed

    Wei, Muyun; Mao, Shaowei; Lu, Guoliang; Li, Liang; Lan, Xiaopeng; Huang, Zhongxian; Chen, Yougen; Zhao, Miaoqing; Zhao, Yueran; Xia, Qinghua

    2018-04-17

    Metformin (Met) is a widely available diabetic drug and shows suppressed effects on renal cell carcinoma (RCC) metabolism and proliferation. Laboratory studies in RCC suggested that metformin has remarkable antitumor activities and seems to be a potential antitumor drug. But the facts that metformin may be not effective in reducing the risk of RCC in cancer clinical trials made it difficult to determine the benefits of metformin in RCC prevention and treatment. The mechanisms underlying the different conclusions between laboratory experiments and clinical analysis remains unclear. The goal of the present study was to determine whether long-term metformin use can induce resistance in RCC, whether metformin resistance could be used to explain the disaccord in laboratory and clinical studies, and whether the drug valproic acid (VPA), which inhibits histone deacetylase, exhibits synergistic cytotoxicity with metformin and can counteract the resistance of metformin in RCC. We performed CCK8, transwell, wound healing assay, flow cytometry and western blotting to detect the regulations of proliferation, migration, cell cycle and apoptosis in 786-O, ACHN and metformin resistance 786-O (786-M-R) cells treated with VPA, metformin or a combination of two drugs. We used TGF-β, SC79, LY294002, Rapamycin, protein kinase B (AKT) inhibitor to treat the 786-O or 786-M-R cells and detected the regulations in TGF-β /pSMAD3 and AMPK/AKT pathways. 786-M-R was refractory to metformin-induced antitumor effects on proliferation, migration, cell cycle and cell apoptosis. AMPK/AKT pathways and TGF-β/SMAD3 pathways showed low sensibilities in 786-M-R. The histone H3 acetylation diminished in the 786-M-R cells. However, the addition of VPA dramatically upregulated histone H3 acetylation, increased the sensibility of AKT and inhibited pSMAD3/SMAD4, letting the combination of VPA and metformin remarkably reappear the anti-tumour effects of metformin in 786-M-R cells. VPA not only exhibits

  18. Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.

    PubMed

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad; Rinaldi, Tania; Markram, Kamila; Markram, Henry

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (<50 μm). In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP) was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer 5 pyramidal cells in somatosensory cortex brain slices (PN 12-15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.

  19. Enhanced Long-Term Microcircuit Plasticity in the Valproic Acid Animal Model of Autism

    PubMed Central

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad; Rinaldi, Tania; Markram, Kamila; Markram, Henry

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (<50 μm). In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP) was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer 5 pyramidal cells in somatosensory cortex brain slices (PN 12–15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism. PMID:21423407

  20. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debeb, Bisrat G.; Xu Wei; Mok, Henry

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cellmore » transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.« less

  1. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  2. Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Torii, Tomohiro; Mizutani, Reiko; Nakamura, Kazuaki; Sanbe, Atsushi; Koide, Hiroshi; Kusakawa, Shinji; Tanoue, Akito

    2009-07-15

    The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.

  3. Moclobemide monotherapy vs. combined therapy with valproic acid or carbamazepine in depressive patients: a pharmacokinetic interaction study.

    PubMed

    Rakic Ignjatovic, Anita; Miljkovic, Branislava; Todorovic, Dejan; Timotijevic, Ivana; Pokrajac, Milena

    2009-02-01

    Moclobemide (MCB) undergoes extensive both presystemic and systemic metabolism that can be affected by concomitant drugs. Valproic acid (VPA) and carbamazepine (CBZ) have been found to interact with psychotropic medications of all classes and many other drugs; VPA acts as a broad-spectrum inhibitor, and CBZ as a potent inducer of a variety of drug-metabolizing enzymes. There have been no previous studies designed to investigate a potential pharmacokinetic (PK) interaction between MCB and VPA or CBZ; however, these agents are likely to be used concomitantly for the treatment of depressive disorders. VPA does not significantly affect PK or metabolism of MCB at steady state. CBZ significantly decreases MCB exposure. This effect is time-dependent, being more pronounced after 3-5 weeks of co-administration. To assess the impact of valproic acid (VPA) and carbamazepine (CBZ) on moclobemide (MCB) pharmacokinetics (PK) and metabolism at steady state in depressive patients. Twenty-one inpatients with recurrent endogenous depression received MCB (150 mg t.i.d.), either as monotherapy or in combination with VPA (500 mg b.i.d.) or CBZ (200 mg b.i.d.) in a nonrandomized manner. Steady-state plasma PK parameters of MCB and its two metabolites, Ro 12-8095 and Ro 12-5637, were derived. Clinical assessments of treatment efficacy were performed weekly using standard depression rating scales. CBZ, but not VPA, was associated with decreases in the MCB AUC by 35% [from 7.794 to 5.038 mg h l(-1); 95% confidence interval (CI) -4.84863, -0.66194; P = 0.01] and C(max) by 28% (from 1.911 to 1.383 mg l(-1); 95% CI -0.98197, -0.07518; P < 0.05), and an increase in its oral clearance by 41% (from 0.323 to 0.454 l h(-1) kg(-1); 95% CI 0.00086, 0.26171; P < 0.05) after 4 weeks of co-administration. MCB through concentrations were also decreased, on average by 41% (from 0.950 to 0.559 mg l(-1); 95% CI -0.77479, -0.03301; P < 0.05). However, the efficacy in this group of patients was not inferior

  4. Synthesis and anticonvulsant evaluation of dimethylethanolamine analogues of valproic acid and its tetramethylcyclopropyl analogue.

    PubMed

    Shekh-Ahmad, Tawfeeq; Bialer, Meir; Yavin, Eylon

    2012-02-01

    Valproic acid (VPA) is a major antiepileptic drug (AED) that is less potent than other AEDs. 2,2,3,3-Tetramethylcyclopropanecarboxylic acid (TMCA) is an inactive cyclopropyl analogue of VPA that serves as a starting material for the synthesis of CNS-active compounds. New conjugation products between N,N'-dimethylethanolamine to VPA and TMCA to form N,N-dimethylethanolamine valproate (DEVA) and N,N-dimethylethanolamine 2,2,3,3-tetramethylcyclopropionate were synthesized and their anticonvulsant activity was assessed in the maximal electroshock seizure (MES) and subcutaneous metrazol (scMet) seizure tests and the hippocampal kindling model in mice and/or rats. An amide analogue of DEVA (DEVAMIDE) was also synthesized and evaluated. The pharmacokinetics of DEVA and DEVAMIDE was comparatively evaluated in rats. In rats DEVA acted as a prodrug of VPA and had ED(50) values of 73 mg/kg and 158 mg/kg in the MES and the hippocampal kindling models, respectively. At these two anticonvulsant models DEVA was seven-times more potent than VPA. DEVAMIDE was active in the MES test at doses of 100 mg/kg (mice) and its rat-MES-ED(50)=38.6 mg/kg however, its protective index (PI=TD(50)/ED(50)) was twice lower than DEVA's PI. The TMCA analogues were inactive at the mice MES and scMet models. DEVA underwent rapid metabolic hydrolysis to VPA and consequently, in its pharmacokinetic analysis only VPA plasma levels were monitored. In contrast, DEVAMIDE was stable in whole blood. DEVA acts in rats as a prodrug of VPA yet shows a more potent anticonvulsant activity than VPA. DEVAMIDE acted as the drug on its own and was more potent than DEVA at the rat-MES test. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    PubMed Central

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  6. Valproic Acid Increases Expression of Neuronal Stem/Progenitor Cell in Spinal Cord Injury

    PubMed Central

    Bang, Woo-Seok; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung

    2013-01-01

    Objective This study investigates the effect of valproic acid (VPA) on expression of neural stem/progenitor cells (NSPCs) in a rat spinal cord injury (SCI) model. Methods Adult male rats (n=24) were randomly and blindly allocated into three groups. Laminectomy at T9 was performed in all three groups. In group 1 (sham), only laminectomy was performed. In group 2 (SCI-VPA), the animals received a dose of 200 mg/kg of VPA. In group 3 (SCI-saline), animals received 1.0 mL of the saline vehicle solution. A modified aneurysm clip with a closing force of 30 grams was applied extradurally around the spinal cord at T9, and then rapidly released with cord compression persisting for 2 minutes. The rats were sacrificed and the spinal cord were collected one week after SCI. Immunohistochemistry (IHC) and western blotting sample were obtained from 5 mm rostral region to the lesion and prepared. We analyzed the nestin immunoreactivity from the white matter of ventral cord and the ependyma of central canal. Nestin and SOX2 were used for markers for NSPCs and analyzed by IHC and western blotting, respectively. Results Nestin and SOX2 were expressed significantly in the SCI groups but not in the sham group. Comparing SCI groups, nestin and SOX2 expression were much stronger in SCI-VPA group than in SCI-saline group. Conclusion Nestin and SOX2 as markers for NSPCs showed increased expression in SCI-VPA group in comparison with SCI-saline group. This result suggests VPA increases expression of spinal NSPCs in SCI. PMID:24044073

  7. Effects of developmental alcohol and valproic acid exposure on play behavior of ferrets

    PubMed Central

    Krahe, Thomas E.; Filgueiras, Claudio C.; Medina, Alexandre E.

    2017-01-01

    Exposure to alcohol and valproic acid (VPA) during pregnancy can lead to fetal alcohol spectrum disorders and fetal valproate syndrome, respectively. Altered social behavior is a hallmark of both these conditions and there is ample evidence showing that developmental exposure to alcohol and VPA affect social behavior in rodents. However, results from rodent models are somewhat difficult to translate to humans owing to the substantial differences in brain development, morphology, and connectivity. Since the cortex folding pattern is closely related to its specialization and that social behavior is strongly influenced by cortical structures, here we studied the effects of developmental alcohol and VPA exposure on the play behavior of the ferret, a gyrencephalic animal known for its playful nature. Animals were injected with alcohol (3.5 g/kg, i.p.), VPA (200 mg/kg, i.p.) or saline (i.p) every other day during the brain growth spurt period, between postnatal days 10 and 30. The play behavior of pairs of the same experimental group was evaluated 3 weeks later. Both treatments induced significant behavioral differences compared to controls. Alcohol and VPA exposed ferrets played less than saline treated ones, but while animals from the alcohol group displayed a delay in start playing with each other, VPA treated ones spent most of the time close to one another without playing. These findings not only extend previous results on the effects of developmental exposure to alcohol and VPA on social behavior, but make the ferret a great model to study the underlying mechanisms of social interaction. PMID:27208641

  8. Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells

    PubMed Central

    Lee, Soung-Hoon; Yoon, Juyong; Shin, Seung Ho; Zahoor, Muhamad; Kim, Hyoung Jun; Park, Phil June; Park, Won-Seok; Min, Do Sik; Kim, Hyun-Yi; Choi, Kang-Yell

    2012-01-01

    Background Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA), a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. Methodology/ Principal Findings Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP). VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX), a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. Conclusions/ Significance Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth. PMID:22506014

  9. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism.

    PubMed

    Martin, Henry G S; Manzoni, Olivier J

    2014-01-01

    Valproic acid (VPA) is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC) physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP) due to an up-regulation of NMDA receptor (NMDAR) expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDARs during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general.

  10. Valproic Acid Use During Radiation Therapy for Glioblastoma Associated With Improved Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Christopher A., E-mail: barkerc@mskcc.org; Bishop, Andrew J.; Chang, Maria

    2013-07-01

    Purpose: Valproic acid (VA) is an antiepileptic drug (AED) and histone deacetylase (HDAC) inhibitor taken by patients with glioblastoma (GB) to manage seizures, and it can modulate the biologic effects of radiation therapy (RT). We investigated whether VA use during RT for GB was associated with overall survival (OS). Methods and Materials: Medical records of 544 adults with GB were retrospectively reviewed. Analyses were performed to determine the association of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA) class, seizure history, and concurrent temozolomide (TMZ) and AED use during RT with OS. Results: Seizures before the end of RTmore » were noted in 217 (40%) patients, and 403 (74%) were taking an AED during RT; 29 (7%) were taking VA. Median OS in patients taking VA was 16.9 months (vs 13.6 months taking another AED, P=.16). Among patients taking an AED during RT, OS was associated with VA (P=.047; hazard ratio [HR], 0.67; 95% confidence interval [CI], 0.27-1.07), and RTOG RPA class (P<.0001; HR, 1.49; 95% CI, 1.37-1.61). Of the 5 most common AEDs, only VA was associated with OS. Median OS of patients receiving VA and TMZ during RT was 23.9 months (vs 15.2 months for patients taking another AED, P=.26). When the analysis was restricted to patients who received concurrent TMZ, VA use was marginally associated with OS (P=.057; HR, 0.54; 95% CI, −0.09 to 1.17), independently of RTOG RPA class and seizure history. Conclusions: VA use during RT for GB was associated with improved OS, independently of RTOG RPA, seizure history, and concurrent TMZ use. Further studies of treatment that combines HDAC inhibitors and RT are warranted.« less

  11. [Visual field defect in a patient given sodium valporate then carbamazepine: possible effect of aminotransferase inhibition].

    PubMed

    Jung, Ph; Doussard-Lefaucheux, S

    2002-04-01

    We report the case of a 25-years old woman with anti-epileptic drugs who presents a visual field defect similar to those described with vigabatrin even though she was successfully treated with valproic acid then carbamazepine without vigabatrin. The association with trichorrhexis nodosa, a hair disease sometimes associated with inherited perturbation of metabolism of urea cycle in which visual loss can occur, could suggest an aspecific inhibition of several aminotransferases which could explain different adverse effects of some anti-epileptic drugs (visual abnormalities, alopecia) perhaps in genetic predisposed patients.

  12. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  13. Inhibition of hepatic lipogenesis by 2-tetradecylglycidic acid.

    PubMed

    McCune, S A; Nomura, T; Harris, R A

    1979-10-01

    2-Tetradecylglycidic acid (TDGA), a hypoglycemic agent, has been found to be a very effective inhibitor of de novo fatty acid synthesis by isolated hepatocytes. A comparison was made between the effectiveness of TDGA and 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, on the metabolic processes of isolated hepatocytes. These compounds are structurally related and both inhibit fatty acid synthesis; however, they have opposite effects from each other on the oxidation and esterification of fatty acids. TDGA inhibits whereas TOFA stimulates fatty acid oxidation. TDGA stimulates whereas TOFA inhibits fatty acid esterification.

  14. Teratology study of derivatives of tetramethylcyclopropyl amide analogues of valproic acid in mice.

    PubMed

    Okada, Akinobu; Onishi, Yuko; Aoki, Yoshinobu; Yagen, Boris; Sobol, Eyal; Bialer, Meir; Fujiwara, Michio

    2006-06-01

    Although valproic acid (VPA) is used extensively for treating various kinds of epilepsies, it is well known that it causes neural tube and skeletal defects in both humans and animals. The amide and urea derivatives of the tetramethylcylcopropyl VPA analogue, N-methoxy-2,2,3,3-tetramethylcyclopropanecarboxamide (N-methoxy-TMCD) and 2,2,3,3-tetramethylcyclopropanecarbonylurea (TMC-urea), were synthesized and shown to have a more potent anticonvulsant activity than VPA. The objective of this study was to investigate the teratogenic effects of these compounds in NMRI mice. Pregnant NMRI mice were given a single subcutaneous injection of either VPA, N-methoxy-TMCD, or TMC-urea at 1.8 and 3.6 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18. First, the live fetuses were examined to detect any external malformations, then their skeletons were double-stained for bone and cartilage and subsequently examined. Significant increases in fetal losses and neural tube defects were observed with administration of VPA at 3.6 mmol/kg when compared to the vehicle control. In contrast, upon cesarean section, there were no significant differences between either N-methoxy-TMCD or TMC-urea and the control groups for any parameter. Skeletal examination revealed that a number of the abnormalities were induced by VPA dose-dependently at high rates of incidence. These abnormalities were mainly at the axial skeletal level. However, lower frequencies of skeletal abnormality were observed with N-methoxy-TMCD and TMC-urea than with VPA. In addition to their more potent antiepileptic activity, these findings clearly indicate that N-methoxy-TMCD and TMC-urea are distinctly less teratogenic than VPA in NMRI mice.

  15. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rettie, A.E.; Boberg, M.; Rettenmeier, A.W.

    1988-09-25

    The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is amore » more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.« less

  17. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats.

    PubMed

    Hsieh, Ching-Liang; Ho, Tin-Yun; Su, Shan-Yu; Lo, Wan-Yu; Liu, Chung-Hsiang; Tang, Nou-Ying

    2009-01-01

    Our previous studies have shown that Uncaria rhynchophylla (UR) can reduce epileptic seizures. We hypothesized that UR and its major component rhynchophylline (RH), reduce epileptic seizures in rats treated with kainic acid (KA) by inhibiting nuclear factor-kappaB (NF-kappaB) and activator-protein-1 (AP-1) activity, and by eliminating superoxide anions. Therefore, the level of superoxide anions and the DNA binding activities of NF-kappaB and AP-1 were measured. Sprague-Dawley (SD) rats were pre-treated with UR (1.0 g/kg, i.p.), RH (0.25 mg/kg, i.p.), or valproic acid (VA, 250 mg/kg, i.p.) for 3 days and then KA was administered intra-peritoneal (i.p.). The results indicated that UR, RH, and VA can reduce epileptic seizures and the level of superoxide anions in the blood. Furthermore, KA was demonstrated to induce the DNA binding activities of NF-kappaB and AP-1. However, these inductions were inhibited by pre-treatment with UR, RH, or VA for 3 days. Moreover, UR and RH were shown to be involved in the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. This study suggested that UR and RH have antiepileptic effects in KA-induced seizures and are associated with the regulation of the innate immune system via a reduction in the level of superoxide anions, JNK phosphorylation, and NF-kappaB activation.

  18. Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial.

    PubMed

    Caponigro, Francesco; Di Gennaro, Elena; Ionna, Franco; Longo, Francesco; Aversa, Corrado; Pavone, Ettore; Maglione, Maria Grazia; Di Marzo, Massimiliano; Muto, Paolo; Cavalcanti, Ernesta; Petrillo, Antonella; Sandomenico, Fabio; Maiolino, Piera; D'Aniello, Roberta; Botti, Gerardo; De Cecio, Rossella; Losito, Nunzia Simona; Scala, Stefania; Trotta, Annamaria; Zotti, Andrea Ilaria; Bruzzese, Francesca; Daponte, Antonio; Calogero, Ester; Montano, Massimo; Pontone, Monica; De Feo, Gianfranco; Perri, Francesco; Budillon, Alfredo

    2016-11-25

    Recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN) has a poor prognosis and the combination of cisplatin and cetuximab, with or without 5-fluorouracil, is the gold standard treatment in this stage. Thus, the concomitant use of novel compounds represents a critical strategy to improve treatment results. Histone deacetylase inhibitors (HDACi) enhance the activity of several anticancer drugs including cisplatin and anti-Epidermal Growth Factor Receptor (anti-EGFR) compounds. Preclinical studies in models have shown that vorinostat is able to down regulate Epidermal Growth Factor Receptor (EGFR) expression and to revert epithelial to mesenchimal transition (EMT). Due to its histone deacetylase (HDAC) inhibiting activity and its safe use as a chronic therapy for epileptic disorders, valproic acid (VPA) has been considered a good candidate for anticancer therapy. A reasonable option may be to employ the combination of cisplatin, cetuximab and VPA in recurrent/metastatic SCCHN taking advantage of the possible positive interaction between histone deacetylase inhibitors, cisplatin and/or anti-EGFR. V-CHANCE is a phase 2 clinical trial evaluating, in patients with recurrent/metastatic squamous cell carcinoma of the head and neck never treated with first-line chemotherapy, the concomitant standard administration of cisplatin (on day 1, every 3 weeks) and cetuximab (on day 1, weekly), in combination with oral VPA given daily from day -14 with a titration strategy in each patient (target serum level of 50-100 μg/ml). Primary end point is the objective response rate measured according to Response Evaluation Criteria in Solid Tumors (RECIST). Sample size, calculated according to Simon 2 stage minimax design will include 21 patients in the first stage with upper limit for rejection being 8 responses, and 39 patients in the second stage, with upper limit for rejection being 18 responses. Secondary endpoints are time to progression, duration of response

  19. In utero exposure to valproic acid and autism--a current review of clinical and animal studies.

    PubMed

    Roullet, Florence I; Lai, Jonathan K Y; Foster, Jane A

    2013-01-01

    Valproic acid (VPA) is both an anti-convulsant and a mood stabilizer. Clinical studies over the past 40 years have shown that exposure to VPA in utero is associated with birth defects, cognitive deficits, and increased risk of autism. Two recent FDA warnings related to use of VPA in pregnancy emphasize the need to reevaluate its use clinically during child-bearing years. The emerging clinical evidence showing a link between VPA exposure and both cognitive function and risk of autism brings to the forefront the importance of understanding how VPA exposure influences neurodevelopment. In the past 10 years, animal studies have investigated anatomical, behavioral, molecular, and physiological outcomes related to in utero VPA exposure. Behavioral studies show that VPA exposure in both rats and mice leads to autistic-like behaviors in the offspring, including social behavior deficits, increased repetitive behaviors, and deficits in communication. Based on this work VPA maternal challenge in rodents has been proposed as an animal model to study autism. This model has both face and construct validity; however, like all animal models there are limitations to its translation to the clinical setting. Here we provide a review of clinical studies that examined pregnancy outcomes of VPA use as well as the related animal studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Long-term follow-up for efficacy and safety of treatment of retinitis pigmentosa with valproic acid.

    PubMed

    Bhalla, Sheena; Joshi, Deval; Bhullar, Shaminder; Kasuga, Daniel; Park, Yeonhee; Kay, Christine N

    2013-07-01

    The purpose of this study was to determine the long-term efficacy and safety of valproic acid (VPA) treatment in patients with pigmentary retinal dystrophies. A retrospective chart review was conducted on 31 patients with a diagnosis of pigmentary retinal dystrophy prescribed VPA at a single centre. Visual field (VF), visual acuity (VA), length of treatment, liver enzymes and side effects were analysed. VF areas were defined using Goldmann VF (GVF) tracings recorded before, during and after VPA treatment using the V4e isopter for each eye. Using custom software, planimetric areas of VF were calculated. Five of the patients (10 eyes) had two Goldmann VF tracings, allowing comparison between baseline and follow-up VF. After 9.8 months of VPA, VF decreased by 0.145 cm(2) (26.478%) (p=0.432). For 22 of the patients (41 eyes), VA data was available, and logarithm of the minimum angle of resolution (logMAR) score changed by 0.056 log units (representing a decline in VA) after 14.9 months on VPA (p=0.002). Twelve patients (38.7%) reported negative side effects related to VPA use. VPA plays a complex role in patients with pigmentary retinal dystrophies and may be associated with VA and field decline as well as adverse side effects. Physicians should use caution with using VPA for pigmentary retinal dystrophies.

  1. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA.

    PubMed

    Hirsch, Mauro Mozael; Deckmann, Iohanna; Fontes-Dutra, Mellanie; Bauer-Negrini, Guilherme; Della-Flora Nunes, Gustavo; Nunes, Walquiria; Rabelo, Bruna; Riesgo, Rudimar; Margis, Rogerio; Bambini-Junior, Victorio; Gottfried, Carmem

    2018-05-01

    Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    PubMed

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    PubMed

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  4. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model.

    PubMed

    Ali, Elham H A; Elgoly, Amany H Mahmoud

    2013-10-01

    The aim of this work is to evaluate the impact of butyl paraben (BP) in brain of the pups developed for mothers administered BP from early pregnancy till weaning and its effect on studying the behavior, brain neurotransmitters and brain derived neurotrophic factor BDNF via comparing the results with valproic acid (VA) autistic-rat model preparing by a single oral injection dose of VA (800 mg/kg b.wt) at the 12.5 days of gestation. Butyl paraben was orally and subcutaneously administered (200 mg/kg b.wt) to pregnant rats from gestation day 1 to lactation day 21. The offspring male rats were subjected at the last 3 days of lactation to Morris water maze and three chamber sociability test then decapitated and the brain was excised and dissected to the cortex, hippocampus, cerebellum, midbrain and pons for the determination of norepinephrine, dopamine and serotonin (NE, DA and 5-HT) and cortex amino acids and whole brain BDNF. The results showed similar social and learning and memory behavioral deficits in VA rat model and the butyl paraben offspring in comparison with the controls. Also, some similar alterations were observed in monoamine content, amino acids and BDNF factor in the autistic-like model and butyl paraben offspring in comparison with the controls. The alterations were recorded notably in hippocampus and pons NE, midbrain DA, hippocampus and midbrain 5-HT, and frontal cortex GABA and asparagine. These data suggest that prenatal exposure to butyl paraben induced neuro-developmental disorders similar to some of the neurodevelopmental disorders observed in the VA model of autism. © 2013 Elsevier Inc. All rights reserved.

  5. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  6. Suppressed play behaviour and decreased oxytocin receptor binding in the amygdala after prenatal exposure to low-dose valproic acid.

    PubMed

    Bertelsen, Freja; Folloni, Davide; Møller, Arne; Landau, Anne M; Scheel-Krüger, Jørgen; Winterdahl, Michael

    2017-09-01

    To better understand the role of the neuropeptide oxytocin in autism spectrum disorder (ASD), we investigated potential deficits in social play behaviour and oxytocin receptor (OXTR) density alterations in the amygdala in a rodent model of ASD. Pregnant rats were injected daily with 20 or 100 mg/kg valproic acid (VPA) or saline from day 12 until the end of pregnancy. The number of pinning and pouncing events was assessed at postnatal days 29-34. Brains from male offspring (n=7/group) were removed at postnatal day 50. We performed quantitative autoradiography with an OXTR radioligand, the [I]-ornithine vasotocin analogue, in brain slices from the amygdala and other limbic brain regions involved in rat social behaviour. The results demonstrated a significant reduction in pinning behaviour and decreased OXTR density in the central nucleus of the amygdala in the 20 mg/kg VPA group. However, the 100 mg/kg VPA group had no significant changes in the number of play behaviour-related events or OXTR binding in the central nucleus of the amygdala. The reduction in OXTR density in the amygdala may be a critical disrupting mechanism affecting social behaviour in pervasive disorders such as ASD.

  7. Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma

    PubMed Central

    Gorlia, T.; Cairncross, J.G.; van den Bent, M.J.; Mason, W.; Belanger, K.; Brandes, A.A.; Bogdahn, U.; Macdonald, D.R.; Forsyth, P.; Rossetti, A.O.; Lacombe, D.; Mirimanoff, R.-O.; Vecht, C.J.; Stupp, R.

    2011-01-01

    Objective: This analysis was performed to assess whether antiepileptic drugs (AEDs) modulate the effectiveness of temozolomide radiochemotherapy in patients with newly diagnosed glioblastoma. Methods: The European Organization for Research and Treatment of Cancer (EORTC) 26981–22981/National Cancer Institute of Canada (NCIC) CE.3 clinical trial database of radiotherapy (RT) with or without temozolomide (TMZ) for newly diagnosed glioblastoma was examined to assess the impact of the interaction between AED use and chemoradiotherapy on survival. Data were adjusted for known prognostic factors. Results: When treatment began, 175 patients (30.5%) were AED-free, 277 (48.3%) were taking any enzyme-inducing AED (EIAED) and 135 (23.4%) were taking any non-EIAED. Patients receiving valproic acid (VPA) only had more grade 3/4 thrombopenia and leukopenia than patients without an AED or patients taking an EIAED only. The overall survival (OS) of patients who were receiving an AED at baseline vs not receiving any AED was similar. Patients receiving VPA alone (97 [16.9%]) appeared to derive more survival benefit from TMZ/RT (hazard ratio [HR] 0.39, 95% confidence interval [CI] 0.24–0.63) than patients receiving an EIAED only (252 [44%]) (HR 0.69, 95% CI 0.53–0.90) or patients not receiving any AED (HR 0.67, 95% CI 0.49–0.93). Conclusions: VPA may be preferred over an EIAED in patients with glioblastoma who require an AED during TMZ-based chemoradiotherapy. Future studies are needed to determine whether VPA increases TMZ bioavailability or acts as an inhibitor of histone deacetylases and thereby sensitizes for radiochemotherapy in vivo. PMID:21880994

  8. Valproic acid treatment response in vitro is determined by TP53 status in medulloblastoma.

    PubMed

    Mascaro-Cordeiro, Bruna; Oliveira, Indhira Dias; Tesser-Gamba, Francine; Pavon, Lorena Favaro; Saba-Silva, Nasjla; Cavalheiro, Sergio; Dastoli, Patrícia; Toledo, Silvia Regina Caminada

    2018-05-22

    Histone deacetylate inhibitors (HDACi), as valproic acid (VA), have been reported to enhance efficacy and to prevent drug resistance in some tumors, including medulloblastoma (MB). In the present study, we investigated VA role, combined to cisplatin (CDDP) in cell viability and gene expression of MB cell lines. Dose-response curve determined IC 50 values for each treatment: (1) VA single, (2) CDDP single, and (3) VA and CDDP combined. Cytotoxicity and flow cytometry evaluated cell viability after exposure to treatments. Quantitative PCR evaluated gene expression levels of AKT, CTNNB1, GLI1, KDM6A, KDM6B, NOTCH2, PTCH1, and TERT, before and after treatment. Besides, we performed next-generation sequencing (NGS) for PTCH1, TERT, and TP53 genes. The most effective treatment to reduce viability was combined for D283MED and ONS-76; and CDDP single for DAOY cells (p < 0.0001). TERT, GLI1, and AKT genes were overexpressed after treatments with VA. D283MED and ONS-76 cells presented variants in TERT and PTCH1, respectively and DAOY cell line presented a TP53 mutation. MB tumors belonging to SHH molecular subgroup, with TP53 MUT , would be the ones that present high risk in relation to VA use during the treatment, while TP53 WT MBs can benefit from VA therapy, both SHH and groups 3 and 4. Our study shows a new perspective about VA action in medulloblastoma cells, raising the possibility that VA may act in different patterns. According to the genetic background of MB cell, VA can stimulate cell cycle arrest and apoptosis or induce resistance to treatment via signaling pathways activation.

  9. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    PubMed

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  10. Spinal Muscular Atrophy Biomarker Measurements from Blood Samples in a Clinical Trial of Valproic Acid in Ambulatory Adults

    PubMed Central

    Renusch, Samantha R.; Harshman, Sean; Pi, Hongyang; Workman, Eileen; Wehr, Allison; Li, Xiaobai; Prior, Thomas W.; Elsheikh, Bakri H.; Swoboda, Kathryn J.; Simard, Louise R.; Kissel, John T.; Battle, Daniel; Parthun, Mark R.; Freitas, Michael A.; Kolb, Stephen J.

    2015-01-01

    Abstract Background: Clinical trials of therapies for spinal muscular atrophy (SMA) that are designed to increase the expression the SMN protein ideally include careful assessment of relevant SMN biomarkers. Objective: In the SMA VALIANT trial, a recent double-blind placebo-controlled crossover study of valproic acid (VPA) in ambulatory adult subjects with SMA, we investigated relevant pharmacodynamic biomarkers in blood samples from SMA subjects by direct longitudinal measurement of histone acetylation and SMN mRNA and protein levels in the presence and absence of VPA treatment. Methods: Thirty-three subjects were randomized to either VPA or placebo for the first 6 months followed by crossover to the opposite arm for an additional 6 months. Outcome measures were compared between the two treatments (VPA and placebo) using a standard crossover analysis. Results: A significant increase in histone H4 acetylation was observed with VPA treatment (p = 0.005). There was insufficient evidence to suggest a treatment effect with either full length or truncated SMN mRNA transcript levels or SMN protein levels. Conclusions: These measures were consistent with the observed lack of change in the primary clinical outcome measure in the VALIANT trial. These results also highlight the added benefit of molecular and pharmacodynamic biomarker measurements in the interpretation of clinical trial outcomes. PMID:27858735

  11. Valproic Acid Promotes Survival of Facial Motor Neurons in Adult Rats After Facial Nerve Transection: a Pilot Study.

    PubMed

    Zhang, Lili; Fan, Zhaomin; Han, Yuechen; Xu, Lei; Liu, Wenwen; Bai, Xiaohui; Zhou, Meijuan; Li, Jianfeng; Wang, Haibo

    2018-04-01

    Valproic acid (VPA), a medication primarily used to treat epilepsy and bipolar disorder, has been applied to the repair of central and peripheral nervous system injury. The present study investigated the effect of VPA on functional recovery, survival of facial motor neurons (FMNs), and expression of proteins in rats after facial nerve trunk transection by functional measurement, Nissl staining, TUNEL, immunofluorescence, and Western blot. Following facial nerve injury, all rats in group VPA showed a better functional recovery, which was significant at the given time, compared with group NS. The Nissl staining results demonstrated that the number of FMNs survival in group VPA was higher than that in group normal saline (NS). TUNEL staining showed that axonal injury of facial nerve could lead to neuronal apoptosis of FMNs. But treatment of VPA significantly reduced cell apoptosis by decreasing the expression of Bax protein and increased neuronal survival by upregulating the level of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) expression in injured FMNs compared with group NS. Overall, our findings suggest that VPA may advance functional recovery, reduce lesion-induced apoptosis, and promote neuron survival after facial nerve transection in rats. This study provides an experimental evidence for better understanding the mechanism of injury and repair of peripheral facial paralysis.

  12. Severe valproic acid intoxication: case study on the unbound fraction and the applicability of extracorporeal elimination.

    PubMed

    van den Broek, Marcel P H; Sikma, Maaike A; Ververs, Tessa F; Meulenbelt, Jan

    2009-12-01

    Among anticonvulsants, valproic acid (VPA) is cited as the most frequent cause of unintentional and intentional intoxications. Symptoms of VPA intoxication are diverse and are related to VPA plasma concentration. Although total plasma concentrations of less than 450 mg/l produce limited toxicity, severe intoxications (>850 mg/l) can induce coma and are ultimately life threatening. A 32-year-old comatose woman was admitted to the ICU at our hospital; she suffered from hypotension, respiratory depression, hypoglycaemia, sinus bradycardia, hyperammonaemia, metabolic acidosis, and her core body temperature was 33.7 degrees C. The total VPA plasma concentration was 1244 mg/l with an increased unbound fraction of 85%. After we administered multiple doses of activated charcoal, she underwent continuous veno-venous haemofiltration to reduce the plasma VPA concentration. As the total concentration decreased, the unbound fraction also decreased. Within 20 h of admission, the patient made a full recovery. In cases of VPA intoxication, protein-binding saturation and drug characteristics render extracorporeal elimination, an effective technique for eliminating the unbound drug. Its application should be considered, depending on clinical symptoms, VPA concentration (>300 mg/l), albumin concentration and ammonia concentration (>400 micromol/l). The application of this technique should be weighed against its risks. This case illustrates the clinical significance of applying continuous veno-venous haemofiltration in VPA intoxication because of protein-binding saturation, and suggests when extracorporeal elimination should be considered.

  13. Gastric acid secretion: activation and inhibition.

    PubMed Central

    Sachs, G.; Prinz, C.; Loo, D.; Bamberg, K.; Besancon, M.; Shin, J. M.

    1994-01-01

    Peripheral regulation of gastric acid secretion is initiated by the release of gastrin from the G cell. Gastrin then stimulates the cholecystokinin-B receptor on the enterochromaffin-like cell beginning a calcium signaling cascade. An exocytotic release of histamine follows with concomitant activation of a C1- current. The released histamine begins the H2-receptor mediated sequence of events in the parietal cell, which results in activation of the gastric H+/K+ - ATPase. This enzyme is the final common pathway of acid secretion. The H+/K+ - ATPase is composed of two subunits: the larger alpha-subunit couples ion transport to hydrolysis of ATP, the smaller beta-subunit is required for appropriate assembly of the holoenzyme. Both the membrane and extracytoplasmic domain contain the ion transport pathway, and therefore, this region is the target for the antisecretory drugs of the post-H2 era. The 100 kDa alpha-subunit has probably 10 membrane spanning segments with, therefore, five extracytoplasmic loops. The 35 kDA beta-subunit has a single membrane spanning segment, and most of this protein is extracytoplasmic with the six or seven N glycosylation consensus sequences occupied. Omeprazole is an acid-accumulated, acid-activated, prodrug that binds covalently to two cysteine residues at positions 813 (or 822) and 892, accessible from the acidic face of the pump. Lansoprazole binds to cys321, 813 (or 822) and 892; pantoprazole binds to cys813 and 822. The common binding site for these drugs (cys813 or 822) is responsible for the inhibition of acid transport. Covalent inhibition of the acid pump improves control of acid secretion, but since the effective half life of the inhibition in man is about 48 hr, full inhibition of acid secretion, perhaps necessary for eradication of Helicobacter pylori in combination with a single antibiotic, will require prolongation of the effect of this class of drug. PMID:7502535

  14. Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid.

