Sample records for valuable crop species

  1. Winery wastewater inhibits seed germination and vegetative growth of common crop species.

    PubMed

    Mosse, Kim P M; Patti, Antonio F; Christen, Evan W; Cavagnaro, Timothy R

    2010-08-15

    The ability to reuse winery wastewater would be of significant benefit to the wine industry, as it could potentially be a cost-effective method of wastewater management, whilst at the same time providing a valuable water resource. This study investigated the effects of different dilutions of a semi-synthetic winery wastewater on the growth and germination of four common crop species in a glasshouse study; barley (Hordeum vulgare), millet (Pennisetum glaucum), lucerne (Medicago sativa) and phalaris (Phalaris aquatica). The wastewater caused a significant delay in the germination of lucerne, millet and phalaris, although overall germination percentage of all species was not affected. Vegetative growth was significantly reduced in all species, with millet being the most severely affected. The germination index of barley correlated very highly (r(2)=0.99) with barley biomass, indicating that barley seed germination bioassays are highly relevant to plant growth, and therefore may be of use as a bioassay for winery wastewater toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Differential growth response of various crop species to arbuscular mycorrhizal inoculation.

    PubMed

    Eo, Ju-Kyeong; Eom, Ahn-Heum

    2009-03-01

    To investigate the growth response of various crop species to mycorrhizal inoculation, arbuscular mycorrhizal fungi were applied to Glycine max, Vigna angularis, Senna tora, Hordeum vulgare var. hexastichon. Zea mays, Sorghum bicolor, Allium tuberosum, Solanum melongena, and Capsicum annuum. The biomass of the inoculated crops was measured every two weeks for the 12-week growth period. By measuring biomass, we calculated the mycorrhizal responsiveness of the nine crop species. Among the nine crop species, four species showed a significant response to mycorrhizal inoculation. The shoot biomasses of V. angularis, C. annuum, A. tuberosum, and S. tora significantly increased with mycorrhizal inoculation.

  3. Towards an integrated species and habitat management of crop pollination.

    PubMed

    Garibaldi, Lucas A; Requier, Fabrice; Rollin, Orianne; Andersson, Georg Ks

    2017-06-01

    Pollination deficits are widespread in current agriculture, so improving management for crop pollination is critical. Here we review the two most common management approaches to enhance crop pollination, species and habitat management, by providing referenced lists of successful examples. We pinpoint that these approaches have been studied in isolation from each other, with little discussion on potential synergies and trade-offs between them. The potential costs of species management (e.g., loss of biodiversity due to biological invasion), as well as the potential benefits to managed pollinator species from habitat restoration, are rarely quantified. An integrative approach to crop pollination should be implemented, accounting for the cost and benefits (including those beyond crop production) and interactions of species and habitat management. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cadmium phytoremediation potential of Brassica crop species: A review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Zia Ur Rehman, Muhammad; Rinklebe, Jörg; Tsang, Daniel C W; Bashir, Arooj; Maqbool, Arosha; Tack, F M G; Ok, Yong Sik

    2018-08-01

    Cadmium (Cd) is a highly toxic metal released into the environment through anthropogenic activities. Phytoremediation is a green technology used for the stabilization or remediation of Cd-contaminated soils. Brassica crop species can produce high biomass under a range of climatic and growing conditions, allowing for considerable uptake and accumulation of Cd, depending on species. These crop species can tolerate Cd stress via different mechanisms, including the stimulation of the antioxidant defense system, chelation, compartmentation of Cd into metabolically inactive parts, and accumulation of total amino-acids and osmoprotectants. A higher Cd-stress level, however, overcomes the defense system and may cause oxidative stress in Brassica species due to overproduction of reactive oxygen species and lipid peroxidation. Therefore, numerous approaches have been followed to decrease Cd toxicity in Brassica species, including selection of Cd-tolerant cultivars, the use of inorganic and organic amendments, exogenous application of soil organisms, and employment of plant-growth regulators. Furthermore, the coupling of genetic engineering with cropping may also help to alleviate Cd toxicity in Brassica species. However, several field studies demonstrated contrasting results. This review suggests that the combination of Cd-tolerant Brassica cultivars and the application of soil amendments, along with proper agricultural practices, may be the most efficient means of the soil Cd phytoattenuation. Breeding and selection of Cd-tolerant species, as well as species with higher biomass production, might be needed in the future when aiming to use Brassica species for phytoremediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  6. Phosphorus mining efficiency declines with decreasing soil P concentration and varies across crop species.

    PubMed

    Schelfhout, Stephanie; De Schrijver, An; Verheyen, Kris; De Beelde, Robbe; Haesaert, Geert; Mertens, Jan

    2018-07-29

    High soil P concentrations hinder ecological restoration of biological communities typical for nutrient-poor soils. Phosphorus mining, i.e., growing crops with fertilization other than P, might reduce soil P concentrations. However, crop species have different P-uptake rates and can affect subsequent P removal in crop rotation, both of which may also vary with soil P concentration. In a pot experiment with three soil-P-levels (High-P: 125-155 mg P Olsen /kg; Mid-P: 51-70 mg P Olsen /kg; Low-P: 6-21 mg P Olsen /kg), we measured how much P was removed by five crop species (buckwheat, maize, sunflower, flax, and triticale). Total P removal decreased with soil-P-level and depended upon crop identity. Buckwheat and maize removed most P from High-P and Mid-P soils and triticale removed less P than buckwheat, maize, and sunflower at every soil-P-level. The difference in P removal between crops was, however, almost absent in Low-P soils. Absolute and relative P removal with seeds depended upon crop species and, for maize and triticale, also upon soil-P-level. None of the previously grown crop species significantly affected P removal by the follow-up crop (perennial ryegrass). We can conclude that for maximizing P removal, buckwheat or maize could be grown.

  7. Crop Species Diversity Changes in the United States: 1978–2012

    PubMed Central

    Aguilar, Jonathan; Gramig, Greta G.; Hendrickson, John R.; Archer, David W.; Forcella, Frank; Liebig, Mark A.

    2015-01-01

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability. PMID:26308552

  8. Boron nutrition and chilling tolerance of warm climate crop species.

    PubMed

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B

  9. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    PubMed Central

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  10. Hydrocarbon- and rubber-producing crops: evaluation of 100 US plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, R.T.; Cull, I.M., Otey, F.H.; Russell, C.R.

    1978-01-01

    Agricultural production of rubber and other hydrocarbons in the United States may be compatible with increased food and fiber production if entire plants are harvested and processed for fiber, protein, and carbohydrate as well. Procedures and criteria have been established for the preliminary evaluation of plant species as potential multi-use hydrocarbon-producing crops. Previously, 106 species representing 44 families and 81 genera were evaluated. Now an additional 100 species respresenting 13 additional families and 60 additional genera have been evaluated, and some of these species also offer promise as future crops. Several Labiatae are high in natural rubber (NR) content: Pycnanthemummore » incanum (Mountain Mint) and Teucrium canadense (American Germander) were evaluated as promising species. Three Compositae, Cacalia atriplicifolia (Pale Indian-Plant), Solidago graminifolia (Grass-leafed Golden-rod, and Solidago rigida (Stiff Golden-rod) were also evaluated as promising species for NR. Campanuala americana (Tall Bellflower, Campanulaceae) has potential as a source of both oil and NR. Euphorbia dentata (Euphorbiaceae) does not produce NR but is very high in protein and oil contents. Sassafras albudim (Sassafras, Lauraceae) is of interest for its rapid growth rate in combination with a high oil content. A few other species offer some promise.« less

  11. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species.

    PubMed

    Mason, A S; Snowdon, R J

    2016-11-01

    Oilseed rape (Brassica napus) is one of our youngest crop species, arising several times under cultivation in the last few thousand years and completely unknown in the wild. Oilseed rape originated from hybridisation events between progenitor diploid species B. rapa and B. oleracea, both important vegetable species. The diploid progenitors are also ancient polyploids, with remnants of two previous polyploidisation events evident in the triplicated genome structure. This history of polyploid evolution and human agricultural selection makes B. napus an excellent model with which to investigate processes of genomic evolution and selection in polyploid crops. The ease of de novo interspecific hybridisation, responsiveness to tissue culture, and the close relationship of oilseed rape to the model plant Arabidopsis thaliana, coupled with the recent availability of reference genome sequences and suites of molecular cytogenetic and high-throughput genotyping tools, allow detailed dissection of genetic, genomic and phenotypic interactions in this crop. In this review we discuss the past and present uses of B. napus as a model for polyploid speciation and evolution in crop species, along with current and developing analysis tools and resources. We further outline unanswered questions that may now be tractable to investigation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

    PubMed Central

    Wang, Yong-Qiang; Yang, Yong; Li, Li

    2013-01-01

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953–2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants. PMID:23314817

  13. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development.

    PubMed

    Wang, Yong-Qiang; Yang, Yong; Fei, Zhangjun; Yuan, Hui; Fish, Tara; Thannhauser, Theodore W; Mazourek, Michael; Kochian, Leon V; Wang, Xiaowu; Li, Li

    2013-02-01

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953-2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants.

  14. Crop tree release options for young hardwood stands in North Carolina

    Treesearch

    Jamie L. Schuler; Daniel J. Robison

    2006-01-01

    Harvesting southern hardwood forests using even-aged reproduction methods commonly regenerate new stands with 20,000 to 50,000 stems per acre. Overstocking and an overabundance of non-commercial tree species are considered major constraints to growing productive and valuable hardwoods. Crop tree release practices have been promoted as an efficient way of thinning young...

  15. Urban activities influence on Phytophthora species diversity in British Columbia, Canada

    Treesearch

    Angela Dale; Nicolas Feau; Julien Ponchart; Guillaume Bilodeau; Jean Berube; R.C. Hamelin

    2017-01-01

    Phytophthora de Bary, a genus of Oomycetes, is known as a plant pathogenic genus. The best-known species infect a wide range of hosts, including economically valuable angiosperm and gymnosperm tree species and important agricultural crops. Many Phytophthora are invasive and have been disseminated through nursery and...

  16. [Dynamics and combined injuries of main pest species in rice cropping zones of Yunnan, Southwest China].

    PubMed

    Dong, Kun; Dong, Yan; Wang, Hai-Long; Zhang, Li-Min; Zan, Qing-An; Chen, Bin; Li, Zheng-Yue

    2014-01-01

    A series of rice pest injuries (due to pathogens, insects, and weeds) were surveyed in 286 farmers' fields for major rice varieties of three rice cropping zones of Yunnan Province, Southwest China. The composition and dynamics of main pest species were analyzed, and the trend of rice pest succession in Yunnan was discussed based upon landmark publications. The results showed that the three rice cropping zones had different pest characteristics as regard to main species, dynamics and combined injuries. Sheath rot, bacterial leaf blight, rice stripe, leaf hoppers, armyworms and stem borers were serious in the japonica rice zone. Sheath blight and rice stripe were serious in the japonica-indica interlacing zone. Leaf blast, sheath blight, leaf folders and weeds above rice crop canopy were serious in the indica rice zone. False smut, plant hoppers and weeds below rice crop canopy were ubiquitous and serious in the three kinds of rice cropping zones. Many kinds of weed infestation emerged in the whole rice cropping seasons. Echinochloa crusgalli, Sagittaria pygmaea, Potamogeton distinctus and Spirodela polyrhiza were the main species of weeds in the rice cropping zones of Yunnan. Overall, levels of combined injuries due to pests in the japonica rice zone and the indica rice zone were higher than that in the japonica-indica interlacing zone. In terms of the trend of rice pest succession in Yunnan, injuries due to false smut, sheath blight and plant hoppers seemed to be in a worse tendency in all rice cropping zones of Yunnan, while dominants species of weeds in the paddy fields are shifting from the annual weeds to the perennial malignant weeds.

  17. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    PubMed

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  18. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species.

    PubMed

    Menardo, Fabrizio; Praz, Coraline R; Wyder, Stefan; Ben-David, Roi; Bourras, Salim; Matsumae, Hiromi; McNally, Kaitlin E; Parlange, Francis; Riba, Andrea; Roffler, Stefan; Schaefer, Luisa K; Shimizu, Kentaro K; Valenti, Luca; Zbinden, Helen; Wicker, Thomas; Keller, Beat

    2016-02-01

    Throughout the history of agriculture, many new crop species (polyploids or artificial hybrids) have been introduced to diversify products or to increase yield. However, little is known about how these new crops influence the evolution of new pathogens and diseases. Triticale is an artificial hybrid of wheat and rye, and it was resistant to the fungal pathogen powdery mildew (Blumeria graminis) until 2001 (refs. 1,2,3). We sequenced and compared the genomes of 46 powdery mildew isolates covering several formae speciales. We found that B. graminis f. sp. triticale, which grows on triticale and wheat, is a hybrid between wheat powdery mildew (B. graminis f. sp. tritici) and mildew specialized on rye (B. graminis f. sp. secalis). Our data show that the hybrid of the two mildews specialized on two different hosts can infect the hybrid plant species originating from those two hosts. We conclude that hybridization between mildews specialized on different species is a mechanism of adaptation to new crops introduced by agriculture.

  19. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    PubMed

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  20. Crop species recognition and mensuration in the Sacramento Valley

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.

    1973-01-01

    The goal of the second recognition map was to delineate various crop species in a portion of the Sacramento Valley, and at the same time to determine how accurately each could be classified and measured from ERTS-1 data. The new recognition map, a new and concise display of the old map, and classification and mensuration accuracy data are presented and discussed. The mensuration accuracy, in particular, is affected by the presence of an edge effect one resolution wide surrounding nearly all fields. Points on the edge are misclassified because they contain a mixture of, crop and bare soil. Using a processing technique to estimate the proportions of unresolved objects in this edge region, a much improved mensuration capability will be demonstrated.

  1. Nurse crop

    Treesearch

    Wayne D. Shepperd; John R. Jones

    1985-01-01

    In forestry, a nurse crop generally is a crop of trees or shrubs that fosters the development of another tree species, usually by protecting the second species, during its youth, from frost, insolation, or wind (Ford-Robertson 1971). Aspen may be a nurse crop for shade-tolerant tree species that do not become established in full sunlight (e.g., Engelmann spruce)....

  2. Integrating multiple satellite data for crop monitoring

    USDA-ARS?s Scientific Manuscript database

    Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...

  3. Oilseed crop with promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senft, D.

    1986-02-01

    Cuphea, a relatively unknown plant outside the scientific community, might someday provide valuable oils for manufacturing soaps, detergents, surfactants, and lubricants, and may have medical, nutritional and dietetic applications as well. Unique properties of oils found in its seed make cuphea a potentially valuable new crop for the USA. Its seeds contain large quantities of medium-chain fatty acids such as lauric acid, which is used in manufacturing soaps and detergents. Other medium-chain fatty acids in cuphea can be used for clinical treatment of rare human ailments associated with fat absorption. New uses for the fatty acids in the seed maymore » be developed and economic conditions may change, making the crop more or less valuable.« less

  4. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.

    PubMed

    Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng

    2013-08-01

    The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.

  5. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species.

    PubMed

    Martín-Robles, Nieves; Lehmann, Anika; Seco, Erica; Aroca, Ricardo; Rillig, Matthias C; Milla, Rubén

    2018-04-01

    The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Bakan, Bénédicte; Rothan, Christophe

    2017-11-09

    Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Single season effects of mixed-species cover crops on tomato health (cultivar Celebrity) in multi-state field trials

    USDA-ARS?s Scientific Manuscript database

    Cover crop use can help mitigate the deleterious effects of common cropping practices (e.g., tillage) and is, therefore, an important component of soil health maintenance. While known to be beneficial in the long term, the short-term effects of cover crops, specifically mixed-species cover crops in ...

  8. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups

    PubMed Central

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5–43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3–37.2°C, maximum temperatures at which the species could germinate varied from 27.7–43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  9. Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies.

    PubMed

    Squire, Geoffrey R; Hawes, Cathy; Begg, Graham S; Young, Mark W

    2009-01-01

    In a gradualist approach to the introduction of crop biotechnology, the findings of experimentation at one scale are used to predict the outcome of moving to a higher scale of deployment. Movement through scales had occurred for certain genetically modified herbicide-tolerant (GMHT) crops in the UK as far as large-scale field trials. However, the land area occupied by these trials was still <1% of the area occupied by the respective non-GM crops. Some means is needed to predict the direction and size of the effect of increasing the area of GMHT cropping on ecological variables such as the diversity among species and trophic interactions. Species-accumulation curves are examined here as a method of indicating regional-scale impacts on botanical diversity from multiple field experiments. Data were used from experiments on the effect of (GMHT) crops and non-GM, or conventional, comparators in fields sown with four crop types (beet, maize, spring and winter oilseed rape) at a total of 250 sites in the UK between 2000 and 2003. Indices of biodiversity were measured in a split-field design comparing GMHT with the farmers' usual weed management. In the original analyses based on the means at site level, effects were detected on the mass of weeds in the three spring crops and the proportion of broadleaf and grass weeds in winter oilseed rape, but not on indices of plant species diversity. To explore the links between site means and total taxa, accumulation curves were constructed based on the number of plant species (a pool of around 250 species in total) and the number of plant functional types (24), inferred from the general life-history characteristics of a species. Species accumulation differed between GMHT and conventional treatments in direction and size, depending on the type of crop and its conventional management. Differences were mostly in the asymptote of the curve, indicative of the maximum number of species found in a treatment, rather than the steepness of

  10. A Functional Characterisation of a Wide Range of Cover Crop Species: Growth and Nitrogen Acquisition Rates, Leaf Traits and Ecological Strategies

    PubMed Central

    Tribouillois, Hélène; Fort, Florian; Cruz, Pablo; Charles, Raphaël; Flores, Olivier; Garnier, Eric; Justes, Eric

    2015-01-01

    Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species. PMID:25789485

  11. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing.

    PubMed

    Walder, Florian; Schlaeppi, Klaus; Wittwer, Raphaël; Held, Alain Y; Vogelgsang, Susanne; van der Heijden, Marcel G A

    2017-01-01

    Fusarium head blight, caused by fungi from the genus Fusarium , is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium . By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1-D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch ( Vicia villosa ) acts as a potent alternative host for Fusarium (OTU F.ave/tri ) showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici . Thus

  13. Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing

    PubMed Central

    Walder, Florian; Schlaeppi, Klaus; Wittwer, Raphaël; Held, Alain Y.; Vogelgsang, Susanne; van der Heijden, Marcel G. A.

    2017-01-01

    Fusarium head blight, caused by fungi from the genus Fusarium, is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium. By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1–D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch (Vicia villosa) acts as a potent alternative host for Fusarium (OTU F.ave/tri) showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici. Thus, besides

  14. Colaspis caligula, a new species found in association with Vitis vinifera (L.) crops in Argentina (Coleoptera: Chrysomelidae).

    PubMed

    Agrain, Federico A; Cabrera, Nora; Holgado, Miriam G; Vicchi, Franco R

    2016-09-05

    Some species of Colaspis Fabricius are well-known pests of several crops in Argentina. In this contribution, we describe a new species within this genus: Colaspis caligula n. sp., found in association with Vitis vinifera (Linnaeus) crops. We provide descriptions and illustrations of the mature larva, pupa and adult, as well as notes on its diagnostic characters, life cycle, and the damages produced to the plants.

  15. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    PubMed Central

    Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.

    2012-01-01

    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569

  16. Using fitness parameters to evaluate three oilseed Brassicaceae species as potential oil crops in two contrasting environments

    USDA-ARS?s Scientific Manuscript database

    Thlaspi arvense and Camelina sativa have gained considerable attention as biofuel crops. But in some areas, these species, including C. microcarpa, are becoming rare weeds because of agriculture intensification. Including them as crops could guarantee their conservation in agricultural systems. The ...

  17. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  18. Energy product options for Eucalyptus species grown as short rotation woody crops

    Treesearch

    Donald Rockwood; Alan W. Rudie; Sally A. Ralph; J.Y. Zhu; Jerrold E. Winandy

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida...

  19. Salt tolerant green crop species for sodium management in space agriculture

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  20. Uptake and Effects of Six Rare Earth Elements (REEs) on Selected Native and Crop Species Growing in Contaminated Soils

    PubMed Central

    Carpenter, David; Boutin, Céline; Allison, Jane E.; Parsons, Jessica L.; Ellis, Deanna M.

    2015-01-01

    Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a

  1. Uptake and Effects of Six Rare Earth Elements (REEs) on Selected Native and Crop Species Growing in Contaminated Soils.

    PubMed

    Carpenter, David; Boutin, Céline; Allison, Jane E; Parsons, Jessica L; Ellis, Deanna M

    2015-01-01

    Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a

  2. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues.

    PubMed

    Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.

