Sample records for valuable animal models

  1. Rescuing valuable genomes by animal cloning: a case for natural disease resistance in cattle.

    PubMed

    Westhusin, M E; Shin, T; Templeton, J W; Burghardt, R C; Adams, L G

    2007-01-01

    Tissue banking and animal cloning represent a powerful tool for conserving and regenerating valuable animal genomes. Here we report an example involving cattle and the rescue of a genome affording natural disease resistance. During the course of a 2-decade study involving the phenotypic and genotypic analysis for the functional and genetic basis of natural disease resistance against bovine brucellosis, a foundation sire was identified and confirmed to be genetically resistant to Brucella abortus. This unique animal was utilized extensively in numerous animal breeding studies to further characterize the genetic basis for natural disease resistance. The bull died in 1996 of natural causes, and no semen was available for AI, resulting in the loss of this valuable genome. Fibroblast cell lines had been established in 1985, cryopreserved, and stored in liquid nitrogen for future genetic analysis. Therefore, we decided to utilize these cells for somatic cell nuclear transfer to attempt the production of a cloned bull and salvage this valuable genotype. Embryos were produced by somatic cell nuclear transfer and transferred to 20 recipient cows, 10 of which became pregnant as determined by ultrasound at d 40 of gestation. One calf survived to term. At present, the cloned bull is 4.5 yr old and appears completely normal as determined by physical examination and blood chemistry. Furthermore, in vitro assays performed to date indicate this bull is naturally resistant to B. abortus, Mycobacterium bovis, and Salmonella typhimurium, as was the original genetic donor.

  2. Animal Models of Colorectal Cancer

    PubMed Central

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  3. Animal models of fibromyalgia

    PubMed Central

    2013-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles. PMID:24314231

  4. Animal models for rotator cuff repair.

    PubMed

    Lebaschi, Amir; Deng, Xiang-Hua; Zong, Jianchun; Cong, Guang-Ting; Carballo, Camila B; Album, Zoe M; Camp, Christopher; Rodeo, Scott A

    2016-11-01

    Rotator cuff (RC) injuries represent a significant source of pain, functional impairment, and morbidity. The large disease burden of RC pathologies necessitates rapid development of research methodologies to treat these conditions. Given their ability to model anatomic, biomechanical, cellular, and molecular aspects of the human RC, animal models have played an indispensable role in reducing injury burden and advancing this field of research for many years. The development of animal models in the musculoskeletal (MSK) research arena is uniquely different from that in other fields in that the similarity of macrostructures and functions is as critical to replicate as cellular and molecular functions. Traditionally, larger animals have been used because of their anatomic similarity to humans and the ease of carrying out realistic surgical procedures. However, refinement of current molecular methods, introduction of novel research tools, and advancements in microsurgical techniques have increased the applicability of small animal models in MSK research. In this paper, we review RC animal models and emphasize a murine model that may serve as a valuable instrument for future RC tendon repair investigations. © 2016 New York Academy of Sciences.

  5. Animals as an indicator of carbon sequestration and valuable landscapes

    PubMed Central

    Szyszko, Jan; Schwerk, Axel; Malczyk, Jarosław

    2011-01-01

    Abstract Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB) of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance), representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use. PMID:21738434

  6. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis

    PubMed Central

    Ng, Chun-Yi; Jaarin, Kamsiah

    2015-01-01

    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies. PMID:26064920

  7. Animal models: an important tool in mycology.

    PubMed

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  8. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  9. Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked?

    PubMed Central

    O’Kell, Allison L.; Wasserfall, Clive; Catchpole, Brian; Davison, Lucy J.; Hess, Rebecka S.; Kushner, Jake A.

    2017-01-01

    Despite decades of research in humans and mouse models of disease, substantial gaps remain in our understanding of pathogenic mechanisms underlying the development of type 1 diabetes. Furthermore, translation of therapies from preclinical efforts capable of delaying or halting β-cell destruction has been limited. Hence, a pressing need exists to identify alternative animal models that reflect human disease. Canine insulin deficiency diabetes is, in some cases, considered to follow autoimmune pathogenesis, similar to NOD mice and humans, characterized by hyperglycemia requiring lifelong exogenous insulin therapy. Also similar to human type 1 diabetes, the canonical canine disorder appears to be increasing in prevalence. Whereas islet architecture in rodents is distinctly different from humans, canine pancreatic endocrine cell distribution is more similar. Differences in breed susceptibility alongside associations with MHC and other canine immune response genes parallel that of different ethnic groups within the human population, a potential benefit over NOD mice. The impact of environment on disease development also favors canine over rodent models. Herein, we consider the potential for canine diabetes to provide valuable insights for human type 1 diabetes in terms of pancreatic histopathology, impairment of β-cell function and mass, islet inflammation (i.e., insulitis), and autoantibodies specific for β-cell antigens. PMID:28533295

  10. An Overview of Animal Models for Arthropod-Borne Viruses.

    PubMed

    Reynolds, Erin S; Hart, Charles E; Hermance, Meghan E; Brining, Douglas L; Thangamani, Saravanan

    2017-06-01

    Arthropod-borne viruses (arboviruses) have continued to emerge in recent years, posing a significant health threat to millions of people worldwide. The majority of arboviruses that are pathogenic to humans are transmitted by mosquitoes and ticks, but other types of arthropod vectors can also be involved in the transmission of these viruses. To alleviate the health burdens associated with arbovirus infections, it is necessary to focus today's research on disease control and therapeutic strategies. Animal models for arboviruses are valuable experimental tools that can shed light on the pathophysiology of infection and will enable the evaluation of future treatments and vaccine candidates. Ideally an animal model will closely mimic the disease manifestations observed in humans. In this review, we outline the currently available animal models for several viruses vectored by mosquitoes, ticks, and midges, for which there are no standardly available vaccines or therapeutics.

  11. Modeling in vivo fluorescence of small animals using TracePro software

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Rajwa, Bartek; Freniere, Edward R.; Smith, Linda; Hassler, Richard; Robinson, J. Paul

    2007-02-01

    The theoretical modeling of fluorescence excitation, emission, and propagation within living tissue has been a limiting factor in the development and calibration of in vivo small animal fluorescence imagers. To date, no definitive calibration standard, or phantom, has been developed for use with small animal fluorescence imagers. Our work in the theoretical modeling of fluorescence in small animals using solid modeling software is useful in optimizing the design of small animal imaging systems, and in predicting their response to a theoretical model. In this respect, it is also valuable in the design of a fluorescence phantom for use in in vivo small animal imaging. The use of phantoms is a critical step in the testing and calibration of most diagnostic medical imaging systems. Despite this, a realistic, reproducible, and informative phantom has yet to be produced for use in small animal fluorescence imaging. By modeling the theoretical response of various types of phantoms, it is possible to determine which parameters are necessary for accurately modeling fluorescence within inhomogenous scattering media such as tissue. Here, we present the model that has been developed, the challenges and limitations associated with developing such a model, and the applicability of this model to experimental results obtained in a commercial small animal fluorescence imager.

  12. Animal models of ocular angiogenesis: from development to pathologies.

    PubMed

    Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; Chen, Jing

    2017-11-01

    Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies. © FASEB.

  13. A valuable animal model of spinal cord injury to study motor dysfunctions, comorbid conditions, and aging associated diseases.

    PubMed

    Rouleau, Pascal; Guertin, Pierre A

    2013-01-01

    Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.

  14. Oxytocin in animal models of autism spectrum disorder.

    PubMed

    Peñagarikano, Olga

    2017-02-01

    Autism spectrum disorder is a behavioral disorder characterized by impairments in social interaction and communication together with the presence of stereotyped behaviors and restricted interests. Although highly genetic, its etiology is complex which correlates with the extensive heterogeneity found in its clinical manifestation, adding to the challenge of understanding its pathophysiology and develop targeted pharmacotherapies. The neuropeptide oxytocin is part of a highly conserved system involved in the regulation of social behavior, and both animal and human research have shown that variation in the oxytocin system accounts for interindividual differences in the expression of social behaviors in mammals. In autism, recent studies in human patients and animal models are starting to reveal that alterations in the oxytocin system are more common than previously anticipated. Genetic variation in the key players involved in the system (i.e., oxytocin receptor, oxytocin, and CD38) has been found associated with autism in humans, and animal models of the disorder converge in an altered oxytocin system and/or dysfunction in oxytocin related biological processes. Furthermore, oxytocin administration exerts a behavioral and neurobiological response, and thus, the oxytocin system has become a promising potential therapeutical target for autism. Animal models represent a valuable tool to aid in the research into the potential therapeutic use of oxytocin. In this review, I aim to discuss the main findings related to oxytocin research in autism with a focus on findings in animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 202-213, 2017. © 2016 Wiley Periodicals, Inc.

  15. Study of the pathogenesis and treatment of diabetes mellitus through animal models.

    PubMed

    Brito-Casillas, Yeray; Melián, Carlos; Wägner, Ana María

    2016-01-01

    Most research in diabetes mellitus (DM) has been conducted in animals, and their replacement is currently a chimera. As compared to when they started to be used by modern science in the 17th century, a very high number of animal models of diabetes is now available, and they provide new insights into almost every aspect of diabetes. Approaches combining human, in vitro, and animal studies are probably the best strategy to improve our understanding of the underlying mechanisms of diabetes, and the choice of the best model to achieve such objective is crucial. Traditionally classified based on pathogenesis as spontaneous or induced models, each has its own advantages and disadvantages. The most common animal models of diabetes are described, and in addition to non-obese diabetic mice, biobreeding diabetes-prone (BB-DP) rats, streptozotocin-induced models, or high-fat diet-induced diabetic C57Bl/6J mice, new valuable models, such as dogs and cats with spontaneous diabetes, are described. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  17. Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD).

    PubMed

    de la Peña, June Bryan; Dela Peña, Irene Joy; Custodio, Raly James; Botanas, Chrislean Jun; Kim, Hee Jin; Cheong, Jae Hoon

    2018-05-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.

  18. Stem cell origins and animal models of hepatocellular carcinoma.

    PubMed

    Aravalli, Rajagopal N; Steer, Clifford J; Sahin, M Behnan; Cressman, Erik N K

    2010-05-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor that almost always occurs within a preexisting background of chronic liver disease and cirrhosis. Currently, medical therapy is not effective in treating most HCC, and the only hope of cure is either resection or liver transplantation. A small minority of patients is eligible for these therapies, which entail major morbidity at the very least. In spite of immense scientific advances during the past 3 decades, patient survival has improved very little. In order to reduce morbidity and mortality from HCC, improvements in early diagnosis and development of novel local and systemic therapies for advanced disease are essential, in addition to efforts geared towards primary prevention. Studies with experimental animal models that closely mimic human disease are very valuable in understanding physiological, cellular and molecular mechanisms underlying the disease. Furthermore, appropriate animal models have the potential to increase our understanding of the effects of image-guided minimally invasive therapies and thereby help to improve such therapies. In this review, we examine the evidence for stem cell origins of such tumors, critically evaluate existing models and reflect on how to develop new models for minimally invasive, image-guided treatment of HCC.

  19. Animal models of the non-motor features of Parkinson’s disease

    PubMed Central

    McDowell, Kimberly; Chesselet, Marie-Françoise

    2012-01-01

    The non-motor symptoms (NMS) of Parkinson’s disease (PD) occur in roughly 90% of patients, have a profound negative impact on their quality of life, and often go undiagnosed. NMS typically involve many functional systems, and include sleep disturbances, neuropsychiatric and cognitive deficits, and autonomic and sensory dysfunction. The development and use of animal models have provided valuable insight into the classical motor symptoms of PD over the past few decades. Toxin-induced models provide a suitable approach to study aspects of the disease that derive from the loss of nigrostriatal dopaminergic neurons, a cardinal feature of PD. This also includes some NMS, primarily cognitive dysfunction. However, several NMS poorly respond to dopaminergic treatments, suggesting that they may be due to other pathologies. Recently developed genetic models of PD are providing new ways to model these NMS and identify their mechanisms. This review summarizes the current available literature on the ability of both toxin-induced and genetically-based animal models to reproduce the NMS of PD. PMID:22236386

  20. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis

    PubMed Central

    Zhan, Xianbao; Wang, Fan; Bi, Yan

    2016-01-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. PMID:27418683

  1. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis.

    PubMed

    Zhan, Xianbao; Wang, Fan; Bi, Yan; Ji, Baoan

    2016-09-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. Copyright © 2016 the American Physiological Society.

  2. Animal models of addiction

    PubMed Central

    Spanagel, Rainer

    2017-01-01

    In recent years, animal models in psychiatric research have been criticized for their limited translational value to the clinical situation. Failures in clinical trials have thus often been attributed to the lack of predictive power of preclinical animal models. Here, I argue that animal models of voluntary drug intake—under nonoperant and operant conditions—and addiction models based on the Diagnostic and Statistical Manual of Mental Disorders are crucial and informative tools for the identification of pathological mechanisms, target identification, and drug development. These models provide excellent face validity, and it is assumed that the neurochemical and neuroanatomical substrates involved in drug-intake behavior are similar in laboratory rodents and humans. Consequently, animal models of drug consumption and addiction provide predictive validity. This predictive power is best illustrated in alcohol research, in which three approved medications—acamprosate, naltrexone, and nalmefene—were developed by means of animal models and then successfully translated into the clinical situation. PMID:29302222

  3. Animal Models of Barrett's Esophagus and Esophageal Adenocarcinoma-Past, Present, and Future.

    PubMed

    Kapoor, Harit; Lohani, Kush Raj; Lee, Tommy H; Agrawal, Devendra K; Mittal, Sumeet K

    2015-12-01

    Esophageal adenocarcinoma is the fastest rising cancer in the United States. It develops from long-standing gastroesophageal reflux disease which affects >20% of the general population. It carries a very poor prognosis with 5-year survival <20%. The disease is known to sequentially progress from reflux esophagitis to a metaplastic precursor, Barrett's esophagus and then onto dysplasia and esophageal adenocarcinoma. However, only few patients with reflux develop Barrett's esophagus and only a minority of these turn malignant. The reason for this heterogeneity in clinical progression is unknown. To improve patient management, molecular changes which facilitate disease progression must be identified. Animal models can provide a comprehensive functional and anatomic platform for such a study. Rats and mice have been the most widely studied but disease homology with humans has been questioned. No animal model naturally simulates the inflammation to adenocarcinoma progression as in humans, with all models requiring surgical bypass or destruction of existing antireflux mechanisms. Valuable properties of individual models could be utilized to holistically evaluate disease progression. In this review paper, we critically examined the current animal models of Barrett's esophagus, their differences and homologies with human disease and how they have shaped our current understanding of Barrett's carcinogenesis. © 2015 Wiley Periodicals, Inc.

  4. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  5. Animal Model of Dermatophytosis

    PubMed Central

    Shimamura, Tsuyoshi; Kubota, Nobuo; Shibuya, Kazutoshi

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host's normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the present paper, we surveyed reports about the methodology of the dermatophytosis animal model for tinea corporis, tinea pedis, and tinea unguium and discussed future prospects. PMID:22619489

  6. Animal models of human immunodeficiency virus infection. Public Health Service Animal Models Committee.

    PubMed

    Spertzel, R O

    1989-12-01

    The search for a model of HIV infection continues. While much of the initial work focussed on animal models of AIDS, more recent efforts have sought animal models of HIV infection in which one or more signs of AIDS may be reproduced. Most initial small animal modelling efforts were negative and many such efforts remain unpublished. In 1988, the Public Health Service (PHS) AIDS Animal Model Committee conducted a survey among PHS agencies to identify published and unpublished data on animal models of HIV. To date, the chimpanzee is the only animal to be reliably infected with HIV albeit without development of signs and symptoms normally associated with human AIDS. One recent study has shown the gibbon to be similarly susceptible to infection with HIV. Mice carrying a chimera of elements of the human immune system have been shown to support the growth of HIV and F1 progeny of transgenic mice containing intact copies of HIV proviral DNA, have developed a disease that resembles some aspects of human AIDS. Rabbits, baboons and rhesus monkeys have also been shown to be infected under certain conditions and/or with selected strains of HIV but again without the development of AIDS symptomatology. This report briefly summarizes published and available unpublished data on these efforts to develop an animal model of HIV infection.

  7. Animal models of aging research: implications for human aging and age-related diseases.

    PubMed

    Mitchell, Sarah J; Scheibye-Knudsen, Morten; Longo, Dan L; de Cabo, Rafael

    2015-01-01

    Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.

  8. Animal welfare and use of silkworm as a model animal.

    PubMed

    Sekimizu, N; Paudel, A; Hamamoto, H

    2012-08-01

    Sacrificing model animals is required for developing effective drugs before being used in human beings. In Japan today, at least 4,210,000 mice and other mammals are sacrificed to a total of 6,140,000 per year for the purpose of medical studies. All the animals treated in Japan, including test animals, are managed under control of "Act on Welfare and Management of Animals". Under the principle of this Act, no person shall kill, injure, or inflict cruelty on animals without due cause. "Animal" addressed in the Act can be defined as a "vertebrate animal". If we can make use of invertebrate animals in testing instead of vertebrate ones, that would be a remarkable solution for the issue of animal welfare. Furthermore, there are numerous advantages of using invertebrate animal models: less space and small equipment are enough for taking care of a large number of animals and thus are cost-effective, they can be easily handled, and many biological processes and genes are conserved between mammals and invertebrates. Today, many invertebrates have been used as animal models, but silkworms have many beneficial traits compared to mammals as well as other insects. In a Genome Pharmaceutical Institute's study, we were able to achieve a lot making use of silkworms as model animals. We would like to suggest that pharmaceutical companies and institutes consider the use of the silkworm as a model animal which is efficacious both for financial value by cost cutting and ethical aspects in animals' welfare.

  9. What We Have Learned from Animal Models of Dry Eye

    PubMed Central

    Stern, Michael E.; Pflugfelder, Stephen C.

    2017-01-01

    Animal models have proved valuable to investigate the pathogenesis of dry eye disease, identify therapeutic targets and the efficacy of candidate therapeutics for dry eye. Pharmacological inhibition of the lacrimal functional unit and exposure of the mouse eye to desiccating stress was found to activate innate immune pathways, promote dendritic cell maturation and initiate an adaptive T cell response to ocular surface antigens. Disease relevant mediators and pathways have been identified through use of genetically altered mice, specific inhibitors and adoptive transfer of desiccating stress primed CD4+ T cells to naïve recipients. Findings from mouse models have elucidated the mechanism of action of cyclosporine A and the rationale for developing lifitegrast, the two currently approved therapeutics in the US. PMID:28282318

  10. Myeloproliferative Neoplasm Animal Models

    PubMed Central

    Mullally, Ann; Lane, Steven W.; Brumme, Kristina; Ebert, Benjamin L.

    2012-01-01

    Synopsis Myeloproliferative neoplasm (MPN) animal models accurately re-capitulate human disease in mice and have been an important tool for the study of MPN biology and therapy. Transplantation of BCR-ABL transduced bone marrow cells into irradiated syngeneic mice established the field of MPN animal modeling and the retroviral bone marrow transplantation (BMT) assay has been used extensively since. Genetically engineered MPN animal models have enabled detailed characterization of the effects of specific MPN associated genetic abnormalities on the hematopoietic stem and progenitor cell (HSPC) compartment and xenograft models have allowed the study of primary human MPN-propagating cells in vivo. All models have facilitated the pre-clinical development of MPN therapies. JAK2V617F, the most common molecular abnormality in BCR-ABL negative MPN, has been extensively studied using retroviral, transgenic, knock-in and xenograft models. MPN animal models have also been used to investigate additional genetic lesions found in human MPN and to evaluate the bone marrow microenvironment in these diseases. Finally, several genetic lesions, although not common, somatically mutated drivers of MPN in humans induce a MPN phenotype in mice. Future uses for MPN animal models will include modeling compound genetic lesions in MPN and studying myelofibrotic transformation. PMID:23009938

  11. Spatially explicit animal response to composition of habitat

    Treesearch

    Benjamin P. Pauli; Nicholas P. McCann; Patrick A. Zollner; Robert Cummings; Jonathan H. Gilbert; Eric J. Gustafson

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-...

  12. Insights from animal models of bladder cancer: recent advances, challenges, and opportunities

    PubMed Central

    John, Bincy Anu; Said, Neveen

    2017-01-01

    Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with increasing incidence and mortality. Treatment of bladder cancer has not advanced in the past 30 years. Therefore, there is a crucial unmet need for novel therapies, especially for high grade/stage disease that can only be achieved by preclinical model systems that faithfully recapitulate the human disease. Animal models are essential elements in bladder cancer research to comprehensively study the multistep cascades of carcinogenesis, progression and metastasis. They allow for the investigation of premalignant phases of the disease that are not clinically encountered. They can be useful for identification of diagnostic and prognostic biomarkers for disease progression and for preclinical identification and validation of therapeutic targets/candidates, advancing translation of basic research to clinic. This review summarizes the latest advances in the currently available bladder cancer animal models, their translational potential, merits and demerits, and the prevalent tumor evaluation modalities. Thereby, findings from these model systems would provide valuable information that can help researchers and clinicians utilize the model that best answers their research questions. PMID:28915710

  13. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  14. Biosecurity strategies for conserving valuable livestock genetic resources.

    PubMed

    Wrathall, Anthony E; Simmons, Hugh A; Bowles, Dianna J; Jones, Sam

    2004-01-01

    The foot and mouth disease (FMD) epidemic in the UK in 2001 highlighted the threat of infectious diseases to rare and valuable livestock and stimulated a renewed interest in biosecurity and conservation. However, not all diseases resemble FMD: their transmission routes and pathological effects vary greatly, so biosecurity strategies must take this into account. Realism is also needed as to which diseases to exclude and which will have to be tolerated. The aim should be to minimise disease generally and to exclude those diseases that threaten the existence of livestock or preclude their national or international movement. Achieving this requires a team effort, bearing in mind the livestock species involved, the farming system ('open' or 'closed') and the premises. Effective biosecurity demands that practically every aspect of farm life is controlled, including movements of people, vehicles, equipment, food, manure, animal carcasses and wildlife. Above all, biosecurity strategies must cover the disease risks associated with moving the livestock themselves and this will require quarantine if adult or juvenile animals are imported into the herd or flock. The present paper emphasises the important role that reproductive technologies, such as artificial insemination and embryo transfer, can have in biosecurity strategies because they offer much safer ways for getting new genetic materials into herds/flocks than bringing in live animals. Embryo transfer is especially safe when the sanitary protocols promoted by the International Embryo Transfer Society and advocated by the Office International des Epizooties (the 'World Organisation for Animal Health') are used. Embryo transfer can also allow the full genetic complement to be salvaged from infected animals. Cryobanking of genetic materials, especially embryos, is another valuable biosecurity strategy because it enables their storage for conservation in the face of contingencies, such as epidemic disease and other

  15. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  16. Animal models of sarcoidosis.

    PubMed

    Hu, Yijie; Yibrehu, Betel; Zabini, Diana; Kuebler, Wolfgang M

    2017-03-01

    Sarcoidosis is a debilitating, inflammatory, multiorgan, granulomatous disease of unknown cause, commonly affecting the lung. In contrast to other chronic lung diseases such as interstitial pulmonary fibrosis or pulmonary arterial hypertension, there is so far no widely accepted or implemented animal model for this disease. This has hampered our insights into the etiology of sarcoidosis, the mechanisms of its pathogenesis, the identification of new biomarkers and diagnostic tools and, last not least, the development and implementation of novel treatment strategies. Over past years, however, a number of new animal models have been described that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outline the present status quo for animal models of sarcoidosis, comparing their pros and cons with respect to their ability to mimic the etiological, clinical and histological hallmarks of human disease and discuss their applicability for future research. Overall, the recent surge in animal models has markedly expanded our options for translational research; however, given the relative early stage of most animal models for sarcoidosis, appropriate replication of etiological and histological features of clinical disease, reproducibility and usefulness in terms of identification of new therapeutic targets and biomarkers, and testing of new treatments should be prioritized when considering the refinement of existing or the development of new models.

  17. Animal models in burn research.

    PubMed

    Abdullahi, A; Amini-Nik, S; Jeschke, M G

    2014-09-01

    Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.

  18. Logical fallacies in animal model research.

    PubMed

    Sjoberg, Espen A

    2017-02-15

    Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.

  19. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  20. Feline Hypertrophic Cardiomyopathy: A Spontaneous Large Animal Model of Human HCM

    PubMed Central

    Freeman, Lisa M.; Rush, John E.; Stern, Joshua A.; Huggins, Gordon S.; Maron, Martin S.

    2017-01-01

    Hypertrophic cardiomyopathy (HCM) is a common disease in pet cats, affecting 10-15% of the pet cat population. The similarity to human HCM, the rapid progression of disease, and the defined and readily determined endpoints of feline HCM make it an excellent natural model that is genotypically and phenotypically similar to human HCM. The Maine Coon and Ragdoll cats are particularly valuable models of HCM because of myosin binding protein-C mutations and even higher disease incidence compared to the overall feline population. The cat overcomes many of the limitations of rodent HCM models, and can provide enhanced translation of information from in vitro and induced small animal models to human clinical trials. Physicians and veterinarians working together in a collaborative and interdisciplinary approach can accelerate the discovery of more effective treatments for this and other cardiovascular diseases affecting human and veterinary patients. PMID:28868097

  1. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  2. Animal models in myopia research.

    PubMed

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. © 2015 Optometry

  3. Large animal and primate models of spinal cord injury for the testing of novel therapies.

    PubMed

    Kwon, Brian K; Streijger, Femke; Hill, Caitlin E; Anderson, Aileen J; Bacon, Mark; Beattie, Michael S; Blesch, Armin; Bradbury, Elizabeth J; Brown, Arthur; Bresnahan, Jacqueline C; Case, Casey C; Colburn, Raymond W; David, Samuel; Fawcett, James W; Ferguson, Adam R; Fischer, Itzhak; Floyd, Candace L; Gensel, John C; Houle, John D; Jakeman, Lyn B; Jeffery, Nick D; Jones, Linda Ann Truett; Kleitman, Naomi; Kocsis, Jeffery; Lu, Paul; Magnuson, David S K; Marsala, Martin; Moore, Simon W; Mothe, Andrea J; Oudega, Martin; Plant, Giles W; Rabchevsky, Alexander Sasha; Schwab, Jan M; Silver, Jerry; Steward, Oswald; Xu, Xiao-Ming; Guest, James D; Tetzlaff, Wolfram

    2015-07-01

    Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models. Forty-one SCI researchers from academia, industry, and granting agencies were asked to complete a questionnaire about their opinion regarding the use of large animal and primate models in the context of testing novel therapeutics. The questions centered around how large animal and primate models of SCI would be best utilized in the spectrum of preclinical testing, and how much testing in rodent models was warranted before employing these models. Further questions were posed at a focus group meeting attended by the respondents. The group generally felt that large animal and primate models of SCI serve a potentially useful role in the translational pipeline for novel therapies, and that the rational use of these models would depend on the type of therapy and specific research question being addressed. While testing within these models should not be mandatory, the detection of beneficial effects using these models lends additional support for translating a therapy to humans. These models provides an opportunity to evaluate and refine surgical procedures prior to use in humans, and safety and bio-distribution in a spinal cord more similar in size and anatomy to that of humans. Our results reveal that while many feel that these models are valuable in the testing of novel therapies, important questions remain unanswered about how they should be used and how data derived from them should be interpreted. Copyright © 2015 Elsevier

  4. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  5. Animal models in peritoneal dialysis.

    PubMed

    Nikitidou, Olga; Peppa, Vasiliki I; Leivaditis, Konstantinos; Eleftheriadis, Theodoros; Zarogiannis, Sotirios G; Liakopoulos, Vassilios

    2015-01-01

    Peritoneal dialysis (PD) has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease (ESRD). In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use.

  6. Stochastic modelling of animal movement.

    PubMed

    Smouse, Peter E; Focardi, Stefano; Moorcroft, Paul R; Kie, John G; Forester, James D; Morales, Juan M

    2010-07-27

    Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal 'settling down', accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry.

  7. Overview of Animal Models of Obesity

    PubMed Central

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  8. Use of animal models for space flight physiology studies, with special focus on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  9. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  10. Animal Models for Periodontal Disease

    PubMed Central

    Oz, Helieh S.; Puleo, David A.

    2011-01-01

    Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345

  11. Evaluation of animal models of neurobehavioral disorders

    PubMed Central

    van der Staay, F Josef; Arndt, Saskia S; Nordquist, Rebecca E

    2009-01-01

    Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s) of the model, preferentially based on hypotheses about brain-behavior relationships. Then, the model is developed and tested. The evaluation of the model takes scientific and ethical criteria into consideration. Model development requires a multidisciplinary approach. Preclinical and clinical experts should establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of assessing the replicability/reliability, predictive, construct and external validity/generalizability, and relevance of the model. We emphasize the role of (systematic and extended) replications in the course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate the reliability/replicability, validity, and generalizability of result. Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria. Weighing the animal's welfare and considerations as to whether action is indicated to reduce the discomfort must accompany the scientific evaluation at any stage of the model building and evaluation process. Animal model building should be discontinued if the model does not meet the preset scientific criteria, or when animal welfare is severely compromised. The application of the evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed model of schizophrenia. In a manner congruent to that for improving animal

  12. Animal models.

    PubMed

    Walker, Ellen A

    2010-01-01

    As clinical studies reveal that chemotherapeutic agents may impair several different cognitive domains in humans, the development of preclinical animal models is critical to assess the degree of chemotherapy-induced learning and memory deficits and to understand the underlying neural mechanisms. In this chapter, the effects of various cancer chemotherapeutic agents in rodents on sensory processing, conditioned taste aversion, conditioned emotional response, passive avoidance, spatial learning, cued memory, discrimination learning, delayed-matching-to-sample, novel-object recognition, electrophysiological recordings and autoshaping is reviewed. It appears at first glance that the effects of the cancer chemotherapy agents in these many different models are inconsistent. However, a literature is emerging that reveals subtle or unique changes in sensory processing, acquisition, consolidation and retrieval that are dose- and time-dependent. As more studies examine cancer chemotherapeutic agents alone and in combination during repeated treatment regimens, the animal models will become more predictive tools for the assessment of these impairments and the underlying neural mechanisms. The eventual goal is to collect enough data to enable physicians to make informed choices about therapeutic regimens for their patients and discover new avenues of alternative or complementary therapies that reduce or eliminate chemotherapy-induced cognitive deficits.

  13. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    PubMed Central

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  14. Animal models of middle ear cholesteatoma.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma.

  15. Animal Models of Middle Ear Cholesteatoma

    PubMed Central

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma. PMID:21541229

  16. An animal model for tinnitus.

    PubMed

    Jastreboff, P J; Brennan, J F; Sasaki, C T

    1988-03-01

    Subjective tinnitus remains obscure, widespread, and without apparent cure. In the absence of a suitable animal model, past investigations took place in humans, resulting in studies that were understandably restricted by the nature of human investigation. Within this context, the development of a valid animal model would be considered a major breakthrough in this field of investigation. Our results showed changes in the spontaneous activity of single neurons in the inferior colliculus, consistent with abnormally increased neuronal activity within the auditory pathways after manipulations known to produce tinnitus in man. A procedure based on a Pavlovian conditioned suppression paradigm was recently developed that allows us to measure tinnitus behaviorally in conscious animals. Accordingly, an animal model of tinnitus is proposed that permits tests of hypotheses relating to tinnitus generation, allowing the accommodation of interventional strategies for the treatment of this widespread auditory disorder.

  17. Use, misuse and extensions of "ideal gas" models of animal encounter.

    PubMed

    Hutchinson, John M C; Waser, Peter M

    2007-08-01

    Biologists have repeatedly rediscovered classical models from physics predicting collision rates in an ideal gas. These models, and their two-dimensional analogues, have been used to predict rates and durations of encounters among animals or social groups that move randomly and independently, given population density, velocity, and distance at which an encounter occurs. They have helped to separate cases of mixed-species association based on behavioural attraction from those that simply reflect high population densities, and to detect cases of attraction or avoidance among conspecifics. They have been used to estimate the impact of population density, speeds of movement and size on rates of encounter between members of the opposite sex, between gametes, between predators and prey, and between observers and the individuals that they are counting. One limitation of published models has been that they predict rates of encounter, but give no means of determining whether observations differ significantly from predictions. Another uncertainty is the robustness of the predictions when animal movements deviate from the model's assumptions in specific, biologically relevant ways. Here, we review applications of the ideal gas model, derive extensions of the model to cover some more realistic movement patterns, correct several errors that have arisen in the literature, and show how to generate confidence limits for expected rates of encounter among independently moving individuals. We illustrate these results using data from mangabey monkeys originally used along with the ideal gas model to argue that groups avoid each other. Although agent-based simulations provide a more flexible alternative approach, the ideal gas model remains both a valuable null model and a useful, less onerous, approximation to biological reality.

  18. Animal models of sepsis.

    PubMed

    Fink, Mitchell P

    2014-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, the animal models that have been used for this purpose have often yielded misleading findings. It is likely that there are multiple reasons for the discrepancies between the results obtained in tests of pharmacological agents in animal models of sepsis and the outcomes of human clinical trials. One of important reason may be that the changes in gene expression, which are triggered by trauma or infection, are different in mice, a commonly used species for preclinical testing, and humans. Additionally, many species, including mice and baboons, are remarkably resistant to the toxic effects of bacterial lipopolysaccharide, whereas humans are exquisitely sensitive. New approaches toward the use of animals for sepsis research are being investigated. But, at present, results from preclinical studies of new therapeutic agents for sepsis must be viewed with a degree of skepticism.

  19. ANIMAL MODELS OF COGNITIVE DEVELOPMENT IN NEUROTOXICITY

    EPA Science Inventory

    The thesis of this chapter has been that spatial delayed alternation versus position discrimination learning can serve as a valuable rodent model of cognitive development in neurotoxicology. his model captures dual process conceptualizations of memory in human neuropsychology and...

  20. Meta-analyses of animal studies: an introduction of a valuable instrument to further improve healthcare.

    PubMed

    Hooijmans, Carlijn R; IntHout, Joanna; Ritskes-Hoitinga, Merel; Rovers, Maroeska M

    2014-01-01

    In research aimed at improving human health care, animal studies still play a crucial role, despite political and scientific efforts to reduce preclinical experimentation in laboratory animals. In animal studies, the results and their interpretation are not always straightforward, as no single study is executed perfectly in all steps. There are several possible sources of bias, and many animal studies are replicates of studies conducted previously. Use of meta-analysis to combine the results of studies may lead to more reliable conclusions and a reduction of unnecessary duplication of animal studies. In addition, due to the more exploratory nature of animal studies as compared to clinical trials, meta-analyses of animal studies have greater potential in exploring possible sources of heterogeneity. There is an abundance of literature on how to perform meta-analyses on clinical data. Animal studies, however, differ from clinical studies in some aspects, such as the diversity of animal species studied, experimental design, and study characteristics. In this paper, we will discuss the main principles and practices for meta-analyses of experimental animal studies. © The Author 2014. Published by Oxford University Press.

  1. Animal models for filovirus infections.

    PubMed

    Siragam, Vinayakumar; Wong, Gary; Qiu, Xiang-Guo

    2018-01-18

    The family Filoviridae , which includes the genera Marburgvirus and Ebolavirus , contains some of the most pathogenic viruses in humans and non-human primates (NHPs), causing severe hemorrhagic fevers with high fatality rates. Small animal models against filoviruses using mice, guinea pigs, hamsters, and ferrets have been developed with the goal of screening candidate vaccines and antivirals, before testing in the gold standard NHP models. In this review, we summarize the different animal models used to understand filovirus pathogenesis, and discuss the advantages and disadvantages of each model with respect to filovirus disease research.

  2. Animal models for filovirus infections

    PubMed Central

    Siragam, Vinayakumar; Wong, Gary; Qiu, Xiang-Guo

    2018-01-01

    The family Filoviridae, which includes the genera Marburgvirus and Ebolavirus, contains some of the most pathogenic viruses in humans and non-human primates (NHPs), causing severe hemorrhagic fevers with high fatality rates. Small animal models against filoviruses using mice, guinea pigs, hamsters, and ferrets have been developed with the goal of screening candidate vaccines and antivirals, before testing in the gold standard NHP models. In this review, we summarize the different animal models used to understand filovirus pathogenesis, and discuss the advantages and disadvantages of each model with respect to filovirus disease research. PMID:29511141

  3. Environmental chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    Animal manure is traditionally regarded as a valuable resource of plant nutrients. However, there is an increasing environmental concern associated with animal manure utilization due to high and locally concentrated volumes of manure produced in modern intensified animal production. Although conside...

  4. Animal models for testing anti-prion drugs.

    PubMed

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  5. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  6. Animal Models of Hemophilia

    PubMed Central

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  7. Animal models of exercise and obesity.

    PubMed

    Kasper, Christine E

    2013-01-01

    Animal models have been invaluable in the conduct of nursing research for the past 40 years. This review will focus on specific animal models that can be used in nursing research to study the physiologic phenomena of exercise and obesity when the use of human subjects is either scientifically premature or inappropriate because of the need for sampling tissue or the conduct of longitudinal studies of aging. There exists an extensive body of literature reporting the experimental use of various animal models, in both exercise science and the study of the mechanisms of obesity. Many of these studies are focused on the molecular and genetic mechanisms of organ system adaptation and plasticity in response to exercise, obesity, or both. However, this review will narrowly focus on the models useful to nursing research in the study of exercise in the clinical context of increasing performance and mobility, atrophy and bedrest, fatigue, and aging. Animal models of obesity focus on those that best approximate clinical pathology.

  8. Imputation approaches for animal movement modeling

    USGS Publications Warehouse

    Scharf, Henry; Hooten, Mevin B.; Johnson, Devin S.

    2017-01-01

    The analysis of telemetry data is common in animal ecological studies. While the collection of telemetry data for individual animals has improved dramatically, the methods to properly account for inherent uncertainties (e.g., measurement error, dependence, barriers to movement) have lagged behind. Still, many new statistical approaches have been developed to infer unknown quantities affecting animal movement or predict movement based on telemetry data. Hierarchical statistical models are useful to account for some of the aforementioned uncertainties, as well as provide population-level inference, but they often come with an increased computational burden. For certain types of statistical models, it is straightforward to provide inference if the latent true animal trajectory is known, but challenging otherwise. In these cases, approaches related to multiple imputation have been employed to account for the uncertainty associated with our knowledge of the latent trajectory. Despite the increasing use of imputation approaches for modeling animal movement, the general sensitivity and accuracy of these methods have not been explored in detail. We provide an introduction to animal movement modeling and describe how imputation approaches may be helpful for certain types of models. We also assess the performance of imputation approaches in two simulation studies. Our simulation studies suggests that inference for model parameters directly related to the location of an individual may be more accurate than inference for parameters associated with higher-order processes such as velocity or acceleration. Finally, we apply these methods to analyze a telemetry data set involving northern fur seals (Callorhinus ursinus) in the Bering Sea. Supplementary materials accompanying this paper appear online.

  9. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  10. Food allergy animal models: an overview.

    PubMed

    Helm, Ricki M

    2002-05-01

    Specific food allergy is characterized by sensitization to innocuous food proteins with production of allergen-specific IgE that binds to receptors on basophils and mast cells. Upon recurrent exposure to the same allergen, an allergic response is induced by mediator release following cross-linking of cell-bound allergen-specific IgE. The determination of what makes an innocuous food protein an allergen in predisposed individuals is unknown; however, mechanistic and protein allergen predictive models are being actively investigated in a number of animal models. Currently, there is no animal model that will actively profile known food allergens, predict the allergic potential of novel food proteins, or demonstrate clinically the human food allergic sensitization/allergic response. Animal models under investigation include mice, rats, the guinea pig, atopic dog, and neonatal swine. These models are being assessed for production of IgE, clinical responses to re-exposure, and a ranking of food allergens (based on potency) including a nonfood allergen protein source. A selection of animal models actively being investigated that will contribute to our understanding of what makes a protein an allergen and future predictive models for assessing the allergenicity of novel proteins is presented in this review.

  11. Animal Models of Ebolavirus Infection

    PubMed Central

    Claire, Marisa C St; Ragland, Dan R; Bollinger, Laura; Jahrling, Peter B

    2017-01-01

    Ebola virus is a highly pathogenic member of the family Filoviridae that causes a severe hemorrhagic disease in humans and NHP. The 2013–2016 West African outbreak has increased interest in the development and refinement of animal models of Ebola virus disease. These models are used to test countermeasures and vaccines, gain scientific insights into the mechanisms of disease progression and transmission, and study key correlates of immunology. Ebola virus is classified as a BSL4 pathogen and Category A agent, for which the United States government requires preparedness in case of bioterrorism. Rodents, such as Syrian golden hamsters (Mesocricetus auratus), mice (Mus musculus), and guinea pigs (Cavia porcellus), are the most common research species. However, NHP, especially macaques, are favored for Ebola virus disease research due to similarities with humans regarding the pathogenesis, clinical presentation, laboratory findings, and causes of fatality. To satisfy the regulatory requirements for approval of countermeasures against high-consequence pathogens, the FDA instituted the Animal Rule, which permits efficacy studies in animal models in place of human clinical data when such studies are not feasible or ethical. This review provides a comprehensive summary of various animal models and their use in Ebola virus disease research. PMID:28662754

  12. Animal Models for HIV Cure Research.

    PubMed

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.

  13. Animal Models for HIV Cure Research

    PubMed Central

    Policicchio, Benjamin B.; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  14. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives.

    PubMed

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.

  15. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives

    PubMed Central

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective. PMID:28298815

  16. Using Diffraction Tomography to Estimate Marine Animal Size

    NASA Astrophysics Data System (ADS)

    Jaffe, J. S.; Roberts, P.