    PubMed

    Halvorson, D L; McCune, S A

    1984-11-01

    The compound 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, inhibits fatty acid synthesis, lactate and pyruvate accumulation and CO2 release in isolated rat adipocytes. TOFA stimulates the accumulation of citrate. ATP levels are not lowered by TOFA. In comparison with the natural fatty acid, oleate, TOFA exhibited a much greater inhibitory effect on lipogenesis. TOFyl-CoA formation within intact adipocytes was demonstrated. Although not inhibited by TOFA, acetyl-CoA carboxylase is inhibited by TOFyl-CoA. It is proposed that many of the metabolic effects of TOFA in isolated adipocytes can be explained by TOFyl-CoA inhibition of acetyl-CoA carboxylase. TOFA inhibits glycolysis as a secondary event with the primary event of inhibition of fatty acid synthesis causing an accumulation of citrate which is an inhibitor of phosphofructokinase.

  15. The application of multiple analyte adduct formation in the LC-MS3 analysis of valproic acid in human serum.

    PubMed

    Dziadosz, Marek

    2017-01-01

    LC-MS using electrospray ionisation (negative ion mode) and low-energy collision-induced dissociation tandem mass spectrometric (CID-MS/MS) analysis, together with the multiple analyte adduct formation with the components of the mobile phase, were applied to analyse valproic acid in human serum with LC-MS 3 . The CID-fragmentation of the precursor analyte adduct [M+2CH 3 COONa-H] - was applied in the method validation (307.1/225.1/143.0). Chromatographic separation was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm column and the elution with a mobile phase consisting of A (H 2 O/methanol=95/5, v/v) and B (H 2 O/methanol=3/97, v/v), both with 10mM ammonium acetate and 0.1% acetic acid. A binary flow pumping mode with a total flow rate of 0.400mL/min was used. The calculated limit of detection/quantification of the method calibrated in the range of 10-200μg/mL was 0.31/1.0μg/mL. The sample preparation based on protein precipitation with 1mL of H 2 O/methanol solution (3/97, v/v) with 10mM sodium acetate and 100mM acetic acid. On the basis of the experiments performed could be demonstrated, that multiple analyte adduct formation can be applied to generate MS 3 quantitation of analytes with problematic fragmentation. The presented new strategy makes the analysis of small drugs, which do not produce any stable product ions at all, on the basis of LC-MS 3 possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  17. Chronic valproic acid administration impairs contextual memory and dysregulates hippocampal GSK-3β in rats.

    PubMed

    Sintoni, Silvia; Kurtys, Ewelina; Scandaglia, Marilyn; Contestabile, Antonio; Monti, Barbara

    2013-05-01

    Valproic acid (VPA), a long-standing anti-epileptic and anti-manic drug, exerts multiple actions in the nervous system through various molecular mechanisms. Neuroprotective properties have been attributed to VPA in different models of neurodegeneration, but contrasting results on its improvement of learning and memory have been reported in non-pathologic conditions. In the present study, we have tested on a hippocampal-dependent learning test, the contextual fear conditioning, the effect of chronic VPA administration through alimentary supplementation that allows relatively steady concentrations to be reached by a drug otherwise very rapidly eliminated in rodents. Contextual fear memory was significantly impaired in rats chronically treated with VPA for 4 weeks. To understand the cellular and molecular correlates of this amnesic effect with particular regard to hippocampus, we addressed three putatively memory-related targets of VPA action in this brain area, obtaining the following main results: i) chronic VPA promoted an increase of post-translational modifications of histone H3 (acetylation and phosphorylation) known to favor gene transcription; ii) adult neurogenesis in the dentate gyrus, which has been controversially reported to be affected by VPA, was unchanged; and iii) GSK-3β, a kinase playing a key role in hippocampal plasticity, as well as in learning and memory, was dysregulated by VPA treatment. These results point at GSK-3β dysregulation in the hippocampus as an important parameter in the amnesic effect of VPA. The VPA amnesic effect in the animal model here reported is also supported by some observations in patients and, therefore, it should be taken into account and monitored in VPA-based therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Comparative Network-Based Recovery Analysis and Proteomic Profiling of Neurological Changes in Valproic Acid-Treated Mice

    PubMed Central

    2013-01-01

    Despite its prominence for characterization of complex mixtures, LC–MS/MS frequently fails to identify many proteins. Network-based analysis methods, based on protein–protein interaction networks (PPINs), biological pathways, and protein complexes, are useful for recovering non-detected proteins, thereby enhancing analytical resolution. However, network-based analysis methods do come in varied flavors for which the respective efficacies are largely unknown. We compare the recovery performance and functional insights from three distinct instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic acid (VPA)-treated mice. We find that the most comprehensive functional insights, as well as best non-detected protein recovery performance, are derived from FCS utilizing real biological complexes. This outstrips other network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype. Although our results suggest different network analysis methods can produce different results, on the whole, the findings are mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of complex phenotypes. PMID:23557376

  19. Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells

    PubMed Central

    Saha, Subbroto Kumar; Yin, Yingfu; Kim, Kyeongseok; Yang, Gwang-Mo; Abdal Dayem, Ahmed; Choi, Hye Yeon; Cho, Ssang-Goo

    2017-01-01

    Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC. PMID:28498322

  20. Effects of valproic acid and magnesium sulphate on rocuronium requirement in patients undergoing craniotomy for cerebrovascular surgery.

    PubMed

    Kim, M-H; Hwang, J-W; Jeon, Y-T; Do, S-H

    2012-09-01

    Many anti-epileptics cause resistance to non-depolarizing neuromuscular blocking agents, but this has not been reported for valproic acid (VPA). We hypothesized that VPA would increase the rocuronium requirement and that magnesium sulphate (MgSO(4)) may reduce this increase. Fifty-five patients undergoing cerebrovascular surgeries were studied. Subjects were allocated into three groups at a 1:1:1 ratio: Groups VM, VC, and C. Groups VM and VC were given VPA premedication; Group C was not. A rocuronium injection (0.6 mg kg(-1) i.v.) was administered to Group VM, followed by MgSO(4) as a 50 mg kg(-1) i.v. bolus and 15 mg kg(-1) h(-1) infusion. The same volume of 0.9% saline was administered to the other groups. Supplementary rocuronium (0.15 mg kg(-1)) was given whenever the train-of-four count reached 2. Rocuronium requirements (primary outcome), mean arterial pressure (MAP), heart rate (HR), nausea, vomiting, shivering, and use of anti-emetics and nicardipine were compared. Group VC showed the highest rocuronium requirement [mg kg(-1) h(-1): 0.47 (0.08) vs 0.33 (0.12) (Group C), 0.31 (0.07) (Group VM); P<0.001]. MAP, intraoperative HR, nausea, vomiting, shivering, and use of anti-emetics and nicardipine were not significantly different among the groups. Postoperative HR was lower in Group VM than in Group VC. VPA increased the rocuronium requirement, and MgSO(4) infusion attenuated this increase.

  1. Modulation of trichloroethylene in vitro metabolism by different drugs in human.

    PubMed

    Cheikh Rouhou, Mouna; Haddad, Sami

    2014-08-01

    Toxicological interactions with drugs have the potential to modulate the toxicity of trichloroethylene (TCE). Our objective is to identify metabolic interactions between TCE and 14 widely used drugs in human suspended hepatocytes and characterize the strongest using microsomal assays. Changes in concentrations of TCE and its metabolites were measured by headspace GC-MS. Results with hepatocytes show that amoxicillin, cimetidine, ibuprofen, mefenamic acid and ranitidine caused no significant interactions. Naproxen and salicylic acid showed to increase both TCE metabolites levels, whereas acetaminophen, carbamazepine and erythromycin rather decreased them. Finally, diclofenac, gliclazide, sulphasalazine and valproic acid had an impact on the levels of only one metabolite. Among the 14 tested drugs, 5 presented the most potent interactions and were selected for confirmation with microsomes, namely naproxen, salicylic acid, acetaminophen, carbamazepine and valproic acid. Characterization in human microsomes confirmed interaction with naproxen by competitively inhibiting trichloroethanol (TCOH) glucuronidation (Ki=2.329 mM). Inhibition of TCOH formation was also confirmed for carbamazepine (partial non-competitive with Ki=70 μM). Interactions with human microsomes were not observed with salicylic acid and acetaminophen, similar to prior results in rat material. For valproic acid, interactions with microsomes were observed in rat but not in human. Inhibition patterns were shown to be similar in human and rat hepatocytes, but some differences in mechanisms were noted in microsomal material between species. Next research efforts will focus on determining the adequacy between in vitro observations and the in vivo situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. α-Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGFβ signaling.

    PubMed

    Tripathy, Joytirmay; Tripathy, Anindita; Thangaraju, Muthusamy; Suar, Mrutyunjay; Elangovan, Selvakumar

    2018-05-23

    Invasion and metastasis are the main cause of mortality in breast cancer. Hence, novel therapeutic interventions with high specificity toward invasion and metastasis are necessary. α-Lipoic acid showed antiproliferative and cytotoxic effects on several cancers including breast cancer. However, the effect of lipoic acid on breast cancer metastasis remains unclear. In the present study, we examined the effects of lipoic acid on the migration and invasion of MDA-MB-231 and 4 T1 breast cancer cells. Our data showed that lipoic acid effectively inhibited the colony forming ability of highly invasive MDA-MB-231 and 4 T1 cells. Moreover, the nontoxic concentrations of lipoic acid significantly reduced the migration of breast cancer cells. Lipoic acid also inhibited the TGFβ-induced angiopoietin-like 4 (ANGPTL4) expression and reduced the activity of matrix metalloproteinase-9 (MMP-9), an enzyme involved in invasion and metastasis, in both the cell lines. The inhibition of cell migration by lipoic acid is accompanied by the downregulation of FAK, ERK1/2 and AKT phosphorylation, and inhibition of nuclear translocation of β-catenin. Our data demonstrated that lipoic acid inhibited the migration and invasion of metastatic breast cancer cells at least in part through inhibiting ERK1/2 and AKT signaling. Thus, our findings show that the inhibition of TGFβ signaling is a potential mechanism for the anti-invasive effects of lipoic acid. Copyright © 2017. Published by Elsevier Inc.

  3. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  4. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.

    PubMed

    Hansen, H; Grossmann, K

    2000-11-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  5. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role formore » metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.« less

  6. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  7. N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells.

    PubMed

    Prestegui-Martel, Berenice; Bermúdez-Lugo, Jorge Antonio; Chávez-Blanco, Alma; Dueñas-González, Alfonso; García-Sánchez, José Rubén; Pérez-González, Oscar Alberto; Padilla-Martínez, Itzia Irene; Fragoso-Vázquez, Manuel Jonathan; Mendieta-Wejebe, Jessica Elena; Correa-Basurto, Ana María; Méndez-Luna, David; Trujillo-Ferrara, José; Correa-Basurto, José

    2016-01-01

    Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC 50 (μM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.

  8. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies.

    PubMed

    Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki

    2011-06-01

    Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero

    PubMed Central

    Banerjee, Anwesha; Engineer, Crystal T.; Sauls, Bethany L.; Morales, Anna A.; Kilgard, Michael P.; Ploski, Jonathan E.

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental disorders characterized by repetitive behavior and impaired social communication and interactions. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety and some ASD individuals exhibit impaired emotional learning. We therefore sought to further examine anxiety and emotional learning in an environmentally induced animal model of ASD that utilizes the administration of the known teratogen, valproic acid (VPA) during gestation. Specifically we exposed dams to one of two different doses of VPA (500 and 600 mg/kg) or vehicle on day 12.5 of gestation and examined the resultant progeny. Our data indicate that animals exposed to VPA in utero exhibit enhanced anxiety in the open field test and normal object recognition memory compared to control animals. Animals exposed to 500 mg/kg of VPA displayed normal acquisition of auditory fear conditioning, and exhibited reduced extinction of fear memory and normal litter survival rates as compared to control animals. We observed that animals exposed to 600 mg/kg of VPA exhibited a significant reduction in the acquisition of fear conditioning, a significant reduction in social interaction and a significant reduction in litter survival rates as compared to control animals. VPA (600 mg/kg) exposed animals exhibited similar shock sensitivity and hearing as compared to control animals indicating the fear conditioning deficit observed in these animals was not likely due to sensory deficits, but rather due to deficits in learning or memory retrieval. In conclusion, considering that progeny from dams exposed to rather similar doses of VPA exhibit striking differences in emotional learning, the VPA model may serve as a useful tool to explore the molecular and cellular mechanisms that contribute to not only ASD, but also emotional learning. PMID:25429264

  10. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally.

    PubMed

    Barrett, Catherine E; Hennessey, Thomas M; Gordon, Katelyn M; Ryan, Steve J; McNair, Morgan L; Ressler, Kerry J; Rainnie, Donald G

    2017-01-01

    The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.

  11. Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme

    PubMed Central

    Kerkhof, Melissa; Dielemans, Janneke C. M.; van Breemen, Melanie S.; Zwinkels, Hanneke; Walchenbach, Robert; Taphoorn, Martin J.; Vecht, Charles J.

    2013-01-01

    Background To examine the efficacy of valproic acid (VPA) given either with or without levetiracetam (LEV) on seizure control and on survival in patients with glioblastoma multiforme (GBM) treated with chemoradiation. Methods A retrospective analysis was performed on 291 patients with GBM. The efficacies of VPA and LEV alone and as polytherapy were analyzed in 181 (62%) patients with seizures with a minimum follow-up of 6 months. Cox-regression survival analysis was performed on 165 patients receiving chemoradiation with temozolomide of whom 108 receiving this in combination with VPA for at least 3 months. Results Monotherapy with either VPA or LEV was instituted in 137/143 (95.8%) and in 59/86 (68.6%) on VPA/LEV polytherapy as the next regimen. Initial freedom from seizure was achieved in 41/100 (41%) on VPA, in 16/37 (43.3%) on LEV, and in 89/116 (76.7%) on subsequent VPA/LEV polytherapy. At the end of follow-up, seizure freedom was achieved in 77.8% (28/36) on VPA alone, in 25/36 (69.5%) on LEV alone, and in 38/63 (60.3%) on VPA/LEV polytherapy with ongoing seizures on monotherapy. Patients using VPA in combination with temozolomide showed a longer median survival of 69 weeks (95% confidence interval [CI]: 61.7–67.3) compared with 61 weeks (95% CI: 52.5–69.5) in the group without VPA (hazard ratio, 0.63; 95% CI: 0.43–0.92; P = .016), adjusting for age, extent of resection, and O6-DNA methylguanine-methyltransferase promoter methylation status. Conclusions Polytherapy with VPA and LEV more strongly contributes to seizure control than does either as monotherapy. Use of VPA together with chemoradiation with temozolomide results in a 2-months’ longer survival of patients with GBM. PMID:23680820

  12. Early physical and motor development of mouse offspring exposed to valproic acid throughout intrauterine development.

    PubMed

    Podgorac, Jelena; Pešić, Vesna; Pavković, Željko; Martać, Ljiljana; Kanazir, Selma; Filipović, Ljupka; Sekulić, Slobodan

    2016-09-15

    Clinical research has identified developmental delay and physical malformations in children prenatally exposed to the antiepileptic drug (AED) valproic acid (VPA). However, the early signs of neurodevelopmental deficits, their evolution during postnatal development and growth, and the dose effects of VPA are not well understood. The present study aimed to examine the influence of maternal exposure to a wide dose range (50, 100, 200 and 400mg/kg/day) of VPA during breeding and gestation on early physical and neuromotor development in mice offspring. Body weight gain, eye opening, the surface righting reflex (SRR) and tail suspension test (TST) were examined in the offspring at postnatal days 5, 10 and 15. We observed that: (1) all tested doses of VPA reduced the body weight of the offspring and the timing of eye opening; (2) offspring exposed to VPA displayed immature forms of righting and required more time to complete the SRR; (3) latency for the first immobilization in the TST is shorter in offspring exposed to higher doses of VPA; however, mice in all groups exposed to VPA exhibited atypical changes in this parameter during the examined period of maturation; (4) irregularities in swinging and curling activities were observed in animals exposed to higher doses of VPA. This study points to delayed somatic development and postponed maturation of the motor system in all of the offspring prenatally exposed to VPA, with stronger effects observed at higher doses. The results implicate that the strategy of continuous monitoring of general health and achievements in motor milestones during the early postnatal development in prenatally VPA-exposed offspring, irrespectively of the dose applied, could help to recognize early developmental irregularities. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism.

    PubMed

    Hara, Yuta; Ago, Yukio; Higuchi, Momoko; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice.

    PubMed

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Hasebe, Shigeru; Kawase, Haruki; Tanabe, Wataru; Tsukada, Shinji; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients. In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD. Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density. These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.

  16. Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice.

    PubMed

    Kolozsi, E; Mackenzie, R N; Roullet, F I; deCatanzaro, D; Foster, J A

    2009-11-10

    In rodents, a single administration of valproic acid (VPA) in utero leads to developmental delays and lifelong deficits in motor performance, social behavior, and anxiety-like behavior in the offspring. Recently, we have demonstrated that VPA mice show alterations in postnatal growth and development, and deficits in olfactory discrimination and social behavior early in development. Based on behavioral and molecular parallels between VPA rodents and individuals with autism, maternal challenge with VPA has been suggested to be a good animal model of autism. Neuroligins (NLGN) are a family of postsynaptic cell-adhesion molecules that play a role in synaptic maturation through association with their presynaptic partners, the neurexins (NRXN). Both NLGNs and NRXN members have been implicated in genetic studies of autism. In the present study, we examined changes at the level of expression of NLGN and NRXN mRNAs in the adult brain from mice exposed in utero to VPA. Mouse brain tissue was processed using in situ hybridization and analyzed with densitometry to examine expression of three NLGN genes (NLGN1, NLGN2, and NLGN3) and three NRXN genes (NRXN1, NRXN2, and NRXN3). Expression levels of NLGN1, NLGN2, NRXN1, NRXN2, and NRXN3 were observed to be similar in VPA and control mice. NLGN3 mRNA expression was found to be significantly lower in the VPA mice relative to control animals in hippocampal subregions, cornu ammonis (CA1) and dentate gyrus, and somatosensory cortex. This lowered expression may be linked to autistic-like behavioral phenotype observed in the VPA mice.

  17. Influence of tube type, storage time, and temperature on the total and free concentration of valproic acid.

    PubMed

    Tarasidis, C G; Garnett, W R; Kline, B J; Pellock, J M

    1986-01-01

    The influence of storage conditions on the total and free concentration of valproic acid (VPA) was studied in six normal male subjects who ingested 750 mg of VPA (3 X 250 mg Depakene capsules; Abbott Laboratories). Blood samples were collected in various types of Vacutainer tubes (red top, no additives; green top, sodium heparin; blue top, sodium citrate; and purple top, EDTA) 2 h post administration of VPA. Either these samples were centrifuged immediately or stored for various periods of time at room temperature or refrigerated, or the supernate was frozen prior to analysis. Free VPA samples were obtained utilizing the Amicon ultrafiltration system. All VPA samples were analyzed by gas-liquid chromatography. Total VPA concentrations obtained from plasma collected with sodium citrate were lower (p less than 0.05) than either serum or plasma collected with other anticoagulants. There were no differences (p greater than 0.05) in total or free VPA concentrations between samples collected in serum or in plasma collected with heparin or EDTA. Storing samples for 96 h at room temperature did not alter the total VPA concentrations but was found to increase the free fraction of VPA (p less than 0.05). The refrigeration or freezing of the supernate from the blood samples for 7 days did not alter (p greater than 0.05) the total or the free fraction of VPA. The results of this study demonstrate that total and/or free VPA may be collected from either serum or plasma, provided sodium citrate is not used to collect plasma.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  19. [Lactic acid inhibits the formation of semen-derived amyloid fibrils].

    PubMed

    Li, Jin-Qing; Song, Ya-Li; Xun, Tian-Rong; Tan, Sui-Yi; Liu, Shu-Wen

    2017-07-20

    To investigate the inhibitory effect of lactic acid on semen-derived amyloid (SEVI) fibril formation. PAP248-286 (2 mg/mL) was incubated with 4.0, 2.0, 1.0, 0.5, 0.25, and 0.125 mg/mL of lactic acid. After incubation for different times, aliquots were drawn from each sample for Thioflavin T (ThT) and Congo red staining to monitor semen-derived amyloid fibril formation. The β sheet structure formation of PAP248-286 was measured by circular dichroism spectrum, and the morphology of amyloid fibrils incubated with or without lactic acid was observed with transmission electron microscopy (TEM). The enhancing effect of amyloid fibril incubated with lactic acid at different time points was determined using virus infection assay. PAP248-286 (2 mg/mL) was incubated with dilutions of vaginal secretion from healthy women, and amyloid fibril formation was detected with ThT and Congo red staining. Lactic acid inhibited SEVI fibril formation in a dose-dependent manner in vitro. Lactic acid at 0.5 mg/mL completely inhibited 2 mg/mL SEVI fibril formation within 48 h. After incubation for 48 h, lactic acid at 1 mg/mL inhibited the formation of β-sheet structure of SEVI (2 mg/mL) and completely inhibited 2 mg/mL PAP248-286 aggregation as observed with TEM. In the presence of lactic acid, PAP248-286 lost the ability to enhance virus infection. Vaginal secretion inhibited SEVI fibril formation in a dose-dependent manner, and virtually no SEVI fibril occurred after incubation of 2 mg/mL PAP248-286 with 67% vaginal secretion. Lactic acid inhibits SEVI fibril formation in vitro.

  20. Inhibition of histone deacetylases protects septic mice from lung and splenic apoptosis.

    PubMed

    Takebe, Mariko; Oishi, Hirofumi; Taguchi, Kumiko; Aoki, Yuta; Takashina, Michinori; Tomita, Kengo; Yokoo, Hiroki; Takano, Yasuo; Yamazaki, Mitsuaki; Hattori, Yuichi

    2014-04-01

    Epigenetic programming, dynamically regulated by histone acetylation, may play a key role in the pathophysiology of sepsis. We examined whether histone deacetylase (HDAC) can contribute to sepsis-associated inflammation and apoptosis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in BALB/c mice. An intraperitoneal injection of CG200745 (10 mg/kg), a novel broad-spectrum HDAC inhibitor, or valproic acid (500 mg/kg), a predominant inhibitor of class I HDACs, was given 3 h before surgery. HDAC1, HDAC2, and HDAC3 protein levels were decreased in lungs after CLP. Furthermore, CLP-induced sepsis increased both histone H3 and H4 acetylation levels in lungs. When CG200745 was given, apoptosis induction was strongly suppressed in lungs and spleens of septic mice. This antiapoptotic effect of CG200745 was not accompanied by upregulation of antiapoptotic and downregulation of proapoptotic Bcl-2 family member proteins. Treatment with CG200745 failed to inhibit elevated levels of serum cytokines and prevent lung inflammation in septic mice. Valproic acid also showed antiapoptotic but not anti-inflammatory effects in septic mice. These findings imply that HDAC inhibitors are a unique agent to prevent cell apoptosis in sepsis at their doses that do not improve inflammatory features, indicating that septic inflammation and apoptosis may not necessarily be essential for one another's existence. This study also represents the first report that CLP-induced sepsis downregulates HDACs. Nevertheless, the data with HDAC inhibitors suggest that imbalance in histone acetylation may play a contributory role in expression or repression of genes involved in septic cell apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO 2 solids for the treatment of temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    López, T.; Basaldella, E. I.; Ojeda, M. L.; Manjarrez, J.; Alexander-Katz, R.

    2006-10-01

    Temporal lobe epilepsy is one of the most frequent types of human neurological diseases, and a variety of surgical procedures have been developed for the treatment of intractable cases. An alternative is the use of drug-containing reservoirs based on nanostructured materials of controlled pore sizes in order to deliver the drug without causing secondary effects. Ordered SiO 2 nanostructures were developed as drug reservoirs. The latter were prepared by the sol-gel process using tetraethyl orthosilicate TEOS as precursor to form the "sol" and P123 surfactant as the organic structure-directing agent. In addition to the nontoxic nature of amorphous silica, uniform and tunable pore sizes between 2.5 and 30 nm can be obtained in this way. The aim of this study is to investigate the potential of these materials for the storage and release of drugs in the brain. For that, we loaded valproic acid (VH) and sodic phenytoin (PH) molecules into an ordered mesoporous SiO 2 by impregnation and characterized the drug impregnated SiO 2 by standard physical and spectroscopic techniques to identify the parameters necessary to improve the capacity and quality of the reservoirs. Finally, a study of neurohistopathology of the effects of these reservoirs on brain tissue is presented.

  2. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  3. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  4. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  5. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid.

    PubMed

    Castro, Kamila; Baronio, Diego; Perry, Ingrid Schweigert; Riesgo, Rudimar Dos Santos; Gottfried, Carmem

    2017-07-01

    Autism spectrum disorder (ASD) is characterized by impairments in social interaction and communication, and by restricted repetitive behaviors and interests. Its etiology is still unknown, but different environmental factors during pregnancy, such as exposure to valproic acid (VPA), are associated with high incidence of ASD in children. In this context, prenatal exposure to VPA in rodents has been used as a reliable model of ASD. Ketogenic diet (KD) is an alternative therapeutic option for refractory epilepsy; however, the effects of this approach in ASD-like behavior need to be evaluated. We conducted a behavioral assessment of the effects of KD in the VPA model of autism. Pregnant animals received a single-intraperitoneal injection of 600 mg/kg VPA, and their offspring were separated into four groups: (1) control group with standard diet (C-SD), (2) control group with ketogenic diet (C-KD), (3) VPA group with standard diet (VPA-SD), and (4) VPA group with ketogenic diet (VPA-KD). When compared with the control group, VPA animals presented increased social impairment, repetitive behavior and higher nociceptive threshold. Interestingly, the VPA group fed with KD presented improvements in social behavior. These mice displayed higher scores in sociability index and social novelty index when compared with the SD-fed VPA mice. VPA mice chronically exposed to a KD presented behavioral improvements; however, the mechanism by which KD improves ASD-like features needs to be further investigated. In conclusion, the present study reinforces the potential use of KD as a treatment for the core deficits of ASD.

  6. A rapid and highly sensitive UPLC-MS/MS method using pre-column derivatization with 2-picolylamine for intravenous and percutaneous pharmacokinetics of valproic acid in rats.

    PubMed

    Joo, Kyung-Mi; Choi, Dalwoong; Park, Yang-Hui; Yi, Chang-Geun; Jeong, Hye-Jin; Cho, Jun-Cheol; Lim, Kyung-Min

    2013-11-01

    A rapid, highly sensitive and specific ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) for the detection of valproic acid (VPA) in rat plasma following the topical application was developed and validated. This method was carried out with pre-column derivatization using 2-picolylamine (PA) which reacts with the carboxylic acid group of VPA. The derivatization was completed in 10min and the resulting PA-VPA derivative enabled the sensitive detection of VPA in selected reaction monitoring (SRM) mode. Sample preparation was done with simple liquid-liquid extraction and chromatographic separation was achieved within 5min on a C18 column using a gradient elution with the mobile phase of 2mM ammonium formate containing 0.1% formic acid and methanol. The standard curves were linear over the concentration range of 0.07-200μg/mL with a correlation coefficient higher than 0.99. The limit of detection (LOD) and the lower limit of quantification (LLOQ) was 0.03 and 0.07μg/mL, respectively with 100μL of plasma sample. The intra- and inter-day precisions were measured to be below 10.7% and accuracies were within the range of 94.1-115.9%. The validated method was successfully applied to the pharmacokinetics of VPA in the rat following topical and intravenous applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    PubMed Central

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  8. The bone mineral content alterations in pediatric patients medicated with levetiracetam, valproic acid, and carbamazepine.

    PubMed

    Serin, Hepsen Mine; Koç, Zehra Pınar; Temelli, Berfin; Esen, İhsan

    2015-10-01

    The negative effect of antiepileptic drugs on bone health has been previously documented. However, which antiepileptic drug is safer in regard to bone health is still questionable. Our aims were to investigate the bone mineral density alterations in pediatric patients who receive antiepileptic medication for a minimum of two years and to compare the results of these drugs. Fifty-nine patients (32 males, 27 females; mean age: 8.6±4.6years) and a control group (13 males, 7 females; mean age: 7.6±3.3years) were included in the study. The patients were receiving necessarily the same antiepileptic drugs (AEDs) for at least two years, and none of the patients had mental retardation or cerebral palsy. The patients were divided into three groups: group 1 (patients receiving levetiracetam (LEV), n=20), group 2 (patients receiving carbamazepine (CBZ), n=11), and group 3 (patients receiving valproic acid (VPA), n=28). Plasma calcium (Ca), phosphorus (P), parathyroid hormone (PTH), alkaline phosphatase (ALP), vitamin D levels, and bone mineral density (BMD) values of femur and vertebras (L1-4) and z-scores (comparative results of BMD values of the patients with the age- and gender-matched controls in device database) of the groups were compared. The differences between P, PTH, ALP and age, Ca and BMD results, and vitamin D levels of the patients in all four groups was not statistically significant according to Kruskal-Wallis test (p>0.05). The z-score levels of all the patient and control groups were also not statistically significantly different compared with each other. In contrast to previous reports in pediatric patients, our study has documented that there is not a considerable bone loss in patients receiving long-term AED medication. Although levetiracetam has been proposed as bone-protecting medication, we did not observe any difference between AEDs regarding bone mineral density after two years of treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Fluoxetine prevents the memory deficits and reduction in hippocampal cell proliferation caused by valproic acid.

    PubMed

    Welbat, Jariya Umka; Sangrich, Preeyanuch; Sirichoat, Apiwat; Chaisawang, Pornthip; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Wigmore, Peter

    2016-12-01

    Valproic acid (VPA), a commonly used antiepileptic drug, has been reported to cause cognitive impairments in patients. In a previous study, using a rodent model, we showed that VPA treatment impaired cognition which was associated with a reduction in the cell proliferation required for hippocampal neurogenesis. The antidepressant fluoxetine has been shown to increase hippocampal neurogenesis and to reverse the memory deficits found in a number of pathological conditions. In the present study we investigated the protective effects of fluoxetine treatment against the impairments in memory and hippocampal cell proliferation produced by VPA. Male Sprague Dawley rats received daily treatment with fluoxetine (10mg/kg) by oral gavage for 21days. Some rats were co-administered with VPA (300mg/kg, twice daily i.p. injections) for 14days from day 8 to day 21 of the fluoxetine treatment. Spatial memory was tested using the novel object location (NOL) test. The number of proliferating cells present in the sub granular zone of the dentate gyrus was quantified using Ki67 immunohistochemistry at the end of the experiment. Levels of the receptor Notch1, the neurotrophic factor BDNF and the neural differentiation marker DCX were determined by Western blotting. VPA-treated rats showed memory deficits, a decrease in the number of proliferating cells in the sub granular zone and decreases in the levels of Notch1 and BDNF but not DCX compared to control animals. These changes in behavior, cell proliferation and Notch1 and BDNF were prevented in animals which had received both VPA and fluoxetine. Rats receiving fluoxetine alone did not show a significant difference in the number of proliferating cells or behavior compared to controls. These results demonstrated that the spatial memory deficits and reduction of cell proliferation produced by VPA can be ameliorated by the simultaneous administration of the antidepressant fluoxetine. Crown Copyright © 2016. Published by Elsevier B

  10. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.

    PubMed

    Crans, D C; Simone, C M; Saha, A K; Glew, R H

    1989-11-30

    A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.

  11. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid.

    PubMed

    Kim, Pitna; Park, Jin Hee; Kwon, Kyoung Ja; Kim, Ki Chan; Kim, Hee Jin; Lee, Jong Min; Kim, Hahn Young; Han, Seol-Heui; Shin, Chan Young

    2013-01-01

    Ginseng is one of the most widely used medicinal plants, which belongs to the genus Panax. Compared to uncured white ginseng, red ginseng has been generally regarded to produce superior pharmacological effects with lesser side/adverse effects, which made it popular in a variety of formulation from tea to oriental medicine. Using the prenatal valproic acid (VPA)-injection model of autism spectrum disorder (ASD) in rats, which produces social impairrment and altered seizure susceptibility as in human ASD patients as well as mild neural tube defects like crooked tail phenotype, we examined whether chronic administration of red ginseng extract may rescue the social impairment and crooked tail phenotype in prenatally VPA-exposed rat offspring. VPA-induced impairment in social interactions tested using sociability and social preference paradigms as well as crooked tail phenotypes were significantly improved by administration of Korean red ginseng (KRG) in a dose dependent manner. Rat offspring prenatally exposed to VPA showed higher sensitivity to electric shock seizure and increased locomotor activity in open-field test. KRG treatment reversed abnormal locomotor activity and sensitivity to electric shock to control level. These results suggest that KRG may modulate neurobehavioral and structural organization of nervous system adversely affected by prenatal exposure to VPA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Synthesis and Proteasome Inhibition of Glycyrrhetinic Acid Derivatives

    PubMed Central

    Huang, Li; Yu, Donglei; Ho, Phong; Qian, Keduo; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2008-01-01

    This study discovered that glycyrrhetinic acid inhibited the human 20S proteasome at 22.3 µM. Esterification of the C-3 hydroxyl group on glycyrrhetinic acid with various carboxylic acid reagents yielded a series of analogs with marked improved potency. Among the derivatives, glycyrrhetinic acid 3-O-isophthalate (17) was the most potent compound with IC50 of 0.22 µM, which was approximately 100-fold more potent than glycyrrhetinic acid. PMID:18562200

  13. Extracorporeal treatment for valproic acid poisoning: systematic review and recommendations from the EXTRIP workgroup.

    PubMed

    Ghannoum, Marc; Laliberté, Martin; Nolin, Thomas D; MacTier, Robert; Lavergne, Valery; Hoffman, Robert S; Gosselin, Sophie

    2015-06-01

    The EXtracorporeal TReatments In Poisoning (EXTRIP) workgroup presents its systematic review and clinical recommendations on the use of extracorporeal treatment (ECTR) in valproic acid (VPA) poisoning. The lead authors reviewed all of the articles from a systematic literature search, extracted the data, summarized the key findings, and proposed structured voting statements following a predetermined format. A two-round modified Delphi method was chosen to reach a consensus on voting statements and the RAND/UCLA Appropriateness Method was used to quantify disagreement. Anonymous votes were compiled, returned, and discussed in person. A second vote was conducted to determine the final workgroup recommendations. The latest literature search conducted in November 2014 retrieved a total of 79 articles for final qualitative analysis, including one observational study, one uncontrolled cohort study with aggregate analysis, 70 case reports and case series, and 7 pharmacokinetic studies, yielding a very low quality of evidence for all recommendations. Clinical data were reported for 82 overdose patients while pharmaco/toxicokinetic grading was performed in 55 patients. The workgroup concluded that VPA is moderately dialyzable (level of evidence = B) and made the following recommendations: ECTR is recommended in severe VPA poisoning (1D); recommendations for ECTR include a VPA concentration > 1300 mg/L (9000 μmol/L)(1D), the presence of cerebral edema (1D) or shock (1D); suggestions for ECTR include a VPA concentration > 900 mg/L (6250 μmol/L)(2D), coma or respiratory depression requiring mechanical ventilation (2D), acute hyperammonemia (2D), or pH ≤ 7.10 (2D). Cessation of ECTR is indicated when clinical improvement is apparent (1D) or the serum VPA concentration is between 50 and 100 mg/L (350-700 μmol/L)(2D). Intermittent hemodialysis is the preferred ECTR in VPA poisoning (1D). If hemodialysis is not available, then intermittent hemoperfusion (1D) or continuous

  14. Inhibition by somatostatin (growth-hormone release-inhibiting hormone, GH-RIH) of gastric acid and pepsin and G-cell release of gastrin.