  3. Biomass and nitrogen accumulation of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions

    USDA-ARS?s Scientific Manuscript database

    The performance and suitability of a legume-grass cover crop mixture for specific functions may be influenced by the proportions of each species in the mixture. The objectives of this study were to: 1) evaluate aboveground biomass and species biomass proportions at different hairy vetch (Vicia villo...

  4. Toxicity of biosolids-derived triclosan and triclocarban to six crop species.

    PubMed

    Prosser, Ryan S; Lissemore, Linda; Solomon, Keith R; Sibley, Paul K

    2014-08-01

    Biosolids are an important source of nutrients and organic matter, which are necessary for the productive cultivation of crop plants. Biosolids have been found to contain the personal care products triclosan and triclocarban at high concentrations relative to other pharmaceuticals and personal care products. The present study investigates whether exposure of 6 plant species (radish, carrot, soybean, lettuce, spring wheat, and corn) to triclosan or triclocarban derived from biosolids has an adverse effect on seed emergence and/or plant growth parameters. Plants were grown in soil amended with biosolids at a realistic agronomic rate. Biosolids were spiked with triclosan or triclocarban to produce increasing environmentally relevant exposures. The concentration of triclosan and triclocarban in biosolids-amended soil declined by up to 97% and 57%, respectively, over the course of the experiments. Amendment with biosolids had a positive effect on the majority of growth parameters in radish, carrot, soybean, lettuce, and wheat plants. No consistent triclosan- or triclocarban-dependent trends in seed emergence and plant growth parameters were observed in 5 of 6 plant species. A significant negative trend in shoot mass was observed for lettuce plants exposed to increasing concentrations of triclocarban (p<0.001). If best management practices are followed for biosolids amendment, triclosan and triclocarban pose a negligible risk to seed emergence and growth of crop plants. © 2014 SETAC.

  5. A database of annotated tentative orthologs from crop abiotic stress transcripts.

    PubMed

    Balaji, Jayashree; Crouch, Jonathan H; Petite, Prasad V N S; Hoisington, David A

    2006-10-07

    A minimal requirement to initiate a comparative genomics study on plant responses to abiotic stresses is a dataset of orthologous sequences. The availability of a large amount of sequence information, including those derived from stress cDNA libraries allow for the identification of stress related genes and orthologs associated with the stress response. Orthologous sequences serve as tools to explore genes and their relationships across species. For this purpose, ESTs from stress cDNA libraries across 16 crop species including 6 important cereal crops and 10 dicots were systematically collated and subjected to bioinformatics analysis such as clustering, grouping of tentative orthologous sets, identification of protein motifs/patterns in the predicted protein sequence, and annotation with stress conditions, tissue/library source and putative function. All data are available to the scientific community at http://intranet.icrisat.org/gt1/tog/homepage.htm. We believe that the availability of annotated plant abiotic stress ortholog sets will be a valuable resource for researchers studying the biology of environmental stresses in plant systems, molecular evolution and genomics.

  6. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    NASA Astrophysics Data System (ADS)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  7. Malus sieversii, a valuable genetic resource for disease resistance in apple

    USDA-ARS?s Scientific Manuscript database

    Domesticated crop cultivars inevitably represent a subset of the genetic variation found in their wild ancestors (progenitors) due to genetic bottlenecks that result during the process of crop domestication. Malus sieversii, a wild apple species native to Central Asia, is one of the ancestral proge...

  8. Navel orangeworm: a major pest in many crops

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm, Amyelois transitella (Walker), is a generalist that attacks mature fruit of a wide variety of horticultural crops. It is an important economic pests of almonds, pistachio, and walnuts, each of which are among the 20 most valuable crops in California and are planted on >100,000 ...

  9. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    PubMed Central

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  10. Evaluation of Cover Crops with Potential for Use in Anaerobic Soil Disinfestation (ASD) for Susceptibility to Three Species of Meloidogyne

    USDA-ARS?s Scientific Manuscript database

    Several cover crops with potential for use in tropical and subtropical regions were assessed for susceptibility to three common species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on potential use as organic amendments in anaerobic soil disin...

  11. Space Data for Crop Management

    NASA Technical Reports Server (NTRS)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  12. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops.

    PubMed

    Udayanga, Dhanushka; Castlebury, Lisa A; Rossman, Amy Y; Chukeatirote, Ekachai; Hyde, Kevin D

    2015-05-01

    Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations. Published by Elsevier Ltd.

  13. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops.

    PubMed

    Romeis, Jörg; Raybould, Alan; Bigler, Franz; Candolfi, Marco P; Hellmich, Richard L; Huesing, Joseph E; Shelton, Anthony M

    2013-01-01

    Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination and decomposition, or because they are of conservation interest. Some arthropods reduce crop yield and quality, and conventional chemical pesticides, biological control agents and genetically engineered (GE) crops are used to control them. A common concern addressed in the ecological risk assessment (ERA) that precedes regulatory approval of these pest control methods is their potential to adversely affect valued non-target arthropods (NTAs). A key concept of ERA is early-tier testing using worst-case exposure conditions in the laboratory and surrogate test species that are most likely to reveal an adverse effect. If no adverse effects are observed in those species at high exposures, confidence of negligible ecological risk from the use of the pest control method is increased. From experience with chemical pesticides and biological control agents, an approach is proposed for selecting test species for early-tier ERA of GE arthropod-resistant crops. Surrogate species should be selected that most closely meet three criteria: (i) Potential sensitivity: species should be the most likely to be sensitive to the arthropod-active compound based on the known spectrum of activity of the active ingredient, its mode of action, and the phylogenetic relatedness of the test and target species; (ii) species should be representative of valued taxa or functional groups that are most likely to be exposed to the arthropod-active compound in the field; and (iii) Availability and reliability: suitable life-stages of the test species must be obtainable in sufficient quantity and quality, and validated test protocols must be available that allow consistent detection of adverse effects on ecologically relevant parameters. Our proposed approach ensures that the most suitable species are selected for testing

  14. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops

    PubMed Central

    Rockwood, Donald L.; Rudie, Alan W.; Ralph, Sally A.; Zhu, J.Y.; Winandy, Jerrold E.

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida USA and similar locations, we document their current energy applications and assess their productivity as short-term and likely long-term energy and related products. PMID:19325808

  15. Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains.

    PubMed

    Qiu, Jianbo; Dong, Fei; Yu, Mingzheng; Xu, Jianhong; Shi, Jianrong

    2016-10-01

    The Fusarium graminearum species complex infects several cereals and causes the reduction of grain yield and quality. Many factors influence the extent of Fusarium infection and mycotoxin levels. Such factors include crop rotation. In the present study, we explored the effect of rice or maize as former crops on mycotoxin accumulation in wheat grains. More than 97% of samples were contaminated with deoxynivalenol (DON). DON concentrations in wheat grains from rice and maize rotation fields were 884.37 and 235.78 µg kg(-1) . Zearalenone (ZEN) was detected in 45% of samples which were mainly collected from maize-wheat rotation systems. Fusarium strains were isolated and more F. graminearum sensu stricto (s. str.) isolates were cultured from wheat samples obtained from maize rotation fields. DON levels produced by Fusarium isolates from rice rotation fields were higher than those of samples from maize rotation fields. Rice-wheat rotation favours DON accumulation, while more ZEN contamination may occur in maize-wheat rotation models. Appropriate crop rotation may help to reduce toxin levels in wheat grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.

    PubMed

    Pearl, Stephanie A; Burke, John M

    2014-10-01

    • Underutilized crops are potentially valuable resources for meeting increasing food demands. Safflower, an oilseed crop, is an example of one such underutilized crop that thrives in moisture-limited areas. Characterization of the genetic diversity maintained within the gene pools of underutilized crops such as safflower is an important step in their further development.• A total of 190 safflower individuals, including 134 USDA accessions, 48 breeding lines from two private North American safflower breeding companies, and eight wild safflower individuals, were genotyped using 133 single nucleotide polymorphism (SNP) markers. We then used the resulting data to assess the amount and distribution of genetic diversity within and among these collections of safflower.• Although just a modest reduction in gene diversity was observed in the commercial breeding lines (relative to the other safflower groupings), safflower domestication was accompanied by a significant decrease in allelic richness. Further, our results suggest that most safflower breeding lines originated from a single pool of diversity within the Old World safflower germplasm.• Taken together, our results suggest that both the safflower germplasm collection and related, wild species harbor previously undocumented genetic diversity that could help fuel future improvement efforts. Paired with analyses of functional diversity, the molecular resources described herein will be thus be useful in the continued development of safflower as an oilseed crop. © 2014 Botanical Society of America, Inc.

  17. Weather-based pest forecasting for efficient crop protection

    Treesearch

    Rabiu Olatinwo; Gerrit Hoogenboom

    2014-01-01

    Although insects, pathogens, mites, nematodes, weeds, vertebrates, and arthropods are different in many ways, they are regarded as pests. They are a major constraint to crop productivity and profitability around the world caused by direct and indirect damage to valuable crops. Insect pests, pathogens, and weeds account for an estimated 45% of pre- and post-harvest...

  18. Early crop-tree release and species cleaning in young northern hardwoods: a financial analysis

    Treesearch

    Paul E. Sendak; William B. Leak

    2008-01-01

    In 1959 a study of crop-tree release and species cleaning was established in a 25-year-old northern hardwood stand growing on an above-average hardwood site that resulted from a silvicultural clearcut in the White Mountains of New Hampshire. The stand was followed for 5 years and based on the results, treatment effects were projected to a stand age of 45 years. These...

  19. Diversity of the Neglected and Underutilized Crop Species of Importance in Benin

    PubMed Central

    Dansi, A.; Vodouhè, R.; Azokpota, P.; Yedomonhan, H.; Assogba, P.; Adjatin, A.; Loko, Y. L.; Dossou-Aminon, I.; Akpagana, K.

    2012-01-01

    Many of the plant species that are cultivated for food across the world are neglected and underutilized. To assess their diversity in Benin and identify the priority species and establish their research needs, a survey was conducted in 50 villages distributed throughout the country. The study revealed 41 neglected and underutilized crop species (NUCS) among which 19 were identified as of priority base on 10 criteria among which included their extent and degree of consumption. Reasons for neglect vary with the producers and the agricultural technicians. Market surveys revealed that NUCS are important source of household incomes and substantially contribute to poverty reduction. Review of the literature available revealed that most of the species are rich in nutrients and have some proven medicinal values and the promotion of their use would help in combating malnutrition and improving the health status of the local populations. The knowledge gaps and research needs are immense on most of the species identified as no concrete scientific data is nationally available. In terms of research, almost all has to be done starting from basic ethnobotanical investigation. The results will help the scientists and students willing to conduct research on NUCS in Benin to better orient their research programs. PMID:22593712

  20. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California

    USDA-ARS?s Scientific Manuscript database

    Diaporthe ampelina, causal agent of Phomopsis cane and leaf spot of grapevine (Vitis vinifera L.), is also frequently isolated from grapevine wood, causing Phomopsis dieback. In California, Diaporthe species cause a wide range of symptoms not only on grape, but also other fruit and nut crops. To bet...

  1. PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species[W][OA

    PubMed Central

    Mutwil, Marek; Klie, Sebastian; Tohge, Takayuki; Giorgi, Federico M.; Wilkins, Olivia; Campbell, Malcolm M.; Fernie, Alisdair R.; Usadel, Björn; Nikoloski, Zoran; Persson, Staffan

    2011-01-01

    The model organism Arabidopsis thaliana is readily used in basic research due to resource availability and relative speed of data acquisition. A major goal is to transfer acquired knowledge from Arabidopsis to crop species. However, the identification of functional equivalents of well-characterized Arabidopsis genes in other plants is a nontrivial task. It is well documented that transcriptionally coordinated genes tend to be functionally related and that such relationships may be conserved across different species and even kingdoms. To exploit such relationships, we constructed whole-genome coexpression networks for Arabidopsis and six important plant crop species. The interactive networks, clustered using the HCCA algorithm, are provided under the banner PlaNet (http://aranet.mpimp-golm.mpg.de). We implemented a comparative network algorithm that estimates similarities between network structures. Thus, the platform can be used to swiftly infer similar coexpressed network vicinities within and across species and can predict the identity of functional homologs. We exemplify this using the PSA-D and chalcone synthase-related gene networks. Finally, we assessed how ontology terms are transcriptionally connected in the seven species and provide the corresponding MapMan term coexpression networks. The data support the contention that this platform will considerably improve transfer of knowledge generated in Arabidopsis to valuable crop species. PMID:21441431

  2. Volatile Organic Compound Emissions by Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.

    2008-12-01

    Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.

  3. Trends in literature on new oilseed crops and related species: Seeking evidence of increasing or waning interest

    USDA-ARS?s Scientific Manuscript database

    Bibliographic records on eight new crop species Camelina, Crambe, Cuphea, Physaria, Limnanthes, Stokesia, Thlaspi, and Vernonia from Agricola, CAB Abstracts, Scopus, and Web of Science were analyzed for historical and recent trends in the areas of research, author distribution, and quantity and impa...

  4. Crop Diversity for Yield Increase

    PubMed Central

    Li, Chengyun; He, Xiahong; Zhu, Shusheng; Zhou, Huiping; Wang, Yunyue; Li, Yan; Yang, Jing; Fan, Jinxiang; Yang, Jincheng; Wang, Guibin; Long, Yunfu; Xu, Jiayou; Tang, Yongsheng; Zhao, Gaohui; Yang, Jianrong; Liu, Lin; Sun, Yan; Xie, Yong; Wang, Haining; Zhu, Youyong

    2009-01-01

    Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand. PMID:19956624

  5. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops

    PubMed Central

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops. PMID:28421095

  6. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops.

    PubMed

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops.

  7. Orphan Crops Browser: a bridge between model and orphan crops.

    PubMed

    Kamei, Claire Lessa Alvim; Severing, Edouard I; Dechesne, Annemarie; Furrer, Heleen; Dolstra, Oene; Trindade, Luisa M

    2016-01-01

    Many important crops have received little attention by the scientific community, either because they are not considered economically important or due to their large and complex genomes. De novo transcriptome assembly, using next-generation sequencing data, is an attractive option for the study of these orphan crops. In spite of the large amount of sequencing data that can be generated, there is currently a lack of tools which can effectively help molecular breeders and biologists to mine this type of information. Our goal was to develop a tool that enables molecular breeders, without extensive bioinformatics knowledge, to efficiently study de novo transcriptome data from any orphan crop (http://www.bioinformatics.nl/denovobrowser/db/species/index). The Orphan Crops Browser has been designed to facilitate the following tasks (1) search and identification of candidate transcripts based on phylogenetic relationships between orthologous sequence data from a set of related species and (2) design specific and degenerate primers for expression studies in the orphan crop of interest. To demonstrate the usability and reliability of the browser, it was used to identify the putative orthologues of 17 known lignin biosynthetic genes from maize and sugarcane in the orphan crop Miscanthus sinensis . Expression studies in miscanthus stem internode tissue differing in maturation were subsequently carried out, to follow the expression of these genes during lignification. Our results showed a negative correlation between lignin content and gene expression. The present data are in agreement with recent findings in maize and other crops, and it is further discussed in this paper.

  8. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    PubMed Central

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  9. Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees.

    PubMed

    Bosch, J; Bosch, J; Kemp, W P

    2002-02-01

    The development of a bee species as a new crop pollinator starts with the identification of a pollination-limited crop production deficit and the selection of one or more candidate pollinator species. The process continues with a series of studies on the developmental biology, pollinating efficacy, nesting behaviour, preference for different nesting substrates, and population dynamics of the candidate pollinator. Parallel studies investigate the biology of parasites, predators and pathogens. The information gained in these studies is combined with information on the reproductive biology of the crop to design a management system. Complete management systems should provide guidelines on rearing and releasing methods, bee densities required for adequate pollination, nesting materials, and control against parasites, predators and pathogens. Management systems should also provide methods to ensure a reliable pollinator supply. Pilot tests on a commercial scale are then conducted to test and eventually refine the management system. The process culminates with the delivery of a viable system to manage and sustain the new pollinator on a commercial scale. The process is illustrated by the development of three mason bees, Osmia cornifrons (Radoszkowski), O. lignaria Say and O. cornuta (Latreille) as orchard pollinators in Japan, the USA and Europe, respectively.

  10. Detection of stress factors in crop and weed species using hyperspectral remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Henry, William Brien

    The primary objective of this work was to determine if stress factors such as moisture stress or herbicide injury stress limit the ability to distinguish between weeds and crops using remotely sensed data. Additional objectives included using hyperspectral reflectance data to measure moisture content within a species, and to measure crop injury in response to drift rates of non-selective herbicides. Moisture stress did not reduce the ability to discriminate between species. Regardless of analysis technique, the trend was that as moisture stress increased, so too did the ability to distinguish between species. Signature amplitudes (SA) of the top 5 bands, discrete wavelet transforms (DWT), and multiple indices were promising analysis techniques. Discriminant models created from one year's data set and validated on additional data sets provided, on average, approximately 80% accurate classification among weeds and crop. This suggests that these models are relatively robust and could potentially be used across environmental conditions in field scenarios. Distinguishing between leaves grown at high-moisture stress and no-stress was met with limited success, primarily because there was substantial variation among samples within the treatments. Leaf water potential (LWP) was measured, and these were classified into three categories using indices. Classification accuracies were as high as 68%. The 10 bands most highly correlated to LWP were selected; however, there were no obvious trends or patterns in these top 10 bands with respect to time, species or moisture level, suggesting that LWP is an elusive parameter to quantify spectrally. In order to address herbicide injury stress and its impact on species discrimination, discriminant models were created from combinations of multiple indices. The model created from the second experimental run's data set and validated on the first experimental run's data provided an average of 97% correct classification of soybean and an

  11. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    PubMed

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most

  12. Protocol for monitoring standing crop in grasslands using visual obstruction

    Treesearch

    Lakhdar Benkobi; Daniel W. Uresk; Greg Schenbeck; Rudy M. King

    2000-01-01

    Assessment of standing crop on grasslands using a visual obstruction technique provides valuable information to help plan livestock grazing management and indicate the status of wildlife habitat. The objectives of this study were to: (1) develop a simple regression model using easily measured visual obstruction to estimate standing crop on sandy lowland range sites in...

  13. Biotechnological advances in amaranths species and their future outlook in crop improvement--a review.

    PubMed

    Pandey, R M

    2013-12-01

    The grain amaranths were important food crops for the ancient middle and South American civilization. The germplasm of amaranths also has not been well characterized from the point of view of its exploitation for improvement of amaranths in general, a grain amaranth in particular. Among all under exploited crops grain amaranth is the most suitable candidate to begin with. As it is one of the most important under exploited crops being used as subsidiary or supplementary food. This work will report a study concerning the patent related to the biotechnological applications of Amaranths. It has been summarized in results that RAPD is a powerful approach to understand both inter-as-well as intra species relationships in the genus amaranths. One result indicates the presence of at least two repetitive families, such that at least one family of sequences is present in both cot1 as well as total nuclear DNA. The grain amaranth cultivation plays an important role in changing the economy of rural life. It is a source of dietary protein in strictly vegetarian people. In amaranths, somatic hybridization can be combined to the tertiary gene pools. Some of amaranth triploids are reported to be good in (Sharma SK, Dawson IK and Waugh R 1995) foliage and nutritional quality. They have broader leaves and good growth. Amaranth is grown under variety of soils and environmental conditions such as alkalinity, salinity, drought, frost etc. One of the ways to improve quality of grain amaranths to isolate variants of lysine genes products of which are enriched in essential amino acids. The high lysine content gene named as 'amargene' has been isolated and the patents have been used as biotechnological approach to introduce the gene in the tuber crop improvement The scope of biotechnology for the genetic improvement of grain amaranth crop has been described.

  14. Are ecosystem services stabilized by differences among species? A test using crop pollination.

    PubMed

    Winfree, Rachael; Kremen, Claire

    2009-01-22

    Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.

  15. Bioinformatics in the orphan crops.

    PubMed

    Armstead, Ian; Huang, Lin; Ravagnani, Adriana; Robson, Paul; Ougham, Helen

    2009-11-01

    Orphan crops are those which are grown as food, animal feed or other crops of some importance in agriculture, but which have not yet received the investment of research effort or funding required to develop significant public bioinformatics resources. Where an orphan crop is related to a well-characterised model plant species, comparative genomics and bioinformatics can often, though not always, be exploited to assist research and crop improvement. This review addresses some challenges and opportunities presented by bioinformatics in the orphan crops, using three examples: forage grasses from the genera Lolium and Festuca, forage legumes and the second generation energy crop Miscanthus.

  16. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  17. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    PubMed

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  18. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew.

    PubMed

    Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A

    2017-11-01

    In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.