    In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape

  17. Animal Models of Subjective Tinnitus

    PubMed Central

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805

  18. Small Animal Models for Evaluating Filovirus Countermeasures.

    PubMed

    Banadyga, Logan; Wong, Gary; Qiu, Xiangguo

    2018-05-11

    The development of novel therapeutics and vaccines to treat or prevent disease caused by filoviruses, such as Ebola and Marburg viruses, depends on the availability of animal models that faithfully recapitulate clinical hallmarks of disease as it is observed in humans. In particular, small animal models (such as mice and guinea pigs) are historically and frequently used for the primary evaluation of antiviral countermeasures, prior to testing in nonhuman primates, which represent the gold-standard filovirus animal model. In the past several years, however, the filovirus field has witnessed the continued refinement of the mouse and guinea pig models of disease, as well as the introduction of the hamster and ferret models. We now have small animal models for most human-pathogenic filoviruses, many of which are susceptible to wild type virus and demonstrate key features of disease, including robust virus replication, coagulopathy, and immune system dysfunction. Although none of these small animal model systems perfectly recapitulates Ebola virus disease or Marburg virus disease on its own, collectively they offer a nearly complete set of tools in which to carry out the preclinical development of novel antiviral drugs.

  19. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  20. Hierarchical animal movement models for population-level inference

    USGS Publications Warehouse

    Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.

    2016-01-01

    New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.

  1. Social defeat models in animal science: What we have learned from rodent models.

    PubMed

    Toyoda, Atsushi

    2017-07-01

    Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare. © 2017 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  2. Current status: Animal models of nausea

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The advantages, and possible benefits of a valid, reliable animal model for nausea are discussed, and difficulties inherent to the development of a model are considered. A principle problem for developing models arises because nausea is a subjective sensation that can be identified only in humans. Several putative measures of nausea in animals are considered, with more detailed consideration directed to variation in cardiac rate, levels of vasopressin, and conditioned taste aversion. Demonstration that putative measures are associated with reported nausea in humans is proposed as a requirement for validating measures to be used in animal models. The necessity for a 'real-time' measure of nausea is proposed as an important factor for future research; and the need for improved understanding of the neuroanatomy underlying the emetic syndrome is discussed.

  3. Comparative value of blood and skin samples for diagnosis of spotted fever group rickettsial infection in model animals.

    PubMed

    Levin, Michael L; Snellgrove, Alyssa N; Zemtsova, Galina E

    2016-07-01

    The definitive diagnosis of spotted fever group (SFG) rickettsioses in humans is challenging due to the retrospective nature and cross reactivity of the serological methods and the absence of reliable and consistent samples for molecular diagnostics. Existing data indicate the transient character of bacteremia in experimentally infected animals. The ability of arthropod vectors to acquire rickettsial infection from the laboratory animals in the absence of systemic infection and known tropism of rickettsial agents to endothelial cells of peripheral blood vessels underline the importance of local infection and consequently the diagnostic potential of skin samples. In order to evaluate the diagnostic sensitivity of rickettsial DNA detection in blood and skin samples, we compared results of PCR testing in parallel samples collected from model laboratory animals infected with Rickettsia rickettsii, Rickettsia parkeri and Rickettsia slovaca-like agent at different time points after infection. Skin samples were collected from ears - away from the site of tick placement and without eschars. Overall, testing of skin samples resulted in a higher proportion of positive results than testing of blood samples. Presented data from model animals demonstrates that testing of skin samples from sites of rickettsial proliferation can provide definitive molecular diagnosis of up to 60-70% of tick-borne SFG rickettsial infections during the acute stage of illness. Detection of pathogen DNA in cutaneous samples is a valuable alternative to blood-PCR at least in model animals. Published by Elsevier GmbH.

  4. Osteoarthritis: new insights in animal models.

    PubMed

    Longo, Umile Giuseppe; Loppini, Mattia; Fumo, Caterina; Rizzello, Giacomo; Khan, Wasim Sardar; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Osteoarthritis (OA) is the most frequent and symptomatic health problem in the middle-aged and elderly population, with over one-half of all people over the age of 65 showing radiographic changes in painful knees. The aim of the present study was to perform an overview on the available animal models used in the research field on the OA. Discrepancies between the animal models and the human disease are present. As regards human 'idiopathic' OA, with late onset and slow progression, it is perhaps wise not to be overly enthusiastic about animal models that show severe chondrodysplasia and very early OA. Advantage by using genetically engineered mouse models, in comparison with other surgically induced models, is that molecular etiology is known. Find potential molecular markers for the onset of the disease and pay attention to the role of gender and environmental factors should be very helpful in the study of mice that acquire premature OA. Surgically induced destabilization of joint is the most widely used induction method. These models allow the temporal control of disease induction and follow predictable progression of the disease. In animals, ACL transection and meniscectomy show a speed of onset and severity of disease higher than in humans after same injury.

  5. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  6. Animal models for microbicide safety and efficacy testing.

    PubMed

    Veazey, Ronald S

    2013-07-01

    Early studies have cast doubt on the utility of animal models for predicting success or failure of HIV-prevention strategies, but results of multiple human phase 3 microbicide trials, and interrogations into the discrepancies between human and animal model trials, indicate that animal models were, and are, predictive of safety and efficacy of microbicide candidates. Recent studies have shown that topically applied vaginal gels, and oral prophylaxis using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans, and all of these successes were predicted in animal models. Further, prior discrepancies between animal and human results are finally being deciphered as inadequacies in study design in the model, or quite often, noncompliance in human trials, the latter being increasingly recognized as a major problem in human microbicide trials. Successful microbicide studies in humans have validated results in animal models, and several ongoing studies are further investigating questions of tissue distribution, duration of efficacy, and continued safety with repeated application of these, and other promising microbicide candidates in both murine and nonhuman primate models. Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and more importantly, prospectively use these models to select and advance even safer, more effective, and importantly, more durable microbicide candidates into human trials.

  7. Bridging Animal and Human Models

    PubMed Central

    Barkley-Levenson, Amanda M.; Crabbe, John C.

    2012-01-01

    Genetics play an important role in the development and course of alcohol abuse, and understanding genetic contributions to this disorder may lead to improved preventative and therapeutic strategies in the future. Studies both in humans and in animal models are necessary to fully understand the neurobiology of alcoholism from the molecular to the cognitive level. By dissecting the complex facets of alcoholism into discrete, well-defined phenotypes that are measurable in both human populations and animal models of the disease, researchers will be better able to translate findings across species and integrate the knowledge obtained from various disciplines. Some of the key areas of alcoholism research where consilience between human and animal studies is possible are alcohol withdrawal severity, sensitivity to rewards, impulsivity, and dysregulated alcohol consumption. PMID:23134048

  8. Animal models for dengue vaccine development and testing

    PubMed Central

    2017-01-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development. PMID:28775974

  9. Animal models for dengue vaccine development and testing.

    PubMed

    Na, Woonsung; Yeom, Minjoo; Choi, Il-Kyu; Yook, Heejun; Song, Daesub

    2017-07-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

  10. Intraoperative neural monitoring in thyroid surgery: lessons learned from animal studies

    PubMed Central

    Randolph, Gregory W.; Lu, I-Cheng; Chang, Pi-Ying; Chen, Yi-Ting; Hun, Pao-Chu; Lin, Yi-Chu; Dionigi, Gianlorenzo; Chiang, Feng-Yu

    2016-01-01

    Recurrent laryngeal nerve (RLN) injury remains a significant morbidity associated with thyroid and parathyroid surgery. In the past decade, surgeons have increasingly used intraoperative neural monitoring (IONM) as an adjunct technique for localizing and identifying the RLN, detecting RLN injury, and predicting the outcome of vocal cord function. In recent years, many animal studies have investigated common pitfalls and new applications of IONM. For example, the use of IONM technology in animal models has proven valuable in studies of the electrophysiology of RLN injury. The advent of animal studies has substantially improved understanding of IONM technology. Lessons learned from animal studies have immediate clinical applications in establishing reliable strategies for preventing intraoperative RLN injury. This article gives an overview of the research progress on IONM-relevant animal models. PMID:27867861

  11. Pain assessment in animal models of osteoarthritis.

    PubMed

    Piel, Margaret J; Kroin, Jeffrey S; van Wijnen, Andre J; Kc, Ranjan; Im, Hee-Jeong

    2014-03-10

    Assessment of pain in animal models of osteoarthritis is integral to interpretation of a model's utility in representing the clinical condition, and enabling accurate translational medicine. Here we describe behavioral pain assessments available for small and large experimental osteoarthritic pain animal models. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Latest animal models for anti-HIV drug discovery.

    PubMed

    Sliva, Katja

    2015-02-01

    HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.

  14. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  15. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology

    PubMed Central

    Olivier, Alicia K.; Gibson-Corley, Katherine N.

    2015-01-01

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF. PMID:25591863

  16. Genotoxicity of Anesthetics Evaluated In Vivo (Animals)

    PubMed Central

    Karahalil, Bensu

    2015-01-01

    The anesthesia has been improved all over the years. However, it can have impact on health, in both patients and animals anesthetized, as well as professionals exposed to inhaled anesthetics. There is continuing effort to understand the possible effects of anesthetics at molecular levels. Knowing the effects of anesthetic agents on genetic material could be a valuable basic support to better understand the possible mechanisms of these agents. Thus, the purpose of this review is to provide an overview on the genotoxic potential, evaluated in animal models, of many anesthetics that have already been used and those currently used in anesthesia. PMID:26199936

  17. Animal models of schizophrenia

    PubMed Central

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  18. The necessity of animal models in pain research.

    PubMed

    Mogil, Jeffrey S; Davis, Karen D; Derbyshire, Stuart W

    2010-10-01

    There exists currently a fair degree of introspection in the pain research community about the value of animal research. This review represents a defense of animal research in pain. We discuss the inherent advantage of animal models over human research as well as the crucial complementary roles animal studies play vis-à-vis human imaging and genetic studies. Finally, we discuss recent developments in animal models of pain that should improve the relevance and translatability of findings using laboratory animals. We believe that pain research using animal models is a continuing necessity-to understand fundamental mechanisms, identify new analgesic targets, and inform, guide and follow up human studies-if novel analgesics are to be developed for the treatment of chronic pain. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  20. Animal Models of Human Granulocyte Diseases

    PubMed Central

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  1. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  2. Animal models for acute radiation syndrome drug discovery.

    PubMed

    Singh, Vijay K; Newman, Victoria L; Berg, Allison N; MacVittie, Thomas J

    2015-05-01

    Although significant scientific advances have been made over the past six decades in developing safe, nontoxic and effective radiation/medical countermeasures (MCMs) for acute radiation syndrome (ARS), no drug has been approved by the US FDA. The availability of adequate animal models is a prime requisite under the criteria established by the FDA 'animal rule' for the development of novel MCMs for ARS and the discovery of biomarkers for radiation exposure. This article reviews the developments of MCMs to combat ARS, with particular reference to the various animal models (rodents: mouse and rat; canine: beagle; minipigs and nonhuman primates [NHPs]) utilized for the in-depth evaluation. The objective, pathways and challenges of the FDA Animal Efficacy Rule are also discussed. There are a number of well-defined animal models, the mouse, canine and NHP, that are being used for the development of MCMs. Additional animal models, such as the minipig, are under development to further assist in the identification, efficacy testing and approval of MCMs under the FDA Animal Efficacy Rule.

  3. Animation Augmented Reality Book Model (AAR Book Model) to Enhance Teamwork

    ERIC Educational Resources Information Center

    Chujitarom, Wannaporn; Piriyasurawong, Pallop

    2017-01-01

    This study aims to synthesize an Animation Augmented Reality Book Model (AAR Book Model) to enhance teamwork and to assess the AAR Book Model to enhance teamwork. Samples are five specialists that consist of one animation specialist, two communication and information technology specialists, and two teaching model design specialists, selected by…

  4. SEARCHBreast: a new resource to locate and share surplus archival material from breast cancer animal models to help address the 3Rs.

    PubMed

    Blyth, Karen; Carter, Phil; Morrissey, Bethny; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie

    2016-04-01

    Animal models have contributed to our understanding of breast cancer, with publication of results in high-impact journals almost invariably requiring extensive in vivo experimentation. As such, many laboratories hold large collections of surplus animal material, with only a fraction being used in publications relating to the original projects. Despite being developed at considerable cost, this material is an invisible and hence an underutilised resource, which often ends up being discarded. Within the breast cancer research community there is both a need and desire to make this valuable material available for researchers. Lack of a coordinated system for visualisation and localisation of this has prevented progress. To fulfil this unmet need, we have developed a novel initiative called Sharing Experimental Animal Resources: Coordinating Holdings-Breast (SEARCHBreast) which facilitates sharing of archival tissue between researchers on a collaborative basis and, de facto will reduce overall usage of animal models in breast cancer research. A secure searchable database has been developed where researchers can find, share, or upload materials related to animal models of breast cancer, including genetic and transplant models. SEARCHBreast is a virtual compendium where the physical material remains with the original laboratory. A bioanalysis pipeline is being developed for the analysis of transcriptomics data associated with mouse models, allowing comparative study with human and cell line data. Additionally, SEARCHBreast is committed to promoting the use of humanised breast tissue models as replacement alternatives to animals. Access to this unique resource is freely available to all academic researchers following registration at https://searchbreast.org.

  5. Role of Animal Models in Coronary Stenting.

    PubMed

    Iqbal, Javaid; Chamberlain, Janet; Francis, Sheila E; Gunn, Julian

    2016-02-01

    Coronary angioplasty initially employed balloon dilatation only. This technique revolutionized the treatment of coronary artery disease, although outcomes were compromised by acute vessel closure, late constrictive remodeling, and restenosis due to neointimal proliferation. These processes were studied in animal models, which contributed to understanding the biology of endovascular arterial injury. Coronary stents overcome acute recoil, with improvements in the design and metallurgy since then, leading to the development of drug-eluting stents and bioresorbable scaffolds. These devices now undergo computer modeling and benchtop and animal testing before evaluation in clinical trials. Animal models, including rabbit, sheep, dog and pig are available, all with individual benefits and limitations. In smaller mammals, such as mouse and rabbit, the target for stenting is generally the aorta; whereas in larger animals, such as the pig, it is generally the coronary artery. The pig coronary stenting model is a gold-standard for evaluating safety; but insights into biomechanical properties, the biology of stenting, and efficacy in controlling neointimal proliferation can also be gained. Intra-coronary imaging modalities such as intravascular ultrasound and optical coherence tomography allow precise serial evaluation in vivo, and recent developments in genetically modified animal models of atherosclerosis provide realistic test beds for future stents and scaffolds.

  6. Establishing the ferret as a gyrencephalic animal model of traumatic brain injury: Optimization of controlled cortical impact procedures.

    PubMed

    Schwerin, Susan C; Hutchinson, Elizabeth B; Radomski, Kryslaine L; Ngalula, Kapinga P; Pierpaoli, Carlo M; Juliano, Sharon L

    2017-06-15

    Although rodent TBI studies provide valuable information regarding the effects of injury and recovery, an animal model with neuroanatomical characteristics closer to humans may provide a more meaningful basis for clinical translation. The ferret has a high white/gray matter ratio, gyrencephalic neocortex, and ventral hippocampal location. Furthermore, ferrets are amenable to behavioral training, have a body size compatible with pre-clinical MRI, and are cost-effective. We optimized the surgical procedure for controlled cortical impact (CCI) using 9 adult male ferrets. We used subject-specific brain/skull morphometric data from anatomical MRIs to overcome across-subject variability for lesion placement. We also reflected the temporalis muscle, closed the craniotomy, and used antibiotics. We then gathered MRI, behavioral, and immunohistochemical data from 6 additional animals using the optimized surgical protocol: 1 control, 3 mild, and 1 severely injured animals (surviving one week) and 1 moderately injured animal surviving sixteen weeks. The optimized surgical protocol resulted in consistent injury placement. Astrocytic reactivity increased with injury severity showing progressively greater numbers of astrocytes within the white matter. The density and morphological changes of microglia amplified with injury severity or time after injury. Motor and cognitive impairments scaled with injury severity. The optimized surgical methods differ from those used in the rodent, and are integral to success using a ferret model. We optimized ferret CCI surgery for consistent injury placement. The ferret is an excellent animal model to investigate pathophysiological and behavioral changes associated with TBI. Published by Elsevier B.V.

  7. Systematic Reviews of Animal Models: Methodology versus Epistemology

    PubMed Central

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions. PMID:23372426

  8. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Elements of episodic-like memory in animal models.

    PubMed

    Crystal, Jonathon D

    2009-03-01

    Representations of unique events from one's past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer's disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.

  10. Chimeric animal models in human stem cell biology.

    PubMed

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  11. The role of animal models in the pharmacological evaluation of emerging anti-inflammatory agents for the treatment of COPD.

    PubMed

    Fox, J Craig; Fitzgerald, Mary F

    2009-06-01

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease that has been relatively under researched compared to other inflammatory diseases. Indeed, thus far there have been no anti-inflammatory therapies specifically approved for COPD and the available anti-inflammatory therapies were originally developed for asthma. The challenges facing research in COPD are multi-faceted; the mechanisms underlying the complex and heterogeneous pathology of this disease require unravelling; the role of inflammation in disease progression needs to be confirmed and new drugs with potential to successfully treat COPD need to be identified. Many of the compounds in the clinic today have been identified through the work performed in a range of animal models of COPD. These models have provided us with an understanding of disease pathology and potential mechanistic pathways and have given us the means to prioritise new chemical entities before entry into the clinic. This review will summarise currently available models of COPD and highlight how they have been used to take a first generation of anti-inflammatory therapies for COPD into clinical development. The predictive nature of these animal models will become clear as these therapies are clinically evaluated. The recurring challenge will be to take emerging pre-clinical and clinical data and use it to continually improve animal models so that they remain a valuable tool in the drug discovery process.

  12. Microbicide safety/efficacy studies in animals: macaques and small animal models.

    PubMed

    Veazey, Ronald S

    2008-09-01

    A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. The unique host and cell specificity of HIV, however, provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a prerequisite for advancing additional microbicide candidates to human clinical trials.

  13. Microbicide Safety/Efficacy studies in animals -macaques and small animal models

    PubMed Central

    Veazey, Ronald S.

    2009-01-01

    Purpose of review A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. However, the unique host and cell specificity of HIV provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. Recent findings A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Summary Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a pre-requisite for advancing additional microbicide candidates to human clinical trials. PMID:19373023

  14. Animal Models of Zika Virus.

    PubMed

    Bradley, Michael P; Nagamine, Claude M

    2017-06-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.

  15. Animal models of asthma: utility and limitations.

    PubMed

    Aun, Marcelo Vivolo; Bonamichi-Santos, Rafael; Arantes-Costa, Fernanda Magalhães; Kalil, Jorge; Giavina-Bianchi, Pedro

    2017-01-01

    Clinical studies in asthma are not able to clear up all aspects of disease pathophysiology. Animal models have been developed to better understand these mechanisms and to evaluate both safety and efficacy of therapies before starting clinical trials. Several species of animals have been used in experimental models of asthma, such as Drosophila , rats, guinea pigs, cats, dogs, pigs, primates and equines. However, the most common species studied in the last two decades is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of human disease. They classically include two phases: sensitization and challenge. Sensitization is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instillation of allergens has been increasingly used because human asthma is induced by inhalation of allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal instillation. However, few studies have compared different routes of sensitization and challenge. The causative allergen is another important issue in developing a good animal model. Despite being more traditional and leading to intense inflammation, ovalbumin has been replaced by aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal models of asthma, assessing differences between species, allergens and routes of allergen administration.

  16. Animal Models for Salmonellosis: Applications in Vaccine Research

    PubMed Central

    Higginson, Ellen E.; Simon, Raphael

    2016-01-01

    Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development. PMID:27413068

  17. Establishing a laboratory animal model from a transgenic animal: RasH2 mice as a model for carcinogenicity studies in regulatory science.

    PubMed

    Urano, K; Tamaoki, N; Nomura, T

    2012-01-01

    Transgenic animal models have been used in small numbers in gene function studies in vivo for a period of time, but more recently, the use of a single transgenic animal model has been approved as a second species, 6-month alternative (to the routine 2-year, 2-animal model) used in short-term carcinogenicity studies for generating regulatory application data of new drugs. This article addresses many of the issues associated with the creation and use of one of these transgenic models, the rasH2 mouse, for regulatory science. The discussion includes strategies for mass producing mice with the same stable phenotype, including constructing the transgene, choosing a founder mouse, and controlling both the transgene and background genes; strategies for developing the model for regulatory science, including measurements of carcinogen susceptibility, stability of a large-scale production system, and monitoring for uniform carcinogenicity responses; and finally, efficient use of the transgenic animal model on study. Approximately 20% of mouse carcinogenicity studies for new drug applications in the United States currently use transgenic models, typically the rasH2 mouse. The rasH2 mouse could contribute to animal welfare by reducing the numbers of animals used as well as reducing the cost of carcinogenicity studies. A better understanding of the advantages and disadvantages of the transgenic rasH2 mouse will result in greater and more efficient use of this animal model in the future.

  18. Animal Models of Hemophilia and Related Bleeding Disorders

    PubMed Central

    Lozier, Jay N.; Nichols, Timothy C.

    2013-01-01

    Animal models of hemophilia and related diseases are important for development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and von Willebrand disease pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform pre-clinical assessments of standard protein replacement therapies as well as novel gene transfer technology. Both the differences between species and differences in underlying causative mutations must be considered in choosing the best animal for a specific scientific study PMID:23956467

  19. Animal Models of Suicide Trait-Related Behaviors

    PubMed Central

    Malkesman, Oz; Pine, Daniel; Tragon, Tyson; Austin, Daniel R.; Henter, Ioline D.; Chen, Guang; Manji, Husseini K.

    2009-01-01

    Although antidepressants are at least moderately effective in treating major depressive disorder (MDD), concerns have arisen that selective serotonin reuptake inhibitors (SSRIs) are associated with suicidal thinking and behavior, especially in children, adolescents, and young adults. Virtually no experimental research in model systems has considered the mechanisms by which SSRIs may be associated with this potential side effect in some susceptible individuals. Suicide is a complex behavior that is, at best, complicated to study in humans and impossible to fully reproduce in an animal model. However, by investigating traits that show strong cross-species parallels as well as associations with suicide in humans, animal models may elucidate the mechanisms by which SSRIs are associated with suicidal thinking and behavior in the young. Traits linked with suicide in humans that can be successfully modeled in rodents include aggression, impulsivity, irritability, and hopelessness/helplessness. Differences in animal response to particular paradigms and to SSRIs across the lifespan are also discussed. Modeling these relevant traits in animals can help clarify the impact of SSRIs on these traits, suggesting avenues for reducing suicide risk in this vulnerable population. PMID:19269045

  20. Animal models for percutaneous-device-related infections: a review.

    PubMed

    Shao, Jinlong; Kolwijck, Eva; Jansen, John A; Yang, Fang; Walboomers, X Frank

    2017-06-01

    This review focuses on the construction of animal models for percutaneous-device-related infections, and specifically the role of inoculation of bacteria in such models. Infections around percutaneous devices, such as catheters, dental implants and limb prostheses, are a recurrent and persistent clinical problem. To promote the research on this clinical problem, the establishment of a reliable and validated animal model would be of keen interest. In this review, literature related to percutaneous devices was evaluated, and particular attention was paid to studies involving the use of bacteria. The design of percutaneous devices, susceptibility of various animal species, bacterial strains, amounts of bacteria, method of inoculation and methods for subsequent evaluation of the infection are discussed in detail. Given that an ideal animal model for study of percutaneous-device-related infection is still not existent, this article presents the basis for the construction of such a standardized animal model for percutaneous-device-related infection studies. The inoculation of bacteria is critical to obtain an animal model for standardized studies for percutaneous-device-related infections. Copyright © 2017. Published by Elsevier B.V.

  1. Sex differences in animal models of psychiatric disorders

    PubMed Central

    Kokras, N; Dalla, C

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive–compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24697577

  2. Animal models of polymicrobial pneumonia

    PubMed Central

    Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne

    2015-01-01

    Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617

  3. Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models.

    PubMed

    Laman, Jon D; Kooistra, Susanne M; Clausen, Björn E

    2017-01-01

    In light of an enhanced awareness of ethical questions and ever increasing costs when working with animals in biomedical research, there is a dedicated and sometimes fierce debate concerning the (lack of) reproducibility of animal models and their relevance for human inflammatory diseases. Despite evident advancements in searching for alternatives, that is, replacing, reducing, and refining animal experiments-the three R's of Russel and Burch (1959)-understanding the complex interactions of the cells of the immune system, the nervous system and the affected tissue/organ during inflammation critically relies on in vivo models. Consequently, scientific advancement and ultimately novel therapeutic interventions depend on improving the reproducibility of animal inflammation models. As a prelude to the remaining hands-on protocols described in this volume, here, we summarize potential pitfalls of preclinical animal research and provide resources and background reading on how to avoid them.

  4. Individual differences and the characterization of animal models of psychopathology: a strong challenge and a good opportunity.

    PubMed

    Armario, Antonio; Nadal, Roser

    2013-01-01

    Despite the development of valuable new techniques (i.e., genetics, neuroimage) for the study of the neurobiological substrate of psychiatric diseases, there are strong limitations in the information that can be gathered from human studies. It is thus critical to develop appropriate animal models of psychiatric diseases to characterize their putative biological bases and the development of new therapeutic strategies. The present review tries to offer a general perspective and several examples of how individual differences in animals can contribute to explain differential susceptibility to develop behavioral alterations, but also emphasizes methodological problems that can lead to inappropriate or over-simplistic interpretations. A critical analysis of the approaches currently used could contribute to obtain more reliable data and allow taking full advantage of new and sophisticated technologies. The discussion is mainly focused on anxiety-like and to a lower extent on depression-like behavior in rodents.

  5. Individual differences and the characterization of animal models of psychopathology: a strong challenge and a good opportunity

    PubMed Central

    Armario, Antonio; Nadal, Roser

    2013-01-01

    Despite the development of valuable new techniques (i.e., genetics, neuroimage) for the study of the neurobiological substrate of psychiatric diseases, there are strong limitations in the information that can be gathered from human studies. It is thus critical to develop appropriate animal models of psychiatric diseases to characterize their putative biological bases and the development of new therapeutic strategies. The present review tries to offer a general perspective and several examples of how individual differences in animals can contribute to explain differential susceptibility to develop behavioral alterations, but also emphasizes methodological problems that can lead to inappropriate or over-simplistic interpretations. A critical analysis of the approaches currently used could contribute to obtain more reliable data and allow taking full advantage of new and sophisticated technologies. The discussion is mainly focused on anxiety-like and to a lower extent on depression-like behavior in rodents. PMID:24265618

  6. Modeling individual animal histories with multistate capture–recapture models

    USGS Publications Warehouse

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide

  7. Diabetic aggravation of stroke and animal models

    PubMed Central

    Rehni, Ashish K.; Liu, Allen; Perez-Pinzon, Miguel A.; Dave, Kunjan R.

    2017-01-01

    Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage. PMID:28274862

  8. Animal models of drug addiction.

    PubMed

    García Pardo, María Pilar; Roger Sánchez, Concepción; De la Rubia Ortí, José Enrique; Aguilar Calpe, María Asunción

    2017-09-29

    The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm. In recent years these models have incorporated methodological modifications to study extinction, reinstatement and reconsolidation processes, or to model specific aspects of addictive behavior such as motivation to consume drugs, compulsive consumption or drug seeking under punishment situations. There are also models that link different reinforcement components or model voluntary motivation to consume (two-bottle choice, or drinking in the dark tests). In short, innovations in these models allow progress in scientific knowledge regarding the different aspects that lead individuals to consume a drug and develop compulsive consumption, providing a target for future treatments of addiction.

  9. Change of Rin1 and Stathmin in the Animal Model of Traumatic Stresses

    PubMed Central

    Han, Fang; Jiang, Jingzhi; Ding, Jinlan; Liu, Hong; Xiao, Bing; Shi, Yuxiu

    2017-01-01

    The molecular mechanism of fear memory is poorly understood. Therefore, the pathogenesis of post-traumatic stress disorder (PTSD), whose symptom presentation can enhance fear memory, remains largely unclear. Recent studies with knockout animals have reported that Rin1 and stathmin regulate fear memory. Rin1 inhibits acquisition and promotes memory extinction, whereas stathmin regulates innate and basal fear. The aim of our study was to examine changes in the expression of Rin1 and stathmin in different animal models of stress, particluarly traumatic stress. We used three animal traumatic stresses: single prolonged stress (SPS, which is a rodent model of PTSD), an immobilization-stress (IM) and a Loud sound stress (LSS), to examine the change and uniqueness in Rin1/stathmin expression. Behavioral tests of SPS rats demonstrated increased anxiety and contextual fear-conditioning. They showed decreased long-term potentiation (LTP), as well as decreased stathmin and increased Rin1 expression in the hippocampus and the amygdala. Expression of the stathmin effector, tubulin, and downstream molecules Rin1, Rab5, and Abl, appeared to increase. Rin1 and EphA4 were endogenously coexpressed in primary neurons after SPS stimulation. IM rats exhibited increased anxiety behavior and enhanced fear-conditioning to contextual and auditory stimuli. Similar changes in expression of Rin1/stathmin were observed in IM rats whereas no changes were observed in rats exposed to a loud sound. These data suggest that changes in expression of the Rin1 and stathmin genes may be involved in rodents with SPS and IM stresses, which provide valuable insight into fear memories under abnormal conditions, particularly in PTSD. PMID:28491025

  10. Basic mechanisms of MCD in animal models.

    PubMed

    Battaglia, Giorgio; Becker, Albert J; LoTurco, Joseph; Represa, Alfonso; Baraban, Scott C; Roper, Steven N; Vezzani, Annamaria

    2009-09-01

    Epilepsy-associated glioneuronal malformations (malformations of cortical development [MCD]) include focal cortical dysplasias (FCD) and highly differentiated glioneuronal tumors, most frequently gangliogliomas. The neuropathological findings are variable but suggest aberrant proliferation, migration, and differentiation of neural precursor cells as essential pathogenetic elements. Recent advances in animal models for MCDs allow new insights in the molecular pathogenesis of these epilepsy-associated lesions. Novel approaches, presented here, comprise RNA interference strategies to generate and study experimental models of subcortical band heterotopia and study functional aspects of aberrantly shaped and positioned neurons. Exciting analyses address impaired NMDA receptor expression in FCD animal models compared to human FCDs and excitatory imbalances in MCD animal models such as lissencephaly gene ablated mice as well as in utero irradiated rats. An improved understanding of relevant pathomechanisms will advance the development of targeted treatment strategies for epilepsy-associated malformations.

  11. Osteoporotic Animal Models of Bone Healing: Advantages and Pitfalls.

    PubMed

    Calciolari, Elena; Donos, Nikolaos; Mardas, Nikos

    2017-10-01

    The aim of this review was to summarize the advantages and pitfalls of the available osteoporotic animal models of bone healing. A thorough literature search was performed in MEDLINE via OVID and EMBASE to identify animal studies investigating the effect of experimental osteoporosis on bone healing and bone regeneration. The osteotomy model in the proximal tibia is the most popular osseous defect model to study the bone healing process in osteoporotic-like conditions, although other well-characterized models, such as the post-extraction model, might be taken into consideration by future studies. The regenerative potential of osteoporotic bone and its response to biomaterials/regenerative techniques has not been clarified yet, and the critical size defect model might be an appropriate tool to serve this purpose. Since an ideal animal model for simulating osteoporosis does not exist, the type of bone remodeling, the animal lifespan, the age of peak bone mass, and the economic and ethical implications should be considered in our selection process. Furthermore, the influence of animal species, sex, age, and strain on the outcome measurement should be taken into account. In order to make future studies meaningful, standardized international guidelines for osteoporotic animal models of bone healing need to be set up.

  12. Reviewing model application to support animal health decision making.

    PubMed

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Classic and new animal models of Parkinson's disease.

    PubMed

    Blesa, Javier; Phani, Sudarshan; Jackson-Lewis, Vernice; Przedborski, Serge

    2012-01-01

    Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson's Disease (PD) is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydropiridine (MPTP), rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.

  14. Synapse alterations in autism: Review of animal model findings.

    PubMed

    Zatkova, Martina; Bakos, Jan; Hodosy, Julius; Ostatnikova, Daniela

    2016-06-01

    Recent research has produced an explosion of experimental data on the complex neurobiological mechanisms of developmental disorders including autism. Animal models are one approach to studying the phenotypic features and molecular basis of autism. In this review, we describe progress in understanding synaptogenesis and alterations to this process with special emphasis on the cell adhesion molecules and scaffolding proteins implicated in autism. Genetic mouse model experiments are discussed in relation to alterations to selected synaptic proteins and consequent behavioral deficits measured in animal experiments. Pubmed databases were used to search for original and review articles on animal and human clinical studies on autism. The cell adhesion molecules, neurexin, neurolignin and the Shank family of proteins are important molecular targets associated with autism. The heterogeneity of the autism spectrum of disorders limits interpretation of information acquired from any single animal model or animal test. We showed synapse-specific/ model-specific defects associated with a given genotype in these models. Characterization of mouse models with genetic variations may help study the mechanisms of autism in humans. However, it will be necessary to apply new analytic paradigms in using genetically modified mice for understanding autism etiology in humans. Further studies are needed to create animal models with mutations that match the molecular and neural bases of autism.

  15. Computer-animated model of accommodation and presbyopia.

    PubMed

    Goldberg, Daniel B

    2015-02-01

    To understand, demonstrate, and further research the mechanisms of accommodation and presbyopia. Private practice, Little Silver, New Jersey, USA. Experimental study. The CAMA 2.0 computer-animated model of accommodation and presbyopia was produced in collaboration with an experienced medical animator using Autodesk Maya animation software and Adobe After Effects. The computer-animated model demonstrates the configuration and synchronous movements of all accommodative elements. A new classification of the zonular apparatus based on structure and function is proposed. There are 3 divisions of zonular fibers; that is, anterior, crossing, and posterior. The crossing zonular fibers form a scaffolding to support the lens; the anterior and posterior zonular fibers work reciprocally to achieve focused vision. The model demonstrates the important support function of Weiger ligament. Dynamic movement of the ora serrata demonstrates that the forces of ciliary muscle contraction store energy for disaccommodation in the elastic choroid. The flow of aqueous and vitreous provides strong evidence for our understanding of the hydrodynamic interactions during the accommodative cycle. The interaction may result from the elastic stretch in the choroid transmitted to the vitreous rather than from vitreous pressue. The model supports the concept that presbyopia results from loss of elasticity and increasing ocular rigidity in both the lenticular and extralenticular structures. The computer-animated model demonstrates the structures of accommodation moving in synchrony and might enhance understanding of the mechanisms of accommodation and presbyopia. Dr. Goldberg is a consultant to Acevision, Inc., and Bausch & Lomb. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Animal models in plastic and reconstructive surgery simulation-a review.

    PubMed

    Loh, Charles Yuen Yung; Wang, Aline Yen Ling; Tiong, Vincent Tze Yang; Athanassopoulos, Thanassi; Loh, Meiling; Lim, Philip; Kao, Huang-Kai

    2018-01-01

    The use of live and cadaveric animal models in surgical training is well established as a means of teaching and improving surgical skill in a controlled setting. We aim to review, evaluate, and summarize the models published in the literature that are applicable to Plastic Surgery training. A PubMed search for keywords relating to animal models in Plastic Surgery and the associated procedures was conducted. Animal models that had cross over between specialties such as microsurgery with Neurosurgery and pinnaplasty with ear, nose, and throat surgery were included as they were deemed to be relevant to our training curriculum. A level of evidence and recommendation assessment was then given to each surgical model. Our review found animal models applicable to plastic surgery training in four major categories namely-microsurgery training, flap raising, facial surgery, and hand surgery. Twenty-four separate articles described various methods of practicing microsurgical techniques on different types of animals. Fourteen different articles each described various methods of conducting flap-based procedures which consisted of either local or perforator flap dissection. Eight articles described different models for practicing hand surgery techniques. Finally, eight articles described animal models that were used for head and neck procedures. A comprehensive summary of animal models related to plastic surgery training has been compiled. Cadaveric animal models provide a readily available introduction to many procedures and ought to be used instead of live models when feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Animal models in the research of abdominal aortic aneurysms development.

    PubMed

    Patelis, N; Moris, D; Schizas, D; Damaskos, C; Perrea, D; Bakoyiannis, C; Liakakos, T; Georgopoulos, S

    2017-12-20

    Abdominal aortic aneurysm (AAA) is a prevalent and potentially life threatening disease. Many animal models have been developed to simulate the natural history of the disease or test preclinical endovascular devices and surgical procedures. The aim of this review is to describe different methods of AAA induction in animal models and report on the effectiveness of the methods described in inducing an analogue of a human AAA. The PubMed database was searched for publications with titles containing the following terms "animal" or "animal model(s)" and keywords "research", "aneurysm(s)", "aorta", "pancreatic elastase", "Angiotensin", "AngII" "calcium chloride" or "CaCl(2)". Starting date for this search was set to 2004, since previously bibliography was already covered by the review of Daugherty and Cassis (2004). We focused on animal studies that reported a model of aneurysm development and progression. A number of different approaches of AAA induction in animal models has been developed, used and combined since the first report in the 1960's. Although specific methods are successful in AAA induction in animal models, it is necessary that these methods and their respective results are in line with the pathophysiology and the mechanisms involved in human AAA development. A researcher should know the advantages/disadvantages of each animal model and choose the appropriate model.

  18. Animal models of post-traumatic epilepsy.

    PubMed

    Ostergard, Thomas; Sweet, Jennifer; Kusyk, Dorian; Herring, Eric; Miller, Jonathan

    2016-10-15

    Post-traumatic epilepsy (PTE) is defined as the development of unprovoked seizures in a delayed fashion after traumatic brain injury (TBI). PTE lies at the intersection of two distinct fields of study, epilepsy and neurotrauma. TBI is associated with a myriad of both focal and diffuse anatomic injuries, and an ideal animal model of epilepsy after TBI must mimic the characteristics of human PTE. The three most commonly used models of TBI are lateral fluid percussion, controlled cortical injury, and weight drop. Much of what is known about PTE has resulted from use of these models. In this review, we describe the most commonly used animal models of TBI with special attention to their advantages and disadvantages with respect to their use as a model of PTE. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Recent advances in animal model experimentation in autism research.

    PubMed

    Tania, Mousumi; Khan, Md Asaduzzaman; Xia, Kun

    2014-10-01

    Autism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism. We have reviewed the publications over the last three decades, which are related to animal model study in autism. Animal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism. In this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.

  20. Cytomegalovirus Antivirals and Development of Improved Animal Models

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  1. Nonmurine animal models of food allergy.

    PubMed

    Helm, Ricki M; Ermel, Richard W; Frick, Oscar L

    2003-02-01

    Food allergy can present as immediate hypersensitivity [manifestations mediated by immunoglobulin (Ig)E], delayed-type hypersensitivity (reactions associated with specific T lymphocytes), and inflammatory reactions caused by immune complexes. For reasons of ethics and efficacy, investigations in humans to determine sensitization and allergic responses of IgE production to innocuous food proteins are not feasible. Therefore, animal models are used a) to bypass the innate tendency to develop tolerance to food proteins and induce specific IgE antibody of sufficient avidity/affinity to cause sensitization and upon reexposure to induce an allergic response, b) to predict allergenicity of novel proteins using characteristics of known food allergens, and c) to treat food allergy by using immunotherapeutic strategies to alleviate life-threatening reactions. The predominant hypothesis for IgE-mediated food allergy is that there is an adverse reaction to exogenous food proteins or food protein fragments, which escape lumen hydrolysis, and in a polarized helper T cell subset 2 (Th2) environment, immunoglobulin class switching to allergen-specific IgE is generated in the immune system of the gastrointestinal-associated lymphoid tissues. Traditionally, the immunologic characterization and toxicologic studies of small laboratory animals have provided the basis for development of animal models of food allergy; however, the natural allergic response in large animals, which closely mimic allergic diseases in humans, can also be useful as models for investigations involving food allergy.

  2. Use of Animal Models to Develop Antiaddiction Medications

    PubMed Central

    Gardner, Eliot L.

    2008-01-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric “high” produced by acute administration of addictive drugs; the dysphoric “crash” produced by acute withdrawal, drug-seeking, and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines. PMID:18803910

  3. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  4. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  5. Wildlife as valuable natural resources vs. intolerable pests: A suburban wildlife management model

    USGS Publications Warehouse

    DeStefano, S.; Deblinger, R.D.

    2005-01-01

    Management of wildlife in suburban environments involves a complex set of interactions between both human and wildlife populations. Managers need additional tools, such as models, that can help them assess the status of wildlife populations, devise and apply management programs, and convey this information to other professionals and the public. We present a model that conceptualizes how some wildlife populations can fluctuate between extremely low (rare, threatened, or endangered status) and extremely high (overabundant) numbers over time. Changes in wildlife abundance can induce changes in human perceptions, which continually redefine species as a valuable resource to be protected versus a pest to be controlled. Management programs thatincorporate a number of approaches and promote more stable populations of wildlife avoid the problems of the resource versus pest transformation, are less costly to society, and encourage more positive and less negative interactions between humans and wildlife. We presenta case example of the beaver Castor canadensis in Massachusetts to illustrate how this model functions and can be applied. ?? 2005 Springer Science + Business Media, Inc.

  6. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    PubMed

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  7. Animal Models of Diabetic Retinopathy: Summary and Comparison

    PubMed Central

    Lo, Amy C. Y.