    PubMed Central

    Barros D'sa, A A; Bloom, S R; Baron, J H

    1978-01-01

    Somatostatin (cyclic growth-hormone release-inhibiting hormone--GH-RIH) was infused into dogs with gastric fistulae. Somatostatin inhibited gastric acid response to four gastric stimulants--insulin, food, histamine, and pentagastrin. Histamine- and pentagastrin-stimulated pepsins were inhibited similarly to inhibition of acid. Somatostatin inhibited the gastrin response to insulin and food. PMID:348581

  15. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    PubMed Central

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  16. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  17. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways.

    PubMed

    van Geldermalsen, Michelle; Quek, Lake-Ee; Turner, Nigel; Freidman, Natasha; Pang, Angel; Guan, Yi Fang; Krycer, James R; Ryan, Renae; Wang, Qian; Holst, Jeff

    2018-06-26

    Cancer cells require increased levels of nutrients such as amino acids to sustain their rapid growth. In particular, leucine and glutamine have been shown to be important for growth and proliferation of some breast cancers, and therefore targeting the primary cell-surface transporters that mediate their uptake, L-type amino acid transporter 1 (LAT1) and alanine, serine, cysteine-preferring transporter 2 (ASCT2), is a potential therapeutic strategy. The ASCT2 inhibitor, benzylserine (BenSer), is also able to block LAT1 activity, thus inhibiting both leucine and glutamine uptake. We therefore aimed to investigate the effects of BenSer in breast cancer cell lines to determine whether combined LAT1 and ASCT2 inhibition could inhibit cell growth and proliferation. BenSer treatment significantly inhibited both leucine and glutamine uptake in MCF-7, HCC1806 and MDA-MB-231 breast cancer cells, causing decreased cell viability and cell cycle progression. These effects were not primarily leucine-mediated, as BenSer was more cytostatic than the LAT family inhibitor, BCH. Oocyte uptake assays with ectopically expressed amino acid transporters identified four additional targets of BenSer, and gas chromatography-mass spectrometry (GCMS) analysis of intracellular amino acid concentrations revealed that this BenSer-mediated inhibition of amino acid uptake was sufficient to disrupt multiple pathways of amino acid metabolism, causing reduced lactate production and activation of an amino acid response (AAR) through activating transcription factor 4 (ATF4). Together these data showed that BenSer blockade inhibited breast cancer cell growth and viability through disruption of intracellular amino acid homeostasis and inhibition of downstream metabolic and growth pathways.

  18. Moclobemide monotherapy vs. combined therapy with valproic acid or carbamazepine in depressive patients: a pharmacokinetic interaction study

    PubMed Central

    Ignjatovic, Anita Rakic; Miljkovic, Branislava; Todorovic, Dejan; Timotijevic, Ivana; Pokrajac, Milena

    2009-01-01

    AIM To assess the impact of valproic acid (VPA) and carbamazepine (CBZ) on moclobemide (MCB) pharmacokinetics (PK) and metabolism at steady state in depressive patients. METHODS Twenty-one inpatients with recurrent endogenous depression received MCB (150 mg t.i.d.), either as monotherapy or in combination with VPA (500 mg b.i.d.) or CBZ (200 mg b.i.d.) in a nonrandomized manner. Steady-state plasma PK parameters of MCB and its two metabolites, Ro 12-8095 and Ro 12-5637, were derived. Clinical assessments of treatment efficacy were performed weekly using standard depression rating scales. RESULTS CBZ, but not VPA, was associated with decreases in the MCB AUC by 35% [from 7.794 to 5.038 mg h l−1; 95% confidence interval (CI) −4.84863, −0.66194; P = 0.01] and Cmax by 28% (from 1.911 to 1.383 mg l−1; 95% CI −0.98197, −0.07518; P < 0.05), and an increase in its oral clearance by 41% (from 0.323 to 0.454 l h−1 kg−1; 95% CI 0.00086, 0.26171; P < 0.05) after 4 weeks of co-administration. MCB through concentrations were also decreased, on average by 41% (from 0.950 to 0.559 mg l−1; 95% CI −0.77479, −0.03301; P < 0.05). However, the efficacy in this group of patients was not inferior to the controls, for several possible reasons. Overall tolerability of all study medications was good. CONCLUSIONS VPA does not significantly affect PK or metabolism of MCB, whereas CBZ time-dependently decreases MCB exposure, probably by inducing metabolism of MCB and its major plasma metabolite. The actual clinical relevance of the observed MCB–CBZ PK interaction needs to be further evaluated in a more comprehensive study. PMID:19076986

  19. Ubiquitin-dependent distribution of the transcriptional coactivator p300 in cytoplasmic inclusion bodies.

    PubMed

    Chen, Jihong; Halappanavar, Sabina; Th' ng, John P H; Li, Qiao

    2007-01-01

    The protein level of transcriptional coactivator p300, an essential nuclear protein, is critical to a broad array of cellular activities including embryonic development, cell differentiation and proliferation. We have previously established that histone deacetylase inhibitor such as valproic acid induces p300 degradation through the 26S proteasome pathway. Here, we report the roles of cellular trafficking and spatial redistribution in valproic acid-induced p300 turnover. Our study demonstrates that p300 is redistributed to the cytoplasm prior to valproic acid-induced turnover. Inhibition of proteasome-dependent protein degradation, does not prevent nucleo-cytoplasmic shuttling of p300, rather sequesters the cytoplasmic p300 to a distinct perinuclear region. In addition, the formation of p300 aggregates in the perinuclear region depends on functional microtubule networks and correlates with p300 ubiquitination. Our work establishes, for the first time, that p300 is also a substrate of the cytoplasmic ubiquitin-proteasome system and provides insight on how cellular trafficking and spatial redistribution regulate the availability and activity of transcriptional coactivator p300.

  20. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice.

    PubMed

    Ornoy, Asher; Weinstein-Fudim, Liza; Tfilin, Matanel; Ergaz, Zivanit; Yanai, Joseph; Szyf, Moshe; Turgeman, Gadi

    2018-01-16

    A common animal model of ASD is the one induced by valproic acid (VPA), inducing epigenetic changes and oxidative stress. We studied the possible preventive effect of the methyl donor for epigenetic enzymatic reactions, S-adenosine methionine (SAM), on ASD like behavioral changes and on redox potential in the brain and liver in this model. ICR albino mice were injected on postnatal day 4 with one dose of 300 mg/kg of VPA, with normal saline (controls) or with VPA and SAM that was given orally for 3 days at the dose of 30 mg/kg body weight. From day 50, we carried out neurobehavioral tests and assessment of the antioxidant status of the prefrontal cerebral cortex, liver assessing SOD and CAT activity, lipid peroxidation and the expression of antioxidant genes. Mice injected with VPA exhibited neurobehavioral deficits typical of ASD that were more prominent in males. Changes in the activity of SOD and CAT increased lipid peroxidation and changes in the expression of antioxidant genes were observed in the prefrontal cortex of VPA treated mice, more prominent in females, while ASD like behavior was more prominent in males. There were no changes in the redox potential of the liver. The co-administration of VPA and SAM alleviated most ASD like neurobehavioral symptoms and normalized the redox potential in the prefrontal cortex. Early postnatal VPA administration induces ASD like behavior that is more severe in males, while the redox status changes are more severe in females; SAM corrects both. VPA-induced ASD seems to result from epigenetic changes, while the redox status changes may be secondary. Copyright © 2018. Published by Elsevier Inc.

  1. [The prevalence of obesity and metabolic syndrome in paediatric patients with epilepsy treated in monotherapy with valproic acid].

    PubMed

    Carmona-Vazquez, C R; Ruiz-Garcia, M; Pena-Landin, D M; Diaz-Garcia, L; Greenawalt, S R

    2015-09-01

    Valproic acid (VPA) is a useful antiepileptic drug for controlling different types of epilepsy. It has several side effects and is associated to increased body weight, as well as metabolic and endocrine disorders, including metabolic syndrome. To determine the prevalence of obesity and metabolic syndrome among paediatric patients with epilepsy treated in monotherapy with VPA. The study was cross-sectional, observational and analytical. A sample of patients treated with VPA between 2010-2014 were studied and the body mass index (BMI), abdominal perimeter, arterial blood pressure, glucose, triglycerides and high density lipoproteins (HDL) were studied in search of obesity and metabolic syndrome. Obesity was defined as a BMI above the 95th percentile, and metabolic syndrome was considered if at least three of the following criteria were fulfilled: abdominal perimeter above the 90th percentile, systolic arterial pressure above the 90th percentile, triglycerides above 110 mg/dL and HDL below 40 mg/dL. A total of 47 patients with a mean age of 10.1 ± 4 years were studied; 51.06% were males. Eight (17%) of them developed obesity and, of those, two (25%) had metabolic syndrome. Three patients went on to become overweight (6%). Statistically significant differences were observed in the mean age in comparison to the BMI groups, where the obese patients were adolescents (ANOVA, p = 0.0001) and those who took more VPA per day were the obese (ANOVA, p = 0.024). Patients treated with VPA who become obese may go on to develop metabolic syndrome. They require careful monitoring and, if they are seen to put on weight, withdrawal of the drug should be considered.

  2. Determination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection

    PubMed Central

    Fazeli-Bakhtiyari, Rana; Panahi-Azar, Vahid; Sorouraddin, Mohammad Hossein; Jouyban, Abolghasem

    2015-01-01

    Objective(s): Dispersive liquid-liquid microextraction coupled with gas chromatography (GC)-flame ionization detector was developed for the determination of valproic acid (VPA) in human plasma. Materials and Methods: Using a syringe, a mixture of suitable extraction solvent (40 µl chloroform) and disperser (1 ml acetone) was quickly added to 10 ml of diluted plasma sample containing VPA (pH, 1.0; concentration of NaCl, 4% (w/v)), resulting in a cloudy solution. After centrifugation (6000 rpm for 6 min), an aliquot (1 µl) of the sedimented organic phase was removed using a 1-µl GC microsyringe and injected into the GC system for analysis. One variable at a time optimization method was used to study various parameters affecting the extraction efficiency of target analyte. Then, the developed method was fully validated for its accuracy, precision, recovery, stability, and robustness. Results: Under the optimum extraction conditions, good linearity range was obtained for the calibration graph, with correlation coefficient higher than 0.998. Limit of detection and lower limit of quantitation were 3.2 and 6 μg/ml, respectively. The relative standard deviations of intra and inter-day analysis of examined compound were less than 11.5%. The relative recoveries were found in the range of 97 to 107.5%. Finally, the validated method was successfully applied to the analysis of VPA in patient sample. Conclusion: The presented method has acceptable levels of precision, accuracy and relative recovery and could be used for therapeutic drug monitoring of VPA in human plasma. PMID:26730332

  3. The Effect of Different Carbapenem Antibiotics (Ertapenem, Imipenem/Cilastatin, and Meropenem) on Serum Valproic Acid Concentrations.

    PubMed

    Wu, Chien-Chih; Pai, Tsung-Yu; Hsiao, Fei-Yuan; Shen, Li-Jiuan; Wu, Fe-Lin Lin

    2016-10-01

    Carbapenem antibiotics (CBPMs) may significantly reduce the serum concentration of valproic acid (VPA), but the extent of this effect among various CBPMs is unknown. This study compared the extent and onset of the interactions among ertapenem, imipenem/cilastatin, and meropenem. A 5-year retrospective study was performed. Hospitalized patients over 18 years old who received VPA and a CBPM concurrently were enrolled via the pharmacy computer system. Patients who lacked VPA serum concentration measurements before or during CBPMs' use, had concurrent medication(s) that might interfere with VPA metabolism, or had a history of liver cirrhosis were excluded. Total VPA serum concentrations before and during CBPMs' use and after its discontinuation were recorded, and differences among various CBPMs were analyzed. Fifty-two patients were included in this analysis. Irrespective of the route of administration, VPA serum concentrations were subtherapeutic in 90% of the subjects during CBPMs' use. There was a significant decrease (P < 0.001) in VPA serum concentrations during the use of CBPMs: 72% ± 17%, 42% ± 22%, and 67% ± 19% in the ertapenem (N = 9), imipenem/cilastatin (N = 17), and meropenem (N = 26) groups, respectively. The effect of ertapenem and meropenem on VPA was significantly more expressed than that of imipenem/cilastatin (P < 0.005). The onset of this drug interaction occurred within 24 hours of CBPMs' administration, and VPA serum concentrations returned to 90% of baseline within 7 days of CBPMs' discontinuation along with a 20% increase in VPA dose. Increasing VPA dose during the use of ertapenem or meropenem did not result in elevating VPA serum concentrations to therapeutic levels during the combined therapy period. CBPMs reduced VPA serum concentration within 24 hours of administration by approximately 60%. Ertapenem and meropenem had a greater effect on VPA serum concentration than imipenem/cilastatin. Because of the dramatic reduction of VPA serum

  4. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder.

    PubMed

    Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I

    2017-08-01

    Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.

  5. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  6. Influence of uridine diphosphate glucuronosyltransferase 2B7 -161C>T polymorphism on the concentration of valproic acid in pediatric epilepsy patients.

    PubMed

    Inoue, Kazuyuki; Suzuki, Eri; Yazawa, Rei; Yamamoto, Yoshiaki; Takahashi, Toshiki; Takahashi, Yukitoshi; Imai, Katsumi; Koyama, Seiichi; Inoue, Yushi; Tsuji, Daiki; Hayashi, Hideki; Itoh, Kunihiko

    2014-06-01

    Valproic acid (VPA) is widely used to treat various types of epilepsy. Interindividual variability in VPA pharmacokinetics may arise from genetic polymorphisms of VPA-metabolizing enzymes. This study aimed to examine the relationships between plasma VPA concentrations and the -161C>T single nucleotide polymorphism in uridine diphosphate glucuronosyltransferase (UGT) 2B7 genes in pediatric epilepsy patients. This study included 78 pediatric epilepsy patients carrying the cytochrome P450 (CYP) 2C9*1/*1 genotype and who were not treated with the enzyme inducers (phenytoin, phenobarbital, and carbamazepine), lamotrigine, and/or topiramate. CYP2C9*3 and UGT2B7 -161C>T polymorphisms were identified using methods based on polymerase chain reaction-restriction fragment length polymorphism. Blood samples were drawn from each patient under steady-state conditions, and plasma VPA concentrations were measured. Significant differences in adjusted plasma VPA concentrations were observed between carriers of CC, CT, and TT genotypes in the UGT2B7 -161C>T polymorphism (P = 0.039). Patients with the CC genotype had lower adjusted plasma VPA concentrations than those with CT or TT genotype (P = 0.028). These data suggest that the UGT2B7 -161C>T polymorphism in pediatric epilepsy patients carrying the CYP2C9*1/*1 genotype affects VPA concentration.

  7. Mechanism of Specific Inhibition of Phototropism by Phenylacetic Acid in Corn Seedling 1

    PubMed Central

    Vierstra, Richard D.; Poff, Kenneth L.

    1981-01-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that photoreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and β-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. For example, strong auxins, indole-3-acetic acid and naphthalene-1-acetic acid, affected both tropic responses at all concentrations tested whereas weak auxins, phenylacetic acid and naphthalene-2-acetic acid, exhibited specific inhibition. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism. PMID:16661774

  8. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  9. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2

  10. Reversal of pentylenetetrazole-altered swimming and neural activity-regulated gene expression in zebrafish larvae by valproic acid and valerian extract.

    PubMed

    Torres-Hernández, Bianca A; Colón, Luis R; Rosa-Falero, Coral; Torrado, Aranza; Miscalichi, Nahira; Ortíz, José G; González-Sepúlveda, Lorena; Pérez-Ríos, Naydi; Suárez-Pérez, Erick; Bradsher, John N; Behra, Martine

    2016-07-01

    Ethnopharmacology has documented hundreds of psychoactive plants awaiting exploitation for drug discovery. A robust and inexpensive in vivo system allowing systematic screening would be critical to exploiting this knowledge. The objective of this study was to establish a cheap and accurate screening method which can be used for testing psychoactive efficacy of complex mixtures of unknown composition, like plant crude extracts. We used automated recording of zebrafish larval swimming behavior during light vs. dark periods which we reproducibly altered with an anxiogenic compound, pentylenetetrazole (PTZ). First, we reversed this PTZ-altered swimming by co-treatment with a well-defined synthetic anxiolytic drug, valproic acid (VPA). Next, we aimed at reversing it by adding crude root extracts of Valeriana officinalis (Val) from which VPA was originally derived. Finally, we assessed how expression of neural activity-regulated genes (c-fos, npas4a, and bdnf) known to be upregulated by PTZ treatment was affected in the presence of Val. Both VPA and Val significantly reversed the PTZ-altered swimming behaviors. Noticeably, Val at higher doses was affecting swimming independently of the presence of PTZ. A strong regulation of all three neural-activity genes was observed in Val-treated larvae which fully supported the behavioral results. We demonstrated in a combined behavioral-molecular approach the strong psychoactivity of a natural extract of unknown composition made from V. officinalis. Our results highlight the efficacy and sensitivity of such an approach, therefore offering a novel in vivo screening system amenable to high-throughput testing of promising ethnobotanical candidates.

  11. The interplay between ventro striatal BDNF levels and the effects of valproic acid on the acquisition of ethanol-induced conditioned place preference in mice.

    PubMed

    Dos Santos, Manuel Alves; Escudeiro, Sarah Sousa; Vasconcelos, Germana Silva; Matos, Natália Castelo Branco; de Souza, Marcos Romário Matos; Patrocínio, Manoel Cláudio Azevedo; Dantas, Leonardo Pimentel; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2017-11-01

    Alcohol addiction is a chronic, relapsing and progressive brain disease with serious consequences for health. Compulsive use of alcohol is associated with the capacity to change brain structures involved with the reward pathway, such as ventral striatum. Recent evidence suggests a role of chromatin remodeling in the pathophysiology of alcohol dependence and addictive-like behaviors. In addition, neuroadaptive changes mediated by the brain-derived neurotrophic factor (BDNF) seems to be an interesting pharmacological target for alcoholism treatment. In the present study, we evaluated the effects of the deacetylase inhibitor valproic acid (VPA) (300mg/kg) on the conditioned rewarding effects of ethanol using conditioned place preference (CPP) (15% v/v; 2g/kg). Ethanol rewarding effect was investigated using a biased protocol of CPP. BDNF levels were measured in the ventral striatum. Ethanol administration induced CPP. VPA pretreatment did not reduce ethanol-CPP acquisition. VPA pretreatment increased BDNF levels when compared to ethanol induced-CPP. VPA pretreatment increased BDNF levels even in saline conditioned mice. Taken together, our results indicate a modulatory effect of VPA on the BDNF levels in the ventral striatum. Overall, this study brings initial insights into the involvement of neurotrophic mechanisms in the ventral striatum in ethanol-induced addictive-like behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inhibition of noradrenaline release by lysergic acid diethylamide

    PubMed Central

    Hughes, J.

    1973-01-01

    Lysergic acid diethylamide (LSD) inhibits the release of labelled noradrenaline from the guinea-pig vas deferens during intramural nerve stimulation and causes a corresponding reduction in the contractions of the smooth muscle. These effects of LSD are most prominent at low stimulus frequencies and they are prevented by treatment with phentolamine. It is concluded that LSD inhibits noradrenaline release by interacting with presynaptic α-adrenoceptors. PMID:4788042

  13. Inhibition of Microbial Lipases by Fatty Acids

    PubMed Central

    Smith, J. L.; Alford, John A.

    1966-01-01

    Addition of lard or sodium oleate to the medium used for lipase production by Pseudomonas fragi resulted in a decreased accumulation of lipase in the culture supernatant fluid without affecting cell growth. The production and activity of lipase was inhibited by lard, sodium oleate, and the salts of other unsaturated fatty acids. Some divalent cations, Tweens, lecithin, and bovine serum prevented oleate inhibition, but did not reverse it. Similar inhibitory actions were observed with Geotrichum candidum lipase, but not with a staphylococcal lipase or pancreatic lipase. A protective effect by protein in crude enzyme preparations is indicated. The ability of oleate to lower surface tension does not appear to be related to its ability to inhibit lipase. PMID:5970458

  14. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells.

    PubMed

    Maruyama, Hiroko; Kawakami, Fumitaka; Lwin, Thet-Thet; Imai, Motoki; Shamsa, Fazel

    2018-01-01

    In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.

  15. Inhibition of Isolated Mycobacterium tuberculosis Fatty Acid Synthase I by Pyrazinamide Analogs▿

    PubMed Central

    Ngo, Silvana C.; Zimhony, Oren; Chung, Woo Jin; Sayahi, Halimah; Jacobs, William R.; Welch, John T.

    2007-01-01

    An analog of pyrazinamide (PZA), 5-chloropyrazinamide (5-Cl-PZA), has previously been shown to inhibit mycobacterial fatty acid synthase I (FASI). FASI has been purified from a recombinant strain of M. smegmatis (M. smegmatis Δfas1 attB::M. tuberculosis fas1). Following purification, FASI activity and inhibition were assessed spectrophotometrically by monitoring NADPH oxidation. The observed inhibition was both concentration and structure dependent, being affected by both substitution at the 5 position of the pyrazine nucleus and the nature of the ester or N-alkyl group. Under the conditions studied, both 5-Cl-PZA and PZA exhibited concentration and substrate dependence consistent with competitive inhibition of FASI with Kis of 55 to 59 μM and 2,567 to 2,627 μM, respectively. The results were validated utilizing a radiolabeled fatty acid synthesis assay. This assay showed that FASI was inhibited by PZA and pyrazinoic acid as well as by a series of PZA analogs. PMID:17485499

  16. Mechanism of cinnamic acid-induced trypsin inhibition: A multi-technique approach

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol-1 and 50.70 J mol-1 K-1, respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.

  17. Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierstra, R.D.; Poff, K.L.

    1981-05-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that phototreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and ..beta..-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivatedmore » by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism.« less

  18. Inhibition effects of perfluoroalkyl acids on progesterone production in mLTC-1.

    PubMed

    Zhao, Wei; Cui, Ruina; Wang, Jianshe; Dai, Jiayin

    2017-06-01

    Perfluoroalkyl substances (PFASs) are a class of fluorine substituted carboxylic acid, sulfonic acid and alcohol, structurally similar to their corresponding parent compounds. Previous study demonstrated the potential endocrine disruption and reproductive toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid, two dominant PFASs in animals and humans. We explored the relationship between eleven perfluoroalkyl acids (PFAAs) with different carbon chain length and their ability to inhibit progesterone production in mouse Leydig tumor cells (mLTC-1). We found an obvious dose-response relationship between progesterone inhibition rate and PFAA exposure concentration in mLTC-1. The relative inhibition rate of progesterone by PFAAs was linearly related to the carbon chain length and molar refractivity of PFAAs. Mitochondrial membrane potential (MMP) decreased after PFAA exposure at the half-maximal inhibitory effect concentration (IC 50 ) of progesterone production in mLTC-1, while the reactive oxygen species (ROS) content increased significantly. These results imply that the inhibition effect of PFAAs on progesterone production might be due, in part, to ROS damage and the decrease in MMP in mLTC-1. Copyright © 2016. Published by Elsevier B.V.

  19. Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism.

    PubMed

    Schneider, Tomasz; Ziòłkowska, Barbara; Gieryk, Agnieszka; Tyminska, Anna; Przewłocki, Ryszard

    2007-09-01

    It has been suggested that behavioral aberrations observed in autism could be the result of dysfunction of the neuroregulatory role performed by the endogenous opioid peptides. Many of those aberrations have been recently modeled in rats exposed to valproic acid (VPA) on the 12th day of gestation (VPA rats). The aim of the present study was to elucidate functioning of the enkephalinergic system, one of the endogenous opioid peptide systems strongly involved in emotional responses, in VPA rats using both biochemical and behavioral methods. In situ hybridization was used to measure proenkephalin mRNA expression in adult VPA rats' central nucleus of the amygdala, the dorsal striatum, and the nucleus accumbens. Additional groups of animals were examined in a conditioned place aversion to naloxone, the elevated plus maze, and object recognition tests to assess their basal hedonic tone, anxiety, learning and memory, respectively. Prenatal exposure to VPA decreased proenkephalin mRNA expression in the dorsal striatum and the nucleus accumbens but not in the central nucleus of the amygdala. It also increased anxiety and attenuated conditioned place aversion to naloxone but had no impact on learning and memory. The present results suggest that prenatal exposure to VPA may lead to the decreased activity of the striatal enkephalinergic system and in consequence to increased anxiety and disregulated basal hedonic tone observed in VPA rats. Presented results are discussed in light of interactions between enkephalinergic, GABAergic, and dopaminergic systems in the striatum and mesolimbic areas of the brain.

  20. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  1. Inhibition of Human Amylin Aggregation and Cellular Toxicity by Lipoic Acid and Ascorbic Acid.

    PubMed

    Azzam, Sarah Kassem; Jang, Hyunwoo; Choi, Myung Chul; Alsafar, Habiba; Lukman, Suryani; Lee, Sungmun

    2018-04-30

    More than 30 human degenerative diseases result from protein aggregation such as Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Islet amyloid deposits, a hallmark in T2DM, are found in pancreatic islets of more than 90 % of T2DM patients. An association between amylin aggregation and reduction in β-cell mass was also established by post-mortem studies. A strategy in preventing protein aggregation-related disorders is to inhibit the protein aggregation and associated toxicity. In this study we demonstrated that two inhibitors, lipoic acid and ascorbic acid, significantly inhibited amylin aggregation. Compared to amylin (15 μM) as 100 %, lipoic acid and ascorbic acid reduced amylin fibril formation to 42.1 ± 17.2 % and 42.9 ± 12.8 % respectively, which is confirmed by fluorescence and TEM images. In cell viability tests, both inhibitors protected RIN-m5f β-cells from the toxicity of amylin aggregates. At 10:1 molar ratio of lipoic acid to amylin, lipoic acid with amylin increased the cell viability to 70.3 %, whereas only 42.8 % RIN-m5f β-cells survived in amylin aggregates. For ascorbic acid, an equimolar ratio achieved the highest cell viability of 63.3 % as compared to 42.8 % with amylin aggregates only. Docking results showed that lipoic acid and ascorbic acid physically interact with amylin amyloidogenic region (residues Ser20-Ser29) via hydrophobic interactions; hence reducing aggregation levels. Therefore, lipoic acid and ascorbic acid prevented amylin aggregation via hydrophobic interactions, which resulted in the prevention of cell toxicity in vitro.

  2. Haematological toxicity of Valproic acid compared to Levetiracetam in patients with glioblastoma multiforme undergoing concomitant radio-chemotherapy: a retrospective cohort study.

    PubMed

    Tinchon, Alexander; Oberndorfer, Stefan; Marosi, Christine; Gleiss, Andreas; Geroldinger, Angelika; Sax, Cornelia; Sherif, Camillo; Moser, Walter; Grisold, Wolfgang

    2015-01-01

    Patients with glioblastoma multiforme (GBM) and symptomatic seizures are in need of a sufficient antiepileptic treatment. Haematological toxicity is a limiting side effect of both, first line radio-chemotherapy with temozolomide (TMZ) and co-medication with antiepileptic drugs. Valproic acid (VPA) and levetiracetam (LEV) are considered favourable agents in brain tumor patients with seizures, but are commonly reported to induce haematological side effects on their own. We hypothesized, that antiepileptic treatment with these agents has no increased impact on haematological side effects during radio-chemotherapy in the first line setting. We included 104 patients from two neuro-oncologic centres with GBM and standard radio-chemotherapy in a retrospective cohort study. Patients were divided according to their antiepileptic treatment with either VPA, LEV or without antiepileptic drug therapy (control group). Declines in haemoglobin levels and absolute blood cell counts for neutrophil granulocytes, lymphocytes and thrombocytes were analyzed twice during concomitant and once during adjuvant phase. A comparison between the examined groups was performed, using a linear mixed model. Neutrophil granulocytes, lymphocytes and thrombocytes significantly decreased over time in all three groups (all p < 0.012), but there was no significant difference between the compared groups. A significant decline in haemoglobin was observed in the LEV treated group (p = 0.044), but did not differ between the compared groups. As a novel finding, this study demonstrates that co-medication either with VPA or LEV in GBM patients undergoing first line radio-chemotherapy with TMZ has no additional impact on medium-term haematological toxicity.

  3. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    PubMed

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Zoledronic Acid Inhibits Aromatase Activity and Phosphorylation: Potential Mechanism for Additive Zoledronic Acid and Letrozole Drug Interaction

    PubMed Central

    Schech, Amanda J.; Nemieboka, Brandon E.; Brodie, Angela H.

    2012-01-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole for 72 hours. This combination significantly increased inhibition of aromatase activity of AC-1 cells by compared to letrozole alone. Combination treatment of 1nM letrozole and 1μM and 10μM zoledronic acid resulted in an additive drug interaction on inhibiting cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine 473. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72 hours, as shown by a shift to the right in the estradiol dose response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability. PMID:22659283

  5. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase.

    PubMed

    Cui, Yi; Hu, Yong-Hua; Yu, Feng; Zheng, Jing; Chen, Lin-Shan; Chen, Qing-Xi; Wang, Qin

    2017-02-01

    This study was to investigate the inhibition effects of para-substituted cinnamic acid derivatives (4-chlorocinnamic acid, 4-ethoxycinnamic acid and 4-nitrocinnamic acid) on tyrosinase catalyzing the substrates, with the purpose of elucidating the inhibition mechanism of the tested derivatives on tyrosinase by the UV-vis spectrum, fluorescence spectroscopy, copper interacting and molecular docking, respectively. The native-PAGE results showed that 4-chlorocinnamic acid (4-CCA), 4-ethoxycinnamic acid (4-ECA) and 4-nitrocinnamic acid (4-NCA) had inhibitory effects on tyrosinase. Spectrophotometric analysis used to determine the inhibition capabilities of these compounds on tyrosinase catalyzing L-tyrosine (L-Tyr) and L-3,4-Dihydroxyphenylalanine (L-DOPA) as well. The IC 50 values and inhibition constants were further determined. Moreover, quenching mechanisms of tested compounds to tyrosinase belonged to static type and a red shift on fluorescence emission peak occurred when 4-NCA added. Copper interacting and molecular docking demonstrated that 4-CCA could not bind directly to the copper, but it could interact with residues in the active center of tyrosinase. Meanwhile, 4-ECA and 4-NCA could chelate a copper ion of tyrosinase. Anti-tyrosinase activities of para-substituted cinnamic acid derivatives would lay scientific foundation for their utilization in designing of novel tyrosinase inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid.

    PubMed

    Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick

    2017-01-10

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.

  7. Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ouro, Alberto; Arana, Lide; Rivera, Io-Guané; Ordoñez, Marta; Gomez-Larrauri, Ana; Presa, Natalia; Simón, Jorge; Trueba, Miguel; Gangoiti, Patricia; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-12-15

    Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Inhibition of rotavirus replication by downregulation of fatty acid synthesis.

    PubMed

    Gaunt, Eleanor R; Cheung, Winsome; Richards, James E; Lever, Andrew; Desselberger, Ulrich

    2013-06-01

    Recently the recruitment of lipid droplets (LDs) to sites of rotavirus (RV) replication was reported. LDs are polymorphic organelles that store triacylglycerols, cholesterol and cholesterol esters. The neutral fats are derived from palmitoyl-CoA, synthesized via the fatty acid biosynthetic pathway. RV-infected cells were treated with chemical inhibitors of the fatty acid biosynthetic pathway, and the effects on viral replication kinetics were assessed. Treatment with compound C75, an inhibitor of the fatty acid synthase enzyme complex (FASN), reduced RV infectivity 3.2-fold (P = 0.07) and modestly reduced viral RNA synthesis (1.2-fold). Acting earlier in the fatty acid synthesis pathway, TOFA [5-(Tetradecyloxy)-2-furoic acid] inhibits the enzyme acetyl-CoA carboxylase 1 (ACC1). TOFA reduced the infectivity of progeny RV 31-fold and viral RNA production 6-fold. The effect of TOFA on RV infectivity and RNA replication was dose-dependent, and infectivity was reduced by administering TOFA up to 4 h post-infection. Co-treatment of RV-infected cells with C75 and TOFA synergistically reduced viral infectivity. Knockdown by siRNA of FASN and ACC1 produced findings similar to those observed by inhibiting these proteins with the chemical compounds. Inhibition of fatty acid synthesis using a range of approaches uniformly had a more marked impact on viral infectivity than on viral RNA yield, inferring a role for LDs in virus assembly and/or egress. Specific inhibitors of fatty acid metabolism may help pinpoint the critical structural and biochemical features of LDs that are essential for RV replication, and facilitate the development of antiviral therapies.

  9. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    PubMed Central

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  10. Mechanism of cinnamic acid-induced trypsin inhibition: a multi-technique approach.

    PubMed

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol(-1) and 50.70 J mol(-1) K(-1), respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Phase 1/2 study of valproic acid and short-course radiotherapy plus capecitabine as preoperative treatment in low-moderate risk rectal cancer-V-shoRT-R3 (Valproic acid--short Radiotherapy--rectum 3rd trial).

    PubMed

    Avallone, Antonio; Piccirillo, Maria Carmela; Delrio, Paolo; Pecori, Biagio; Di Gennaro, Elena; Aloj, Luigi; Tatangelo, Fabiana; D'Angelo, Valentina; Granata, Cinzia; Cavalcanti, Ernesta; Maurea, Nicola; Maiolino, Piera; Bianco, Franco; Montano, Massimo; Silvestro, Lucrezia; Terranova Barberio, Manuela; Roca, Maria Serena; Di Maio, Massimo; Marone, Pietro; Botti, Gerardo; Petrillo, Antonella; Daniele, Gennaro; Lastoria, Secondo; Iaffaioli, Vincenzo R; Romano, Giovanni; Caracò, Corradina; Muto, Paolo; Gallo, Ciro; Perrone, Francesco; Budillon, Alfredo

    2014-11-24

    Locally advanced rectal cancer (LARC) is a heterogeneous group of tumors where a risk-adapted therapeutic strategy is needed. Short-course radiotherapy (SCRT) is a more convenient option for LARC patients than preoperative long-course RT plus capecitabine. Histone-deacetylase inhibitors (HDACi) have shown activity in combination with RT and chemotherapy in the treatment of solid tumors. Valproic acid (VPA) is an anti-epileptic drug with HDACi and anticancer activity. In preclinical studies, our group showed that the addition of HDACi, including VPA, to capecitabine produces synergistic antitumour effects by up-regulating thymidine phosphorylase (TP), the key enzyme converting capecitabine to 5-FU, and by downregulating thymidylate synthase (TS), the 5-FU target. Two parallel phase-1 studies will assess the safety of preoperative SCRT (5 fractions each of 5 Gy, on days 1 to 5) combined with (a) capecitabine alone (increasing dose levels: 500-825 mg/m2/bid), on days 1-21, or (b) capecitabine as above plus VPA (oral daily day -14 to 21, with an intra-patient titration for a target serum level of 50-100 microg/ml) followed by surgery 8 weeks after the end of SCRT, in low-moderate risk RC patients. Also, a randomized phase-2 study will be performed to explore whether the addition of VPA and/or capecitabine to preoperative SCRT might increase pathologic complete tumor regression (TRG1) rate. A sample size of 86 patients (21-22/arm) was calculated under the hypothesis that the addition of capecitabine or VPA to SCRT can improve the TRG1 rate from 5% to 20%, with one-sided alpha = 0.10 and 80% power.Several biomarkers will be evaluated comparing normal mucosa with tumor (TP, TS, VEGF, RAD51, XRCC1, Histones/proteins acetylation, HDAC isoforms) and on blood samples (polymorphisms of DPD, TS, XRCC1, GSTP1, RAD51 and XRCC3, circulating endothelial and progenitors cells; PBMCs-Histones/proteins acetylation). Tumor metabolism will be measured by 18FDG-PET at baseline and 15

  12. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition.