  19. Invasive species and biofuels: evaluating the risks of perennial crop breeding using reed canarygrass as a case study

    USDA-ARS?s Scientific Manuscript database

    Breeding efforts will play a critical role in meeting the increasing demand for cellulosic bioenergy feedstocks. However, a major concern is the potential development of novel invasive species that result from breeder’s efforts to improve agronomic traits in perennial crops. We use reed canarygrass ...

  20. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    PubMed

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  1. Genetically modified (GM) crops: milestones and new advances in crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2016-09-01

    New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.

  2. Crop biomass not species richness drives weed suppression in warm-season annual grass-legume intercrops in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Intercropping with functionally diverse crops can reduce the availability of resources that could otherwise be used by weeds. An experiment was conducted six times across the northeastern United States in 2013 and 2014 to examine the effects of functional diversity and species richness on weed suppr...

  3. Projected climate change threatens pollinators and crop production in Brazil

    PubMed Central

    Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  4. Projected climate change threatens pollinators and crop production in Brazil.

    PubMed

    Giannini, Tereza Cristina; Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  5. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa.

    PubMed

    Akinbo, Olalekan; Hancock, James F; Makinde, Diran

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, center of origin, center of genetic diversity, proximity of wild relatives, inter-fertility, mode of pollen dispersal, length of pollen viability, mating system, invasiveness, weediness, mode of propagation, mode of seed dispersal, and length of seed dormancy. In this paper, we discuss the crops being genetic engineered in Africa and describe the crop biology of those with native relatives.

  6. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    PubMed

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  7. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  8. A suggestion for planning cover crop mixtures: zones of occupancy

    USDA-ARS?s Scientific Manuscript database

    Producers may be able to improve the competitiveness of cover crop mixtures by selecting species to occupy zones in the cover crop canopy. This suggestion is based on a study where we compared four cover crop treatments, 1, 3, 6, and 9 species mixtures, for biomass production. Treatments were est...

  9. Crop species diversity changes in the United States: 1978-2012

    USDA-ARS?s Scientific Manuscript database

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which is collected on 5-year intervals, we qua...

  10. Report on 1958 forest tree seed crop in New England

    Treesearch

    A.C. Hart

    1959-01-01

    Forest tree seed crops in 1958 were considerably better than those in 1957, according to observers. However, heavy and medium seed crops of some species were spotty in occurrence. Late spring frosts were probably responsible for poor or failing crops of some species in Vermont, New Hampshire, and northwestern Connecticut. Cone weevils were reported damaging the white...

  11. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii

    PubMed Central

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-01-01

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress. PMID:26838812

  12. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    PubMed

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  13. An energy balance approach for mapping crop waterstress and yield impacts over the Czech Republic

    USDA-ARS?s Scientific Manuscript database

    There is a growing demand for timely, spatially distributed information regarding crop condition and water use to inform agricultural decision making and yield forecasting efforts. Remote sensing of land-surface temperature has proven valuable for mapping evapotranspiration (ET) and crop stress from...

  14. Performance of potential non-crop or wild species under OECD 208 testing guideline study conditions for terrestrial non-target plants.

    PubMed

    Pallett, Ken; Cole, Jon; Oberwalder, Christian; Porch, John

    2007-02-01

    The inclusion of 52 potential non-crop or wild species in new OECD guidelines for terrestrial non-target plant (TNTP) testing led to a ring test conducted by four laboratories experienced in regulatory testing. Species selected had shown potential to meet validity criteria of emergence for TNTP studies in a previous evaluation of the 52 species. OECD 208 guideline conditions were applied, with and without seed pretreatments recommended to enhance germination. These species were Abutilon theophrasti (L.) Medic., Avena fatua L., Fallopia convolvulus (L.) Adans., Galium aparine L., Ipomoea hederacea (L.) Jacq. and Veronica persica Poir. Only I. hederacea met the validity criterion of 70% emergence in all laboratories and showed a low variability in biomass. Of the other species, none led to 70% emergence in all four laboratories. The recommended pretreatments did not have a major impact on emergence. Biomass was also investigated with A. theophrasti, A. fatua, Centaurea cyanus L., I. hederacea and Rumex crispus L. Variability of biomass, a key parameter in TNTP regulatory studies, exceeded normal biomass variability of crop species used for TNTP studies. The addition of a thin layer of quartz sand to the soil surface resulted in improved emergence of C. cyanus, G. aparine and V. persica; however, such a procedure, while routine in screening studies to improve germination, is a deviation from the TNTP guidelines. These initial studies indicate that some species could meet the emergence criteria for TNTP testing. However, there is a need for further studies on seed source, seed quality and conditions for uniform emergence before their use in routine regulatory testing.

  15. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods.

    PubMed

    Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P

    2008-09-01

    Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling.

  16. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus

    PubMed Central

    Schiessl, Sarah; Samans, Birgit; Hüttel, Bruno; Reinhard, Richard; Snowdon, Rod J.

    2014-01-01

    Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species. PMID:25202314

  17. Functional Genomics of Drought Tolerance in Bioenergy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hengfu; Chen, Rick; Yang, Jun

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understandingmore » of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.« less

  18. Production of hybrids, amphiploids and backcross progenies between a cold-tolerant wild species, Erucastrum abyssinicum and crop brassicas.

    PubMed

    Rao, G U; Lakshmikumaran, M; Shivanna, K R

    1996-05-01

    Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.

  19. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  20. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Detection and Identification of Lactobacillus Species in Crops of Broilers of Different Ages by Using PCR-Denaturing Gradient Gel Electrophoresis and Amplified Ribosomal DNA Restriction Analysis

    PubMed Central

    Guan, Le Luo; Hagen, Karen E.; Tannock, Gerald W.; Korver, Doug R.; Fasenko, Gaylene M.; Allison, Gwen E.

    2003-01-01

    The microflora of the crop was investigated throughout the broiler production period (0 to 42 days) using PCR combined with denaturing gradient gel electrophoresis (PCR-DGGE) and selective bacteriological culture of lactobacilli followed by amplified ribosomal DNA restriction analysis (ARDRA). The birds were raised under conditions similar to those used in commercial broiler production. Lactobacilli predominated and attained populations of 108 to 109 CFU per gram of crop contents. Many of the lactobacilli present in the crop (61.9% of isolates) belonged to species of the Lactobacillus acidophilus group and could not be differentiated by PCR-DGGE. A rapid and simple ARDRA method was developed to distinguish between the members of the L. acidophilus group. HaeIII-ARDRA was used for preliminary identification of isolates in the L. acidophilus group and to identify Lactobacillus reuteri and Lactobacillus salivarius. MseI-ARDRA generated unique patterns for all species of the L. acidophilus group, identifying Lactobacillus crispatus, Lactobacillus johnsonii, and Lactobacillus gallinarum among crop isolates. The results of our study provide comprehensive knowledge of the Lactobacillus microflora in the crops of birds of different ages using nucleic acid-based methods of detection and identification based on current taxonomic criteria. PMID:14602636

  2. Network-assisted crop systems genetics: network inference and integrative analysis.

    PubMed

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. High-throughput genotyping for species identification and diversity assessment in germplasm collections.

    PubMed

    Mason, Annaliese S; Zhang, Jing; Tollenaere, Reece; Vasquez Teuber, Paula; Dalton-Morgan, Jessica; Hu, Liyong; Yan, Guijun; Edwards, David; Redden, Robert; Batley, Jacqueline

    2015-09-01

    Germplasm collections provide an extremely valuable resource for breeders and researchers. However, misclassification of accessions by species often hinders the effective use of these collections. We propose that use of high-throughput genotyping tools can provide a fast, efficient and cost-effective way of confirming species in germplasm collections, as well as providing valuable genetic diversity data. We genotyped 180 Brassicaceae samples sourced from the Australian Grains Genebank across the recently released Illumina Infinium Brassica 60K SNP array. Of these, 76 were provided on the basis of suspected misclassification and another 104 were sourced independently from the germplasm collection. Presence of the A- and C-genomes combined with principle components analysis clearly separated Brassica rapa, B. oleracea, B. napus, B. carinata and B. juncea samples into distinct species groups. Several lines were further validated using chromosome counts. Overall, 18% of samples (32/180) were misclassified on the basis of species. Within these 180 samples, 23/76 (30%) supplied on the basis of suspected misclassification were misclassified, and 9/105 (9%) of the samples randomly sourced from the Australian Grains Genebank were misclassified. Surprisingly, several individuals were also found to be the product of interspecific hybridization events. The SNP (single nucleotide polymorphism) array proved effective at confirming species, and provided useful information related to genetic diversity. As similar genomic resources become available for different crops, high-throughput molecular genotyping will offer an efficient and cost-effective method to screen germplasm collections worldwide, facilitating more effective use of these valuable resources by breeders and researchers. © 2015 John Wiley & Sons Ltd.

  4. A comparative analysis of transcriptomic, biochemical and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops

    USDA-ARS?s Scientific Manuscript database

    Current concentrations of tropospheric ozone (O3) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific d...

  5. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  6. Regulation of Bt crops in Canada.

    PubMed

    Macdonald, Phil; Yarrow, Stephen

    2003-06-01

    The Canadian Food Inspection Agency (CFIA) regulates environmental releases of plants with novel traits, which include transgenic plants such as Bt crops. Bt crops are regulated in Canada because they express insect resistance novel to their species. Commercialization of crops with novel traits such as the production of insecticidal Bt proteins requires an approval for environmental release, as well as approvals for use as feed and food. Environmental factors such as potential impacts on non-target species are considered. Insect resistance management (IRM) may be imposed as a condition for environmental release of Bt crops to delay the development of resistance in the target insect. Bt potato and European corn borer-resistant Bt corn have been released with mandatory IRM. The CFIA imposes an IRM plan consisting of appropriate refugia, education of farmers and seed dealers, and monitoring and mitigation. Industry, regulators, government extension staff and public researchers provide expert advice on IRM.

  7. Estimating seed crops of conifer and hardwood species

    Treesearch

    Philip M. McDonald

    1992-01-01

    Cone, acorn, and berry crops of ponderosa pine (Pinus ponderosa Dougl. ex Laws. var. ponderosa), sugar pine (Pinus lambertiana Dougl.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), California white fir (Abies concolor var. lowiana (Gord...

  8. Ravens reconcile after aggressive conflicts with valuable partners.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2011-03-25

    Reconciliation, a post-conflict affiliative interaction between former opponents, is an important mechanism for reducing the costs of aggressive conflict in primates and some other mammals as it may repair the opponents' relationship and reduce post-conflict distress. Opponents who share a valuable relationship are expected to be more likely to reconcile as for such partners the benefits of relationship repair should outweigh the risk of renewed aggression. In birds, however, post-conflict behavior has thus far been marked by an apparent absence of reconciliation, suggested to result either from differing avian and mammalian strategies or because birds may not share valuable relationships with partners with whom they engage in aggressive conflict. Here, we demonstrate the occurrence of reconciliation in a group of captive subadult ravens (Corvus corax) and show that it is more likely to occur after conflicts between partners who share a valuable relationship. Furthermore, former opponents were less likely to engage in renewed aggression following reconciliation, suggesting that reconciliation repairs damage caused to their relationship by the preceding conflict. Our findings suggest not only that primate-like valuable relationships exist outside the pair bond in birds, but that such partners may employ the same mechanisms in birds as in primates to ensure that the benefits afforded by their relationships are maintained even when conflicts of interest escalate into aggression. These results provide further support for a convergent evolution of social strategies in avian and mammalian species.

  9. Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum)

    PubMed Central

    Baćanović-Šišić, Jelena; Karlovsky, Petr; Wittwer, Raphaël; Walder, Florian; Campiglia, Enio; Radicetti, Emanuele; Friberg, Hanna; Baresel, Jörg Peter; Finckh, Maria R.

    2018-01-01

    Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea. PMID:29444142

  10. Seed crop frequency in northeastern Wisconsin

    Treesearch

    Richard M. Godman; Gilbert A. Mattson

    1992-01-01

    Knowing the frequency of good seed crops is important in regenerating northern hardwood species, particularly those that require site preparation and special cutting methods. It is also desirable to know the maximum time that might be expected between poor crops to help schedule silvicultural treatment or supplemental seeding.

  11. Agricultural field reclamation utilizing native grass crop production

    Treesearch

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  12. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil.

    PubMed

    Reed-Jones, Neiunna L; Marine, Sasha Cahn; Everts, Kathryne L; Micallef, Shirley A

    2016-01-04

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil

    PubMed Central

    Reed-Jones, Neiunna L.; Marine, Sasha Cahn; Everts, Kathryne L.

    2016-01-01

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. PMID:26729724

  14. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.

    PubMed

    Orr, Douglas J; Alcântara, André; Kapralov, Maxim V; Andralojc, P John; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-10-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Crop cover the principal influence on non-crop ground beetle (Coleoptera, Carabidae) activity and assemblages at the farm scale in a long-term assessment.

    PubMed

    Eyre, M D; Sanderson, R A; McMillan, S D; Critchley, C N R

    2016-04-01

    Ground beetle data were generated using pitfall traps in the 17-year period from 1993 to 2009 and used to investigate the effects of changes in surrounding crop cover on beetle activity and assemblages, together with the effects of weather variability. Beetles were recorded from non-crop field margins (overgrown hedges). Crop cover changes explained far more variation in the beetle assemblages recorded than did temperature and rainfall variation. A reduction in management intensity and disturbance in the crops surrounding the traps, especially the introduction and development of willow coppice, was concomitant with changes in individual species activity and assemblage composition of beetles trapped in non-crop habitat. There were no consistent patterns in either overall beetle activity or in the number of species recorded over the 17-year period, but there was a clear change from assemblages dominated by smaller species with higher dispersal capability to ones with larger beetles with less dispersal potential and a preference for less disturbed agroecosystems. The influence of surrounding crops on ground beetle activity in non-crop habitat has implications for ecosystem service provision by ground beetles as pest predators. These results are contrary to conventional assumptions and interpretations, which suggest activity of pest predators in crops is influenced primarily by adjacent non-crop habitat. The long-term nature of the assessment was important in elucidation of patterns and trends, and indicated that policies such as agri-environment schemes should take cropping patterns into account when promoting management options that are intended to enhance natural pest control.

  16. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives.

    PubMed

    Warschefsky, Emily; Penmetsa, R Varma; Cook, Douglas R; von Wettberg, Eric J B

    2014-10-01

    The genetic diversity of our crop plants has been substantially reduced during the process of domestication and breeding. This reduction in diversity necessarily constrains our ability to expand a crop's range of cultivation into environments that are more extreme than those in which it was domesticated, including into "sustainable" agricultural systems with reduced inputs of pesticides, water, and fertilizers. Conversely, the wild progenitors of crop plants typically possess high levels of genetic diversity, which underlie an expanded (relative to domesticates) range of adaptive traits that may be of agricultural relevance, including resistance to pests and pathogens, tolerance to abiotic extremes, and reduced dependence on inputs. Despite their clear potential for crop improvement, wild relatives have rarely been used systematically for crop improvement, and in no cases, have full sets of wild diversity been introgressed into a crop. Instead, most breeding efforts have focused on specific traits and dealt with wild species in a limited and typically ad hoc manner. Although expedient, this approach misses the opportunity to test a large suite of traits and deploy the full potential of crop wild relatives in breeding for the looming challenges of the 21st century. Here we review examples of hybridization in several species, both intentionally produced and naturally occurring, to illustrate the gains that are possible. We start with naturally occurring hybrids, and then examine a range of examples of hybridization in agricultural settings. © 2014 Botanical Society of America, Inc.

  17. Genome-Wide Microsatellite Characterization and Marker Development in the Sequenced Brassica Crop Species

    PubMed Central

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-01-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species. PMID:24130371

  18. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    PubMed

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  19. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    PubMed Central

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  20. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.

    PubMed

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G

    2015-06-16

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

  1. Crop residues of the contiguous United States: Balancing feedstock and soil needs with conservation tillage, cover crops, and biochar

    USDA-ARS?s Scientific Manuscript database

    Crop residues are among the cellulosic feedstocks expected to provide renewable energy. The availability of crop species and residue availability varies across the United States. Estimates of harvestable residues must consider all the residues produced during the entire rotation. Inclusion of fallow...

  2. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review

    PubMed Central

    González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio

    2017-01-01

    The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola, and V. carpophila, the second F. oleagineum and F. eriobotryae, with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information reviewed

  3. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review.

    PubMed

    González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio

    2017-01-01

    The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola , and V. carpophila , the second F. oleagineum and F. eriobotryae , with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina ; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information

  4. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    PubMed Central

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-01-01

    The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835

  5. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  6. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  7. Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography

    PubMed Central

    Burr-Hersey, Jasmine E.; Mooney, Sacha J.; Bengough, A. Glyn; Mairhofer, Stefan

    2017-01-01

    Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure. PMID:28753645

  8. Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography.

    PubMed

    Burr-Hersey, Jasmine E; Mooney, Sacha J; Bengough, A Glyn; Mairhofer, Stefan; Ritz, Karl

    2017-01-01

    Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure.

  9. Mixed cropping regimes promote the soil fungal community under zero tillage.

    PubMed

    Silvestro, L B; Biganzoli, F; Stenglein, S A; Forjan, H; Manso, L; Moreno, M V

    2018-07-01

    Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0-5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.

  10. Redox Strategies for Crop Improvement.

    PubMed

    Kerchev, Pavel; De Smet, Barbara; Waszczak, Cezary; Messens, Joris; Van Breusegem, Frank

    2015-11-10

    Recently, the agro-biotech industry has been driven by overcoming the limitations imposed by fluctuating environmental stress conditions on crop productivity. A common theme among (a)biotic stresses is the perturbation of the redox homeostasis. As a strategy to engineer stress-tolerant crops, many approaches have been centered on restricting the negative impact of reactive oxygen species (ROS) accumulation. In this study, we discuss the scientific background of the existing redox-based strategies to improve crop performance and quality. In this respect, a special focus goes to summarizing the current patent landscape because this aspect is very often ignored, despite constituting the forefront of applied research. The current increased understanding of ROS acting as signaling molecules has opened new avenues to exploit redox biology for crop improvement required for sustainable food security.

  11. Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora.

    PubMed

    Sánchez, Miguel A; Cid, Pablo; Navarrete, Humberto; Aguirre, Carlos; Chacón, Gustavo; Salazar, Erika; Prieto, Humberto

    2016-02-01

    The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen-mediated gene flow from GM crops and non-GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national-scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from 'very low' (1) to 'very high' (5)] was developed, showing medium OPs (3) for GM-native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape-Vitis vinifera GM-introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Characterization and Identification of Pediococcus Species Isolated from Forage Crops and Their Application for Silage Preparation

    PubMed Central

    Cai, Yimin; Kumai, Sumio; Ogawa, Masuhiro; Benno, Yoshimi; Nakase, Takashi

    1999-01-01

    Pediococcus species isolated from forage crops were characterized, and their application to silage preparation was studied. Most isolates were distributed on forage crops at low frequency. These isolates could be divided into three (A, B, and C) groups by their sugar fermentation patterns. Strains LA 3, LA 35, and LS 5 are representative isolates from groups A, B, and C, respectively. Strains LA 3 and LA 35 had intragroup DNA homology values above 93.6%, showing that they belong to the species Pediococcus acidilactici. Strain LS 5 belonged to Pediococcus pentosaceus on the basis of DNA-DNA relatedness. All three of these strains and strain SL 1 (Lactobacillus casei, isolated from a commercial inoculant) were used as additives to alfalfa and Italian ryegrass silage preparation at two temperatures (25 and 48°C). When stored at 25°C, all of the inoculated silages were well preserved and exhibited significantly (P < 0.05) reduced fermentation losses compared to that of their control in alfalfa and Italian ryegrass silages. When stored at 48°C, silages inoculated with strains LA 3 and LA 35 were also well preserved, with a significantly (P < 0.05) lower pH, butyric acid and ammonia-nitrogen content, gas production, and dry matter loss and significantly (P < 0.05) higher lactate content than the control, but silages inoculated with LS 5 and SL 1 were of poor quality. P. acidilactici LA 3 and LA 35 are considered suitable as potential silage inoculants. PMID:10388681

  13. [Wildlife damage mitigation in agricultural crops in a Bolivian montane forest].

    PubMed

    Perez, Eddy; Pacheco, Luis F

    2014-12-01

    Wildlife is often blamed for causing damage to human activities, including agricultural practices and the result may be a conflict between human interests and species conservation. A formal assessment of the magnitude of damage is necessary to adequately conduct management practices and an assessment of the efficiency of different management practices is necessary to enable managers to mitigate the conflict with rural people. This study was carried out to evaluate the effectiveness of agricultural management practices and controlled hunting in reducing damage to subsistence annual crops at the Cotapata National Park and Natural Area of Integrated Management. The design included seven fields with modified agricultural practices, four fields subjected to control hunting, and five fields held as controls. We registered cultivar type, density, frequency of visiting species to the field, crops lost to wildlife, species responsible for damage, and crop biomass. Most frequent species in the fields were Dasyprocta punctata and Dasypus novemcinctus. Hunted plots were visited 1.6 times more frequently than agriculturally managed plots. Crop lost to wildlife averaged 7.28% at agriculturally managed plots, 4.59% in plots subjected to hunting, and 27.61% in control plots. Species mainly responsible for damage were Pecari tajacu, D. punctata, and Sapajus apella. We concluded that both management strategies were effective to reduce damage by >50% as compared to unmanaged crop plots.