    2013-01-01

    Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening. PMID:24286086

  8. Animal models of obsessive–compulsive disorder: utility and limitations

    PubMed Central

    Alonso, Pino; López-Solà, Clara; Real, Eva; Segalàs, Cinto; Menchón, José Manuel

    2015-01-01

    Obsessive–compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled “animal models of OCD” should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder. PMID:26346234

  9. Phenotypic characterization of the Komeda miniature rat Ishikawa, an animal model of dwarfism caused by a mutation in Prkg2.

    PubMed

    Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro

    2008-12-01

    The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BNxKMI-mri/mri)F1xKMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII.

  10. Phenotypic Characterization of the Komeda Miniature Rat Ishikawa, an Animal Model of Dwarfism Caused by a Mutation in Prkg2

    PubMed Central

    Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro

    2008-01-01

    The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, heterozygous (mri/+) animals in regard to body length, weight, and naso-occipital length of the calvarium, and the retroperitoneal fat of mri/mri rats was reduced greatly. In addition, among progeny of the (BN×KMI-mri/mri)F1×KMI-mri/mri backcross, animals with the KMI phenotype (mri/mri) were easily distinguished from those showing the wild-type phenotype (mri/+) by using growth traits such as body length and weight. Genetic analysis revealed that all of the backcrossed progeny exhibiting the KMI phenotype were homozygous for the KMI allele in the 1.2-cM region between D14Rat5 and D14Rat80 on chromosome 14, suggesting strongly that mri acts in a completely recessive manner. The KMI strain is the first and only rat model with a confirmed mutation in Prkg2 and is a valuable model for studying dwarfism and longitudinal growth traits in humans and for functional studies of cGKII. PMID:19149413

  11. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  12. Overview of the advances in environmental chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    There is an increasing environmental concern over animal manure due to the volumes produced in modern intensified animal production. However, animal manure is traditionally regarded as a valuable resource of plant nutrients. Although research on environmental impacts of animal manure and associated...

  13. A systematic review of animal models for Staphylococcus aureus osteomyelitis

    PubMed Central

    Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L.

    2015-01-01

    Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed & Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorized by animal species and are further classified by the setting of the infection. Study methods are summarized and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting. PMID:24668594

  14. Chest compressions in newborn animal models: A review.

    PubMed

    Solevåg, Anne Lee; Cheung, Po-Yin; Lie, Helene; O'Reilly, Megan; Aziz, Khalid; Nakstad, Britt; Schmölzer, Georg Marcus

    2015-11-01

    Much of the knowledge about the optimal way to perform chest compressions (CC) in newborn infants is derived from animal studies. The objective of this review was to identify studies of CC in newborn term animal models and review the evidence. We also provide an overview of the different models. MEDLINE, EMBASE and CINAHL, until September 29th 2014. Study eligibility criteria and interventions: term newborn animal models where CC was performed. Based on 419 retrieved studies from MEDLINE and 502 from EMBASE, 28 studies were included. No additional studies were identified in CINAHL. Most of the studies were performed in pigs after perinatal transition without long-term follow-up. The models differed widely in methodological aspects, which limits the possibility to compare and synthesize findings. Studies uncommonly reported the method for randomization and allocation concealment, and a limited number were blinded. Only the evidence in favour of the two-thumb encircling hands technique for performing CC, a CC to ventilation ratio of 3:1; and that air can be used for ventilation during CC; was supported by more than one study. Animal studies should be performed and reported with the same rigor as in human randomized trials. Good transitional and survival models are needed to further increase the strength of the evidence derived from animal studies of newborn chest compressions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Concepts of animal welfare in relation to positions in animal ethics.

    PubMed

    Schmidt, Kirsten

    2011-06-01

    When animal ethicists deal with welfare they seem to face a dilemma: On the one hand, they recognize the necessity of welfare concepts for their ethical approaches. On the other hand, many animal ethicists do not want to be considered reformist welfarists. Moreover, animal welfare scientists may feel pressed by moral demands for a fundamental change in our attitude towards animals. The analysis of this conflict from the perspective of animal ethics shows that animal welfare science and animal ethics highly depend on each other. Welfare concepts are indispensable in the whole field of animal ethics. Evidence for this can be found by analyzing the structure of theories of animal ethics and the different ways in which these theories employ welfare concepts. Furthermore, the background of values underneath every welfare theory is essential to pursue animal welfare science. Animal ethics can make important contributions to the clarification of underlying normative assumptions with regard to the value of the animal, with regard to ideas about what is valuable for the animal, and with regard to the actions that should follow from the results of animal welfare science.

  16. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.

  17. Animal models of GM2 gangliosidosis: utility and limitations

    PubMed Central

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  18. SEARCH: Spatially Explicit Animal Response to Composition of Habitat.

    PubMed

    Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of

  19. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  20. Animal models of arrhythmogenic right ventricular cardiomyopathy: what have we learned and where do we go? Insight for therapeutics.

    PubMed

    Padrón-Barthe, Laura; Domínguez, Fernando; Garcia-Pavia, Pablo; Lara-Pezzi, Enrique

    2017-09-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetically-determined cardiac heart muscle disorder characterized by fibro-fatty replacement of the myocardium that results in heart failure and sudden cardiac death (SCD), predominantly in young males. The disease is often caused by mutations in genes encoding proteins of the desmosomal complex, with a significant minority caused by mutations in non-desmosomal proteins. Existing treatment options are based on SCD prevention with the implantable cardioverter defibrillator, antiarrhythmic drugs, and anti-heart failure medication. Heart transplantation may also be required and there is currently no cure. Several genetically modified animal models have been developed to characterize the disease, assess its progression, and determine the influence of potential environmental factors. These models have also been very valuable for translational therapeutic approaches, to screen new treatment options that prevent and/or reverse the disease. Here, we review the available ARVC animal models reported to date, highlighting the most important pathophysiological findings and discussing the effect of treatments tested so far in this setting. We also describe gaps in our knowledge of the disease, with the goal of stimulating research and improving patient outcomes.

  1. Animal movement: Statistical models for telemetry data

    USGS Publications Warehouse

    Hooten, Mevin B.; Johnson, Devin S.; McClintock, Brett T.; Morales, Juan M.

    2017-01-01

    The study of animal movement has always been a key element in ecological science, because it is inherently linked to critical processes that scale from individuals to populations and communities to ecosystems. Rapid improvements in biotelemetry data collection and processing technology have given rise to a variety of statistical methods for characterizing animal movement. The book serves as a comprehensive reference for the types of statistical models used to study individual-based animal movement. 

  2. Animal models for periodontal regeneration and peri-implant responses.

    PubMed

    Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E

    2015-06-01

    Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Overview of large animal myocardial infarction models (review).

    PubMed

    Lukács, E; Magyari, B; Tóth, L; Petrási, Zs; Repa, I; Koller, A; Horváth, Iván

    2012-12-01

    There are several experimental models for the in vivo investigation of myocardial infarction (MI) in small (mouse, rat) and large animals (dog, pig, sheep and baboons). The application of large animal models raises ethical concerns, the design of experiments needs longer follow-up times, requiring proper breeding and housing conditions, therefore resulting in higher cost, than in vitro or small animal studies. On the other hand, the relevance of large animal models is very important, since they mostly resemble to human physiological and pathophysiological processes. The first main difference among MI models is the method of induction (open or closed chest, e.g. surgical or catheter based); the second main difference is the presence or absence of reperfusion. The former (i.e. reperfused MI) allows the investigation of reperfusion injury and new catheter based techniques during percutaneous coronary interventions, while the latter (i.e. nonreperfused MI) serves as a traditional coronary occlusion model, to test the effects of new pharmacological agents and biological therapies, as cell therapy. The reperfused and nonreperfused myocardial infarction has different outcomes, regarding left ventricular function, remodelling, subsequent heart failure, aneurysm formation and mortality. Our aim was to review the literature and report our findings regarding experimental MI models, regarding the differences among species, methods, reproducibility and interpretation.

  4. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  5. Comparative biology of cystic fibrosis animal models.

    PubMed

    Fisher, John T; Zhang, Yulong; Engelhardt, John F

    2011-01-01

    Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.

  6. How animal models inform child and adolescent psychiatry.

    PubMed

    Stevens, Hanna E; Vaccarino, Flora M

    2015-05-01

    Every available approach should be used to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of nonhuman animals and the biology and behavior that they share with humans is an approach that must be used to advance the clinical work of child psychiatry. We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology, but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. We present examples of how animal systems are used to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Animal models have clear advantages and disadvantages that must be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. How Animal Models Inform Child and Adolescent Psychiatry

    PubMed Central

    Stevens, Hanna E.; Vaccarino, Flora M.

    2015-01-01

    Objective Every available approach should be utilized to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of non-human animals and the biology and behavior they share with humans is an approach that must be used to advance the clinical work of child psychiatry. Method We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. Results We present examples of how animal systems are utilized to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Conclusion Animal models have clear advantages and disadvantages that must both be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. PMID:25901771

  8. Animal models of viral hemorrhagic fever.

    PubMed

    Smith, Darci R; Holbrook, Michael R; Gowen, Brian B

    2014-12-01

    The term "viral hemorrhagic fever" (VHF) designates a syndrome of acute febrile illness, increased vascular permeability and coagulation defects which often progresses to bleeding and shock and may be fatal in a significant percentage of cases. The causative agents are some 20 different RNA viruses in the families Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae, which are maintained in a variety of animal species and are transferred to humans through direct or indirect contact or by an arthropod vector. Except for dengue, which is transmitted among humans by mosquitoes, the geographic distribution of each type of VHF is determined by the range of its animal reservoir. Treatments are available for Argentine HF and Lassa fever, but no approved countermeasures have been developed against other types of VHF. The development of effective interventions is hindered by the sporadic nature of most infections and their occurrence in geographic regions with limited medical resources. Laboratory animal models that faithfully reproduce human disease are therefore essential for the evaluation of potential vaccines and therapeutics. The goal of this review is to highlight the current status of animal models that can be used to study the pathogenesis of VHF and test new countermeasures. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Large Mammalian Animal Models of Heart Disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians. PMID:29367573

  10. Animal Models of Cancer-Associated Hypercalcemia

    PubMed Central

    Kohart, Nicole A.; Elshafae, Said M.; Breitbach, Justin T.; Rosol, Thomas J.

    2017-01-01

    Cancer-associated hypercalcemia (CAH) is a frequently-occurring paraneoplastic syndrome that contributes to substantial patient morbidity and occurs in both humans and animals. Patients with CAH are often characterized by markedly elevated serum calcium concentrations that result in a range of clinical symptoms involving the nervous, gastrointestinal and urinary systems. CAH is caused by two principle mechanisms; humorally-mediated and/or through local osteolytic bone metastasis resulting in excessive calcium release from resorbed bone. Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and is due to the production and release of tumor-associated cytokines and humoral factors, such as parathyroid hormone-related protein (PTHrP), that act at distant sites to increase serum calcium concentrations. Local osteolytic hypercalcemia (LOH) occurs when primary or metastatic bone tumors act locally by releasing factors that stimulate osteoclast activity and bone resorption. LOH is a less frequent cause of CAH and in some cases can induce hypercalcemia in concert with HHM. Rarely, ectopic production of parathyroid hormone has been described. PTHrP-mediated hypercalcemia is the most common mechanism of CAH in human and canine malignancies and is recognized in other domestic species. Spontaneous and experimentally-induced animal models have been developed to study the mechanisms of CAH. These models have been essential for the evaluation of novel approaches and adjuvant therapies to manage CAH. This review will highlight the comparative aspects of CAH in humans and animals with a discussion of the available animal models used to study the pathogenesis of this important clinical syndrome. PMID:29056680

  11. Principles for developing animal models of military PTSD

    PubMed Central

    Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics) in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely) in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies. PMID:25206946

  12. Animal models for HIV/AIDS research

    PubMed Central

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  13. Translational value of animal models of kidney failure.

    PubMed

    Ortiz, Alberto; Sanchez-Niño, Maria D; Izquierdo, Maria C; Martin-Cleary, Catalina; Garcia-Bermejo, Laura; Moreno, Juan A; Ruiz-Ortega, Marta; Draibe, Juliana; Cruzado, Josep M; Garcia-Gonzalez, Miguel A; Lopez-Novoa, Jose M; Soler, Maria J; Sanz, Ana B

    2015-07-15

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Optogenetics in animal model of alcohol addiction

    NASA Astrophysics Data System (ADS)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  15. Animal Models of Diverticulosis: Review and Recommendations.

    PubMed

    Patel, Bhavesh; Guo, Xiaomei; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2018-06-01

    Diverticulosis is a structural alteration of the colon tissue characterized by the development of pouch-like structures called diverticula. It afflicts a significant portion of the population in Western countries, with a higher prevalence among the elderly. Diverticulosis is believed to be the result of a synergetic interaction between inherent tissue weakness, diet, colonic microstructure, motility, and genetic factors. A validated etiology has, however, not yet been established. Non-surgical treatment is currently lacking due to this poor understanding, and surgical colon resection is the only long-term solution following recurrent complications. With rising prevalence, the burden of diverticulosis on patients and hospital resources has increased over the past several years. More efficient and less invasive treatment approaches are, thus, urgently needed. Animal models of diverticulosis are crucial to enable a preclinical assessment and evaluation of such novel approaches. This review discusses the animal models of diverticulosis that have been proposed to date. The current models require either a significant amount of time to develop diverticulosis, present a relatively low success rate, or seriously deteriorate the animals' systemic health. Recommendations are thus provided to address these pitfalls through the selection of a suitable animal and the combination of multiple risk factors for diverticulosis.

  16. Cumulative permanent environmental effects for repeated records animal models.

    PubMed

    Schaeffer, L R

    2011-04-01

    The assumption of a single permanent environmental (PE) effect contributing to every record made by an animal is questioned. An alternative model where new PE effects accumulate with each record made by an animal is proposed. An example is used to illustrate the differences between the traditional model and the proposed model. © 2011 Blackwell Verlag GmbH.

  17. Animal models of the cancer anorexia-cachexia syndrome.

    PubMed

    Bennani-Baiti, Nabila; Walsh, Declan

    2011-09-01

    Cancer cachexia, a complex wasting syndrome, is common in palliative medicine. Animal models expand our understanding of its mechanisms. A review of cancer cachexia and anorexia animal models will help investigators make an informed choice of the study model. Cancer-anorexia cachexia animal models are numerous. No one is ideal. The choice should depend on the research question. To investigate cancer-anorexia cachexia independent of pro-inflammatory cytokine effects, the MAC16 ADK and XK1 are useful. MAC16 ADK helps study the host's tumor metabolic effects, independent of any anorexia or inflammation. XK1 is both anorectic and cachectic, but data about it is limited. All other models induce a host inflammatory response. The Walker 256 ADK and MCG 101 are best avoided due to excessive tumor growth. Since individual models do not address all aspects of the syndrome, use of a combination seems wise. Suggested combinations: MAC16-ADK (non-inflammatory and non-anorectic) with YAH-130 (inflammatory, anorectic, and cachectic), Lewis lung carcinoma (slow onset anorexia) or prostate adenocarcinoma (inflammatory, anorectic but not cachectic) with YAH-130.

  18. Pathophysiology and animal modeling of underactive bladder.

    PubMed

    Tyagi, Pradeep; Smith, Phillip P; Kuchel, George A; de Groat, William C; Birder, Lori A; Chermansky, Christopher J; Adam, Rosalyn M; Tse, Vincent; Chancellor, Michael B; Yoshimura, Naoki

    2014-09-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB.

  19. Pathophysiology and animal modeling of underactive bladder

    PubMed Central

    Tyagi, Pradeep; Smith, Phillip P.; Kuchel, George A.; de Groat, William C.; Birder, Lori A.; Chermansky, Christopher J.; Adam, Rosalyn M.; Tse, Vincent; Chancellor, Michael B.; Yoshimura, Naoki

    2015-01-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB. PMID:25238890

  20. Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis.

    PubMed

    Phillips, W D; Christadoss, P; Losen, M; Punga, A R; Shigemoto, K; Verschuuren, J; Vincent, A

    2015-08-01

    Muscle-specific tyrosine kinase (MuSK) autoantibodies are the hallmark of a form of myasthenia gravis (MG) that can challenge the neurologist and the experimentalist. The clinical disease can be difficult to treat effectively. MuSK autoantibodies affect the neuromuscular junction in several ways. When added to muscle cells in culture, MuSK antibodies disperse acetylcholine receptor clusters. Experimental animals actively immunized with MuSK develop MuSK autoantibodies and muscle weakness. Weakness is associated with reduced postsynaptic acetylcholine receptor numbers, reduced amplitudes of miniature endplate potentials and endplate potentials, and failure of neuromuscular transmission. Similar impairments have been found in mice injected with IgG from MG patients positive for MuSK autoantibody (MuSK-MG). The active and passive models have begun to reveal the mechanisms by which MuSK antibodies disrupt synaptic function at the neuromuscular junction, and should be valuable in developing therapies for MuSK-MG. However, translation into new and improved treatments for patients requires procedures that are not too cumbersome but suitable for examining different aspects of MuSK function and the effects of potential therapies. Study design, conduct and analysis should be carefully considered and transparently reported. Here we review what has been learnt from animal and culture models of MuSK-MG, and offer guidelines for experimental design and conduct of studies, including sample size determination, randomization, outcome parameters and precautions for objective data analysis. These principles may also be relevant to the increasing number of other antibody-mediated diseases that are now recognized. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Animal Models for the Study of Female Sexual Dysfunction

    PubMed Central

    Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula

    2017-01-01

    Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain

  2. [Animal models of autoimmune prostatitis and their evaluation criteria].

    PubMed

    Shen, Jia-ming; Lu, Jin-chun; Yao, Bing

    2016-03-01

    Chronic prostatitis is a highly prevalent disease of unclear etiology. Researches show that autoimmune reaction is one cause of the problem. An effective animal model may help a lot to understand the pathogenesis and find proper diagnostic and therapeutic strategies of the disease. Currently used autoimmune prostatitis-related animal models include those of age-dependent spontaneous prostatitis, autoimmune regulator-dependent spontaneous prostatitis, self antigen-induced prostatitis, and steroid-induced prostatitis. Whether an animal model of autoimmune prostatitis is successfully established can be evaluated mainly from the five aspects: histology, morphology, specific antigens, inflammatory factors, and pain intensity.

  3. Translational Animal Models of Atopic Dermatitis for Preclinical Studies



    PubMed Central

    Martel, Britta C.; Lovato, Paola; Bäumer, Wolfgang; Olivry, Thierry

    2017-01-01

    There is a medical need to develop new treatments for patients suffering from atopic dermatitis (AD). To improve the discovery and testing of novel treatments, relevant animal models for AD are needed. Generally, these animal models mimic different aspects of the pathophysiology of human AD, such as skin barrier defects and Th2 immune bias with additional Th1 and Th22, and in some populations Th17, activation. However, the pathomechanistic characterization and pharmacological validation of these animal models are generally incomplete. In this paper, we review animal models of AD in the context of preclinical use and their possible translation to the human disease. Most of these models use mice, but we will also critically evaluate dog models of AD, as increasing information on disease mechanism show their likely relevance for the human disease. PMID:28955179

  4. Animal Models of Tick-Borne Hemorrhagic Fever Viruses

    PubMed Central

    Zivcec, Marko; Safronetz, David; Feldmann, Heinz

    2013-01-01

    Tick-borne hemorrhagic fever viruses (TBHFV) are detected throughout the African and Eurasian continents and are an emerging or re-emerging threat to many nations. Due to the largely sporadic incidences of these severe diseases, information on human cases and research activities in general have been limited. In the past decade, however, novel TBHFVs have emerged and areas of endemicity have expanded. Therefore, the development of countermeasures is of utmost importance in combating TBHFV as elimination of vectors and interrupting enzootic cycles is all but impossible and ecologically questionable. As in vivo models are the only way to test efficacy and safety of countermeasures, understanding of the available animal models and the development and refinement of animal models is critical in negating the detrimental impact of TBHFVs on public and animal health. PMID:25437041

  5. Animal Models of Zika Virus

    PubMed Central

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  6. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis

    PubMed Central

    Tashiro, Jun; Rubio, Gustavo A.; Limper, Andrew H.; Williams, Kurt; Elliot, Sharon J.; Ninou, Ioanna; Aidinis, Vassilis; Tzouvelekis, Argyrios; Glassberg, Marilyn K.

    2017-01-01

    Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans. PMID:28804709

  7. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    EPA Science Inventory

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  8. Large Animal Models for Batten Disease: A Review

    PubMed Central

    Weber, Krystal; Pearce, David A.

    2014-01-01

    The neuronal ceroid lipofuscinoses, collectively referred to as Batten disease, make up a group of inherited childhood disorders that result in blindness, motor and cognitive regression, brain atrophy, and seizures, ultimately leading to premature death. So far more than 10 genes have been implicated in different forms of the neuronal ceroid lipofuscinoses. Most related research has involved mouse models, but several naturally occurring large animal models have recently been discovered. In this review, we discuss the different large animal models and their significance in Batten disease research. PMID:24014507

  9. Animating climate model data

    NASA Astrophysics Data System (ADS)

    DaPonte, John S.; Sadowski, Thomas; Thomas, Paul

    2006-05-01

    This paper describes a collaborative project conducted by the Computer Science Department at Southern Connecticut State University and NASA's Goddard Institute for Space Science (GISS). Animations of output from a climate simulation math model used at GISS to predict rainfall and circulation have been produced for West Africa from June to September 2002. These early results have assisted scientists at GISS in evaluating the accuracy of the RM3 climate model when compared to similar results obtained from satellite imagery. The results presented below will be refined to better meet the needs of GISS scientists and will be expanded to cover other geographic regions for a variety of time frames.

  10. Immunogenicity of therapeutic proteins: the use of animal models.

    PubMed

    Brinks, Vera; Jiskoot, Wim; Schellekens, Huub

    2011-10-01

    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far.

  11. Engineering Large Animal Species to Model Human Diseases.

    PubMed

    Rogers, Christopher S

    2016-07-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  12. The development of Wilms tumor: from WT1 and microRNA to animal models.

    PubMed

    Tian, Fang; Yourek, Gregory; Shi, Xiaolei; Yang, Yili

    2014-08-01

    Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Experimental animal modelling for TB vaccine development.

    PubMed

    Cardona, Pere-Joan; Williams, Ann

    2017-03-01

    Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of "in silico" and "ex vivo" models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals. Copyright © 2017. Published by Elsevier Ltd.

  14. Airway disease phenotypes in animal models of cystic fibrosis.

    PubMed

    McCarron, Alexandra; Donnelley, Martin; Parsons, David

    2018-04-02

    In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.

  15. Animal models of female pelvic organ prolapse: lessons learned

    PubMed Central

    Couri, Bruna M; Lenis, Andrew T; Borazjani, Ali; Paraiso, Marie Fidela R; Damaser, Margot S

    2012-01-01

    Pelvic organ prolapse is a vaginal protrusion of female pelvic organs. It has high prevalence worldwide and represents a great burden to the economy. The pathophysiology of pelvic organ prolapse is multifactorial and includes genetic predisposition, aberrant connective tissue, obesity, advancing age, vaginal delivery and other risk factors. Owing to the long course prior to patients becoming symptomatic and ethical questions surrounding human studies, animal models are necessary and useful. These models can mimic different human characteristics – histological, anatomical or hormonal, but none present all of the characteristics at the same time. Major animal models include knockout mice, rats, sheep, rabbits and nonhuman primates. In this article we discuss different animal models and their utility for investigating the natural progression of pelvic organ prolapse pathophysiology and novel treatment approaches. PMID:22707980

  16. Reflected stochastic differential equation models for constrained animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  17. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  18. Preclinical Animal Models for Temporomandibular Joint Tissue Engineering.

    PubMed

    Almarza, Alejandro J; Brown, Bryan N; Arzi, Boaz; Ângelo, David Faustino; Chung, William; Badylak, Stephen F; Detamore, Michael

    2018-06-01

    There is a paucity of in vivo studies that investigate the safety and efficacy of temporomandibular joint (TMJ) tissue regeneration approaches, in part due to the lack of established animal models. Review of disease models for study of TMJ is presented herein with an attempt to identify relevant preclinical animal models for TMJ tissue engineering, with emphasis on the disc and condyle. Although degenerative joint disease models have been mainly performed on mice, rats, and rabbits, preclinical regeneration approaches must employ larger animal species. There remains controversy regarding the preferred choice of larger animal models between the farm pig, minipig, goat, sheep, and dog. The advantages of the pig and minipig include their well characterized anatomy, physiology, and tissue properties. The advantages of the sheep and goat are their easier surgical access, low cost per animal, and its high tissue availability. The advantage of the dog is that the joint space is confined, so migration of interpositional devices should be less likely. However, each species has limitations as well. For example, the farm pig has continuous growth until about 18 months of age, and difficult surgical access due to the zygomatic arch covering the lateral aspect of joint. The minipig is not widely available and somewhat costly. The sheep and the goat are herbivores, and their TMJs mainly function in translation. The dog is a carnivore, and the TMJ is a hinge joint that can only rotate. Although no species provides the gold standard for all preclinical TMJ tissue engineering approaches, the goat and sheep have emerged as the leading options, with the minipig as the choice when cost is less of a limitation; and with the dog and farm pig serving as acceptable alternatives. Finally, naturally occurring TMJ disorders in domestic species may be harnessed on a preclinical trial basis as a clinically relevant platform for translation.

  19. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  20. Behavioral Models of Tinnitus and Hyperacusis in Animals

    PubMed Central

    Hayes, Sarah H.; Radziwon, Kelly E.; Stolzberg, Daniel J.; Salvi, Richard J.

    2014-01-01

    The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis. PMID:25278931

  1. Neuroteratology and Animal Modeling of Brain Disorders.

    PubMed

    Archer, Trevor; Kostrzewa, Richard M

    Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.

  2. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  3. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  4. High-throughput screening and small animal models, where are we?

    PubMed Central

    Giacomotto, Jean; Ségalat, Laurent

    2010-01-01

    Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day. PMID:20423335

  5. Animal models of pancreatitis: Can it be translated to human pain study?

    PubMed Central

    Zhao, Jing-Bo; Liao, Dong-Hua; Nissen, Thomas Dahl

    2013-01-01

    Chronic pancreatitis affects many individuals around the world, and the study of the underlying mechanisms leading to better treatment possibilities are important tasks. Therefore, animal models are needed to illustrate the basic study of pancreatitis. Recently, animal models of acute and chronic pancreatitis have been thoroughly reviewed, but few reviews address the important aspect on the translation of animal studies to human studies. It is well known that pancreatitis is associated with epigastric pain, but the understanding regarding to mechanisms and appropriate treatment of this pain is still unclear. Using animal models to study pancreatitis associated visceral pain is difficult, however, these types of models are a unique way to reveal the mechanisms behind pancreatitis associated visceral pain. In this review, the animal models of acute, chronic and un-common pancreatitis are briefly outlined and animal models related to pancreatitis associated visceral pain are also addressed. PMID:24259952

  6. Animal Models of Substance Abuse and Addiction: Implications for Science, Animal Welfare, and Society

    PubMed Central

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-01-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models. PMID:20579432

  7. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    PubMed

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  8. Advances in animal models of drug addiction.

    PubMed

    Heidbreder, Christian

    2011-01-01

    Drug addiction is a syndrome of impaired response inhibition and salience attribution, which involves a complex neurocircuitry underlying drug reinforcement, drug craving, and compulsive drug-seeking and drug-taking behaviors despite adverse consequences. The concept of disease stages with transitions from acute rewarding effects to early- and end-stage addiction has had an important impact on the design of nonclinical animal models. This chapter reviews the main advances in nonclinical paradigms that aim to at model (1) positive and negative reinforcing effects of addictive drugs; (2) relapse to drug-seeking behavior; (3) reconsolidation of drug cue memories, and (4) compulsive/impulsive drug intake. In addition, recent small animal neuroimaging studies and invertebrate models will be briefly discussed (see also Bifone and Gozzi, Animal models of ADHD, 2011). Continuous improvement in modeling drug intake, craving, withdrawal symptoms, relapse, and comorbid psychiatric associations is a necessary step to better understand the etiology of the disease and to ultimately foster the discovery, validation and optimization of new efficacious pharmacotherapeutic approaches. The modeling of specific subprocesses or constructs that address clinically defined criteria will ultimately increase our understanding of the disease as a whole. Future research will have to address the questions of whether some of these constructs can be reliably used as outcome measures to assess the effects of a treatment in clinical settings, whether changes in those measures can be a target of therapeutic efforts, and whether they relate to biological markers of traits such as impulsivity, which contribute to increased drug-seeking and may predict binge-like patterns of drug intake.

  9. Sleep and Obesity: A focus on animal models

    PubMed Central

    Mavanji, Vijayakumar; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2012-01-01

    The rapid rise in obesity prevalence in the modern world parallels a significant reduction in restorative sleep (Agras et al., 2004; Dixon et al., 2007; Dixon et al., 2001; Gangwisch and Heymsfield, 2004; Gupta et al., 2002; Sekine et al., 2002; Vioque et al., 2000; Wolk et al., 2003). Reduced sleep time and quality increases the risk for obesity, but the underlying mechanisms remain unclear (Gangwisch et al., 2005; Hicks et al., 1986; Imaki et al., 2002; Jennings et al., 2007; Moreno et al., 2006). A majority of the theories linking human sleep disturbances and obesity rely on self-reported sleep. However, studies with objective measurements of sleep/wake parameters suggest a U-shaped relationship between sleep and obesity. Studies in animal models are needed to improve our understanding of the association between sleep disturbances and obesity. Genetic and experimenter-induced models mimicking characteristics of human obesity are now available and these animal models will be useful in understanding whether sleep disturbances determine propensity for obesity, or result from obesity. These models exhibit weight gain profiles consistently different from control animals. Thus a careful evaluation of animal models will provide insight into the relationship between sleep disturbances and obesity in humans. In this review we first briefly consider the fundamentals of sleep and key sleep disturbances, such as sleep fragmentation and excessive daytime sleepiness (EDS), observed in obese individuals. Then we consider sleep deprivation studies and the role of circadian alterations in obesity. We describe sleep/wake changes in various rodent models of obesity and obesity resistance. Finally, we discuss possible mechanisms linking sleep disturbances with obesity. PMID:22266350

  10. Simple animal models for amyotrophic lateral sclerosis drug discovery.

    PubMed

    Patten, Shunmoogum A; Parker, J Alex; Wen, Xiao-Yan; Drapeau, Pierre

    2016-08-01

    Simple animal models have enabled great progress in uncovering the disease mechanisms of amyotrophic lateral sclerosis (ALS) and are helping in the selection of therapeutic compounds through chemical genetic approaches. Within this article, the authors provide a concise overview of simple model organisms, C. elegans, Drosophila and zebrafish, which have been employed to study ALS and discuss their value to ALS drug discovery. In particular, the authors focus on innovative chemical screens that have established simple organisms as important models for ALS drug discovery. There are several advantages of using simple animal model organisms to accelerate drug discovery for ALS. It is the authors' particular belief that the amenability of simple animal models to various genetic manipulations, the availability of a wide range of transgenic strains for labelling motoneurons and other cell types, combined with live imaging and chemical screens should allow for new detailed studies elucidating early pathological processes in ALS and subsequent drug and target discovery.

  11. Animal models for Ebola and Marburg virus infections

    PubMed Central

    Nakayama, Eri; Saijo, Masayuki

    2013-01-01

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. PMID:24046765

  12. Animal models for Ebola and Marburg virus infections.

    PubMed

    Nakayama, Eri; Saijo, Masayuki

    2013-09-05

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.

  13. Field Trips as Valuable Learning Experiences in Geography Courses

    ERIC Educational Resources Information Center

    Krakowka, Amy Richmond

    2012-01-01

    Field trips have been acknowledged as valuable learning experiences in geography. This article uses Kolb's (1984) experiential learning model to discuss how students learn and how field trips can help enhance learning. Using Kolb's experiential learning theory as a guide in the design of field trips helps ensure that field trips contribute to…

  14. The Nuremberg Code subverts human health and safety by requiring animal modeling

    PubMed Central

    2012-01-01

    Background The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. Discussion We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. Summary We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented. PMID:22769234

  15. The Nuremberg Code subverts human health and safety by requiring animal modeling.

    PubMed

    Greek, Ray; Pippus, Annalea; Hansen, Lawrence A

    2012-07-08

    The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented.

  16. A novel animal model for skin flap prelamination with biomaterials

    NASA Astrophysics Data System (ADS)

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-09-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible.

  17. Are animal models predictive for human postmortem muscle protein degradation?

    PubMed

    Ehrenfellner, Bianca; Zissler, Angela; Steinbacher, Peter; Monticelli, Fabio C; Pittner, Stefan

    2017-11-01

    A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed. It is however necessary to improve the reliability and accuracy, especially by analysis of possible influencing factors on protein degradation. This is ideally investigated on standardized animal models that, however, require legitimization by a comparison of human and animal tissue, and in this specific case of protein degradation profiles. Only if protein degradation events occur in comparable fashion within different species, respective findings can sufficiently be transferred from the animal model to application in humans. Therefor samples from two frequently used animal models (mouse and pig), as well as forensic cases with representative protein profiles of highly differing PMIs were analyzed. Despite physical and physiological differences between species, western blot analysis revealed similar patterns in most of the investigated proteins. Even most degradation events occurred in comparable fashion. In some other aspects, however, human and animal profiles depicted distinct differences. The results of this experimental series clearly indicate the huge importance of comparative studies, whenever animal models are considered. Although animal models could be shown to reflect the basic principles of protein degradation processes in humans, we also gained insight in the difficulties and limitations of the applicability of the developed methodology in different mammalian species regarding protein specificity and methodic functionality.

  18. [RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].

    PubMed

    Yu, Kaifu; Tan, Hongbo; Xu, Yongqing

    2015-12-01

    To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.

  19. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  20. ANTI-ULCEROGENIC EFFICACY AND MECHANISMS OF EDIBLE AND NATURAL INGREDIENTS IN NSAID-INDUCED ANIMAL MODELS.

    PubMed

    Bi, Weiping; Hu, Lizhi; Man, Mao-Qiang

    2017-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of the most commonly used medicines and proven to be effective for certain disorders. Some people use NSAIDs on daily basis for preventive purpose. But a variety of severe side effects can be induced by NSAIDs. Studies have shown that edible natural ingredients exhibit preventive benefit of gastric ulcer. This paper reviews the efficacy and safety of edible natural ingredients in preventing the development of gastric ulcer induced by NSAIDs in animal models. A systematic literature search was conducted on PubMed, using the terms "herbal medicines" and "gastric ulcer", "herbal medicines" and "peptic ulcer", "food" and "peptic ulcer", "food" and "gastric ulcer", "natural ingredient" and "peptic ulcer", "natural ingredient" and "gastric ulcer", "alternative medicine" and "peptic ulcer", "alternative medicine" and "gastric ulcer", "complementary medicine" and "peptic ulcer", "complementary medicine" and "gastric ulcer" in papers published in English between January 1, 1960 and January 31, 2016, resulting in a total of 6146 articles containing these terms. After exclusion of studies not related prevention, not in NSAID model or using non-edible natural ingredients, 54 articles were included in this review. Numerous studies have demonstrated that edible natural ingredients exhibit antiulcerogenic benefit in NSAID-induced animal models. The mechanisms by which edible, ingredient-induced anti-ulcerogenic effects include stimulation of mucous cell proliferation, antioxidation, inhibition of gastric acid secretion, as well as inhibition of H (+), K (+)- ATPase activities. Utilization of edible, natural ingredients could be a safe, valuable alternative to prevent the development of NSAID-induced gastric ulcer, particularly for the subjects who are long-term users of NSAIDs.

  1. Towards an Understanding of Physiological Body Mass Regulation: Seasonal Animal Models.

    PubMed

    Mercer, J G; Adam, C L; Morgan, P J

    2000-01-01

    This review is based around a number of interlinked hypotheses that can be summarised as follows: (i) mammalian body mass is regulated, (ii) the mechanisms that effect this regulation are common to all mammalian species, including humans, (iii) the neurochemical substrates involved in long term body mass regulation and in determining the level of body mass that will be defended may not be the same as those involved in short term energy homeostasis, or body mass defence, or may be differentially engaged, and (iv) "appropriate" body mass is encoded somewhere within the mammalian brain and acts as a comparator to influence both nutritional and reproductive physiology. These issues are of direct relevance to the epidemic of obesity in the Westernised human population and the poor success rate of conventional weight loss strategies. It is our contention that seasonal rodent models, and the Siberian hamster in particular, represent extremely valuable tools for the study of the mechanistic basis of body mass regulation. The Siberian hamster model is often perceived as an unusual mammalian variant that has evolved an almost counter-intuitive strategy for surviving periods of anticipated seasonal food shortage. However, there is compelling evidence that these animals are able to adjust their body mass continually and progressively according to their photoperiodic history, i.e. a seasonally-appropriate body mass. These adjustments to appropriate body mass are memorised even after the animals have been driven away from their normal body mass trajectory by imposed food restriction. Thus, photoperiod, acting through the pineal hormone, melatonin, is able to reset the desired body mass for a given time in the seasonal cycle. Importantly, daylength provides a tool to manipulate the body mass control system in an entirely physiological and stress-free manner. While resetting of body mass by photoperiod represents a level of control apparently confined to seasonal mammals, it has

  2. Animal models used for testing hydrogels in cartilage regeneration.

    PubMed

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Animal models of ischemic stroke and their application in clinical research.

    PubMed

    Fluri, Felix; Schuhmann, Michael K; Kleinschnitz, Christoph

    2015-01-01

    This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models.

  4. Animal models of ischemic stroke and their application in clinical research

    PubMed Central

    Fluri, Felix; Schuhmann, Michael K; Kleinschnitz, Christoph

    2015-01-01

    This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models. PMID:26170628

  5. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    PubMed

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. An overview of animal models of pain: disease models and outcome measures

    PubMed Central

    Gregory, N; Harris, AL; Robinson, CR; Dougherty, PM; Fuchs, PN; Sluka, KA

    2013-01-01

    Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience including reflexive hyperalgesia measures, sensory and affective dimensions of pain and impact of pain on function and quality of life. In this review we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes, as well as the main behavioral tests for assessing pain in each model. PMID:24035349

  7. [Application of animal models in gingival retraction experimental curriculum].

    PubMed

    Cai, He; Yang, Shu-ying; Zeng, Yong-xiang; Qin, Han; Hu, Shan-shan; Wang, Jian

    2016-02-01

    To introduce a teaching method for gingival retraction, and evaluate its efficacy for implementation into experimental curricula. First, two kinds of animal models using pigs and cows (below 6 months of age) were established. Twenty-two experienced prosthodontists were then asked to apply gingival retraction on each animal model and evaluate the biofidelity of the 2 models' dento-gingival environment. The data was analyzed with SPSS19.0 software package for paired t test.Then, eighty pre-internship students were randomly divided into 2 groups. Besides the traditional teaching (lecture-based teaching), the experimental group (group A) also had access to skill training (using animal models to practice gingival retraction), while the control group (group B) only used the traditional teaching modality. All students' performance in gingival retraction and impression taking were evaluated in their internship. The data was analyzed with SPSS19.0 software package for Chi-square test. Both pig and cow's dento-gingival environment were similar to that of human being, and there was no significant difference between the two models'biofidelities (P>0.05). In addition, both the effect of gingival retraction and the quality of impression in group A were significantly better than those in group B (P<0.05). Compared with the traditional strategy,practising gingival retraction on animal models can offer greater opportunities for skill development,and be implemented for a wider range of applications.

  8. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.

    PubMed

    Uzal, Francisco A; McClane, Bruce A; Cheung, Jackie K; Theoret, James; Garcia, Jorge P; Moore, Robert J; Rood, Julian I

    2015-08-31

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections

    PubMed Central

    Uzal, Francisco A.; McClane, Bruce A.; Cheung, Jackie K.; Theoret, James; Garcia, Jorge P.; Moore, Robert J.; Rood, Julian I.

    2016-01-01

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. PMID:25770894

  10. Towards an animal model of food addiction.

    PubMed

    de Jong, Johannes W; Vanderschuren, Louk J M J; Adan, Roger A H

    2012-01-01

    The dramatically increasing prevalence of obesity, associated with potentially life-threatening health problems, including cardiovascular diseases and type II diabetes, poses an enormous public health problem. It has been proposed that the obesity epidemic can be explained by the concept of 'food addiction'. In this review we focus on possible similarities between binge eating disorder (BED), which is highly prevalent in the obese population, and drug addiction. Indeed, both behavioral and neural similarities between addiction and BED have been demonstrated. Behavioral similarities are reflected in the overlap in DSM-IV criteria for drug addiction with the (suggested) criteria for BED and by food addiction-like behavior in animals after prolonged intermittent access to palatable food. Neural similarities include the overlap in brain regions involved in food and drug craving. Decreased dopamine D2 receptor availability in the striatum has been found in animal models of binge eating, after cocaine self-administration in animals as well as in drug addiction and obesity in humans. To further explore the neurobiological basis of food addiction, it is essential to have an animal model to test the addictive potential of palatable food. A recently developed animal model for drug addiction involves three behavioral characteristics that are based on the DSM-IV criteria: i) extremely high motivation to obtain the drug, ii) difficulty in limiting drug seeking even in periods of explicit non-availability, iii) continuation of drug-seeking despite negative consequences. Indeed, it has been shown that a subgroup of rats, after prolonged cocaine self-administration, scores positive on these three criteria. If food possesses addictive properties, then food-addicted rats should also meet these criteria while searching for and consuming food. In this review we discuss evidence from literature regarding food addiction-like behavior. We also suggest future experiments that could

  11. Animal model for hepatitis C virus infection.

    PubMed

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2015-01-01

    Hepatitis C virus (HCV) infects more than 170 million people in the world and chronic HCV infection develops into cirrhosis and hepatocellular carcinoma (HCC). Recently, the effective compounds have been approved for HCV treatment, the protease inhibitor and polymerase inhibitor (direct acting antivirals; DAA). DAA-based therapy enabled to cure from HCV infection. However, development of new drug and vaccine is still required because of the generation of HCV escape mutants from DAA, development of HCC after treatment of DAA, and the high cost of DAA. In order to develop new anti-HCV drug and vaccine, animal infection model of HCV is essential. In this manuscript, we would like to introduce the history and the current status of the development of HCV animal infection model.