    PubMed

    Gu, Ruixin; Zhang, Minqin; Meng, Hu; Xu, Dandan; Xie, Yonghua

    2018-06-05

    Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  14. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner.

    PubMed

    Payne, David E; Martin, Nicholas R; Parzych, Katherine R; Rickard, Alex H; Underwood, Adam; Boles, Blaise R

    2013-02-01

    Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization.

  15. Tannic Acid Inhibits Staphylococcus aureus Surface Colonization in an IsaA-Dependent Manner

    PubMed Central

    Payne, David E.; Martin, Nicholas R.; Parzych, Katherine R.; Rickard, Alex H.; Underwood, Adam

    2013-01-01

    Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization. PMID:23208606

  16. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2'-bipyridyl, lipoic, kojic and picolinic acids.

    PubMed

    Çevik, Kübra; Ulusoy, Seyhan

    2015-08-01

    The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. The inhibitory activity of 2,2'-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  17. D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence.

    PubMed

    Xing, Su-Fang; Sun, Xue-Fei; Taylor, Alicia A; Walker, Sharon L; Wang, Yi-Fu; Wang, Shu-Guang

    2015-04-01

    Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems. © 2014 Wiley Periodicals, Inc.

  18. 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

    PubMed

    Carballeira, Néstor M; Cartagena, Michelle; Sanabria, David; Tasdemir, Deniz; Prada, Christopher F; Reguera, Rosa M; Balaña-Fouce, Rafael

    2012-10-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.3±0.7μM. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1μM) and Trypanosoma brucei rhodesiense (IC(50)=64.5μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells.

    PubMed

    Zhou, Weibo; Simpson, P Jeanette; McFadden, Jill M; Townsend, Craig A; Medghalchi, Susan M; Vadlamudi, Aravinda; Pinn, Michael L; Ronnett, Gabriele V; Kuhajda, Francis P

    2003-11-01

    C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the

  20. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway*

    PubMed Central

    Shan, Jian-zhen; Xuan, Yan-yan; Zheng, Shu; Dong, Qi; Zhang, Su-zhan

    2009-01-01

    Objective: To investigate the effects of ursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory effects of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 μmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P<0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P<0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer. PMID:19735099

  1. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism.

    PubMed

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Katashiba, Keisuke; Hasebe, Shigeru; Takano, Erika; Onaka, Yusuke; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2016-09-01

    Rodents exposed prenatally to valproic acid (VPA) show autism-related behavioral abnormalities. We recently found that prenatal VPA exposure causes a reduction of dopaminergic activity in the prefrontal cortex of male, but not female, mice. This suggests that reduced prefrontal dopaminergic activity is associated with behavioral abnormalities in VPA-treated mice. In the present study, we examined whether the attention deficit/hyperactivity disorder drugs methylphenidate and atomoxetine (which increase dopamine release in the prefrontal cortex, but not striatum, in mice) could alleviate the behavioral abnormalities and changes in dendritic spine morphology induced by prenatal VPA exposure. We found that methylphenidate and atomoxetine increased prefrontal dopamine and noradrenaline release in VPA-treated mice. Acute treatment with methylphenidate or atomoxetine did not alleviate the social interaction deficits or recognition memory impairment in VPA-treated mice, while chronic treatment for 2 weeks did. Methylphenidate or atomoxetine for 2 weeks also improved the prenatal VPA-induced decrease in dendritic spine density in the prefrontal cortex. The effects of these drugs on behaviors and dendritic spine morphology were antagonized by concomitant treatment with the dopamine-D1 receptor antagonist SCH39166 or the dopamine-D2 receptor antagonist raclopride, but not by the α2 -adrenoceptor antagonist idazoxan. These findings suggest that chronic treatment with methylphenidate or atomoxetine improves abnormal behaviors and diminishes the reduction in spine density in VPA-treated mice via a prefrontal dopaminergic system-dependent mechanism. Autism Res 2016, 9: 926-939. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  2. The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fan; Li, Pengcheng; Gong, Jianhua

    Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer)more » augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.« less

  3. Inhibition of Fatty Acid Metabolism Reduces Human Myeloma Cells Proliferation

    PubMed Central

    Tirado-Vélez, José Manuel; Joumady, Insaf; Sáez-Benito, Ana; Cózar-Castellano, Irene; Perdomo, Germán

    2012-01-01

    Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma. PMID:23029529

  4. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes

    PubMed Central

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2014-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have “anti-obesity properties” by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes. PMID:26167409

  5. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    PubMed

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes.

  6. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose

    2009-08-15

    Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCAmore » transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.« less

  7. Inhibition of Titanium In Fuming Nitric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RITTENHOUSE, J. B.; PAPP, C. A.

    1958-06-01

    Storage tests were conducted to determine the effectiveness of oxygen in inhibiting the corrosion reaction of titanium in fuming nitric acid (FNA). In these tests, which were of 28 days duration at a temperature of 30 C, the samples investigated were ½-inch squares (0.020 inch thick) of commercially pure titanium (75A) and a binary 8 percent-manganese alloy (C110M). The specimens were stored in Teflon-lined aluminum pressure vessels at 50 percent ullage. The pressure vessels were of the following types: vented to the atmosphere, sealed with air in the vapor space, sealed with oxygen atmosphere in the vapor space, and equippedmore » for a 1-ml/minute oxygen flow through the vapor space. Finally, results of the investigation indicated no inhibition of titanium corrosion by oxygen, but confirmed the inhibiting effect of a water content of 1 to 2 percent by weight in the FNA.« less

  8. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  9. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    PubMed

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-04

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  10. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro.

    PubMed

    Ogawa, Motohiko; Shirasago, Yoshitaka; Ando, Shuji; Shimojima, Masayuki; Saijo, Masayuki; Fukasawa, Masayoshi

    2018-04-05

    Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) causes tick-borne hemorrhagic fever in East Asia. The disease is characterized by high morbidity and mortality. Here, we evaluated the effects of caffeic acid (CA), a coffee-related organic acid with antiviral effects, against SFTSV infection. CA dose-dependently inhibited SFTSV infection in permissive human hepatoma Huh7.5.1-8 cells when SFTSV was added into the culture medium with CA. However, quinic acid (QA), another coffee-related organic acid, did not inhibit SFTSV infection. The 50% inhibitory concentration (IC 50 ) of CA against SFTSV was 0.048 mM, whereas its 50% cytotoxic concentration was 7.6 mM. The selectivity index (SI) was 158. Pre-incubation of SFTSV with CA for 4 h resulted in a greater inhibition of SFTSV infection (IC 50  = 0.019 mM; SI = 400). The pre-incubation substantially decreased viral attachment to the cells. CA treatment of the SFTSV-infected cells also inhibited the infection, albeit less effectively. CA activity after cell infection with SFTSV was more pronounced at a low multiplicity of infection (MOI) of 0.01 per cell (IC 50  = 0.18 mM) than at a high MOI of 1 per cell (IC 50  > 1 mM). Thus, CA inhibited virus spread by acting directly on the virus rather than on the infected cells. In conclusion, CA acted on SFTSV and inhibited viral infection and spread, mainly by inhibiting the binding of SFTSV to the cells. We therefore demonstrated CA to be a potential anti-SFTSV drug for preventing and treating SFTS. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    PubMed

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Clinical Validation and Implications of Dried Blood Spot Sampling of Carbamazepine, Valproic Acid and Phenytoin in Patients with Epilepsy

    PubMed Central

    Kong, Sing Teang; Lim, Shih-Hui; Lee, Wee Beng; Kumar, Pasikanthi Kishore; Wang, Hwee Yi Stella; Ng, Yan Lam Shannon; Wong, Pei Shieen; Ho, Paul C.

    2014-01-01

    To facilitate therapeutic monitoring of antiepileptic drugs (AEDs) by healthcare professionals for patients with epilepsy (PWE), we applied a GC-MS assay to measure three AEDs: carbamazepine (CBZ), phenytoin (PHT) and valproic acid (VPA) levels concurrently in one dried blood spot (DBS), and validated the DBS-measured levels to their plasma levels. 169 PWE on either mono- or polytherapy of CBZ, PHT or/and VPA were included. One DBS, containing ∼15 µL of blood, was acquired for the simultaneous measurement of the drug levels using GC-MS. Simple Deming regressions were performed to correlate the DBS levels with the plasma levels determined by the conventional immunoturbimetric assay in clinical practice. Statistical analyses of the results were done using MedCalc Version 12.6.1.0 and SPSS 21. DBS concentrations (Cdbs) were well-correlated to the plasma concentrations (Cplasma): r = 0.8381, 0.9305 and 0.8531 for CBZ, PHT and VPA respectively, The conversion formulas from Cdbs to plasma concentrations were [0.89×CdbsCBZ+1.00]µg/mL, [1.11×CdbsPHT−1.00]µg/mL and [0.92×CdbsVPA+12.48]µg/mL respectively. Inclusion of the red blood cells (RBC)/plasma partition ratio (K) and the individual hematocrit levels in the estimation of the theoretical Cplasma from Cdbs of PHT and VPA further improved the identity between the observed and the estimated theoretical Cplasma. Bland-Altman plots indicated that the theoretical and observed Cplasma of PHT and VPA agreed well, and >93.0% of concentrations was within 95% CI (±2SD); and similar agreement (1∶1) was also found between the observed Cdbs and Cplasma of CBZ. As the Cplasma of CBZ, PHT and VPA can be accurately estimated from their Cdbs, DBS can therefore be used for drug monitoring in PWE on any of these AEDs. PMID:25255292

  13. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia.

    PubMed

    Brose, Stephen A; Golovko, Svetlana A; Golovko, Mikhail Y

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke.

  14. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    PubMed Central

    Brose, Stephen A.; Golovko, Svetlana A.; Golovko, Mikhail Y.

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke. PMID:27965531

  15. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  17. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    USDA-ARS?s Scientific Manuscript database

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  18. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerbino, Andrea, E-mail: gerbino@biologia.uniba.i; Debellis, Lucantonio; Caroppo, Rosa

    2010-06-01

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I{sub sc}), transepithelial potential (V{sub t}) and resistance (R{sub t}) were recorded in the continuous presence of cadmium. Addition of cadmium (20 {mu}M to 1 mM) on the serosal but not luminalmore » side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I{sub sc} cannot be explained by an action on: 1) H{sub 2} histamine receptor, 2) Ca{sup 2+} signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H{sup +}/K{sup +}-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H{sup +}/K{sup +}-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.« less

  19. Design and Comparative Evaluation of the Anticonvulsant Profile, Carbonic-Anhydrate Inhibition and Teratogenicity of Novel Carbamate Derivatives of Branched Aliphatic Carboxylic Acids with 4-Aminobenzensulfonamide.

    PubMed

    Bibi, David; Mawasi, Hafiz; Nocentini, Alessio; Supuran, Claudiu T; Wlodarczyk, Bogdan; Finnell, Richard H; Bialer, Meir

    2017-07-01

    Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100 + years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6-9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED 50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED 50  = 13 mg/kg and ED 50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED 50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.

  20. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells

    PubMed Central

    Hagedorn, Curt H.

    2015-01-01

    Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid’s structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation. PMID:26186636

  1. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  2. Catalytic and inhibiting effect of amino acids on the porphyrin metallation reactions

    NASA Astrophysics Data System (ADS)

    Mamardashvili, Galina M.; Zhdanova, Daria Yu.; Mamardashvili, Nugzar Zh.; Koifman, Oskar I.; Dehaen, Wim

    In the present work, using the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride as an example, it has been shown how different amino acid additives (glycine, valine, leucine and tryptophan) catalyze or inhibit the formation of Cu-porphyrin as a function of the chemical environment (borate buffer (pH7.4), DMSO) and the concentration of the additive. It has been demonstrated that the type of amino acid affects the complexation reaction rate. Possible mechanisms of metalloporphyrin formation and the ways of their acceleration are discussed. Ways in which different amino acid additives catalyze or inhibit the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride are examined.

  3. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids

    PubMed Central

    Palade, PT; Barchi, RL

    1977-01-01

    25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness. These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel. PMID:894246

  4. Specific Inhibition of the Cyanide-insensitive Respiratory Pathway in Plant Mitochondria by Hydroxamic Acids

    PubMed Central

    Schonbaum, Gregory R.; Bonner, Walter D.; Storey, Bayard T.; Bahr, James T.

    1971-01-01

    Hydroxamic acids, R-CONHOH, are inhibitors specific to the respiratory pathway through the alternate, cyanide-insensitive terminal oxidase of plant mitochondria. The nature of the R group in these compounds affects the concentration at which the hydroxamic acids are effective, but it appears that all hydroxamic acids inhibit if high enough concentrations are used. The benzhydroxamic acids are effective at relatively low concentrations; of these, the most effective are m-chlorobenzhydroxamic acid and m-iodobenzhydroxamic acid. The concentrations required for half-maximal inhibition of the alternate oxidase pathway in mung bean (Phaseolus aureus) mitochondria are 0.03 mm for m-chlorobenzhydroxamic acid and 0.02 mm for m-iodobenzhydroxamic acid. With skunk cabbage (Symplocarpus foetidus) mitochondria, the required concentrations are 0.16 for m-chlorobenzhydroxamic acid and 0.05 for m-iodobenzhydroxamic acid. At concentrations which inhibit completely the alternate oxidase pathway, these two compounds have no discernible effect on either the respiratory pathway through cytochrome oxidase, or on the energy coupling reactions of these mitochondria. These inhibitors make it possible to isolate the two respiratory pathways and study their mode of action separately. These inhibitors also enhance an electron paramagnetic resonance signal near g = 2 in anaerobic, submitochondrial particles from skunk cabbage, which appears to be specific to the alternate oxidase and thus provides a means for its assay. PMID:5543780

  5. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  6. NMDA inhibits oxotremorine-induced acid secretion via the NO-dependent cyclic GMP system in rat stomach.

    PubMed

    Tsai, L H; Lee, Y J

    2001-12-31

    The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.

  7. Drug-nutrient interactions: inhibition of amino acid intestinal absorption by fluoxetine.

    PubMed

    Urdaneta, E; Idoate, I; Larralde, J

    1998-05-01

    Fluoxetine is one of the most widely used antidepressants and nowadays it is also being used to manage obesity problems. In our laboratory we demonstrated that the drug inhibited sugar absorption (Monteiro et al. 1993). The aim of the present work was to determine the effect of fluoxetine on intestinal leucine absorption. Using a procedure of successive absorptions in vivo the drug diminished amino acid absorption by 30% (P < 0.001). Experiments in vitro in isolated jejunum also revealed a reduction in leucine uptake of 37% (P < 0.001). In both cases fluoxetine only affected mediated transport without altering diffusion. In a preparation enriched in basolateral membrane, fluoxetine inhibited the Na+,K(+)-ATPase (EC 3.6.1.37) activity (55%; P < 0.001) in a non-competitive manner with an inhibition constant (Ki) value of 0.92 mM. Leucine uptake by brush-border membrane vesicles was diminished by the drug (a reduction of 48% was observed at 30s, P < 0.001); only the apical Na(+)-dependent transport system of the amino acid was modified and the inhibition was non-competitive. Leucine uptake in the presence of lysine indicated that transporter B was involved. These results suggest that fluoxetine reduces leucine absorption by its action on the basolateral and apical membrane of the enterocyte; the nutritional status of the patients under drug treatment may be affected as neutral amino acid absorption is decreased.

  8. Development of water-phase derivatization followed by solid-phase microextraction and gas chromatography/mass spectrometry for fast determination of valproic acid in human plasma.

    PubMed

    Deng, Chunhui; Li, Ning; Ji, Jie; Yang, Bei; Duan, Gengli; Zhang, Xiangmin

    2006-01-01

    In this study, a simple, rapid, and sensitive method was developed and validated for the quantification of valproic acid (VPA), an antiepileptic drug, in human plasma, which was based on water-phase derivatization followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS). In the proposed method, VPA in plasma was rapidly derivatized with a mixture of isobutyl chloroformate, ethanol and pyridine under mild conditions (room temperature, aqueous medium), and the VPA ethyl ester formed was headspace-extracted and simultaneously concentrated using the SPME technique. Finally, the analyte extracted on SPME fiber was analyzed by GC/MS. The experimental parameters and method validations were studied. The optimal conditions were obtained: PDMS fiber, stirring rate of 1100 rpm, sample temperature of 80 degrees C, extraction time of 20 min, NaCl concentration of 30%. The proposed method had a limit of quantification (0.3 microg/mL), good recovery (89-97%) and precision (RSD value less than 10%). Because the proposed method combined a rapid water-phase derivatization with a fast, simple and solvent-free sample extraction and concentration technique of SPME, the sample preparation time was less than 25 min. This much shortens the whole analysis time of VPA in plasma. The validated method has been successfully used to analyze VPA in human plasma samples for application in pharmacokinetic studies. All these results show that water-phase derivatization followed by HS-SPME and GC/MS is an alternative and powerful method for fast determination of VPA in biological fluids. Copyright 2006 John Wiley & Sons, Ltd.

  9. Inhibitory activity and mechanism of inhibition of the N-[[(4-benzoylamino)phenyl]sulfonyl]amino acid aldose reductase inhibitors.

    PubMed

    DeRuiter, J; Mayfield, C A

    1990-11-15

    A series of substituted N-[[(4-benzoylamino)phenyl]sulfonyl]amino acids (BAPS-amino acids) were synthesized by established methods, and the stereochemistry of the products was confirmed by HPLC analysis after chiral derivatization. When tested against aldose reductase (alditol:NADP+ oxidoreductase; EC 1.1.1.21; ALR2) isolated from rat lens, all of the BAPS-amino acids were determined to be significantly more inhibitory than the corresponding N-(phenylsulfonyl)amino acids. Structure-inhibition and enzyme kinetic analyses suggest that the BAPS-amino acids inhibit ALR2 by a mechanism similar to the N-(phenylsulfonyl)amino acids. However, multiple inhibition analyses indicate that the increased inhibitory activity of the BAPS-amino acids is a result of interaction with multiple sites present on ALR2. Enzyme specificity studies with several of the BAPS-amino acids demonstrated that these compounds do not produce significant inhibition of other nucleotide-requiring enzymes including aldehyde reductase (alcohol: NADP+ oxidoreductase; EC 1.1.1.2; ALR1).

  10. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    PubMed

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-05-01

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits

  11. Analysis of variability of concentrations of valproic acid (VPA) and its selected metabolites in the blood serum of patients treated with VPA and patients hospitalized because of VPA poisoning.

    PubMed

    Wilimowska, J; Kłys, M; Jawień, W

    2014-01-01

    To compare the metabolic profile of valproic acid (VPA) in the studied groups of cases through an analysis of variability of concentrations of VPA with its selected metabolites (2-ene-VPA, 4-ene-VPA, 3-keto-VPA). Blood serum samples collected from 27 patients treated with VPA drugs in the Psychiatry Unit and in the Neurology and Cerebral Strokes Unit at the Ludwik Rydygier Provincial Specialist Hospital in Krakow, and blood serum samples collected from 26 patients hospitalized because of suspected acute VPA poisoning at the Toxicology Department, Chair of Toxicology and Environmental Diseases, Jagiellonian University Medical College in Krakow. The analysis of concentrations of VPA and its selected metabolites has shown that the metabolic profile of VPA determined in cases of acute poisoning is different from cases of VPA therapy. One of VPA's metabolic pathways - the process of desaturation - is unchanged in acute poisoning and prevails over the process of β-oxidation. The ingestion of toxic VPA doses results in an increased formation of 4-ene-VPA, proportional to an increase in VPA concentration. Acute VPA poisoning involves the saturation of VPA's metabolic transformations at the stage of β-oxidation. The process of oxidation of 2-ene-VPA to 3-keto-VPA is slowed down after the ingestion of toxic doses.

  12. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  13. Differential Gene Expression for Investigation of Escherichia coli Biofilm Inhibition by Plant Extract Ursolic Acid

    PubMed Central

    Ren, Dacheng; Zuo, Rongjun; González Barrios, Andrés F.; Bedzyk, Laura A.; Eldridge, Gary R.; Pasmore, Mark E.; Wood, Thomas K.

    2005-01-01

    After 13,000 samples of compounds purified from plants were screened, a new biofilm inhibitor, ursolic acid, has been discovered and identified. Using both 96-well microtiter plates and a continuous flow chamber with COMSTAT analysis, 10 μg of ursolic acid/ml inhibited Escherichia coli biofilm formation 6- to 20-fold when added upon inoculation and when added to a 24-h biofilm; however, ursolic acid was not toxic to E. coli, Pseudomonas aeruginosa, Vibrio harveyi, and hepatocytes. Similarly, 10 μg of ursolic acid/ml inhibited biofilm formation by >87% for P. aeruginosa in both complex and minimal medium and by 57% for V. harveyi in minimal medium. To investigate the mechanism of this nontoxic inhibition on a global genetic basis, DNA microarrays were used to study the gene expression profiles of E. coli K-12 grown with or without ursolic acid. Ursolic acid at 10 and 30 μg/ml induced significantly (P < 0.05) 32 and 61 genes, respectively, and 19 genes were consistently induced. The consistently induced genes have functions for chemotaxis and mobility (cheA, tap, tar, and motAB), heat shock response (hslSTV and mopAB), and unknown functions (such as b1566 and yrfHI). There were 31 and 17 genes repressed by 10 and 30 μg of ursolic acid/ml, respectively, and 12 genes were consistently repressed that have functions in cysteine synthesis (cysK) and sulfur metabolism (cysD), as well as unknown functions (such as hdeAB and yhaDFG). Ursolic acid inhibited biofilms without interfering with quorum sensing, as shown with the V. harveyi AI-1 and AI-2 reporter systems. As predicted by the differential gene expression, deleting motAB counteracts ursolic acid inhibition (the paralyzed cells no longer become too motile). Based on the differential gene expression, it was also discovered that sulfur metabolism (through cysB) affects biofilm formation (in the absence of ursolic acid). PMID:16000817

  14. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  15. Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties.

    PubMed

    Gezginci-Oktayoglu, Selda; Turkyilmaz, Ismet Burcu; Ercin, Merve; Yanardag, Refiye; Bolkent, Sehnaz

    2016-01-01

    The aim of present study was to investigate the effect of vitamin U (vit U, S-methylmethionine) on oxidative stress, inflammation, and fibrosis within the context of valproic acid (VPA)-induced renal damage. In this study, female Sprague Dawley rats were randomly divided into four groups: Group I consisted of intact animals, group II was given vit U (50 mg/kg/day, by gavage), group III was given VPA (500 mg/kg/day, intraperitonally), and group IV was given VPA + vit U. The animals were treated by vit U 1 h prior to treatment with VPA every day for 15 days. The following results were obtained in vit U + VPA-treated rats: (i) the protective effect of vit U on renal damage was shown by a significant decrease in histopathological changes and an increase in Na(+)/K(+)-ATPase activity; (ii) anti-oxidant property of vit U was demonstrated by a decrease in malondialdehyde levels and xanthine oxidase activity and an increase in glutathione levels, catalase and superoxide dismutase activities; (iii) anti-inflammatory property of vit U was demonstrated by a decrease in tumor necrosis factor-α, interleukin-1β, monocyte chemoattractant protein-1 levels, and adenosine deaminase activity; (iv) anti-fibrotic effect of vit U was shown by a decrease in transforming growth factor-β, collagen-1 levels, and arginase activity. Collectively, these data show that VPA is a promoter of inflammation, oxidative stress, and fibrosis which resulted in renal damage. Vit U can be proposed as a potential candidate for preventing renal damage which arose during the therapeutic usage of VPA.

  16. Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain. A possible new animal model of autism.

    PubMed

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen; Nyengaard, Jens R; Møller, Arne

    2014-09-19

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20mg/kg or 100mg/kg) continuously during the last 9-12 days of pregnancy and during the lactation period until sacrifice on the 23rd postnatal day. Total number of neocortical neurons was estimated using the optical fractionator and frontal cortical thicknesses were sampled in VPA exposed pups compared with an unexposed control group. We found that pups exposed to 20mg/kg and 100mg/kg doses of VPA had statistically significant higher total number of neurons in neocortex by 15.8% and 12.3%, respectively (p<0.05) compared to controls amounting to 15.5×10(6) neocortical neurons (p<0.01). There was no statistical difference between the two VPA groups. Pups exposed to100mg/kg, but not to 20mg/kg VPA displayed a significant (p<0.05) broader (7.5%) of frontal cortical thickness compared to controls. Our results support the hypothesis that fetal exposure of VPA may interfere with normal brain development by disturbing neocortical organization, resulting in overgrowth of frontal lobes and increased neuronal cell numbers. The results indirectly suggest that prenatal VPA may contribute as a causative factor in the brain developmental disturbances equivalent to those seen in human autism spectrum disorders. We therefore suggest that this version of the VPA model may provide a translational model of autism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauze, Andra V.; Myrehaug, Sten D.; Chang, Michael G.

    Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/daymore » over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.« less

  18. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    PubMed

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  19. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis

    PubMed Central

    Jin, Junfei; Lu, Zhongyang; Li, Yanchun; Cowart, L. Ashley; Lopes-Virella, Maria F.

    2018-01-01

    It is well known that saturated fatty acids (SFAs) and unsaturated fatty acid, in particular omega-3 polyunsaturated fatty acids (n-3 PUFAs), have different effects on inflammatory signaling: SFAs are pro-inflammatory but n-3 PUFAs have strong anti-inflammatory properties. We have reported that palmitic acid (PA), a saturated fatty acid, robustly amplifies lipopolysaccharide (LPS) signaling to upregulate proinflammatory gene expression in macrophages. We also reported that the increased production of ceramide (CER) via sphingomyelin (SM) hydrolysis and CER de novo synthesis plays a key role in the synergistic effect of LPS and PA on proinflammatory gene expression. However, it remains unclear if n-3 PUFAs are capable of antagonizing the synergistic effect of LPS and PA on gene expression and CER production. In this study, we employed the above macrophage culture system and lipidomical analysis to assess the effect of n-3 PUFAs on proinflammatory gene expression and CER production stimulated by LPS and PA. Results showed that DHA strongly inhibited the synergistic effect of LPS and PA on proinflammatory gene expression by targeting nuclear factor kappa B (NFκB)-dependent gene transcription. Results also showed that DHA inhibited the cooperative effect of LPS and PA on CER production by targeting CER de novo synthesis, but not SM hydrolysis. Furthermore, results showed that myriocin, a specific inhibitor of serine palmitoyltransferase, strongly inhibited both LPS-PA-stimulated CER synthesis and proinflammatory gene expression, indicating that CER synthesis is associated with proinflammatory gene expression and that inhibition of CER synthesis contributes to DHA-inhibited proinflammatory gene expression. Taken together, this study demonstrates that DHA antagonizes the boosting effect of PA on LPS signaling on proinflammatory gene expression by targeting both NFκB-dependent transcription and CER de novo synthesis in macrophages. PMID:29474492

  20. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis.

    PubMed

    Jin, Junfei; Lu, Zhongyang; Li, Yanchun; Cowart, L Ashley; Lopes-Virella, Maria F; Huang, Yan

    2018-01-01

    It is well known that saturated fatty acids (SFAs) and unsaturated fatty acid, in particular omega-3 polyunsaturated fatty acids (n-3 PUFAs), have different effects on inflammatory signaling: SFAs are pro-inflammatory but n-3 PUFAs have strong anti-inflammatory properties. We have reported that palmitic acid (PA), a saturated fatty acid, robustly amplifies lipopolysaccharide (LPS) signaling to upregulate proinflammatory gene expression in macrophages. We also reported that the increased production of ceramide (CER) via sphingomyelin (SM) hydrolysis and CER de novo synthesis plays a key role in the synergistic effect of LPS and PA on proinflammatory gene expression. However, it remains unclear if n-3 PUFAs are capable of antagonizing the synergistic effect of LPS and PA on gene expression and CER production. In this study, we employed the above macrophage culture system and lipidomical analysis to assess the effect of n-3 PUFAs on proinflammatory gene expression and CER production stimulated by LPS and PA. Results showed that DHA strongly inhibited the synergistic effect of LPS and PA on proinflammatory gene expression by targeting nuclear factor kappa B (NFκB)-dependent gene transcription. Results also showed that DHA inhibited the cooperative effect of LPS and PA on CER production by targeting CER de novo synthesis, but not SM hydrolysis. Furthermore, results showed that myriocin, a specific inhibitor of serine palmitoyltransferase, strongly inhibited both LPS-PA-stimulated CER synthesis and proinflammatory gene expression, indicating that CER synthesis is associated with proinflammatory gene expression and that inhibition of CER synthesis contributes to DHA-inhibited proinflammatory gene expression. Taken together, this study demonstrates that DHA antagonizes the boosting effect of PA on LPS signaling on proinflammatory gene expression by targeting both NFκB-dependent transcription and CER de novo synthesis in macrophages.

  1. Specific Effect of Guanidine in the Programming of Poliovirus Inhibition of Deoxyribonucleic Acid Synthesis

    PubMed Central

    Powers, C. D.; Miller, B. A.; Kurtz, H.; Ackermann, W. W.

    1969-01-01

    Inhibition of HeLa cell deoxyribonucleic acid (DNA) synthesis, which occurred by the 4th to 5th hr after infection with poliovirus, could be blocked completely by guanidine only when it was present before the 2nd hr. At the 2nd hr, there was no significant ribonucleic acid (RNA)-replicase activity, and addition of guanidine inhibited all production of virus but allowed 57% of maximal DNA inhibition to develop. Maximum DNA inhibition developed in cells infected for 4 hr in the presence of guanidine when the guanidine was removed for a 10-min interval. RNA-replicase activity was not enzymatically detectable and viral multiplication did not develop in these cells unless the interval without guanidine was extended to 60 min. The interpretation of the data was that the effect of guanidine on viral-induced inhibition of DNA synthesis was distinct and not a consequence of the inhibition of RNA-replicase. PMID:4305675

  2. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma.

  3. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell

    PubMed Central

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  4. A population pharmacokinetic model of valproic acid in pediatric patients with epilepsy: a non-linear pharmacokinetic model based on protein-binding saturation.

    PubMed

    Ding, Junjie; Wang, Yi; Lin, Weiwei; Wang, Changlian; Zhao, Limei; Li, Xingang; Zhao, Zhigang; Miao, Liyan; Jiao, Zheng

    2015-03-01

    Valproic acid (VPA) follows a non-linear pharmacokinetic profile in terms of protein-binding saturation. The total daily dose regarding VPA clearance is a simple power function, which may partially explain the non-linearity of the pharmacokinetic profile; however, it may be confounded by the therapeutic drug monitoring effect. The aim of this study was to develop a population pharmacokinetic model for VPA based on protein-binding saturation in pediatric patients with epilepsy. A total of 1,107 VPA serum trough concentrations at steady state were collected from 902 epileptic pediatric patients aged from 3 weeks to 14 years at three hospitals. The population pharmacokinetic model was developed using NONMEM(®) software. The ability of three candidate models (the simple power exponent model, the dose-dependent maximum effect [DDE] model, and the protein-binding model) to describe the non-linear pharmacokinetic profile of VPA was investigated, and potential covariates were screened using a stepwise approach. Bootstrap, normalized prediction distribution errors and external evaluations from two independent studies were performed to determine the stability and predictive performance of the candidate models. The age-dependent exponent model described the effects of body weight and age on the clearance well. Co-medication with carbamazepine was identified as a significant covariate. The DDE model best fitted the aim of this study, although there were no obvious differences in the predictive performances. The condition number was less than 500, and the precision of the parameter estimates was less than 30 %, indicating stability and validity of the final model. The DDE model successfully described the non-linear pharmacokinetics of VPA. Furthermore, the proposed population pharmacokinetic model of VPA can be used to design rational dosage regimens to achieve desirable serum concentrations.

  5. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  6. Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase.

    PubMed

    Zhou, Lei; Xiong, Zhiqiang; Liu, Wei; Zou, Liqiang

    2017-11-01

    Gentisic acid and cyanidin-3-O-glucoside are important bioactive polyphenols which are widely distributed in many fruits and cereals. In this work, kinetic study, spectral analysis and computational simulation were used to compare the inhibitory effects and inhibition mechanisms of gentisic acid and cyanidin-3-O-glucoside on mushroom polyphenoloxidase (PPO). The inhibitory effect of cyanidin-3-O-glucoside on PPO was much stronger than that of gentisic acid. Gentisic acid inhibited PPO in a reversible mixed-type manner while cyanidin-3-O-glucoside was an irreversible inhibitor. Gentisic acid and cyanidin-3-O-glucoside made the thermal inactivation of PPO easier, and induced apparent conformational changes of PPO. Compared with gentisic acid, cyanidin-3-O-glucoside had stronger effects on the thermal inactivation and conformation of PPO. Molecular docking results revealed gentisic acid bound to the active site of PPO by hydrogen bonding, π-π stacking and van der Waals forces. However, cyanidin-3-O-glucoside might irreversibly interact with the Met or Cys in PPO by covalent bonds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inhibition of experimental bone resorption and osteoclast formation and survival by 2-aminoethanesulphonic acid.

    PubMed

    Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T

    1999-09-01

    It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.

  8. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  9. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition.

    PubMed

    Wang, Yi-Chun; Dong, Jing; Nie, Jing; Zhu, Ji-Xiang; Wang, Hui; Chen, Qiong; Chen, Jun-Yi; Xia, Jia-Mei; Shuai, Wei

    2017-09-01

    To investigate the inhibitory effects of chlorogenic acid on pulmonary fibrosis and the internal mechanisms in vivo and in vitro. 30 male BALB/C mice were randomized into 5 groups: control group, pulmonary fibrosis model group, low, middle and high dose of chlorogenic acid groups. Mice in pulmonary fibrosis model group were administered 5.0 mg/kg bleomycin with intracheal instillation and mice in 3 chlorogenic acid groups were treated with chlorogenic acid every day for 28 days after bleomycin administration. Lung tissue histology was observed using HE staining. Primary pulmonary fibroblasts were isolated and cultured. The expressions of fibrosis related factors (α-SMA and collagen I), as well as ER stress markers (CHOP and GRP78) were determined by both real-time PCR assay and Western blotting, while the expressions of other ER stress signaling pathway factors PERK, IRE-1, ATF-6 and protein levels of caspase-12, caspase-9, caspase-3, PARP were determined by Western blotting. RLE-6TN cell line induced by TGF-β1 was also used to verify the amelioration effects in vitro study. In both in vivo and in vitro studies, TUNEL staining was used to evaluate cell apoptosis. Expressions of collagen I, α-SMA, GRP78, and CHOP were significantly inhibited by chlorogenic acid in dose-dependent manner. Similarly, decreasing levels of cleaved caspase-12, caspase-9, caspase-3 and increasing level of uncleaved PARP were observed in chlorogenic acid groups compared with those in the fibrosis group both in vivo and in vitro. Chlorogenic acid could also significantly down-regulate the level of phosphorylation of PERK and cleaved ATF-6 in vivo study. Moreover, MTT assay demonstrated chlorogenic acid could enhance proliferation of RLE-6TN cells induced by TGFβ1 in vitro. And the apoptosis assays indicated that chlorogenic acid could significantly inhibit cell apoptosis both in vivo and in vitro studies. Chlorogenic acid could inhibit the pulmonary fibrosis through endoplasmic

  10. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  11. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    PubMed Central

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423

  12. Inhibition effects of chlorogenic acid on benign prostatic hyperplasia in mice.

    PubMed

    Huang, Ya; Chen, Huaguo; Zhou, Xin; Wu, Xingdong; Hu, Enming; Jiang, Zhengmeng

    2017-08-15

    This study aimed to evaluate the inhibitory effects and explore mechanisms of chlorogenic acid against testosterone-induced benign prostatic hyperplasia (BPH) in mice. Benign prostatic hyperplasia model was induced in experimental groups by daily subcutaneous injections of testosterone propionate (7.5mg/kg/d) consecutively for 14 d. A total of 60 mice were randomly divided into six groups: (Group 1) normal control group, (Group 2) benign prostatic hyperplasia model control group, (Group 3) benign prostatic hyperplasia mice treated with finasteride at a dose of 1mg/kg, (Group 4) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 0.8mg/kg (low dose group), (Group 5) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 1.6mg/kg (medium dose group) and (Group 6) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 3.2mg/kg (high dose group). Animals were sacrificed on the scheduled termination, pick out the eyeball to get blood, then prostates were weighed and prostatic index were determined. Then the serum acid phosphatase (ACP), prostatic acid phosphatase (PACP) and typeⅡ5-alpha-reductase (SRD5A2) levels were measured and observed morphological changes of the prostate. Comparing with benign prostatic hyperplasia model group, the high and medium dose of chlorogenic acid could significantly reduce prostate index and levels of acid phosphatase, prostatic acid phosphatase and typeⅡ5-alpha-reductase (P<0.05 or P<0.01). These findings were supported by histopathological observations of prostate tissues. Histopathological examination also indicated that chlorogenic acid treatment at the high and medium doses inhibited testosterone-induced prostatic hyperplasia. The results indicated that chlorogenic acid exhibited restraining effect on benign prostatic hyperplasia model animals, and its mechanism might be related to inhibit typeⅡ5-alpha reductase activity. Copyright © 2017

  13. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    PubMed Central

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  14. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study.