  14. Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea.

    PubMed

    Gu, Yang-Guang; Lin, Qin; Huang, Hong-Hui; Wang, Liang-Gen; Ning, Jia-Jia; Du, Fei-Yan

    2017-01-30

    The concentrations of heavy metals (Cd, Pb, Cr, Ni, Cu and Zn) were determined in four commercially valuable fish species (Thunnus obesus, Decapterus lajang, Cubiceps squamiceps and Priacanthus macracanthus), collected in the western continental shelf of the South China Sea. Concentrations of Cd, Pb, Cr, Ni, Cu, and Zn in fish muscles were 0.006-0.050, 0.13-0.68, 0.18-0.85, 0.11-0.25, 0.12-0.77, and 2.41-4.73μg/g, wet weight, respectively. Concentrations of heavy metals in all species were below their acceptable daily upper limit, suggesting human consumption of these wild fish species may be safe, with health risk assessment based on the target hazard quotients (THQ) and total THQ, indicating no significant adverse health effects with consumption. The average concentrations of Zn were higher in gills than in stomach contents, backbones or muscle, while conversely, the other heavy metals had higher concentrations in stomach contents than in other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    PubMed Central

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  16. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  17. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    PubMed

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This

  18. Winter rye cover crops as a host for corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil protection, soil health and water quality. However, emerging implementations of cover cropping, such as winter cereals preceding corn, may dampen beneficial rotation effects by putting similar crop species i...

  19. The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective

    USDA-ARS?s Scientific Manuscript database

    Crop wild relatives (CWR) can provide important resources for the genetic improvement of cultivated species. Because crops are often closely related to many wild species, and because exploration of CWR for useful traits can take many years and substantial resources, the categorization of CWR based o...

  20. Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage

    PubMed Central

    Wang, Huili; Hao, Wei; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2018-01-01

    Objective This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. Methods Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencing analyses of the 26S rRNA gene D1/D2 domain. Characteristics (assimilation and tolerance) of the yeast species and their role during aerobic deterioration were investigated. Results In addition to species of Candida glabrata and Pichia kudriavzevii (P. kudriavzevii) previously isolated in WCC and TMR, Pichia manshurica (P. manshurica), Candida ethanolica (C. ethanolica), and Zygosaccharomyces bailii (Z. bailii) isolated at great frequency during deterioration, were capable of assimilating lactic or acetic acid and tolerant to acetic acid and might function more in deteriorating TMR silages at early fermentation (7 d and 14 d). With ensiling prolonged to 28 d, silages became more (p<0.01) stable when exposed to air, coinciding with the inhibition of yeast to below the detection limit. Species of P. manshurica that were predominant in deteriorating WCC silages were not detectable in TMR silages. In addition, the predominant yeast species of Z. bailii in deteriorating TMR silages at later fermentation (28 d and 56 d) were not observed in both WCC and WCC silages. Conclusion The inhibition of yeasts, particularly P. kudriavzevii, probably account for the improved aerobic stability of TMR silages at later fermentation. Fewer species seemed to be involved in aerobic deterioration of silages at later fermentation and Z. bailii was most likely to initiate the aerobic deterioration of TMR silages at later fermentation. The use of WCC in TMR might not influence the predominant yeast

  1. Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage.

    PubMed

    Wang, Huili; Hao, Wei; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2018-02-01

    This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencing analyses of the 26S rRNA gene D1/D2 domain. Characteristics (assimilation and tolerance) of the yeast species and their role during aerobic deterioration were investigated. In addition to species of Candida glabrata and Pichia kudriavzevii ( P. kudriavzevii ) previously isolated in WCC and TMR, Pichia manshurica ( P. manshurica ), Candida ethanolica ( C. ethanolica ), and Zygosaccharomyces bailii ( Z. bailii ) isolated at great frequency during deterioration, were capable of assimilating lactic or acetic acid and tolerant to acetic acid and might function more in deteriorating TMR silages at early fermentation (7 d and 14 d). With ensiling prolonged to 28 d, silages became more (p<0.01) stable when exposed to air, coinciding with the inhibition of yeast to below the detection limit. Species of P. manshurica that were predominant in deteriorating WCC silages were not detectable in TMR silages. In addition, the predominant yeast species of Z. bailii in deteriorating TMR silages at later fermentation (28 d and 56 d) were not observed in both WCC and WCC silages. The inhibition of yeasts, particularly P. kudriavzevii , probably account for the improved aerobic stability of TMR silages at later fermentation. Fewer species seemed to be involved in aerobic deterioration of silages at later fermentation and Z. bailii was most likely to initiate the aerobic deterioration of TMR silages at later fermentation. The use of WCC in TMR might not influence the predominant yeast species during aerobic

  2. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  3. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  4. Hardwood cover crops:can they enhance loblolly pine seedling production

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik; Stanley J. Zarnoch

    1995-01-01

    It has been extremely difficult to obtain more than two loblolly pine (Pinus taeda L.) crops following even effective soil fumigation with methyl bromide in southern forest tree nurseries. The traditional agronomic cover crops such as sorghum and sudex, unless followed by fumigation, do not normally produce satisfactory loblolly pine seedling crops. Various species...

  5. Functional Traits Differ between Cereal Crop Progenitors and Other Wild Grasses Gathered in the Neolithic Fertile Crescent

    PubMed Central

    Cunniff, Jennifer; Wilkinson, Sarah; Charles, Michael; Jones, Glynis; Rees, Mark; Osborne, Colin P.

    2014-01-01

    The reasons why some plant species were selected as crops and others were abandoned during the Neolithic emergence of agriculture are poorly understood. We tested the hypothesis that the traits of Fertile Crescent crop progenitors were advantageous in the fertile, disturbed habitats surrounding early settlements and in cultivated fields. We screened functional traits related to competition and disturbance in a group of grass species that were increasingly exploited by early plant gatherers, and that were later domesticated (crop progenitors); and in a set of grass species for which there is archaeological evidence of gathering, but which were never domesticated (wild species). We hypothesised that crop progenitors would have greater seed mass, growth rate, height and yield than wild species, as these traits are indicative of greater competitive ability, and that crop progenitors would be more resilient to defoliation. Our results show that crop progenitors have larger seed mass than wild species, germinate faster and have greater seedling size. Increased seed size is weakly but positively correlated with a higher growth rate, which is primarily driven by greater biomass assimilation per unit leaf area. Crop progenitors also tend to have a taller stature, greater grain yield and higher resilience to defoliation. Collectively, the data are consistent with the hypothesis that adaptations to competition and disturbance gave crop progenitors a selective advantage in the areas surrounding early human settlements and in cultivated environments, leading to their adoption as crops through processes of unconscious selection. PMID:24489941

  6. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    PubMed

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  7. Checklist for the crop weeds of Paraguay

    PubMed Central

    De Egea, Juana; Mereles, Fátima; Peña-Chocarro, María del Carmen; Céspedes, Gloria

    2016-01-01

    Abstract Paraguay, a country whose economy is based mainly on agriculture and livestock for export, has experienced a major expansion in mechanized crops during the last few decades. Despite being heavily dependent on agriculture, Paraguay has very limited research on crop weeds, in spite of these having a high economic impact on production. This work aims to update and enhance the knowledgebase on the most common weeds affecting productive fields throughout the different ecoregions of Paraguay. We present here the first checklist of crop weeds for the country, which includes a total of 256 taxa (189 species, 10 subspecies, 54 varieties and 3 forms), with the most species-rich families being Poaceae and Asteraceae followed by Malvaceae, Amaranthaceae, Fabaceae and Solanaceae. The list includes three new records for the country. Synonyms, distribution details within Paraguay, habit and a voucher specimen are provided for each taxon. PMID:27872557

  8. Mineral Element Contents in Commercially Valuable Fish Species in Spain

    PubMed Central

    Peña-Rivas, Luis; Ortega, Eduardo; López-Martínez, Concepción; Olea-Serrano, Fátima; Lorenzo, Maria Luisa

    2014-01-01

    The aim of this study was to measure selected metal concentrations in Trachurus trachurus, Trachurus picturatus, and Trachurus mediterraneus, which are widely consumed in Spain. Principal component analysis suggested that the variable Cr was the main responsible variable for the identification of T. trachurus, the variables As and Sn for T. mediterraneus, and the rest of variables for T. picturatus. This well-defined discrimination between fish species provided by mineral element allows us to distinguish them on the basis of their metal content. Based on the samples collected, and recognizing the inferential limitation of the sample size of this study, the metal concentrations found are below the proposed limit values for human consumption. However, it should be taken into consideration that there are other dietary sources of these metals. In conclusion, metal contents in the fish species analyzed are acceptable for human consumption from a nutritional and toxicity point of view. PMID:24895678

  9. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    NASA Astrophysics Data System (ADS)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  10. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques.

    PubMed

    Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E; Bucheli, Thomas D; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne

    2016-10-01

    Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.

  11. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques

    PubMed Central

    Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E.; Bucheli, Thomas D.; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne

    2016-01-01

    ABSTRACT Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination. PMID:27491813

  12. The potential for cereal rye cover crops to host corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil health and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects by growing two grass species in succession. Here, we show that rye cover crops host pathog...

  13. Proposed definition of environmental damage illustrated by the cases of genetically modified crops and invasive species.

    PubMed

    Bartz, Robert; Heink, Ulrich; Kowarik, Ingo

    2010-06-01

    The introduction of non-native plant species and the release of genetically modified (GM) crops can induce environmental changes at gene to ecosystem levels. Regulatory frameworks such as the Convention on Biological Diversity or the EU Deliberate Release Directive aim to prevent environmental damage but do not define the term. Although ecologists and conservationists often refer to environmental effects of GM crops or invasive species as damage, most authors do not disclose their normative assumptions or explain why some environmental impacts are regarded as detrimental and others are not. Thus far, a concise definition of environmental damage is missing and is necessary for a transparent assessment of environmental effects or risks. Therefore, we suggest defining environmental damage as a significant adverse effect on a biotic or abiotic conservation resource (i.e., a biotic or abiotic natural resource that is protected by conservational or environmental legislation) that has an impact on the value of the conservation resource, the conservation resource as an ecosystem component, or the sustainable use of the conservation resource. This definition relies on three normative assumptions: only concrete effects on a conservation resource can be damages; only adverse effects that lead to a decrease in the value of the conservation resource can be damages; and only significant adverse effects constitute damage to a conservation resource. Applying this definition within the framework of environmental risk assessment requires further normative determinations, for example, selection of a threshold to distinguish between adverse and significant adverse effects and approaches for assessing the environmental value of conservation resources. Such determinations, however, are not part of the definition of environmental damage. Rather they are part of the definition's operationalization through assessment procedures, which must be grounded in a comprehensible definition of

  14. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    PubMed

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  16. Endophytic fungi occurring in fennel, lettuce, chicory, and celery--commercial crops in southern Italy.

    PubMed

    D'Amico, Margherita; Frisullo, Salvatore; Cirulli, Matteo

    2008-01-01

    The occurrence of endophytic fungi in fennel, lettuce, chicory, and celery crops was investigated in southern Italy. A total of 186 symptomless plants was randomly collected and sampled at the stage of commercial ripeness. Fungal species of Acremonium, Alternaria, Fusarium, and Plectosporium were detected in all four crops; Plectosporium tabacinum was the most common in all crop species and surveyed sites. The effect of eight endophytic isolates (five belonging to Plectosporium tabacinum and three to three species of Acremonium) inoculated on lettuce plants grown in gnotobiosis was assessed by recording plant height, root length and dry weight, collar diameter, root necrosis, and leaf yellowing. P. tabacinum and three species of Acremonium, inoculated on gnotobiotically grown lettuce plants, showed pathogenic activity that varied with the fungal isolate. Lettuce plants inoculated with the isolates Ak of Acremonium kiliense, Ac of Acremonium cucurbitacearum, and P35 of P. tabacinum showed an increased root growth, compared to the non-inoculated control. The high frequency of P. tabacinum isolation recorded in lettuce plants collected in Bari and Metaponto, and in fennel plants from Foggia agricultural districts, suggests a relationship not only between a crop species and P. tabacinum, but also between the occurrence of the endophyte and the crop rotation history of the soil.

  17. Hands-On Crops! How Long-Term Activities Improve Students' Knowledge of Crop Species. A Pretest-Posttest Study of the Greenhouse Project

    ERIC Educational Resources Information Center

    Fritsch, Eva-Maria; Lechner-Walz, Cornelia; Dreesmann, Daniel C.

    2015-01-01

    In terms of sustainability, renewable resources, nourishment and healthy diet, crops are important to the public. Thus, knowledge of crops is needed in order to enable people to participate in public discussions and take responsibility. This is in contrast to former surveys showing that students' knowledge of and interest in plants in general,…

  18. Report on forest tree seed crop in New England in 1957

    Treesearch

    A. C. Hart

    1958-01-01

    Forest tree seed crops were generally poor in 1957 throughout New England, according to reports by observers. Late spring frosts and below-normal precipitation were probably responsible for poor or failing crops of some species.

  19. Anticipating Good Longleaf Pine Cone Crops: The Key to Successful Natural Regeneration

    Treesearch

    William D. Boyer

    1997-01-01

    Unlike other southern pines, or most intolerant pioneer species, longleaf pine is a poor seed producer. Cone crops are highly variable from year to-year, and also from place to place in the same year. Crops large enough to assure adequate regeneration are few and far between, especially in the longleaf pine belt of the southern Coastal Plains. Not only is this species...

  20. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in Grassland establishment

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.; Ball, L.O.; Hyberg, S.

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat-fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area of

  1. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    USGS Publications Warehouse

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area

  2. A Moveable Feast: Insects Moving at the Forest-Crop Interface Are Affected by Crop Phenology and the Amount of Forest in the Landscape.

    PubMed

    González, Ezequiel; Salvo, Adriana; Defagó, María Teresa; Valladares, Graciela

    2016-01-01

    Edges have become prevailing habitats, mainly as a result of habitat fragmentation and agricultural expansion. The interchange of functionally relevant organisms like insects occurs through these edges and can influence ecosystem functioning in both crop and non-crop habitats. However, very few studies have focused on the directionality of insect movement through edges, and the role of crop and non-crop amount has been ignored. Using bi-directional flight interception traps we investigated interchange of herbivore, natural enemy, pollinator and detritivore insects between native forest fragments and soybean crops, simultaneously considering movement direction, forest cover in the landscape and crop phenology. In total, 52,173 specimens and 877 morphospecies were collected. We found that, within most functional and taxonomic groups, movement intensity was similar (richness and/or abundance) between directions, whereas a predominantly forest-to-crop movement characterized natural enemies. Insect movement was extensively affected by crop phenology, decreasing during crop senescence, and was enhanced by forest cover particularly at senescence. Mainly the same herbivore species moved to and from the forest, but different natural enemy species predominated in each direction. Finally, our analyses revealed greater forest contribution to natural enemy than to herbivore communities in the crop, fading with distance to the forest in both groups. By showing that larger amounts of forest lead to richer insect interchange, in both directions and in four functional groups, our study suggests that allocation to natural and cultivated habitats at landscape level could influence functioning of both systems. Moreover, natural enemies seemed to benefit more than pests from natural vegetation, with natural enemy spillover from forests likely contributing to pest control in soybean fields. Thus consequences of insect interchange seem to be mostly positive for the agroecosystem

  3. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  4. Observing Crop-Height Dynamics Using a UAV

    NASA Astrophysics Data System (ADS)

    Ziliani, M. G.; Parkes, S. D.; McCabe, M.

    2017-12-01

    Retrieval of vegetation height during a growing season is a key indicator for monitoring crop status, offering insight to the forecast yield relative to previous planting cycles. Improvement in Unmanned Aerial Vehicle (UAV) technologies, supported by advances in computer vision and photogrammetry software, has enabled retrieval of crop heights with much higher spatial resolution and coverage. These methodologies retrieve a Digital Surface Map (DSM), which combine terrain and crop elements to obtain a Crop Surface Map (CSM). Here we describe an automated method for deriving high resolution CSMs from a DSM, using RGB imagery from a UAV platform. Importantly, the approach does not require the need for a digital terrain map (DTM). The method involves distinguishing between vegetation and bare-ground cover pixels, using vegetation index maps from the RGB orthomosaic derived from the same flight as the DSM. We show that the absolute crop height can be extracted to within several centimeters, exploiting the data captured from a single UAV flight. In addition, the method is applied across five surveys during a maize growing cycle and compared against a terrain map constructed from a baseline UAV survey undertaken prior to crop growth. Results show that the approach is able to reproduce the observed spatial variability of the crop height within the maize field throughout the duration of the growing season. This is particularly valuable since it may be employed to detect intra-field problems (i.e. fertilizer variability, inefficiency in the irrigation system, salinity etc.) at different stages of the season, from which remedial action can be initiated to mitigate against yield loss. The method also demonstrates that UAV imagery combined with commercial photogrammetry software can determine a CSM from a single flight without the requirement of a prior DTM. This, together with the dynamic crop height estimation, provide useful information with which to inform precision

  5. Switchgrass as a biofuels crop for the upper Southeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, D.J.; Wolf, D.D.

    1993-12-31

    Switchgrass (Panicum virgatum) has been identified in DOE-sponsored studies as a widely adapted, productive herbaceous candidate for biofuels cropping. It is a perennial that has been planted using no-till procedures, and it appears to have positive effects on the soils in which it grows. We have been looking at this species as a potential fuelcrop (as well as a valuable forage) for several years. In this presentation, we note several {open_quotes}lessons learned{close_quotes} about switchgrass establishment and management as an energy crop. Data include results from recent plantings in the upper Southeast USA and from cutting management studies. Six varieties ofmore » switchgrass (Alamo, Cave-in-Rock, Kanlow, Shelter, and two breeder`s lines) varied markedly in the success of their no-till establishment at eight locations across the upper Southeast. Better weed control, which was achieved at later planting dates, seemed to be the key. Yields obtained in the establishment stands revealed that two harvests per season are more productive (by 2 to 3 Mg/ha) than one, but the date of first cutting is crucial. First cutting should be from late-June to mid-July. A two-cut system may not be economically advantageous, however. Another cutting-management study detected losses of standing biomass at the end of the growing season. As much as 15% of the above-ground biomass present in early-September was no longer harvestable in early-November. We think this loss results from translocation of dry matter to below-ground parts.« less

  6. SELECTING PLANT SPECIES FOR PESTICIDE REGISTRATION TESTS

    EPA Science Inventory

    Current test protocols used by the US EPA for the registration of pesticides examines plant responses of 10 crop species but may not examine regionally important native plants or crops. In order to test the efficiency of current test protocols we selected six native plant species...

  7. Changes in the nutritional quality of five Mangifera species harvested at two maturity stages.

    PubMed

    Barbosa Gámez, Ignacio; Caballero Montoya, Karla P; Ledesma, Noris; Sáyago Ayerdi, Sonia G; García Magaña, María de Lourdes; Bishop von Wettberg, Eric J; Montalvo-González, Efigenia

    2017-11-01

    There are 69 species of edible Mangifera recognized in Southeast Asia. Most of these species have not been characterized for nutritional properties. This paper describes the nutritional quality of the pulp of several Mangifera species - Mangifera casturi, Mangifera lalijiwa, Mangifera odorata, Mangifera zeylanica and two cultivars of Mangifera indica, 'Tommy-Kent' and 'Tommy Atkins' - at two maturity stages. The results showed that nutritional quality varied with maturity stage and among species. The immature pulp of all species had higher content of total dietary fibre, vitamin C, vitamin E, total soluble polyphenols and antioxidant capacity. In mature pulp, the protein, ash, fat, soluble carbohydrate and B vitamin values were higher in all species. The species with the best nutritional quality were, in order from highest to lowest, M. casturi, M. odorata, M. zeylanica, M. indica cultivars and M. lalijiwa. The fruit pulp of three species had higher nutritional quality at both maturity stages in comparison with M. indica cultivars. These other Mangifera species can be nutritionally important in communities facing food insecurity and have potential as emerging crops. The decline of these valuable species in their natural habitats is an increasing concern, and their nutritional properties justify greater efforts to protect them. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards

    PubMed Central

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-01-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  9. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  10. Airborne monitoring of crop canopy temperatures for irrigation scheduling and yield prediction

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Goettelman, R. C.; Reginato, R. J.; Idso, S. B.; Lapado, R. L.