  12. Animal models of contraception: utility and limitations

    PubMed Central

    Liechty, Emma R; Bergin, Ingrid L; Bell, Jason D

    2015-01-01

    Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic considerations impacting preclinical contraceptive testing, including efficacy testing, mechanistic studies, device design, and modeling off-target effects. Emphasis is placed on the use of nonhuman primate models in contraceptive device development. PMID:29386922

  13. The Animal Genetic Resource Information Network (AnimalGRIN) Database: A Database Design & Implementation Case

    ERIC Educational Resources Information Center

    Irwin, Gretchen; Wessel, Lark; Blackman, Harvey

    2012-01-01

    This case describes a database redesign project for the United States Department of Agriculture's National Animal Germplasm Program (NAGP). The case provides a valuable context for teaching and practicing database analysis, design, and implementation skills, and can be used as the basis for a semester-long team project. The case demonstrates the…

  14. The aquatic animals' transcriptome resource for comparative functional analysis.

    PubMed

    Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da

    2018-05-09

    Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .

  15. Animal models for bone tissue engineering and modelling disease

    PubMed Central

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  16. Simple models for studying complex spatiotemporal patterns of animal behavior

    NASA Astrophysics Data System (ADS)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  17. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  18. Modelling gait transition in two-legged animals

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.; Santos, Alexandra P.

    2011-12-01

    The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.

  19. Dystrophin-deficient large animal models: translational research and exon skipping

    PubMed Central

    Yu, Xinran; Bao, Bo; Echigoya, Yusuke; Yokota, Toshifumi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models. PMID:26396664

  20. Animal models of hospital-acquired pneumonia: current practices and future perspectives

    PubMed Central

    Bielen, Kenny; ’S Jongers, Bart; Malhotra-Kumar, Surbhi; Jorens, Philippe G.; Goossens, Herman

    2017-01-01

    Lower respiratory tract infections are amongst the leading causes of mortality and morbidity worldwide. Especially in hospital settings and more particularly in critically ill ventilated patients, nosocomial pneumonia is one of the most serious infectious complications frequently caused by opportunistic pathogens. Pseudomonas aeruginosa is one of the most important causes of ventilator-associated pneumonia as well as the major cause of chronic pneumonia in cystic fibrosis patients. Animal models of pneumonia allow us to investigate distinct types of pneumonia at various disease stages, studies that are not possible in patients. Different animal models of pneumonia such as one-hit acute pneumonia models, ventilator-associated pneumonia models and biofilm pneumonia models associated with cystic fibrosis have been extensively studied and have considerably aided our understanding of disease pathogenesis and testing and developing new treatment strategies. The present review aims to guide investigators in choosing appropriate animal pneumonia models by describing and comparing the relevant characteristics of each model using P. aeruginosa as a model etiology for hospital-acquired pneumonia. Key to establishing and studying these animal models of infection are well-defined end-points that allow precise monitoring and characterization of disease development that could ultimately aid in translating these findings to patient populations in order to guide therapy. In this respect, and discussed here, is the development of humanized animal models of bacterial pneumonia that could offer unique advantages to study bacterial virulence factor expression and host cytokine production for translational purposes. PMID:28462212

  1. Animal models for microbicide studies.

    PubMed

    Veazey, Ronald S; Shattock, Robin J; Klasse, Per Johan; Moore, John P

    2012-01-01

    There have been encouraging recent successes in the development of safe and effective topical microbicides to prevent vaginal or rectal HIV-1 transmission, based on the use of anti-retroviral drugs. However, much work remains to be accomplished before a microbicide becomes a standard element of prevention science strategies. Animal models should continue to play an important role in pre-clinical testing, with emphasis on safety, pharmacokinetic and efficacy testing.

  2. Animal models of cannabinoid reward

    PubMed Central

    Panlilio, Leigh V; Justinova, Zuzana; Goldberg, Steven R

    2010-01-01

    The endogenous cannabinoid system is involved in numerous physiological and neuropsychological functions. Medications that target this system hold promise for the treatment of a wide variety of disorders. However, as reward is one of the most prominent of these functions, medications that activate this system must be evaluated for abuse potential. Meanwhile, cannabis is already being used chronically by millions of people, many of whom eventually seek treatment for cannabis dependence. Therefore, there is a need for procedures that can be used to: (i) better understand the mechanisms of cannabinoid reward; (ii) evaluate the abuse potential of new medications; and (iii) evaluate the effectiveness of medications developed for treating cannabis dependence. Animal models of cannabinoid reward provide a means of accomplishing these goals. In this review, we briefly describe and evaluate these models, their advantages and their shortcomings. Special emphasis is placed on intravenous cannabinoid self-administration in squirrel monkeys, a valid, reliable and flexible model that we have developed over the past decade. Although the conditions under which cannabinoid drugs have rewarding effects may be more restricted than with other drugs of abuse such as cocaine and heroin, work with these models indicates that cannabinoid reward involves similar brain mechanisms and produces the same kinds of reward-related behaviour. By continuing to use these animal models as tools in the development of new medications, it should be possible to take advantage of the potential benefits provided by the endocannabinoid system while minimizing its potential for harm. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x PMID:20590560

  3. Establishment of a tumor neovascularization animal model with biomaterials in rabbit corneal pouch.

    PubMed

    Chu, Yu-Ping; Li, Hong-Chuan; Ma, Ling; Xia, Yang

    2018-06-01

    The present animal model of tumor neovascularization most often used by researchers is zebrafish. For studies on human breast cancer cell neovascularization, a new animal model was established to enable a more convenient study of tumor neovascularization. A sodium alginate-gelatin blend gel system was used to design the new animal model. The model was established using rabbit corneal pouch implantation. Then, the animal model was validated by human breast cancer cell lines MCF-7-Kindlin-2 and MCF-7-CMV. The experiment intuitively observed the relationship between tumor and neovascularization, and demonstrated the advantages of this animal model in the study of tumor neovascularization. The use of sodium alginate-gelatin blends to establish tumor neovascularization in a rabbit corneal pouch is a novel and ideal method for the study of neovascularization. It may be a better animal model for expanding the research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A capture-recapture survival analysis model for radio-tagged animals

    USGS Publications Warehouse

    Pollock, K.H.; Bunck, C.M.; Winterstein, S.R.; Chen, C.-L.; North, P.M.; Nichols, J.D.

    1995-01-01

    In recent years, survival analysis of radio-tagged animals has developed using methods based on the Kaplan-Meier method used in medical and engineering applications (Pollock et al., 1989a,b). An important assumption of this approach is that all tagged animals with a functioning radio can be relocated at each sampling time with probability 1. This assumption may not always be reasonable in practice. In this paper, we show how a general capture-recapture model can be derived which allows for some probability (less than one) for animals to be relocated. This model is not simply a Jolly-Seber model because it is possible to relocate both dead and live animals, unlike when traditional tagging is used. The model can also be viewed as a generalization of the Kaplan-Meier procedure, thus linking the Jolly-Seber and Kaplan-Meier approaches to survival estimation. We present maximum likelihood estimators and discuss testing between submodels. We also discuss model assumptions and their validity in practice. An example is presented based on canvasback data collected by G. M. Haramis of Patuxent Wildlife Research Center, Laurel, Maryland, USA.

  5. The Various Roles of Animal Models in Understanding Human Development

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert; Lickliter, Robert

    2004-01-01

    In this article, the authors take a very conservative view of the contribution of animal models to an understanding of human development. We do not think that homologies can be readily documented with even our most closely related relatives' behavior and psychological functioning. The major contribution of animal models is their provision of food…

  6. Animal models in epigenetic research: institutional animal care and use committee considerations across the lifespan.

    PubMed

    Harris, Craig

    2012-01-01

    The rapid expansion and evolution of epigenetics as a core scientific discipline have raised new questions about how endogenous and environmental factors can inform the mechanisms through which biological form and function are regulated. Existing and proposed animal models used for epigenetic research have targeted a myriad of health and disease endpoints that may be acute, chronic, and transgenerational in nature. Initiating events and outcomes may extend across the entire lifespan to elicit unanticipated phenotypes that are of particular concern to institutional animal care and use committees (IACUCs). The dynamics and plasticity of epigenetic mechanisms produce effects and consequences that are manifest differentially within discreet spatial and temporal contexts, including prenatal development, stem cells, assisted reproductive technologies, production of sexual dimorphisms, senescence, and others. Many dietary and nutritional interventions have also been shown to have a significant impact on biological functions and disease susceptibilities through altered epigenetic programming. The environmental, chemical, toxic, therapeutic, and psychosocial stressors used in animal studies to elicit epigenetic changes can become extreme and should raise IACUC concerns for the well-being and proper care of all research animals involved. Epigenetics research is rapidly becoming an integral part of the search for mechanisms in every major area of biomedical and behavioral research and will foster the continued development of new animal models. From the IACUC perspective, care must be taken to acknowledge the particular needs and concerns created by superimposition of epigenetic mechanisms over diverse fields of investigation to ensure the proper care and use of animals without impeding scientific progress.

  7. Are animal models useful for studying human disc disorders/degeneration?

    PubMed Central

    Eisenstein, Stephen M.; Ito, Keita; Little, Christopher; Kettler, A. Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim

    2007-01-01

    Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738

  8. Microscopic transport model animation visualisation on KML base

    NASA Astrophysics Data System (ADS)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  9. The Use of Animal Models for Stroke Research: A Review

    PubMed Central

    Casals, Juliana B; Pieri, Naira CG; Feitosa, Matheus LT; Ercolin, Anna CM; Roballo, Kelly CS; Barreto, Rodrigo SN; Bressan, Fabiana F; Martins, Daniele S; Miglino, Maria A; Ambrósio, Carlos E

    2011-01-01

    Stroke has been identified as the second leading cause of death worldwide. Stroke is a focal neurologic deficit caused by a change in cerebral circulation. The use of animal models in recent years has improved our understanding of the physiopathology of this disease. Rats and mice are the most commonly used stroke models, but the demand for larger models, such as rabbits and even nonhuman primates, is increasing so as to better understand the disease and its treatment. Although the basic mechanisms of stroke are nearly identical among mammals, we here discuss the differences between the human encephalon and various animals. In addition, we compare common surgical techniques used to induce animal models of stroke. A more complete anatomic knowledge of the cerebral vessels of various model species is needed to develop more reliable models for objective results that improve knowledge of the pathology of stroke in both human and veterinary medicine. PMID:22330245

  10. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  11. Crazy like a fox. Validity and ethics of animal models of human psychiatric disease.

    PubMed

    Rollin, Michael D H; Rollin, Bernard E

    2014-04-01

    Animal models of human disease play a central role in modern biomedical science. Developing animal models for human mental illness presents unique practical and philosophical challenges. In this article we argue that (1) existing animal models of psychiatric disease are not valid, (2) attempts to model syndromes are undermined by current nosology, (3) models of symptoms are rife with circular logic and anthropomorphism, (4) any model must make unjustified assumptions about subjective experience, and (5) any model deemed valid would be inherently unethical, for if an animal adequately models human subjective experience, then there is no morally relevant difference between that animal and a human.

  12. Tissue Engineering in Animal Models for Urinary Diversion: A Systematic Review

    PubMed Central

    Sloff, Marije; de Vries, Rob; Geutjes, Paul; IntHout, Joanna; Ritskes-Hoitinga, Merel

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) approaches may provide alternatives for gastrointestinal tissue in urinary diversion. To continue to clinically translatable studies, TERM alternatives need to be evaluated in (large) controlled and standardized animal studies. Here, we investigated all evidence for the efficacy of tissue engineered constructs in animal models for urinary diversion. Studies investigating this subject were identified through a systematic search of three different databases (PubMed, Embase and Web of Science). From each study, animal characteristics, study characteristics and experimental outcomes for meta-analyses were tabulated. Furthermore, the reporting of items vital for study replication was assessed. The retrieved studies (8 in total) showed extreme heterogeneity in study design, including animal models, biomaterials and type of urinary diversion. All studies were feasibility studies, indicating the novelty of this field. None of the studies included appropriate control groups, i.e. a comparison with the classical treatment using GI tissue. The meta-analysis showed a trend towards successful experimentation in larger animals although no specific animal species could be identified as the most suitable model. Larger animals appear to allow a better translation to the human situation, with respect to anatomy and surgical approaches. It was unclear whether the use of cells benefits the formation of a neo urinary conduit. The reporting of the methodology and data according to standardized guidelines was insufficient and should be improved to increase the value of such publications. In conclusion, animal models in the field of TERM for urinary diversion have probably been chosen for reasons other than their predictive value. Controlled and comparative long term animal studies, with adequate methodological reporting are needed to proceed to clinical translatable studies. This will aid in good quality research with the reduction in

  13. Animal models to improve our understanding and treatment of suicidal behavior.

    PubMed

    Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T

    2017-04-11

    Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.

  14. Animal models to improve our understanding and treatment of suicidal behavior

    PubMed Central

    Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T

    2017-01-01

    Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic–pituitary–adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio. PMID:28398339

  15. Congenital ureteropelvic junction obstruction: human disease and animal models

    PubMed Central

    Klein, Julie; Gonzalez, Julien; Miravete, Mathieu; Caubet, Cécile; Chaaya, Rana; Decramer, Stéphane; Bandin, Flavio; Bascands, Jean-Loup; Buffin-Meyer, Bénédicte; Schanstra, Joost P

    2011-01-01

    Ureteropelvic junction (UPJ) obstruction is the most frequently observed cause of obstructive nephropathy in children. Neonatal and foetal animal models have been developed that mimic closely what is observed in human disease. The purpose of this review is to discuss how obstructive nephropathy alters kidney histology and function and describe the molecular mechanisms involved in the progression of the lesions, including inflammation, proliferation/apoptosis, renin–angiotensin system activation and fibrosis, based on both human and animal data. Also we propose that during obstructive nephropathy, hydrodynamic modifications are early inducers of the tubular lesions, which are potentially at the origin of the pathology. Finally, an important observation in animal models is that relief of obstruction during kidney development has important effects on renal function later in adult life. A major short-coming is the absence of data on the impact of UPJ obstruction on long-term adult renal function to elucidate whether these animal data are also valid in humans. PMID:20681980

  16. Animal models of serotonergic psychedelics.

    PubMed

    Hanks, James B; González-Maeso, Javier

    2013-01-16

    The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects.

  17. Animal models of intellectual disability: towards a translational approach

    PubMed Central

    Scorza, Carla A; Cavalheiro, Esper A.

    2011-01-01

    Intellectual disability is a prevalent form of cognitive impairment, affecting 2–3% of the general population. It is a daunting societal problem characterized by significant limitations both in intellectual functioning and in adaptive behavior as expressed in conceptual, social and practical adaptive skills. Intellectual disability is a clinically important disorder for which the etiology and pathogenesis are still poorly understood. Moreover, although tremendous progress has been made, pharmacological intervention is still currently non-existent and therapeutic strategies remain limited. Studies in humans have a very limited capacity to explain basic mechanisms of this condition. In this sense, animal models have been invaluable in intellectual disability investigation. Certainly, a great deal of the knowledge that has improved our understanding of several pathologies has derived from appropriate animal models. Moreover, to improve human health, scientific discoveries must be translated into practical applications. Translational research specifically aims at taking basic scientific discoveries and best practices to benefit the lives of people in our communities. In this context, the challenge that basic science research needs to meet is to make use of a comparative approach to benefit the most from what each animal model can tell us. Intellectual disability results from many different genetic and environmental insults. Taken together, the present review will describe several animal models of potential intellectual disability risk factors. PMID:21779723

  18. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy

    PubMed Central

    McGreevy, Joe W.; Hakim, Chady H.; McIntosh, Mark A.; Duan, Dongsheng

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. PMID:25740330

  19. Animal models for microbicide studies

    PubMed Central

    Veazey, Ronald S.; Shattock, Robin J; Klasse, Per Johan; Moore, John P.

    2013-01-01

    There have been encouraging recent successes in the development of safe and effective topical microbicides to prevent vaginal or rectal HIV-1 transmission, based on the use of anti-retroviral drugs. However, much work remains to be accomplished before a microbicide becomes a standard element of prevention science strategies. Animal models should continue to play an important role in pre-clinical testing, with emphasis on safety, pharmacokinetic and efficacy testing. PMID:22264049

  20. Animal models of tic disorders: a translational perspective.

    PubMed

    Godar, Sean C; Mosher, Laura J; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-12-30

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Animal models of tic disorders: A translational perspective

    PubMed Central

    Godar, Sean C.; Mosher, Laura J.; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-01-01

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. PMID:25244952

  2. Pathophysiology and treatment of focal segmental glomerulosclerosis: the role of animal models

    PubMed Central

    2013-01-01

    Focal segmental glomerulosclerosis (FSGS) is a kidney disease with progressive glomerular scarring and a clinical presentation of nephrotic syndrome. FSGS is a common primary glomerular disorder that causes renal dysfunction which progresses slowly over time to end-stage renal disease. Most cases of FSGS are idiopathic Although kidney transplantation is a potentially curative treatment, 40% of patients have recurrence of FSGS after transplantation. In this review a brief summary of the pathogenesis causing FSGS in humans is given, and a variety of animal models used to study FSGS is discussed. These animal models include the reduction of renal mass by resecting 5/6 of the kidney, reduction of renal mass due to systemic diseases such as hypertension, hyperlipidemia or SLE, drug-induced FSGS using adriamycin, puromycin or streptozotocin, virus-induced FSGS, genetically-induced FSGS such as via Mpv-17 inactivation and α-actinin 4 and podocin knockouts, and a model for circulating permeability factors. In addition, an animal model that spontaneously develops FSGS is discussed. To date, there is no exact understanding of the pathogenesis of idiopathic FSGS, and there is no definite curative treatment. One requirement facilitating FSGS research is an animal model that resembles human FSGS. Most animal models induce secondary forms of FSGS in an acute manner. The ideal animal model for primary FSGS, however, should mimic the human primary form in that it develops spontaneously and has a slow chronic progression. Such models are currently not available. We conclude that there is a need for a better animal model to investigate the pathogenesis and potential treatment options of FSGS. PMID:23547922

  3. Experimental Oral Candidiasis in Animal Models

    PubMed Central

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  4. The contribution of animal models to the study of obesity.

    PubMed

    Speakman, John; Hambly, Catherine; Mitchell, Sharon; Król, Elzbieta

    2008-10-01

    Obesity results from prolonged imbalance of energy intake and energy expenditure. Animal models have provided a fundamental contribution to the historical development of understanding the basic parameters that regulate the components of our energy balance. Five different types of animal model have been employed in the study of the physiological and genetic basis of obesity. The first models reflect single gene mutations that have arisen spontaneously in rodent colonies and have subsequently been characterized. The second approach is to speed up the random mutation rate artificially by treating rodents with mutagens or exposing them to radiation. The third type of models are mice and rats where a specific gene has been disrupted or over-expressed as a deliberate act. Such genetically-engineered disruptions may be generated through the entire body for the entire life (global transgenic manipulations) or restricted in both time and to certain tissue or cell types. In all these genetically-engineered scenarios, there are two types of situation that lead to insights: where a specific gene hypothesized to play a role in the regulation of energy balance is targeted, and where a gene is disrupted for a different purpose, but the consequence is an unexpected obese or lean phenotype. A fourth group of animal models concern experiments where selective breeding has been utilized to derive strains of rodents that differ in their degree of fatness. Finally, studies have been made of other species including non-human primates and dogs. In addition to studies of the physiological and genetic basis of obesity, studies of animal models have also informed us about the environmental aspects of the condition. Studies in this context include exploring the responses of animals to high fat or high fat/high sugar (Cafeteria) diets, investigations of the effects of dietary restriction on body mass and fat loss, and studies of the impact of candidate pharmaceuticals on components of energy

  5. Sex Differences in Animal Models: Focus on Addiction

    PubMed Central

    Becker, Jill B.

    2016-01-01

    The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of “craving”) show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences. PMID:26772794

  6. ANTI-ULCEROGENIC EFFICACY AND MECHANISMS OF EDIBLE AND NATURAL INGREDIENTS IN NSAID-INDUCED ANIMAL MODELS

    PubMed Central

    Bi, Weiping; Hu, Lizhi; Man, Mao-Qiang

    2017-01-01

    Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of the most commonly used medicines and proven to be effective for certain disorders. Some people use NSAIDs on daily basis for preventive purpose. But a variety of severe side effects can be induced by NSAIDs. Studies have shown that edible natural ingredients exhibit preventive benefit of gastric ulcer. This paper reviews the efficacy and safety of edible natural ingredients in preventing the development of gastric ulcer induced by NSAIDs in animal models. Methods: A systematic literature search was conducted on PubMed, using the terms “herbal medicines” and “gastric ulcer”, “herbal medicines” and “peptic ulcer”, “food” and “peptic ulcer”, “food” and “gastric ulcer”, “natural ingredient” and “peptic ulcer”, “natural ingredient” and “gastric ulcer”, “alternative medicine” and “peptic ulcer”, “alternative medicine” and “gastric ulcer”, “complementary medicine” and “peptic ulcer”, “complementary medicine” and “gastric ulcer” in papers published in English between January 1, 1960 and January 31, 2016, resulting in a total of 6146 articles containing these terms. After exclusion of studies not related prevention, not in NSAID model or using non-edible natural ingredients, 54 articles were included in this review. Results: Numerous studies have demonstrated that edible natural ingredients exhibit antiulcerogenic benefit in NSAID-induced animal models. The mechanisms by which edible, ingredient-induced anti-ulcerogenic effects include stimulation of mucous cell proliferation, antioxidation, inhibition of gastric acid secretion, as well as inhibition of H (+), K (+)- ATPase activities. Utilization of edible, natural ingredients could be a safe, valuable alternative to prevent the development of NSAID-induced gastric ulcer, particularly for the subjects who are long-term users of NSAIDs. PMID:28638885

  7. The Microminipig as an Animal Model for Influenza A Virus Infection

    PubMed Central

    Nakajima, Noriko; Shibata, Masatoshi; Takahashi, Kenta; Sato, Yuko; Kiso, Maki; Yamayoshi, Seiya; Ito, Mutsumi; Enya, Satoko; Otake, Masayoshi; Kangawa, Akihisa; da Silva Lopes, Tiago Jose; Ito, Hirotaka; Hasegawa, Hideki

    2016-01-01

    ABSTRACT Pigs are considered a mixing vessel for the generation of novel pandemic influenza A viruses through reassortment because of their susceptibility to both avian and human influenza viruses. However, experiments to understand reassortment in pigs in detail have been limited because experiments with regular-sized pigs are difficult to perform. Miniature pigs have been used as an experimental animal model, but they are still large and require relatively large cages for housing. The microminipig is one of the smallest miniature pigs used for experiments. Introduced in 2010, microminipigs weigh around 10 kg at an early stage of maturity (6 to 7 months old) and are easy to handle. To evaluate the microminipig as an animal model for influenza A virus infection, we compared the receptor distribution of 10-week-old male pigs (Yorkshire Large White) and microminipigs. We found that both animals have SAα2,3Gal and SAα2,6Gal in their respiratory tracts, with similar distributions of both receptor types. We further found that the sensitivity of microminipigs to influenza A viruses was the same as that of larger miniature pigs. Our findings indicate that the microminipig could serve as a novel model animal for influenza A virus infection. IMPORTANCE The microminipig is one of the smallest miniature pigs in the world and is used as an experimental animal model for life science research. In this study, we evaluated the microminipig as a novel animal model for influenza A virus infection. The distribution of influenza virus receptors in the respiratory tract of the microminipig was similar to that of the pig, and the sensitivity of microminipigs to influenza A viruses was the same as that of miniature pigs. Our findings suggest that microminipigs represent a novel animal model for influenza A virus infection. PMID:27807225

  8. The Microminipig as an Animal Model for Influenza A Virus Infection.

    PubMed

    Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Shibata, Masatoshi; Takahashi, Kenta; Sato, Yuko; Kiso, Maki; Yamayoshi, Seiya; Ito, Mutsumi; Enya, Satoko; Otake, Masayoshi; Kangawa, Akihisa; da Silva Lopes, Tiago Jose; Ito, Hirotaka; Hasegawa, Hideki; Kawaoka, Yoshihiro

    2017-01-15

    Pigs are considered a mixing vessel for the generation of novel pandemic influenza A viruses through reassortment because of their susceptibility to both avian and human influenza viruses. However, experiments to understand reassortment in pigs in detail have been limited because experiments with regular-sized pigs are difficult to perform. Miniature pigs have been used as an experimental animal model, but they are still large and require relatively large cages for housing. The microminipig is one of the smallest miniature pigs used for experiments. Introduced in 2010, microminipigs weigh around 10 kg at an early stage of maturity (6 to 7 months old) and are easy to handle. To evaluate the microminipig as an animal model for influenza A virus infection, we compared the receptor distribution of 10-week-old male pigs (Yorkshire Large White) and microminipigs. We found that both animals have SAα2,3Gal and SAα2,6Gal in their respiratory tracts, with similar distributions of both receptor types. We further found that the sensitivity of microminipigs to influenza A viruses was the same as that of larger miniature pigs. Our findings indicate that the microminipig could serve as a novel model animal for influenza A virus infection. The microminipig is one of the smallest miniature pigs in the world and is used as an experimental animal model for life science research. In this study, we evaluated the microminipig as a novel animal model for influenza A virus infection. The distribution of influenza virus receptors in the respiratory tract of the microminipig was similar to that of the pig, and the sensitivity of microminipigs to influenza A viruses was the same as that of miniature pigs. Our findings suggest that microminipigs represent a novel animal model for influenza A virus infection. Copyright © 2017 American Society for Microbiology.

  9. Use of Animal Models in Understanding Cancer-induced Bone Pain

    PubMed Central

    Slosky, Lauren M; Largent-Milnes, Tally M; Vanderah, Todd W

    2015-01-01

    Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP’s unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP. PMID:26339191

  10. Influenza pathogenicity during pregnancy in women and animal models.

    PubMed

    van Riel, Debby; Mittrücker, Hans-Willi; Engels, Geraldine; Klingel, Karin; Markert, Udo R; Gabriel, Gülsah

    2016-11-01

    Pregnant women are at the highest risk to develop severe and even fatal influenza. The high vulnerability of women against influenza A virus infections during pregnancy was repeatedly highlighted during influenza pandemics including the pandemic of this century. In 2009, mortality rates were particularly high among otherwise healthy pregnant women. However, our current understanding of the molecular mechanisms involved in severe disease development during pregnancy is still very limited. In this review, we summarize the knowledge on the clinical observations in influenza A virus-infected pregnant women. In addition, knowledge obtained from few existing experimental infections in pregnant animal models is discussed. Since clinical data do not provide in-depth information on the pathogenesis of severe influenza during pregnancy, adequate animal models are urgently required that mimic clinical findings. Studies in pregnant animal models will allow the dissection of involved molecular disease pathways that are key to improve patient management and care.

  11. Critical overview of all available animal models for abdominal wall hernia research.

    PubMed

    Vogels, R R M; Kaufmann, R; van den Hil, L C L; van Steensel, S; Schreinemacher, M H F; Lange, J F; Bouvy, N D

    2017-10-01

    Since the introduction of the first prosthetic mesh for abdominal hernia repair, there has been a search for the "ideal mesh." The use of preclinical or animal models for assessment of necessary characteristics of new and existing meshes is an indispensable part of hernia research. Unfortunately, in our experience there is a lack of consensus among different research groups on which model to use. Therefore, we hypothesized that there is a lack of comparability within published animal research on hernia surgery due to wide range in experimental setup among different research groups. A systematic search of the literature was performed to provide a complete overview of all animal models published between 2000 and 2014. Relevant parameters on model characteristics and outcome measurement were scored on a standardized scoring sheet. Due to the wide range in different animals used, ranging from large animal models like pigs to rodents, we decided to limit the study to 168 articles concerning rat models. Within these rat models, we found wide range of baseline animal characteristics, operation techniques, and outcome measurements. Making reliable comparison of results among these studies is impossible. There is a lack of comparability among experimental hernia research, limiting the impact of this experimental research. We therefore propose the establishment of guidelines for experimental hernia research by the EHS.

  12. Medications Development for the Treatment of Alcohol Use Disorder: Insights into the Predictive Value of Animal and Human Laboratory Models

    PubMed Central

    Yardley, Megan M.; Ray, Lara A.

    2016-01-01

    Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research. PMID:26833803

  13. Self-organized energetic model for collective activity on animal tissue

    NASA Astrophysics Data System (ADS)

    Dos Santos, Michelle C. Varela; Macedo-Filho, Antonio; Dos Santos Lima, Gustavo Zampier; Corso, Gilberto

    We construct a self-organized critical (SOC) model to explain spontaneous collective activity in animal tissue without the necessity of a muscular or a central control nervous system. Our prototype model is an epithelial cuboid tissue formed by a single layer of cells as the internal digestive cavity of primitive animals. The tissue is composed by cells that absorb nutrients and store energy, with probability p, to participate in a collective tissue activity. Each cell can be in two states: at high energy and able to became active or at low metabolic energy and remain at rest. Any cell can spontaneously, with a very low probability, spark a collective activity across its neighbors that share a minimal energy. Cells participating in tissue activity consume all their energy. A power-law relation P(s)∝sγ for the probability of having a collective activity with s cells is observed. By construction this model is analogue to the forest fire SOC model. Our approach produces naturally a critical state for the activity in animal tissue, besides it explains self-sustained activity in a living animal tissue without feedback control.

  14. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    PubMed

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. © 2016 AlphaMed Press.

  15. Valuable water

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    In some places, money flows with water. Studying both the water quality and property values around 22 lakes in south-central Maine, Kevin Boyle and Holly James of the University of Maine and Roy Bouchard of the Maine Department of Environmental Protection have found that good water quality makes waterfront property even more valuable. To gauge water quality, the researchers used Secchi disks to measure the clarity of the water at depth. They also reviewed 543 lakefront property sales between 1990 and 1994 to determine how values correlated with changing water conditions. The group also considered such factors as lake frontage, sizes of the houses and lots, and size of the lake.

  16. Standardised animal models of host microbial mutualism

    PubMed Central

    Macpherson, A J; McCoy, K D

    2015-01-01

    An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions. PMID:25492472

  17. Large animal models in experimental knee sports surgery: focus on clinical translation.

    PubMed

    Madry, Henning; Ochi, Mitsuo; Cucchiarini, Magali; Pape, Dietrich; Seil, Romain

    2015-12-01

    Large animal models play a crucial role in sports surgery of the knee, as they are critical for the exploration of new experimental strategies and the clinical translation of novel techniques. The purpose of this contribution is to provide critical aspects of relevant animal models in this field, with a focus on paediatric anterior cruciate ligament (ACL) reconstruction, high tibial osteotomy, and articular cartilage repair. Although there is no single large animal model strictly replicating the human knee joint, the sheep stifle joint shares strong similarities. Studies in large animal models of paediatric ACL reconstruction identified specific risk factors associated with the different surgical techniques. The sheep model of high tibial osteotomy is a powerful new tool to advance the understanding of the effect of axial alignment on the lower extremity on specific issues of the knee joint. Large animal models of both focal chondral and osteochondral defects and of osteoarthritis have brought new findings about the mechanisms of cartilage repair and treatment options. The clinical application of a magnetic device for targeted cell delivery serves as a suitable example of how data from such animal models are directly translated into in clinical cartilage repair. As novel insights from studies in these translational models will advance the basic science, close cooperation in this important field of clinical translation will improve current reconstructive surgical options and open novel avenues for regenerative therapies of musculoskeletal disorders.

  18. A novel animal model of dysphagia following stroke.

    PubMed

    Sugiyama, Naoto; Nishiyama, Eiji; Nishikawa, Yukitoshi; Sasamura, Takashi; Nakade, Shinji; Okawa, Katsumasa; Nagasawa, Tadashi; Yuki, Akane

    2014-02-01

    Patients who have an ischemic stroke are at high risk of swallowing disorders. Aspiration due to swallowing disorders, specifically delayed trigger of the pharyngeal stage of swallowing, predisposes such patients to pneumonia. In the present study, we evaluated swallowing reflex in a rat model of transient middle cerebral artery occlusion (tMCAO), which is one of the most common experimental animal models of cerebral ischemia, in order to develop a novel animal model of dysphagia following ischemic stroke. A swallowing reflex was elicited by a 10-s infusion of distilled water (DW) to the pharyngolaryngeal region in the tMCAO rat model. Swallowing reflex was estimated using the electromyographic activity of the mylohyoid muscle from 1 to 3 weeks after surgery. Two weeks after tMCAO, the number of swallows significantly decreased and the onset latency of the first swallow was prolonged compared with that of the sham group. The number of swallows in rats significantly increased by infusions of 10 mM citric acid and 0.6 μM capsaicin to the pharyngolaryngeal region compared with the number from infusion of DW. It has been reported that sensory stimulation of the pharyngolaryngeal region with citric acid, capsaicin, and L-menthol ameliorates hypofunction of pharyngeal-stage swallowing in dysphagia patients. Therefore, the tMCAO rat model may show some of the symptoms of pharyngeal-stage swallowing disorders, similar to those in patients with ischemic stroke. This rat tMCAO model has the potential to become a novel animal model of dysphagia following stroke that is useful for development of therapeutic methods and drugs.

  19. Biology of obesity: lessons from animal models of obesity.

    PubMed

    Kanasaki, Keizo; Koya, Daisuke

    2011-01-01

    Obesity is an epidemic problem in the world and is associated with several health problems, including diabetes, cardiovascular disease, respiratory failure, muscle weakness, and cancer. The precise molecular mechanisms by which obesity induces these health problems are not yet clear. To better understand the pathomechanisms of human disease, good animal models are essential. In this paper, we will analyze animal models of obesity and their use in the research of obesity-associated human health conditions and diseases such as diabetes, cancer, and obstructive sleep apnea syndrome.

  20. Autism spectrum disorder: neuropathology and animal models.

    PubMed

    Varghese, Merina; Keshav, Neha; Jacot-Descombes, Sarah; Warda, Tahia; Wicinski, Bridget; Dickstein, Dara L; Harony-Nicolas, Hala; De Rubeis, Silvia; Drapeau, Elodie; Buxbaum, Joseph D; Hof, Patrick R

    2017-10-01

    Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the

  1. Animal models of post-traumatic stress disorder: face validity

    PubMed Central

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  2. Animal Models in Carotenoids Research and Lung Cancer Prevention1

    PubMed Central

    Kim, Jina; Kim, Yuri

    2011-01-01

    Numerous epidemiological studies have consistently demonstrated that individuals who eat more fruits and vegetables (which are rich in carotenoids) and who have higher serum β-carotene levels have a lower risk of cancer, especially lung cancer. However, two human intervention trials conducted in Finland and in the United States have reported contrasting results with high doses of β-carotene supplementation increasing the risk of lung cancer among smokers. The failure of these trials to demonstrate actual efficacy has resulted in the initiation of animal studies to reproduce the findings of these two studies and to elucidate the mechanisms responsible for the harmful or protective effects of carotenoids in lung carcinogenesis. Although these studies have been limited by a lack of animal models that appropriately represent human lung cancer induced by cigarette smoke, ferrets and A/J mice are currently the most widely used models for these types of studies. There are several proposed mechanisms for the protective effects of carotenoids on cigarette smoke-induced lung carcinogenesis, and these include antioxidant/prooxidant effects, modulation of retinoic acid signaling pathway and metabolism, induction of cytochrome P450, and molecular signaling involved in cell proliferation and/or apoptosis. The technical challenges associated with animal models include strain-specific and diet-specific effects, differences in the absorption and distribution of carotenoids, and differences in the interactions of carotenoids with other antioxidants. Despite the problems associated with extrapolating from animal models to humans, the understanding and development of various animal models may provide useful information regarding the protective effects of carotenoids against lung carcinogenesis. PMID:21966544

  3. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    PubMed Central

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  4. Bringing macromolecular machinery to life using 3D animation.

    PubMed

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere. Copyright © 2015. Published by Elsevier Ltd.

  5. Are animals necessary in biological education?

    PubMed

    Jukes, Nick

    2004-06-01

    Ensuring the most ethical and effective ways of meeting teaching objectives requires good curricular design. Such design should be informed by knowledge of the available learning tools and approaches, and by reviews and studies that investigate their pedagogical efficacy. Alternatives have been shown to meet teaching objectives as least as well as conventional animal use, and they do not share the "hidden curriculum" of animal practicals that can teach disrespect for life and hinder the development of critical thinking skills. Most alternatives have been developed by teachers for their pedagogical and scientific benefits, and their implementation can bring cutting-edge technology to the process of learning. For the minority of students who genuinely need hands-on experience with animals, the use of ethically sourced animal cadavers and tissue, and clinical work with animal patients, can offer valuable learning opportunities. No animal needs to be killed or harmed within biological education.

  6. ALDB: a domestic-animal long noncoding RNA database.

    PubMed

    Li, Aimin; Zhang, Junying; Zhou, Zhongyin; Wang, Lei; Liu, Yujuan; Liu, Yajun

    2015-01-01

    Long noncoding RNAs (lncRNAs) have attracted significant attention in recent years due to their important roles in many biological processes. Domestic animals constitute a unique resource for understanding the genetic basis of phenotypic variation and are ideal models relevant to diverse areas of biomedical research. With improving sequencing technologies, numerous domestic-animal lncRNAs are now available. Thus, there is an immediate need for a database resource that can assist researchers to store, organize, analyze and visualize domestic-animal lncRNAs. The domestic-animal lncRNA database, named ALDB, is the first comprehensive database with a focus on the domestic-animal lncRNAs. It currently archives 12,103 pig intergenic lncRNAs (lincRNAs), 8,923 chicken lincRNAs and 8,250 cow lincRNAs. In addition to the annotations of lincRNAs, it offers related data that is not available yet in existing lncRNA databases (lncRNAdb and NONCODE), such as genome-wide expression profiles and animal quantitative trait loci (QTLs) of domestic animals. Moreover, a collection of interfaces and applications, such as the Basic Local Alignment Search Tool (BLAST), the Generic Genome Browser (GBrowse) and flexible search functionalities, are available to help users effectively explore, analyze and download data related to domestic-animal lncRNAs. ALDB enables the exploration and comparative analysis of lncRNAs in domestic animals. A user-friendly web interface, integrated information and tools make it valuable to researchers in their studies. ALDB is freely available from http://res.xaut.edu.cn/aldb/index.jsp.

  7. Animal Models of Serotonergic Psychedelics

    PubMed Central

    2012-01-01

    The serotonin 5-HT2A receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects. PMID:23336043

  8. Animal models got you puzzled?: think pig.

    PubMed

    Walters, Eric M; Agca, Yuksel; Ganjam, Venkataseshu; Evans, Tim

    2011-12-01

    Swine are an excellent large animal model for human health and disease because their size and physiology are similar to humans, in particular, with respect to the skin, heart, gastrointestinal tract, and kidneys. In addition, the pig has many emerging technologies that will only enhance the development of the pig as the nonrodent biomedical model of choice. © 2011 New York Academy of Sciences.

  9. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    EPA Science Inventory

    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Met...

  10. Animal models of addiction: fat and sugar.

    PubMed

    Morgan, Drake; Sizemore, Glen M

    2011-01-01

    The concept of "food addiction" is gaining acceptance among the scientific community, and much is known about the influence of various components of food (e.g. high-fat, sugar, carbohydrate, salt) on behavior and physiology. Most of the studies to date have studied these consequences following relatively long-term diet manipulations and/or relatively free access to the food of interest. It is suggested that these types of studies are primarily tapping into the energy regulation and homeostatic processes that govern food intake and consumption. More recently, the overlap between the neurobiology of "reward-related" or hedonic effects of food ingestion and other reinforcers such as drugs of abuse has been highlighted, contributing to the notion that "food addiction" exists and that various components of food may be the substance of abuse. Based on preclinical animal models of drug addiction, a new direction for this field is using self-administration procedures and identifying an addiction-like behavioral phenotype in animals following various environmental, genetic, pharmacological, and neurobiological manipulations. Here we provide examples from this research area, with a focus on fat and sugar self-administration, and how the sophisticated animal models of drug addiction can be used to study the determinants and consequences of food addiction.

  11. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. The role of animal models in tendon research

    PubMed Central

    Hast, M. W.; Zuskov, A.; Soslowsky, L. J.

    2014-01-01

    Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202. PMID:24958818

  13. Pharmacological MRI in animal models: a useful tool for 5-HT research?

    PubMed

    Martin, Chris; Sibson, Nicola R

    2008-11-01

    Pharmacological magnetic resonance imaging (phMRI) offers the potential to provide novel insights into the functioning of neurotransmitter systems and drug action in the central nervous system. To date, much of the neuropharmacological research that has applied phMRI techniques has focused on the dopaminergic system with relatively few studies into serotonergic function. In this article, we discuss the current capabilities of, and future potential for phMRI to address fundamental questions in serotonergic research using animal models. Firstly we review existing literature on the application of phMRI to the serotonergic system by exploring 3 broad research themes: (i) the functional anatomy of the serotonergic system; (ii) drug-receptor targeting and distribution; and (iii) disease models and drug development. Subsequently, we discuss the interpretation of phMRI data in terms of neuropharmacological action with a focus on issues specific to neuroimaging studies of the serotonergic system. Unlike other neuroimaging approaches such as positron emission tomography, phMRI methods do not currently offer sensitivity to markers of specific pharmacological action. However, they can provide in vivo markers of the neuropharmacological modulation of neuronal activity across the whole brain with unparalleled spatial and temporal resolution. Furthermore, due to the non-invasive nature of MRI, these markers are readily translatable to human studies. Whilst there are a number of constraints and limitations to phMRI methods that necessitate careful data interpretation, we argue that phMRI could become a valuable research tool in neuropharmacological studies of the serotonergic system.