    PubMed

    Oboh, Ganiyu; Agunloye, Odunayo M; Adefegha, Stephen A; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2015-03-01

    Chlorogenic acid is a major phenolic compound that forms a substantial part of plant foods and is an ester of caffeic acid and quinic acid. However, the effect of the structures of both chlorogenic and caffeic acids on their antioxidant and antidiabetic potentials have not been fully understood. Thus, this study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid with α-amylase and α-glucosidase (key enzymes linked to type 2 diabetes) activities in vitro. The inhibitory effect of the phenolic acids on α-amylase and α-glucosidase activities was evaluated. Thereafter, their antioxidant activities as typified by their 1,1-diphenyl-2 picrylhydrazyl radical scavenging ability and ferric reducing antioxidant properties were determined. The results revealed that both phenolic acids inhibited α-amylase and α-glucosidase activities in a dose-dependent manner (2-8 μg/mL). However, caffeic acid had a significantly (p<0.05) higher inhibitory effect on α-amylase [IC50 (concentration of sample causing 50% enzyme inhibition)=3.68 μg/mL] and α-glucosidase (IC50=4.98 μg/mL) activities than chlorogenic acid (α-amylase IC50=9.10 μg/mL and α-glucosidase IC50=9.24 μg/mL). Furthermore, both phenolic acids exhibited high antioxidant properties, with caffeic acid showing higher effects. The esterification of caffeic acid with quinic acid, producing chlorogenic acid, reduces their ability to inhibit α-amylase and α-glucosidase activities. Thus, the inhibition of α-amylase and α-glucosidase activities by the phenolic acids could be part of the possible mechanism by which the phenolic acids exert their antidiabetic effects.

  15. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    PubMed Central

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  16. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells.

    PubMed

    Zhou, Weibo; Han, Wan Fang; Landree, Leslie E; Thupari, Jagan N; Pinn, Michael L; Bililign, Tsion; Kim, Eun Kyoung; Vadlamudi, Aravinda; Medghalchi, Susan M; El Meskini, Rajaa; Ronnett, Gabriele V; Townsend, Craig A; Kuhajda, Francis P

    2007-04-01

    Fatty acid synthase (FAS), the enzyme responsible for the de novo synthesis of fatty acids, is highly expressed in ovarian cancers and most common human carcinomas. Inhibition of FAS and activation of AMP-activated protein kinase (AMPK) have been shown to be cytotoxic to human cancer cells in vitro and in vivo. In this report, we explore the cytotoxic mechanism of action of FAS inhibition and show that C93, a synthetic FAS inhibitor, increases the AMP/ATP ratio, activating AMPK in SKOV3 human ovarian cancer cells, which leads to cytotoxicity. As a physiologic consequence of AMPK activation, acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis, was phosphorylated and inhibited whereas glucose oxidation was increased. Despite these attempts to conserve energy, the AMP/ATP ratio increased with worsening cellular redox status. Pretreatment of SKOV3 cells with compound C, an AMPK inhibitor, substantially rescued the cells from C93 cytotoxicity, indicating its dependence on AMPK activation. 5-(Tetradecyloxy)-2-furoic acid, an ACC inhibitor, did not activate AMPK despite inhibiting fatty acid synthesis pathway activity and was not significantly cytotoxic to SKOV3 cells. This indicates that substrate accumulation from FAS inhibition triggering AMPK activation, not end-product depletion of fatty acids, is likely responsible for AMPK activation. C93 also exhibited significant antitumor activity and apoptosis against SKOV3 xenografts in athymic mice without significant weight loss or cytotoxicity to proliferating cellular compartments such as bone marrow, gastrointestinal tract, or skin. Thus, pharmacologic FAS inhibition selectively activates AMPK in ovarian cancer cells, inducing cytotoxicity while sparing most normal human tissues from the pleiotropic effects of AMPK activation.

  17. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    PubMed

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  18. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  19. Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.

    PubMed

    Sauvat, Allan; Chen, Guo; Müller, Kevin; Tong, Mingming; Aprahamian, Fanny; Durand, Sylvère; Cerrato, Giulia; Bezu, Lucillia; Leduc, Marion; Franz, Joakim; Rockenfeller, Patrick; Sadoshima, Junichi; Madeo, Frank; Kepp, Oliver; Kroemer, Guido

    2018-04-01

    Depending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  20. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts.

    PubMed

    Azman, Samet; Khadem, Ahmad F; Zeeman, Grietje; van Lier, Jules B; Plugge, Caroline M

    2015-03-25

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  1. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic

  2. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC)

    PubMed Central

    Anantharaju, Preethi G.; Reddy, Bandi Deepa; Padukudru, Mahesh A.; Kumari Chitturi, CH. M.; Vimalambike, Manjunath G.

    2017-01-01

    ABSTRACT Histone deacetylases (HDACs), which modulate the expression of genes, are potential therapeutic targets in several cancers. Targeted inhibition of HDAC prevents the expression of oncogenes thereby help in the treatment of cancers. Hence, several pharmaceutical companies developed inhibitors of HDAC and tested them in preclinical models and in clinical trials. SAHA (suberanilohydroxamic acid) is one such HDAC inhibitor developed for treating breast and colorectal carcinomas. However, due to poor efficacy in clinical trials the utility of SAHA for treating cancers was discouraged. Similarly another HDAC inhibitor Trichostatin-A (TSA) also showed promising results in clinical trials but exhibited severe adverse effects, which dampened the interest of using this molecule for cancer treatment. Therefore, search for developing a potent HDAC inhibitor with minimal side effects still continues. Hence, in this study we have screened benzoic acid and benzoic acid derivatives with hydroxylic (-OH) groups and methoxy (-OCH3) groups for their efficacy to bind to the TSA binding site of HDAC using molecular docking studies. Molecules that showed much stronger affinity (than TSA) to HDAC were tested for inhibiting HDAC expressing cultured cancer cells. DHBA but not Dimethoxy Benzoic Acid (DMBA) inhibited HDAC activity, leading to cancer cell growth inhibition through the induction of ROS and cellular apoptosis mediated by Caspase-3. In addition, DHBA arrested cells in G2/M phase of the cell cycle and elevated the levels of sub-G0-G1 cell population. In summary, results of this study report that DHBA could be a strong HDAC inhibitor and inhibit cancer cell growth more effectively. PMID:28506198

  3. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin.

    PubMed

    Nikolakopoulou, Zacharoula; Shaikh, Mushfiq Hassan; Dehlawi, Hebah; Michael-Titus, Adina Teodora; Parkinson, Eric Kenneth

    2013-04-12

    The long chain omega-3 polyunsaturated fatty acids (PUFA) have been reported to exert anti-cancer effects. At this study we tested the effect of the omega-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on pre-malignant keratinocytes growth in the well-characterised human pre-malignant epidermal cell line, HaCaT and attempted to identify a PUFA serum antagonist. Both EPA and DHA inhibited HaCaT growth and induced apoptosis. At the 10% (v/v) foetal bovine serum (FBS) medium, limited growth inhibition (3-20% for 50μM DHA and EPA respectively) and negligible apoptosis were observed with PUFA use. However, at 3% (v/v) FBS medium, 30-50μM of PUFA caused impressive levels of growth inhibition (82-83% for 50μM DHA and EPA respectively) and increase of apoptosis (8-19% increase in 72h). None of the numerous serum growth factors present in FBS or the antioxidant n-tert-butyl-α-phenylnitrone could inhibit the PUFA-induced cytotoxicity. In contrast, bovine and human albumin (0.1-0.3%, w/v) significantly antagonized the growth inhibitory and apoptosis-inducing effects of PUFA. In conclusion, we have shown for the first time that omega-3 PUFA inhibit the growth and induce apoptosis of pre-malignant keratinocytes and identified albumin as a major antagonistic factor in serum that could limit their effectiveness at pharmacologically-achievable doses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  5. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition.

    PubMed

    Bhullar, Khushwant S; Lassalle-Claux, Grégoire; Touaibia, Mohamed; Rupasinghe, H P Vasantha

    2014-05-05

    Hypertension is a crucial risk factor for cardiovascular diseases and contributes to one third of global mortality. In addition to conventional antihypertensive drugs such as captopril, naturally occurring phytochemicals and their analogs are used for reducing the risk and occurrence of hypertension. Herein, we demonstrate the possible use of caffeic acid and its derivatives in the treatment of hypertension through multi-target modulation of renin-angiotensin-aldosterone system (RAAS). Caffeic acid along with its nineteen novel derivatives, chlorogenic acid, quercetin and captopril were all investigated for the inhibition of renin and angiotensin converting enzyme (ACE) activities and production of aldosterone. Compound 22 with CH2CH(Ph)2 moiety exhibited the strongest renin inhibition (IC50=229µM) among all compounds tested (P≤0.05). Caffeic acid was the weakest renin inhibitor (IC50=5704µM) among all the compounds assayed. Similar to renin inhibition, compound 22 (IC50=9.1µM) also exhibited about 47 times stronger ACE inhibition compared to the parent compound. Analysis of aldosterone revealed that compound 8 with n-Pr moiety was the strongest modulator of aldosterone production among all the derivatives (P≤0.05). Toxicity analysis using human fibroblasts (WI-38 cells) confirmed the non-toxic manifestations of caffeic acid and its derivatives in comparison to clinically used drug captopril. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine

    PubMed Central

    Ross, James; Najjar, Amer M.; Sankaranarayanapillai, Madhuri; Tong, William P.; Kaluarachchi, Kumaralal; Ronen, Sabrina M.

    2008-01-01

    Expression of fatty acid synthase (FASN), the key enzyme in de novo synthesis of long-chain fatty acids (FA), is normally low but increases in cancer. Consequently, FASN is a novel target for cancer therapy. However, because FASN inhibitors can lead to tumor stasis rather than shrinkage, non-invasive methods for assessing FASN inhibition are needed. To this end, we combined 1H, 31P and 13C magnetic resonance spectroscopy (MRS) (i) to monitor the metabolic consequences of FASN inhibition and (ii) to identify MRS-detectable metabolic biomarkers of response. Treatment of PC-3 cells with the FASN inhibitor Orlistat for up to 48 h resulted in inhibition of FASN activity by 70%, correlating with 74% inhibition of FA synthesis. Furthermore, we have determined that FASN inhibition results not only in lower phosphatidylcholine levels, but also in a 59% drop in the phospholipid precursor phosphocholine (PCho). This drop resulted from inhibition in PCho synthesis as a result of a reduction in the cellular activity of its synthetic enzyme choline kinase. The drop in PCho levels following FASN inhibition was confirmed in SKOV-3 ovarian cancer cells treated with Orlistat and in MCF-7 breast cancer cells treated with Orlistat as well as cerulenin. Combining data from all treated cells, the drop in PCho significantly correlated with the drop in de novo synthesized FA levels, identifying PCho as a potential non-invasive MRS-detectable biomarker of FASN inhibition in vivo. PMID:18723500

  8. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  9. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  10. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  12. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation.

    PubMed

    Shanmuganathan, Sivasankar; Angayarkanni, Narayanasamy

    2018-04-17

    Tumor necrosis factor-α (TNFα) a pleiotropic cytokine induces pro-inflammatory and pro-angiogenic changes in conditions such as diabetic retinopathy (DR) and neovascular age related macular degeneration (NV-AMD). Hence, inhibition of TNFα mediated changes can benefit the management of DR and NV-AMD. Triphala, an ayurvedic herbal preparation is known to have immunomodulatry functions. In this study we evaluated the alcoholic extract of triphala (AlE) and its compounds Chebulagic acid (CA), Chebulinic acid (CI) and Gallic acid (GA) for their anti-TNFα activity. TNFα induced pro-inflammatory and pro-angiogenic changes in the retinal-choroid microvascular endothelial cells (RF/6A). Treatment with CA/CI/GA and the whole Triphala extract showed characteristic inhibition of MMP-9, cell proliferation/migration and tube formation as well the expression of IL-6, IL-8 and MCP-1 without affecting cell viability. This was mediated by inhibition of p38, ERK and NFκB phosphorylation. Ex vivo angiogenesis assay using chick chorioallantoic membrane (CAM) model also showed that TNFα-induced angiogenesis and it was inhibited by AlE and its active principles. Further, in silico studies revealed that CA, CI and GA are capable of binding the TNFα-receptor-1 to mediate anti-TNFα activity. This study explains the immunomodulatory function of Triphala, evaluated in the context of retinal and choroid vasculopathies in vitro and ex vivo; which showed that CA, CI and GA can be a potential pharmacological agents in the management of DR and NV-AMD. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Growth inhibition of Cronobacter spp. strains in reconstituted powdered infant formula acidified with organic acids supported by natural stomach acidity.

    PubMed

    Zhu, S; Schnell, S; Fischer, M

    2013-09-01

    Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of furosemide on ion transport in the turtle bladder: evidence for direct inhibition of active acid-base transport.

    PubMed

    Ehrenspeck, G; Voner, C

    1985-07-25

    The diuretic furosemide inhibits acid-base transport in the short-circuited turtle bladder. It inhibits luminal acidification when present in either mucosal or serosal bathing fluids, but decreases alkalinization only from the serosal side of the tissue. The inhibition of both acid-base transport processes is independent of ambient Cl-; and the disulfonic stilbene, SITS, an inhibitor of Cl--HCO3- exchange, fails to prevent the furosemide-elicited inhibition of alkalinization. These results preclude an absolute requirement of a furosemide-sensitive Cl--HCO3- exchange by these transport processes. The drug also interferes with the CO2-induced stimulation of acidification and alkalinization. The inhibition of the residual acidification in acetazolamide-treated, acidotic bladders, however, suggests an action at sites other than cytosolic carbonic anhydrase. Although active Na+ and Cl- reabsorption and tissue oxygen uptake are also decreased by furosemide, the rate of oxygen consumption uncoupled by 2,4-dinitrophenol is not diminished, indicating a primary inhibition of the various ion transport processes, not of metabolism. It is proposed that inhibition of transepithelial acid-base transport by furosemide in the turtle bladder includes inhibition of the acid-base pumps.

  15. Uric acid inhibition of dipeptidyl peptidase IV in vitro is dependent on the intracellular formation of triuret.

    PubMed

    Mohandas, Rajesh; Sautina, Laura; Beem, Elaine; Schuler, Anna; Chan, Wai-Yan; Domsic, John; McKenna, Robert; Johnson, Richard J; Segal, Mark S

    2014-08-01

    Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid will have on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr) CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV, respectively. Finally, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases. Published by Elsevier Inc.

  16. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    PubMed Central

    Azman, Samet; Khadem, Ahmad F.; Zeeman, Grietje; van Lier, Jules B.; Plugge, Caroline M.

    2015-01-01

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid. PMID:28955013

  17. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells

    PubMed Central

    Thirunavukkarasan, Madhumathi; Wang, Chao; Rao, Angad; Hind, Tatsuma; Teo, Yuan Ru; Siddiquee, Abrar Al-Mahmood; Goghari, Mohamed Ally Ibrahim; Kumar, Alan Prem

    2017-01-01

    Short chain fatty acids (2 to 6 carbons in length) are ubiquitous lipids that are present in human plasma at micromolar concentrations. In addition to serving as metabolic precursors for lipid and carbohydrate synthesis, they also act as cognate ligands for two known G protein-coupled receptors (GPCRs), FFAR2 and FFAR3. While there is evidence that these receptors may inhibit the progression of colorectal cancer, their roles in breast cancer cells are largely unknown. We evaluated the effects of enforced overexpression of these receptors in two phenotypically distinct breast cancer cell lines: MCF7 and MDA-MD-231. Our results demonstrate that both receptors inhibit cell invasiveness, but through different signaling processes. In invasive, mesenchymal-like MDA-MB-231 cells, FFAR2 inhibits the Hippo-Yap pathway and increases expression of adhesion protein E-cadherin, while FFAR3 inhibits MAPK signaling. Both receptors have the net effect of reducing actin polymerization and invasion of cells through a Matrigel matrix. These effects were absent in the less invasive, epithelial-like MCF7 cells. Correspondingly, there is reduced expression of both receptors in invasive breast carcinoma and in aggressive triple-negative breast tumors, relative to normal breast tissue. Cumulatively, our data suggest that the activation of cognate receptors by short chain fatty acids drives breast cancer cells toward a non-invasive phenotype and therefore may inhibit metastasis. PMID:29049318

  18. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    PubMed

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells

    PubMed Central

    S. Pang, Jong-Hwei; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-01-01

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer. PMID:28672814

  20. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells.

    PubMed

    Pang, Jong-Hwei S; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-06-24

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.

  1. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana

    PubMed Central

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-01-01

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl 2-[(2-chloro-4-nitrophenyl)thio]acetate,” is a 2,4-dichlorophenoxyacetic acid (2,4-D) analog. At high concentrations (> 300 µM), 7-B3 slightly reduced IAA transport and tropic curvature of maize coleoptiles, whereas lower concentrations had almost no effect. We have analyzed the effects of 7-B3 on Arabidopsis thaliana seedlings. 7-B3 rescued the 2,4-D-inhibited root elongation, but not the NAA-inhibited root elongation. The effect of 7-B3 was weaker than that of 1-NOA. Both 1-NOA and 7-B3 inhibited DR5::GUS expression induced by IAA and 2,4-D, but not that induced by NAA. At high concentrations, 1-NOA exhibited auxin activity, but 7-B3 did not. Furthermore, 7-B3 inhibited apical hook formation in etiolated seedlings more effectively than 1-NOA did. These results indicate that 7-B3 is a potential inhibitor of IAA influx that has almost no effect on IAA efflux or auxin signaling. PMID:24800738

  2. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. Published by Elsevier B.V.

  3. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids.

    PubMed

    Chung, Si-Yin; Reed, Shawndrika

    2015-01-01

    The objective of this study was to determine if D-amino acids (D-aas) bind and inhibit immunoglobulin E (IgE) binding to peanut allergens. D-aas such as D-Asp (aspartic acid), D-Glu (glutamic acid), combined D-[Asp/Glu] and others were each prepared in a cocktail of 9 other D-aas, along with L-amino acids (L-aas) and controls. Each sample was mixed with a pooled plasma from peanut-allergic donors, and tested by ELISA (enzyme-linked immunosorbent assay) and Western blots for IgE binding to peanut allergens. Results showed that D-[Asp/Glu] (4 mg/ml) inhibited IgE binding (75%) while D-Glu, D-Asp and other D-aas had no inhibitory effect. A higher inhibition was seen with D-[Asp/Glu] than with L-[Asp/Glu]. We concluded that IgE was specific for D-[Asp/Glu], not D-Asp or D-Glu, and that D-[Asp/Glu] was more reactive than was L-[Asp/Glu] in IgE inhibition. The finding indicates that D-[Asp/Glu] may have the potential for removing IgE or reducing IgE binding to peanut allergens in vitro. Published by Elsevier Ltd.

  5. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    PubMed

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  6. Differential inhibition of hepatic and duodenal sulfation of (-)-salbutamol and minoxidil by mefenamic acid.

    PubMed

    Vietri, M; Pietrabissa, A; Spisni, R; Mosca, F; Pacifici, G M

    2000-09-01

    The aim of this investigation was to determine whether mefenamic acid and salicylic acid inhibit the sulfation of (-)-salbutamol and minoxidil in the human liver and duodenum, and if so, to ascertain whether the 50% inhibitory concentration (IC50) estimates are different in the two tissues. Sulfotransferase activities were measured for 10 mM (-)-salbutamol and 5 mM minoxidil, and the concentration of 3'-phosphoadenosine-5'-phosphosulphate-[35S] was 0.4 microM. The IC50 estimates for (-)-salbutamol and minoxidil sulfation of mefenamic acid were 72 +/- 5.4 nM and 1.5 +/- 0.6 microM (liver), respectively, and 161 + 23 microM and 420 +/- 18 microM (duodenum), respectively. The figures for the liver were significantly lower (P < 0.0001) than those for the duodenum. The IC50 estimates for (-)-salbutamol sulfation of salicylic acid were 93 +/- 11 microM (liver) and 705 +/- 19 microM (duodenum, P < 0.0001). Salicylic acid was a poor inhibitor of minoxidil sulfation. The IC50 estimates for (-)-salbutamol sulfation of mefenamic acid and salicylic acid are lower than their unbound plasma concentrations after standard dosing, suggesting that mefenamic acid and salicylic acid should inhibit the hepatic sulfation of (-)-salbutamol in vivo.

  7. 2,4-Dichlorophenoxyacetic Acid Inhibits the Outer Membrane NADH Dehydrogenase of Plant Mitochondria 1

    PubMed Central

    Mannella, Carmen A.; Bonner, Walter D.

    1978-01-01

    The NADH dehydrogenase of potato (Solanum tuberosum) and mung bean (Phaseolus aureus) outer mitochondrial membranes is specifically inhibited by both 2,4-dichlorophenoxyacetic and 2,4,5-trichlorophenoxyacetic acids but not by the natural auxin indole-3-acetic acid. PMID:16660539

  8. Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma

    PubMed Central

    Happold, Caroline; Gorlia, Thierry; Chinot, Olivier; Gilbert, Mark R.; Nabors, L. Burt; Wick, Wolfgang; Pugh, Stephanie L.; Hegi, Monika; Cloughesy, Timothy; Roth, Patrick; Reardon, David A.; Perry, James R.; Mehta, Minesh P.; Stupp, Roger

    2016-01-01

    Purpose Symptomatic epilepsy is a common complication of glioblastoma and requires pharmacotherapy. Several uncontrolled retrospective case series and a post hoc analysis of the registration trial for temozolomide indicated an association between valproic acid (VPA) use and improved survival outcomes in patients with newly diagnosed glioblastoma. Patients and Methods To confirm the hypothesis suggested above, a combined analysis of survival association of antiepileptic drug use at the start of chemoradiotherapy with temozolomide was performed in the pooled patient cohort (n = 1,869) of four contemporary randomized clinical trials in newly diagnosed glioblastoma: AVAGlio (Avastin in Glioblastoma; NCT00943826), CENTRIC (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status; NCT00689221), CORE (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Unmethylated Gene Promoter Status; NCT00813943), and Radiation Therapy Oncology Group 0825 (NCT00884741). Progression-free survival (PFS) and overall survival (OS) were compared between: (1) any VPA use and no VPA use at baseline or (2) VPA use both at start of and still after chemoradiotherapy. Results of Cox regression models stratified by trial and adjusted for baseline prognostic factors were analyzed. The same analyses were performed with levetiracetam (LEV). Results VPA use at start of chemoradiotherapy was not associated with improved PFS or OS compared with all other patients pooled (PFS: hazard ratio [HR], 0.91; 95% CI, 0.77 to 1.07; P = .241; OS: HR, 0.96; 95% CI, 0.80 to 1.15; P = .633). Furthermore, PFS and OS of patients taking VPA both at start of and still after chemoradiotherapy were not different from those without antiepileptic drug use at both time points (PFS: HR, 0.92; 95% CI, 0.74 to 1.15; P = .467; OS: HR, 1.10; 95% CI, 0.86 to 1.40; P = .440). Similarly, no

  9. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type1) diabetic rats

    PubMed Central

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W.; Fujiwara, Yukio

    2010-01-01

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end products (AGEs) such as Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis . We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes. PMID:20117096

  10. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    PubMed

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.

  11. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease.

    PubMed

    Munoz-Garrido, Patricia; Marin, José J G; Perugorria, María J; Urribarri, Aura D; Erice, Oihane; Sáez, Elena; Úriz, Miriam; Sarvide, Sarai; Portu, Ainhoa; Concepcion, Axel R; Romero, Marta R; Monte, María J; Santos-Laso, Álvaro; Hijona, Elizabeth; Jimenez-Agüero, Raúl; Marzioni, Marco; Beuers, Ulrich; Masyuk, Tatyana V; LaRusso, Nicholas F; Prieto, Jesús; Bujanda, Luis; Drenth, Joost P H; Banales, Jesús M

    2015-10-01

    Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive biliary cystogenesis. Current therapies show short-term and/or modest beneficial effects. Cystic cholangiocytes hyperproliferate as a consequence of diminished intracellular calcium levels ([Ca(2+)]i). Here, the therapeutic value of ursodeoxycholic acid (UDCA) was investigated. Effect of UDCA was examined in vitro and in polycystic (PCK) rats. Hepatic cystogenesis and fibrosis, and the bile acid (BA) content were evaluated from the liver, bile, serum, and kidneys by HPLC-MS/MS. Chronic treatment of PCK rats with UDCA inhibits hepatic cystogenesis and fibrosis, and improves their motor behaviour. As compared to wild-type animals, PCK rats show increased BA concentration ([BA]) in liver, similar hepatic Cyp7a1 mRNA levels, and diminished [BA] in bile. Likewise, [BA] is increased in cystic fluid of PLD patients compared to their matched serum levels. In PCK rats, UDCA decreases the intrahepatic accumulation of cytotoxic BA, normalizes their diminished [BA] in bile, increases the BA secretion in bile and diminishes the increased [BA] in kidneys. In vitro, UDCA inhibits the hyperproliferation of polycystic human cholangiocytes via a PI3K/AKT/MEK/ERK1/2-dependent mechanism without affecting apoptosis. Finally, the presence of glycodeoxycholic acid promotes the proliferation of polycystic human cholangiocytes, which is inhibited by both UDCA and tauro-UDCA. UDCA was able to halt the liver disease of a rat model of PLD through inhibiting cystic cholangiocyte hyperproliferation and decreasing the levels of cytotoxic BA species in the liver, which suggests the use of UDCA as a potential therapeutic tool for PLD patients. Copyright © 2015 European Association for the Study of the Liver. All rights reserved.

  12. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy.

    PubMed

    Swoboda, Kathryn J; Scott, Charles B; Crawford, Thomas O; Simard, Louise R; Reyna, Sandra P; Krosschell, Kristin J; Acsadi, Gyula; Elsheik, Bakri; Schroth, Mary K; D'Anjou, Guy; LaSalle, Bernard; Prior, Thomas W; Sorenson, Susan L; Maczulski, Jo Anne; Bromberg, Mark B; Chan, Gary M; Kissel, John T

    2010-08-19

    Valproic acid (VPA) has demonstrated potential as a therapeutic candidate for spinal muscular atrophy (SMA) in vitro and in vivo. Two cohorts of subjects were enrolled in the SMA CARNIVAL TRIAL, a non-ambulatory group of "sitters" (cohort 1) and an ambulatory group of "walkers" (cohort 2). Here, we present results for cohort 1: a multicenter phase II randomized double-blind intention-to-treat protocol in non-ambulatory SMA subjects 2-8 years of age. Sixty-one subjects were randomized 1:1 to placebo or treatment for the first six months; all received active treatment the subsequent six months. The primary outcome was change in the modified Hammersmith Functional Motor Scale (MHFMS) score following six months of treatment. Secondary outcomes included safety and adverse event data, and change in MHFMS score for twelve versus six months of active treatment, body composition, quantitative SMN mRNA levels, maximum ulnar CMAP amplitudes, myometry and PFT measures. At 6 months, there was no difference in change from the baseline MHFMS score between treatment and placebo groups (difference = 0.643, 95% CI = -1.22-2.51). Adverse events occurred in >80% of subjects and were more common in the treatment group. Excessive weight gain was the most frequent drug-related adverse event, and increased fat mass was negatively related to change in MHFMS values (p = 0.0409). Post-hoc analysis found that children ages two to three years that received 12 months treatment, when adjusted for baseline weight, had significantly improved MHFMS scores (p = 0.03) compared to those who received placebo the first six months. A linear regression analysis limited to the influence of age demonstrates young age as a significant factor in improved MHFMS scores (p = 0.007). This study demonstrated no benefit from six months treatment with VPA and L-carnitine in a young non-ambulatory cohort of subjects with SMA. Weight gain, age and treatment duration were significant confounding variables that should

  13. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

    PubMed

    Linares, Gabriel R; Chiu, Chi-Tso; Scheuing, Lisa; Leng, Yan; Liao, Hsiao-Mei; Maric, Dragan; Chuang, De-Maw

    2016-07-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells

  14. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  15. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  16. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes.

    PubMed Central

    Miller, J. A.; Richter, J. A.

    1985-01-01

    The effects of several anticonvulsant drugs on sodium-dependent high affinity choline uptake (HACU) in mouse hippocampal synaptosomes was investigated. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by drugs which have in common the ability to facilitate gamma-aminobutyric acid (GABA) transmission, pentobarbitone, phenobarbitone, barbitone, diazepam, chloridiazepoxide, and valproic acid. Dose-response relationships were determined for these drugs and the drugs' potencies at inhibiting HACU correlated well with their anticonvulsant potencies. Clonazepam, ethosuximide, carbamazepine, and barbituric acid had no effect on HACU in the doses used while phenytoin and trimethadione stimulated HACU. These results suggest that certain anticonvulsants may elicit a part of their anticonvulsant activity by modulating cholinergic neurones. This effect may be mediated through a GABA mechanism. PMID:3978310

  17. Effects of Hyaluronic Acid Conjugation on Anti-TNF-alpha Inhibition of Inflammation in Burns

    DTIC Science & Technology

    2014-05-01

    Effects of hyaluronic acid conjugation on anti-TNF-α inhibition of inflammation in burns Emily E. Friedrich1, Liang Tso Sun1, Shanmugasundaram...alone, mixed with hyaluronic acid or conjugated to hyaluronic acid . We found that non-conjugated anti-TNF-α decreased macrophage infiltration to a...greater extent than that conjugated to hyaluronic acid ; however there was little effect on the degree of progression or IL-1β levels. A simple transport

  18. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-04-08

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  19. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values.

    PubMed

    Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien

    2015-01-01

    Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.

  20. Chlorogenic Acid-Enriched Extract of Ilex kudingcha C.J. Tseng Inhibits Angiogenesis in Zebrafish.

    PubMed

    Zhong, Tao; Piao, Linghua; Kim, Hyun Jung; Liu, Xiande; Jiang, Shengnan; Liu, Guomin

    2017-12-01

    Kudingcha is a particularly bitter tasting tea that has been widely used in China to eliminate fever and itching eyes, and to clear blood toxins. Kudingcha is considered of value for its potential anticancer effects that are attributed to the presence of characteristic bioactive ingredients. The chlorogenic acid (CGA) derivatives 3-0-caffeoylquinic acid, 5-0-caffeoylquinic acid, 3,5-0-dicaffeoylquinic acid, and 4,5-0-dicaffeoylquinic acid were separated from Ilex kudingcha C.J. Tseng extract by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA) and HPLC-nuclear magnetic resonance (NMR). In Tg(flk1:EGFP) zebrafish embryos at 52 hours postfertilization (hpf), angiogenesis was significantly inhibited by kudingcha extract (KDCE) at concentrations of 400 and 500 μg/mL and CGA also showed significant inhibition in embryos treated with 80, 100, and 130 μg/mL. Endothelial cell apoptosis showed a dose-dependent increase in response to KDCE and CGA. CGA derivatives from KDCE could have potential as anticancer agents against tumor angiogenesis.

  1. Hydroxy-oleic acid, but not oleic acid, inhibits pharmacologic ...

    EPA Pesticide Factsheets

    Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is not yet established whether increased circulating OA is able to produce the type of adverse cardiovascular effects associated with exposure to air pollution, or the mechanisms involved with such damage. Based on responses observed upon exposure of cultured endothelial cells, we hypothesized that OA and a hydroxylated metabolite (12-OH OA) would increase vascular tissue injury and impair vascular reactivity. Thoracic descending aorta tissue was collected from male Wistar Kyoto rats, aged 13-16 weeks. Prior to reactivity testing, independent LDH assays were performed with aortic rings to establish a subcytotoxic OA dose. To determine changes in vascular reactivity, aortic ring segments (n=3-4) were exposed for 1 hr to 100 µM OA, 12-OH OA, or an equivalent EtOH vehicle, followed by testing using myography and pharmacologic agents. Only 12-OH OA exposure significantly inhibited acetylcholine-induced endothelium-dependent vasorelaxation in aortic ring segments (25-30% reduction relative to EtOH control), based on maximum relaxation and dose-response. No change was seen in smooth muscle sensitivity to an exogenous nitric oxide source, sodium nitroprusside. Maximum aortic contractile force ge

  2. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  3. Unusal pattern of product inhibition: batch acetic acid fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behaviormore » was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.« less

  4. Boric acid reversibly inhibits the second step of pre-mRNA splicing.

    PubMed

    Shomron, Noam; Ast, Gil

    2003-09-25

    Several approaches have been used to identify the factors involved in mRNA splicing. None of them, however, comprises a straightforward reversible method for inhibiting the second step of splicing using an external reagent other than a chelator. This investigation demonstrates that the addition of boric acid to an in vitro pre-mRNA splicing reaction causes a dose-dependent reversible inhibition effect on the second step of splicing. The mechanism of action does not involve chelation of several metal ions; hindrance of 3' splice-site; or binding to hSlu7. This study presents a novel method for specific reversible inhibition of the second step of pre-mRNA splicing.

  5. Trans unsaturated fatty acids inhibit lecithin: cholesterol acyltransferase and alter its positional specificity.

    PubMed

    Subbaiah, P V; Subramanian, V S; Liu, M

    1998-07-01

    Although dietary trans unsaturated fatty acids (TUFA) are known to decrease plasma HDL, the underlying mechanisms for this effect are unclear. We tested the hypothesis that the decreased HDL is due to an inhibition of lecithin:cholesterol acyltransferase (LCAT), the enzyme essential for the formation of HDL, by determining the activity of purified LCAT in the presence of synthetic phosphatidylcholine (PC) substrates containing TUFA. Both human and rat LCATs exhibited significantly lower activity (-37% to -50%) with PCs containing 18:1t or 18:2t, when compared with the PCs containing corresponding cis isomers. TUFA-containing PCs also inhibited the enzyme activity competitively, when added to egg PC substrate. The inhibition of LCAT activity was not due to changes in the fluidity of the substrate particle. However, the inhibition depended on the position occupied by TUFA in the PC, as well as on the paired fatty acid. Thus, for human LCAT, 18:1t was more inhibitory when present at sn-2 position of PC, than at sn-1, when paired with 16:0. In contrast, when paired with 20:4, 18:1t was more inhibitory at sn-1 position of PC. Both human and rat LCATs, which are normally specific for the sn-2 acyl group of PC, exhibited an alteration in their positional specificity when 16:0-18:1t PC or 16:1t-20:4 PC was used as substrate, deriving 26-86% of the total acyl groups for cholesterol esterification from the sn-1 position. These results show that the trans fatty acids decrease high density lipoprotein through their inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, and also alter LCAT's positional specificity, inducing the formation of more saturated cholesteryl esters, which are more atherogenic.

  6. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis.