    1977-01-01

    Airborne and ground measurements were made on April 1 and 29, 1976, over a USDA test site consisting mostly of wheat in various stages of water stress, but also including alfalfa and bare soil. These measurements were made to evaluate the feasibility of measuring crop temperatures from aircraft so that a parameter termed stress degree day, SDD, could be computed. Ground studies have shown that SDD is a valuable indicator of a crop's water needs, and that it can be related to irrigation scheduling and yield. The aircraft measurement program required predawn and afternoon flights coincident with minimum and maximum crop temperatures. Airborne measurements were made with an infrared line scanner and with color IR photography. The scanner data were registered, subtracted, and color-coded to yield pseudo-colored temperature-difference images. Pseudo-colored images reading directly in daily SDD increments were also produced. These maps enable a user to assess plant water status and thus determine irrigation needs and crop yield potentials.

  11. Comparing crop rotations between organic and conventional farming.

    PubMed

    Barbieri, Pietro; Pellerin, Sylvain; Nesme, Thomas

    2017-10-23

    Cropland use activities are major drivers of global environmental changes and of farming system resilience. Rotating crops is a critical land-use driver, and a farmers' key strategy to control environmental stresses and crop performances. Evidence has accumulated that crop rotations have been dramatically simplified over the last 50 years. In contrast, organic farming stands as an alternative production way that promotes crop diversification. However, our understanding of crop rotations is surprisingly limited. In order to understand if organic farming would result in more diversified and multifunctional landscapes, we provide here a novel, systematic comparison of organic-to-conventional crop rotations at the global scale based on a meta-analysis of the scientific literature, paired with an independent analysis of organic-to-conventional land-use. We show that organic farming leads to differences in land-use compared to conventional: overall, crop rotations are 15% longer and result in higher diversity and evener crop species distribution. These changes are driven by a higher abundance of temporary fodders, catch and cover-crops, mostly to the detriment of cereals. We also highlighted differences in organic rotations between Europe and North-America, two leading regions for organic production. This increased complexity of organic crop rotations is likely to enhance ecosystem service provisioning to agroecosystems.

  12. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  13. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  14. Plant species evaluated for new crop potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.E.

    1985-01-01

    Ninety-two plant species from various regions of the USA were screened for their energy-producing potential. Samples were analysed for oil, polyphenol, hydrocarbon and protein. Oil fractions of some species were analysed for classes of lipid constituents and yields of unsaponifiable matter and fatty acids were determined. Hydrocarbon fractions of some species were analysed for rubber, gutta and waxes. Average MW and MW distribution of rubber and gutta were determined. Complete analytical data for 16 species is presented. Large quantities of oil were obtained from Philadelphus coronarius, Cacalia muhlenbergii, Lindera benzoin and Koelreuteria paniculata. High yields of polyphenols came from Acermore » ginnala, Cornus obliqua and Salix caprea and maximum yields of hydrocarbon and protein were from Elymus virginicus and Lindera benzoin, respectively.« less

  15. Even the Smallest Non-Crop Habitat Islands Could Be Beneficial: Distribution of Carabid Beetles and Spiders in Agricultural Landscape

    PubMed Central

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  16. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    PubMed

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  17. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.

    PubMed

    Amon, Thomas; Amon, Barbara; Kryvoruchko, Vitaliy; Machmüller, Andrea; Hopfner-Sixt, Katharina; Bodiroza, Vitomir; Hrbek, Regina; Friedel, Jürgen; Pötsch, Erich; Wagentristl, Helmut; Schreiner, Matthias; Zollitsch, Werner

    2007-12-01

    Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).

  18. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production.

    PubMed

    Yu, Qin; Powles, Stephen

    2014-11-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Genomic ancestry estimation quantifies use of wild species in grape breeding.

    PubMed

    Migicovsky, Zoë; Sawler, Jason; Money, Daniel; Eibach, Rudolph; Miller, Allison J; Luby, James J; Jamieson, Andrew R; Velasco, Dianne; von Kintzel, Sven; Warner, John; Wührer, Walter; Brown, Patrick J; Myles, Sean

    2016-06-30

    Grapes are one of the world's most valuable crops and most are made into wine. Grapes belong to the genus Vitis, which includes over 60 inter-fertile species. The most common grape cultivars derive their entire ancestry from the species Vitis vinifera, but wild relatives have also been exploited to create hybrid cultivars, often with increased disease resistance. We evaluate the genetic ancestry of some of the most widely grown commercial hybrids from North America and Europe. Using genotyping-by-sequencing (GBS), we generated 2482 SNPs and 56 indels from 7 wild Vitis, 7 V. vinifera, and 64 hybrid cultivars. We used a principal component analysis (PCA) based ancestry estimation procedure and verified its accuracy with both empirical and simulated data. V. vinifera ancestry ranged from 11 % to 76 % across hybrids studied. Approximately one third (22/64) of the hybrids have ancestry estimates consistent with F1 hybridization: they derive half of their ancestry from wild Vitis and half from V. vinifera. Our results suggest that hybrid grape breeding is in its infancy. The distribution of V. vinifera ancestry across hybrids also suggests that backcrosses to wild Vitis species have been more frequent than backcrosses to V. vinifera during hybrid grape breeding. This pattern is unusual in crop breeding, as it is most common to repeatedly backcross to elite, or domesticated, germplasm. We anticipate our method can be extended to facilitate marker-assisted selection in order to introgress beneficial wild Vitis traits, while allowing for offspring with the highest V. vinifera content to be selected at the seedling stage.

  20. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    PubMed

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  1. No sex in fungus-farming ants or their crops.

    PubMed

    Himler, Anna G; Caldera, Eric J; Baer, Boris C; Fernández-Marín, Hermógenes; Mueller, Ulrich G

    2009-07-22

    Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent-offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant-fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.

  2. Allelopathy in crop/weed interactions--an update.

    PubMed

    Belz, Regina G

    2007-04-01

    Since varietal differences in allelopathy of crops against weeds were discovered in the 1970s, much research has documented the potential that allelopathic crops offer for integrated weed management with substantially reduced herbicide rates. Research groups worldwide have identified several crop species possessing potent allelopathic interference mediated by root exudation of allelochemicals. Rice, wheat, barley and sorghum have attracted most attention. Past research focused on germplasm screening for elite allelopathic cultivars and the identification of the allelochemicals involved. Based on this, traditional breeding efforts were initiated in rice and wheat to breed agronomically acceptable, weed-suppressive cultivars with improved allelopathic interference. Promising suppressive crosses are under investigation. Molecular approaches have elucidated the genetics of allelopathy by QTL mapping which associated the trait in rice and wheat with several chromosomes and suggested the involvement of several allelochemicals. Potentially important compounds that are constitutively secreted from roots have been identified in all crop species under investigation. Biosynthesis and exudation of these metabolites follow a distinct temporal pattern and can be induced by biotic and abiotic factors. The current state of knowledge suggests that allelopathy involves fluctuating mixtures of allelochemicals and their metabolites as regulated by genotype and developmental stage of the producing plant, environment, cultivation and signalling effects, as well as the chemical or microbial turnover of compounds in the rhizosphere. Functional genomics is being applied to identify genes involved in biosynthesis of several identified allelochemicals, providing the potential to improve allelopathy by molecular breeding. The dynamics of crop allelopathy, inducible processes and plant signalling is gaining growing attention; however, future research should also consider allelochemical release

  3. The complete chloroplast genome of an irreplaceable dietary and model crop, foxtail millet (Setaria italica).

    PubMed

    Wang, Shuo; Gao, Li-Zhi

    2016-11-01

    The complete chloroplast genome sequence of foxtail millet (Setaria italica), an important food and fodder crop in the family Poaceae, is first reported in this study. The genome consists of 1 35 516 bp containing a pair of inverted repeats (IRs) of 21 804 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region of 79 896 bp and 12 012 bp, respectively. Coding sequences constitute 58.8% of the genome harboring 111 unique genes, 71 of which are protein-coding genes, 4 are rRNA genes, and 36 are tRNA genes. Phylogenetic analysis indicated foxtail millet clustered with Panicum virgatum and Echinochloa crus-galli belonging to the tribe Paniceae of the subfamily Panicoideae. This newly determined chloroplast genome will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.

  4. Ribosomal DNA variation in finger millet and wild species of Eleusine (Poaceae).

    PubMed

    Hilu, K W; Johnson, J L

    1992-04-01

    Finger millet is an important cereal crop in the semi-arid regions of Africa and India. The crop belongs to the grass genus Eleusine, which includes nine annual and perennial species native to Africa except for the New World species E. tristachya. Ribosomal DNA (rDNA) variation in finger millet and related wild species was used to provide information on the origin of the genomes of this tetraploid crop and point out genetic relationships of the crop to other species in the genus. The restriction endonucleases used revealed a lack of variability in the rDNA spacer region in domesticated finger millet. All the rDNA variants of the crop were found in the proposed direct tetraploid ancestor, E. coracana subsp. africana. Wild and domesticated finger millet displayed the phenotypes found in diploid E. indica. Diploid Eleusine tristachya showed some similarity to the crop in some restriction sites. The remaining species were quite distinct in rDNA fragment patterns. The study supports the direct origin of finger millet from subspecies africana shows E. indica to be one of the genome donors of the crop, and demonstrates that none of the other species examined could have donated the second genome of the crop. The rDNA data raise the possibility that wild and domesticated finger millet could have originated as infraspecific polyploid hybrids from different varieties of E. indica.

  5. SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.

    PubMed

    De Deyn, G B

    2015-01-01

    Sustainable production of food, feed and fiberwarrants sustainable soil management and crop protection. The tools available to achieve this are both in the realm of the plants and of the soil, with a key role for plant-soil interactions. At the plant level we have vast knowledge of variation within plant species with respect to pests and diseases, based on which we can breed for resistance. However, given that systems evolve this resistance is bound to be temporarily, hence also other strategies are needed. Here I plea for an integrative approach for sustainable production using ecological principles. Ecology, the study of how organisms interact with their environment, teaches us that diversity promotes productivity and yield stability. These effects are thought to be governed through resource use complementarity and reduced build-up of pests and diseases both above- and belowground. In recent years especially the role of soil biotic interactions has revealed new insights in how plant diversity and productivity are related to soil biodiversity and the functions soil biota govern. In our grassland biodiversity studies we found that root feeders can promote plant diversity and succession without reducing plant community productivity, this illustrates the role of diversity to maintain productivity. Also diversity within species offers scope for sustainable production, for example through awareness of differences between plant genotypes in chemical defense compounds that can attract natural enemies of pests aboveground- and belowground thereby providing plant protection. Plant breeding can also benefit from using complementarity between plant species in the selection for new varieties, as our work demonstrated that when growing in species mixtures plant species adapt to each other over time such that their resource acquisition traits become more complementing. Finally, in a recent meta-analysis we show that earthworms can stimulate crop yield with on average 25%, but

  6. Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis[W][OPEN

    PubMed Central

    Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian

    2014-01-01

    Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589

  7. Conservation priorities for tree crop wild relatives in the United States

    USDA-ARS?s Scientific Manuscript database

    Our native crop wild relatives have proved useful as genetic resources in breeding more productive, nutritious, and resilient crops. Their utilization is expected only to increase with better information on the species and improving breeding tools, but may well be constrained by their limited repres...

  8. Legume proportions, poultry litter, and tillage effects on cover crop decomposition

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth.)–cereal rye (Secale cereale L.) cover crop mixtures can provide N scavenging and N provisioning benefits in grain cropping systems. The objectives of this research were to determine, under field conditions, the effects of species proportions, tillage, and pelletized...

  9. Animals as an indicator of carbon sequestration and valuable landscapes

    PubMed Central

    Szyszko, Jan; Schwerk, Axel; Malczyk, Jarosław

    2011-01-01

    Abstract Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB) of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance), representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use. PMID:21738434

  10. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  11. Utilization of sunflower crop wild relatives for cultivated sunflower improvement

    USDA-ARS?s Scientific Manuscript database

    Sunflower (Helianthus annuus L.) is one of the few crops native to the U.S. The current USDA-ARS-NPGS crop wild relatives sunflower collection is the largest extant collection in the world, containing 2,519 accessions comprised of 53 species; 39 perennial and 14 annual. To fully utilize gene bank co...

  12. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production1

    PubMed Central

    Yu, Qin; Powles, Stephen

    2014-01-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. PMID:25106819

  13. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  14. Effect of Mixed Systems on Crop Productivity

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  15. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  16. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  17. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke.

    PubMed

    Bock, Dan G; Kane, Nolan C; Ebert, Daniel P; Rieseberg, Loren H

    2014-02-01

    The perennial sunflower Helianthus tuberosus, known as Jerusalem Artichoke or Sunchoke, was cultivated in eastern North America before European contact. As such, it represents one of the few taxa that can support an independent origin of domestication in this region. Its tubers were adopted as a source of food and forage when the species was transferred to the Old World in the early 1600s, and are still used today. Despite the cultural and economic importance of this tuber crop species, its origin is debated. Competing hypotheses implicate the occurrence of polyploidization with or without hybridization, and list the annual sunflower H. annuus and five distantly related perennial sunflower species as potential parents. Here, we test these scenarios by skimming the genomes of diverse populations of Jerusalem Artichoke and its putative progenitors. We identify relationships among Helianthus taxa using complete plastomes (151 551 bp), partial mitochondrial genomes (196 853 bp) and 35S (8196 bp) and 5S (514 bp) ribosomal DNA. Our results refute the possibility that Jerusalem Artichoke is of H. annuus ancestry. We provide the first genetic evidence that this species originated recursively from perennial sunflowers of central-eastern North America via hybridization between tetraploid Hairy Sunflower and diploid Sawtooth Sunflower. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Phytochemical Screening: Antioxidant and Antibacterial Properties of Potamogeton Species in Order to Obtain Valuable Feed Additives.

    PubMed

    Lupoae, Paul; Cristea, Victor; Borda, Daniela; Lupoae, Mariana; Gurau, Gabriela; Dinica, Rodica Mihaela

    2015-01-01

    The alcoholic extracts from three submerged perennial plants Potamogeton crispus L., P. pusillus L. and P. pectinatus L. were analyzed by gas chromatography-mass spectrometry coupled with solid phase microextraction (SPME-GC/MS) and by High Performance Liquid Chromatography (HPLC) and their volatile fingerprint and polyphenols composition was mutually compared. Twenty-nine chemical compounds were detected and identified in ethanolic and methanolic extracts; the highest abundance (over 5%) in descending order, was detected for 9,9-dimethyl-8,10- dioxapentacyclo (5,3,0(2,5) 0(3,5,)0 (3,6) decane (21.65%), phenol 2,6 bis (1,1 dimethyletyl) 4-1-methylpropil (20.8%), pentadecanoic acid (14.3%), 2-(5-chloro-2-Methoxyphenyl) pyrrole (8.66%), propanedioic (malonic) acid 2-(4-methylphenyl) sulfonyl ethylidene (5.77%), 2 hydroxy-3 tert butyl-5-isopropyl-6 methyl phenyl ketone (5.76%). The highest total polyphenols and flavonoids content was found in the methanolic extract of P. crispus (112.5±0.5 mg tannic acid/g dry extract; 64.2±1.2 mg quercitin/g dry extract). Antioxidant activities (2,2-difenil-1-picrilhidrazil, hydrogen peroxide and reducing power assays) of obtained extracts are comparable with the standard compounds, butylated hydroxytoluene, rutin and ascorbic acid. Antibacterial efficiency of methanolic extracts was notably demonstrated against Gram negative (Escherichia coli, Enterobacter hormaechei) and Gram positive bacteria (Enterococcus casseliflavus). The data reported for the first time for Romanian Potamogeton species, provides extensive support for the chemical investigations of these plants of the aquatic anthropogene ecosystems in order to obtain valuable bioadditives for animal feed and/or pharmaceutical/food industry.

  19. Bt crops: predicting effects of escaped transgenes on the fitness of wild plants and their herbivores.

    PubMed

    Letourneau, Deborah K; Robinson, Gaden S; Hagen, Joy A

    2003-01-01

    One prominent concern about genetically modified crops is the possibility of environmental impacts from the movement of fitness-enhancing traits to wild plant populations. Decisions to deregulate Bt crops in the USA have relied strongly on arguments that these crops will not interbreed with wild relatives in the permitted growing regions. Limited attention therefore has been directed to analyses of the consequences of gene flow. To provide a transparent evaluation process for risks associated with insecticidal transgene escape, we crafted a series of questions designed to guide this aspect of the risk assessment. We then explored the current knowledge base available for answering such risk-related questions for three Bt crops (cotton, rapeseed, and rice). First, we generated a list of wild relatives of these crops. A definitive list of potential transgene recipients is not yet possible for some crops. Sufficient data are not available for some crops to eliminate certain related plant species from consideration of fertile hybrid formation, thus making lists for these crops subject to speculation. Second, we queried the HOSTS database (UK) to obtain a worldwide listing of lepidopteran species that feed on these crops and their wild relatives, and to determine the host range of the larvae. To our knowledge, this list of 502 lepidopteran species is the first such list published for these crops and wild crop relatives. Third, we used a data set maintained by the Canadian Forest Service to assess Bt toxin susceptibility for these lepidopterans. Only 3% of those species have been tested for susceptibility; and the literature suggests that generalizations about susceptibility among taxa are difficult due to the variability within families. Fourth, we consulted the literature to interpret what is known about the ability of lepidopterans to regulate plant fitness or invasiveness. We could not eliminate the possibility of ecological release due to plant resistance against

  20. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    PubMed

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Do genetically modified crops affect animal reproduction? A review of the ongoing debate.

    PubMed

    Zhang, W; Shi, F

    2011-05-01

    In the past few years, genetically modified (GM) crops aimed at producing food/feed that became part of the regular agriculture in many areas of the world. However, we are uncertain whether GM food and feed can exert potential adverse effects on humans or animals. Of importance, the reproductive toxicology of GM crops has been studied using a number of methods, and by feeding GM crops to a number species of animals to ensure the safety assessment of GM food and feed. It appears that there are no adverse effects of GM crops on many species of animals in acute and short-term feeding studies, but serious debates of effects of long-term and multigenerational feeding studies remain. The aims of this review are to focus on the latest (last 3 to 4 years) findings and debates on reproduction of male and female animals after feeding daily diets containing the GM crops, and to present the possible mechanism(s) to explain their influences.

  2. Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops.

    PubMed

    Lehoczky, E; Nelima, M Okumu; Szabó, R; Szalai, A; Nagy, P

    2011-01-01

    Allelopathy is an untapped resource for weed control in crops that could give good possibilities for environmentally sound, integrated crop production. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the production of chemical compounds, called allelochemicals, which escape into the environment. Allelochemicals can be produced by weeds and affect crops, and the reverse is also true. Allelopathic interactions include weed-weed, weed-crop, and crop-crop. Allelopathy offers potential for selective biological weed control for instance weed-suppressing crops and the use of plant residues in cropping systems, allelopathic rotational crops, or companion plants with allelopathic potential. Bromus species occur in many habitats in temperate regions of the world, including America, Eurasia, Australia, and Africa. The genus Lolium is one of the most important forage grasses. The weed species usually grow in the same production zones as wheat and are considered weeds since they parasitize wheat fields. Some of the weed species in these two genus have been reported to have allelopathic effect. One of the methods that has been successful in studying allelopathic activity are bioassays. Laboratory experiments were conducted to determine allelopathic effect of watery shoot extracts of four weed species of the Poaceae family, namely Bromus rigidus, Bromus diandrus, Lolium multiflorum and Lolium temulentum on germination and growth of winter wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.), corn (Zea mays L), perennial ryegrass (Lolium perenne L.), bean (Phaseolus sp.) and sunflower (Helianthus annuus L.) and on each other. The experiment was carried out during the period March 2010 to October 2010. Twenty five seeds were put into one Petri-dish on filter paper, adding 15ml of extract to each in four repeats. The germination took place in a Binder-type thermostat in the dark. The timing of germination was

  3. Nematodes in Dryland Field Crops in the Semiarid Pacific Northwest United States

    PubMed Central

    Smiley, Richard W.; Merrifield, Kathy; Patterson, Lisa-Marie; Whittaker, Ruth G.; Gourlie, Jennifer A.; Easley, Sandra A.