  14. Immunology and Homeopathy. 3. Experimental Studies on Animal Models

    PubMed Central

    Bellavite, Paolo; Ortolani, Riccardo; Conforti, Anita

    2006-01-01

    A search of the literature and the experiments carried out by the authors of this review show that there are a number of animal models where the effect of homeopathic dilutions or the principles of homeopathic medicine have been tested. The results relate to the immunostimulation by ultralow doses of antigens, the immunological models of the ‘simile’, the regulation of acute or chronic inflammatory processes and the use of homeopathic medicines in farming. The models utilized by different research groups are extremely etherogeneous and differ as the test medicines, the dilutions and the outcomes are concerned. Some experimental lines, particularly those utilizing mice models of immunomodulation and anti-inflammatory effects of homeopathic complex formulations, give support to a real effect of homeopathic high dilutions in animals, but often these data are of preliminary nature and have not been independently replicated. The evidence emerging from animal models is supporting the traditional ‘simile’ rule, according to which ultralow doses of compounds, that in high doses are pathogenic, may have paradoxically a protective or curative effect. Despite a few encouraging observational studies, the effectiveness of the homeopathic prevention or therapy of infections in veterinary medicine is not sufficiently supported by randomized and controlled trials. PMID:16786046

  15. Animal models of ulcerative colitis and their application in drug research

    PubMed Central

    Low, Daren; Nguyen, Deanna D; Mizoguchi, Emiko

    2013-01-01

    The specific pathogenesis underlying inflammatory bowel disease is complex, and it is even more difficult to decipher the pathophysiology to explain for the similarities and differences between two of its major subtypes, Crohn’s disease and ulcerative colitis (UC). Animal models are indispensable to pry into mechanistic details that will facilitate better preclinical drug/therapy design to target specific components involved in the disease pathogenesis. This review focuses on common animal models that are particularly useful for the study of UC and its therapeutic strategy. Recent reports of the latest compounds, therapeutic strategies, and approaches tested on UC animal models are also discussed. PMID:24250223

  16. Animal model of neuropathic tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  17. A generalised random encounter model for estimating animal density with remote sensor data.

    PubMed

    Lucas, Tim C D; Moorcroft, Elizabeth A; Freeman, Robin; Rowcliffe, J Marcus; Jones, Kate E

    2015-05-01

    Wildlife monitoring technology is advancing rapidly and the use of remote sensors such as camera traps and acoustic detectors is becoming common in both the terrestrial and marine environments. Current methods to estimate abundance or density require individual recognition of animals or knowing the distance of the animal from the sensor, which is often difficult. A method without these requirements, the random encounter model (REM), has been successfully applied to estimate animal densities from count data generated from camera traps. However, count data from acoustic detectors do not fit the assumptions of the REM due to the directionality of animal signals.We developed a generalised REM (gREM), to estimate absolute animal density from count data from both camera traps and acoustic detectors. We derived the gREM for different combinations of sensor detection widths and animal signal widths (a measure of directionality). We tested the accuracy and precision of this model using simulations of different combinations of sensor detection widths and animal signal widths, number of captures and models of animal movement.We find that the gREM produces accurate estimates of absolute animal density for all combinations of sensor detection widths and animal signal widths. However, larger sensor detection and animal signal widths were found to be more precise. While the model is accurate for all capture efforts tested, the precision of the estimate increases with the number of captures. We found no effect of different animal movement models on the accuracy and precision of the gREM.We conclude that the gREM provides an effective method to estimate absolute animal densities from remote sensor count data over a range of sensor and animal signal widths. The gREM is applicable for count data obtained in both marine and terrestrial environments, visually or acoustically (e.g. big cats, sharks, birds, echolocating bats and cetaceans). As sensors such as camera traps and acoustic

  18. Cancer in Inflammatory Bowel Disease: lessons from animal models

    PubMed Central

    Sussman, Daniel; Santaolalla, Rebeca; Strobel, Sebastian; Dheer, Rishu; Abreu, Maria T.

    2012-01-01

    Purpose of the review Human colitis-associated cancers (CAC) represent a heterogeneous group of conditions in which multiple oncogenic pathways are involved. In this manuscript we reviewed the latest studies using genetic, chemically induced, bacterial and innate immunity induced experimental models of colitis-associated cancer. Recent findings Using the azoxymethane-dextran sodium sulfate model wound healing pathways seems to be required in the development of CAC. There is also an emerging understanding that commensal and/or pathogenic bacteria can promote tumorigenesis, through T cell mediated inflammation. Using specific transgenic mice (villin-CD98, T cell SMAD7, villin-TLR4) or specific knock-out mice, investigators have identified that derangements in epithelial or innate and adaptive immune pathways can result in CAC. Subtle perturbations in epithelial repair—both too little or too exuberant, can render mice susceptible to tumorigenesis. Summary With the aid of animal models, we have witnessed a rapid expansion of our knowledge of the molecular and immunologic mechanisms underlying inflammatory cancers. Though animal models have contributed a discrete amount of information to our understanding of tumorigenesis in the setting of intestinal inflammation it is clear that no single animal model will be able to adequately recapitulate the pathogenesis of complex CRCs, but each model gets us one step closer to comprehending the nature of CAC. PMID:22614440

  19. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study.

    PubMed

    de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert

    2012-12-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.

  20. Educating Tomorrow's Valuable Citizen.

    ERIC Educational Resources Information Center

    Burstyn, Joan N., Ed.

    This collection of essays by various authors discusses the dilemmas that face those who would educate tomorrow's valuable citizens and describes the day-to-day commitment needed to maintain a community. The book gives guidelines for action through examples of current programs that provide a forum for civic discussion and public consensus on the…

  1. Animal models of neoplastic development.

    PubMed

    Pitot, H C

    2001-01-01

    The basic animal model for neoplastic development used by regulatory agencies is the two-year chronic bioassay developed more than 30 years ago and based on the presumed mechanism of action of a few potential chemical carcinogens. Since that time, a variety of other model carcinogenic systems have been developed, usually involving shorter duration, single organ endpoints, multistage models, and those in genetically-engineered mice. The chronic bioassay is still the "gold standard" of regulatory agencies despite a number of deficiencies, while in this country the use of shorter term assays based on single organ endpoints has not been popular. The multistage model of carcinogenesis in mouse epidermis actually preceded the development of the chronic two-year bioassay, but it was not until multistage models in other organ systems were developed that the usefulness of such systems became apparent. Recently, several genetically-engineered mouse lines involving mutations in proto-oncogenes and tumour suppressor genes have been proposed as additional model systems for use in regulatory decisions. It is likely that a combination of several of these model systems may be most useful in both practical and basic applications of cancer prevention and therapy.

  2. In vivo animal stroke models: a rationale for rodent and non-human primate models

    PubMed Central

    Tajiri, Naoki; Dailey, Travis; Metcalf, Christopher; Mosley, Yusef I.; Lau, Tsz; Staples, Meaghan; van Loveren, Harry; Kim, Seung U.; Yamashima, Tetsumori; Yasuhara, Takao; Date, Isao; Kaneko, Yuji; Borlongan, Cesario V.

    2013-01-01

    On average, every four minutes an individual dies from a stroke, accounting for 1 out of every 18 deaths in the United States. Apporximately 795,000 Americans have a new or recurrent stroke each year, with just over 600,000 of these being first attack [1]. There have been multiple animal models of stroke demonstrating that novel therapeutics can help improve the clinical outcome. However, these results have failed to show the same outcomes when tested in human clinical trials. This review will discuss the current in vivo animal models of stroke, advantages and limitations, and the rationale for employing these animal models to satisfy translational gating items for examination of neuroprotective, as well as neurorestorative strategies in stroke patients. An emphasis in the present discussion of therapeutics development is given to stem cell therapy for stroke. PMID:23682299

  3. A systematic review of current osteoporotic metaphyseal fracture animal models.

    PubMed

    Wong, R M Y; Choy, M H V; Li, M C M; Leung, K-S; K-H Chow, S; Cheung, W-H; Cheng, J C Y

    2018-01-01

    The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted. Fracture techniques included drill hole defects (3 of 19), bone defects (3 of 19), partial osteotomy (1 of 19), and complete osteotomies (12 of 19). Drill hole models and incomplete osteotomy models are easy to perform and allow the study of therapeutic agents but do not represent the usual clinical setting. Additionally, biomaterials can be filled into drill hole defects for analysis. Complete osteotomy models are most commonly used and are best suited for the investigation of therapeutic drugs or noninvasive interventions. The metaphyseal defect models allow the study of biomaterials, which are associated with complex and comminuted osteoporotic fractures. For a clinically relevant model, we propose that an animal model should satisfy the following criteria to study osteoporotic fracture healing: 1) induction of osteoporosis, 2) complete osteotomy or defect at the metaphysis unilaterally, and 3) internal fixation. Cite this article : R. M. Y. Wong, M. H. V. Choy, M. C. M. Li, K-S. Leung, S. K-H. Chow, W-H. Cheung, J. C. Y. Cheng. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res 2018;7:6-11. DOI: 10.1302/2046-3758.71.BJR-2016-0334.R2. © 2018 Wong et al.

  4. From psychiatric disorders to animal models: a bidirectional and dimensional approach

    PubMed Central

    Donaldson, Zoe. R.; Hen, René

    2014-01-01

    Psychiatric genetics research is bidirectional in nature, with human and animal studies becoming more closely integrated as techniques for genetic manipulations allow for more subtle exploration of disease phenotypes. This synergy, however, highlights the importance of considering the way in which we approach the genotype-phenotype relationship. In particular, the nosological divide of psychiatric illness, while clinically relevant, is not directly translatable in animal models. For instance, mice will never fully re-capitulate the broad criteria for many psychiatric disorders; nor will they have guilty ruminations, suicidal thoughts, or rapid speech. Instead, animal models have been and continue to provide a means to explore dimensions of psychiatric disorders in order to identify neural circuits and mechanisms underlying disease-relevant phenotypes. Thus, the genetic investigation of psychiatric illness will yield the greatest insights if efforts continue to identify and utilize biologically valid phenotypes across species. In this review we discuss the progress to date and the future efforts that will enhance translation between human and animal studies, including the identification of intermediate phenotypes that can be studied across species, as well as the importance of refined modeling of human disease-associated genetic variation in mice and other animal models. PMID:24650688

  5. [Animal models of neurodegenerative diseases].

    PubMed

    Langui, Dominique; Lachapelle, François; Duyckaerts, Charles

    2007-02-01

    . Human diseases have to be studied in parallel with their animal models to ensure that the model mimic at least a few original mechanisms, on which new therapeutics may be tested.

  6. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    USDA-ARS?s Scientific Manuscript database

    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Eco...

  7. The what as well as the why of animal fun.

    PubMed

    Byrne, Richard W

    2015-01-05

    Fun is functional: play is evolution's way of making sure animals acquire and perfect valuable skills in circumstances of relative safety. Yet precisely what animals find fun has seldom been examined for what it can potentially reveal about how they represent and think about the world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bone regeneration capacity of magnesium phosphate cements in a large animal model.

    PubMed

    Kanter, Britta; Vikman, Anna; Brückner, Theresa; Schamel, Martha; Gbureck, Uwe; Ignatius, Anita

    2018-03-15

    Magnesium phosphate minerals have captured increasing attention during the past years as suitable alternatives for calcium phosphate bone replacement materials. Here, we investigated the degradation and bone regeneration capacity of experimental struvite (MgNH 4 PO 4 ·6H 2 O) forming magnesium phosphate cements in two different orthotopic ovine implantation models. Cements formed at powder to liquid ratios (PLR) of 2.0 and 3.0 g ml -1 were implanted into trabecular bone using a non-load-bearing femoral drill-hole model and a load-bearing tibial defect model. After 4, 7 and 10 months the implants were retrieved and cement degradation and new bone formation was analyzed by micro-computed tomography (µCT) and histomorphometry. The results showed cement degradation in concert with new bone formation at both defect locations. Both cements were almost completely degraded after 10 months. The struvite cement formed with a PLR of 2.0 g ml -1 exhibited a slightly accelerated degradation kinetics compared to the cement with a PLR of 3.0 g ml -1 . Tartrat-resistant acid phosphatase (TRAP) staining indicated osteoclastic resorption at the cement surface. Energy dispersive X-ray analysis (EDX) revealed that small residual cement particles were mostly accumulated in the bone marrow in between newly formed bone trabeculae. Mechanical loading did not significantly increase bone formation associated with cement degradation. Concluding, struvite-forming cements might be promising bone replacement materials due to their good degradation which is coupled with new bone formation. Recently, the interest in magnesium phosphate cements (MPC) for bone substitution increased, as they exhibit high initial strength, comparably elevated degradation potential and the release of valuable magnesium ions. However, only few in vivo studies, mostly including non-load-bearing defects in small animals, have been performed to analyze the degradation and regeneration capability of MPC

  9. Surgical animal models of neuropathic pain: Pros and Cons.

    PubMed

    Challa, Siva Reddy

    2015-03-01

    One of the biggest challenges for discovering more efficacious drugs for the control of neuropathic pain has been the diversity of chronic pain states in humans. It is now acceptable that different mechanisms contribute to normal physiologic pain, pain arising from tissue damage and pain arising from injury to the nervous system. To study pain transmission, spot novel pain targets and characterize the potential analgesic profile of new chemical entities, numerous experimental animal pain models have been developed that attempt to simulate the many human pain conditions. Among the neuropathic pain models, surgical models have paramount importance in the induction of pain states. Many surgical animal models exist, like the chronic constriction injury (CCI) to the sciatic nerve, partial sciatic nerve ligation (pSNL), spinal nerve ligation (SNL), spared nerve injury (SNI), brachial plexus avulsion (BPA), sciatic nerve transaction (SNT) and sciatic nerve trisection. Most of these models induce responses similar to those found in causalgia, a syndrome of sustained burning pain often seen in the distal extremity after partial peripheral nerve injury in humans. Researchers most commonly use these surgical models in both rats and mice during drug discovery to screen new chemical entities for efficacy in the area of neuropathic pain. However, there is scant literature that provides a comparative discussion of all these surgical models. Each surgical model has its own benefits and limitations. It is very difficult for a researcher to choose a suitable surgical animal model to suit their experimental set-up. Therefore, particular attention has been given in this review to comparatively provide the pros and cons of each model of surgically induced neuropathic pain.

  10. Animal and in silico models for the study of sarcomeric cardiomyopathies

    PubMed Central

    Duncker, Dirk J.; Bakkers, Jeroen; Brundel, Bianca J.; Robbins, Jeff; Tardiff, Jil C.; Carrier, Lucie

    2015-01-01

    Over the past decade, our understanding of cardiomyopathies has improved dramatically, due to improvements in screening and detection of gene defects in the human genome as well as a variety of novel animal models (mouse, zebrafish, and drosophila) and in silico computational models. These novel experimental tools have created a platform that is highly complementary to the naturally occurring cardiomyopathies in cats and dogs that had been available for some time. A fully integrative approach, which incorporates all these modalities, is likely required for significant steps forward in understanding the molecular underpinnings and pathogenesis of cardiomyopathies. Finally, novel technologies, including CRISPR/Cas9, which have already been proved to work in zebrafish, are currently being employed to engineer sarcomeric cardiomyopathy in larger animals, including pigs and non-human primates. In the mouse, the increased speed with which these techniques can be employed to engineer precise ‘knock-in’ models that previously took years to make via multiple rounds of homologous recombination-based gene targeting promises multiple and precise models of human cardiac disease for future study. Such novel genetically engineered animal models recapitulating human sarcomeric protein defects will help bridging the gap to translate therapeutic targets from small animal and in silico models to the human patient with sarcomeric cardiomyopathy. PMID:25600962

  11. Translational neuropharmacology and the appropriate and effective use of animal models.

    PubMed

    Green, A R; Gabrielsson, J; Fone, K C F

    2011-10-01

    This issue of the British Journal of Pharmacology is dedicated to reviews of the major animal models used in neuropharmacology to examine drugs for both neurological and psychiatric conditions. Almost all major conditions are reviewed. In general, regulatory authorities require evidence for the efficacy of novel compounds in appropriate animal models. However, the failure of many compounds in clinical trials following clear demonstration of efficacy in animal models has called into question both the value of the models and the discovery process in general. These matters are expertly reviewed in this issue and proposals for better models outlined. In this editorial, we further suggest that more attention be made to incorporate pharmacokinetic knowledge into the studies (quantitative pharmacology). We also suggest that more attention be made to ensure that full methodological details are published and recommend that journals should be more amenable to publishing negative data. Finally, we propose that new approaches must be used in drug discovery so that preclinical studies become more reflective of the clinical situation, and studies using animal models mimic the anticipated design of studies to be performed in humans, as closely as possible. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  12. Challenges in the development of chronic pulmonary hypertension models in large animals

    PubMed Central

    Rothman, Abraham; Wiencek, Robert G.; Davidson, Stephanie; Evans, William N.; Restrepo, Humberto; Sarukhanov, Valeri; Mann, David

    2017-01-01

    Pulmonary hypertension (PH) results in significant morbidity and mortality. Chronic PH animal models may advance the study of PH’s mechanisms, evolution, and therapy. In this report, we describe the challenges and successes in developing three models of chronic PH in large animals: two models (one canine and one swine) utilized repeated infusions of ceramic microspheres into the pulmonary vascular bed, and the third model employed a surgical aorto-pulmonary shunt. In the canine model, seven dogs underwent microsphere infusions that resulted in progressive elevation of pulmonary arterial pressure over a few months. In this model, pulmonary endoarterial tissue was obtained for histology. In the aorto-pulmonary shunt swine model, 17 pigs developed systemic level pulmonary pressures after 2–3 months. In this model, pulmonary endoarterial tissue was sequentially obtained to assess for changes in gene and microRNA expression. In the swine microsphere infusion model, three pigs developed only a modest chronic increase in pulmonary arterial pressure, despite repeated infusions of microspheres (up to 40 in one animal). The main purpose of this model was for vasodilator testing, which was performed successfully immediately after acute microsphere infusions. Chronic PH in large animal models can be successfully created; however, a model’s characteristics need to match the investigational goals. PMID:28680575

  13. Procoagulant snake venoms have differential effects in animal plasmas: Implications for antivenom testing in animal models.

    PubMed

    Maduwage, Kalana P; Scorgie, Fiona E; Lincz, Lisa F; O'Leary, Margaret A; Isbister, Geoffrey K

    2016-01-01

    Animal models are used to test toxic effects of snake venoms/toxins and the antivenom required to neutralise them. However, venoms that cause clinically relevant coagulopathy in humans may have differential effects in animals. We aimed to investigate the effect of different procoagulant snake venoms on various animal plasmas. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen and D-dimer levels were measured in seven animal plasmas (human, rabbit, cat, guinea pig, pig, cow and rat). In vitro clotting times were then used to calculate the effective concentration (EC50) in each plasma for four snake venoms with different procoagulant toxins: Pseudonaja textilis, Daboia russelli, Echis carinatus and Calloselasma rhodostoma. Compared to human, PT and aPTT were similar for rat, rabbit and pig, but double for cat and cow, while guinea pig had similar aPTT but double PT. Fibrinogen and D-dimer levels were similar for all species. Human and rabbit plasmas had the lowest EC50 for P. textilis (0.1 and 0.4 μg/ml), D. russelli (0.4 and 0.1 μg/ml), E. carinatus (0.6 and 0.1 μg/ml) venoms respectively, while cat plasma had the lowest EC50 for C. rhodostoma (11 μg/ml) venom. Cow, rat, pig and guinea pig plasmas were highly resistant to all four venoms with EC50 10-fold that of human. Different animal plasmas have varying susceptibility to procoagulant venoms, and excepting rabbits, animal models are not appropriate to test procoagulant activity. In vitro assays on human plasma should instead be adopted for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. MOAB: a spatially explicit, individual-based expert system for creating animal foraging models

    USGS Publications Warehouse

    Carter, J.; Finn, John T.

    1999-01-01

    We describe the development, structure, and corroboration process of a simulation model of animal behavior (MOAB). MOAB can create spatially explicit, individual-based animal foraging models. Users can create or replicate heterogeneous landscape patterns, and place resources and individual animals of a goven species on that landscape to simultaneously simulate the foraging behavior of multiple species. The heuristic rules for animal behavior are maintained in a user-modifiable expert system. MOAB can be used to explore hypotheses concerning the influence of landscape patttern on animal movement and foraging behavior. A red fox (Vulpes vulpes L.) foraging and nest predation model was created to test MOAB's capabilities. Foxes were simulated for 30-day periods using both expert system and random movement rules. Home range size, territory formation and other available simulation studies. A striped skunk (Mephitis mephitis L.) model also was developed. The expert system model proved superior to stochastic in respect to territory formation, general movement patterns and home range size.

  15. Models of GH deficiency in animal studies.

    PubMed

    Gahete, Manuel D; Luque, Raul M; Castaño, Justo P

    2016-12-01

    Growth hormone (GH) is a peptide hormone released from pituitary somatotrope cells that promotes growth, cell division and regeneration by acting directly through the GH receptor (GHR), or indirectly via hepatic insulin-like growth factor 1 (IGF1) production. GH deficiency (GHD) can cause severe consequences, such as growth failure, changes in body composition and altered insulin sensitivity, depending of the origin, time of onset (childhood or adulthood) or duration of GHD. The highly variable clinical phenotypes of GHD can now be better understood through research on transgenic and naturally-occurring animal models, which are widely employed to investigate the origin, phenotype, and consequences of GHD, and particularly the underlying mechanisms of metabolic disorders associated to GHD. Here, we reviewed the most salient aspects of GH biology, from somatotrope development to GH actions, linked to certain GHD types, as well as the animal models employed to reproduce these GHD-associated alterations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Large animal model for osteoporosis in humans: the ewe.

    PubMed

    Oheim, R; Amling, M; Ignatius, A; Pogoda, P

    2012-11-12

    Osteoporosis is a chronic systemic disease characterised by bone loss and microarchitectural deterioration. Since the underlying regulatory mechanisms are still not fully understood and treatment options are not satisfactorily resolved, massive efforts are underway to further investigate this critical illness. Large animal models are stipulated, e.g. by the Food and Drug Administration, for preclinical prevention and intervention studies related to osteoporosis research; in this context, the ewe has already proven its value for orthopaedic research. Although oestrogen deficiency doubtless influences bone metabolism in sheep, the ovariectomised ewe seems unsuitable as a model for postmenopausal osteoporosis and bone loss induction due to its unreliable impact on bone mass and structure. In contrast, glucocorticoid treatment has a major impact on bone turnover and leads to bone conditions comparable to those found in steroid-treated humans. However, adverse side effects can be dramatic resulting in unacceptable discomfort and illness of the experimental animals. Further improvements are therefore essential to judge this model as ethically appropriate. Additionally, models for osteoporosis induced by surgical interventions of central regulatory mechanisms seem to be attractive, as remarkable bone loss is induced by only one surgical procedure without any further treatment. Taken together, different ewe models for osteoporosis have been successfully established and are invaluable for orthopaedic research. However, the search for a 'perfect' large remodelling animal model - in terms of mimicking the human disease and compatibility of bone loss, and without ethical concerns - is still on-going.

  17. Animal Models of Depression: Molecular Perspectives

    PubMed Central

    Krishnan, Vaishnav; Nestler, Eric J.

    2012-01-01

    Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression. PMID:21225412

  18. Food Animals and Antimicrobials: Impacts on Human Health

    PubMed Central

    Marshall, Bonnie M.; Levy, Stuart B.

    2011-01-01

    Summary: Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the “precautionary principle.” Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans—directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes. PMID:21976606

  19. Generation of animation sequences of three dimensional models

    NASA Technical Reports Server (NTRS)

    Poi, Sharon (Inventor); Bell, Brad N. (Inventor)

    1990-01-01

    The invention is directed toward a method and apparatus for generating an animated sequence through the movement of three-dimensional graphical models. A plurality of pre-defined graphical models are stored and manipulated in response to interactive commands or by means of a pre-defined command file. The models may be combined as part of a hierarchical structure to represent physical systems without need to create a separate model which represents the combined system. System motion is simulated through the introduction of translation, rotation and scaling parameters upon a model within the system. The motion is then transmitted down through the system hierarchy of models in accordance with hierarchical definitions and joint movement limitations. The present invention also calls for a method of editing hierarchical structure in response to interactive commands or a command file such that a model may be included, deleted, copied or moved within multiple system model hierarchies. The present invention also calls for the definition of multiple viewpoints or cameras which may exist as part of a system hierarchy or as an independent camera. The simulated movement of the models and systems is graphically displayed on a monitor and a frame is recorded by means of a video controller. Multiple movement and hierarchy manipulations are then recorded as a sequence of frames which may be played back as an animation sequence on a video cassette recorder.

  20. The minipig as an animal model to study Mycobacterium tuberculosis infection and natural transmission

    USDA-ARS?s Scientific Manuscript database

    Infants and children with tuberculosis (TB) account for more than 20% of cases in endemic countries. Current animal models study TB during adulthood but animal models for adolescent and infant TB are scarce. Here we propose that minipigs can be used as an animal model to study adult, adolescent and ...

  1. Experimental animal models of encapsulating peritoneal sclerosis.

    PubMed

    Hoff, Catherine M

    2005-04-01

    Encapsulating peritoneal sclerosis (EPS) is an infrequent, but extremely serious complication of long-term peritoneal dialysis. The cause of EPS is unclear, but the low incidence suggests that it is most likely multifactorial. The elucidation of developmental pathways and predictive markers of EPS would facilitate the identification and management of high-risk patients. Animal models are often used to define pathways of disease progression and to test strategies for treatment and prevention in the patient population. Ideally such models could help to define the cause of EPS and its developmental pathways, to facilitate the identification of contributing factors and predictive markers, and to provide a system to test therapeutic strategies. Researchers have studied several rodent models of EPS that rely on chronic chemical irritation (for example, bleach, low-pH solution, chlorhexidine gluconate) to induce peritoneal sclerosis and abdominal encapsulation. Development in all models is progressive, with inflammation giving way to peritoneal fibrosis or sclerosis with accumulating membrane damage, culminating in cocoon formation. Microscopic findings are similar to those proposed as diagnostic criteria for clinical EPS: an initial inflammatory infiltrate and submesothelial thickening, collagen deposition, and activation and proliferation of peritoneal fibroblasts. The potential to block progression of peritoneal sclerosis in these models by anti-inflammatory, antifibrotic, and anti-angiogenic agents, and by inhibitors of the renin-angiotensin system have been demonstrated. Animal models based on clinically relevant risk factors (for example, uremia, peritonitis, and long-term exposure to dialysis solutions) now represent the next step in model development.

  2. How animal models of leukaemias have already benefited patients.

    PubMed

    Ablain, Julien; Nasr, Rihab; Zhu, Jun; Bazarbachi, Ali; Lallemand-Breittenbach, Valérie; de Thé, Hugues

    2013-04-01

    The relative genetic simplicity of leukaemias, the development of which likely relies on a limited number of initiating events has made them ideal for disease modelling, particularly in the mouse. Animal models provide incomparable insights into the mechanisms of leukaemia development and allow exploration of the molecular pillars of disease maintenance, an aspect often biased in cell lines or ex vivo systems. Several of these models, which faithfully recapitulate the characteristics of the human disease, have been used for pre-clinical purposes and have been instrumental in predicting therapy response in patients. We plea for a wider use of genetically defined animal models in the design of clinical trials, with a particular focus on reassessment of existing cancer or non-cancer drugs, alone or in combination. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Inverse modeling and animation of growing single-stemmed trees at interactive rates

    Treesearch

    S. Rudnick; L. Linsen; E.G. McPherson

    2007-01-01

    For city planning purposes, animations of growing trees of several species can be used to deduce which species may best fit a particular environment. The models used for the animation must conform to real measured data. We present an approach for inverse modeling to fit global growth parameters. The model comprises local production rules, which are iteratively and...

  4. Application of Model Animals in the Study of Drug Toxicology

    NASA Astrophysics Data System (ADS)

    Song, Yagang; Miao, Mingsan

    2018-01-01

    Drug safety is a key factor in drug research and development, Drug toxicology test is the main method to evaluate the safety of drugs, The body condition of an animal has important implications for the results of the study, Previous toxicological studies of drugs were carried out in normal animals in the past, There is a great deviation from the clinical practice.The purpose of this study is to investigate the necessity of model animals as a substitute for normal animals for toxicological studies, It is expected to provide exact guidance for future drug safety evaluation.

  5. Pathogenesis of Pancreatic Cancer: Lessons from Animal Models

    PubMed Central

    Murtaugh, L. Charles

    2014-01-01

    The past several decades have seen great effort devoted to mimicking the key features of pancreatic ductal adenocarcinoma (PDAC) in animals, and have produced two robust models of this deadly cancer. Carcinogen-treated Syrian hamsters develop PDAC with genetic lesions that reproduce those of human, including activation of the Kras oncogene, and early studies in this species validated non-genetic risk factors for PDAC including pancreatitis, obesity and diabetes. More recently, PDAC research has been invigorated by the development of genetically-engineered mouse models based on tissue-specific Kras activation and deletion of tumor suppressor genes. Surprisingly, mouse PDAC appears to arise from exocrine acinar rather than ductal cells, via a process of phenotypic reprogramming that is accelerated by inflammation. Studies in both models have uncovered molecular mechanisms by which inflammation promotes and sustains PDAC, and identified targets for chemoprevention to suppress PDAC in high-risk individuals. The mouse model, in particular, has also been instrumental in developing new approaches to early detection as well as treatment of advanced disease. Together, animal models enable diverse approaches to basic and preclinical research on pancreatic cancer, the results of which will accelerate progress against this currently intractable cancer. PMID:24178582

  6. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances.

    PubMed

    Lau, Jennie Ka Ching; Zhang, Xiang; Yu, Jun

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a continuous spectrum of diseases characterized by excessive lipid accumulation in hepatocytes. NAFLD progresses from simple liver steatosis to non-alcoholic steatohepatitis and, in more severe cases, to liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Because of its growing worldwide prevalence, various animal models that mirror both the histopathology and the pathophysiology of each stage of human NAFLD have been developed. The selection of appropriate animal models continues to be one of the key questions faced in this field. This review presents a critical analysis of the histopathology and pathogenesis of NAFLD, the most frequently used and recently developed animal models for each stage of NAFLD and NAFLD-induced HCC, the main mechanisms involved in the experimental pathogenesis of NAFLD in different animal models, and a brief summary of recent therapeutic targets found by the use of animal models. Integrating the data from human disease with those from animal studies indicates that, although current animal models provide critical guidance in understanding specific stages of NAFLD pathogenesis and progression, further research is necessary to develop more accurate models that better mimic the disease spectrum, in order to provide both increased mechanistic understanding and identification/testing of novel therapeutic approaches. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  7. Animal models for ebolavirus countermeasures discovery: what defines a useful model?

    PubMed

    Shurtleff, Amy C; Bavari, Sina

    2015-07-01

    Ebolaviruses are highly pathogenic filoviruses, which cause disease in humans and nonhuman primates (NHP) in Africa. The Zaire ebolavirus outbreak in 2014, which continues to greatly affect Western Africa and other countries to which the hemorrhagic fever was exported due to travel of unsymptomatic yet infected individuals, was complicated by the lack of available licensed vaccines or therapeutics to combat infection. After almost a year of research at an increased pace to find and test vaccines and therapeutics, there is now a deeper understanding of the available disease models for ebolavirus infection. Demonstration of vaccine or therapeutic efficacy in NHP models of ebolavirus infection is crucial to the development and eventual licensure of ebolavirus medical countermeasures, so that safe and effective countermeasures can be accelerated into human clinical trials. The authors describe ebolavirus hemorrhagic fever (EHF) disease in various animal species: mice, guinea pigs, hamsters, pigs and NHP, to include baboons, marmosets, rhesus and cynomolgus macaques, as well as African green monkeys. Because the NHP models are supremely useful for therapeutics and vaccine testing, emphasis is placed on comparison of these models, and their use as gold-standard models of EHF. Animal models of EHF varying from rodents to NHP species are currently under evaluation for their reproducibility and utility for modeling infection in humans. Complete development and licensure of therapeutic agents and vaccines will require demonstration that mechanisms conferring protection in NHP models of infection are predictive of protective responses in humans, for a given countermeasure.

  8. The Reversal of Direct Oral Anticoagulants in Animal Models

    PubMed Central

    Honickel, Markus; Akman, Necib; Grottke, Oliver

    2017-01-01

    ABSTRACT Several direct oral anticoagulants (DOACs), including direct thrombin and factor Xa inhibitors, have been approved as alternatives to vitamin K antagonist anticoagulants. As with any anticoagulant, DOAC use carries a risk of bleeding. In patients with major bleeding or needing urgent surgery, reversal of DOAC anticoagulation may be required, presenting a clinical challenge. The optimal strategy for DOAC reversal is being refined, and may include use of hemostatic agents such as prothrombin complex concentrates (PCCs; a source of concentrated clotting factors), or DOAC-specific antidotes (which bind their target DOAC to abrogate its activity). Though promising, most specific antidotes are still in development. Preclinical animal research is the key to establishing the efficacy and safety of potential reversal agents. Here, we summarize published preclinical animal studies on reversal of DOAC anticoagulation. These studies (n = 26) were identified via a PubMed search, and used rodent, rabbit, pig, and non-human primate models. The larger of these animals have the advantages of similar blood volume/hemodynamics to humans, and can be used to model polytrauma. We find that in addition to varied species being used, there is variability in the models and assays used between studies; we suggest that blood loss (bleeding volume) is the most clinically relevant measure of DOAC anticoagulation-related bleeding and its reversal. The studies covered indicate that both PCCs and specific reversal agents have the potential to be used as part of a clinical strategy for DOAC reversal. For the future, we advocate the development and use of standardized, clinically, and pharmacologically relevant animal models to study novel DOAC reversal strategies. PMID:28471371

  9. Translational neuropharmacology and the appropriate and effective use of animal models

    PubMed Central

    Green, AR; Gabrielsson, J; Fone, KCF

    2011-01-01

    This issue of the British Journal of Pharmacology is dedicated to reviews of the major animal models used in neuropharmacology to examine drugs for both neurological and psychiatric conditions. Almost all major conditions are reviewed. In general, regulatory authorities require evidence for the efficacy of novel compounds in appropriate animal models. However, the failure of many compounds in clinical trials following clear demonstration of efficacy in animal models has called into question both the value of the models and the discovery process in general. These matters are expertly reviewed in this issue and proposals for better models outlined. In this editorial, we further suggest that more attention be made to incorporate pharmacokinetic knowledge into the studies (quantitative pharmacology). We also suggest that more attention be made to ensure that full methodological details are published and recommend that journals should be more amenable to publishing negative data. Finally, we propose that new approaches must be used in drug discovery so that preclinical studies become more reflective of the clinical situation, and studies using animal models mimic the anticipated design of studies to be performed in humans, as closely as possible. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21545411

  10. Modeling the Diagnostic Criteria for Alcohol Dependence with Genetic Animal Models

    PubMed Central

    Kendler, Kenneth S.; Hitzemann, Robert J.

    2012-01-01

    A diagnosis of alcohol dependence (AD) using the DSM-IV-R is categorical, based on an individual’s manifestation of three or more symptoms from a list of seven. AD risk can be traced to both genetic and environmental sources. Most genetic studies of AD risk implicitly assume that an AD diagnosis represents a single underlying genetic factor. We recently found that the criteria for an AD diagnosis represent three somewhat distinct genetic paths to individual risk. Specifically, heavy use and tolerance versus withdrawal and continued use despite problems reflected separate genetic factors. However, some data suggest that genetic risk for AD is adequately described with a single underlying genetic risk factor. Rodent animal models for alcohol-related phenotypes typically target discrete aspects of the complex human AD diagnosis. Here, we review the literature derived from genetic animal models in an attempt to determine whether they support a single-factor or multiple-factor genetic structure. We conclude that there is modest support in the animal literature that alcohol tolerance and withdrawal reflect distinct genetic risk factors, in agreement with our human data. We suggest areas where more research could clarify this attempt to align the rodent and human data. PMID:21910077

  11. IN VIVO ANTI-INFLAMMATORY EFFECTS OF TARAXASTEROL AGAINST ANIMAL MODELS

    PubMed Central

    Wang, Ying; Li, Guan-Hao; Liu, Xin-Yu; Xu, Lu; Wang, Sha-Sha; Zhang, Xue-Mei

    2017-01-01

    Background: Traditional Chinese medicine Taraxacum officinale has been widely used to treat various inflammatory diseases. Taraxasterol is one of the main active components isolated from Taraxacum officinale. Recently, we have demonstrated that taraxasterol has the in vitro anti-inflammatory effects. This study aims to determine the in vivo anti-inflammatory effects of taraxasterol against animal models. Materials and Methods: Anti-inflammatory effects were assessed in four animal models by using dimethylbenzene-induced mouse ear edema, carrageenan-induced rat paw edema, acetic acid-induced mouse vascular permeability and cotton pellet-induced rat granuloma tests. Results: Our results demonstrated that taraxasterol dose-dependently attenuated dimethylbenzene-induced mouse ear edema and carrageenan-induced rat paw edema, decreased acetic acid-induced mouse vascular permeability and inhibited cotton pellet-induced rat granuloma formation. Conclusion: Our finding indicates that taraxasterol has obvious in vivo anti-inflammatory effects against animal models. It will provide experimental evidences for the traditional use of Taraxacum officinale and taraxasterol in inflammatory diseases. PMID:28480383

  12. Animal models in translational studies of PTSD.

    PubMed

    Daskalakis, Nikolaos P; Yehuda, Rachel; Diamond, David M

    2013-09-01

    Understanding the neurobiological mechanisms of post-traumatic stress disorder (PTSD) is of vital importance for developing biomarkers and more effective pharmacotherapy for this disorder. The design of bidirectional translational studies addressing all facets of PTSD is needed. Animal models of PTSD are needed not only to capture the complexity of PTSD behavioral characteristics, but also to address experimentally the influence of variety of factors which might determine an individual's vulnerability or resilience to trauma, e.g., genetic predisposition, early-life experience and social support. The current review covers recent translational approaches to bridge the gap between human and animal PTSD research and to create a framework for discovery of biomarkers and novel therapeutics. Published by Elsevier Ltd.

  13. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  14. A cross-species analysis method to analyze animal models' similarity to human's disease state

    PubMed Central

    2012-01-01

    Background Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. Results We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. Conclusions We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for

  15. A cross-species analysis method to analyze animal models' similarity to human's disease state.

    PubMed

    Yu, Shuhao; Zheng, Lulu; Li, Yun; Li, Chunyan; Ma, Chenchen; Li, Yixue; Li, Xuan; Hao, Pei

    2012-01-01

    Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as

  16. Review: Animal model and the current understanding of molecule dynamics of adipogenesis.

    PubMed

    Campos, C F; Duarte, M S; Guimarães, S E F; Verardo, L L; Wei, S; Du, M; Jiang, Z; Bergen, W G; Hausman, G J; Fernyhough-Culver, M; Albrecht, E; Dodson, M V

    2016-06-01

    Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.

  17. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects

    PubMed Central

    2013-01-01

    Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research. PMID:24274743

  18. The use of neurocomputational models as alternatives to animal models in the development of electrical brain stimulation treatments.

    PubMed

    Beuter, Anne

    2017-05-01

    Recent publications call for more animal models to be used and more experiments to be performed, in order to better understand the mechanisms of neurodegenerative disorders, to improve human health, and to develop new brain stimulation treatments. In response to these calls, some limitations of the current animal models are examined by using Deep Brain Stimulation (DBS) in Parkinson's disease as an illustrative example. Without focusing on the arguments for or against animal experimentation, or on the history of DBS, the present paper argues that given recent technological and theoretical advances, the time has come to consider bioinspired computational modelling as a valid alternative to animal models, in order to design the next generation of human brain stimulation treatments. However, before computational neuroscience is fully integrated in the translational process and used as a substitute for animal models, several obstacles need to be overcome. These obstacles are examined in the context of institutional, financial, technological and behavioural lock-in. Recommendations include encouraging agreement to change long-term habitual practices, explaining what alternative models can achieve, considering economic stakes, simplifying administrative and regulatory constraints, and carefully examining possible conflicts of interest. 2017 FRAME.