    PubMed

    Walters, Julian R F; Tasleem, Ali M; Omer, Omer S; Brydon, W Gordon; Dew, Tracy; le Roux, Carel W

    2009-11-01

    Primary (idiopathic) bile acid malabsorption (BAM) is a common, yet underrecognized, chronic diarrheal syndrome. Diagnosis is difficult without selenium homocholic acid taurine (SeHCAT) testing. The diarrhea results from excess colonic bile acids, but the pathogenesis is unclear. Fibroblast growth factor 19 (FGF19), produced in the ileum in response to bile acid absorption, regulates hepatic bile acid synthesis. We proposed that FGF19 is involved in bile acid diarrhea and measured its levels in patients with BAM. Blood was collected from fasting patients with chronic diarrhea; BAM was diagnosed by SeHCAT. Serum FGF19 was measured by enzyme-linked immunosorbent assay. Serum 7alpha-hydroxy-4-cholesten-3-one (C4) was determined using high-performance liquid chromatography, to quantify bile acid synthesis. Data were compared between patients and subjects without diarrhea (controls). Samples were taken repeatedly after meals from several subjects. The median C4 level was significantly higher in patients with primary BAM than in controls (51 vs 18 ng/mL; P < .0001). The median FGF19 level was significantly lower in patients with BAM (120 vs 231 pg/mL; P < .0005). There was a significant inverse relationship between FGF19 and C4 levels (P < .0004). Low levels of FGF19 were also found in patients with postcholecystectomy and secondary bile acid diarrhea. Abnormal patterns of FGF19 levels were observed throughout the day in some patients with primary BAM. Patients with BAM have reduced serum FGF19 which may be useful in diagnosis. We propose a mechanism whereby impaired FGF19 feedback inhibition causes excessive bile acid synthesis that exceeds the normal capacity for ileal reabsorption, producing bile acid diarrhea.

  7. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    PubMed Central

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis. PMID:22200664

  8. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    PubMed Central

    Xu, Shihao; Spencer, Cody M.

    2015-01-01

    ABSTRACT Oncogenesis is frequently accompanied by the activation of specific metabolic pathways. One such pathway is fatty acid biosynthesis, whose induction is observed upon transformation of a wide variety of cell types. Here, we explored how defined oncogenic alleles, specifically the simian virus 40 (SV40) T antigens and oncogenic Ras12V, affect fatty acid metabolism. Our results indicate that SV40/Ras12V-mediated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant changes in the concentration of fatty acid biosynthetic enzymes. This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target of rapamycin (mTOR) dependent, as it was attenuated by rapamycin treatment. Furthermore, SV40/Ras12V-mediated transformation induced sensitivity to treatment with fatty acid biosynthetic inhibitors. Pharmaceutical inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a key fatty acid biosynthetic enzyme, induced caspase-dependent cell death in oncogene-transduced cells. In contrast, isogenic nontransformed cells were resistant to fatty acid biosynthetic inhibition. This oncogene-induced sensitivity to fatty acid biosynthetic inhibition was independent of the cells' growth rates and could be attenuated by supplementing the medium with unsaturated fatty acids. Both the activation of fatty acid biosynthesis and the sensitivity to fatty acid biosynthetic inhibition could be conveyed to nontransformed breast epithelial cells through transduction with oncogenic Ras12V. Similar to what was observed in the transformed fibroblasts, the Ras12V-induced sensitivity to fatty acid biosynthetic inhibition was independent of the proliferative status and could be attenuated by supplementing the medium with unsaturated fatty acids. Combined, our results indicate that specific oncogenic alleles can directly confer sensitivity to inhibitors of fatty acid biosynthesis. IMPORTANCE Viral oncoproteins and cellular mutations

  9. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    PubMed

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  10. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells.

    PubMed

    Sudhagar, S; Sathya, S; Anuradha, R; Gokulapriya, G; Geetharani, Y; Lakshmi, B S

    2018-02-01

    To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro. Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain. Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.

  11. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides.

    PubMed Central

    Wang, L L; Johnson, E A

    1992-01-01

    Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods. Images PMID:1610184

  12. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol

    PubMed Central

    Qin, Nan; Tan, Xiaojuan; Jiao, Yinming; Liu, Lin; Zhao, Wangsheng; Yang, Shuang; Jia, Aiqun

    2014-01-01

    Bacterial biofilms are particularly problematic since they become resistant to most available antibiotics. Hence, novel potential antagonists to inhibit biofilm formation are urgent. Here the influences of two natural products, ursolic acid and resveratrol, on biofilm of the clinical methicillin-resistant Staphylococcus aureus (MRSA) isolate were investigated using RNA-seq, and the differentially expressed genes were analyzed using Cuffdiff. The results showed that ursolic acid inhibition of biofilm formation may reduce amino acids metabolism and adhesins expression and resveratrol may disturb quorum sensing (QS) and the synthesis of surface proteins and capsular polysaccharides. In addition, the transcriptome analysis of resveratrol and the combination of resveratrol with vancomycin inhibition of established biofilm revealed that resveratrol would disturb the expression of genes related to QS, surface and secreted proteins, and capsular polysaccharides. These findings suggest that ursolic acid and resveratrol could be useful to be adjunct therapies for the treatment of MRSA biofilm-involved infections. PMID:24970710

  13. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    PubMed

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Inhibition of acid sphingomyelinase disrupts LYNUS signaling and triggers autophagy.

    PubMed

    Justice, Matthew J; Bronova, Irina; Schweitzer, Kelly S; Poirier, Christophe; Blum, Janice S; Berdyshev, Evgeny V; Petrache, Irina

    2018-04-01

    Activation of the lysosomal ceramide-producing enzyme, acid sphingomyelinase (ASM), by various stresses is centrally involved in cell death and has been implicated in autophagy. We set out to investigate the role of the baseline ASM activity in maintaining physiological functions of lysosomes, focusing on the lysosomal nutrient-sensing complex (LYNUS), a lysosomal membrane-anchored multiprotein complex that includes mammalian target of rapamycin (mTOR) and transcription factor EB (TFEB). ASM inhibition with imipramine or sphingomyelin phosphodiesterase 1 ( SMPD1 ) siRNA in human lung cells, or by transgenic Smpd1 +/- haploinsufficiency of mouse lungs, markedly reduced mTOR- and P70-S6 kinase (Thr 389)-phosphorylation and modified TFEB in a pattern consistent with its activation. Inhibition of baseline ASM activity significantly increased autophagy with preserved degradative potential. Pulse labeling of sphingolipid metabolites revealed that ASM inhibition markedly decreased sphingosine (Sph) and Sph-1-phosphate (S1P) levels at the level of ceramide hydrolysis. These findings suggest that ASM functions to maintain physiological mTOR signaling and inhibit autophagy and implicate Sph and/or S1P in the control of lysosomal function. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system

    PubMed Central

    OBATA, Kunihiko

    2013-01-01

    Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented. PMID:23574805

  16. Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare.

    PubMed

    Chou, Tzung-Han; Ding, Hsiou-Yu; Hung, Wei Jing; Liang, Chia-Hua

    2010-08-01

    The antioxidant activities of vanillin and vanillic acid isolated from Origanum vulgare are investigated. These compounds may serve as agents for antimelanogenesis. Vanillic acid is a stronger antioxidant than vanillin, in terms of free radical scavenging activity, reducing power and inhibition of lipid peroxidation. The inhibition of cellular reactive oxygen species (ROS) in H(2)O(2)-treated BNLCL2 cells by vanillic acid exceeds that of ascorbic acid (AA) or trolox. In B16F0 cells stimulated with alpha-melanocyte-stimulating hormone (alpha-MSH), vanillic acid reduced cellular tyrosinase activity, DOPA oxidase and melanin contents, as well as down-regulated expressions of melanocortin-1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related proteins 2 (TRP-2) and TRP-1. Vanillin did not express inhibition of tyrosinase activity. These results supported that vanillic acid is a significantly stronger antioxidant than vanillin and exhibited stronger antimelanogenesis performance because of the structural presence of the carboxyl group.

  17. Further Characterization of the Predictive Validity of the Brattleboro Rat Model for Antipsychotic Efficacy

    PubMed Central

    Feifel, D.; Shilling, P. D.; Melendez, G.

    2014-01-01

    Our laboratory and others have reported that Brattleboro (BRAT) rats, a Long Evans (LE) strain with a single gene mutation, have inherent deficits in prepulse inhibition (PPI) homologous to those observed in schizophrenia patients and that these deficits are reversed by antipsychotic drugs (APDs). To further evaluate the potential predictive validity of BRAT rat PPI for APDs, we compared the effects of acute subcutaneous administration of the typical APD chlorpromazine to that of three psychotropic drugs without antipsychotic efficacy, the antidepressant imipramine, the anxiolytic diazepam and the anticonvulsant mood stabilizer valproic acid on male and female BRAT rat PPI. Male and female BRAT rats exhibited baseline (saline treatment) PPI that was not different from each other (21.1 % and 21.3 %, respectively) and low compared to those historically exhibited by LE rats (approximately 59 %). Chlorpromazine facilitated PPI in male and female BRAT rats, whereas imipramine, diazepam, and valproic acid had no significant effect on PPI. These results suggest that PPI in the BRAT rat responds specifically to drugs with APD efficacy but not psychotropic drugs of different therapeutic families. PMID:21106605

  18. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  19. Differences in immunolocalization of Kim-1, RPA-1, and RPA-2 in kidneys of gentamicin-, cisplatin-, and valproic acid-treated rats: potential role of iNOS and nitrotyrosine.

    PubMed

    Zhang, Jun; Goering, Peter L; Espandiari, Parvaneh; Shaw, Martin; Bonventre, Joseph V; Vaidya, Vishal S; Brown, Ronald P; Keenan, Joe; Kilty, Cormac G; Sadrieh, Nakissa; Hanig, Joseph P

    2009-08-01

    The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarkers, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.

  20. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition.

    PubMed

    Kakihana, Masatoshi; Ohira, Tatsuo; Chan, Daniel; Webster, Robin B; Kato, Harubumi; Drabkin, Harry A; Gemmill, Robert M

    2009-12-01

    Loss of E-cadherin confers a poor prognosis in lung cancer patients and is associated with in vitro resistance to endothelial growth factor receptor inhibitors. Zinc finger E box-binding homeobox (ZEB)-1, the predominant transcriptional suppressor of E-cadherin in lung tumor lines, recruits histone deacetylases (HDACs) as co-repressors. NSCLC cell lines were treated with HDAC inhibitors and analyzed for E-cadherin induction, growth inhibition and apoptosis. National Cancer Institute-H157 cells expressing ectopic E-cadherin were tested for tumorigenicity in murine xenografts. We found that treatment with MS-275, compared to vorinostat (SAHA), valproic acid or trichostatin A, was most effective in E-cadherin up-regulation and persistence in non-small cell lung cancers. As with other tumor types and HDAC inhibitors, MS-275 inhibited growth and induced apoptosis. Importantly, blocking E-cadherin induction by short hairpin RNA resulted in less inhibition by MS-275, implicating the epithelial to mesenchymal phenotype process as a contributing factor. In contrast to H460 and H661, H157 cells were resistant to E-cadherin up-regulation by HDAC inhibitors. However, E-cadherin was restored, in a synergistic manner, by combined knockdown of ZEB-1 and ZEB-2. In addition, H157 cells stably transfected with E-cadherin were markedly attenuated in their tumor forming ability. Lastly, combining MS-275 with the microtubule stabilizing agent, paclitaxel, or 17-(allylamino)-17-demethoxygeldanamycin, a heat shock protein 90 inhibitor, resulted in synergistic growth inhibition. Since MS-275 has no reported activity against HDAC6, which regulates both microtubule and heat shock protein 90 functions, other mechanisms of synergy are anticipated. These results support the role of ZEB proteins and HDAC inhibitors in the pathogenesis and treatment of lung cancer.

  1. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells

    PubMed Central

    BARNI, M.V.; CARLINI, M.J.; CAFFERATA, E.G.; PURICELLI, L.; MORENO, S.

    2012-01-01

    Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. The objective of this study was to examine whether carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., would inhibit the cell viability of three CRC cell lines: Caco-2, HT29 and LoVo in a dose-dependent manner, with IC50 values in the range of 24–96 μM. CA induced cell death by apoptosis in Caco-2 line after 24 h of treatment and inhibited cell adhesion and migration, possibly by reducing the activity of secreted proteases such as urokinase plasminogen activator (uPA) and metalloproteinases (MMPs). These effects may be associated through a mechanism involving the inhibition of the COX-2 pathway, because we have determined that CA downregulates the expression of COX-2 in Caco-2 cells at both the mRNA and protein levels. Therefore, CA modulates different targets involved in the development of CRC. These findings indicate that carnosic acid may have anticancer activity and may be useful as a novel chemotherapeutic agent. PMID:22246562

  2. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction.

    PubMed

    Shi, Bin; Wang, Li-Fang; Meng, Wen-Shu; Chen, Liang; Meng, Zi-Li

    2017-06-01

    Carnosic acid is a phenolic diterpene with anti-inflammation, anticancer, anti-bacterial, anti-diabetic, as well as neuroprotective properties, which is generated by many species from Lamiaceae family. Fisetin (3,3',4',7-tetrahydroxyflavone), a naturally flavonoid is abundantly produced in different vegetables and fruits. Fisetin has been reported to have various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Lung cancer is reported as the most common neoplasm in human world-wide. In the present study, the possible benefits of carnosic acid combined with fisetin on lung cancer in vitro and in vivo was explored. Carnosic acid and fisetin combination led to apoptosis in lung cancer cells. Caspase-3 signaling pathway was promoted in carnosic acid and fisetin co-treatment, which was accompanied by anti-apoptotic proteins of Bcl-2 and Bcl-xl decreasing and pro-apoptotic signals of Bax and Bad increasing. The death receptor (DR) of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was enhanced in carnosic acid and fisetin combined treatment. Furthermore, the mouse xenograft model in vivo suggested that carnosic acid and fisetin combined treatment inhibited lung cancer growth in comparison to the carnosic acid or fisetin monotherapy. This study supplies a novel therapy to induce apoptosis to inhibit lung cancer through caspase-3 activation.

  3. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  4. Evaluation of tranexamic acid and ε-aminocaproic acid concentrations required to inhibit fibrinolysis in plasma of dogs and humans.

    PubMed

    Fletcher, Daniel J; Blackstock, Kelly J; Epstein, Kira; Brainard, Benjamin M

    2014-08-01

    To determine minimum plasma concentrations of the antifibrinolytic agents tranexamic acid (TEA) and ε-aminocaproic acid (EACA) needed to completely inhibit fibrinolysis in canine and human plasma after induction of hyperfibrinolysis. Pooled citrated plasma from 7 dogs and commercial pooled citrated human plasma. Concentrations of EACA from 0 μg/mL to 500 μg/mL and of TEA from 0 μg/mL to 160 μg/mL were added to pooled citrated canine and human plasma. Hyperfibrinolysis was induced with 1,000 units of tissue plasminogen activator/mL, and kaolin-activated thromboelastography was performed in duplicate. The minimum concentrations required to completely inhibit fibrinolysis 30 minutes after maximum amplitude of the thromboelastography tracing occurred were determined. Minimum plasma concentrations necessary for complete inhibition of fibrinolysis by EACA and TEA in pooled canine plasma were estimated as 511.7 μg/mL (95% confidence interval [CI], 433.2 to 590.3 μg/mL) and 144.7 μg/mL (95% CI, 125.2 to 164.2 μg/mL), respectively. Concentrations of EACA and TEA necessary for complete inhibition of fibrinolysis in pooled human plasma were estimated as 122.0 μg/mL (95% CI, 106.2 to 137.8 μg/mL) and 14.7 μg/mL (95% CI, 13.7 to 15.6 μg/mL), respectively. Results supported the concept that dogs are hyperfibrinolytic, compared with humans. Higher doses of EACA and TEA may be required to fully inhibit fibrinolysis in dogs.

  5. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin.

    PubMed

    Einbond, Linda Saxe; Wu, Hsan-Au; Kashiwazaki, Ryota; He, Kan; Roller, Marc; Su, Tao; Wang, Xiaomei; Goldsberry, Sarah

    2012-10-01

    Studies indicate that extracts and purified components, including carnosic acid, from the herb rosemary display significant growth inhibitory activity on a variety of cancers. This paper examines the ability of rosemary/carnosic acid to inhibit the growth of human breast cancer cells and to synergize with curcumin. To do this, we treated human breast cancer cells with rosemary/carnosic acid and assessed effects on cell proliferation, cell cycle distribution, gene expression patterns, activity of the purified Na/K ATPase and combinations with curcumin. Rosemary/carnosic acid potently inhibits proliferation of ER-negative human breast cancer cells and induces G1 cell cycle arrest. Further, carnosic acid is selective for MCF7 cells transfected for Her2, indicating that Her2 may function in its action. To reveal primary effects, we treated ER-negative breast cancer cells with carnosic acid for 6h. At a low dose, 5 μg/ml (15 μM), carnosic acid activated the expression of 3 genes, induced through the presence of antioxidant response elements, including genes involved in glutathione biosynthesis (CYP4F3, GCLC) and transport (SLC7A11). At a higher dose, 20 μg/ml, carnosic acid activated the expression of antioxidant (AKR1C2, TNXRD1, HMOX1) and apoptosis (GDF15, PHLDA1, DDIT3) genes and suppressed the expression of inhibitor of transcription (ID3) and cell cycle (CDKN2C) genes. Carnosic acid exhibits synergy with turmeric/curcumin. These compounds inhibited the activity of the purified Na-K-ATPase which may contribute to this synergy. Rosemary/carnosic acid, alone or combined with curcumin, may be useful to prevent and treat ER-negative breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  7. Protection by naringin and some other flavonoids of hepatocytic autophagy and endocytosis against inhibition by okadaic acid.

    PubMed

    Gordon, P B; Holen, I; Seglen, P O

    1995-03-17

    In isolated rat hepatocytes, the protein phosphatase inhibitor okadaic acid exerts a strong inhibitory effect on autophagy, which can be partially overcome by certain protein kinase inhibitors like the isoflavone genistein. To see if other, more specific okadaic acid antagonists could be found among the flavonoids, 55 different flavonoids were tested for their effect on okadaic acid-inhibited autophagy, measured as the sequestration of electroinjected [3H]raffinose. Naringin (naringenin 7-hesperidoside) and several other flavanone and flavone glycosides (prunin, neoeriocitrin, neohesperidin, apiin, rhoifolin, kaempferol 3-rutinoside) offered virtually complete protection against the autophagy-inhibitory effect of okadaic acid. Unlike genistein, these compounds had little or no autophagy-inhibitory effect of their own. Their innocuousness appeared to be related to glycosylation, because the corresponding aglycones (naringenin, eriodictyol, hesperetin, apigenin, kaempferol) were all inhibitory, in particular apigenin (80% inhibition at 100 microM). Naringin, the most potent okadaic acid-antagonistic flavonoid, gave half-maximal protection at 5 microM and maximal effect at 100 microM. Naringin also prevented the okadaic acid-induced inhibition of endogenous, autophagic lysosomal protein degradation and of receptor-mediated asialoglycoprotein uptake and degradation. Naringin and other okadaic acid-antagonistic flavonoids may be useful tools in the study of intracellular protein phosphorylation and could have potential therapeutic value as protectants against pathological hyperphosphorylations, environmental toxins, or side effects of chemotherapeutic drugs.

  8. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    PubMed

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  9. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-16

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  10. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-01-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869

  11. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  12. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Pilot, T.F.; Meany, J.E.

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing inmore » solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.« less

  13. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulatedmore » with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells.

  14. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  15. Xenograft Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer

    DTIC Science & Technology

    2000-08-01

    stimulating substances produced in the brain. The reduction in NPY is blocked by inhibition of acetyl-CoA carboxylase by TOFA , indicating that malonyl-CoA...mediated 5-(tetradecyloxy)-2-furoic acid ( TOFA ) was not cytotoxic to breast cancer the cytotoxic effects of cerulenin and C75, then any other FA syn...intracellular malonyl-CoA to several fold above control levels, whereas test this idea, we compared the effects on cancer cells of inhibition of TOFA reduced

  16. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    PubMed

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  17. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells.

    PubMed

    Cha, Jae-Young; Yang, Hyun-Ju; Moon, Hyung-In; Cho, Young-Su

    2012-04-01

    Present study was investigated the effect of each or complex of three branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) on melanin production in B16F0 melanoma cells treated with various concentrations (1-16 mM) for 72 h. Among the 20 amino acids, lysine and glycine showed the highest activities of DPPH radical scavenging and mushroom tyrosinase inhibition, respectively. Each and combination of BCAAs reduced melanogenesis in a concentration-dependent manner without any morphological changes and cell viability in melanoma cells. Present study was also investigated the inhibitory effects of each or complex of BCAAs at each 10 mM concentration on the 100 μM IBMX-mediated stimulation of melanogenesis in melanoma cells for 72 h and found that IBMX treatment was stimulated to enhance melanin synthesis and that the complex of BCAAs was the most effectively inhibited in the melanin amounts of cellular and extracellular and the whitening the cell pellet. When the inhibitory effect of BCAAs on tyrosinase was examined by intracellular tyrosinase assay, both isoleucine and valine exhibit slightly inhibition, but leucine and combination of BCAAs did not inhibit the cell-derived tyrosinase activity. Present study demonstrated that complex of BCAAs inhibited melanin production without changes intercellular tyrosinase activity. Thus, the complex of BCAAs may be used in development of safe potentially depigmenting agents.

  18. Rosmarinic Acid Activates AMPK to Inhibit Metastasis of Colorectal Cancer

    PubMed Central

    Han, Yo-Han; Kee, Ji-Ye; Hong, Seung-Heon

    2018-01-01

    Rosmarinic acid (RA) has been used as an anti-inflammatory, anti-diabetic, and anti-cancer agent. Although RA has also been shown to exert an anti-metastatic effect, the mechanism of this effect has not been reported to be associated with AMP-activated protein kinase (AMPK). The aim of this study was to elucidate whether RA could inhibit the metastatic properties of colorectal cancer (CRC) cells via the phosphorylation of AMPK. RA inhibited the proliferation of CRC cells through the induction of cell cycle arrest and apoptosis. In several metastatic phenotypes of CRC cells, RA regulated epithelial–mesenchymal transition (EMT) through the upregulation of an epithelial marker, E-cadherin, and the downregulation of the mesenchymal markers, N-cadherin, snail, twist, vimentin, and slug. Invasion and migration of CRC cells were inhibited and expressions of matrix metalloproteinase (MMP)-2 and MMP-9 were decreased by RA treatment. Adhesion and adhesion molecules such as ICAM-1 and integrin β1 expressions were also reduced by RA treatment. In particular, the effects of RA on EMT and MMPs expressions were due to the activation of AMPK. Moreover, RA inhibited lung metastasis of CRC cells by activating AMPK in mouse model. Collectively, these results proved that RA could be potential therapeutic agent against metastasis of CRC. PMID:29459827

  19. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells.

    PubMed

    Liu, G; Bibus, D M; Bode, A M; Ma, W Y; Holman, R T; Dong, Z

    2001-06-19

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (omega3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (omega6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the omega3 fatty acids EPA and DHA and of the omega6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of omega3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of omega6 to omega3 fatty acids may be a significant factor in mediating tumor development.

  20. [Shikimic acid inhibits the degranulation and histamine release in RBL-2H3 cells].

    PubMed

    Chen, Xianyong; Zheng, Qianqian; Liu, Wei; Yu, Lingling; Wang, Jinling; Li, Shigang

    2017-05-01

    Objective To study the effects of shikimic acid on the proliferation of rat RBL-2H3 cells and the degranulation of the cells induced by C48/80 and its mechanism. Methods MTT assay was performed to measure the proliferation of RBL-2H3 cells treated with 3, 10, 30 μg/mL shikimic acid. Toluidine blue staining was used to observe the degranulation of RBL-2H3 cells. The release of β-hexosaminidase from RBL-2H3 cells treated with 0, 12.5, 25, 50, 80, 100 μg/mL C48/80 was determined by substrate assay. ELISA was used to detect the histamine content in the supernatant of each treated group. Results Shikimic acid at 3, 10, 300 μg/mL had no obvious inhibitory effect on the proliferation of RBL-2H3 cells. There was a dose-effect relationship between the degranulation of RBL-2H3 cells and C48/80 concentration. Shikimic acid inhibited the degranulation of RBL-2H3 cells compared with the positive control group, the β-hexosaminidase release rate and histamine release were significantly reduced in RBL-2H3 cells treated with shikimic acid and C48/80. Conclusion Shikimic acid can inhibit the degranulation of RBL-2H3 cells and reduce histamine release.

  1. Usnic Acid, a Natural Antimicrobial Agent Able To Inhibit Bacterial Biofilm Formation on Polymer Surfaces

    PubMed Central

    Francolini, I.; Norris, P.; Piozzi, A.; Donelli, G.; Stoodley, P.

    2004-01-01

    In modern medicine, artificial devices are used for repair or replacement of damaged parts of the body, delivery of drugs, and monitoring the status of critically ill patients. However, artificial surfaces are often susceptible to colonization by bacteria and fungi. Once microorganisms have adhered to the surface, they can form biofilms, resulting in highly resistant local or systemic infections. At this time, the evidence suggests that (+)-usnic acid, a secondary lichen metabolite, possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Since lichens are surface-attached communities that produce antibiotics, including usnic acid, to protect themselves from colonization by other bacteria, we hypothesized that the mode of action of usnic acid may be utilized in the control of medical biofilms. We loaded (+)-usnic acid into modified polyurethane and quantitatively assessed the capacity of (+)-usnic acid to control biofilm formation by either S. aureus or Pseudomonas aeruginosa under laminar flow conditions by using image analysis. (+)-Usnic acid-loaded polymers did not inhibit the initial attachment of S. aureus cells, but killing the attached cells resulted in the inhibition of biofilm. Interestingly, although P. aeruginosa biofilms did form on the surface of (+)-usnic acid-loaded polymer, the morphology of the biofilm was altered, possibly indicating that (+)-usnic acid interfered with signaling pathways. PMID:15504865

  2. Effect of Oral Valproic Acid vs Placebo for Vision Loss in Patients With Autosomal Dominant Retinitis Pigmentosa: A Randomized Phase 2 Multicenter Placebo-Controlled Clinical Trial.

    PubMed

    Birch, David G; Bernstein, Paul S; Iannacone, Alessandro; Pennesi, Mark E; Lam, Byron L; Heckenlively, John; Csaky, Karl; Hartnett, Mary Elizabeth; Winthrop, Kevin L; Jayasundera, Thiran; Hughbanks-Wheaton, Dianna K; Warner, Judith; Yang, Paul; Fish, Gary Edd; Teske, Michael P; Sklaver, Neal L; Erker, Laura; Chegarnov, Elvira; Smith, Travis; Wahle, Aimee; VanVeldhuisen, Paul C; McCormack, Jennifer; Lindblad, Robert; Bramer, Steven; Rose, Stephen; Zilliox, Patricia; Francis, Peter J; Weleber, Richard G

    2018-06-07

    There are no approved drug treatments for autosomal dominant retinitis pigmentosa, a relentlessly progressive cause of adult and childhood blindness. To evaluate the potential efficacy and assess the safety of orally administered valproic acid (VPA) in the treatment of autosomal dominant retinitis pigmentosa. Multicenter, phase 2, prospective, interventional, placebo-controlled, double-masked randomized clinical trial. The study took place in 6 US academic retinal degeneration centers. Individuals with genetically characterized autosomal dominant retinitis pigmentosa were randomly assigned to receive treatment or placebo for 12 months. Analyses were intention-to-treat. Oral VPA 500 mg to 1000 mg daily for 12 months or placebo. The primary outcome measure was determined prior to study initiation as the change in visual field area (assessed by the III4e isopter, semiautomated kinetic perimetry) between baseline and month 12. The mean (SD) age of the 90 participants was 50.4 (11.6) years. Forty-four (48.9%) were women, 87 (96.7%) were white, and 79 (87.8%) were non-Hispanic. Seventy-nine participants (87.8%) completed the study (42 [95.5%] received placebo and 37 [80.4%] received VPA). Forty-two (46.7%) had a rhodopsin mutation. Most adverse events were mild, although 7 serious adverse events unrelated to VPA were reported. The difference between the VPA and placebo arms for mean change in the primary outcome was -150.43 degree2 (95% CI, -290.5 to -10.03; P = .035). This negative value indicates that the VPA arm had worse outcomes than the placebo group. This study brings to light the key methodological considerations that should be applied to the rigorous evaluation of treatments for these conditions. This study does not provide support for the use of VPA in the treatment of autosomal dominant retinitis pigmentosa. ClinicalTrials.gov Identifier: NCT01233609.

  3. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  4. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  5. Kinetic studies of the inhibition of a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme by bile acids and anti-inflammatory drugs.

    PubMed

    Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F

    1995-01-01

    We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.

  6. [Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].

    PubMed

    Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I

    2016-01-01

    The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.

  7. Benzeneboronic acid selectively inhibits sporulation of Bacillis subtilis.

    PubMed Central

    Davis-Mancini, K; Lopez, I P; Hageman, J H

    1978-01-01

    m-Aminobenzeneboronic acid at levels of 0.2 mM in nutrient broth medium selectively inhibited sporulation without appreciably altering vegetative growth. Significant inhibitory effects were seen even when it was added as late as 6 h after the end of logarithmic growth. The pH changes associated with growth and sporulation of Bacillus subtilis in nutrient broth were not significantly altered by the inhibitor. When it was present in cultures of actively growing cells, its inhibitory effect could not be reversed by simple dilution. The compound caused extensive clumping, of cells, which appeared not to be related to the ability of boronates to esterify to diols. Images PMID:30755

  8. Alleviation of N-Methyl-D-Aspartate Receptor-Dependent Long-Term Depression via Regulation of the Glycogen Synthase Kinase-3β Pathway in the Amygdala of a Valproic Acid-Induced Animal Model of Autism.

    PubMed

    Wu, Han-Fang; Chen, Po See; Chen, Yi-Ju; Lee, Chi-Wei; Chen, I-Tuan; Lin, Hui-Ching

    2017-09-01

    The amygdala plays crucial roles in socio-emotional behavior and cognition, both of which are abnormal in autism spectrum disorder (ASD). Valproic acid (VPA)-exposed rat offspring have demonstrated ASD phenotypes and amygdala excitatory/inhibitory imbalance. However, the role of glutamatergic synapses in this imbalance remains unclear. In this study, we used a VPA-induced ASD-like model to assess glutamatergic synapse-dependent long-term depression (LTD) and depotentiation (DPT) in the amygdala. We first confirmed that the VPA-exposed offspring exhibited sociability deficits, anxiety, depression-like behavior, and abnormal nociception thresholds. Then, electrophysiological examination showed a significantly decreased paired-pulse ratio in the amygdala. In addition, both NMDA-dependent LTD and DPT were absent from the amygdala. Furthermore, we found that the levels of glycogen synthase kinase3β (GSK-3β) phosphorylation and β-catenin were significantly higher in the amygdala of the experimental animals than in the controls. Local infusion of phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin into the amygdala reversed the increased phosphorylation level and impaired social behavior. Taken together, the results suggested that NMDA receptor-related synaptic plasticity is dysfunctional in VPA-exposed offspring. In addition, GSK-3β in the amygdala is critical for synaptic plasticity at the glutamatergic synapses and is related to social behavior. Its role in the underlying mechanism of ASD merits further investigation.

  9. Inhibition of NF-κB prevents the acidic bile-induced oncogenic mRNA phenotype, in human hypopharyngeal cells

    PubMed Central

    Vageli, Dimitra P.; Doukas, Sotirios G.; Sasaki, Clarence T.

    2018-01-01

    Bile-containing gastro-duodenal reflux has been clinically considered an independent risk factor in hypopharyngeal carcinogenesis. We recently showed that the chronic effect of acidic bile, at pH 4.0, selectively induces NF-κB activation and accelerates the transcriptional levels of genes, linked to head and neck cancer, in normal hypopharyngeal epithelial cells. Here, we hypothesize that NF-κB inhibition is capable of preventing the acidic bile-induced and cancer-related mRNA phenotype, in treated normal human hypopharyngeal cells. In this setting we used BAY 11-7082, a specific and well documented pharmacologic inhibitor of NF-κB, and we observed that BAY 11-7082 effectively inhibits the acidic bile-induced gene expression profiling of the NF-κB signaling pathway (down-regulation of 72 out of 84 analyzed genes). NF-κB inhibition significantly prevents the acidic bile-induced transcriptional activation of NF-κB transcriptional factors, RELA (p65) and c-REL, as well as genes related to and commonly found in established HNSCC cell lines. These include anti-apoptotic bcl-2, oncogenic STAT3, EGFR, ∆Np63, TNF-α and WNT5A, as well as cytokines IL-1β and IL-6. Our findings are consistent with our hypothesis demonstrating that NF-κB inhibition effectively prevents the acidic bile-induced cancer-related mRNA phenotype in normal human hypopharyngeal epithelial cells supporting an understanding that NF-κB may be a critical link between acidic bile and early preneoplastic events in this setting. PMID:29464041

  10. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro

    2017-03-01

    We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (p<0.001). Its main phenolics, caffeic acid and cholorogenic acid were as potent as aminoguanidine-a specific antiglycation agent: IC50 of 0.9mM (p<0.001). Our results suggest that AGE adducts form between fructose and amino acids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    PubMed

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution. Copyright © 2015. Published by Elsevier B.V.

  12. The Synthetic Triterpenoid CDDO-Im Inhibits Fatty Acid Synthase Expression and Has Antiproliferative and Proapoptotic Effects in Human Liposarcoma Cells

    PubMed Central

    Hughes, David T.; Martel, Peter M.; Kinlaw, William B.; Eisenberg, Burton L.

    2013-01-01

    Liposarcomas constitute a rare group of tumors of mesenchymal origin that are often poorly responsive to therapy. This study characterizes a novel human liposarcoma cell line (LiSa-2) and defines the mechanism of its response to a synthetic triterpenoid. Fatty acid synthase (FAS) is a key enzyme of de-novo fatty acid synthesis and is highly expressed in both human liposarcoma tissue specimens and LiSa-2 cells. Treatment of the LiSa-2 cell line with the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide (CDDO-Im) markedly inhibited FAS mRNA expression, FAS protein production and FAS gene promoter activity. As expected, fatty acid synthesis was down regulated, but there was no effect on cellular fatty acid uptake or glycerol-3-phosphate synthesis suggesting a selective inhibition of endogenous fatty acid synthesis. Importantly, CDDO-Im produced a dose-dependent apoptotic effect in the LiSa-2 cell line, and simultaneous treatment with CDDO-Im and the fatty acid synthase inhibitor Cerulenin produced a synergistic cytotoxic effect. Thus, CDDO-Im and Cerulenin act at different loci to inhibit long chain fatty acid synthesis in liposarcoma cells. This study’s demonstration of CDDO-Im inhibition of FAS and Spot 14 (S14) expression is the first report of triterpenoid compounds affecting the fatty acid synthesis pathway. The observed dependence of liposarcomas on lipogenesis to support their growth and survival provides a novel approach to the treatment of liposarcomas with agents that target fatty acid production. PMID:18259941

  13. Fatty Acid Synthesis in Pea Root Plastids Is Inhibited by the Action of Long-Chain Acyl- Coenzyme As on Metabolite Transporters1

    PubMed Central

    Fox, Simon R.; Rawsthorne, Stephen; Hills, Matthew J.

    2001-01-01

    The uptake in vitro of glucose (Glc)-6-phosphate (Glc-6-P) into plastids from the roots of 10- to 14-d-old pea (Pisum sativum L. cv Puget) plants was inhibited by oleoyl-coenzyme A (CoA) concentrations in the low micromolar range (1–2 μm). The IC50 (the concentration of inhibitor that reduces enzyme activity by 50%) for the inhibition of Glc-6-P uptake was approximately 750 nm; inhibition was reversed by recombinant rapeseed (Brassica napus) acyl-CoA binding protein. In the presence of ATP (3 mm) and CoASH (coenzyme A; 0.3 mm), Glc-6-P uptake was inhibited by 60%, due to long-chain acyl-CoA synthesis, presumably from endogenous sources of fatty acids present in the preparations. Addition of oleoyl-CoA (1 μm) decreased carbon flux from Glc-6-P into the synthesis of starch and through the oxidative pentose phosphate (OPP) pathway by up to 73% and 40%, respectively. The incorporation of carbon from Glc-6-P into fatty acids was not detected under any conditions. Oleoyl-CoA inhibited the incorporation of acetate into fatty acids by 67%, a decrease similar to that when ATP was excluded from incubations. The oleoyl-CoA-dependent inhibition of fatty acid synthesis was attributable to a direct inhibition of the adenine nucleotide translocator by oleoyl-CoA, which indirectly reduced fatty acid synthesis by ATP deprivation. The Glc-6-P-dependent stimulation of acetate incorporation into fatty acids was reversed by the addition of oleoyl-CoA. PMID:11457976

  14. Eicosapentaenoic acid inhibits oxidation of high density lipoprotein particles in a manner distinct from docosahexaenoic acid.