    2004-01-01

    Soils and roots of field crops in low-rainfall regions of the Pacific Northwest were surveyed for populations of plantparasitic and non-plant-parasitic nematodes. Lesion nematodes (Pratylenchus species) were recovered from 123 of 130 non-irrigated and 18 of 18 irrigated fields. Pratylenchus neglectus was more prevalent than P. thornei, but mixed populations were common. Population densities in soil were affected by crop frequency and rotation but not by tillage or soil type (P < 0.05). Many fields (25%) cropped more frequently than 2 of 4 years had potentially damaging populations of lesion nematodes. Pratylenchus neglectus density in winter wheat roots was inversely correlated with grain yield (r2 = 0.64, P = 0.002), providing the first field-derived evidence that Pratylenchus is economically important in Pacific Northwest dryland field crops. Stunt nematodes (Tylenchorhynchus clarus and Geocenamus brevidens) were detected in 35% of fields and were occasionally present in high numbers. Few fields were infested with pin (Paratylenchus species) and root-knot (Meloidogyne naasi and M. chitwoodi) nematodes. Nematodes detected previously but not during this survey included cereal cyst (Heterodera avenae), dagger (Xiphinema species), and root-gall (Subanguina radicicola) nematodes. PMID:19262788

  4. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    PubMed

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  5. Establishment of three permanent cover crop seed mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Miglécz, Tamas; Valkó, Orsolya; Donkó, Ádám; Deák, Balázs; Török, Péter; Kelemen, András; Drexler, Dóra; Tóthmérész, Béla

    2015-04-01

    In organic vineyard farming sowing high diversity cover crop seed mixtures offers a great opportunity to overcome high-priority problems mitigating vineyard cultivation, such as gain erosion control, save soil fertility, improve soil microbial activity and control weeds. Furthermore, we can also improve the biodiversity and ecosystem services of vineyards. Mainly non-native or low diversity seed mixtures are used for cover cropping containing some grass, grain or Fabaceae species. We studied vegetation development after sowing native high-diversity seed mixtures in four vineyards in an on farm field trial. We compared the effects of 4 treatments: (i) Biocont-Ecowin mixture (12 species), (ii) Fabaceae mixture (9 species), (iii) Grass-forb mixture (16 species) and control (no seed sowing). Study sites were located in Tokaj wine region, East Hungary. Seed mixtures were sown in March, 2012. After sowing, we recorded the percentage cover of vascular plant species in the end of June 2012, 2013 and 2014 in altogether 80 permanent plots. In the first year the establishment and weed control of Biocont-Ecowin and Legume seed mixture was the best. For the second year in inter-rows sown with Grass-herb and Legume seed mixtures we detected decreasing weed cover scores, while in inter-rows sown with Biocont-Ecowin seed mixture and in control inter-rows we detected higher weed cover scores. In the third year we still detected lower weed cover scores in inter-rows sown with Grass-forb and Legume seed mixtures, however on several sites we also detected decreasing cover of sown species. All sown species were detected in our plots during the time of the study, however some species were present only with low cover scores or only in a few plots. Out of the sown species Lotus corniculatus, Medicago lupulina, Plantago lanceolata, Trifolium repens, T. pratense and Coronilla varia established the most successfully, and had high cover scores on most sites even in the second and third year

  6. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE PAGES

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; ...

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  7. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  8. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    NASA Astrophysics Data System (ADS)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O3) and fine particulate matter (PM2.5) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O3 increases of 5-27 ppb in India, 1-9 ppb in China, and 1-6 ppb in the United States, with peak PM2.5 increases of up to 2 μg m-3. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10-100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  9. North American crop wild relatives of temperate berries (Fragaria L., Ribes L., Rubus L., and Vaccinium L.)

    USDA-ARS?s Scientific Manuscript database

    The crop wild relatives of temperate berry species abound on the North American continent; >170 species are endemic in North America. The development and production of berry crops, such as strawberries (Fragaria L.), currants and gooseberries (Ribes L.), raspberries and blackberries (Rubus L.), blue...

  10. Perennial Forages as Second Generation Bioenergy Crops

    PubMed Central

    Sanderson, Matt A.; Adler, Paul R.

    2008-01-01

    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production. PMID:19325783

  11. Meta-analysis of crop and weed growth responses to arbuscular-mycorrhizal fungi

    USDA-ARS?s Scientific Manuscript database

    Arbuscular mycorrhizal fungi (AMF) have long been regarded as beneficial soil microorganisms, but have been reported to have detrimental effects on several non-mycorrhizal agricultural weed species. If AMF have negative effects on weeds but neutral or positive effects on crops under certain cropping...

  12. Impact of nowcasting on the production and processing of agricultural crops. [in the US

    NASA Technical Reports Server (NTRS)

    Dancer, W. S.; Tibbitts, T. W.

    1973-01-01

    The value was studied of improved weather information and weather forecasting to farmers, growers, and agricultural processing industries in the United States. The study was undertaken to identify the production and processing operations that could be improved with accurate and timely information on changing weather patterns. Estimates were then made of the potential savings that could be realized with accurate information about the prevailing weather and short term forecasts for up to 12 hours. This weather information has been termed nowcasting. The growing, marketing, and processing operations of the twenty most valuable crops in the United States were studied to determine those operations that are sensitive to short-term weather forecasting. Agricultural extension specialists, research scientists, growers, and representatives of processing industries were consulted and interviewed. The value of the crops included in this survey and their production levels are given. The total value for crops surveyed exceeds 24 billion dollars and represents more than 92 percent of total U.S. crop value.

  13. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    EPA Science Inventory

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  14. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  15. Conservation priorities for tree crop wild relatives in the United States

    Treesearch

    Colin K. Khoury; Stephanie L. Greene; Karen A. Williams; Chrystian C. Sosa; Chris Richards

    2017-01-01

    Crop wild relatives native to the United States have proved useful as genetic resources in breeding more productive, nutritious, and resilient crops. Their utilization is expected to increase with better information about the species and improving breeding tools. But this utilization may be constrained by their limited representation in genebanks and the ongoing loss...

  16. Developing integrated crop knowledge networks to advance candidate gene discovery.

    PubMed

    Hassani-Pak, Keywan; Castellote, Martin; Esch, Maria; Hindle, Matthew; Lysenko, Artem; Taubert, Jan; Rawlings, Christopher

    2016-12-01

    The chances of raising crop productivity to enhance global food security would be greatly improved if we had a complete understanding of all the biological mechanisms that underpinned traits such as crop yield, disease resistance or nutrient and water use efficiency. With more crop genomes emerging all the time, we are nearer having the basic information, at the gene-level, to begin assembling crop gene catalogues and using data from other plant species to understand how the genes function and how their interactions govern crop development and physiology. Unfortunately, the task of creating such a complete knowledge base of gene functions, interaction networks and trait biology is technically challenging because the relevant data are dispersed in myriad databases in a variety of data formats with variable quality and coverage. In this paper we present a general approach for building genome-scale knowledge networks that provide a unified representation of heterogeneous but interconnected datasets to enable effective knowledge mining and gene discovery. We describe the datasets and outline the methods, workflows and tools that we have developed for creating and visualising these networks for the major crop species, wheat and barley. We present the global characteristics of such knowledge networks and with an example linking a seed size phenotype to a barley WRKY transcription factor orthologous to TTG2 from Arabidopsis, we illustrate the value of integrated data in biological knowledge discovery. The software we have developed (www.ondex.org) and the knowledge resources (http://knetminer.rothamsted.ac.uk) we have created are all open-source and provide a first step towards systematic and evidence-based gene discovery in order to facilitate crop improvement.

  17. Diversifying crops for food and nutrition security - a case of teff.

    PubMed

    Cheng, Acga; Mayes, Sean; Dalle, Gemedo; Demissew, Sebsebe; Massawe, Festo

    2017-02-01

    There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size. © 2015 Cambridge Philosophical Society.

  18. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding?

    PubMed

    Wang, Zeng-Yu; Brummer, E Charles

    2012-11-01

    Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is 'Roundup Ready' (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.

  19. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding?

    PubMed Central

    Wang, Zeng-Yu; Brummer, E. Charles

    2012-01-01

    Background Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. Scope Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is ‘Roundup Ready’ (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed. PMID:22378838

  20. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  1. A critical analysis of species selection and high vs. low-input silviculture on establishment success and early productivity of model short-rotation wood-energy cropping systems

    DOE PAGES

    Fischer, M.; Kelley, A. M.; Ward, E. J.; ...

    2017-02-03

    Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less

  2. A critical analysis of species selection and high vs. low-input silviculture on establishment success and early productivity of model short-rotation wood-energy cropping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, M.; Kelley, A. M.; Ward, E. J.

    Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less

  3. Improving crop nutrient efficiency through root architecture modifications.

    PubMed

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  4. Propagation of Valuable North Sumatera Benzoin Trees (Styrax Sp) Using Macrocutting Technique

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Hartini, K. S.; Rachmat, H. H.; Alvaroby, M.

    2017-03-01

    Kemenyan known as Sumatran benzoin is North Sumatera local species that produce high valuable rosin and prospective export comodities. However, sustainability of Sumatran benzoin production has many constraints such as instability of resin production, lack information of propagation technique and traditional management system. Until now, comprehensive information for Sumatran benzoin propagation system still not determined yet. The objectives of this research were (1) to get information about propagation technique of Sumatran benzoin and its suitable growing medium and 2) to get information on adventitious root formation in Sumatran benzoin cuttings. Cutting materials (Toba benzoin and Durame benzoin) were originated from 1 year old seedling propagated by seed. Media used were combination of sand : rice husk (1:0 v/v; 1/1 v/v). Results showed that interaction between media and benzoin species significantly affected primer and secondary root lenght. While planting medium significantly improved secondary root length and number. Benzoin species significantly affected primary and secondary root lenght, and secondary root number.

  5. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure

    PubMed Central

    Kagale, Sateesh; Koh, Chushin; Nixon, John; Bollina, Venkatesh; Clarke, Wayne E.; Tuteja, Reetu; Spillane, Charles; Robinson, Stephen J.; Links, Matthew G.; Clarke, Carling; Higgins, Erin E.; Huebert, Terry; Sharpe, Andrew G.; Parkin, Isobel A. P.

    2014-01-01

    Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop. PMID:24759634

  6. Multiplex PCR for four Sclerotinia species

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia homeocarpa, S. minor, S. sclerotiorum, and S. trifoliorum are common species within the genus Sclerotinia, where the morphological identification is challenging, especially when one crop hosts multiple species. The objective of this study was to design species specific primers compatibl...

  7. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop Insurance... cotton and macadamia nuts that published March 30, 2010. DATES: Effective Date: September 27, 2010. FOR... Common Crop Insurance Regulations, Basic Provisions and applicable Crop Provisions, including the Cotton...

  8. Androgenesis in recalcitrant solanaceous crops.

    PubMed

    Seguí-Simarro, José M; Corral-Martínez, Patricia; Parra-Vega, Verónica; González-García, Beatriz

    2011-05-01

    Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations.

  9. Anopheles species associations in Southeast Asia: indicator species and environmental influences.

    PubMed

    Obsomer, Valérie; Dufrene, Marc; Defourny, Pierre; Coosemans, Marc

    2013-05-04

    Southeast Asia presents a high diversity of Anopheles. Environmental requirements differ for each species and should be clarified because of their influence on malaria transmission potential. Monitoring projects collect vast quantities of entomological data over the whole region and could bring valuable information to malaria control staff but collections are not always standardized and are thus difficult to analyze. In this context studying species associations and their relation to the environment offer some opportunities as they are less subject to sampling error than individual species. Using asymmetrical similarity coefficients, indirect clustering and the search of indicator species, this paper identified species associations. Environmental influences were then analysed through canonical and discriminant analysis using climatic and topographic data, land cover in a 3 km buffer around villages and vegetation indices. Six groups of sites characterized the structure of the species assemblage. Temperature, rainfall and vegetation factors all play a role. Four out of the six groups of sites based on species similarities could be discriminated using environmental information only. Vegetation indices derived from satellite imagery proved very valuable with one variable explaining more variance of the species dataset than any other variable. The analysis could be improved by integrating seasonality in the sampling and collecting at least 4 consecutive days.

  10. Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences.

    PubMed

    Wang, Cheng-Long; Ding, Meng-Qi; Zou, Chen-Yan; Zhu, Xue-Mei; Tang, Yu; Zhou, Mei-Liang; Shao, Ji-Rong

    2017-07-26

    Buckwheat is a nutritional and economically crop belonging to Polygonaceae, Fagopyrum. To better understand the mutation patterns and evolution trend in the chloroplast (cp) genome of buckwheat, and found sufficient number of variable regions to explore the phylogenetic relationships of this genus, two complete cp genomes of buckwheat including Fagopyrum dibotrys (F. dibotrys) and Fagopyrum luojishanense (F. luojishanense) were sequenced, and other two Fagopyrum cp genomes were used for comparative analysis. After morphological analysis, the main difference among these buckwheat were height, leaf shape, seeds and flower type. F. luojishanense was distinguishable from the cultivated species easily. Although the F. dibotrys and two cultivated species has some similarity, they different in habit and component contents. The cp genome of F. dibotrys was 159,320 bp while the F. luojishanense was 159,265 bp. 48 and 61 SSRs were found in F. dibotrys and F. luojishanense respectively. Meanwhile, 10 highly variable regions among these buckwheat species were located precisely. The phylogenetic relationships among four Fagopyrum species based on complete cp genomes was showed. The results suggested that F. dibotrys is more closely related to Fagopyrum tataricum. These data provided valuable genetic information for Fagopyrum species identification, taxonomy, phylogenetic study and molecular breeding.

  11. Beyond landraces: developing improved germplasm resources for underutilized species - a case for Bambara groundnut.

    PubMed

    Aliyu, Siise; Massawe, Festo; Mayes, Sean

    2014-10-01

    The potential for underutilized crops (also known as minor, neglected or orphan crops) to improve food and nutrition security has been gaining prominence within the research community in recent years. This is due to their significance for diversified agricultural systems which is a necessary component of future agriculture to address food and nutritional security concerns posed by changing climate and a growing world population. Developing workable value chain systems for underutilized crop species, coupled with comparative trait studies with major crops, potentially allows us to identify suitable agricultural modalities for such species. Bambara groundnut (Vigna subterranea L. Verdc.), an underutilized leguminous species, is of interest for its reported high levels of drought tolerance in particular, which contributes to environmental resilience in semi-arid environments. Here, we present a synopsis of suitable strategies for the genetic improvement of Bambara groundnut as a guide to other underutilized crop species. Underutilized crops have often been adapted over thousands of years in particular regions by farmers and largely still exist as landraces with little or no genetic knowledge of key phenotypic traits. Breeding in these species is fundamentally different to breeding in major crops, where significant pedigree structures and history allow highly directed improvement. In this regard, deploying new integrated germplasm development approaches for variety development and genetic analysis, such as multi-parent advance generation inter-crosses (MAGIC), within breeding programmes of underutilized species will be important to be able to fully utilize such crops.

  12. Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci.

    PubMed

    Kates, Heather R; Soltis, Pamela S; Soltis, Douglas E

    2017-06-01

    Phylogenetics can facilitate the study of plant domestication by resolving sister relationships between crops and their wild relatives, thereby identifying the ancestors of cultivated plants. Previous phylogenetic studies of the six Cucurbita crop lineages (pumpkins and squashes) and their wild relatives suggest histories of deep coalescence that complicate uncovering the genetic origins of the six crop taxa. We investigated the evolution of wild and domesticated Cucurbita using the most comprehensive and robust molecular-based phylogeny for Cucurbita to date based on 44 loci derived from introns of single-copy nuclear genes. We discovered novel relationships among Cucurbita species and recovered the first Cucurbita tree with well-supported resolution within species. Cucurbita comprises a clade of mesophytic annual species that includes all six crop taxa and a grade of xerophytic perennial species that represent the ancestral xerophytic habit of the genus. Based on phylogenetic resolution within-species we hypothesize that the magnitude of domestication bottlenecks varies among Cucurbita crop lineages. Our phylogeny clarifies how wild Cucurbita species are related to the domesticated taxa. We find close relationships between two wild species and crop lineages not previously identified. Expanded geographic sampling of key wild species is needed for improved understanding of the evolution of domesticated Cucurbita. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A TALE of shrimps: Genome-wide survey of homeobox genes in 120 species from diverse crustacean taxa.

    PubMed

    Chang, Wai Hoong; Lai, Alvina G

    2018-01-01

    The homeodomain-containing proteins are an important group of transcription factors found in most eukaryotes including animals, plants and fungi. Homeobox genes are responsible for a wide range of critical developmental and physiological processes, ranging from embryonic development, innate immune homeostasis to whole-body regeneration. With continued fascination on this key class of proteins by developmental and evolutionary biologists, multiple efforts have thus far focused on the identification and characterization of homeobox orthologs from key model organisms in attempts to infer their evolutionary origin and how this underpins the evolution of complex body plans. Despite their importance, the genetic complement of homeobox genes has yet been described in one of the most valuable groups of animals representing economically important food crops. With crustacean aquaculture being a growing industry worldwide, it is clear that systematic and cross-species identification of crustacean homeobox orthologs is necessary in order to harness this genetic circuitry for the improvement of aquaculture sustainability. Using publicly available transcriptome data sets, we identified a total of 4183 putative homeobox genes from 120 crustacean species that include food crop species, such as lobsters, shrimps, crayfish and crabs. Additionally, we identified 717 homeobox orthologs from 6 other non-crustacean arthropods, which include the scorpion, deer tick, mosquitoes and centipede. This high confidence set of homeobox genes will now serve as a key resource to the broader community for future functional and comparative genomics studies.

  14. Ants and termites increase crop yield in a dry climate.

    PubMed

    Evans, Theodore A; Dawes, Tracy Z; Ward, Philip R; Lo, Nathan

    2011-03-29

    Agricultural intensification has increased crop yields, but at high economic and environmental cost. Harnessing ecosystem services of naturally occurring organisms is a cheaper but under-appreciated approach, because the functional roles of organisms are not linked to crop yields, especially outside the northern temperate zone. Ecosystem services in soil come from earthworms in these cooler and wetter latitudes; what may fulfill their functional role in agriculture in warmer and drier habitats, where they are absent, is unproven. Here we show in a field experiment that ants and termites increase wheat yield by 36% from increased soil water infiltration due to their tunnels and improved soil nitrogen. Our results suggest that ants and termites have similar functional roles to earthworms, and that they may provide valuable ecosystem services in dryland agriculture, which may become increasingly important for agricultural sustainability in arid climates.

  15. Ants and termites increase crop yield in a dry climate

    PubMed Central

    Evans, Theodore A.; Dawes, Tracy Z.; Ward, Philip R.; Lo, Nathan

    2011-01-01

    Agricultural intensification has increased crop yields, but at high economic and environmental cost. Harnessing ecosystem services of naturally occurring organisms is a cheaper but under-appreciated approach, because the functional roles of organisms are not linked to crop yields, especially outside the northern temperate zone. Ecosystem services in soil come from earthworms in these cooler and wetter latitudes; what may fulfill their functional role in agriculture in warmer and drier habitats, where they are absent, is unproven. Here we show in a field experiment that ants and termites increase wheat yield by 36% from increased soil water infiltration due to their tunnels and improved soil nitrogen. Our results suggest that ants and termites have similar functional roles to earthworms, and that they may provide valuable ecosystem services in dryland agriculture, which may become increasingly important for agricultural sustainability in arid climates. PMID:21448161

  16. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.

    PubMed

    Milla, Rubén; Morente-López, Javier; Alonso-Rodrigo, J Miguel; Martín-Robles, Nieves; Chapin, F Stuart

    2014-10-22

    Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  18. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    PubMed

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Algal derivatives may protect crops from residual soil salinity: a case study on a tomato-wheat rotation

    NASA Astrophysics Data System (ADS)

    Di Stasio, Emilio; Raimondi, Giampaolo; Van Oosten, Michael; Maggio, Albino

    2017-04-01

    species under residual salinity. Our results indicate that the application of seaweed extracts could be considered as a good production strategy for obtaining good growth and yields of valuable crops in resource-limited environments. Keywords: algal derivatives, residual salinity, wheat, tomato.

  20. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  1. The Effects of Crop Intensification on the Diversity of Native Pollinator Communities.

    PubMed

    Mogren, Christina L; Rand, Tatyana A; Fausti, Scott W; Lundgren, Jonathan G

    2016-08-01

    Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effect of logging wounds on diameter growth of sawlog-size Appalachian hardwood crop trees

    Treesearch

    Neil I. Lamson; H. Clay Smith; H. Clay Smith

    1988-01-01

    In previously thinned, even-aged Appalachian hardwood stands, 5-year diameter growth of 102 wounded and 102 unwounded codominant crop trees were compared. A wounded crop tre was defined as one with at least one exposed sapwood logging wound at least 100 inch2 in size. An unwounded crop tree of the same species and size was selected near each of the 102 wounded trees....

  3. DNA damage and repair in plants – from models to crops

    PubMed Central

    Manova, Vasilissa; Gruszka, Damian

    2015-01-01

    The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to “peak” by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis

  4. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.