  19. The utility of animal models to evaluate novel anti-obesity agents

    PubMed Central

    Vickers, Steven P; Jackson, Helen C; Cheetham, Sharon C

    2011-01-01

    The global incidence of obesity continues to rise and is a major driver of morbidity and mortality through cardiovascular and cerebrovascular diseases. Animal models used in the discovery of novel treatments for obesity range from straightforward measures of food intake in lean rodents to long-term studies in animals exhibiting obesity due to the continuous access to diets high in fat. The utility of these animal models can be extended to determine, for example, that weight loss is due to fat loss and/or assess whether beneficial changes in key plasma parameters (e.g. insulin) are evident. In addition, behavioural models such as the behavioural satiety sequence can be used to confirm that a drug treatment has a selective effect on food intake. Typically, animal models have excellent predictive validity whereby drug-induced weight loss in rodents subsequently translates to weight loss in man. However, despite this, at the time of writing orlistat (Europe; USA) remains the only drug currently marketed for the treatment of obesity, with sibutramine having recently been withdrawn from sale globally due to the increased incidence of serious, non-fatal cardiovascular events. While the utility of rodent models in predicting clinical weight loss is detailed, the review also discusses whether animals can be used to predict adverse events such as those seen with recent anti-obesity drugs in the clinic. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21265828

  20. A Guide to Neurotoxic Animal Models of Parkinson’s Disease

    PubMed Central

    Tieu, Kim

    2011-01-01

    Parkinson’s disease (PD) is a neurological movement disorder primarily resulting from damage to the nigrostriatal dopaminergic pathway. To elucidate the pathogenesis, mechanisms of cell death, and to evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. The primary objectives of this article are twofold: First, to assist new investigators who are contemplating embarking on PD research to navigate through the available animal models. Emphasis will be placed on common neurotoxic murine models in which toxic molecules are used to lesion the nigrostriatal dopaminergic system. And second, to provide an overview of basic technical requirements for assessing the pathology, structure, and function of the nigrostriatal pathway. PMID:22229125

  1. Animated-simulation modeling facilitates clinical-process costing.

    PubMed

    Zelman, W N; Glick, N D; Blackmore, C C

    2001-09-01

    Traditionally, the finance department has assumed responsibility for assessing process costs in healthcare organizations. To enhance process-improvement efforts, however, many healthcare providers need to include clinical staff in process cost analysis. Although clinical staff often use electronic spreadsheets to model the cost of specific processes, PC-based animated-simulation tools offer two major advantages over spreadsheets: they allow clinicians to interact more easily with the costing model so that it more closely represents the process being modeled, and they represent cost output as a cost range rather than as a single cost estimate, thereby providing more useful information for decision making.

  2. Brewer's spent grain: a valuable feedstock for industrial applications.

    PubMed

    Mussatto, Solange I

    2014-05-01

    Brewer's spent grain (BSG) is the most abundant by-product generated from the beer-brewing process, representing approximately 85% of the total by-products obtained. This material is basically constituted by the barley grain husks obtained as solid residue after the wort production. Since BSG is rich in sugars and proteins, the main and quickest alternative for elimination of this industrial by-product has been as animal feed. However, BSG is a raw material of interest for application in different areas because of its low cost, large availability throughout the year and valuable chemical composition. In the last decade, many efforts have been directed towards the reuse of BSG, taking into account the incentive that has been given to recycle the wastes and by-products generated by industrial activities. Currently, many interesting and advantageous methods for application of BSG in foods, in energy production and in chemical and biotechnological processes have been reported. The present study presents and discusses the most recent perspectives for BSG application in such areas. © 2013 Society of Chemical Industry.

  3. An animal model to study regenerative endodontics.

    PubMed

    Torabinejad, Mahmoud; Corr, Robert; Buhrley, Matthew; Wright, Kenneth; Shabahang, Shahrokh

    2011-02-01

    A growing body of evidence is demonstrating the possibility for regeneration of tissues within the pulp space and continued root development in teeth with necrotic pulps and open apices. There are areas of research related to regenerative endodontics that need to be investigated in an animal model. The purpose of this study was to investigate ferret cuspid teeth as a model to investigate factors involved in regenerative endodontics. Six young male ferrets between the ages of 36-133 days were used in this investigation. Each animal was anesthetized and perfused with 10% buffered formalin. Block sections including the mandibular and maxillary cuspid teeth and their surrounding periapical tissues were obtained, radiographed, decalcified, sectioned, and stained with hematoxylin-eosin to determine various stages of apical closure in these teeth. The permanent mandibular and maxillary cuspid teeth with open apices erupted approximately 50 days after birth. Initial signs of closure of the apical foramen in these teeth were observed between 90-110 days. Complete apical closure was observed in the cuspid teeth when the animals were 133 days old. Based on the experiment, ferret cuspid teeth can be used to investigate various factors involved in regenerative endodontics that cannot be tested in human subjects. The most appropriate time to conduct the experiments would be when the ferrets are between the ages of 50 and 90 days. Copyright © 2011. Published by Elsevier Inc.

  4. Distance Education Teaching Methods and Student Responses in the Animal Sciences

    ERIC Educational Resources Information Center

    Bing, Jada Quinome

    2012-01-01

    The overall objective of this dissertation is to observe whether or not an Anatomy & Physiology Distance Education (DistEd) course offered in the Animal Science Department will prove to be valuable in the learning process for students. Study 1 was conducted to determine whether gross anatomy of animals could be taught effectively at the…

  5. Large Animal Models for Foamy Virus Vector Gene Therapy

    PubMed Central

    Trobridge, Grant D.; Horn, Peter A.; Beard, Brian C.; Kiem, Hans-Peter

    2012-01-01

    Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit. PMID:23223198

  6. Small and Large Animal Models in Cardiac Contraction Research: Advantages and Disadvantages

    PubMed Central

    Milani-Nejad, Nima; Janssen, Paul M.L.

    2013-01-01

    The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart’s activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients’ lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences. PMID:24140081

  7. Small and large animal models in cardiac contraction research: advantages and disadvantages.

    PubMed

    Milani-Nejad, Nima; Janssen, Paul M L

    2014-03-01

    The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences. © 2013.

  8. Animal models for studying female genital tract infection with Chlamydia trachomatis.

    PubMed

    De Clercq, Evelien; Kalmar, Isabelle; Vanrompay, Daisy

    2013-09-01

    Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen. It is the leading cause of bacterial sexually transmitted disease in the world, with more than 100 million new cases of genital tract infections with C. trachomatis occurring each year. Animal models are indispensable for the study of C. trachomatis infections and the development and evaluation of candidate vaccines. In this paper, the most commonly used animal models to study female genital tract infections with C. trachomatis will be reviewed, namely, the mouse, guinea pig, and nonhuman primate models. Additionally, we will focus on the more recently developed pig model.

  9. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  10. Connecting Brain Proteomics with Behavioural Neuroscience in Translational Animal Models of Neuropsychiatric Disorders.

    PubMed

    Sarnyai, Zoltán; Guest, Paul C

    2017-01-01

    Modelling psychiatric disorders in animals has been hindered by several challenges related to our poor understanding of the disease causes. This chapter describes recent advances in translational research which may lead to animal models and relevant proteomic biomarkers that can be informative about disease mechanisms and potential new therapeutic targets. The review focuses on the behavioural and molecular correlates in models of schizophrenia and major depressive disorder, as guided by recently established Research Domain Criteria (RDoC). This approach is based on providing proteomic data for aetiologically driven, behaviourally well-characterised animal models to link discovered biomarker candidates with the human disease.

  11. Neuropsychiatric SLE: from animal model to human.

    PubMed

    Pikman, R; Kivity, S; Levy, Y; Arango, M-T; Chapman, J; Yonath, H; Shoenfeld, Y; Gofrit, S G

    2017-04-01

    Animal models are a key element in disease research and treatment. In the field of neuropsychiatric lupus research, inbred, transgenic and disease-induced mice provide an opportunity to study the pathogenic routes of this multifactorial illness. In addition to achieving a better understanding of the immune mechanisms underlying the disease onset, supplementary metabolic and endocrine influences have been discovered and investigated. The ever-expanding knowledge about the pathologic events that occur at disease inception enables us to explore new drugs and therapeutic approaches further and to test them using the same animal models. Discovery of the molecular targets that constitute the pathogenic basis of the disease along with scientific advancements allow us to target these molecules with monoclonal antibodies and other specific approaches directly. This novel therapy, termed "targeted biological medication" is a promising endeavor towards producing drugs that are more effective and less toxic. Further work to discover additional molecular targets in lupus' pathogenic mechanism and to produce drugs that neutralize their activity is needed to provide patients with safe and efficient methods of controlling and treating the disease.

  12. A partial hearing animal model for chronic electro-acoustic stimulation

    NASA Astrophysics Data System (ADS)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  13. Opportunities for improving animal welfare in rodent models of epilepsy and seizures.

    PubMed

    Lidster, Katie; Jefferys, John G; Blümcke, Ingmar; Crunelli, Vincenzo; Flecknell, Paul; Frenguelli, Bruno G; Gray, William P; Kaminski, Rafal; Pitkänen, Asla; Ragan, Ian; Shah, Mala; Simonato, Michele; Trevelyan, Andrew; Volk, Holger; Walker, Matthew; Yates, Neil; Prescott, Mark J

    2016-02-15

    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. How animals move along? Exactly solvable model of superdiffusive spread resulting from animal's decision making.

    PubMed

    Tilles, Paulo F C; Petrovskii, Sergei V

    2016-07-01

    Patterns of individual animal movement have been a focus of considerable attention recently. Of particular interest is a question how different macroscopic properties of animal dispersal result from the stochastic processes occurring on the microscale of the individual behavior. In this paper, we perform a comprehensive analytical study of a model where the animal changes the movement velocity as a result of its behavioral response to environmental stochasticity. The stochasticity is assumed to manifest itself through certain signals, and the animal modifies its velocity as a response to the signals. We consider two different cases, i.e. where the change in the velocity is or is not correlated to its current value. We show that in both cases the early, transient stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also calculate analytically the dispersal kernel of the movement and show that, whilst it converge to a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage, i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology, our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in the movement data may be a feature of the transitional dynamics rather than an inherent property of the animal movement.

  15. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform

    PubMed Central

    Schachtschneider, Kyle M.; Schwind, Regina M.; Newson, Jordan; Kinachtchouk, Nickolas; Rizko, Mark; Mendoza-Elias, Nasya; Grippo, Paul; Principe, Daniel R.; Park, Alex; Overgaard, Nana H.; Jungersen, Gregers; Garcia, Kelly D.; Maker, Ajay V.; Rund, Laurie A.; Ozer, Howard; Gaba, Ron C.; Schook, Lawrence B.

    2017-01-01

    Despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. More than 8.2 million deaths were attributed to cancer in 2012, and it is anticipated that cancer incidence will continue to rise, with 19.3 million cases expected by 2025. The development and investigation of new diagnostic modalities and innovative therapeutic tools is critical for reducing the global cancer burden. Toward this end, transitional animal models serve a crucial role in bridging the gap between fundamental diagnostic and therapeutic discoveries and human clinical trials. Such animal models offer insights into all aspects of the basic science-clinical translational cancer research continuum (screening, detection, oncogenesis, tumor biology, immunogenicity, therapeutics, and outcomes). To date, however, cancer research progress has been markedly hampered by lack of a genotypically, anatomically, and physiologically relevant large animal model. Without progressive cancer models, discoveries are hindered and cures are improbable. Herein, we describe a transgenic porcine model—the Oncopig Cancer Model (OCM)—as a next-generation large animal platform for the study of hematologic and solid tumor oncology. With mutations in key tumor suppressor and oncogenes, TP53R167H and KRASG12D, the OCM recapitulates transcriptional hallmarks of human disease while also exhibiting clinically relevant histologic and genotypic tumor phenotypes. Moreover, as obesity rates increase across the global population, cancer patients commonly present clinically with multiple comorbid conditions. Due to the effects of these comorbidities on patient management, therapeutic strategies, and clinical outcomes, an ideal animal model should develop cancer on the background of representative comorbid conditions (tumor macro- and microenvironments). As observed in clinical

  16. Animal models of transcranial direct current stimulation: Methods and mechanisms.

    PubMed

    Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom

    2016-11-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the

  17. Animal Models of transcranial Direct Current Stimulation: Methods and Mechanisms

    PubMed Central

    Jackson, Mark P.; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C.; Bikson, Marom

    2016-01-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: 1) transcranial stimulation; 2) direct cortical stimulation in vivo and 3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching “quasi-uniform” assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the

  18. Training for laparoscopic Nissen fundoplication with a newly designed model: a replacement for animal tissue models?

    PubMed Central

    Christie, Lorna; Goossens, Richard; Jakimowicz, Jack J.

    2010-01-01

    Background To bridge the early learning curve for laparoscopic Nissen fundoplication from the clinical setting to a safe environment, training models can be used. This study aimed to develop a reusable, low-cost model to be used for training in laparoscopic Nissen fundoplication procedure as an alternative to the use of animal tissue models. Methods From artificial organs and tissue, an anatomic model of the human upper abdomen was developed for training in performing laparoscopic Nissen fundoplication. The 20 participants and tutors in the European Association for Endoscopic Surgery (EAES) upper gastrointestinal surgery course completed four complementary tasks of laparoscopic Nissen fundoplication with the artificial model, then compared the realism, haptic feedback, and training properties of the model with those of animal tissue models. Results The main difference between the two training models was seen in the properties of the stomach. The wrapping of the stomach in the artificial model was rated significantly lower than that in the animal tissue model (mean, 3.6 vs. 4.2; p = 0.010). The main criticism of the stomach of the artificial model was that it was too rigid for making a proper wrap. The suturing of the stomach wall, however, was regarded as fairly realistic (mean, 3.6). The crura on the artificial model were rated better (mean, 4.3) than those on the animal tissue (mean, 4.0), although the difference was not significant. The participants regarded the model as a good to excellent (mean, 4.3) training tool. Conclusion The newly developed model is regarded as a good tool for training in laparoscopic Nissen fundoplication procedure. It is cheaper, more durable, and more readily available for training and can therefore be used in every training center. The stomach of this model, however, still needs improvement because it is too rigid for making the wrap. PMID:20526629

  19. Poststroke Seizures and Epilepsy: Clinical Studies and Animal Models

    PubMed Central

    Kelly, Kevin M.

    2002-01-01

    Poststroke seizures and epilepsy have been described in numerous clinical studies for many years. Most studies are retrospective in design, include relatively small numbers of patients, have limited periods of follow-up, and report a diversity of findings. Well-designed clinical trials and population studies in the recent past addressed several critical clinical issues and generated important findings regarding the occurrence of poststroke seizures and epilepsy. In contrast, the pathophysiologic events of injured brain that establish poststroke epileptogenesis are not well understood, and animal modeling has had limited development. Reviews of several important clinical studies and animal models that hold promise for a better understanding of poststroke epileptogenesis are presented. PMID:15309107

  20. A review of standardized metabolic phenotyping of animal models.

    PubMed

    Rozman, Jan; Klingenspor, Martin; Hrabě de Angelis, Martin

    2014-10-01

    Metabolic phenotyping of genetically modified animals aims to detect new candidate genes and related metabolic pathways that result in dysfunctional energy balance regulation and predispose for diseases such as obesity or type 2 diabetes mellitus. In this review, we provide a comprehensive overview on the technologies available to monitor energy flux (food uptake, bomb calorimetry of feces and food, and indirect calorimetry) and body composition (qNMR, DXA, and MRI) in animal models for human diseases with a special focus on phenotyping methods established in genetically engineered mice. We use an energy flux model to illustrate the principles of energy allocation, describe methodological aspects how to monitor energy balance, and introduce strategies for data analysis and presentation.

  1. Animal Models in Genomic Research: Techniques, Applications, and Roles for Nurses

    PubMed Central

    Osier, Nicole D.; Pham, Lan; Savarese, Amanda; Sayles, Kendra

    2016-01-01

    Animal research has been conducted by scientists for over two millennia resulting in a better understanding of human anatomy, physiology, and pathology, as well as testing of novel therapies. In the molecular genomic era, pre-clinical models represent a key tool for understanding the genomic underpinnings of health and disease and are relevant to precision medicine initiatives. Nurses contribute to improved health by collecting and translating evidence from clinically relevant pre-clinical models. Using animal models, nurses can ask questions that would not be feasible or ethical to address in humans, and establish the safety and efficacy of interventions before translating them to clinical trials. Two advantages of using pre-clinical models are reduced variability between test subjects and the opportunity for precisely controlled experimental exposures. Standardized care controls the effects of diet and environment, while the availability of inbred strains significantly reduces the confounding effects of genetic differences. Outside the laboratory, nurses can contribute to the approval and oversight of animal studies, as well as translation to clinical trials and, ultimately, patient care. This review is intended as a primer on the use of animal models to advance nursing science; specifically, the paper discusses the utility of preclinical models for studying the pathophysiologic and genomic contributors to health and disease, testing interventions, and evaluating effects of environmental exposures. Considerations specifically geared to nurse researchers are also introduced, including discussion of how to choose an appropriate model and controls, potential confounders, as well as legal and ethical concerns. Finally, roles for nurse clinicians in pre-clinical research are also highlighted. PMID:27969037

  2. Modeling Autistic Features in Animals

    PubMed Central

    Patterson, Paul H.

    2011-01-01

    A variety of features of autism can be simulated in rodents, including the core behavioral hallmarks of stereotyped and repetitive behaviors, and deficits in social interaction and communication. Other behaviors frequently found in autism spectrum disorders (ASD) such as neophobia, enhanced anxiety, abnormal pain sensitivity and eye blink conditioning, disturbed sleep patterns, seizures, and deficits in sensorimotor gating are also present in some of the animal models. Neuropathology and some characteristic neurochemical changes that are frequently seen in autism, as well as alterations in the immune status in the brain and periphery are also found in some of the models. Several known environmental risk factors for autism have been successfully established in rodents, including maternal infection and maternal valproate administration. Also under investigation are a number of mouse models based on genetic variants associated with autism or on syndromic disorders with autistic features. This review briefly summarizes recent developments in this field, highlighting models with face and/or construct validity, and noting the potential for investigation of pathogenesis and early progress towards clinical testing of potential therapeutics. Wherever possible, reference is made to reviews rather than primary articles. PMID:21289542

  3. An improved mounting device for attaching intracranial probes in large animal models.

    PubMed

    Dunster, Kimble R

    2015-12-01

    The rigid support of intracranial probes can be difficult when using animal models, as mounting devices suitable for the probes are either not available, or designed for human use and not suitable in animal skulls. A cheap and reliable mounting device for securing intracranial probes in large animal models is described. Using commonly available clinical consumables, a universal mounting device for securing intracranial probes to the skull of large animals was developed and tested. A simply made mounting device to hold a variety of probes from 500 μm to 1.3 mm in diameter to the skull was developed. The device was used to hold probes to the skulls of sheep for up to 18 h. No adhesives or cements were used. The described device provides a reliable method of securing probes to the skull of animals.

  4. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.

    PubMed

    Kim, Ji-Woon; Seung, Hana; Kim, Ki Chan; Gonzales, Edson Luck T; Oh, Hyun Ah; Yang, Sung Min; Ko, Mee Jung; Han, Seol-Heui; Banerjee, Sourav; Shin, Chan Young

    2017-02-01

    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pneumococcal meningitis: development of a new animal model

    PubMed Central

    Wei, Benjamin P.C.; Shepherd, Robert K.; Robins-Browne, Roy M.; Clark, Graeme M.; O’Leary, Stephen J.

    2007-01-01

    Hypothesis The rat is a suitable animal to establish a model for the study of pneumococcal meningitis post cochlear implantation Background There has been an increase in the number of cases of cochlear implant-related meningitis. The most common organism identified was Streptococcus pneumoniae. Whether cochlear implantation increases the risk of pneumococcal meningitis in healthy subjects without other risk factors remains to be determined. Previous animal studies do not focus on the pathogenesis and risk of pneumococcal meningitis post implantation and are based on relatively small animal numbers, making it difficult to assess the cause and effect relationship. There is, therefore, a need to develop a new animal model allowing direct examination of the pathogenesis of meningitis in the presence of a cochlear implant. Methods Eighteen non-implanted rats were infected with 1× 106 and 1 × 108 colony forming units (CFU) of a clinical isolate of S. pneumoniae via three different inoculation routes (middle ear, inner ear and intraperitoneal) to examine for evidence of meningitis over 24 hours. Six implanted rats were infected with the highest amount of bacteria possible for each route of inoculation (4 × 1010 CFU intraperitoneal, 3 × 108CFU middle ear, 1 × 106 CFU inner ear) to examine for evidence of meningitis with the presence of an implant. Histological pattern of cochlear infections for each of the three different inoculating routes were examined. Results Pneumococcal meningitis was evident in all 6 implanted animals for each of the three different routes of inoculation. Once in the inner ear, bacteria were found to enter the central nervous system either via the cochlear aqueduct or canaliculi perforantes of osseous spiral lamina, reaching the perineural and perivascular space then the internal acoustic meatus. The rate, extent and pattern of infection within the cochleae depended on the route of inoculation. Finally, there was no evidence of pneumococcal

  6. A Mathematical Model of Anthrax Transmission in Animal Populations.

    PubMed

    Saad-Roy, C M; van den Driessche, P; Yakubu, Abdul-Aziz

    2017-02-01

    A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number [Formula: see text] is calculated, and existence of a unique endemic equilibrium is established for [Formula: see text] above the threshold value 1. Using data from the literature, elasticity indices for [Formula: see text] and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if [Formula: see text]. For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with [Formula: see text] and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.

  7. Scaling and biomechanics of surface attachment in climbing animals

    PubMed Central

    Labonte, David; Federle, Walter

    2015-01-01

    Attachment devices are essential adaptations for climbing animals and valuable models for synthetic adhesives. A major unresolved question for both natural and bioinspired attachment systems is how attachment performance depends on size. Here, we discuss how contact geometry and mode of detachment influence the scaling of attachment forces for claws and adhesive pads, and how allometric data on biological systems can yield insights into their mechanism of attachment. Larger animals are expected to attach less well to surfaces, due to their smaller surface-to-volume ratio, and because it becomes increasingly difficult to distribute load uniformly across large contact areas. In order to compensate for this decrease of weight-specific adhesion, large animals could evolve overproportionally large pads, or adaptations that increase attachment efficiency (adhesion or friction per unit contact area). Available data suggest that attachment pad area scales close to isometry within clades, but pad efficiency in some animals increases with size so that attachment performance is approximately size-independent. The mechanisms underlying this biologically important variation in pad efficiency are still unclear. We suggest that switching between stress concentration (easy detachment) and uniform load distribution (strong attachment) via shear forces is one of the key mechanisms enabling the dynamic control of adhesion during locomotion. PMID:25533088

  8. Testing flow diversion in animal models: a systematic review.

    PubMed

    Fahed, Robert; Raymond, Jean; Ducroux, Célina; Gentric, Jean-Christophe; Salazkin, Igor; Ziegler, Daniela; Gevry, Guylaine; Darsaut, Tim E

    2016-04-01

    Flow diversion (FD) is increasingly used to treat intracranial aneurysms. We sought to systematically review published studies to assess the quality of reporting and summarize the results of FD in various animal models. Databases were searched to retrieve all animal studies on FD from 2000 to 2015. Extracted data included species and aneurysm models, aneurysm and neck dimensions, type of flow diverter, occlusion rates, and complications. Articles were evaluated using a checklist derived from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Forty-two articles reporting the results of FD in nine different aneurysm models were included. The rabbit elastase-induced aneurysm model was the most commonly used, with 3-month occlusion rates of 73.5%, (95%CI [61.9-82.6%]). FD of surgical sidewall aneurysms, constructed in rabbits or canines, resulted in high occlusion rates (100% [65.5-100%]). FD resulted in modest occlusion rates (15.4% [8.9-25.1%]) when tested in six complex canine aneurysm models designed to reproduce more difficult clinical contexts (large necks, bifurcation, or fusiform aneurysms). Adverse events, including branch occlusion, were rarely reported. There were no hemorrhagic complications. Articles complied with 20.8 ± 3.9 of 41 ARRIVE items; only a small number used randomization (3/42 articles [7.1%]) or a control group (13/42 articles [30.9%]). Preclinical studies on FD have shown various results. Occlusion of elastase-induced aneurysms was common after FD. The model is not challenging but standardized in many laboratories. Failures of FD can be reproduced in less standardized but more challenging surgical canine constructions. The quality of reporting could be improved.

  9. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk.

    PubMed

    Shi, Danni; Vine, Donna F

    2012-07-01

    To review rodent animal models of polycystic ovary syndrome (PCOS), with a focus on those associated with the metabolic syndrome and cardiovascular disease risk factors. Review. Rodent models of PCOS. Description and comparison of animal models. Comparison of animal models to clinical phenotypes of PCOS. Animals used to study PCOS include rodents, mice, rhesus monkeys, and ewes. Major methods to induce PCOS in these models include subcutaneous injection or implantation of androgens, estrogens, antiprogesterone, letrozole, prenatal exposure to excess androgens, and exposure to constant light. In addition, transgenic mice models and spontaneous PCOS-like rodent models have also been developed. Rodents are the most economical and widely used animals to study PCOS and ovarian dysfunction. The model chosen to study the development of PCOS and other metabolic parameters remains dependent on the specific etiologic hypotheses being investigated. Rodent models have been shown to demonstrate changes in insulin metabolism, with or without induction of hyperandrogenemia, and limited studies have investigated cardiometabolic risk factors for type 2 diabetes and cardiovascular disease. Given the clinical heterogeneity of PCOS, the utilization of different animal models may be the best approach to further our understanding of the pathophysiologic mechanisms associated with the early etiology of PCOS and cardiometabolic risk. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Animal Models in Forensic Science Research: Justified Use or Ethical Exploitation?

    PubMed

    Mole, Calvin Gerald; Heyns, Marise

    2018-05-01

    A moral dilemma exists in biomedical research relating to the use of animal or human tissue when conducting scientific research. In human ethics, researchers need to justify why the use of humans is necessary should suitable models exist. Conversely, in animal ethics, a researcher must justify why research cannot be carried out on suitable alternatives. In the case of medical procedures or therapeutics testing, the use of animal models is often justified. However, in forensic research, the justification may be less evident, particularly when research involves the infliction of trauma on living animals. To determine how the forensic science community is dealing with this dilemma, a review of literature within major forensic science journals was conducted. The frequency and trends of the use of animals in forensic science research was investigated for the period 1 January 2012-31 December 2016. The review revealed 204 original articles utilizing 5050 animals in various forms as analogues for human tissue. The most common specimens utilized were various species of rats (35.3%), pigs (29.3%), mice (17.7%), and rabbits (8.2%) although different specimens were favored in different study themes. The majority of studies (58%) were conducted on post-mortem specimens. It is, however, evident that more needs to be done to uphold the basic ethical principles of reduction, refinement and replacement in the use of animals for research purposes.

  11. SketchBio: a scientist's 3D interface for molecular modeling and animation.

    PubMed

    Waldon, Shawn M; Thompson, Peter M; Hahn, Patrick J; Taylor, Russell M

    2014-10-30

    Because of the difficulties involved in learning and using 3D modeling and rendering software, many scientists hire programmers or animators to create models and animations. This both slows the discovery process and provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a set of design goals) to enable them to directly construct models and animations. SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example, pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular models. Design decisions and their consequences are presented, including cases where iterative design was required to produce effective approaches. The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve their effectiveness.

  12. Animal models of speech and vocal communication deficits associated with psychiatric disorders

    PubMed Central

    Konopka, Genevieve; Roberts, Todd F.

    2015-01-01

    Disruptions in speech, language and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language when compared to vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. Here, we review animal models of vocal learning and vocal communication, and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language and vocal communication. PMID:26232298

  13. The effect of music on cognitive performance: insight from neurobiological and animal studies.

    PubMed

    Rickard, Nikki S; Toukhsati, Samia R; Field, Simone E

    2005-12-01

    The past 50 years have seen numerous claims that music exposure enhances human cognitive performance. Critical evaluation of studies across a variety of contexts, however, reveals important methodological weaknesses. The current article argues that an interdisciplinary approach is required to advance this research. A case is made for the use of appropriate animal models to avoid many confounds associated with human music research. Although such research has validity limitations for humans, reductionist methodology enables a more controlled exploration of music's elementary effects. This article also explores candidate mechanisms for this putative effect. A review of neurobiological evidence from human and comparative animal studies confirms that musical stimuli modify autonomic and neurochemical arousal indices, and may also modify synaptic plasticity. It is proposed that understanding how music affects animals provides a valuable conjunct to human research and may be vital in uncovering how music might be used to enhance cognitive performance.

  14. Modeling DNA structure and processes through animation and kinesthetic visualizations

    NASA Astrophysics Data System (ADS)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  15. Transgenic animal models of neurodegeneration based on human genetic studies

    PubMed Central

    Richie, Christopher T.; Hoffer, Barry J.; Airavaara, Mikko

    2011-01-01

    The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease. PMID:20931247

  16. Critical Behavior in Cellular Automata Animal Disease Transmission Model

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Chang, Julius

    Using cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared in a farm, there is mandatory slaughter (culling) of all livestock in an infected premise (IP). Those farms in the neighboring of an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor interactions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The nonlocal disease transport probability can be as low as 0.01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fission cascade. Finally, we calculate that the percentage of culled animals that are actually healthy is ≈30%.

  17. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    PubMed

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  18. Animal model of grain worker's lung.

    PubMed Central

    Stepner, N; Broder, I; Baumal, R

    1986-01-01

    We examined the light microscopic changes in the lungs of rabbits exposed to grain dust for variable periods of time, to determine whether an animal model of grain worker's lung could be developed. Experimental animals were exposed to grain dust at a concentration of 20 mg/m3 for 7 hr/day, 5 days/week, for up to 6 months. The lungs of these rabbits demonstrated a granulomatous interstitial pneumonitis associated with exudation of mononuclear cells into the alveoli and conducting airways. These changes appeared within 5 days of the onset of exposure and reached a peak at 3 weeks but were sustained through the longest exposure interval. No abnormalities were observed in the lungs of control rabbits. These results show three points of consistency with those obtained in epidemiologic studies of grain elevator workers. First, the rapid appearance of the experimental changes suggests that the mechanism of tissue injury may not be immunologic. Second, the occurrence of the histopathologic alterations in the interstitium, alveoli, and airways corresponds with the combined restrictive and obstructive ventilatory defect described in the human epidemiologic studies. Third, the absence of lung fibrosis in rabbits exposed to dust for 6 months suggests that the pneumonitis is reversible. Thus this experimental model shows promise of helping to clarify the nature and mechanism of the adverse pulmonary effects of grain dust. Images FIGURE 1. FIGURE 2. PMID:3709485

  19. Facial animation on an anatomy-based hierarchical face model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Prakash, Edmond C.; Sung, Eric

    2003-04-01

    In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.

  20. Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease

    PubMed Central

    Jobe, Alan H.

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is a unique injury syndrome caused by prolonged injury and repair imposed on an immature and developing lung. The decreased septation and decreased microvascular development phenotype of BPD can be reproduced in newborn rodents with increased chronic oxygen exposure and in premature primates and sheep with oxygen and/or mechanical ventilation. The inflammation caused by oxidants, inflammatory agonists, and/or stretch injury from mechanical ventilation seems to promote the anatomic abnormalities. Multiple interventions targeted to specific inflammatory cells or pathways or targeted to decreasing ventilation-mediated injury can substantially prevent the anatomic changes associated with BPD in term rodents and in preterm sheep or primate models. Most of the anti-inflammatory therapies with benefit in animal models have not been tested clinically. None of the interventions that have been tested clinically are as effective as anticipated from the animal models. These inconsistencies in responses likely are explained by the antenatal differences in lung exposures of the developing animals relative to very preterm humans. The animals generally have normal lungs while the lungs of preterm infants are exposed variably to intrauterine inflammation, growth abnormalities, antenatal corticosteroids, and poorly understood effects from the causes of preterm delivery. The animal models have been essential for the definition of the mediators that can cause a BPD phenotype. These models will be necessary to develop and test future-targeted interventions to prevent and treat BPD. PMID:26301222

  1. Cataractogenic potential of ionizing radiations in animal models that simulate man

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Lee, A. C.

    1986-01-01

    Aspects of experiments on radiation-induced lenticular opacification during the life spans of two animal models, the New Zealand white rabbit and the rhesus monkey, are compared and contrasted with published results from a life-span study of another animal model, the beagle dog, and the most recent data from the ongoing study of the survivors from radiation exposure at Hiroshima and Nagasaki. An important connection among the three animal studies is that all the measurements of cataract indices were made by one of the authors (Lee), so variation from personal subjectivity was reduced to a minimum. The primary objective of the rabbit experiments (radiations involved: Fe-56, Ar-40, and Ne-20 ions and Co-60 gamma photons) is an evaluation of hazards to astronauts from Galactic particulate radiations. An analogous evaluation of hazards from solar flares during space flight is being made with monkeys exposed to 32, 55, 138 and 400-MeV protons. Conclusions are drawn about the proper use of animal models to simulate radiation responses in man and the levels of radiation-induced lenticular opacification that pose risks to man in space.

  2. Cataractogenic potential of ionizing radiations in animal models that simulate man

    NASA Astrophysics Data System (ADS)

    Lett, J. T.; Cox, A. B.; Lee, A. C.

    Aspects of experiments on radiation-induced lenticular opacification during the life spans of two animal models, the New Zealand white rabbit and the rhesus monkey, are compared and contrasted with published results from a life span study of another animal model, the beagle dog, and the most recent data from the ongoing study of the survivors from radiation exposure at Hiroshima and Nagasaki. An important connection among the three animal studies is that all the measurements of cataract indices were made by one of the authors (A.C.L.), so variation from personal subjectivity was reduced to a minimum. The primary objective of the rabbit experiments (radiations involved: 56Fe, 40Ar and 20Ne ions and 60Co γ photons) is an evaluation of hazards to astronauts from galactic particulate radiations. An analogous evaluation of hazards from solar flares during space flight is being made with monkeys exposed to 32, 55, 138 and 400 MeV protons. Conclusions are drawn about the proper use of animal models to simulate radiation responses in man and the levels of radiation-induced lenticular opacification that pose risks to man in space.

  3. Leveraging Existing Heritage Documentation for Animations: Senate Virtual Tour

    NASA Astrophysics Data System (ADS)

    Dhanda, A.; Fai, S.; Graham, K.; Walczak, G.

    2017-08-01

    The use of digital documentation techniques has led to an increase in opportunities for using documentation data for valorization purposes, in addition to technical purposes. Likewise, building information models (BIMs) made from these data sets hold valuable information that can be as effective for public education as it is for rehabilitation. A BIM can reveal the elements of a building, as well as the different stages of a building over time. Valorizing this information increases the possibility for public engagement and interest in a heritage place. Digital data sets were leveraged by the Carleton Immersive Media Studio (CIMS) for parts of a virtual tour of the Senate of Canada. For the tour, workflows involving four different programs were explored to determine an efficient and effective way to leverage the existing documentation data to create informative and visually enticing animations for public dissemination: Autodesk Revit, Enscape, Autodesk 3ds Max, and Bentley Pointools. The explored workflows involve animations of point clouds, BIMs, and a combination of the two.

  4. Development of Animal Models Against Emerging Coronaviruses: From SARS to MERS coronavirus

    PubMed Central

    Sutton, Troy C; Subbarao, Kanta

    2016-01-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. PMID:25791336

  5. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-04

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  6. Translational approaches to obsessive-compulsive disorder: from animal models to clinical treatment

    PubMed Central

    Fineberg, NA; Chamberlain, SR; Hollander, E; Boulougouris, V; Robbins, TW

    2011-01-01

    Obsessive-compulsive disorder (OCD) is characterized by obsessions (intrusive thoughts) and compulsions (repetitive ritualistic behaviours) leading to functional impairment. Accumulating evidence links these conditions with underlying dysregulation of fronto-striatal circuitry and monoamine systems. These abnormalities represent key targets for existing and novel treatment interventions. However, the brain bases of these conditions and treatment mechanisms are still not fully elucidated. Animal models simulating the behavioural and clinical manifestations of the disorder show great potential for augmenting our understanding of the pathophysiology and treatment of OCD. This paper provides an overview of what is known about OCD from several perspectives. We begin by describing the clinical features of OCD and the criteria used to assess the validity of animal models of symptomatology; namely, face validity (phenomenological similarity between inducing conditions and specific symptoms of the human phenomenon), predictive validity (similarity in response to treatment) and construct validity (similarity in underlying physiological or psychological mechanisms). We then survey animal models of OC spectrum conditions within this framework, focusing on (i) ethological models; (ii) genetic and pharmacological models; and (iii) neurobehavioural models. We also discuss their advantages and shortcomings in relation to their capacity to identify potentially efficacious new compounds. It is of interest that there has been rather little evidence of ‘false alarms’ for therapeutic drug effects in OCD models which actually fail in the clinic. While it is more difficult to model obsessive cognition than compulsive behaviour in experimental animals, it is feasible to infer cognitive inflexibility in certain animal paradigms. Finally, key future neurobiological and treatment research areas are highlighted. LINKED ARTICLES This article is part of a themed issue on Translational

  7. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    PubMed Central

    Nathoo, Nabeela; Yong, V. Wee; Dunn, Jeff F.

    2014-01-01

    There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. PMID:24936425

  8. Current status and patent prospective of animal models in diabetic research

    PubMed Central

    Dhuria, Radhey S.; Singh, Gurpreet; Kaur, Anudeep; Kaur, Ramandeep; Kaur, Tanurajvir

    2015-01-01

    Diabetes mellitus is a heterogeneous complex metabolic disorder with multiple etiology which characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action or both. The widespread occurrence of diabetes throughout the world has increased dramatically over the past few years. For better understanding, appropriate animal models that closely mimic the changes in humans needed, as vital tool for understanding the etiology and pathogenesis of the disease at the cellular/molecular level and for preclinical testing of drugs. This review aims to describe the animal models of type-1 diabetes (T1Ds) and T2Ds to mimic the causes and progression of the disease in humans. And also we highlight patent applications published in the last few years related to animal models in diabetes as an important milestone for future therapies that are aim to treating diabetes with specific symptoms and complications. PMID:26261819

  9. Current status and patent prospective of animal models in diabetic research.

    PubMed

    Dhuria, Radhey S; Singh, Gurpreet; Kaur, Anudeep; Kaur, Ramandeep; Kaur, Tanurajvir

    2015-01-01

    Diabetes mellitus is a heterogeneous complex metabolic disorder with multiple etiology which characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action or both. The widespread occurrence of diabetes throughout the world has increased dramatically over the past few years. For better understanding, appropriate animal models that closely mimic the changes in humans needed, as vital tool for understanding the etiology and pathogenesis of the disease at the cellular/molecular level and for preclinical testing of drugs. This review aims to describe the animal models of type-1 diabetes (T1Ds) and T2Ds to mimic the causes and progression of the disease in humans. And also we highlight patent applications published in the last few years related to animal models in diabetes as an important milestone for future therapies that are aim to treating diabetes with specific symptoms and complications.

  10. Using human brain imaging studies as a guide towards animal models of schizophrenia

    PubMed Central

    BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph

    2015-01-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  11. Animal models in genomic research: Techniques, applications, and roles for nurses.

    PubMed

    Osier, Nicole D; Pham, Lan; Savarese, Amanda; Sayles, Kendra; Alexander, Sheila A

    2016-11-01

    Animal research has been conducted by scientists for over two millennia resulting in a better understanding of human anatomy, physiology, and pathology, as well as testing of novel therapies. In the molecular genomic era, pre-clinical models represent a key tool for understanding the genomic underpinnings of health and disease and are relevant to precision medicine initiatives. Nurses contribute to improved health by collecting and translating evidence from clinically relevant pre-clinical models. Using animal models, nurses can ask questions that would not be feasible or ethical to address in humans, and establish the safety and efficacy of interventions before translating them to clinical trials. Two advantages of using pre-clinical models are reduced variability between test subjects and the opportunity for precisely controlled experimental exposures. Standardized care controls the effects of diet and environment, while the availability of inbred strains significantly reduces the confounding effects of genetic differences. Outside the laboratory, nurses can contribute to the approval and oversight of animal studies, as well as translation to clinical trials and, ultimately, patient care. This review is intended as a primer on the use of animal models to advance nursing science; specifically, the paper discusses the utility of preclinical models for studying the pathophysiologic and genomic contributors to health and disease, testing interventions, and evaluating effects of environmental exposures. Considerations specifically geared to nurse researchers are also introduced, including discussion of how to choose an appropriate model and controls, potential confounders, as well as legal and ethical concerns. Finally, roles for nurse clinicians in pre-clinical research are also highlighted. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. How can animal models inform on the transition to chronic symptoms in whiplash?

    PubMed Central

    Winkelstein, Beth A.

    2011-01-01

    Study Design A non-systematic review of the literature. Objective The objective was to present general schema for mechanisms of whiplash pain and review the role of animal models in understanding the development of chronic pain from whiplash injury. Summary of Background Data Extensive biomechanical and clinical studies of whiplash have been performed to understand the injury mechanisms and symptoms of whiplash injury. However, only recently have animal models of this painful disorder been developed based on other pain models in the literature. Methods A non-systematic review was performed and findings were integrated to formulate a generalized picture of mechanisms by chronic whiplash pain develops from mechanical tissue injuries. Results The development of chronic pain from tissue injuries in the neck due to whiplash involves complex interactions between the injured tissue and spinal neuroimmune circuits. A variety of animal models are beginning to define these mechanisms. Conclusion Continued work is needed in developing appropriate animal models to investigate chronic pain from whiplash injuries and care must be taken to determine whether such models aim to model the injury event or the pain symptom. PMID:22020616

  13. Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance

    PubMed Central

    Gao, Bin; Xu, Ming-Jiang; Bertola, Adeline; Wang, Hua; Zhou, Zhou; Liangpunsakul, Suthat

    2017-01-01

    Alcoholic liver disease (ALD), a leading cause of chronic liver injury worldwide, comprises a range of disorders including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Over the last five decades, many animal models for the study of ALD pathogenesis have been developed. Recently, a chronic-plus-binge ethanol feeding model was reported. This model induces significant steatosis, hepatic neutrophil infiltration, and liver injury. A clinically relevant model of high-fat diet feeding plus binge ethanol was also developed, which highlights the risk of excessive binge drinking in obese/overweight individuals. All of these models recapitulate some features of the different stages of ALD and have been widely used by many investigators to study the pathogenesis of ALD and to test for therapeutic drugs/components. However, these models are somewhat variable, depending on mouse genetic background, ethanol dose, and animal facility environment. This review focuses on these models and discusses these variations and some methods to improve the feeding protocol. The pathogenesis, clinical relevance, and translational studies of these models are also discussed. PMID:28411363

  14. A Cross-Species Analysis of Animal Models for the Investigation of Preterm Birth Mechanisms

    PubMed Central

    Nielsen, Brian W.; Bonney, Elizabeth A.; Pearce, Bradley D.; Donahue, Leah Rae; Sarkar, Indra Neil

    2015-01-01

    Background: Spontaneous preterm birth is the leading cause of neonatal morbidity and mortality worldwide. The ability to examine the exact mechanisms underlying this syndrome in humans is limited. Therefore, the study of animal models is critical to unraveling the key physiologic mechanisms that control the timing of birth. The purpose of this review is to facilitate enhanced assimilation of the literature on animal models of preterm birth by a broad range of investigators. Methods: Using classical systematic and informatics search techniques of the available literature through 2012, a database of intact animal models was generated. Research librarians generated a list of articles using multiple databases. From these articles, a comprehensive list of Medical Subject Headings (MeSH) was created. Using mathematical modeling, significant MeSH descriptors were determined, and a MEDLINE search algorithm was created. The articles were reviewed for mechanism of labor induction categorized by species. Results: Existing animal models of preterm birth comprise specific interventions to induce preterm birth, as no animal model was identified that exhibits natural spontaneous preterm birth at an incidence comparable to that of the humans. A search algorithm was developed which when used results in a comprehensive list of agents used to induce preterm delivery in a host of animal species. The evolution of 3 specific animal models—sheep, mice, and rats—has demonstrated a clear shift in focus in the literature from endocrine to inflammatory agents of preterm birth induction. Conclusion: The process of developing a search algorithm to provide efficient access to information on animal models of preterm birth illustrates the need for a more precise organization of the literature to allow the investigator to focus on distinctly maternal versus fetal outcomes. PMID:26377998

  15. * Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process.