    PubMed

    Sherratt, Samuel C R; Mason, R Preston

    2018-02-05

    The omega-3 fatty acid eicosapentaenoic acid (EPA) reduces oxidation of ApoB-containing particles in vitro and in patients with hypertriglyceridemia. EPA may produce these effects through a potent antioxidant mechanism, which may facilitate LDL clearance and slow plaque progression. We hypothesize that EPA antioxidant effects may extend to ApoA-containing particles like HDL, potentially preserving certain atheroprotective functions. HDL was isolated from human plasma and incubated at 37 °C in the absence (vehicle) or presence of EPA and/or DHA; 5.0 or 10.0 μM each. Samples were then subjected to copper-induced oxidation (10 μM). HDL oxidation was inhibited similarly by EPA and DHA up to 1 h. EPA (10 μM) maintained significant HDL oxidation inhibition of 89% (0.622 ± 0.066 μM MDA; p < .001) at 4 h, with continued inhibition of 64% at 14 h, vs. vehicle (5.65 ± 0.06 to 2.01 ± 0.10 μM MDA; p < .001). Conversely, DHA (10 μM) antioxidant benefit was lost by 4 h. At a lower concentration (5 μM), EPA antioxidant activity remained at 81% (5.53 ± 0.15 to 1.03 ± 0.10 μM MDA; p < .001) at 6 h, while DHA lost all antioxidant activity by 4 h. The antioxidant activity of EPA was preserved when combined with an equimolar concentration of DHA (5 μM each). EPA pretreatment prevented HDL oxidation in a dose-dependent manner that was preserved over time. These results suggest unique lipophilic and electron stabilization properties for EPA as compared to DHA with respect to inhibition of HDL oxidation. These antioxidant effects of EPA may enhance certain atheroprotective functions for HDL. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    PubMed

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  16. Gymnemic Acids Inhibit Hyphal Growth and Virulence in Candida albicans

    PubMed Central

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d’Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  17. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    PubMed

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  18. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    PubMed

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  19. Ursodeoxycholic acid inhibits overexpression of P-glycoprotein induced by doxorubicin in HepG2 cells.

    PubMed

    Komori, Yuki; Arisawa, Sakiko; Takai, Miho; Yokoyama, Kunihiro; Honda, Minako; Hayashi, Kazuhiko; Ishigami, Masatoshi; Katano, Yoshiaki; Goto, Hidemi; Ueyama, Jun; Ishikawa, Tetsuya; Wakusawa, Shinya

    2014-02-05

    The hepatoprotective action of ursodeoxycholic acid (UDCA) was previously suggested to be partially dependent on its antioxidative effect. Doxorubicin (DOX) and reactive oxygen species have also been implicated in the overexpression of P-glycoprotein (P-gp), which is encoded by the MDR1 gene and causes antitumor multidrug resistance. In the present study, we assessed the effects of UDCA on the expression of MDR1 mRNA, P-gp, and intracellular reactive oxygen species levels in DOX-treated HepG2 cells and compared them to those of other bile acids. DOX-induced increases in reactive oxygen species levels and the expression of MDR1 mRNA were inhibited by N-acetylcysteine, an antioxidant, and the DOX-induced increase in reactive oxygen species levels and DOX-induced overexpression of MDR1 mRNA and P-gp were inhibited by UDCA. Cells treated with UDCA showed improved rhodamine 123 uptake, which was decreased in cells treated with DOX alone. Moreover, cells exposed to DOX for 24h combined with UDCA accumulated more DOX than that of cells treated with DOX alone. Thus, UDCA may have inhibited the overexpression of P-gp by suppressing DOX-induced reactive oxygen species production. Chenodeoxycholic acid (CDCA) also exhibited these effects, whereas deoxycholic acid and litocholic acid were ineffective. In conclusion, UDCA and CDCA had an inhibitory effect on the induction of P-gp expression and reactive oxygen species by DOX in HepG2 cells. The administration of UDCA may be beneficial due to its ability to prevent the overexpression of reactive oxygen species and acquisition of multidrug resistance in hepatocellular carcinoma cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Inhibition of proteases activity in intestine needs a sustainable acidic environment rather than a transient.

    PubMed

    Xing, Chang; Xing, Jin-Feng; Ge, Zhi-Qiang

    2017-10-01

    α-Chymotrypsin (α-CT) and trypsin are important components of the enzymatic barrier. They could degrade the therapeutic proteins and peptides, inhibit their activity consequently, and thereby reduce their oral bioavailability. Acidic agents, as one type of indirect protease inhibitors, have shown proof of concept in clinical trials. We report here the inactivated proteases due to acid influence can be reactivated immediately by environmental pH recovery regardless of how long the inactivation last. To keep the inactivation time of proteases for 4-5 h, we designed and prepared a sustained-release tablet containing citric acid (CA) which can effectively reduce the pH below 5.0 and maintain it for 5 h in the dissolution-reaction medium. The activity of α-CT and trypsin was quantified by analyzing the residual amount of their respective substrates BTEE and TAME. More than 80% of the substrates were survived in 5.0 h of incubation, whereas the common tablet inhibited the proteases activity for only two hours in the same experimental medium. It indicates that the sustained-release tablet loaded with CA can efficiently inhibit the α-CT and trypsin activity longer than the common tablet. The results will be beneficial for designing and formulating the peroral administration of peptide and protein drugs.

  1. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    PubMed

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe 2+ reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A 420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A 420 . The A 420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe 2+ reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  2. Ferulic Acid Suppresses Glutamate Release Through Inhibition of Voltage-Dependent Calcium Entry in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei

    2013-01-01

    Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970

  3. Effect of ketogenic diet and other dietary therapies on anti-epileptic drug concentrations in patients with epilepsy.

    PubMed

    Heo, G; Kim, S H; Chang, M J

    2017-12-01

    The ketogenic diet (KD) is an effective high-fat, adequate-protein, low-carbohydrate diet for patients with refractory epilepsy. The aim of this study was to investigate the potential effects of the KD and other dietary therapies on the concentrations of anticonvulsants in patients with epilepsy. Patients with epilepsy who were treated with the KD and other dietary therapies for more than 30 days with at least one measurement performed both before and during the diet were evaluated. The mean serum concentrations and the mean serum concentrations per weight per daily dose per bioavailability (F) of anti-epileptic drugs (AEDs) before and during the treatment were assessed. We also compared the rates of events out of reference ranges of the AEDs between before and during the KD and other dietary therapies. We compared the serum albumin, alanine transaminase and aspartate transaminase data of patients with valproic acid before and during the KD. One-hundred thirty-nine patients including 81 male patients were enrolled. The median age of the patients was 2.91 (0.15-15.46) years. The median duration of the dietary therapies was 153 (35-2307) days. After the dietary therapies, the serum concentrations of carbamazepine, lamotrigine, levetiracetam, topiramate and valproic acid decreased, whereas that of phenobarbital slightly increased. However, statistical significance was found only with valproic acid (67.07±25.89 μg/mL vs 51.00±20.19 μg/mL, P<.05). The serum concentrations per weight per daily dose per drug F significantly decreased for valproic acid (1.38±1.39×10 -2 vs 0.82±0.82×10 -2  μg d mL -1  F -1 ) and phenobarbital (6.66±7.20×10 -2 vs 4.75±4.07×10 -2  μg d mL -1  F -1 , P<.05). The rate of occurrence of events out of reference ranges significantly increased with valproic acid (36.08% vs 57.23%, P<.05). Most anti-epileptic drug serum concentrations remained stable during the KD and other related dietary therapies except those of valproic

  4. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William

    2011-01-01

    Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994

  5. Tonic Seizure Status Epilepticus Triggered by Valproate in a Child with Doose Syndrome.

    PubMed

    Grande-Martín, Alberto; Pardal-Fernández, José Manuel; Carrascosa-Romero, María Carmen; De Cabo, Carlos

    2016-06-01

    Antiepileptic drugs may occasionally increase seizure frequency or eliciting de novo seizure occurrence; the underlying mechanism of these effects is not known. The potential adverse effects of valproic acid in myoclonic astatic epilepsy have been noted by experienced clinicians in various different regions of the world, but this important observation has not been sufficiently reported. We present the case of tonic status epilepticus in an 8-year-old boy with Doose syndrome related to valproic acid. Valproic acid, such as others antiepileptic drugs, is liable to produce paradoxical effects such as the atypical seizures we report. We emphasize the importance for the management of acute seizures in an intensive care unit setting and increase awareness of the acute toxic effects of antiepileptic drugs. Georg Thieme Verlag KG Stuttgart · New York.

  6. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    PubMed

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  7. Inhibition of Staphylococcus aureus by crude and fractionated extract from lactic acid bacteria.

    PubMed

    Wong, C-B; Khoo, B-Y; Sasidharan, S; Piyawattanametha, W; Kim, S H; Khemthongcharoen, N; Ang, M-Y; Chuah, L-O; Liong, M-T

    2015-03-01

    Increasing levels of antibiotic resistance by Staphylococcus aureus have posed a need to search for non-antibiotic alternatives. This study aimed to assess the inhibitory effects of crude and fractionated cell-free supernatants (CFS) of locally isolated lactic acid bacteria (LAB) against a clinical strain of S. aureus. A total of 42 LAB strains were isolated and identified from fresh vegetables, fresh fruits and fermented products prior to evaluation of inhibitory activities. CFS of LAB strains exhibiting a stronger inhibitive effect against S. aureus were fractionated into crude protein, polysaccharide and lipid fractions. Crude protein fractions showed greater inhibition against S. aureus compared to polysaccharide and lipid fractions, with a more prevalent effect from Lactobacillus plantarum 8513 and L. plantarum BT8513. Crude protein, polysaccharide and lipid fractions were also characterised with glycine, mannose and oleic acid being detected as the major component of each fraction, respectively. Scanning electron microscopy revealed roughed and wrinkled membrane morphology of S. aureus upon treatment with crude protein fractions of LAB, suggesting an inhibitory effect via the destruction of cellular membrane. This research illustrated the potential application of fractionated extracts from LAB to inhibit S. aureus for use in the food and health industry.

  8. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  9. Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster.

    PubMed

    Arbeeny, C M; Meyers, D S; Bergquist, K E; Gregg, R E

    1992-06-01

    The hamster was developed as a model to study very low density lipoprotein (VLDL) metabolism, since, as is the case in humans, the hamster liver was found to synthesize apoB-100 and not apoB-48. The effect of inhibiting fatty acid synthesis on the hepatic secretion of VLDL triglyceride (TG) and apolipoprotein (apo) B-100 in this model was then investigated. In an in vivo study, hamsters were fed a chow diet containing 0.15% TOFA (5-tetradecyloxy-2-furancarboxylic acid), an inhibitor of acetyl-CoA carboxylase. After 6 days of treatment, plasma triglyceride and cholesterol levels were decreased by 30.2% and 11.6%, respectively. When the secretion of VLDL-TG by the liver was measured in vivo after injection of Triton WR 1339, TOFA treatment was found to decrease VLDL-TG secretion by 40%. In subsequent in vitro studies utilizing cultured primary hamster hepatocytes, incubation with 20 microM TOFA for 4 h resulted in 98% and 76% inhibition in fatty acid and triglyceride synthesis, respectively; VLDL-TG secretion was decreased by 90%. When hepatocytes were pulsed with [3H]leucine, incubation with TOFA resulted in a 50% decrease in the incorporation of radiolabel into secreted VLDL apoB-100. The results of this study indicate that inhibition of intracellular triglyceride synthesis decreases the secretion of VLDL-TG and apoB-100, and does not result in the secretion of a dense, triglyceride-depleted lipoprotein.

  10. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies.

    PubMed

    Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo

    2014-04-01

    Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies.

  11. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch

    PubMed Central

    Morales-Lázaro, Sara L.; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E.; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A.; Islas, León D.; Rosenbaum, Tamara

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation. PMID:27721373

  12. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    PubMed

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  13. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis

    PubMed Central

    Huang, Wei; Booth, David M; Cane, Matthew C; Chvanov, Michael; Javed, Muhammad A; Elliott, Victoria L; Armstrong, Jane A; Dingsdale, Hayley; Cash, Nicole; Li, Yan; Greenhalf, William; Mukherjee, Rajarshi; Kaphalia, Bhupendra S; Jaffar, Mohammed; Petersen, Ole H; Tepikin, Alexei V; Sutton, Robert; Criddle, David N

    2014-01-01

    Objective Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Design Intracellular calcium ([Ca2+]C), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Results Inhibition of OME with 4-MP converted predominantly transient [Ca2+]C rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. Conclusions A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation. PMID:24162590

  14. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2

    PubMed Central

    Parkinson, Eric Kenneth

    2013-01-01

    The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603

  15. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources

    PubMed Central

    Hartmann, Anja; Gostner, Johanna; Fuchs, Julian E.; Chaita, Eliza; Aligiannis, Nektarios; Skaltsounis, Leandros; Ganzera, Markus

    2015-01-01

    Matrix metalloproteinases (MMP) play an important role in extracellular matrix remodeling. Excessive activity of these enzymes can be induced by UV light and leads to skin damage, a process known as photoaging. In this study we investigated the collagenase inhibition potential of mycosporine-like amino acids (MAA), compounds that have been isolated from marine organisms and are known photoprotectants against UV-A and UV-B. For this purpose the commonly used collagenase assay was optimized and for the first time validated in terms of relationships between enzyme-substrate concentrations, temperature, incubation time and enzyme stability. Three compounds were isolated from the marine red algae Porphyra sp. and Palmaria palmata, and evaluated for their inhibitory properties against Chlostridium histolyticum collagenase (Chc). A dose-dependent, but very moderate inhibition was observed for all substances and IC50 values of 104.0 μM for shinorine, 105.9 μM for porphyra and 158.9 μM for palythine were determined. Additionally, computer-aided docking models suggested that the MAA binding to the active site of the enzyme is a competitive inhibition. PMID:26039265

  16. Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid.

    PubMed

    Al-Amiery, Ahmed A; Binti Kassim, Fatin A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2016-01-22

    The acid corrosion inhibition process of mild steel in 1 M HCl by azelaic acid dihydrazide has been investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). Azelaic acid dihydrazide was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared, nuclear magnetic resonance and mass spectroscopy). Potentiodynamic polarization studies indicate that azelaic acid dihydrazide is a mixed-type inhibitor. The inhibition efficiency increases with increased inhibitor concentration and reaches its maximum of 93% at 5 × 10(-3) M. The adsorption of the inhibitor on a mild steel surface obeys Langmuir's adsorption isotherm. The effect of te perature on corrosion behavior in the presence of 5 × 10(-3) M inhibitor was studied in the temperature range of 30-60 °C. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. To inspect the surface morphology of inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl.

  17. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Mi Hee; Kang, Dong Woo; Jung, Yunjin

    2013-12-06

    Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition ofmore » binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.« less

  18. Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit.

    PubMed

    Wang, Hui; Zhi, Wei; Qu, Hongxia; Lin, Hetong; Jiang, Yueming

    2015-12-01

    Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit. Two non-protein amino acids, α-aminoisobutyric acid (AIB) and β-aminoisobutyric acid (BAIB) at 100 and 1 mM were applied to longan fruit prior to storage for up to 8 days at 25 °C respectively. Contents of the major five phenolics (gallic acid, catechin, corilagin, epicatechin and gallocatechin gallate) were assayed by high-performance liquid chromatography (HPLC). Physiological properties related to pericarp browning of longan fruit were investigated during storage. Respiration rate, membrane permeability, malondialdehyde (MDA) content, and activities of polyphenol oxidase (PPO) and peroxidase (POD) were down-regulated by AIB or BAIB treatments, with significantly lower pericarp browning index and higher proportion of edible fruit than the control. Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate. Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB. The findings may provide a new strategy for controlling pericarp browning of harvested longan fruit.

  19. Loperamide Restricts Intracellular Growth of Mycobacterium tuberculosis in Lung Macrophages.

    PubMed

    Juárez, Esmeralda; Carranza, Claudia; Sánchez, Guadalupe; González, Mitzi; Chávez, Jaime; Sarabia, Carmen; Torres, Martha; Sada, Eduardo

    2016-12-01

    New approaches for improving tuberculosis (TB) control using adjunct host-directed cellular and repurposed drug therapies are needed. Autophagy plays a crucial role in the response to TB, and a variety of autophagy-inducing drugs that are currently available for various medical conditions may serve as an adjunct treatment in pulmonary TB. Here, we evaluated the potential of loperamide, carbamazepine, valproic acid, verapamil, and rapamycin to enhance the antimicrobial immune response to Mycobacterium tuberculosis (Mtb). Human monocyte-derived macrophages (MDMs) and murine alveolar cells (MACs) were infected with Mtb and treated with loperamide, carbamazepine, valproic acid, verapamil, and rapamycin in vitro. Balb/c mice were intraperitoneally administered loperamide, valproic acid, and verapamil, and MACs were infected in vitro with Mtb. The induction of autophagy, the containment of Mtb within autophagosomes and the intracellular Mtb burden were determined. Autophagy was induced by all of the drugs in human and mouse macrophages, and loperamide significantly increased the colocalization of microtubule-associated protein 1 light chain 3 with Mtb in MDMs. Carbamazepine, loperamide, and valproic acid induced microtubule-associated protein 1 light chain 3 and autophagy related 16- like protein 1 gene expression in MDMs and in MACs. Loperamide also induced a reduction in TNF-α production. Loperamide and verapamil induced autophagy, which was associated with a significant reduction in the intracellular growth of Mtb in MACs and alveolar macrophages. The intraperitoneal administration of loperamide and valproic acid induced autophagy in freshly isolated MACs. The antimycobacterial activity in MACs was higher after loperamide treatment and was associated with the degradation of p62. In conclusion, loperamide shows potential as an adjunctive therapy for the treatment of TB.

  20. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J.

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors forcemore » a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.« less

  1. New experimental therapies for status epilepticus in preclinical development.

    PubMed

    Walker, Matthew C; Williams, Robin S B

    2015-08-01

    Starting with the established antiepileptic drug, valproic acid, we have taken a novel approach to develop new antiseizure drugs that may be effective in status epilepticus. We first identified that valproic acid has a potent effect on a biochemical pathway, the phosphoinositide pathway, in Dictyostelium discoideum, and we demonstrated that this may relate to its mechanism of action against seizures in mammalian systems. Through screening in this pathway, we have identified a large array of fatty acids and fatty acid derivatives with antiseizure potential. These were then evaluated in an in vitro mammalian system. One compound that we identified through this process is a major constituent of the ketogenic diet, strongly arguing that it may be the fatty acids that are mediating the antiseizure effect of this diet. We further tested two of the more potent compounds in an in vivo model of status epilepticus and demonstrated that they were more effective than valproic acid in treating the status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Adult-onset of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome presenting as acute meningoencephalitis: a case report.

    PubMed

    Hsu, Yu-Chuan; Yang, Fu-Chi; Perng, Cherng-Lih; Tso, An-Chen; Wong, Lee-Jun C; Hsu, Chang-Hung

    2012-09-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a rare mitochondrial disorder with a wide range of multisystemic symptoms. Epileptic seizures are common features of both MELAS and meningoencephalitis and are typically treated with anticonvulsants. To provide the reader with a better understanding of MELAS and the adverse effects of valproic acid. A 47-year-old man with a history of diabetes, hearing loss, sinusitis, and otitis media was brought to our emergency department due to acute onset of fever, headache, generalized seizure, and agitation. Because acute meningoencephalitis was suspected, the patient was treated with antibiotics on an empirical basis. The seizure activity was aggravated by valproic acid and abated after its discontinuation. MELAS was suspected and the diagnosis was confirmed by the presence of a nucleotide 3243 A→G mutation in the mitochondrial DNA. Detailed history-taking and systematic review help emergency physicians differentiate MELAS from meningoencephalitis in patients with the common presentation of epileptic seizures. Use of valproic acid to treat epilepsy in patients suspected of having mitochondrial disease should be avoided. Underlying mitochondrial disease should be suspected if seizure activity worsens with valproic acid therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids

    USDA-ARS?s Scientific Manuscript database

    D-amino acids (D-aas) are reported to bind to IgE antibodies from people with allergy and asthma. The objectives of this study were to determine if D-aas bind or inhibit IgE binding to peanut allergens, and if they are more effective than L-amino acids (L-aas) in this respect. Several D-aa cocktails...

  4. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons

    PubMed Central

    Beckmann, Nadine; Sharma, Deepa; Gulbins, Erich; Becker, Katrin Anne; Edelmann, Bärbel

    2014-01-01

    Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug. PMID:25228885

  5. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides

    PubMed Central

    Guichard, Cécile; Ivanyi-Nagy, Roland; Sharma, Kamal Kant; Gabus, Caroline; Marc, Daniel; Mély, Yves; Darlix, Jean-Luc

    2011-01-01

    Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrPC) into the aggregated misfolded scrapie isoform, named PrPSc. Recent studies on the physiological role of PrPC revealed that this protein has probably multiple functions, notably in cell–cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5′-GACACAAGCCGA-3′ was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities. PMID:21737432

  6. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides.

    PubMed

    Guichard, Cécile; Ivanyi-Nagy, Roland; Sharma, Kamal Kant; Gabus, Caroline; Marc, Daniel; Mély, Yves; Darlix, Jean-Luc

    2011-10-01

    Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.

  7. Development and Validation of a Simple and Rapid UPLC-MS Assay for Valproic Acid and Its Comparison With Immunoassay and HPLC Methods.

    PubMed

    Zhao, Mingming; Li, Guofei; Qiu, Feng; Sun, Yaxin; Xu, Yinghong; Zhao, Limei

    2016-04-01

    Valproic acid (VPA), a widely used antiepileptic drug, has a narrow therapeutic range of 50-100 mcg/mL and shows large individual variability. It is very important to monitor the trough concentration of VPA using a reliable method. Therefore, the aim of this study was to develop and validate a rapid ultraperformance liquid chromatographic-mass spectrometry (UPLC-MS) method for quantification of VPA in human serum and to compare with fluorescence polarization immunoassay (FPIA), chemiluminescence microparticle immunoassay (CMIA), and high-performance liquid chromatography (HPLC) methods. The method included extraction of VPA in serum by deproteinization with acetonitrile. The analysis was performed using an EC-C18 column (2.7 μm, 4.6 × 50 mm) under isocratic conditions with a mobile phase of acetonitrile/water (containing 0.1% formic acid) (45/55, vol/vol) at a flow rate of 0.6 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer using an electrospary probe in the negative ionization mode. The method was validated by studies of selectivity, linearity, lower limit of quantification, accuracy, precision, recovery, matrix effect, and stability. Furthermore, all the 4 methods including FPIA, CMIA, and HPLC were subsequently used to assay the VPA concentration in 498 clinical serum samples collected from patients who received VPA. These methods were compared by Deming regression and Bland-Altman analysis. The retention time of VPA was 2.09 minutes. The calibration curve was linear over the concentration range of 1-200 mcg/mL, with a lower limit of quantification of 1 mcg/mL. The interday and intraday precision (RSD %) was less than 4.6% and 4.5%, respectively, and the accuracy (RE %) was below 7.9%. The recoveries and matrix effect of VPA at concentrations of 2, 50, and 160 mcg/mL met the requirement for the analysis of biological samples. No obvious degradation of VPA was observed under various storage conditions including room

  8. Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress.

    PubMed

    Amano, Ryota; Yamashita, Atsuya; Kasai, Hirotake; Hori, Tomoka; Miyasato, Sayoko; Saito, Setsu; Yokoe, Hiromasa; Takahashi, Kazunori; Tanaka, Tomohisa; Otoguro, Teruhime; Maekawa, Shinya; Enomoto, Nobuyuki; Tsubuki, Masayoshi; Moriishi, Kohji

    2017-09-01

    Several cinnamic acid derivatives have been reported to exhibit antiviral activity. In this study, we prepared 17 synthetic cinnamic acid derivatives and screened them to identify an effective antiviral compound against hepatitis C virus (HCV). Compound 6, one of two hit compounds, suppressed the viral replications of genotypes 1b, 2a, 3a, and 4a with EC 50 values of 1.5-8.1 μM and SI values of 16.2-94.2. The effect of compound 6 on the phosphorylation of Tyr 705 in signal transducer and activator of transcription 3 (STAT3) was investigated because a cinnamic acid derivative AG490 was reported to suppress HCV replication and the activity of Janus kinase (JAK) 2. Compound 6 potently suppressed HCV replication, but it did not inhibit the JAK1/2-dependent phosphorylation of STAT3 Tyr 705  at the same concentration. Furthermore, a pan-JAK inhibitor tofacitinib potently impaired phosphorylation of STAT3 Tyr 705 , but it did not inhibit HCV replication in the replicon cells and HCV-infected cells at the same concentration, supporting the notion that the phosphorylated state of STAT3 Tyr 705 is not necessarily correlated with HCV replication. The production of reactive oxygen species (ROS) was induced by treatment with compound 6, whereas N-acetyl-cysteine restored HCV replication and impaired ROS production in the replicon cells treated with compound 6. These data suggest that compound 6 inhibits HCV replication via the induction of oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Gallic Acid Attenuates Postoperative Intra-Abdominal Adhesion by Inhibiting Inflammatory Reaction in a Rat Model

    PubMed Central

    Wei, Guangbing; Wu, Yunhua; Gao, Qi; Shen, Cong; Chen, Zilu; Wang, Kang; Yu, Junhui

    2018-01-01

    Background Intra-abdominal adhesion is one of the most common complications after abdominal surgery. The efficacy of current treatments for intra-abdominal adhesion is unsatisfactory. In this study, we investigated the effect of gallic acid on the prevention and treatment of intra-abdominal adhesions after abdominal surgery using an intra-abdominal adhesion rat model. Material/Methods The experimental rats were randomly divided into the sham operation group, the control group, the chitosan group, and 3 gallic acid groups of different concentrations. All rats except those in the sham operation group received cecal abrasion to induce adhesion. From the first postoperative day, the rats in the gallic acid groups were administered different concentrations of gallic acid in a 2-ml gavage daily. All rats were sacrificed on postoperative day 7, and the degree of intra-abdominal adhesion was evaluated by the naked eye. The amount of collagen deposited between the injured peritoneal tissues was assessed by Sirius red staining. Serum levels of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and transforming growth factor-β (TGF-β) were measured by ELISA. Western blot was used to detect the level of NF-κB phosphorylation in the injured peritoneal or adhesion tissues of the rats. Results Compared with the control group, the scores of intra-abdominal adhesions in the rats treated with larger doses of gallic acid were significantly decreased, and the degree of inflammation and fibrosis was also significantly decreased. Gallic acid significantly reduced IL-6, TNF-α, and TGF-β1 serum levels. NF-κB phosphorylation in the higher gallic acid groups was significantly reduced. Conclusions Gallic acid inhibits the formation of postoperative intra-abdominal adhesions in rats by inhibiting the inflammatory reaction and fibrogenesis. Gallic acid is a promising drug for preventing intra-abdominal adhesions. PMID:29429982

  10. Activation and Repression of Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycles by Short- and Medium-Chain Fatty Acids

    PubMed Central

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan

    2014-01-01

    ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota

  11. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade.

    PubMed

    Steuck, Maryvonne; Hellhake, Stefan; Schebb, Nils Helge

    2016-11-30

    The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC 50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC 50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.

  12. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  13. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  14. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Inhibition of hydrolytic enzymes by gold compounds. I. beta-Glucuronidase and acid phosphatase by sodium tetrachloroaurate (III) and potassium tetrabromoaurate (III).

    PubMed

    Lee, M T; Ahmed, T; Friedman, M E

    1989-01-01

    Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.

  16. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa.

    PubMed

    Castillo-Juárez, Israel; García-Contreras, Rodolfo; Velázquez-Guadarrama, Norma; Soto-Hernández, Marcos; Martínez-Vázquez, Mariano

    2013-10-01

    Quorum sensing (QS) is a process of bacterial cell-cell communication that controls a large number of systems affecting pathogenicity. Interrupting this communication system can provide nonvirulent pathogenic bacteria. The aim of this study was to evaluate the anti-quorum sensing (anti-QS) potential of an anacardic acids mixture isolated from Amphipterygium adstringens, a medicinal plant known as "cuachalalate", to prevent the onset of bacterial infections as an alternate to antibiotics. Initially we investigated the anti-QS activity of A. adstringens hexane extract (HE) by the inhibition of violacein production in Chromobacterium violaceum. From the active HE, an anacardic acid mixture (AAM) was obtained. The anti-quorum sensing activity of AAM was investigated by the rhamnolipid and pyocyanin production constraint as well as decrease of elastase activity, all being quorum sensing-controlled virulence factors expressed in the pathogenic bacteria Pseudomonas aeruginosa. HE induced a 91.6% of inhibition of the violecin production at 55 μg/mL concentration, whereas AAM showed 94% of inhibition at 166 μg/mL. In both cases, inhibition of violacein production did not affect the viability of the bacterium. AAM inhibited pyocyanin (86% at 200 μg/mL) and rhamnolipid (91% at 500 μg/mL) production in a dose/response form and decrease the elastase (75% at 500 μg/mL) activity in P. aeruginosa without affecting its development. Because an anacardic acids mixture isolated from A. adstringens demonstrated anti-QS, it could be further exploited for novel molecules to treat the emerging infections of antibiotic-resistant bacterial pathogens. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  17. Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Al-Amiery, Ahmed A.; Binti Kassim, Fatin A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2016-01-01

    The acid corrosion inhibition process of mild steel in 1 M HCl by azelaic acid dihydrazide has been investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). Azelaic acid dihydrazide was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared, nuclear magnetic resonance and mass spectroscopy). Potentiodynamic polarization studies indicate that azelaic acid dihydrazide is a mixed-type inhibitor. The inhibition efficiency increases with increased inhibitor concentration and reaches its maximum of 93% at 5 × 10-3 M. The adsorption of the inhibitor on a mild steel surface obeys Langmuir’s adsorption isotherm. The effect of temperature on corrosion behavior in the presence of 5 × 10-3 M inhibitor was studied in the temperature range of 30-60 °C. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. To inspect the surface morphology of inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl.

  18. Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid

    PubMed Central

    Al-Amiery, Ahmed A.; Binti Kassim, Fatin A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2016-01-01

    The acid corrosion inhibition process of mild steel in 1 M HCl by azelaic acid dihydrazide has been investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). Azelaic acid dihydrazide was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared, nuclear magnetic resonance and mass spectroscopy). Potentiodynamic polarization studies indicate that azelaic acid dihydrazide is a mixed-type inhibitor. The inhibition efficiency increases with increased inhibitor concentration and reaches its maximum of 93% at 5 × 10−3 M. The adsorption of the inhibitor on a mild steel surface obeys Langmuir’s adsorption isotherm. The effect of temperature on corrosion behavior in the presence of 5 × 10−3 M inhibitor was studied in the temperature range of 30–60 °C. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. To inspect the surface morphology of inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. PMID:26795066

  19. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung

    PubMed Central

    Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L.

    2014-01-01

    Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation. PMID:25449036

  20. Heterodimeric BMP-2/7 Antagonizes the Inhibition of All-Trans Retinoic Acid and Promotes the Osteoblastogenesis

    PubMed Central

    Bi, Wenjuan; Gu, Zhiyuan; Zheng, Yuanna; Zhang, Xiao; Guo, Jing; Wu, Gang

    2013-01-01

    Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. Materials and Methods We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points. Results All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7). Conclusions Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism. PMID:24205156

  1. [Inhibiting properties of stable nitroxyl radicals in reactions of linoleic acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase].

    PubMed

    Kharchenko, O V; Kharitonenko, A I; Vovk, A I; Kukhar', V P; Babiĭ, L V; Khil'chevskiĭ, A N; Mel'nik, A K

    2005-01-01

    The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.

  2. The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification.

    PubMed

    Plumridge, Andrew; Hesse, Stephan J A; Watson, Adrian J; Lowe, Kenneth C; Stratford, Malcolm; Archer, David B

    2004-06-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 10(5)/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using (31)P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pH(cyt)) by more than 1 pH unit and a depression of vacuolar pH (pH(vac)) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pH(cyt). NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth.

  3. Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    PubMed Central

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID

  4. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    PubMed

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  5. Age-related decrease in sensitivity to glucagon and dibutyryl cyclic AMP inhibition of fatty acid synthesis in hepatocytes isolated from obese female Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Harris, R A

    1984-02-01

    Hepatocytes were isolated from 3 and 5 month old female genetically obese Zucker rats and their lean littermate controls. An age-dependent loss in sensitivity of fatty acid synthesis to inhibition by both glucagon and dibutyryl cyclic AMP was observed with hepatocytes from the obese rats. Hepatocytes from lean animals were much more sensitive to these agents, regardless of age. Low concentrations of glucagon and dibutyryl cyclic AMP actually produced some stimulation of fatty acid synthesis with hepatocytes prepared from the older obese rats. 5-Tetradecyloxy-2-furoic acid, a compound which inhibits fatty acid synthesis, was a very effective inhibitor of fatty acid synthesis by hepatocytes isolated from all rats used in the study. An inhibition of lactate plus pyruvate accumulation and a strong stimulation of glycogenolysis occurred in response to both glucagon and dibutyryl cyclic AMP with hepatocytes from both age groups of lean and obese rats. The results suggest that with aging of the obese female Zucker rat some step of hepatic fatty acid synthesis becomes progressively less sensitive to inhibition by glucagon and dibutyryl cyclic AMP. This may play an important role in maintenance of obesity in these animals.

  6. Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies

    NASA Astrophysics Data System (ADS)

    Al-Baghdadi, Shaimaa B.; Hashim, Fanar G.; Salam, Ahmed Q.; Abed, Talib K.; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Reda, Khalid S.; Ahmed, Wahab K.

    2018-03-01

    The corrosion inhibition effectiveness of thiosemicarbazide compound, namely 3-nitro-5-(2-amino-1,3,4-thiadiazolyl)nitrobenzene (NATN), on mild steel in 1 M hydrochloric acid media has been investigated by weight loss technique. The results exhibit that the corrosion ratio of mild steel was reduced regarding to adding NATN. The corrosion inhibition rate for the NATN was 92.3% at the highest investigated NATN concentration. From the weight loss results it could be concluded that NATN with sulfur, nitrogen and oxygen atoms has clarified best corrosion inhibition achievement comparing to 3,5-dinitrobenzoic acid. Regarding to theoretical studies, DFT was employee to figured geometrical structure and electronic characteristics on NATN. The investigation have been extensive to the HOMO and LUMO analysis to evaluate the energy gap, Ionization potential, Electron Affinity, Global Hardness, Chemical Potential, Electrophilicity, Electronegativity and Polarizability.

  7. α-lipoic acid inhibits high glucose-induced apoptosis in HIT-T15 cells.