    PubMed

    Kreszies, Tino; Schreiber, Lukas; Ranathunge, Kosala

    2018-02-07

    Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lp r ) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  6. Economic and physical determinants of the global distributions of crop pests and pathogens

    PubMed Central

    Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J

    2014-01-01

    Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. PMID:24517626

  7. Heat stress regimes for the investigation of pollen thermotolerance in crop plants.

    PubMed

    Mesihovic, Anida; Iannacone, Rina; Firon, Nurit; Fragkostefanakis, Sotirios

    2016-06-01

    Pollen thermotolerance. Global warming is predicted to increase the frequency and severity of extreme weather phenomena such as heat waves thereby posing a major threat for crop productivity and food security. The yield in case of most crop species is dependent on the success of reproductive development. Pollen development has been shown to be highly sensitive to elevated temperatures while the development of the female gametophyte as well as sporophytic tissues might also be disturbed under mild or severe heat stress conditions. Therefore, assessing pollen thermotolerance is currently of high interest for geneticists, plant biologists and breeders. A key aspect in pollen thermotolerance studies is the selection of the appropriate heat stress regime, the developmental stage that the stress is applied to, as well as the method of application. Literature search reveals a rather high variability in heat stress treatments mainly due to the lack of standardized protocols for different plant species. In this review, we summarize and discuss experimental approaches that have been used in various crops, with special focus on tomato, rice and wheat, as the best studied crops regarding pollen thermotolerance. The overview of stress treatments and the major outcomes of each study aim to provide guidelines for similar research in other crops.

  8. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    NASA Astrophysics Data System (ADS)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize

  9. Thrips-transmitted Viruses Infect a Number of Florida Crops

    USDA-ARS?s Scientific Manuscript database

    The ilarviruses Tomato necrotic streak virus and Tobacco streak virus are present in south Florida. Both species cause economically significant disease in vegetable crop. Control of these viruses makes use of integrated pest management approaches....

  10. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2013-11-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those

  11. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  12. Determinants of Acorn Productivity Among Five Species of Oaks in Central Coastal California

    Treesearch

    Walter D. Koenig; William J. Carmen; Mark T. Stanback; Mumme Ronald L.

    1991-01-01

    We measured acorn production of five species of oaks (genus Quercus) over a ten year period (1980-1989) at Hastings Reservation in Monterey County, California. Crop production was highly variable and generally asynchronous between species. Variance in crop size decreased directly with increasing species diversity across sub-areas within the study...

  13. Local attitudes and perceptions toward crop-raiding by orangutans (Pongo abelii) and other nonhuman primates in northern Sumatra, Indonesia.

    PubMed

    Campbell-Smith, Gail; Simanjorang, Hubert V P; Leader-Williams, Nigel; Linkie, Matthew

    2010-09-01

    Human-wildlife conflicts, such as crop-raiding, increase as people expand their agricultural activities into wildlife habitats. Crop-raiding can reduce tolerance toward species that are already threatened, whereas potential dangers posed by conflicts with large-bodied species may also negatively influence local attitudes. Across Asia, wild pigs and primates, such as macaques, tend to be the most commonly reported crop raiders. To date, reports of crop-raiding incidents involving great apes have been less common, but incidents involving orangutans are increasingly emerging in Indonesia. To investigate the interplay of factors that might explain attitudes toward crop-raiding by orangutans (Pongo abelii), focal group discussions and semi-structured interviews were conducted among 822 farmers from 2 contrasting study areas in North Sumatra. The first study area of Batang Serangan is an agroforest system containing isolated orangutans that crop-raid. In contrast, the second area of Sidikalang comprises farmlands bordering extensive primary forest where orangutans are present but not reported to crop-raid. Farmers living in Batang Serangan thought that orangutans were dangerous, irrespective of earlier experience of crop-raiding. Farmers placed orangutans as the third most frequent and fourth most destructive crop pest, after Thomas' leaf monkey (Presbytis thomasi), wild boar (Sus scrofa), and long-tailed macaque (Macaca fascicularis). Although most (57%) farmers across both study areas were not scared of wildlife species, more than a quarter (28%) of the farmers' feared orangutans. Farmers in Batang Serangan were generally more tolerant toward crop-raiding orangutans, if they did not perceive them to present a physical threat. Most (67%) Batang Serangan farmers said that the local Forestry Department staff should handle crop-raiding orangutans, and most (81%) said that these officials did not care about such problems. Our results suggest that efforts to mitigate human

  14. Modelling shifts in agroclimate and crop cultivar response under climate change.

    PubMed

    Rötter, Reimund P; Höhn, Jukka; Trnka, Mirek; Fronzek, Stefan; Carter, Timothy R; Kahiluoto, Helena

    2013-10-01

    (i) to identify at national scale areas where crop yield formation is currently most prone to climate-induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N-AgriCLIM and the WOFOST crop simulation model. N-AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N-AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 × 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop-relevant stresses across the scenarios vary widely - so do the spatial patterns of change. Overall, under reference climate the most risk-prone areas for spring cereals are found in south-west Finland, shifting to south-east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections.

  15. Valuable water

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    In some places, money flows with water. Studying both the water quality and property values around 22 lakes in south-central Maine, Kevin Boyle and Holly James of the University of Maine and Roy Bouchard of the Maine Department of Environmental Protection have found that good water quality makes waterfront property even more valuable. To gauge water quality, the researchers used Secchi disks to measure the clarity of the water at depth. They also reviewed 543 lakefront property sales between 1990 and 1994 to determine how values correlated with changing water conditions. The group also considered such factors as lake frontage, sizes of the houses and lots, and size of the lake.

  16. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  17. Using Participatory Risk Mapping (PRM) to Identify and Understand People's Perceptions of Crop Loss to Animals in Uganda

    PubMed Central

    Webber, Amanda D.; Hill, Catherine M.

    2014-01-01

    Considering how people perceive risks to their livelihoods from local wildlife is central to (i) understanding the impact of crop damage by animals on local people and (ii) recognising how this influences their interactions with, and attitudes towards, wildlife. Participatory risk mapping (PRM) is a simple, analytical tool that can be used to identify and classify risk within communities. Here we use it to explore local people's perceptions of crop damage by wildlife and the animal species involved. Interviews (n = 93, n = 76) and seven focus groups were conducted in four villages around Budongo Forest Reserve, Uganda during 2004 and 2005. Farms (N = 129) were simultaneously monitored for crop loss. Farmers identified damage by wildlife as the most significant risk to their crops; risk maps highlighted its anomalous status compared to other anticipated challenges to agricultural production. PRM was further used to explore farmers' perceptions of animal species causing crop damage and the results of this analysis compared with measured crop losses. Baboons (Papio anubis) were considered the most problematic species locally but measurements of loss indicate this perceived severity was disproportionately high. In contrast goats (Capra hircus) were considered only a moderate risk, yet risk of damage by this species was significant. Surprisingly, for wild pigs (Potamochoerus sp), perceptions of severity were not as high as damage incurred might have predicted, although perceived incidence was greater than recorded frequency of damage events. PRM can assist researchers and practitioners to identify and explore perceptions of the risk of crop damage by wildlife. As this study highlights, simply quantifying crop loss does not determine issues that are important to local people nor the complex relationships between perceived risk factors. Furthermore, as PRM is easily transferable it may contribute to the identification and development of standardised approaches

  18. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  19. Individual Oak Tree Growth in Southern Bottomland Hardwood Stands (Preliminary Results)

    Treesearch

    Luben D. Dimov; Brian Roy Lockhart; Jim L. Chambers

    2004-01-01

    Southern bottomland hardwood forests are an important natural resource. Silvicultural practices in them are often intended to provide suitable growing conditions to selected individual trees of valuable species by employing crop-tree management. Research on crop-tree management, however, has been considerably less than the research regarding stand-level management. In...

  20. Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi, Lupinus mutabilis.

    PubMed

    Atchison, Guy W; Nevado, Bruno; Eastwood, Ruth J; Contreras-Ortiz, Natalia; Reynel, Carlos; Madriñán, Santiago; Filatov, Dmitry A; Hughes, Colin E

    2016-09-01

    The Andean highlands are a hotspot of domestication, yet our understanding of the origins of early Andean agriculture remains fragmentary. Key questions of where, when, how many times, and from what progenitors many Andean crops were domesticated remain unanswered. The Andean lupine crop tarwi (Lupinus mutabilis) is a regionally important pulse crop with exceptionally high seed protein and oil content and is the focus of modern breeding efforts, but its origins remain obscure. A large genome-wide DNA polymorphism data set was generated using nextRADseq to infer relationships among more than 200 accessions of Andean Lupinus species, including 24 accessions of L. mutabilis and close relatives. Phylogenetic and demographic analyses were used to identify the likely progenitor of tarwi and elucidate the area and timing of domestication in combination with archaeological evidence. We infer that tarwi was domesticated once in northern Peru, most likely in the Cajamarca region within, or adjacent to the extant distribution of L. piurensis, which is the most likely wild progenitor. Demographic analyses suggest that tarwi split from L. piurensis around 2600 BP and suffered a classical domestication bottleneck. The earliest unequivocal archaeological evidence of domesticated tarwi seeds is from the Mantaro Valley, central Peru ca. 1800 BP. A single origin of tarwi from L. piurensis in northern Peru provides a robust working hypothesis for the domestication of this regionally important crop and is one of the first clear-cut examples of a crop originating in the highlands of northern Peru. © 2016 Botanical Society of America.

  1. PCPPI: a comprehensive database for the prediction of Penicillium-crop protein-protein interactions.

    PubMed

    Yue, Junyang; Zhang, Danfeng; Ban, Rongjun; Ma, Xiaojing; Chen, Danyang; Li, Guangwei; Liu, Jia; Wisniewski, Michael; Droby, Samir; Liu, Yongsheng

    2017-01-01

    Penicillium expansum , the causal agent of blue mold, is one of the most prevalent post-harvest pathogens, infecting a wide range of crops after harvest. In response, crops have evolved various defense systems to protect themselves against this and other pathogens. Penicillium -crop interaction is a multifaceted process and mediated by pathogen- and host-derived proteins. Identification and characterization of the inter-species protein-protein interactions (PPIs) are fundamental to elucidating the molecular mechanisms underlying infection processes between P. expansum and plant crops. Here, we have developed PCPPI, the Penicillium -Crop Protein-Protein Interactions database, which is constructed based on the experimentally determined orthologous interactions in pathogen-plant systems and available domain-domain interactions (DDIs) in each PPI. Thus far, it stores information on 9911 proteins, 439 904 interactions and seven host species, including apple, kiwifruit, maize, pear, rice, strawberry and tomato. Further analysis through the gene ontology (GO) annotation indicated that proteins with more interacting partners tend to execute the essential function. Significantly, semantic statistics of the GO terms also provided strong support for the accuracy of our predicted interactions in PCPPI. We believe that all the PCPPI datasets are helpful to facilitate the study of pathogen-crop interactions and freely available to the research community. : http://bdg.hfut.edu.cn/pcppi/index.html. © The Author(s) 2017. Published by Oxford University Press.

  2. Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops

    PubMed Central

    Gibbons, David W; Bohan, David A; Rothery, Peter; Stuart, Rick C; Haughton, Alison J; Scott, Rod J; Wilson, Jeremy D; Perry, Joe N; Clark, Suzanne J; Dawson, Robert J.G; Firbank, Les G

    2006-01-01

    The UK Farm Scale Evaluations (FSEs) have shown that the use of broad spectrum herbicides on genetically modified herbicide-tolerant (GMHT) crops can have dramatic effects on weed seed production compared to management of conventional varieties. Here, we use FSE data and information on bird diets to determine how GMHT cropping might change the food resources available to farmland birds. More than 60 fields of each of four crops, spring- and winter-sown oilseed rape, beet and maize, were split, one half being sown with a conventional variety, the other with a GMHT variety. Seed rain from weeds known to be important in the diets of 17 granivorous farmland bird species was measured under the two treatments. In beet and spring oilseed rape, rain of weed seeds important in the diets of 16 bird species was significantly reduced in GMHT compared to conventional halves; for no species did it increase. In winter oilseed rape, rain of weed seeds important in the diets of 10 species was significantly reduced in GMHT halves; for only one species did it increase significantly. By contrast, in maize, rain of weed seeds important in the diets of seven species was significantly greater in GMHT halves; for no species was it reduced. Treatment effects for the total weed seed energy available to each bird species were very similar to those for seed rain alone. Measuring the effects on individual bird species was outside the scope of this study. Despite this, these results suggest that should beet, spring and winter rape crops in the UK be largely replaced by GMHT varieties and managed as in the FSEs, this would markedly reduce important food resources for farmland birds, many of which declined during the last quarter of the twentieth century. By contrast, GMHT maize would be beneficial to farmland birds. PMID:16822753

  3. Elevating crop disease resistance with cloned genes

    PubMed Central

    Jones, Jonathan D. G.; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon

    2014-01-01

    Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396

  4. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.

    PubMed

    Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri

    2017-04-01

    Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

  5. Contrasting effects of landscape composition on crop yield mediated by specialist herbivores.

    PubMed

    Perez-Alvarez, Ricardo; Nault, Brian A; Poveda, Katja

    2018-04-01

    Landscape composition not only affects a variety of arthropod-mediated ecosystem services, but also disservices, such as herbivory by insect pests that may have negative effects on crop yield. Yet, little is known about how different habitats influence the dynamics of multiple herbivore species, and ultimately their collective impact on crop production. Using cabbage as a model system, we examined how landscape composition influenced the incidence of three specialist cruciferous pests (aphids, flea beetles, and leaf-feeding Lepidoptera), lepidopteran parasitoids, and crop yield across a gradient of landscape composition in New York, USA. We expected that landscapes with a higher proportion of cropland and lower habitat diversity would lead to an increase in pest pressure of the specialist herbivores and a reduction in crop yield. However, results indicated that neither greater cropland area nor lower landscape diversity influenced pest pressure or yield. Rather, pest pressure and yield were best explained by the presence of non-crop habitats (i.e., meadows) in the landscape. Specifically, cabbage was infested with fewer Lepidoptera in landscapes with a higher proportion of meadows likely resulting from increased parasitism. Conversely, cabbage was infested with more flea beetles and aphids as the proportion of meadows in the landscape increased, suggesting that these pests benefit from non-crop habitats. Furthermore, path analysis confirmed that these landscape-mediated effects on pest populations can have either positive or negative cascading effects on crop yield. Our findings illustrate how different pest species within the same cropping system show contrasting responses to landscape composition with respect to both the direction and spatial scale of the relationship. Such tradeoffs resulting from the complex interaction between multiple-pests, natural enemies, and landscape composition must be considered, if we are to manage landscapes for pest suppression

  6. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement

    PubMed Central

    Hill, Camilla B.; Li, Chengdao

    2016-01-01

    Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation

  7. Interactions between Bt crops and aquatic ecosystems: A review.

    PubMed

    Venter, Hermoine J; Bøhn, Thomas

    2016-12-01

    The term Bt crops collectively refers to crops that have been genetically modified to include a gene (or genes) sourced from Bacillus thuringiensis (Bt) bacteria. These genes confer the ability to produce proteins toxic to certain insect pests. The interaction between Bt crops and adjacent aquatic ecosystems has received limited attention in research and risk assessment, despite the fact that some Bt crops have been in commercial use for 20 yr. Reports of effects on aquatic organisms such as Daphnia magna, Elliptio complanata, and Chironomus dilutus suggest that some aquatic species may be negatively affected, whereas other reports suggest that the decreased use of insecticides precipitated by Bt crops may benefit aquatic communities. The present study reviews the literature regarding entry routes and exposure pathways by which aquatic organisms may be exposed to Bt crop material, as well as feeding trials and field surveys that have investigated the effects of Bt-expressing plant material on such organisms. The present review also discusses how Bt crop development has moved past single-gene events, toward multigene stacked varieties that often contain herbicide resistance genes in addition to multiple Bt genes, and how their use (in conjunction with co-technology such as glyphosate/Roundup) may impact and interact with aquatic ecosystems. Lastly, suggestions for further research in this field are provided. Environ Toxicol Chem 2016;35:2891-2902. © 2016 SETAC. © 2016 SETAC.

  8. Educating Tomorrow's Valuable Citizen.

    ERIC Educational Resources Information Center

    Burstyn, Joan N., Ed.

    This collection of essays by various authors discusses the dilemmas that face those who would educate tomorrow's valuable citizens and describes the day-to-day commitment needed to maintain a community. The book gives guidelines for action through examples of current programs that provide a forum for civic discussion and public consensus on the…

  9. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    PubMed

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  10. Evaluating trees as energy crops in Napa County

    Treesearch

    Dean R. Donaldson; Richard B. Standiford

    1983-01-01

    An evaluation of tree species for energy crops was initiated at two areas in Napa County, California. At one area, Eucalyptus viminalis at 39 months was significantly taller than E. camaldulensis at 50 months. Also evaluated were five clones of Pinus radiata, Juglans regia X hindsii...

  11. Impacts of biofuel cultivation on mortality and crop yields

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Wild, O.; Hewitt, C. N.

    2013-05-01

    Ground-level ozone is a priority air pollutant, causing ~ 22,000 excess deaths per year in Europe, significant reductions in crop yields and loss of biodiversity. It is produced in the troposphere through photochemical reactions involving oxides of nitrogen (NOx) and volatile organic compounds (VOCs). The biosphere is the main source of VOCs, with an estimated 1,150TgCyr-1 (~ 90% of total VOC emissions) released from vegetation globally. Isoprene (2-methyl-1,3-butadiene) is the most significant biogenic VOC in terms of mass (around 500TgCyr-1) and chemical reactivity and plays an important role in the mediation of ground-level ozone concentrations. Concerns about climate change and energy security are driving an aggressive expansion of bioenergy crop production and many of these plant species emit more isoprene than the traditional crops they are replacing. Here we quantify the increases in isoprene emission rates caused by cultivation of 72Mha of biofuel crops in Europe. We then estimate the resultant changes in ground-level ozone concentrations and the impacts on human mortality and crop yields that these could cause. Our study highlights the need to consider more than simple carbon budgets when considering the cultivation of biofuel feedstock crops for greenhouse-gas mitigation.

  12. Using cover crops and cropping systems for nitrogen management

    USDA-ARS?s Scientific Manuscript database

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  13. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  14. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    NASA Astrophysics Data System (ADS)

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  15. Economic and physical determinants of the global distributions of crop pests and pathogens.

    PubMed

    Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J

    2014-05-01

    Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Photo-biotechnology as a tool to improve agronomic traits in crops.

    PubMed

    Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon

    2015-01-01

    Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Estimation of runoff mitigation by morphologically different cover crop root systems

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  18. Diverse phytoplasmas associated with diseases in various crops in Russia - pathogens and vectors

    USDA-ARS?s Scientific Manuscript database

    Over a long-term survey (2006-2014), we detected that at least 22 species of cultivated crops from 10 families (Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, Vitaceae, Poaceae, Rosaceae, Solanaceae) were infected with phytoplasma. Most of the plant species are herbaceou...

  19. The Importance of Rotational Crops for Biodiversity Conservation in Mediterranean Areas.

    PubMed

    Chiatante, Gianpasquale; Meriggi, Alberto

    2016-01-01

    results underlined the negative effects of permanent crops, such as vineyards, olive groves, and orchards, in particular during the winter season. This research highlights the importance of farmland areas mainly for wintering species and the importance of open areas for breeding species in the Mediterranean Basin. This may be true even when the species' spatial distribution could be affected by biogeography. An important result showed that the hotspots for breeding species cannot be used as a surrogate for the wintering species, which were often not considered in the planning of protected areas.

  20. Crop candidates for the bioregenerative life support systems in China

    NASA Astrophysics Data System (ADS)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  1. Temporal and spatial control of gene expression in horticultural crops

    PubMed Central

    Dutt, Manjul; Dhekney, Sadanand A; Soriano, Leonardo; Kandel, Raju; Grosser, Jude W

    2014-01-01

    Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement. PMID:26504550

  2. High species richness of native pollinators in Brazilian tomato crops.

    PubMed

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  3. Reduced abundance and earlier collection of bumble bee workers under intensive cultivation of a mass-flowering prairie crop.

    PubMed

    Galpern, Paul; Johnson, Sarah A; Retzlaff, Jennifer L; Chang, Danielle; Swann, John

    2017-04-01

    One of the most commonly seeded crops in Canada is canola, a cultivar of oilseed rape ( Brassica napus ). As a mass-flowering crop grown intensively throughout the Canadian Prairies, canola has the potential to influence pollinator success across tens of thousands of square kilometers of cropland. Bumble bees ( Bombus sp.) are efficient pollinators of many types of native and crop plants. We measured the influence of this mass-flowering crop on the abundance and phenology of bumble bees, and on another species of social bee (a sweat bee; Halictus rubicundus ), by continuously deploying traps at different levels of canola cultivation intensity, spanning the start and end of canola bloom. Queen bumble bees were more abundant in areas with more canola cover, indicating that this crop is attractive to queens. However, bumble bee workers were significantly fewer in these locations later in the season, suggesting reduced colony success. The median collection dates of workers of three bumble bee species were earlier near canola fields, suggesting a dynamic response of colonies to the increased floral resources. Different species experienced this shift to different extents. The sweat bee was not affected by canola cultivation intensity. Our findings suggest that mass-flowering crops such as canola are attractive to bumble bee queens and therefore may lead to higher rates of colony establishment, but also that colonies established near this crop may be less successful. We propose that the effect on bumble bees can be mitigated by spacing the crop more evenly with respect to alternate floral resources.