    PubMed

    Fawzy El-Sayed, Karim M; Dörfer, Christof E

    2017-12-01

    The human periodontium is a uniquely complex vital structure, supporting and anchoring the teeth in their alveolar sockets, thereby playing a decisive role in tooth homeostasis and function. Chronic periodontitis is a highly prevalent immune-inflammatory disease of the periodontium, affecting 15% of adult individuals, and is characterized by progressive destruction of the periodontal tooth-investing tissues, culminating in their irreversible damage. Current periodontal evidence-based treatment strategies achieve periodontal healing via repair processes, mostly combating the inflammatory component of the disease, to halt or reduce prospective periodontal tissue loss. However, complete periodontal tissue regeneration remains a hard fought-for goal in the field of periodontology and multiple in vitro and in vivo studies have been conducted, in the conquest to achieve a functional periodontal tissue regeneration in humans. The present review evaluates the current status of periodontal regeneration attempted through tissue-engineering concepts, ideal requirements for experimental animal models under investigation, the methods of induction and classification of the experimentally created periodontal defects, types of experimental defects employed in the diverse animal studies, as well as the current state of knowledge obtained from in vivo animal experiments, with special emphasis on large animal models.

  16. Domestic animals as models for biomedical research.

    PubMed

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene.

  17. Domestic animals as models for biomedical research

    PubMed Central

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene. PMID:26479863

  18. The guinea pig as an animal model for developmental and reproductive toxicology studies.

    PubMed

    Rocca, Meredith S; Wehner, Nancy G

    2009-04-01

    Regulatory guidelines for developmental and reproductive toxicology (DART) studies require selection of "relevant" animal models as determined by kinetic, pharmacological, and toxicological data. Traditionally, rats, mice, and rabbits are the preferred animal models for these studies. However, for test articles that are pharmacologically inactive in the traditional animal models, the guinea pig may be a viable option. This choice should not be made lightly, as guinea pigs have many disadvantages compared to the traditional species, including limited historical control data, variability in pregnancy rates, small and variable litter size, long gestation, relative maturity at birth, and difficulty in dosing and breeding. This report describes methods for using guinea pigs in DART studies and provides results of positive and negative controls. Standard study designs and animal husbandry methods were modified to allow mating on the postpartum estrus in fertility studies and were used for producing cohorts of pregnant females for developmental studies. A positive control study with the pregnancy-disrupting agent mifepristone resulted in the anticipated failure of embryo implantation and supported the use of the guinea pig model. Control data for reproductive endpoints collected from 5 studies are presented. In cases where the traditional animal models are not relevant, the guinea pig can be used successfully for DART studies. (c) 2009 Wiley-Liss, Inc.

  19. Towards an Ethological Animal Model of Depression? A Study on Horses

    PubMed Central

    Fureix, Carole; Jego, Patrick; Henry, Séverine; Lansade, Léa; Hausberger, Martine

    2012-01-01

    Background Recent reviews question current animal models of depression and emphasise the need for ethological models of mood disorders based on animals living under natural conditions. Domestic horses encounter chronic stress, including potential stress at work, which can induce behavioural disorders (e.g. “apathy”). Our pioneering study evaluated the potential of domestic horses in their usual environment to become an ethological model of depression by testing this models’ face validity (i.e. behavioural similarity with descriptions of human depressive states). Methodology/Principal Findings We observed the spontaneous behaviour of 59 working horses in their home environment, focusing on immobility bouts of apparent unresponsiveness when horses displayed an atypical posture (termed withdrawn hereafter), evaluated their responsiveness to their environment and their anxiety levels, and analysed cortisol levels. Twenty-four percent of the horses presented the withdrawn posture, also characterized by gaze, head and ears fixity, a profile that suggests a spontaneous expression of “behavioural despair”. When compared with control “non-withdrawn” horses from the same stable, withdrawn horses appeared more indifferent to environmental stimuli in their home environment but reacted more emotionally in more challenging situations. They exhibited lower plasma cortisol levels. Withdrawn horses all belonged to the same breed and females were over-represented. Conclusions/Significance Horse might be a useful potential candidate for an animal model of depression. Face validity of this model appeared good, and potential genetic input and high prevalence of these disorders in females add to the convergence. At a time when current animal models of depression are questioned and the need for novel models is expressed, this study suggests that novel models and biomarkers could emerge from ethological approaches in home environments. PMID:22761752

  20. Animal Models for Dysphagia Studies: What Have We Learnt So Far.

    PubMed

    German, Rebecca Z; Crompton, A W; Gould, Francois D H; Thexton, Allan J

    2017-02-01

    Research using animal models has contributed significantly to realizing the goal of understanding dysfunction and improving the care of patients who suffer from dysphagia. But why should other researchers and the clinicians who see patients day in and day out care about this work? Results from studies of animal models have the potential to change and grow how we think about dysphagia research and practice in general, well beyond applying specific results to human studies. Animal research provides two key contributions to our understanding of dysphagia. The first is a more complete characterization of the physiology of both normal and pathological swallow than is possible in human subjects. The second is suggesting of specific, physiological, targets for development and testing of treatment interventions to improve dysphagia outcomes.

  1. An animal model for the neuromodulation of neurogenic bladder dysfunction.

    PubMed

    Zvara, P; Sahi, S; Hassouna, M M

    1998-08-01

    To develop an animal model to examine the pathophysiology by which S3 sacral root electrostimulation alters the micturition reflex in patients with bladder hyper-reflexia. Chronic sacral nerve root electrostimulation was applied to spinally transected rats; 21 animals were divided into four groups. The spinal cord was completely transected at the T10-11 level and stainless-steel electrodes implanted into the sacral foramen in 17 animals; these animals were subsequently divided into two groups (1 and 2). Six rats in group 1 underwent sacral root elctrostimulation for 2 h/day and five in group 2 for 6 h/day, for 21 days. The sham group (group 3, six rats) received no stimulation and four rats were used as healthy controls (group 4). Voiding frequency was recorded and each animal was evaluated cystometrically at the end of the stimulation period. The results were compared with the sham and control groups. Spinal cord transection resulted in bladder areflexia and complete urinary retention; 7-9 days after the injury, the bladder recovered its activity. Twenty-one days after transection all animals had evidence of uninhibited bladder contractions. The mean (SD) hourly frequency of urination was 0.66 (0.18) in healthy controls, 0.83 (0.21) in group 1, 0.87 (0.34) in group 2 and 1.1 (0.31) in group 3. There was a significant decrease in eh cystometric signs of bladder hyper-reflexia in groups 1 and 2 when compared with group 3. This work reports and initial study showing that chronic electrostimulation of sacral nerve roots can reduce the signs of bladder hyper-reflexia in the spinally injured rat. To our knowledge, this is the first report describing the rat as an animal model to determine the effects of chronic electrostimulation on the micturition reflex.

  2. Toward a computational theory for motion understanding: The expert animators model

    NASA Technical Reports Server (NTRS)

    Mohamed, Ahmed S.; Armstrong, William W.

    1988-01-01

    Artificial intelligence researchers claim to understand some aspect of human intelligence when their model is able to emulate it. In the context of computer graphics, the ability to go from motion representation to convincing animation should accordingly be treated not simply as a trick for computer graphics programmers but as important epistemological and methodological goal. In this paper we investigate a unifying model for animating a group of articulated bodies such as humans and robots in a three-dimensional environment. The proposed model is considered in the framework of knowledge representation and processing, with special reference to motion knowledge. The model is meant to help setting the basis for a computational theory for motion understanding applied to articulated bodies.

  3. Plant G-proteins come of age: Breaking the bond with animal models

    NASA Astrophysics Data System (ADS)

    Botella, Jimmy; Trusov, Yuri

    2016-05-01

    G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs fromthe accepted animal paradigm.

  4. Plant G-Proteins Come of Age: Breaking the Bond with Animal Models.

    PubMed

    Trusov, Yuri; Botella, José R

    2016-01-01

    G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs from the accepted animal paradigm.

  5. Biochemical correlates in an animal model of depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus.more » Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action.« less

  6. MAKING ANIMALS ALCOHOLIC: SHIFTING LABORATORY MODELS OF ADDICTION

    PubMed Central

    RAMSDEN, EDMUND

    2015-01-01

    The use of animals as experimental organisms has been critical to the development of addiction research from the nineteenth century. They have been used as a means of generating reliable data regarding the processes of addiction that was not available from the study of human subjects. Their use, however, has been far from straightforward. Through focusing on the study of alcoholism, where the nonhuman animal proved a most reluctant collaborator, this paper will analyze the ways in which scientists attempted to deal with its determined sobriety and account for their consistent failure to replicate the volitional consumption of ethanol to the point of physical dependency. In doing so, we will see how the animal model not only served as a means of interrogating a complex pathology, but also came to embody competing definitions of alcoholism as a disease process, and alternative visions for the very structure and purpose of a research field. PMID:25740698

  7. A general multiple-compartment model for the transport of trace elements through animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.

    1991-08-01

    Multiple-compartment models employed in the analysis of trace element transport in animals are often based on linear differential equations which relate the rate of change of contaminant (or contaminant concentration) in each compartment to the amount of contaminant (or contaminant concentration) in every other compartment in the system. This has the serious disadvantage of mixing intrinsic physiological properties with the geometry of the animal. The basic equations on which the model presented here is developed are derived from the actual physical process under way and are capable of separating intrinsic physiological properties from geometry. It is thus expected that ratemore » coefficients determined through this model will be applicable to a wider category of physiologically similar animals. A specific application of the model for the study of contamination of sheep--or indeed for any ruminant--is presented, and the temporal evolution of contaminant concentration in the various compartments of the animal is calculated. The application of this model to a system of compartments with changing geometry is also presented.« less

  8. Development of an animal model of fibrous cholangitis in pigs.

    PubMed

    Lainakis, Nektarios G; Papalois, Apostolos; Agrogiannis, Georgios; Antonopoulos, Constantine N; Michail, Panagiotis; Bastounis, Elias; Patsouris, Efstathios; Felekouras, Evangelos

    2014-04-01

    The aim of this study was to develop a model of fibrous cholangitis in the offspring of gravid domestic pigs through the administration of 1,4-phenylene diisothiocyanate (DITC). Six young domestic pigs and two gravid pigs with their offspring (21 pigs) were used as experimental models and six wild-type animals were used as controls. All pigs were divided into five main groups and five subgroups, according to their developmental stage and time of exposure to DITC. The following histopathological characteristics were quantitatively evaluated on a scale of 0-5: ductal proliferation, periportal fibrosis, inflammatory infiltration, periductal fibrosis and edema, intraluminal fibrosis, duct wall thickening, epithelial apoptosis, and arterial hyperplasia/hypertrophy. Statistically significant differences were observed for most of the histopathological markers between the group of pigs' offspring that received DITC at early gestation and their control group. Moreover, the group of animals that were exposed to the agent at early gestation exhibited significant differences for all histopathological characteristics compared to the animals that were exposed at late gestation. On the other hand, no statistically significant differences were observed between the group of animals that received the agent at late gestation and their healthy controls. Administration of DITC to domestic pigs in early pregnancy may induce histopathological patterns of fibrous cholangitis to their offspring imitating biliary atresia. This model may provide insight to the pathogenesis of the obstructive cholangitis in pigs.

  9. Models in animal collective decision-making: information uncertainty and conflicting preferences

    PubMed Central

    Conradt, Larissa

    2012-01-01

    Collective decision-making plays a central part in the lives of many social animals. Two important factors that influence collective decision-making are information uncertainty and conflicting preferences. Here, I bring together, and briefly review, basic models relating to animal collective decision-making in situations with information uncertainty and in situations with conflicting preferences between group members. The intention is to give an overview about the different types of modelling approaches that have been employed and the questions that they address and raise. Despite the use of a wide range of different modelling techniques, results show a coherent picture, as follows. Relatively simple cognitive mechanisms can lead to effective information pooling. Groups often face a trade-off between decision accuracy and speed, but appropriate fine-tuning of behavioural parameters could achieve high accuracy while maintaining reasonable speed. The right balance of interdependence and independence between animals is crucial for maintaining group cohesion and achieving high decision accuracy. In conflict situations, a high degree of decision-sharing between individuals is predicted, as well as transient leadership and leadership according to needs and physiological status. Animals often face crucial trade-offs between maintaining group cohesion and influencing the decision outcome in their own favour. Despite the great progress that has been made, there remains one big gap in our knowledge: how do animals make collective decisions in situations when information uncertainty and conflict of interest operate simultaneously? PMID:23565335

  10. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use.

    PubMed

    Auer, Jorg A; Goodship, Allen; Arnoczky, Steven; Pearce, Simon; Price, Jill; Claes, Lutz; von Rechenberg, Brigitte; Hofmann-Amtenbrinck, Margarethe; Schneider, Erich; Müller-Terpitz, R; Thiele, F; Rippe, Klaus-Peter; Grainger, David W

    2007-08-01

    In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria for funding agencies to include

  11. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use

    PubMed Central

    Auer, Jorg A; Goodship, Allen; Arnoczky, Steven; Pearce, Simon; Price, Jill; Claes, Lutz; von Rechenberg, Brigitte; Hofmann-Amtenbrinck, Margarethe; Schneider, Erich; Müller-Terpitz, R; Thiele, F; Rippe, Klaus-Peter; Grainger, David W

    2007-01-01

    Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria

  12. Endometriosis research: animal models for the study of a complex disease.

    PubMed

    Tirado-González, Irene; Barrientos, Gabriela; Tariverdian, Nadja; Arck, Petra C; García, Mariana G; Klapp, Burghard F; Blois, Sandra M

    2010-11-01

    Endometriosis is a common gynaecological disease that is characterized and defined as the presence of endometrial tissue outside the uterus, causing painful periods and subfertility in approximately 10% of women. After more than 50 years of research, little is known about the mechanisms underlying the development and establishment of this condition. Animal models allow us to study the temporal sequence of events involved in disease establishment and progression. Also, because this disease occurs spontaneously only in humans and non-human primates and there are practical problems associated with studying the disease, animal models have been developed for the evaluation of endometriosis. This review describes the animal models for endometriosis that have been used to date, highlighting their importance for the investigation of disease mechanisms that would otherwise be more difficult to elucidate, and proposing new alternatives aimed at overcoming some of these limitations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?

    PubMed

    Muñoz-Tamayo, R; Puillet, L; Daniel, J B; Sauvant, D; Martin, O; Taghipoor, M; Blavy, P

    2018-04-01

    What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are (i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling, (ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models. By using illustrative examples that include published

  14. Animal models to study neonatal nutrition in humans

    USDA-ARS?s Scientific Manuscript database

    The impact of neonatal nutrition on the health status of the newborn and incidence of disease in later life is a topic of intense interest. Animal models are an invaluable tool to identify mechanisms that mediate the effect of nutrition on neonatal development and metabolic function. This review hig...

  15. Animal Modeling and Neurocircuitry of Dual Diagnosis

    PubMed Central

    Chambers, R. Andrew

    2010-01-01

    Dual diagnosis is a problem of tremendous depth and scope, spanning many classes of mental disorders and addictive drugs. Animal models of psychiatric disorders studied in addiction paradigms suggest a unitary nature of mental illness and addiction vulnerability both on the neurocircuit and clinical-behavioral levels. These models provide platforms for exploring the interactive roles of biological, environmental and developmental factors on neurocircuits commonly involved in psychiatric and addiction diseases. While suggestive of the artifice of segregated research, training, and clinical cultures between psychiatric and addiction fields, this research may lead to more parsimonious, integrative and preventative treatments for dual diagnosis. PMID:20585464

  16. Basis function models for animal movement

    USGS Publications Warehouse

    Hooten, Mevin B.; Johnson, Devin S.

    2017-01-01

    Advances in satellite-based data collection techniques have served as a catalyst for new statistical methodology to analyze these data. In wildlife ecological studies, satellite-based data and methodology have provided a wealth of information about animal space use and the investigation of individual-based animal–environment relationships. With the technology for data collection improving dramatically over time, we are left with massive archives of historical animal telemetry data of varying quality. While many contemporary statistical approaches for inferring movement behavior are specified in discrete time, we develop a flexible continuous-time stochastic integral equation framework that is amenable to reduced-rank second-order covariance parameterizations. We demonstrate how the associated first-order basis functions can be constructed to mimic behavioral characteristics in realistic trajectory processes using telemetry data from mule deer and mountain lion individuals in western North America. Our approach is parallelizable and provides inference for heterogenous trajectories using nonstationary spatial modeling techniques that are feasible for large telemetry datasets. Supplementary materials for this article are available online.

  17. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    PubMed

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  18. Animal models of the serotonin syndrome: a systematic review.

    PubMed

    Haberzettl, Robert; Bert, Bettina; Fink, Heidrun; Fox, Meredith A

    2013-11-01

    The serotonin syndrome (SS) is a potentially life-threatening disorder in humans which is induced by ingestion of an overdose or by combination of two or more serotonin (5-HT)-enhancing drugs. In animals, acute administration of direct and indirect 5-HT agonists also leads to a set of behavioral and autonomic responses. In the current review, we provide an overview of the existing versions of the animal model of the SS. With a focus on studies in rats and mice, we analyze the frequency of behavioral and autonomic responses following administration of 5-HT-enhancing drugs and direct 5-HT agonists administered alone or in combination, and we briefly discuss the receptor mediation of these responses. Considering species differences, we identify a distinct set of behavioral and autonomic responses that are consistently observed following administration of direct and indirect 5-HT agonists. Finally, we discuss the importance of a standardized assessment of SS responses in rodents and the utility of animal models of the SS in translational studies, and provide suggestions for future research. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Sex differences in acupuncture effectiveness in animal models of Parkinson's disease: a systematic review.

    PubMed

    Lee, Sook-Hyun; van den Noort, Maurits; Bosch, Peggy; Lim, Sabina

    2016-11-03

    Many animal experimental studies have been performed to investigate the efficacy of acupuncture in Parkinson's disease (PD). Sex differences are a major issue in all diseases including PD. However, to our knowledge, there have been no reviews investigating sex differences on the effectiveness of acupuncture treatment for animal PD models. The current study aimed to summarize and analyze past studies in order to evaluate these possible differences. Each of 7 databases (MEDLINE, EMBASE, the Cochrane Library, 3 Korean medical databases, and the China National Knowledge Infrastructure) was searched from its inception through March 2015 without language restrictions. We included studies of the use of acupuncture treatment in animal models of PD. A total of 810 potentially relevant articles were identified, 57 of which met our inclusion criteria. C57/BL6 mice were used most frequently (42 %) in animal PD models. Most of the studies were carried out using only male animals (67 %); only 1 study (2 %) was performed using solely females. The further 31 % of the studies used a male/female mix or did not specify the sex. The results of our review suggest that acupuncture is an effective treatment for animal PD models, but there is insufficient evidence to determine whether sex differences exist. Future studies of acupuncture treatment for PD should use female animal models because they reflect the physiological characteristics of both males and females to fully evaluate the effect and the safety of the treatment for each sex.

  20. Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.; Conroy, M.J.

    2002-01-01

    This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples

  1. Characterization of vocal fold scar formation, prophylaxis, and treatment using animal models.

    PubMed

    Bless, Diane M; Welham, Nathan V

    2010-12-01

    To review recent literature on animal models used to study the pathogenesis, detection, prevention, and treatment of vocal fold scarring. Animal work is critical to studying vocal fold scarring because it is the only way to conduct systematic research on the biomechanical properties of the layered structure of the vocal fold lamina propria, and therefore develop reliable prevention and treatment strategies for this complex clinical problem. During the period of review, critical anatomic, physiologic, and wound healing characteristics, which may serve as the bases for selection of a certain species to help answer a specific question, have been described in mouse, rat, rabbit, ferret, and canine models. A number of different strategies for prophylaxis and chronic scar treatment in animals show promise for clinical application. The pathways of scar formation and methods for quantifying treatment-induced change have become better defined. Recent animal vocal fold scarring studies have enriched and confirmed earlier work indicating that restoring pliability to the scarred vocal fold mucosa is challenging but achievable. Differences between animal models and differences in outcome measurements across studies necessitate considering each study individually to obtain guidance for future research. With increased standardization of measurement techniques it may be possible to make more inter-study comparisons.

  2. Animal models in biological and biomedical research - experimental and ethical concerns.

    PubMed

    Andersen, Monica L; Winter, Lucile M F

    2017-09-04

    Animal models have been used in experimental research to increase human knowledge and contribute to finding solutions to biological and biomedical questions. However, increased concern for the welfare of the animals used, and a growing awareness of the concept of animal rights, has brought a greater focus on the related ethical issues. In this review, we intend to give examples on how animals are used in the health research related to some major health problems in Brazil, as well as to stimulate discussion about the application of ethics in the use of animals in research and education, highlighting the role of National Council for the Control of Animal Experimentation (Conselho Nacional de Controle de Experimentação Animal - CONCEA) in these areas. In 2008, Brazil emerged into a new era of animal research regulation, with the promulgation of Law 11794, previously known as the Arouca Law, resulting in an increased focus, and rapid learning experience, on questions related to all aspects of animal experimentation. The law reinforces the idea that animal experiments must be based on ethical considerations and integrity-based assumptions, and provides a regulatory framework to achieve this. This review describes the health research involving animals and the current Brazilian framework for regulating laboratory animal science, and hopes to help to improve the awareness of the scientific community of these ethical and legal rules.

  3. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.

    PubMed

    Sutton, Troy C; Subbarao, Kanta

    2015-05-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. Copyright © 2015. Published by Elsevier Inc.

  4. Animal Models for Dysphagia Studies: What have we learnt so far

    PubMed Central

    German, Rebecca Z.; Crompton, A.W.; Gould, Francois D. H.; Thexton, Allan J.

    2017-01-01

    Research using animal models has contributed significantly to realizing the goal of understanding dysfunction and improving the care of patients who suffer from dysphagia. But why should other researchers and the clinicians who see patients day in and day out care about this work? Results from studies of animal models have the potential to change and grow how we think about dysphagia research and practice in general, well beyond applying specific results to human studies. Animal research provides two key contributions to our understanding of dysphagia. The first is a more complete characterization of the physiology of both normal and pathological swallow than is possible in human subjects. The second is suggesting of specific, physiological, targets for development and testing of treatment interventions to improve dysphagia outcomes. PMID:28132098

  5. Concepts in Cancer Modeling: A Brief History

    PubMed Central

    Thomas, Renee M.; Van Dyke, Terry; Merlino, Glenn; Day, Chi-Ping

    2016-01-01

    Modeling, an experimental approach to investigate complex biological systems, has significantly contributed to our understanding of cancer. While extensive cancer research has been conducted utilizing animal models for elucidating mechanisms and developing therapeutics, the concepts in a good model design and its application have not been well elaborated. In this review, we discuss the theory underlying biological modeling and the process of producing a valuable and relevant animal model. Several renowned examples in the history of cancer research will be used to illustrate how modeling can be translatable to clinical applications. Finally, we will also discuss how the advances in cancer genomics and cancer modeling will influence each other going forward. PMID:27694601

  6. How to Optimize Learning from Animated Models: A Review of Guidelines Based on Cognitive Load

    ERIC Educational Resources Information Center

    Wouters, Pieter; Paas, Fred; van Merrienboer, Jeroen J. G.

    2008-01-01

    Animated models explicate the procedure to solve a problem, as well as the rationale behind this procedure. For abstract cognitive processes, animations might be beneficial, especially when a supportive pedagogical agent provides explanations. This article argues that animated models can be an effective instructional method, provided that they are…

  7. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  8. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.

    PubMed

    Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail

    2015-06-15

    Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies. Copyright © 2015 the American Physiological Society.

  9. Polycystic ovarian disease: animal models.

    PubMed

    Mahajan, D K

    1988-12-01

    The reproductive systems of human beings and other vertebrates are grossly similar. In the ovary particularly, the biochemical and physiologic processes are identical not only in the formation of germ cells, the development of primordial follicles and their subsequent growth to Graafian follicles, and eventual ovulation but also in anatomic structure. In a noncarcinogenic human ovary, hypersecretion of androgen causes PCOD. Such hypersecretion may result from a nonpulsatile, constant elevated level of circulating LH or a disturbance in the action of neurotransmitters in the hypothalamus. In studying the pathophysiology of PCOD in humans, one must be aware of the limitations for manipulating the hypothalamic-pituitary axis. Although the rat is a polytocous rodent, the female has a regular ovarian cyclicity of 4 or 5 days, with distinct proestrus, estrus, and diestrus phases. Inasmuch as PCOD can be experimentally produced in the rat, that species is a good model for studying the pathophysiology of human PCOD. These PCOD models and their validity have been described: (1) estradiol-valerate, (2) DHA, (3) constant-light (LL), and (4) neonatally androgenized. Among these, the LL model is noninvasive and seems superior to the others for study of the pathophysiology of PCOD. The production of the polycystic ovarian condition in the rat by the injection of estrogens or androgens in neonate animals, or estradiol or DHA in adult rats, or the administration of antigonadotropins to these animals all cause a sudden appearance of the persistent estrus state by disturbing the metabolic and physiologic processes, whereas exposure of the adult rat to LL causes polycystic ovaries gradually, similar to what is seen in human idiopathic PCOD. After about 50 days of LL, the rat becomes anovulatory and the ovaries contain thickened tunica albuginea and many atretic follicles, and the tertiary follicles are considerably distended and cystic. The granulosa and theca cells appear normal

  10. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies

    PubMed Central

    Modi, Meera E.; Young, Larry J.

    2012-01-01

    Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22206823

  11. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy.

    PubMed

    Goldstein, Lee E; McKee, Ann C; Stanton, Patric K

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms

  12. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy

    PubMed Central

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms

  13. Molecular biomarkers for chronological age in animal ecology.

    PubMed

    Jarman, Simon N; Polanowski, Andrea M; Faux, Cassandra E; Robbins, Jooke; De Paoli-Iseppi, Ricardo; Bravington, Mark; Deagle, Bruce E

    2015-10-01

    The chronological age of an individual animal predicts many of its biological characteristics, and these in turn influence population-level ecological processes. Animal age information can therefore be valuable in ecological research, but many species have no external features that allow age to be reliably determined. Molecular age biomarkers provide a potential solution to this problem. Research in this area of molecular ecology has so far focused on a limited range of age biomarkers. The most commonly tested molecular age biomarker is change in average telomere length, which predicts age well in a small number of species and tissues, but performs poorly in many other situations. Epigenetic regulation of gene expression has recently been shown to cause age-related modifications to DNA and to cause changes in abundance of several RNA types throughout animal lifespans. Age biomarkers based on these epigenetic changes, and other new DNA-based assays, have already been applied to model organisms, humans and a limited number of wild animals. There is clear potential to apply these marker types more widely in ecological studies. For many species, these new approaches will produce age estimates where this was previously impractical. They will also enable age information to be gathered in cross-sectional studies and expand the range of demographic characteristics that can be quantified with molecular methods. We describe the range of molecular age biomarkers that have been investigated to date and suggest approaches for developing the newer marker types as age assays in nonmodel animal species. © 2015 John Wiley & Sons Ltd.

  14. Experimental psychiatric illness and drug abuse models: from human to animal, an overview.

    PubMed

    Edwards, Scott; Koob, George F

    2012-01-01

    Preclinical animal models have supported much of the recent rapid expansion of neuroscience research and have facilitated critical discoveries that undoubtedly benefit patients suffering from psychiatric disorders. This overview serves as an introduction for the following chapters describing both in vivo and in vitro preclinical models of psychiatric disease components and briefly describes models related to drug dependence and affective disorders. Although there are no perfect animal models of any psychiatric disorder, models do exist for many elements of each disease state or stage. In many cases, the development of certain models is essentially restricted to the human clinical laboratory domain for the purpose of maximizing validity, whereas the use of in vitro models may best represent an adjunctive, well-controlled means to model specific signaling mechanisms associated with psychiatric disease states. The data generated by preclinical models are only as valid as the model itself, and the development and refinement of animal models for human psychiatric disorders continues to be an important challenge. Collaborative relationships between basic neuroscience and clinical modeling could greatly benefit the development of new and better models, in addition to facilitating medications development.

  15. Separate the Sheep from the Goats: Use and Limitations of Large Animal Models in Intervertebral Disc Research.

    PubMed

    Reitmaier, Sandra; Graichen, Friedmar; Shirazi-Adl, Aboulfazl; Schmidt, Hendrik

    2017-10-04

    Approximately 5,168 large animals (pigs, sheep, goats, and cattle) were used for intervertebral disc research in identified studies published between 1985 and 2016. Most of the reviewed studies revealed a low scientific impact, a lack of sound justifications for the animal models, and a number of deficiencies in the documentation of the animal experimentation. The scientific community should take suitable measures to investigate the presumption that animal models have translational value in intervertebral disc research. Recommendations for future investigations are provided to improve the quality, validity, and usefulness of animal studies for intervertebral disc research. More in vivo studies are warranted to comprehensively evaluate the suitability of animal models in various applications and help place animal models as an integral, complementary part of intervertebral disc research.

  16. Treacher Collins syndrome: New insights from animal models.

    PubMed

    Tse, William Ka Fai

    2016-12-01

    Treacher Collins syndrome (TCS, OMIM: 154500), an autosomal-dominant craniofacial developmental syndrome that occurs in 1 out of every 50,000 live births, is characterized by craniofacial malformation. Mutations in TCOF1, POLR1C, or POLR1D have been identified in affected individuals. In addition to established mouse models, zebrafish models have recently emerged as an valuable method to study facial disease. In this report, we summarized the two updated articles working on the pathogenesis of the newly identified polr1c and polr1d TCS mutations (Lau et al., 2016; Noack Watt et al., 2016) and discussed the possibility of using the anti-oxidants to prevent or rescue the TCS facial phenotype (Sakai et al., 2016). Taken together, this article provides an update on the disease from basic information to pathogenesis, and further summarizes the suggested therapies from recent laboratory research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biological Concerns on the Selection of Animal Models for Teratogenic Testing.

    PubMed

    Alves-Pimenta, Sofia; Colaço, Bruno; Oliveira, Paula A; Venâncio, Carlos

    2018-01-01

    During pregnancy fetus can be exposed to a variety of chemicals which may induce abortion and malformations. Due to the amounts of new substances coming into the market every year, a high demand for a rapid, reliable, and cost-effective method to detect potential toxicity is necessary. Different species have been used as animal models for teratogen screening, most of them sharing similar development processes with humans. However, the application of embryology knowledge to teratology is hampered by the complexity of the reproduction processes.The present chapter outlines the essential development periods in different models, and highlights the similarities and differences between species, advantages and disadvantages of each group, and specific sensitivities for teratogenic tests. These models can be organized into the following categories: (1) invertebrate species such Caenorhabditis elegans and Drosophila melanogaster, which have become ideal for screening simple mechanisms in the early periods of reproductive cycle, allowing for rapid results and minor ethical concerns; (2) vertebrate nonmammalian species such Xenopus laevis and Danio rerio, important models to assess teratogenic potential in later development with fewer ethical requirements; and (3) the mammalian species Mus musculus, Rattus norvegicus, and Oryctolagus cuniculus, phylogenetically more close to humans, essential to assess complex specialized processes, that occur later in development.Rules for development toxicology tests require the use of mammalian species. However, ethical concerns and costs limit their use in large-scale screening. By contrast, invertebrate and vertebrate nonmammalian species are increasing as alternative animal models, as these organisms combine less ethical requirements, low costs and culture conditions compatible with large-scale screening. In contrast to the in vitro techniques, their main advantage is to allow for high-throughput screening in a whole-animal context

  18. Animal Models of Fibrotic Lung Disease

    PubMed Central

    Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.

    2013-01-01

    Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222

  19. Animal models of protein allergenicity: potential benefits, pitfalls and challenges.

    PubMed

    Dearman, R J; Kimber, I

    2009-04-01

    Food allergy is an important health issue. With an increasing interest in novel foods derived from transgenic crop plants, there is a growing need for the development of approaches suitable for the characterization of the allergenic potential of proteins. There are methods available currently (such as homology searches and serological testing) that are very effective at identifying proteins that are likely to cross-react with known allergens. However, animal models may play a role in the identification of truly novel proteins, such as bacterial or fungal proteins, that have not been experienced previously in the diet. We consider here the potential benefits, pitfalls and challenges of the selection of various animal models, including the mouse, the rat, the dog and the neonatal swine. The advantages and disadvantages of various experimental end-points are discussed, including the measurement of specific IgE by ELISA, Western blotting or functional tests such as the passive cutaneous anaphylaxis assay, and the assessment of challenge-induced clinical symptoms in previously sensitized animals. The experimental variables of route of exposure to test proteins and the incorporation of adjuvant to increase the sensitivity of the responses are considered also. It is important to emphasize that currently none of these approaches has been validated for the purposes of hazard identification in the context of a safety assessment. However, the available evidence suggests that the judicious use of an accurate and robust animal model could provide important additional data that would contribute significantly to the assessment of the potential allergenicity of novel proteins.

  20. Selection of an appropriate animal model for study of bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, I.

    1986-01-01

    Prolonged weightlessness in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. A number of preventative measures have been suggested, i.e., exercise during flight, dietary calcium supplements, use of specific prophylactic drugs. In order to facilitate research in these areas it is necessary to develop appropriate ground-based animal models that simulate the human condition of osteoporsis. An appropriate animal model would permit bone density studies, calcium balance studies, biochemical analyses, ground-based simulation models of weightlessness (bed rest, restraint, immobilization) and the planning of inflight experiments. Several animal models have been proposed in the biomedical research literature, but have inherent deficiencies. The purpose of this project was to evaluate models in the literature and determine which of these most closely simulates the phenomenon of bone loss in humans with regard to growth, bone remodeling, structural, chemical and mineralization similarities to human. This was accomplished by a comprehensive computer assisted literature search and report. Three animal models were examined closely for their relative suitability: the albino rat, monkey, and Beagle.

  1. Using animal models to study post-partum psychiatric disorders

    PubMed Central

    Perani, C V; Slattery, D A

    2014-01-01

    The post-partum period represents a time during which all maternal organisms undergo substantial plasticity in a wide variety of systems in order to ensure the well-being of the offspring. Although this time is generally associated with increased calmness and decreased stress responses, for a substantial subset of mothers, this period represents a time of particular risk for the onset of psychiatric disorders. Thus, post-partum anxiety, depression and, to a lesser extent, psychosis may develop, and not only affect the well-being of the mother but also place at risk the long-term health of the infant. Although the risk factors for these disorders, as well as normal peripartum-associated adaptations, are well known, the underlying aetiology of post-partum psychiatric disorders remains poorly understood. However, there have been a number of attempts to model these disorders in basic research, which aim to reveal their underlying mechanisms. In the following review, we first discuss known peripartum adaptations and then describe post-partum mood and anxiety disorders, including their risk factors, prevalence and symptoms. Thereafter, we discuss the animal models that have been designed in order to study them and what they have revealed about their aetiology to date. Overall, these studies show that it is feasible to study such complex disorders in animal models, but that more needs to be done in order to increase our knowledge of these severe and debilitating mood and anxiety disorders. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24527704

  2. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review.

    PubMed

    Zhang, Zhida; Ren, Hui; Shen, Gengyang; Qiu, Ting; Liang, De; Yang, Zhidong; Yao, Zhensong; Tang, Jingjing; Jiang, Xiaobing; Wei, Qiushi

    2016-12-01

    Glucocorticoid-induced postmenopausal osteoporosis is a severe osteoporosis, with high risk of major osteoporotic fractures. This severe osteoporosis urges more extensive and deeper basic study, in which suitable animal models are indispensable. However, no relevant review is available introducing this model systematically. Based on the recent studies on GI-PMOP, this brief review introduces the GI-PMOP animal model in terms of its establishment, evaluation of bone mass and discuss its molecular mechanism. Rat, rabbit and sheep with their respective merits were chosen. Both direct and indirect evaluation of bone mass help to understand the bone metabolism under different intervention. The crucial signaling pathways, miRNAs, osteogenic- or adipogenic- related factors and estrogen level may be the predominant contributors to the development of glucocorticoid-induced postmenopausal osteoporosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Genetic diversity of neotropical primates: phylogeny, population genetics, and animal models for infectious diseases.

    PubMed

    Moreira, M A M; Bonvicino, C R; Soares, M A; Seuánez, H N

    2010-01-01

    The classification of neotropical primates has been controversial, and different arrangements have been proposed based on disparate taxonomic criteria and on the traits selected for elucidating phylogenetic reconstructions, like morphologic characters, nuclear DNA and mitochondrial DNA. Population studies of some neotropical primates have been useful for assessing their extant genetic variability and for understanding their social structure and dynamics. Finally, neotropical primates have become valuable models for some human infectious deseases, especially for HIV studies related to viral resistance. In this review, we comment on these aspects that make neotropical primates a group of highly valuable species for basic and applied research. Copyright 2010 S. Karger AG, Basel.

  4. Animal Models of Bipolar Mania: The Past, Present and Future

    PubMed Central

    Logan, Ryan W.; McClung, Colleen A.

    2015-01-01

    Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly 6 million (~2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying ‘mood’ cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD. PMID:26314632

  5. Aquatic Animal Models – Not Just for Ecotox Anymore

    EPA Science Inventory

    A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...

  6. Manipulating the extracellular matrix: an animal model of the bladder pain syndrome.

    PubMed

    Offiah, Ifeoma; Didangelos, Athanasios; OʼReilly, Barry A; McMahon, Stephen B

    2017-01-01

    Bladder pain syndrome (BPS) is associated with breakdown of the protective uroepithelial barrier of the urinary bladder allowing urinary constituents access to bladder sensory neurons. Although there are several animal models of cystitis, none specifically relates to BPS. Here, we aimed to create such a model using enzymatic digestion of the barrier proteoglycans (PGs) in the rat. Twenty female Wistar rats were anaesthetized and transurethrally catheterized. Ten animals were treated with 0.25IU of intravesical chondroitinase ABC and heparanase III to digest chondroitin sulphate and heparin sulphate PGs, respectively. Ten animals received saline. Following PG deglycosylation, bladders showed irregular loss of the apical uroplakin and a significant increase in neutrophils, not evident in the control group. Spinal cord sections were also collected for c-fos analysis. A large and significant increase in fos immunoreactivity in the L6/S1 segments in the treatment vs control bladders was observed. Cystometry was performed on 5 treatment and 5 control animals. Analysis revealed a significant increase in micturition reflex excitability postdeglycosylation. On a further group of 10 animals, von Frey mechanical withdrawal thresholds were tested on abdominal skin before and after PG digestions. There was a significant decrease in abdominal mechanical withdrawal threshold postdeglycosylation compared with controls. The results of this animal study suggest that many of the clinical features of BPS are seen after PG digestion from the bladder lumen. This model can be used to further understand mechanisms of pain in patients with BPS and to test new therapeutic strategies.

  7. Investigation of nutriactive phytochemical - gamma-oryzanol in experimental animal models.

    PubMed

    Szcześniak, K A; Ostaszewski, P; Ciecierska, A; Sadkowski, T

    2016-08-01

    Gamma-oryzanol (GO) is an abundant dietary antioxidant that is considered to have beneficial effects in cardiovascular disease, cancer and diabetes. Other potential properties of GO include inhibition of gastric acid secretion and decreased post-exercise muscle fatigue. GO is a unique mixture of triterpene alcohol and sterol ferulates present in rice bran oil, a byproduct of rice processing. GO has been studied by many researchers over the last three decades. In particular, the utility of GO supplementation has been documented in numerous animal models. A large variety of species was examined, and various experimental methodologies and targets were applied. The aim of this study was to summarize the body of research on GO supplementation in animals and to examine possible mechanisms of GO action. Furthermore, while the safety of GO supplementation in animals has been well documented, studies demonstrating pharmacokinetics, pharmacodynamics and efficiency are less clear. The observed differences in these findings are also discussed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  8. Hepatoprotective activity of Musa paradisiaca on experimental animal models.