    PubMed

    Yang, Yi; Wang, Weiping; Liu, Yinan; Guo, Ting; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2012-06-01

    High blood glucose plays an important role in the pathogenesis of diabetes. α-lipoic acid (LA) has been used to prevent and treat diabetes, and is thought to act by increasing insulin sensitivity in many tissues. However, whether LA also has a cytoprotective effect on pancreatic islet beta cells remains unclear. In this study, we assessed whether LA could inhibit apoptosis in beta cells exposed to high glucose concentrations. HIT-T15 pancreatic beta cells were treated with 30 mmol/L glucose in the presence or absence of 0.5 mmol/L LA for 8 days. LA significantly reduced the numbers of apoptotic HIT-T15 cells and inhibited the cell overgrowth normally induced by high glucose treatment. Additionally, LA inhibited insulin expression and secretion in HIT-T15 cells induced by high glucose. Further study demonstrated that LA upregulated Pdx1 and Bcl2 gene expression, reduced Bax gene expression, and promoted phosphorylation of Akt in HIT-T15 cells treated with high glucose. Intriguingly, knockdown of Pdx1 expression partially offset the anti-apoptotic effect of LA. However, inhibition of Akt by PI3K/AKT antagonist LY294002 only slightly reversed the anti-apoptosis effect of LA and mildly decreased the gene expression level of Pdx1 (P > 0.05). Moreover, LA only slightly attenuated reactive oxygen species (ROS) production and augmented mitochondrial membrane potential. Therefore, our data suggest that α-lipoic acid can effectively attenuate high glucose-induced HIT-T15 cell apoptosis probably by increasing Pdx1 expression. These findings provide a new interpretation on the role of LA in the treatment of diabetes. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  8. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xueming; Chen, Aihua, E-mail: aihuachen2012@sina.com; Yang, Pingzhen

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy ismore » widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.« less

  10. Mechanism of Growth Inhibition of Human Cancer Cells by Conjugated Eicosapentaenoic Acid, an Inhibitor of DNA Polymerase and Topoisomerase

    PubMed Central

    Yonezawa, Yuko; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2007-01-01

    DNA topoisomerases (topos) and DNA polymerases (pols) are involved in many aspects of DNA metabolism such as replication reactions. We found that long chain unsaturated fatty acids such as polyunsaturated fatty acids (PUFA) (i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) inhibited the activities of eukaryotic pols and topos in vitro, and the inhibitory effect of conjugated fatty acids converted from EPA and DHA (cEPA and cDHA) on pols and topos was stronger than that of normal EPA and DHA. cEPA and cDHA did not affect the activities of plant and prokaryotic pols or other DNA metabolic enzymes tested. cEPA was a stronger inhibitor than cDHA with IC50 values for mammalian pols and human topos of 11.0 – 31.8 and 0.5 – 2.5 μM, respectively. cEPA inhibited the proliferation of two human leukemia cell lines, NALM-6, which is a p53-wild type, and HL-60, which is a p53-null mutant, and the inhibitory effect was stronger than that of normal EPA. In both cell lines, cEPA arrested in the G1 phase, and increased cyclin E protein levels, indicating that it blocks the primary step of in vivo DNA replication by inhibiting the activity of replicative pols rather than topos. DNA replication-related proteins, such as RPA70, ATR and phosphorylated-Chk1/2, were increased by cEPA treatment in the cell lines, suggesting that cEPA led to DNA replication fork stress inhibiting the activities of pols and topos, and the ATR-dependent DNA damage response pathway could respond to the inhibitor of DNA replication. The compound induced cell apoptosis through both p53-dependent and p53-independent pathways in cell lines NALM-6 and HL-60, respectively. These results suggested the therapeutic potential of conjugated PUFA, such as cEPA, as a leading anti-cancer compound that inhibited pols and topos activities.

  11. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells

    PubMed Central

    Ezeh, Peace C.; Xu, Huan; Lauer, Fredine T.; Liu, Ke Jian; Hudson, Laurie G.; Burchiel, Scott W.

    2016-01-01

    Our previously published data show that As+3 in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As+3 metabolite, monomethylarsonous acid (MMA+3), was responsible for the observed pre-B cell toxicity caused by As+3. Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA+3 inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As+3 occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA+3, and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA+3 at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA+3. Since 2E8 cells lack the enzymes responsible for the conversion of As+3 to MMA+3 in vitro, the results of these studies suggest that As+3 induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA+3 which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. PMID:26518055

  12. Mechanisms for Improved Hygroscopicity of L-Arginine Valproate Revealed by X-Ray Single Crystal Structure Analysis.

    PubMed

    Ito, Masataka; Nambu, Kaori; Sakon, Aya; Uekusa, Hidehiro; Yonemochi, Etsuo; Noguchi, Shuji; Terada, Katsuhide

    2017-03-01

    Valproic acid is widely used as an antiepileptic agent. Valproic acid is in liquid phase while sodium valproate is in solid phase at room temperature. Sodium valproate is hard to manufacture because of its hygroscopic and deliquescent properties. To improve these, cocrystal and salt screening for valproic acid was employed in this study. Two solid salt forms, l-arginine valproate and l-lysine valproate, were obtained and characterized. By using dynamic vapor sorption method, the critical relative humidity of sodium valproate, l-arginine valproate, and l-lysine valproate were measured. Critical relative humidity of sodium valproate was 40%, of l-lysine valproate was 60%, and of l-arginine valproate was 70%. Single-crystal X-ray structure determination of l-arginine valproate was employed. l-Lysine valproate was of low diffraction quality, and l-arginine valproate formed a 1:1 salt. Crystal l-arginine valproate has a disorder in the methylene carbon chain that creates 2 conformations. The carboxylate group of valproic acid is connected to the amino group of l-arginine. Crystalline morphologies were calculated from its crystal structure. Adsorption of water molecules to crystal facets was simulated by Material Studio. When comparing adsorption energy per site of these salts, sodium valproate is more capable of adsorption of water molecule than l-arginine valproate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Instant coffee extract with high chlorogenic acids content inhibits hepatic G-6-Pase in vitro, but does not reduce the glycaemia.

    PubMed

    Bassoli, Bruna Kempfer; Cassolla, Priscila; Borba-Murad, Glaucia Regina; Constantin, Jorgete; Salgueiro-Pagadigorria, Clairce Luzia; Bazotte, Roberto Barbosa; de Souza, Helenir Medri

    2015-06-01

    Coffee is the main source of chlorogenic acid in the human diet, and it contains several chlorogenic acid isomers, of which the 5-caffeoylquinic acid (5-CQA) is the predominant isomer. Because there are no available data about the action of chlorogenic acids from instant coffee on hepatic glucose-6-phosphatase (G-6-Pase) activity and blood glucose levels, these effects were investigated in rats. The changes on G-6-Pase activity and liver glucose output induced by 5-CQA were also investigated. Instant coffee extract with high chlorogenic acids content (37.8%) inhibited (p < 0.05) the G-6-Pase activity of the hepatocyte microsomal fraction in a dose-dependent way (up to 53), but IV administration of this extract did not change the glycaemia (p > 0.05). Similarly, 5-CQA (1 mM) reduced (p < 0.05) the activity of microsomal G-6-Pase by about 40%, but had no effect (p > 0.05) on glucose output arising from glycogenolysis in liver perfusion. It was concluded that instant coffee extract with high content of chlorogenic acids inhibited hepatic G-6-Pase in vitro, but failed to reduce the glycaemia probably because the coffee chlorogenic acids did not reach enough levels within the hepatocytes to inhibit the G-6-Pase and reduce the liver glucose output. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation.

    PubMed

    Yan, Yiqing; Jiang, Wei; Spinetti, Thibaud; Tardivel, Aubry; Castillo, Rosa; Bourquin, Carole; Guarda, Greta; Tian, Zhigang; Tschopp, Jurg; Zhou, Rongbin

    2013-06-27

    Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Inhibition of nocturnal acidity is important but not essential for duodenal ulcer healing.

    PubMed Central

    Bianchi Porro, G; Parente, F; Sangaletti, O

    1990-01-01

    We have determined the relative importance of day and night time gastric acid inhibition for duodenal ulcer healing by comparing the anti-ulcer efficacy of a single morning with that of a single bedtime dose of ranitidine. One hundred and thirty patients with active duodenal ulcer were randomly assigned to a double-blind therapy with ranitidine 300 mg at 8 am or the same dose at 10 pm for up to eight weeks. The antisecretory effects of these regimens were also assessed by 24 h intragastric pH monitoring in 18 of these patients. At four weeks ulcers had healed in 41/61 (67%) of patients taking the morning dose and in 47/63 (75%) of those receiving the nocturnal dose (95% CI for the difference -0.09 +0.25; p ns). At eight weeks, the corresponding healing rates were 82% and 85.5%, respectively (95% CI for the difference -0.11 +0.17; p ns). Both treatments were significantly superior to placebo in raising 24 h intragastric pH, although the effects of the morning dose were of shorter duration than those of the nocturnal dose. These findings suggest that suppression of nocturnal acidity is important but not essential to promote healing of duodenal ulcers; a prolonged period of acid inhibition during the day (as obtained with a single large morning dose of H2-blockers) may be equally effective. PMID:2186980

  16. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus.

    PubMed

    Soto-Acosta, Rubén; Bautista-Carbajal, Patricia; Syed, Gulam H; Siddiqui, Aleem; Del Angel, Rosa M

    2014-09-01

    Dengue is the most common mosquito borne viral disease in humans. The infection with any of the 4 dengue virus serotypes (DENV) can either be asymptomatic or manifest in two clinical forms, the mild dengue fever or the more severe dengue hemorrhagic fever that may progress into dengue shock syndrome. A DENV replicative cycle relies on host lipid metabolism; specifically, DENV infection modulates cholesterol and fatty acid synthesis, generating a lipid-enriched cellular environment necessary for viral replication. Thus, the aim of this work was to evaluate the anti-DENV effect of the Nordihydroguaiaretic acid (NDGA), a hypolipidemic agent with antioxidant and anti-inflammatory properties. A dose-dependent inhibition in viral yield and NS1 secretion was observed in supernatants of infected cells treated for 24 and 48 h with different concentrations of NDGA. To evaluate the effect of NDGA in DENV replication, a DENV4 replicon transfected Vero cells were treated with different concentrations of NDGA. NDGA treatment significantly reduced DENV replication, reiterating the importance of lipids in viral replication. NDGA treatment also led to reduction in number of lipid droplets (LDs), the neutral lipid storage organelles involved in DENV morphogenesis that are known to increase in number during DENV infection. Furthermore, NDGA treatment resulted in dissociation of the C protein from LDs. Overall our results suggest that NDGA inhibits DENV infection by targeting genome replication and viral assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparison of effect of an increased dosage of vonoprazan versus vonoprazan plus lafutidine on gastric acid inhibition and serum gastrin.

    PubMed

    Suzuki, Takahiro; Kagami, Takuma; Uotani, Takahiro; Yamade, Mihoko; Hamaya, Yasushi; Iwaizumi, Moriya; Osawa, Satoshi; Sugimoto, Ken; Miyajima, Hiroaki; Furuta, Takahisa

    2018-01-01

    Vonoprazan, a novel potassium-competitive acid blocker, elicits potent acid inhibition and hypergastrinemia at a dose of 20 mg. Its recommended maintenance dose for gastro-esophageal reflux disease is 10 mg, which is sometimes insufficient for preventing nocturnal acid breakthrough (NAB). Concomitant use of a histamine 2 receptor antagonist (H 2 RA) is effective for NAB. However, further acid inhibition by addition of H2RA has concern of hypergastrinemia again. Lafutidine (H2RA) is known to stimulate somatostatin release. The aim of this study is to compare the levels of acid inhibition and serum gastrin attained by addition of lafutidine to vonoprazan 10 mg with levels after a dose increase of vonoprazan from 10 to 20 mg. Thirteen healthy volunteers underwent 24-h intragastric pH monitoring and serum gastrin measurements on day 7 of three different regimens: vonoprazan 10 mg, vonoprazan 10 mg plus lafutidine 10 mg, and vonoprazan 20 mg. Median pH 4 holding time ratios (range) by vonoprazan 10 mg, vonoprazan 10 mg plus lafutidine 10 mg, and vonoprazan 20 mg were 82% (47-88%), 88% (76-93%), and 99% (95-100%) while those at nighttime from 10 p.m. to 8 a.m. were 94% (29-100%), 100% (95-100%), and 100%, respectively. The incidences of NAB with vonoprazan 10 mg, vonoprazan plus lafutidine, and vonoprazan 20 mg were 38, 8, and 0%, respectively. Respective serum gastrin levels were 420 (173-508), 323 (196-521), and 504 (400-812) pg/ml. Addition of lafutidine 10 mg to vonoprazan 10 mg achieved sufficient acid inhibition, especially at nighttime, without further increase of serum gastrin levels.

  18. CELL DIVISION IN A SPECIES OF ERWINIA. III. REVERSAL OF INHIBITION OF CELL DIVISION CAUSED BY D-AMINO ACIDS, PENICILLIN, AND ULTRA-VIOLET LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grula, E.A.; Grula, M.M.

    Inhibition of cell division in an Erwinia sp. occurs in the presence of any of six D-amino acids, penicillin, or ultraviolet light. Cell-division inhibition caused by D-amino acids is pH-dependent; however, elongation caused by penicillin occurs over a wide range of pH. Bulging and spheroplast formation in the presence of penicillin occurs only at pH values below 7.6; however, division continues to be inhibited at higher pH levels. Reversal of cell-division inhibition caused by two D-amino acids (phenylalanine and histidine) can be partially overcome by their respective L-isomers. Divalent cations (Zn, Ca, Mn) cause varying amounts of reversal of divisionmore » inhibition in all systems studied; each system appears to have an individual requirement. All induced division inhibitions, including that caused by penicillin, can be reversed by pantoyl lactone or omega methylpantoyl lactone. Evidence is presented and discussed concerning the possible importance of pantoyl lactone and divalent cations in terminal steps of the cell-division process in this organism. (auth)« less

  19. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  20. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression

    PubMed Central

    Kang, Nam Joo; Lee, Ki Won; Shin, Bong Jik; Jung, Sung Keun; Hwang, Mun Kyung; Bode, Ann M.; Heo, Yong-Seok; Dong, Zigang

    2009-01-01

    Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in many foods, including coffee. Recent studies suggested that caffeic acid exerts anticarcinogenic effects, but little is known about the underlying molecular mechanisms and specific target proteins. In this study, we found that Fyn, one of the members of the non-receptor protein tyrosine kinase family, was required for ultraviolet (UV) B-induced cyclooxygenase-2 (COX-2) expression, and caffeic acid suppressed UVB-induced skin carcinogenesis by directly inhibiting Fyn kinase activity. Caffeic acid more effectively suppressed UVB-induced COX-2 expression and subsequent prostaglandin E2 production in JB6 P+ mouse skin epidermal (JB6 P+) cells compared with chlorogenic acid (5-O-caffeoylquinic acid), an ester of caffeic acid with quinic acid. Data also revealed that caffeic acid more effectively induced the downregulation of COX-2 expression at the transcriptional level mediated through the inhibition of activator protein-1 (AP-1) and nuclear factor-κB transcription activity compared with chlorogenic acid. Fyn kinase activity was suppressed more effectively by caffeic acid than by chlorogenic acid, and downstream mitogen-activated protein kinases (MAPKs) were subsequently blocked. Pharmacological Fyn kinase inhibitor (3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and leflunomide) data also revealed that Fyn is involved in UVB-induced COX-2 expression mediated through the phosphorylation of MAPKs in JB6 P+ cells. Pull-down assays revealed that caffeic acid directly bound with Fyn and non-competitively with adenosine triphosphate. In vivo data from mouse skin also supported the idea that caffeic acid suppressed UVB-induced COX-2 expression by blocking Fyn kinase activity. These results suggested that this compound could act as a potent chemopreventive agent against skin cancer. PMID:19073879

  1. Acetylsalicylic acid regulates MMP-2 activity and inhibits colorectal invasion of murine B16F0 melanoma cells in C57BL/6J mice: effects of prostaglandin F(2)alpha.

    PubMed

    Tsai, Chin-Shaw Stella; Luo, Shue-Fen; Ning, Chung-Chu; Lin, Chien-Liang; Jiang, Ming-Chung; Liao, Ching-Fong

    2009-08-01

    Epidemiological studies indicate that acetylsalicylic acid may reduce the risk of mortality due to colon cancers. Metastasis is the major cause of cancer death. Matrix metalloproteinases (MMPs) play important roles in tumor invasion regulation, and prostaglandin F(2)alpha (PGF(2)alpha) is a key stimulator of MMP production. Thus, we investigated whether acetylsalicylic acid regulated MMP activity and the invasion of cancer cells and whether PGF(2)alpha attenuated acetylsalicylic acid-inhibited invasion of cancer cells. Gelatin-based zymography assays showed that acetylsalicylic acid inhibited the MMP-2 activity of B16F0 melanoma cells. Matrigel-based chemoinvasion assays showed that acetylsalicylic acid inhibited the invasion of B16F0 cells. Acetylsalicylic acid can inhibit PGF(2)alpha synthesis and PGF(2)alpha is a key stimulator of MMP-2 production. Our data showed that PGF(2)alpha treatment attenuated the acetylsalicylic acid-inhibited invasion of B16F0 cells. In animal experiments, acetylsalicylic acid reduced colorectal metastasis of B16F0 cells in C57BL/6J mice by 44%. Our results suggest that PGF(2)alpha is a therapeutic target for metastasis inhibition and acetylsalicylic acid may possess anti-metastasis ability.

  2. [Sodium valproate as a cause of acute pancreatitis: a case report].

    PubMed

    Barreda, Luís; Rosas, Johana; Milian, William; Valdivia, Duilio; Targarona, Javier

    2006-01-01

    Valproic acid (VPA) is a commonly used medication approved by the U.S. FDA for the treatment of epilepsy, migraines and bipolar disorders. Adverse effects associated with VPA are typically benign, but there are more serious effects that are less frequent. These effects include hepatotoxicity, teratogenicity, possible polycystic ovaries with a potential sterile effect and acute pancreatitis. Even though acute pancreatitis is an adverse effect of very low frequency, it is very important due to the high mortality rate of patients with acute pancreatitis as a consequence of the use of valproic acid. In medical literature, by 2005, 80 cases of acute pancreatitis caused by valproic acid were reported, 33 of these cases were patients under the age of 18. This is a description of the clinical case of a 16 year old patient with necrotic pancreatitis caused by VPA, who was treated at the Acute Pancreatitis Unit of Edgardo Rebagliati Martins National Hospital.

  3. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    PubMed

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA 12 , GA 19 , GA 20 and GA 8 ) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells

    PubMed Central

    KIM, EUN-SOOK; MOON, AREE

    2015-01-01

    Metastasis is a major cause of cancer-related mortality in patients with gastric cancer. Ursolic acid, a pentacyclic triterpenoid compound derived from medicinal herbs, has been demonstrated to exert anticancer effects in various cancer cell systems. However, to the best of our knowledge, the inhibitory effect of ursolic acid on the invasive phenotype of gastric cancer cells has yet to be reported. Therefore, the aim of the present study was to investigate the effect of ursolic acid on the invasiveness of SNU-484 human gastric cancer cells. Ursolic acid efficiently induced apoptosis, possibly via the downregulation of B-cell lymphoma 2 (Bcl-2), the upregulation of Bcl-2-associated X protein and the proteolytic activation of caspase-3. Furthermore, the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was increased by the administration of ursolic acid. In addition, ursolic acid significantly suppressed the invasive phenotype of the SNU-484 cells and significantly decreased the expression of matrix metalloproteinase (MMP)-2, indicating that MMP-2 may be responsible for the anti-invasive activity of ursolic acid. Taken together, the results of the present study demonstrate that ursolic acid induces apoptosis and inhibits the invasive phenotype of gastric cancer cells; therefore, ursolic acid may have a potential application as a chemopreventive agent to prevent the metastasis of gastric cancer or to alleviate the process of metastasis. PMID:25621065

  5. [Experimental study on the possibility of brain damage induced by chronic treatment with phenobarbital, clonazepam, valproic acid and topiramate in immature rats].

    PubMed

    Zhu, Hai-xia; Cai, Fang-cheng; Zhang, Xiao-ping

    2007-02-01

    To explore the possibility of brain damage induced by several anti-epileptic drugs (AEDs) at therapeutic level to immature brain of rat. Totally 160 healthy Spraque-Dawley (SD) rats selected for the study were divided into infant and adult groups. Each age group was treated with phenobarbital (PB), clonazepam (CZP), valproic acid (VPA), topiramate (TPM) or normal saline respectively for 2 or 5 weeks with 8 rats in each group. The steady-state plasma concentrations of AEDs at the experimental dosage were coincided with the range of clinical therapeutic concentrations. Drug levels in plasma were determined by fluorescence polarization. Body and brain weights were measured when the rats were sacrificed. Histological studies on the tissues of frontal lobes and hippocampus were performed by Nissl staining. And ultrastructural changes of brain were observed by the transmission electron microscopy. Plasma neuron-specific enolase (NSE) was determined by ELISA. Expression of apoptosis-related proteins Bcl-2 and Bax in neurons was detected by immunohistochemistry. Neuronal apoptosis was detected by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL). (1) There were no significant differences in brain weight among all adults groups. While remarkable reduction of brain weight was observed in immature rats exposed to CZP or PB (P < 0.01) for long term. (2) Significant neurodegeneration, neuronal necrosis and decrease in the number of neurons can be observed in the immature rats exposed to CZP or PB for long period. (3) For immature rats, concentration of plasma NSE was increased even after short-term treatment with PB [(8.84 +/- 2.10) nmol/L] compared with control group [(6.27 +/- 1.27) nmol/L] (P < 0.01). And it was increased in immature rats exposed to CZP [(8.15 +/- 1.67) nmol/L] or PB [(8.07 +/- 1.27) nmol/L] for long term compared with controls [(6.02 +/- 1.20) nmol/L] (P < 0.01). But there were no significant differences between AEDs-treated adult

  6. Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli

    PubMed Central

    Åberg, Veronica; Das, Pralay; Chorell, Erik; Hedenström, Mattias; Pinkner, Jerome S.; Hultgren, Scott J.; Almqvist, Fredrik

    2009-01-01

    Ring-fused 2-pyridones, termed pilicides, are small synthetic compounds that inhibit pilus assembly in uropathogenic E. coli. Their biological activity is clearly dependent upon a carboxylic acid functionality. Here we present the synthesis and biological evaluation of carboxylic acid isosteres, including e.g. tetrazoles, acyl sulfonamides and hydroxamic acids, of two lead 2-pyridones. Two independent biological evaluations show that acyl sulfonamides and tetrazoles significantly improve pilicide activity against uropathogenic E. coli. PMID:18499455

  7. Identification of critical amino acids in the proximal C-terminal of TREK-2 K+ channel for activation by acidic pHi and ATP-dependent inhibition.

    PubMed

    Woo, Joohan; Jun, Young Keul; Zhang, Yin-Hua; Nam, Joo Hyun; Shin, Dong Hoon; Kim, Sung Joon

    2018-02-01

    TWIK-related two-pore domain K + channels (TREKs) are regulated by intracellular pH (pH i ) and Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ). Previously, Glu 306 in proximal C-terminal (pCt) of mouse TREK-1 was identified as the pH i -sensing residue. The direction of PI(4,5)P 2 sensitivity is controversial, and we have recently shown that TREKs are inhibited by intracellular ATP via endogenous PI(4,5)P 2 formation. Here we investigate the anionic and cationic residues of pCt for the pH i and ATP-sensitivity in human TREK-2 (hTREK-2). In inside-out patch clamp recordings (I TREK-2,i-o ), acidic pH i -induced activation was absent in E332A and was partly attenuated in E335A. Neutralization of cationic Lys (K330A) also eliminated the acidic pH i sensitivity of I TREK-2,i-o . Unlike the inhibition of wild-type (WT) I TREK-2,i-o by intracellular ATP, neither E332A nor K330A was sensitive to ATP. Nevertheless, exogenous PI(4,5)P 2 (10 μM) abolished I TREK-2 i-o in all the above mutants as well as in WT, indicating unspecific inhibition by exogenous PI(4,5)P 2 . In whole-cell recordings of TREK-2 (I TREK-2,w-c ), K330A and E332A showed higher or fully active basal activity, showing attenuated or insignificant activation by 2-APB, arachidonic acid, or acidic pH e 6.9. I TREK-1,w-c of WT is largely suppressed by pH e 6.9, and the inhibition is slightly attenuated in K312A and E315A. The results show concerted roles of the oppositely charged Lys and Glu in pCt for the ATP-dependent low basal activity and pH i sensitivity.

  8. Free acetic acid as the key factor for the inhibition of hydrogenotrophic methanogenesis in mesophilic mixed culture fermentation.

    PubMed

    Zhang, Wei; Dai, Kun; Xia, Xiu-Yang; Wang, Hua-Jie; Chen, Yun; Lu, Yong-Ze; Zhang, Fang; Zeng, Raymond Jianxiong

    2018-05-18

    The inhibition of acetate under acidic pH is an ideal way to reduce methanogenesis in mesophilic mixed culture fermentation (MCF). However, the effects of acetate concentration and acidic pH on methanogenesis remain unclear. Besides, although hydrogenotrophic methanogens can be suitable targets in MCF, they are generally ignored. Therefore, we intentionally enriched hydrogenotrophic methanogens and found that free acetic acid (FAA, x) concentration and specific methanogenic activity (SMA, y) were correlated according to the equation: y = 0.86 × 0.31/(0.31 + x) (R 2  = 0.909). The SMA was decreased by 50% and 90% at the FAA concentrations of 0.31 and 2.36 g/L, respectively. The coenzyme M concentration and relative electron transport activity agreed well with the FAA concentration. Moreover, the methanogenic activity could not be recovered when the FAA concentration exceeded 0.81 g/L. These findings indicated that neither acetate nor acidic pH, but FAA was the key factor to inhibit methanogenesis in MCF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.

    PubMed

    Winbanks, Catherine E; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  10. miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4

    PubMed Central

    Winbanks, Catherine E.; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V.; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 “sponge,” featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  11. Angiotensin-converting enzyme inhibition improves cardiac fatty acid metabolism in patients with congestive heart failure.

    PubMed

    Yamauchi, S; Takeishi, Y; Minamihaba, O; Arimoto, T; Hirono, O; Takahashi, H; Miyamoto, T; Nitobe, J; Nozaki, N; Tachibana, H; Watanabe, T; Fukui, A; Kubota, I

    2003-08-01

    This study aimed to examine whether angiotensin-converting enzyme (ACE) inhibition improved cardiac fatty acid metabolism in patients with congestive heart failure (CHF). Myocardial 123I-beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) imaging was performed in 25 patients with CHF and in 10 control subjects. Myocardial 123I-BMIPP images were obtained 30 min and 4 h after tracer injection. The heart-to-mediastinum (H/M) ratio of 123I-BMIPP uptake and the washout rate of 123I-BMIPP from the myocardium were calculated. Patients were given enalapril for 6 months, and 123I-BMIPP imaging was repeated. H/M ratios on early and delayed images were lower in CHF patients than in normal controls (P<0.01). The washout rate of 123I-BMIPP from the myocardium was faster in CHF patients than in controls (P<0.01). As the severity of the New York Heart Association (NYHA) functional class increased, the H/M ratio decreased and the washout rate increased. The washout rate of 123I-BMIPP was inversely correlated with left ventricular fractional shortening (R=-0.62, P<0.01). ACE inhibition with enalapril increased the H/M ratio on delayed images (P<0.05) and reduced the washout rate of 123I-BMIPP (P<0.05) in CHF patients. These data suggest that: (1) angiotensin II-mediated intracellular signalling activation may be a possible mechanism for the decreased myocardial uptake and enhanced washout of 123I-BMIPP in heart failure patients; and (2) the improvement in fatty acid metabolism by ACE inhibition may represent a new mechanism for the beneficial effect of this therapy in heart failure.

  12. Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids

    PubMed Central

    Crow, J. Allen; Herring, Katye L.; Xie, Shuqi; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2009-01-01

    Summary Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC50=8.1 μM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (Kiapp=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (Kiapp=1.7 μM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which

  13. Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages.

    PubMed Central

    Balsinde, J; Bianco, I D; Ackermann, E J; Conde-Frieboes, K; Dennis, E A

    1995-01-01

    Cellular levels of free arachidonic acid (AA) are controlled by a deacylation/reacylation cycle whereby the fatty acid is liberated by phospholipases and reincorporated by acyltransferases. We have found that the esterification of AA into membrane phospholipids is a Ca(2+)-independent process and that it is blocked up to 60-70% by a bromoenollactone (BEL) that is a selective inhibitor of a newly discovered Ca(2+)-independent phospholipase A2 (PLA2) in macrophages. The observed inhibition correlates with a decreased steady-state level of lysophospholipids as well as with the inhibition of the Ca(2+)-independent PLA2 activity in these cells. This inhibition is specific for the Ca(2+)-independent PLA2 in that neither group IV PLA2, group II PLA2, arachidonoyl-CoA synthetase, lysophospholipid:arachidonoyl-CoA acyltransferase, nor CoA-independent transacylase is affected by treatment with BEL. Moreover, two BEL analogs that are not inhibitors of the Ca(2+)-independent PLA2--namely a bromomethyl ketone and methyl-BEL--do not inhibit AA incorporation into phospholipids. Esterification of palmitic acid is only slightly affected by BEL, indicating that de novo synthetic pathways are not inhibited by BEL. Collectively, the data suggest that the Ca(2+)-independent PLA2 in P388D1 macrophages plays a major role in regulating the incorporation of AA into membrane phospholipids by providing the lysophospholipid acceptor employed in the acylation reaction. PMID:7667324

  14. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    PubMed

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  15. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells.

    PubMed

    Ezeh, Peace C; Xu, Huan; Lauer, Fredine T; Liu, Ke Jian; Hudson, Laurie G; Burchiel, Scott W

    2016-02-01

    Our previously published data show that As(+3) in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As(+3) metabolite, monomethylarsonous acid (MMA(+3)), was responsible for the observed pre-B cell toxicity caused by As(+3). Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA(+3) inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As(+3) occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA(+3), and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA(+3) at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA(+3). Since 2E8 cells lack the enzymes responsible for the conversion of As(+3) to MMA(+3) in vitro, the results of these studies suggest that As(+3) induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA(+3) which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Caprylic acid and medium-chain triglycerides inhibit IL-8 gene transcription in Caco-2 cells: comparison with the potent histone deacetylase inhibitor trichostatin A

    PubMed Central

    Hoshimoto, Aihiro; Suzuki, Yasuo; Katsuno, Tatsuro; Nakajima, Hiroshi; Saito, Yasushi

    2002-01-01

    Medium-chain triglyceride (MCT) is often administered to patients with Crohn's disease (CD) or short-bowel syndrome. However, little is known about the effects of medium-chain fatty acids (MCFAs) and MCT on intestinal inflammation. In this study we examined whether caprylic acid, one of the MCFAs, and MCT suppress IL-8 secretion by differentiated Caco-2 cells.We found for the first time that caprylic acid and MCT suppress IL-8 secretion by Caco-2 cells at the transcriptional level when precultured together for 24 h. We also tried to clarify the mechanism of IL-8 gene inhibition by examining the activation of NF-κB and other transcription factors by electrophoretic mobility shift assay (EMSA), and found that caprylic acid did not modulate their activation.The result of dual-luciferase assay using Caco-2 cells transfected with IL-8 promoter/luciferase reporter plasmid revealed that caprylic acid inhibited the activation of IL-8 promoter.Similar results were observed when cells were precultured with the well-known potent histone deacetylase inhibitor trichostatin A (TSA).We examined the state of H4 acetylation in IL-8 promoter using the technique known as chromatin immunoprecipitation (Chr-IP). TSA rapidly induced H4 acetylation in IL-8 promoter chromatin, whereas caprylic acid did not. These results suggest that the inhibition of IL-8 gene transcription induced by caprylic acid and TSA does not necessarily require the marked suppression of transcription factors, and the mechanism of inhibition of IL-8 gene transcription may be different between caprylic acid and TSA. PMID:12010777

  17. Electrochemical investigation on the corrosion inhibition of mild steel by Quinazoline Schiff base compounds in hydrochloric acid solution.

    PubMed

    Khan, Ghulamullah; Basirun, Wan Jeffrey; Kazi, Salim Newaz; Ahmed, Pervaiz; Magaji, Ladan; Ahmed, Syed Muzamil; Khan, Ghulam Mustafa; Rehman, Muhammad Abdur; Badry, Ahmad Badarudin Bin Mohamad

    2017-09-15

    The inhibitory effect of two Schiff bases 3-(5-methoxy-2-hydroxybenzylideneamino)-2-(-5-methoxy-2-hydroxyphenyl)-2,3-dihydroquinazoline-4(1H)-one (MMDQ), and 3-(5-nitro-2-hydroxybenzylideneamino)-2(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazoline-4(1H)-one (NNDQ) on the corrosion of mild steel in 1M hydrochloric acid were studied using mass loss, potentiodynamic polarization technique and electrochemical impedance spectroscopy measurements at ambient temperature. The investigation results indicate that the Schiff Bases compounds with an average efficiency of 92% at 1.0mM of additive concentration have fairly effective inhibiting properties for mild steel in hydrochloric acid, and acts as mixed type inhibitor character. The inhibition efficiencies measured by all measurements show that the inhibition efficiencies increase with increase in inhibitor concentration. This reveals that the inhibitive mechanism of inhibitors were primarily due to adsorption on mild steel surface, and follow Langmuir adsorption isotherm. The temperature effect on the inhibition process in 1MHCl with the addition of investigated Schiff bases was studied at a temperature range of 30-60°C, and the activation parameters (Ea, ΔH and ΔS) were calculated to elaborate the corrosion mechanism. The differences in efficiency for two investigated inhibitors are associated with their chemical structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ascorbic acid supplementation enhances recovery from ethanol induced inhibition of Leydig cell steroidogenesis than abstention in male guinea pigs.

    PubMed

    Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath

    2014-01-15

    The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group. © 2013 Published by Elsevier B.V.

  19. [Inhibition of Low Molecular Organic Acids on the Activity of Acidithiobacillus Species and Its Effect on the Removal of Heavy Metals from Contaminated Soil].

    PubMed

    Song, Yong-wei; Wang, He-rul; Cao, Yan-xiao; Li, Fei; Cui, Chun-hong; Zhou, Li

    2016-05-15

    Application of organic fertilizer can reduce the solubility and bioavailability of heavy metals in contaminated soil, but in the flooded anaerobic environment, organic fertilizer will be decomposed to produce a large number of low molecular organic acids, which can inhibit the biological activity of Acidithiobacillus species. Batch cultures studies showed that the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species, as indicated by that 90% of inhibitory rate for Fe2 and So oxidation in 72 h were achieved at extremely low concentrations of 41.2 mg · L⁻¹, 78.3 mg · L⁻¹, 43.2 mg · L⁻¹, 123.4 mg · L⁻¹ and 81.9 mg 230. 4 mg · L⁻¹, 170.1 mg · L⁻¹, 123.4 mg · L⁻¹ respectively. Of these organic acids, formic acid was the most toxic one as indicated by that Fe2 and So oxidation was almost entirely inhibited at a low concentration. In addition, it was found that Acidithiobacillus ferrooxidans was more sensitive to low molecular organic acids than Acidithiobacillus thiooxidans. What's more, there was little effect on biological acidification process of heavy metal contaminated soil when organic acids were added at initial stage (Oh), but it was completely inhibited when these acids were added after 12 h of conventional biological acidification, thus decreasing the efficiency of heavy metals dissolution from soil.

  20. Folic acid inhibits homocysteine-induced cell apoptosis in human umbilical vein endothelial cells.

    PubMed

    Cui, Shanshan; Li, Wen; Wang, Pengyan; Lv, Xin; Gao, Yuxia; Huang, Guowei

    2017-12-18

    Homocysteine may be responsible for vascular endothelial cell injury, which occurs early in the pathology of cardiovascular disease. Homocysteine metabolism requires enzymatic interaction with vitamins such as folic acid, vitamin B12, and vitamin B6. We hypothesized that folic acid alleviated homocysteine-induced vascular injury by regulating the metabolic pathway of apoptosis. Human umbilical vein endothelial cells were incubated for 48 h with folic acid at the concentrations of 0-1000 nmol/L, in combination with either 1000 μmol/L homocysteine or vehicle for the first 24 h. We then assessed cell viability and apoptosis by methyl thiazolyl tetrazolium assay and flow cytometry, respectively. To further investigate how folic acid influenced cell apoptosis, we also analyzed the activities of caspase-3/7 and the mRNA and protein expressions of BCL2, BAX, TP53, CASP3, and CASP8 in human umbilical vein endothelial cells. We showed that folic acid increased cell viability and decreased apoptosis in a dose-dependent manner, and that this effect was mediated by decreased caspase-3/7 activity, upregulated BCL2/BAX ratio, and downregulated TP53, CASP3, and CASP8 expressions. Thus, we conclude that folic acid inhibits cell apoptosis and ameliorates homocysteine toxicity by regulating the expression of apoptosis-related genes in human umbilical vein endothelial cells.