    PubMed

    Nirmala, M; Girija, K; Lakshman, K; Divya, T

    2012-01-01

    To investigate the hepatoprotective activity of stem of Musa paradisiaca (M. paradisiaca) in CCl4 and paracetamol induced hepatotoxicity models in rats. Hepatoprotective activity of alcoholic and aqueous extracts of stem of M. paradisiaca was demonstrated by using two experimentally induced hepatotoxicity models. Administration of hepatotoxins (CCl4 and paracetamol) showed significant biochemical and histological deteriorations in the liver of experimental animals. Pretreatment with alcoholic extract (500 mg/kg), more significantly and to a lesser extent the alcoholic extract (250 mg/kg) and aqueous extract (500 mg/kg), reduced the elevated levels of the serum enzymes like serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin levels and alcoholic and aqueous extracts reversed the hepatic damage towards the normal, which further evidenced the hepatoprotective activity of stem of M. paradisiaca. The alcoholic extract at doses of 250 and 500 mg/kg, p.o. and aqueous extract at a dose of 500 mg/kg, p.o. of stem of M. paradisiaca have significant effect on the liver of CCl4 and paracetamol induced hepatotoxicity animal models.

  9. Characterization of New Zealand White Rabbit Gut-Associated Lymphoid Tissues and Use as Viral Oncology Animal Model.

    PubMed

    Haines, Robyn A; Urbiztondo, Rebeccah A; Haynes, Rashade A H; Simpson, Elaine; Niewiesk, Stefan; Lairmore, Michael D

    2016-01-01

    Rabbits have served as a valuable animal model for the pathogenesis of various human diseases, including those related to agents that gain entry through the gastrointestinal tract such as human T cell leukemia virus type 1. However, limited information is available regarding the spatial distribution and phenotypic characterization of major rabbit leukocyte populations in mucosa-associated lymphoid tissues. Herein, we describe the spatial distribution and phenotypic characterization of leukocytes from gut-associated lymphoid tissues (GALT) from 12-week-old New Zealand White rabbits. Our data indicate that rabbits have similar distribution of leukocyte subsets as humans, both in the GALT inductive and effector sites and in mesenteric lymph nodes, spleen, and peripheral blood. GALT inductive sites, including appendix, cecal tonsil, Peyer's patches, and ileocecal plaque, had variable B cell/T cell ratios (ranging from 4.0 to 0.8) with a predominance of CD4 T cells within the T cell population in all four tissues. Intraepithelial and lamina propria compartments contained mostly T cells, with CD4 T cells predominating in the lamina propria compartment and CD8 T cells predominating in the intraepithelial compartment. Mesenteric lymph node, peripheral blood, and splenic samples contained approximately equal percentages of B cells and T cells, with a high proportion of CD4 T cells compared with CD8 T cells. Collectively, our data indicate that New Zealand White rabbits are comparable with humans throughout their GALT and support future studies that use the rabbit model to study human gut-associated disease or infectious agents that gain entry by the oral route. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    PubMed Central

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials. PMID:16911787

  11. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.

    PubMed

    Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte

    2006-08-15

    The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  12. Collective behavior in animal groups: theoretical models and empirical studies

    PubMed Central

    Giardina, Irene

    2008-01-01

    Collective phenomena in animal groups have attracted much attention in the last years, becoming one of the hottest topics in ethology. There are various reasons for this. On the one hand, animal grouping provides a paradigmatic example of self-organization, where collective behavior emerges in absence of centralized control. The mechanism of group formation, where local rules for the individuals lead to a coherent global state, is very general and transcends the detailed nature of its components. In this respect, collective animal behavior is a subject of great interdisciplinary interest. On the other hand, there are several important issues related to the biological function of grouping and its evolutionary success. Research in this field boasts a number of theoretical models, but much less empirical results to compare with. For this reason, even if the general mechanisms through which self-organization is achieved are qualitatively well understood, a quantitative test of the models assumptions is still lacking. New analysis on large groups, which require sophisticated technological procedures, can provide the necessary empirical data. PMID:19404431

  13. Addressing the Complexity of Tourette's Syndrome through the Use of Animal Models

    PubMed Central

    Nespoli, Ester; Rizzo, Francesca; Boeckers, Tobias M.; Hengerer, Bastian; Ludolph, Andrea G.

    2016-01-01

    Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by fluctuating motor and vocal tics, usually preceded by sensory premonitions, called premonitory urges. Besides tics, the vast majority—up to 90%—of TS patients suffer from psychiatric comorbidities, mainly attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). The etiology of TS remains elusive. Genetics is believed to play an important role, but it is clear that other factors contribute to TS, possibly altering brain functioning and architecture during a sensitive phase of neural development. Clinical brain imaging and genetic studies have contributed to elucidate TS pathophysiology and disease mechanisms; however, TS disease etiology still is poorly understood. Findings from genetic studies led to the development of genetic animal models, but they poorly reflect the pathophysiology of TS. Addressing the role of neurotransmission, brain regions, and brain circuits in TS disease pathomechanisms is another focus area for preclinical TS model development. We are now in an interesting moment in time when numerous innovative animal models are continuously brought to the attention of the public. Due to the diverse and largely unknown etiology of TS, there is no single preclinical model featuring all different aspects of TS symptomatology. TS has been dissected into its key symptomst hat have been investigated separately, in line with the Research Domain Criteria concept. The different rationales used to develop the respective animal models are critically reviewed, to discuss the potential of the contribution of animal models to elucidate TS disease mechanisms. PMID:27092043

  14. Evaluating the progenitor cells of ovarian cancer: analysis of current animal models.

    PubMed

    King, Shelby M; Burdette, Joanna E

    2011-07-01

    Serous ovarian cancer is one of the most lethal gynecological malignancies. Progress on effective diagnostics and therapeutics for this disease are hampered by ambiguity as to the cellular origins of this histotype of ovarian cancer, as well as limited suitable animal models to analyze early stages of disease. In this report, we will review current animal models with respect to the two proposed progenitor cells for serous ovarian cancer, the ovarian surface epithelium and the fallopian tube epithelium.

  15. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    PubMed

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A knowledge based approach to matching human neurodegenerative disease and animal models

    PubMed Central

    Maynard, Sarah M.; Mungall, Christopher J.; Lewis, Suzanna E.; Imam, Fahim T.; Martone, Maryann E.

    2013-01-01

    Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base (PKB) using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework (NIF) and qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal

  17. Venoms, toxins and derivatives from the Brazilian fauna: valuable sources for drug discovery.

    PubMed

    De Marco Almeida, Flávia; de Castro Pimenta, Adriano Monteiro; Oliveira, Mônica Cristina; De Lima, Maria Elena

    2015-06-25

    Animal venoms have been widely investigated throughout the world. The great number of biotechnological articles as well as patent applications in the field of drug discovery based on these compounds indicates how important the source is. This review presents a list of the most studied Brazilian venomous animal species and shows the most recent patent applications filed from 2000 to 2013, which comprise Brazilian venoms, toxins and derivatives. We analyze the data according to the species, the type of products claimed and the nationality of the inventors. Fifty-five patent applications were found, involving 8 genera. Crotalus, Lachesis, Bothrops and Loxosceles represented 78% of the patent applications. The other 22% were represented by Phoneutria, Tityus, Acanthoscurria and Phyllomedusa. Most of the inventions (42%) involved anticancer, immunomodulator or antimicrobial drugs, while 13% involved anti-venoms and vaccines, 11% involved hypotensive compositions, 9% involved antinociceptive and/or anti-inflammatory compositions, and the other 25% involved methods, kits or compositions for various purposes. Brazilian inventors filed 49% of the patent applications, but other countries, mainly the United States of America, Germany, Russia and France, also filed patent applications claiming products comprising venoms, toxins and/or derivatives from the Brazilian fauna. Brazil holds an important number of patent applications which mostly belong to universities and research institutes, but the pharmaceutical industry in this field is still weak in Brazil. Although, Brazilian venomous animal species have been reported in drug discovery throughout the world, many species remain to be explored as valuable and promising tools for drug discovery and development.

  18. An Animal Oral Exposure Model – Sensitization vs. Tolerance

    EPA Science Inventory

    Animal models are needed to assess novel proteins produced through biotechnology for potential dietary allergenicity. The exact characteristics that give certain foods allergenic potential are unclear, but must include both the potential to sensitize (induce IgE) as well as the c...

  19. Towards an animal model of callousness.

    PubMed

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Kalenscher, Tobias

    2016-12-28

    Callous-unemotional traits - the insensitivity to other's welfare and well-being - are characterized by a lack of empathy. They are characteristic of psychopathy and can be found in other anti-social disorders, such as conduct disorder. Because of the increasing prevalence of anti-social disorders and the rising societal costs of violence and aggression, it is of great importance to elucidate the psychological and physiological mechanisms underlying callousness in the search for pharmacological treatments. One promising avenue is to create a relevant animal model to explore the neural bases of callousness. Here, we review recent advances in rodent models of pro-social choice that could be applied to probe the absence of pro-sociality as a proxy of callous behavior, and provide future directions for the exploration of the neural substrates of callousness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Exploring host–microbiota interactions in animal models and humans

    PubMed Central

    Kostic, Aleksandar D.; Howitt, Michael R.; Garrett, Wendy S.

    2013-01-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host–microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host–microbiota interactions and explore recent human microbiome studies. PMID:23592793

  1. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  2. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models.

    PubMed

    Asaad, Mazen; Lee, Jin Hyung

    2018-05-18

    Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. © 2018. Published by The Company of Biologists Ltd.

  3. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models

    PubMed Central

    Asaad, Mazen

    2018-01-01

    ABSTRACT Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. PMID:29784664

  4. Comparative systems biology between human and animal models based on next-generation sequencing methods.

    PubMed

    Zhao, Yu-Qi; Li, Gong-Hua; Huang, Jing-Fei

    2013-04-01

    Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.

  5. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?

    PubMed

    Yao, Yong-Gang

    2017-05-18

    The Chinese tree shrew ( Tupaia belangeri chinensis ), a squirrel-like and rat-sized mammal, has a wide distribution in Southeast Asia, South and Southwest China and has many unique characteristics that make it suitable for use as an experimental animal. There have been many studies using the tree shrew ( Tupaia belangeri ) aimed at increasing our understanding of fundamental biological mechanisms and for the modeling of human diseases and therapeutic responses. The recent release of a publicly available annotated genome sequence of the Chinese tree shrew and its genome database (www.treeshrewdb.org) has offered a solid base from which it is possible to elucidate the basic biological properties and create animal models using this species. The extensive characterization of key factors and signaling pathways in the immune and nervous systems has shown that tree shrews possess both conserved and unique features relative to primates. Hitherto, the tree shrew has been successfully used to create animal models for myopia, depression, breast cancer, alcohol-induced or non-alcoholic fatty liver diseases, herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV) infections, to name a few. The recent successful genetic manipulation of the tree shrew has opened a new avenue for the wider usage of this animal in biomedical research. In this opinion paper, I attempt to summarize the recent research advances that have used the Chinese tree shrew, with a focus on the new knowledge obtained by using the biological properties identified using the tree shrew genome, a proposal for the genome-based approach for creating animal models, and the genetic manipulation of the tree shrew. With more studies using this species and the application of cutting-edge gene editing techniques, the tree shrew will continue to be under the spot light as a viable animal model for investigating the basis of many different human diseases.

  6. Artificial cloning of domestic animals.

    PubMed

    Keefer, Carol L

    2015-07-21

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.

  7. Stem cells in animal asthma models: a systematic review.

    PubMed

    Srour, Nadim; Thébaud, Bernard

    2014-12-01

    Asthma control frequently falls short of the goals set in international guidelines. Treatment options for patients with poorly controlled asthma despite inhaled corticosteroids and long-acting β-agonists are limited, and new therapeutic options are needed. Stem cell therapy is promising for a variety of disorders but there has been no human clinical trial of stem cell therapy for asthma. We aimed to systematically review the literature regarding the potential benefits of stem cell therapy in animal models of asthma to determine whether a human trial is warranted. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal asthma models. Nineteen studies were selected. They were found to be heterogeneous in their design. Mesenchymal stromal cells were used before sensitization with an allergen, before challenge with the allergen and after challenge, most frequently with ovalbumin, and mainly in BALB/c mice. Stem cell therapy resulted in a reduction of bronchoalveolar lavage fluid inflammation and eosinophilia as well as Th2 cytokines such as interleukin-4 and interleukin-5. Improvement in histopathology such as peribronchial and perivascular inflammation, epithelial thickness, goblet cell hyperplasia and smooth muscle layer thickening was universal. Several studies showed a reduction in airway hyper-responsiveness. Stem cell therapy decreases eosinophilic and Th2 inflammation and is effective in several phases of the allergic response in animal asthma models. Further study is warranted, up to human clinical trials. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Vestibular animal models: contributions to understanding physiology and disease.

    PubMed

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E

    2016-04-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.

  9. Animal models of social stress: the dark side of social interactions.

    PubMed

    Masis-Calvo, Marianela; Schmidtner, Anna K; de Moura Oliveira, Vinícius E; Grossmann, Cindy P; de Jong, Trynke R; Neumann, Inga D

    2018-05-10

    Social stress occurs in all social species, including humans, and shape both mental health and future interactions with conspecifics. Animal models of social stress are used to unravel the precise role of the main stress system - the HPA axis - on the one hand, and the social behavior network on the other, as these are intricately interwoven. The present review aims to summarize the insights gained from three highly useful and clinically relevant animal models of psychosocial stress: the resident-intruder (RI) test, the chronic subordinate colony housing (CSC), and the social fear conditioning (SFC). Each model brings its own focus: the role of the HPA axis in shaping acute social confrontations (RI test), the physiological and behavioral impairments resulting from chronic exposure to negative social experiences (CSC), and the neurobiology underlying social fear and its effects on future social interactions (SFC). Moreover, these models are discussed with special attention to the HPA axis and the neuropeptides vasopressin and oxytocin, which are important messengers in the stress system, in emotion regulation, as well as in the social behavior network. It appears that both nonapeptides balance the relative strength of the stress response, and simultaneously predispose the animal to positive or negative social interactions.

  10. Animal models of yellow fever and their application in clinical research.

    PubMed

    Julander, Justin G

    2016-06-01

    Yellow fever virus (YFV) is an arbovirus that causes significant human morbidity and mortality. This virus has been studied intensively over the past century, although there are still no treatment options for those who become infected. Periodic and unpredictable yellow fever (YF) outbreaks in Africa and South America continue to occur and underscore the ongoing need to further understand this viral disease and to develop additional countermeasures to prevent or treat cases of illness. The use of animal models of YF is critical to accomplishing this goal. There are several animal models of YF that replicate various aspects of clinical disease and have provided insight into pathogenic mechanisms of the virus. These typically include mice, hamsters and non-human primates (NHP). The utilities and shortcomings of the available animal models of YF are discussed. Information on recent discoveries that have been made in the field of YFV research is also included as well as important future directions in further ameliorating the morbidity and mortality that occur as a result of YFV infection. It is anticipated that these model systems will help facilitate further improvements in the understanding of this virus and in furthering countermeasures to prevent or treat infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The contribution of an animal model toward uncovering biological risk factors for PTSD.

    PubMed

    Cohen, Hagit; Matar, Michael A; Richter-Levin, Gal; Zohar, Joseph

    2006-07-01

    Clinical studies of posttraumatic stress disorder (PTSD) have elicited proposed risk factors for developing PTSD in the aftermath of stress exposure. Generally, these risk factors have arisen from retrospective analysis of premorbid characteristics of study populations. A valid animal model of PTSD can complement clinical studies and help to elucidate issues, such as the contribution of proposed risk factors, in ways which are not practicable in the clinical arena. Important qualities of animal models include the possibility to conduct controlled prospective studies, easy access to postmortem brains, and the availability of genetically manipulated subjects, which can be tailored to specific needs. When these qualities are further complemented by an approach which defines phenomenologic criteria to address the variance in individual response pattern and magnitude, enabling the animal subjects to be classified into definable groups for focused study, the model acquires added validity. This article presents an overview of a series of studies in such an animal model which examine the contribution of two proposed risk factors and the value of two early postexposure pharmacological manipulations on the prevalence rates of subjects displaying an extreme magnitude of behavioral response to a predator stress paradigm.

  12. Contribution of nonprimate animal models in understanding the etiology of schizophrenia

    PubMed Central

    Lazar, Noah L.; Neufeld, Richard W.J.; Cain, Donald P.

    2011-01-01

    Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelopmental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neurotransmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans. PMID:21247514

  13. Ravens reconcile after aggressive conflicts with valuable partners.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2011-03-25

    Reconciliation, a post-conflict affiliative interaction between former opponents, is an important mechanism for reducing the costs of aggressive conflict in primates and some other mammals as it may repair the opponents' relationship and reduce post-conflict distress. Opponents who share a valuable relationship are expected to be more likely to reconcile as for such partners the benefits of relationship repair should outweigh the risk of renewed aggression. In birds, however, post-conflict behavior has thus far been marked by an apparent absence of reconciliation, suggested to result either from differing avian and mammalian strategies or because birds may not share valuable relationships with partners with whom they engage in aggressive conflict. Here, we demonstrate the occurrence of reconciliation in a group of captive subadult ravens (Corvus corax) and show that it is more likely to occur after conflicts between partners who share a valuable relationship. Furthermore, former opponents were less likely to engage in renewed aggression following reconciliation, suggesting that reconciliation repairs damage caused to their relationship by the preceding conflict. Our findings suggest not only that primate-like valuable relationships exist outside the pair bond in birds, but that such partners may employ the same mechanisms in birds as in primates to ensure that the benefits afforded by their relationships are maintained even when conflicts of interest escalate into aggression. These results provide further support for a convergent evolution of social strategies in avian and mammalian species.

  14. Animal models for investigating chronic pancreatitis

    PubMed Central

    2011-01-01

    Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed. PMID:22133269

  15. Mice selected for high versus low stress reactivity: a new animal model for affective disorders.

    PubMed

    Touma, Chadi; Bunck, Mirjam; Glasl, Lisa; Nussbaumer, Markus; Palme, Rupert; Stein, Hendrik; Wolferstätter, Michael; Zeh, Ramona; Zimbelmann, Marina; Holsboer, Florian; Landgraf, Rainer

    2008-07-01

    Affective disorders such as major depression are among the most prevalent and costly diseases of the central nervous system, but the underlying mechanisms are still poorly understood. In recent years, it has become evident that alterations of the stress hormone system, in particular dysfunctions (hyper- or hypo-activity) of the hypothalamic-pituitary-adrenal (HPA) axis, play a prominent role in the development of major depressive disorders. Therefore, we aimed to generate a new animal model comprising these neuroendocrine core symptoms in order to unravel parameters underlying increased or decreased stress reactivity. Starting from a population of outbred mice (parental generation: 100 males and 100 females of the CD-1 strain), two breeding lines were established according to the outcome of a 'stress reactivity test' (SRT), consisting of a 15-min restraint period and tail blood samplings immediately before and after exposure to the stressor. Mice showing a very high or a very low secretion of corticosterone in the SRT, i.e. animals expressing a hyper- or a hypo-reactivity of the HPA axis, were selected for the 'high reactivity' (HR) and the 'low reactivity' (LR) breeding line, respectively. Additionally, a third breeding line was established consisting of animals with an 'intermediate reactivity' (IR) in the SRT. Already in the first generation, i.e. animals derived from breeding pairs selected from the parental generation, significant differences in the reactivity of the HPA axis between HR, IR, and LR mice were observed. Moreover, these differences were found across all subsequent generations and could be increased by selective breeding, which indicates a genetic basis of the respective phenotype. Repeated testing of individuals in the SRT furthermore proved that the observed differences in stress responsiveness are present already early in life and can be regarded as a robust genetic predisposition. Tests investigating the animal's emotionality including anxiety

  16. Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans

    PubMed Central

    van Gestel, M A; Kostrzewa, E; Adan, R A H; Janhunen, S K

    2014-01-01

    Eating disorders, such as anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorders (BED), are described as abnormal eating habits that usually involve insufficient or excessive food intake. Animal models have been developed that provide insight into certain aspects of eating disorders. Several drugs have been found efficacious in these animal models and some of them have eventually proven useful in the treatment of eating disorders. This review will cover the role of monoaminergic neurotransmitters in eating disorders and their pharmacological manipulations in animal models and humans. Dopamine, 5-HT (serotonin) and noradrenaline in hypothalamic and striatal regions regulate food intake by affecting hunger and satiety and by affecting rewarding and motivational aspects of feeding. Reduced neurotransmission by dopamine, 5-HT and noradrenaline and compensatory changes, at least in dopamine D2 and 5-HT2C/2A receptors, have been related to the pathophysiology of AN in humans and animal models. Also, in disorders and animal models of BN and BED, monoaminergic neurotransmission is down-regulated but receptor level changes are different from those seen in AN. A hypofunctional dopamine system or overactive α2-adrenoceptors may contribute to an attenuated response to (palatable) food and result in hedonic binge eating. Evidence for the efficacy of monoaminergic treatments for AN is limited, while more support exists for the treatment of BN or BED with monoaminergic drugs. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24866852

  17. Animal models and their importance to human physiological responses in microgravity

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.

    1996-01-01

    Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.

  18. A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs

    DTIC Science & Technology

    2008-02-12

    interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh 1 10/15/2007 Scientific progress and accomplishments. We...information to the brain. A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D...A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh

  19. Considerations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathy—These Matters Matter

    PubMed Central

    Wojnarowicz, Mark W.; Fisher, Andrew M.; Minaeva, Olga; Goldstein, Lee E.

    2017-01-01

    Animal models of concussion, traumatic brain injury (TBI), and chronic traumatic encephalopathy (CTE) are widely available and routinely deployed in laboratories around the world. Effective animal modeling requires careful consideration of four basic principles. First, animal model use must be guided by clarity of definitions regarding the human disease or condition being modeled. Concussion, TBI, and CTE represent distinct clinical entities that require clear differentiation: concussion is a neurological syndrome, TBI is a neurological event, and CTE is a neurological disease. While these conditions are all associated with head injury, the pathophysiology, clinical course, and medical management of each are distinct. Investigators who use animal models of these conditions must take into account these clinical distinctions to avoid misinterpretation of results and category mistakes. Second, model selection must be grounded by clarity of purpose with respect to experimental questions and frame of reference of the investigation. Distinguishing injury context (“inputs”) from injury consequences (“outputs”) may be helpful during animal model selection, experimental design and execution, and interpretation of results. Vigilance is required to rout out, or rigorously control for, model artifacts with potential to interfere with primary endpoints. The widespread use of anesthetics in many animal models illustrates the many ways that model artifacts can confound preclinical results. Third, concordance between key features of the animal model and the human disease or condition being modeled is required to confirm model biofidelity. Fourth, experimental results observed in animals must be confirmed in human subjects for model validation. Adherence to these principles serves as a bulwark against flawed interpretation of results, study replication failure, and confusion in the field. Implementing these principles will advance basic science discovery and accelerate

  20. Using spatiotemporal statistical models to estimate animal abundance and infer ecological dynamics from survey counts

    USGS Publications Warehouse

    Conn, Paul B.; Johnson, Devin S.; Ver Hoef, Jay M.; Hooten, Mevin B.; London, Joshua M.; Boveng, Peter L.

    2015-01-01

    Ecologists often fit models to survey data to estimate and explain variation in animal abundance. Such models typically require that animal density remains constant across the landscape where sampling is being conducted, a potentially problematic assumption for animals inhabiting dynamic landscapes or otherwise exhibiting considerable spatiotemporal variation in density. We review several concepts from the burgeoning literature on spatiotemporal statistical models, including the nature of the temporal structure (i.e., descriptive or dynamical) and strategies for dimension reduction to promote computational tractability. We also review several features as they specifically relate to abundance estimation, including boundary conditions, population closure, choice of link function, and extrapolation of predicted relationships to unsampled areas. We then compare a suite of novel and existing spatiotemporal hierarchical models for animal count data that permit animal density to vary over space and time, including formulations motivated by resource selection and allowing for closed populations. We gauge the relative performance (bias, precision, computational demands) of alternative spatiotemporal models when confronted with simulated and real data sets from dynamic animal populations. For the latter, we analyze spotted seal (Phoca largha) counts from an aerial survey of the Bering Sea where the quantity and quality of suitable habitat (sea ice) changed dramatically while surveys were being conducted. Simulation analyses suggested that multiple types of spatiotemporal models provide reasonable inference (low positive bias, high precision) about animal abundance, but have potential for overestimating precision. Analysis of spotted seal data indicated that several model formulations, including those based on a log-Gaussian Cox process, had a tendency to overestimate abundance. By contrast, a model that included a population closure assumption and a scale prior on total

  1. Cognitive Model of Animal Behavior to Comprehend an Aspect of Decision-Making

    NASA Astrophysics Data System (ADS)

    Migita, Masao; Moriyama, Tohru

    2004-08-01

    Most animal behaviors are considered to have been evolved through their own courses of natural selection. Since mechanisms of natural selection depend tightly on environments in which animals of interest inhabit, the environment for an animal appears a priori, and stimulus-response (S-R) relationships are stable as long as it returns constant benefit. We claim, however, no environment for an animal cannot be regarded as a priori and any animal can exhibit more elaborated behavior than S-R. In other words, every animal is more or less cognitive in terms that it may modify a meaning of stimulus. We introduce a minimal model to demonstrate the cognitive aspect of the pill bug's turn alternation (TA) behavior. The simulated pill bug can modify its own response pattern to the stimulus of water, though stable response appears to be prerequisite to TA behavior.

  2. Predictive animal models of mania: hits, misses and future directions

    PubMed Central

    Young, Jared W; Henry, Brook L; Geyer, Mark A

    2011-01-01

    Mania has long been recognized as aberrant behaviour indicative of mental illness. Manic states include a variety of complex and multifaceted symptoms that challenge clear clinical distinctions. Symptoms include over-activity, hypersexuality, irritability and reduced need for sleep, with cognitive deficits recently linked to functional outcome. Current treatments have arisen through serendipity or from other disorders. Hence, treatments are not efficacious for all patients, and there is an urgent need to develop targeted therapeutics. Part of the drug discovery process is the assessment of therapeutics in animal models. Here we review pharmacological, environmental and genetic manipulations developed to test the efficacy of therapeutics in animal models of mania. The merits of these models are discussed in terms of the manipulation used and the facet of mania measured. Moreover, the predictive validity of these models is discussed in the context of differentiating drugs that succeed or fail to meet criteria as approved mania treatments. The multifaceted symptomatology of mania has not been reflected in the majority of animal models, where locomotor activity remains the primary measure. This approach has resulted in numerous false positives for putative treatments. Recent work highlights the need to utilize multivariate strategies to enable comprehensive assessment of affective and cognitive dysfunction. Advances in therapeutic treatment may depend on novel models developed with an integrated approach that includes: (i) a comprehensive battery of tests for different aspects of mania, (ii) utilization of genetic information to establish aetiological validity and (iii) objective quantification of patient behaviour with translational cross-species paradigms. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21410454

  3. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction

    PubMed Central

    Bell, Richard L.; Hauser, Sheketha; Rodd, Zachary A.; Liang, Tiebing; Sari, Youssef; McClintick, Jeanette; Rahman, Shafiqur; Engleman, Eric A.

    2016-01-01

    The purpose of this review is to present up-to-date pharmacological, genetic and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein we sought to place the P rat’s behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this paper discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general. PMID:27055615

  4. Preventing Drug-Induced Liver Injury: How Useful Are Animal Models?

    PubMed

    Ballet, François

    2015-01-01

    Drug-induced liver injury (DILI) is the most common organ toxicity encountered in regulatory animal toxicology studies required prior to the clinical development of new drug candidates. Very few reports have evaluated the value of these studies for predicting DILI in humans. Indeed, compounds inducing liver toxicity in regulatory toxicology studies are not always correlated with a risk of DILI in humans. Conversely, compounds associated with the occurrence of DILI in phase 3 studies or after market release are often tested negative in regulatory toxicology studies. Idiosyncratic DILI is a rare event that is precipitated in an individual by the simultaneous occurrence of several critical factors. These factors may relate to the host (e.g. human leukocyte antigen polymorphism, inflammation), the drug (e.g. reactive metabolites) or the environment (e.g. diet/microbiota). This type of toxicity therefore cannot be detected in conventional animal toxicology studies. Several animal models have recently been proposed for the identification of drugs with the potential to cause idiosyncratic DILI: rats treated with lipopolysaccharide, Sod2(+/-) mice, panels of inbred mouse strains or chimeric mice with humanized livers. These models are not suitable for use in the prospective screening of new drug candidates. Humans therefore constitute the best model for predicting and assessing idiopathic DILI. © 2015 S. Karger AG, Basel.

  5. From bedside to bench and back again: research issues in animal models of human disease.

    PubMed

    Tkacs, Nancy C; Thompson, Hilaire J

    2006-07-01

    To improve outcomes for patients with many serious clinical problems, multifactorial research approaches by nurse scientists, including the use of animal models, are necessary. Animal models serve as analogies for clinical problems seen in humans and must meet certain criteria, including validity and reliability, to be useful in moving research efforts forward. This article describes research considerations in the development of rodent models. As the standard of diabetes care evolves to emphasize intensive insulin therapy, rates of severe hypoglycemia are increasing among patients with type 1 and type 2 diabetes mellitus. A consequence of this change in clinical practice is an increase in rates of two hypoglycemia-related diabetes complications: hypoglycemia-associated autonomic failure (HAAF) and resulting hypoglycemia unawareness. Work on an animal model of HAAF is in an early developmental stage, with several labs reporting different approaches to model this complication of type 1 diabetes mellitus. This emerging model serves as an example illustrating how evaluation of validity and reliability is critically important at each stage of developing and testing animal models to support inquiry into human disease.

  6. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  7. Bone augmentation for cancellous bone- development of a new animal model.

    PubMed

    Klein, Karina; Zamparo, Enrico; Kronen, Peter W; Kämpf, Katharina; Makara, Mariano; Steffen, Thomas; von Rechenberg, Brigitte

    2013-07-02

    Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (Ø 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative

  8. Animal Models in Sexual Medicine: The Need and Importance of Studying Sexual Motivation.

    PubMed

    Ventura-Aquino, Elisa; Paredes, Raúl G

    2017-01-01

    Many different animal models of sexual medicine have been developed, demonstrating the complexity of studying the many interactions that influence sexual responses. A great deal of effort has been invested in measuring sexual motivation using different behavioral models mainly because human behavior is more complex than any model can reproduce. To compare different animal models of male and female behaviors that measure sexual motivation as a key element in sexual medicine and focus on models that use a combination of molecular techniques and behavioral measurements. We review the literature to describe models that evaluate different aspects of sexual motivation. No single test is sufficient to evaluate sexual motivation. The best approach is to evaluate animals in different behavioral tests to measure the motivational state of the subject. Different motivated behaviors such as aggression, singing in the case of birds, and sexual behavior, which are crucial for reproduction, are associated with changes in mRNA levels of different receptors in brain areas that are important in the control of reproduction. Research in animal models is crucial to understand the complexity of sexual behavior and all the mechanisms that influence such an important aspect of human well-being to decrease the physiologic and psychological impact of sexual dysfunctions. In other cases, research in different models is necessary to understand and recognize, not cure, the variability of sexuality, such as asexuality, which is another form of sexual orientation. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  9. Creating an Animal Model of Tendinopathy by Inducing Chondrogenic Differentiation with Kartogenin.

    PubMed

    Yuan, Ting; Zhang, Jianying; Zhao, Guangyi; Zhou, Yiqin; Zhang, Chang-Qing; Wang, James H-C

    2016-01-01

    Previous animal studies have shown that long term rat treadmill running induces over-use tendinopathy, which manifests as proteoglycan accumulation and chondrocytes-like cells within the affected tendons. Creating this animal model of tendinopathy by long term treadmill running is however time-consuming, costly and may vary among animals. In this study, we used a new approach to develop an animal model of tendinopathy using kartogenin (KGN), a bio-compound that can stimulate endogenous stem/progenitor cells to differentiate into chondrocytes. KGN-beads were fabricated and implanted into rat Achilles tendons. Five weeks after implantation, chondrocytes and proteoglycan accumulation were found at the KGN implanted site. Vascularity as well as disorganization in collagen fibers were also present in the same site along with increased expression of the chondrocyte specific marker, collagen type II (Col. II). In vitro studies confirmed that KGN was released continuously from KGN-alginate in vivo beads and induced chondrogenic differentiation of tendon stem/progenitor cells (TSCs) suggesting that chondrogenesis after KGN-bead implantation into the rat tendons is likely due to the aberrant differentiation of TSCs into chondrocytes. Taken together, our results showed that KGN-alginate beads can be used to create a rat model of tendinopathy, which, at least in part, reproduces the features of over-use tendinopathy model created by long term treadmill running. This model is mechanistic (stem cell differentiation), highly reproducible and precise in creating localized tendinopathic lesions. It is expected that this model will be useful to evaluate the effects of various topical treatments such as NSAIDs and platelet-rich plasma (PRP) for the treatment of tendinopathy.

  10. Effects of Qufeng Xuanfei decoction in animal model of post-infectious cough.

    PubMed

    Jia, Zhu; Feixia, Li

    2014-11-01

    This study evaluated the effects and potential mechanisms of Qufeng Xuanfei decoction in animal model of post-infectious cough. Sixty SD rats were randomly divided into six groups (10 animals per group): control, disease model, low- (4.62 g kg(-1)), medium- (9.24 g kg(-1)), and high-dose (13.86 g kg(-1)) decoction, and positive treatment groups (dextromethorphan hydrobromide, 8 mL kg(-1)). To model post-infectious cough, all but control group animals were challenged with exposure to 50 g sawdust and 10 cigarette smokes for 30 min day(-1) for a total of 10 days, followed by subsequent exposures to lipopolysaccharide (20 µg) and capsaicin (10(-4) M) aerosols. The drugs were given by oral gavage for 15 days after which lung pathology, cell counts and cell differentials in bronchoalveolar lavage (BAL), and concentrations of neuropeptides [substance P (SP), neurokinins A (NKA) and B (NKB), and calcitonin gene-related peptide (CGRP)] in BAL (ELISA) were assessed. Compared with control group animals, significant inflammation and damage to bronchial epithelium were observed in the disease model group. A marked decrease in BAL percentages of all types of inflammatory cells was observed in the decoction-treated groups, with most changes in the medium-dose decoction group (p < 0.001 vs. disease model group). Further, airway inflammation and damage, as well as the levels of SP, NKA, NKB, and CGRP in BAL decreased the most in the medium-dose group (p < 0.001 vs. disease model group). In conclusion, medium-dose Qufeng Xuanfei decoction efficiently decreases the levels of neuropeptides, attenuates airway inflammation, and promotes recovery from disease.

  11. Repeated measurements of transfer factor in rabbits: an animal model suitable for evaluation of short-term exposure.

    PubMed

    Dahlqvist, M; Lagerstrand, L; Nilsen, A

    1994-01-01

    Acute temporary changes in lung function may be of use as a biological exposure indicator. However, studies of humans occupationally exposed to complex airborne irritants are often expensive and time demanding. Therefore, an animal model could be a valuable complement. A rabbit model has been evaluated where transfer factor was measured twice during the same day, and with the rabbit awake and available for exposure, in between. Anaesthesia and intubation in 22 rabbits (2.6 [0.2] kg [Mean (SD)]) were immediately followed by two measurements of transfer factor and alveolar volume. Transfer factor was estimated by the single breath CO-technique used in humans. The samples were analysed for CO and He on a gas chromatograph. After one pair of measurements the rabbit was allowed to wake up and after 5 h the duplicate measurements were repeated. The mean values of transfer factor, alveolar volume and transfer constant were 0.50 (0.09) mmol min-1 kPa-1, 127 (8) ml and 3.9 (0.6) mmol min-1 kPa-1 l-1, respectively. The intraindividual coefficients of variation were 7.3%, 5.3% and 6.7%, respectively. Five hours later when the duplicate measurements were repeated, transfer factor, alveolar volume and transfer constant were unchanged still. The results suggest that relatively small changes in transfer factor may be detected without losing power, and thus that this model could be used as a biological exposure indicator.

  12. A novel animal model for hyperdynamic airway collapse.

    PubMed

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  13. Evidence from animal models on the pathogenesis of PCOS.

    PubMed

    Walters, K A; Bertoldo, M J; Handelsman, D J

    2018-06-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine condition in women, and is characterized by reproductive, endocrine and metabolic features. However, there is no simple unequivocal diagnostic test for PCOS, its etiology remains unknown and there is no cure. Hence, the management of PCOS is suboptimal as it relies on the ad hoc empirical management of its symptoms only. Decisive studies are required to unravel the origins of PCOS, but due to ethical and logistical reasons these are not possible in humans. Experimental animal models for PCOS have been established which have enhanced our understanding of the mechanisms underlying PCOS and propose novel mechanism-based therapies to treat the condition. This review examines the findings from various animal models to reveal the current knowledge of the mechanisms underpinning the development of PCOS, and also provides insights into the implications from these studies for improved clinical management of this disorder. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Aggressive behavior in transgenic animal models: A systematic review.

    PubMed

    Jager, Amanda; Maas, Dorien A; Fricke, Kim; de Vries, Rob B; Poelmans, Geert; Glennon, Jeffrey C

    2018-08-01

    Aggressive behavior is often core or comorbid to psychiatric and neurodegenerative disorders. Transgenic animal models are commonly used to study the neurobiological mechanisms underlying aggressive phenotypes and have led to new insights into aggression. This systematic review critically evaluates the available literature on transgenic animal models tested for aggression with the resident-intruder test. By combining the available literature on this topic, we sought to highlight effective methods for laboratory aggression testing and provide recommendations for study design as well as aggression induction and measurement in rodents that are translational to humans, taking into consideration possible confounding factors. In addition, we built a molecular landscape of interactions between the proteins encoded by the aggression-linked genes from our systematic search. Some molecular pathways within this landscape overlap with psychiatric and neurodegenerative disorders and the landscapes point towards a number of putative (drug) targets for aggression that need to be validated in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Animal models for influenza virus pathogenesis, transmission, and immunology

    PubMed Central

    Thangavel, Rajagowthamee R.; Bouvier, Nicole M.

    2014-01-01

    In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research -- mice, ferrets, and guinea pigs -- and discuss the advantages and disadvantages of each. PMID:24709389

  16. MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers

    PubMed Central

    Merhautova, Jana; Demlova, Regina; Slaby, Ondrej

    2016-01-01

    Gastrointestinal cancer accounts for the 20 most frequent cancer diseases worldwide and there is a constant urge to bring new therapeutics with new mechanism of action into the clinical practice. Quantity of in vitro and in vivo evidences indicate, that exogenous change in pathologically imbalanced microRNAs (miRNAs) is capable of transforming the cancer cell phenotype. This review analyzed preclinical miRNA-based therapy attempts in animal models of gastric, pancreatic, gallbladder, and colorectal cancer. From more than 400 original articles, 26 was found to assess the effect of miRNA mimics, precursors, expression vectors, or inhibitors administered locally or systemically being an approach with relatively high translational potential. We have focused on mapping available information on animal model used (animal strain, cell line, xenograft method), pharmacological aspects (oligonucleotide chemistry, delivery system, posology, route of administration) and toxicology assessments. We also summarize findings in the field pharmacokinetics and toxicity of miRNA-based therapy. PMID:27729862

  17. No Dog Left Behind: A Hedonic Pricing Model for Animal Shelters.

    PubMed

    Reese, Laura A; Skidmore, Mark; Dyar, William; Rosebrook, Erika

    2017-01-01

    Companion animal overpopulation is a growing problem in the United States. In addition to strays, an average of 324,500 nonhuman animals are relinquished to shelters yearly by their caregivers due to family disruption (divorce, death), foreclosure, economic problems, or minor behavioral issues. As a result, estimates of animals in shelters range from 3 million to 8 million, and due to overcrowding, euthanasia is common. This analysis seeks to determine the appropriate pricing mechanisms to clear animal shelters of dogs in the manner most desirable-that is, through adoption. Based on a survey of Michigan residents, it is clear there are a number of correlations between the traits of dogs and the individuals who care for them. Hedonic pricing models indicate that animal shelters need to proactively vary their pricing systems to discount particular traits, specifically for mixed-breed, older, and black dogs. Premiums can be charged for puppies, purebred dogs, and those who have received specific services such as microchipping.

  18. Optimization of large animal MI models; a systematic analysis of control groups from preclinical studies.

    PubMed

    Zwetsloot, P P; Kouwenberg, L H J A; Sena, E S; Eding, J E; den Ruijter, H M; Sluijter, J P G; Pasterkamp, G; Doevendans, P A; Hoefer, I E; Chamuleau, S A J; van Hout, G P J; Jansen Of Lorkeers, S J

    2017-10-27

    Large animal models are essential for the development of novel therapeutics for myocardial infarction. To optimize translation, we need to assess the effect of experimental design on disease outcome and model experimental design to resemble the clinical course of MI. The aim of this study is therefore to systematically investigate how experimental decisions affect outcome measurements in large animal MI models. We used control animal-data from two independent meta-analyses of large animal MI models. All variables of interest were pre-defined. We performed univariable and multivariable meta-regression to analyze whether these variables influenced infarct size and ejection fraction. Our analyses incorporated 246 relevant studies. Multivariable meta-regression revealed that infarct size and cardiac function were influenced independently by choice of species, sex, co-medication, occlusion type, occluded vessel, quantification method, ischemia duration and follow-up duration. We provide strong systematic evidence that commonly used endpoints significantly depend on study design and biological variation. This makes direct comparison of different study-results difficult and calls for standardized models. Researchers should take this into account when designing large animal studies to most closely mimic the clinical course of MI and enable translational success.

  19. Development of computational small animal models and their applications in preclinical imaging and therapy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less

  20. Fantastic animals as an experimental model to teach animal adaptation

    PubMed Central

    Guidetti, Roberto; Baraldi, Laura; Calzolai, Caterina; Pini, Lorenza; Veronesi, Paola; Pederzoli, Aurora

    2007-01-01

    Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy). Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities. PMID:17767729