  4. Non-bee insects are important contributors to global crop pollination.

    PubMed

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  5. Non-bee insects are important contributors to global crop pollination

    PubMed Central

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  6. Diversity, Pathogenicity And Control of Verticillium Species.

    USDA-ARS?s Scientific Manuscript database

    The genus Verticillium is a cosmopolitan group of ascomycetous fungi, encompassing phytopathogenic species that cause vascular wilts of plants. Two of these species, V. dahliae and V. albo-atrum, cause billions of dollars in annual crop losses worldwide. The soil habitat of these species, the exte...

  7. Impacts of elevated atmospheric CO₂ on nutrient content of important food crops.

    PubMed

    Dietterich, Lee H; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D B; Bloom, Arnold J; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N Michele; Nelson, Randall L; Norton, Robert; Ottman, Michael J; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  8. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities

    USDA-ARS?s Scientific Manuscript database

    Adaptability and optimum growth of cover crops in plantation crops is affected by the inherent nature of the cover crop species and the light intensity at canopy levels. Globally concentrations of atmospheric CO2 are increasing and this creates higher photosynthesis and nutrient demand by crops as l...

  9. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    USDA-ARS?s Scientific Manuscript database

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and...

  10. Intraspecific variation of host plant and locality influence the lepidopteran-parasitoid system of Brassica oleracea crops.

    PubMed

    Santolamazza-Carbone, S; Velasco, P; Selfa, J; Soengas, P; Cartea, M E

    2013-06-01

    The aim of the study was to investigate the attractiveness to herbivores and parasitoids of two cultivars of Brassica oleracea L., namely, B. oleracea variety acephala (kale) and B. oleracea variety capitata (cabbage), that exhibit differences of morphological and biochemical traits. To this end, field samplings were replicated at seven localities in Galicia (northwestern Spain). Three specialist and three generalist lepidopteran species were sampled. In total, 7,050 parasitoids were obtained, belonging to 18 genera and 22 species. The results showed that 1) parasitism rate and parasitoid species richness changed with locality and was higher in cabbage, although this crop had lower herbivore abundance; 2) the proportion of specialist herbivores was higher in cabbage crops, whereas generalists dominated in kale crops; 3) the abundance of the parasitoids Telenomus sp. (Hymenoptera, Scelionidae), Cotesia glomerata L. (Hymenoptera: Braconidae), and Diadegma fenestrale (Holmgren) (Hymenoptera: Ichneumonidae) was higher in kale crops; and 4) parasitism rate of Pieris rapae larvae and pupae and Mamestra brassicae eggs were higher in kale crops. In contrast with the notion that plant structural complexity provides physical refuge to the hosts and can interfere with parasitoid foraging, parasitism rate was higher on cabbage plants, which form heads of overlapped leaves. Possibly, different chemical profiles of cultivars also influenced the host-parasitoid relationship. These results suggest that top-down and bottom-up forces may enhance cabbage crops to better control herbivore pressure during the studied season. In Spain, information on natural occurring parasitoid guilds of Brassica crops is still scarce. The data provided here also represent a critical first step for conservation biological control plans of these cultivations.

  11. Evaluating impacts of brown marmorated stink bug on non-fruiting nursery crops

    USDA-ARS?s Scientific Manuscript database

    Halyomorpha halys, commonly known as the brown marmorated stink bug (BMSB), has become a major pest and nuisance since it arrived in the US in 1998 for both agricultural growers and homeowners. They can feed on ~200 different plant species, several of which are important ornamental crop species. The...

  12. Age-dependent population dynamics of the bioenergy crop Miscanthus x giganteus in Illinois

    USDA-ARS?s Scientific Manuscript database

    Rising global demand for liquid fuels, coupled with new technologies for converting biomass to ethanol, have generated intense interest in the development of herbaceous perennial bioenergy crops. Some plant species being considered as biofeedstocks share traits with invasive species and have histori...

  13. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    PubMed

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  14. Reinventing potato as a diploid inbred line-based crop

    USDA-ARS?s Scientific Manuscript database

    The third most important food crop worldwide, potato, is a tetraploid outcrossing species propagated from tubers. Breeders have long been challenged by polyploidy, heterozygosity, and asexual reproduction. It has been assumed that tetraploidy is essential for high yield, the creation of inbred potat...

  15. Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems.

    PubMed

    Bajwa, Ali Ahsan; Akhter, Muhammad Javaid; Iqbal, Nadeem; Peerzada, Arslan Masood; Hanif, Zarka; Manalil, Sudheesh; Hashim, Saima; Ali, Hafiz Haider; Kebaso, Lynda; Frimpong, David; Namubiru, Halima; Chauhan, Bhagirath Singh

    2017-08-01

    Avena fatua and Avena ludoviciana are closely related grass weed species infesting a large number of crops around the world. These species are widely distributed in diverse agro-ecosystems from temperate to sub-tropical regions due to their unique seed traits, successful germination ecology, high competitive ability, and allelopathic potential. A. fatua is more widespread, adaptable, and problematic than A. ludoviciana. Both these species infest major winter and spring crops, including wheat, oat, barley, canola, maize, alfalfa, and sunflower, causing up to 70% yield losses depending on crop species and weed density. Chemical control has been challenged by large-scale herbicide resistance evolution in these weed species. A. fatua is the most widespread herbicide-resistant weed in the world, infesting about 5 million hectares in 13 countries. The use of alternative herbicides with different modes of action has proved effective. Several cultural practices, including diverse crop rotations, cover crops, improved crop competition (using competitive cultivars, high seed rates, narrow row spacing, altered crop geometry), and allelopathic suppression, have shown promise for controlling A. fatua and A. ludoviciana. The integrated use of these cultural methods can reduce the herbicide dose required, and lower dependency on herbicides to control these grasses. Moreover, integrated management may successfully control herbicide-resistant populations of these weed species. The use of integrated approaches based on the knowledge of biology and ecology of A. fatua and A. ludoviciana may help to manage them sustainably in the future.

  16. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.

    PubMed

    Halty, Virginia; Valdés, Matías; Tejera, Mauricio; Picasso, Valentín; Fort, Hugo

    2017-12-01

    The contribution of plant species richness to productivity and ecosystem functioning is a longstanding issue in ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modeling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modeled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e., a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficients- from, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modeling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. © 2017 by the Ecological Society of America.

  17. Daily monitoring of 30 m crop condition over complex agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Sun, L.; Gao, F.; Xie, D.; Anderson, M. C.; Yang, Y.

    2017-12-01

    Crop progress provides information necessary for efficient irrigation, scheduling fertilization and harvesting operations at optimal times for achieving higher yields. In the United States, crop progress reports are released online weekly by US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS). However, the ground data collection is time consuming and subjective, and these reports are provided at either district (multiple counties) or state level. Remote sensing technologies have been widely used to map crop conditions, to extract crop phenology, and to predict crop yield. However, for current satellite-based sensors, it is difficult to acquire both high spatial resolution and frequent coverage. For example, Landsat satellites are capable to capture 30 m resolution images, while the long revisit cycles, cloud contamination further limited their use in detecting rapid surface changes. On the other hand, MODIS can provide daily observations, but with coarse spatial resolutions range from 250 to 1000 m. In recent years, multi-satellite data fusion technology such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) has been used to combine the spatial resolution of Landsat with the temporal frequency of MODIS. It has been found that this synthetic dataset could provide more valuable information compared to the images acquired from only one single sensor. However, accuracy of STARFM depends on heterogeneity of landscape and available clear image pairs of MODIS and Landsat. In this study, a new fusion method was developed using the crop vegetation index (VI) timeseries extracted from "pure" MODIS pixels and Landsat overpass images to generate daily 30 m VI for crops. The fusion accuracy was validated by comparing to the original Landsat images. Results show that the relative error in non-rapid growing period is around 3-5% and in rapid growing period is around 6-8% . The accuracy is much better than that of STARFM which

  18. Integrative taxonomy methods reveal high mealybug (Hemiptera: Pseudococcidae) diversity in southern Brazilian fruit crops.

    PubMed

    Pacheco da Silva, Vitor C; Kaydan, Mehmet Bora; Malausa, Thibaut; Germain, Jean-François; Palero, Ferran; Botton, Marcos

    2017-11-16

    The Serra Gaúcha region is the most important temperate fruit-producing area in southern Brazil. Despite mealybugs (Hemiptera: Pseudococcidae) infesting several host plants in the region, there is a lack of information about the composition of species damaging different crops. A survey of mealybug species associated with commercial fruit crops (apple, persimmon, strawberry and grapes) was performed in Serra Gaúcha between 2013 and 2015, using both morphology and DNA analyses for species identification. The most abundant species were Pseudococcus viburni (Signoret), found on all four host plant species, and Dysmicoccus brevipes (Cockerell), infesting persimmon, vines and weeds. The highest diversity of mealybug species was found on persimmon trees, hosting 20 different taxa, of which Anisococcus granarae Pacheco da Silva & Kaydan, D. brevipes, Pseudococcus sociabilis Hambleton and Ps. viburni were the most abundant. A total of nine species were recorded in vineyards. Planococcus ficus (Signoret) and Pseudococcus longispinus (Targioni Tozzetti) were observed causing damage to grapes for the first time. A single species, Ps. viburni, was found associated with apples, while both Ps. viburni and Ferrisia meridionalis Williams were found on strawberry. Four of the mealybug species found represent new records for Brazil.

  19. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.

    PubMed

    Meisinger, John J; Ricigliano, Kristin A

    2017-05-01

    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( < 0.001) effect of lower NO-N leaching with cover crops compared with no cover but showed only small and periodically significant ( < 0.05) effects among the cultivars of barley, rye, and wheat covers. Nitrate-N leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands.

    PubMed

    Schneider, Gudrun; Krauss, Jochen; Boetzl, Fabian A; Fritze, Michael-Andreas; Steffan-Dewenter, Ingolf

    2016-12-01

    Semi-natural grasslands in Europe are insect biodiversity hotspots and important source habitats delivering ecosystem services to adjacent agricultural land by species spillover. However, this spillover might also occur in the opposite direction, affecting the diversity of semi-natural grasslands. This opposite spillover has got little attention in scientific literature even though generalist species penetrating into the grasslands can affect local biotic interactions, community composition and the conservation value of grassland habitats. In this study, we examined spillover effects from two different adjacent habitat types on carabid beetle assemblages in 20 semi-natural calcareous grasslands. The grasslands were either adjacent to a cereal crop field or to a coniferous forest. We found distinct differences in carabid beetle assemblages in calcareous grasslands depending on adjacent habitat type. Species richness and activity density were higher, but the evenness was lower in calcareous grasslands adjacent to crop fields compared with calcareous grasslands adjacent to coniferous forests. Further, we found a strong spillover of carabid beetles from adjacent crop fields after crop harvest, which may result in transiently increased predation pressure and resource competition in calcareous grasslands. Our results highlight that species composition, diversity and presumably ecosystem functions within semi-natural habitats are affected by the type and management of surrounding habitats. This needs to be considered by nature conservation measures, which aim to protect the unique insect communities of semi-natural European grasslands.

  1. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities

    PubMed Central

    Jarvis, Devra I.; Brown, Anthony H. D.; Cuong, Pham Hung; Collado-Panduro, Luis; Latournerie-Moreno, Luis; Gyawali, Sanjaya; Tanto, Tesema; Sawadogo, Mahamadou; Mar, Istvan; Sadiki, Mohammed; Hue, Nguyen Thi-Ngoc; Arias-Reyes, Luis; Balma, Didier; Bajracharya, Jwala; Castillo, Fernando; Rijal, Deepak; Belqadi, Loubna; Rana, Ram; Saidi, Seddik; Ouedraogo, Jeremy; Zangre, Roger; Rhrib, Keltoum; Chavez, Jose Luis; Schoen, Daniel; Sthapit, Bhuwon; De Santis, Paola; Fadda, Carlo; Hodgkin, Toby

    2008-01-01

    Varietal data from 27 crop species from five continents were drawn together to determine overall trends in crop varietal diversity on farm. Measurements of richness, evenness, and divergence showed that considerable crop genetic diversity continues to be maintained on farm, in the form of traditional crop varieties. Major staples had higher richness and evenness than nonstaples. Variety richness for clonal species was much higher than that of other breeding systems. A close linear relationship between traditional variety richness and evenness (both transformed), empirically derived from data spanning a wide range of crops and countries, was found both at household and community levels. Fitting a neutral “function” to traditional variety diversity relationships, comparable to a species abundance distribution of “neutral ecology,” provided a benchmark to assess the standing diversity on farm. In some cases, high dominance occurred, with much of the variety richness held at low frequencies. This suggested that diversity may be maintained as an insurance to meet future environmental changes or social and economic needs. In other cases, a more even frequency distribution of varieties was found, possibly implying that farmers are selecting varieties to service a diversity of current needs and purposes. Divergence estimates, measured as the proportion of community evenness displayed among farmers, underscore the importance of a large number of small farms adopting distinctly diverse varietal strategies as a major force that maintains crop genetic diversity on farm. PMID:18362337

  2. Microbial ecology of the Agaricus bisporus mushroom cropping process.

    PubMed

    McGee, Conor F

    2018-02-01

    Agaricus bisporus is the most widely cultivated mushroom species in the world. Cultivation is commenced by inoculating beds of semi-pasteurised composted organic substrate with a pure spawn of A. bisporus. The A. bisporus mycelium subsequently colonises the composted substrate by degrading the organic material to release nutrients. A layer of peat, often called "casing soil", is laid upon the surface of the composted substrate to induce the development of the mushroom crop and maintain compost environmental conditions. Extensive research has been conducted investigating the biochemistry and genetics of A. bisporus throughout the cultivation process; however, little is currently known about the wider microbial ecology that co-inhabits the composted substrate and casing layers. The compost and casing microbial communities are known to play important roles in the mushroom production process. Microbial species present in the compost and casing are known for (1) being an important source of nitrogen for the A. bisporus mycelium, (2) releasing sugar residues through the degradation of the wheat straw in the composted substrate, (3) playing a critical role in inducing development of the A. bisporus fruiting bodies and (4) acting as pathogens by parasitising the mushroom mycelium/crop. Despite a long history of research into the mushroom cropping process, an extensive review of the microbial communities present in the compost and casing has not as of yet been undertaken. The aim of this review is to provide a comprehensive summary of the literature investigating the compost and casing microbial communities throughout cultivation of the A. bisporus mushroom crop.

  3. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian

    2015-06-01

    To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.

  4. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them

    PubMed Central

    Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian

    2015-01-01

    To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica. PMID:26047489

  5. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them.

    PubMed

    Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian

    2015-06-05

    To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.

  6. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas

    PubMed Central

    Khoury, Colin K.; Heider, Bettina; Castañeda-Álvarez, Nora P.; Achicanoy, Harold A.; Sosa, Chrystian C.; Miller, Richard E.; Scotland, Robert W.; Wood, John R. I.; Rossel, Genoveva; Eserman, Lauren A.; Jarret, Robert L.; Yencho, G. C.; Bernau, Vivian; Juarez, Henry; Sotelo, Steven; de Haan, Stef; Struik, Paul C.

    2015-01-01

    Crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas] have the potential to contribute to breeding objectives for this important root crop. Uncertainty in regard to species boundaries and their phylogenetic relationships, the limited availability of germplasm with which to perform crosses, and the difficulty of introgression of genes from wild species has constrained their utilization. Here, we compile geographic occurrence data on relevant sweetpotato wild relatives and produce potential distribution models for the species. We then assess the comprehensiveness of ex situ germplasm collections, contextualize these results with research and breeding priorities, and use ecogeographic information to identify species with the potential to contribute desirable agronomic traits. The fourteen species that are considered the closest wild relatives of sweetpotato generally occur from the central United States to Argentina, with richness concentrated in Mesoamerica and in the extreme Southeastern United States. Currently designated species differ among themselves and in comparison to the crop in their adaptations to temperature, precipitation, and edaphic characteristics and most species also show considerable intraspecific variation. With 79% of species identified as high priority for further collecting, we find that these crop genetic resources are highly under-represented in ex situ conservation systems and thus their availability to breeders and researchers is inadequate. We prioritize taxa and specific geographic locations for further collecting in order to improve the completeness of germplasm collections. In concert with enhanced conservation of sweetpotato wild relatives, further taxonomic research, characterization and evaluation of germplasm, and improving the techniques to overcome barriers to introgression with wild species are needed in order to mobilize these genetic resources for crop breeding. PMID:25954286

  7. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas].

    PubMed

    Khoury, Colin K; Heider, Bettina; Castañeda-Álvarez, Nora P; Achicanoy, Harold A; Sosa, Chrystian C; Miller, Richard E; Scotland, Robert W; Wood, John R I; Rossel, Genoveva; Eserman, Lauren A; Jarret, Robert L; Yencho, G C; Bernau, Vivian; Juarez, Henry; Sotelo, Steven; de Haan, Stef; Struik, Paul C

    2015-01-01

    Crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas] have the potential to contribute to breeding objectives for this important root crop. Uncertainty in regard to species boundaries and their phylogenetic relationships, the limited availability of germplasm with which to perform crosses, and the difficulty of introgression of genes from wild species has constrained their utilization. Here, we compile geographic occurrence data on relevant sweetpotato wild relatives and produce potential distribution models for the species. We then assess the comprehensiveness of ex situ germplasm collections, contextualize these results with research and breeding priorities, and use ecogeographic information to identify species with the potential to contribute desirable agronomic traits. The fourteen species that are considered the closest wild relatives of sweetpotato generally occur from the central United States to Argentina, with richness concentrated in Mesoamerica and in the extreme Southeastern United States. Currently designated species differ among themselves and in comparison to the crop in their adaptations to temperature, precipitation, and edaphic characteristics and most species also show considerable intraspecific variation. With 79% of species identified as high priority for further collecting, we find that these crop genetic resources are highly under-represented in ex situ conservation systems and thus their availability to breeders and researchers is inadequate. We prioritize taxa and specific geographic locations for further collecting in order to improve the completeness of germplasm collections. In concert with enhanced conservation of sweetpotato wild relatives, further taxonomic research, characterization and evaluation of germplasm, and improving the techniques to overcome barriers to introgression with wild species are needed in order to mobilize these genetic resources for crop breeding.

  8. Crop insurance evaluation in response to extreme events

    NASA Astrophysics Data System (ADS)

    Moriondo, Marco; Ferrise, Roberto; Bindi, Marco

    2013-04-01

    Crop yield insurance has been indicated as a tool to manage the uncertainties of crop yields (Sherrick et al., 2004) but the changes in crop yield variability as expected in the near future should be carefully considered for a better quantitative assessment of farmer's revenue risk and insurance values in a climatic change regime (Moriondo et al., 2011). Under this point of view, mechanistic crop growth models coupled to the output of General/Regional Circulation Models (GCMs, RCMs) offer a valuable tool to evaluate crop responses to climatic change and this approach has been extensively used to describe crop yield distribution in response to climatic change considering changes in both mean climate and variability. In this work, we studied the effect of a warmer climate on crop yield distribution of durum wheat (Triticum turgidum L. subsp durum) in order to assess the economic significance of climatic change in a risk decision context. Specifically, the outputs of 6 RCMs (Tmin, Tmax, Rainfall, Global Radiation) (van der Linden and Mitchell 2009) have been statistically downscaled by a stochastic weather generator over eight sites across the Mediterranean basin and used to feed the crop growth model Sirius Quality. Three time slices were considered i) the present period PP (average of the period 1975-1990, [CO2]=350 ppm), 2020 (average of the period 2010-2030, SRES scenario A1b, [CO2]=415 ppm) and 2040 (average of the period 2030-2050, SRES scenario A1b, [CO2]=480 ppm). The effect of extreme climate events (i.e. heat stress at anthesis stage) was also considered. The outputs of these simulations were used to estimate the expected payout per hectare from insurance triggered when yields fall below a specific threshold defined as "the insured yield". For each site, the threshold was calculated as a fraction (70%) of the median of yield distribution under PP that represents the percentage of median yield above which indemnity payments are triggered. The results

  9. Evaluating the role of landscape in the spread of invasive species: the case of the biomass crop

    USDA-ARS?s Scientific Manuscript database

    As the development and cultivation of new bioeconomy crops and in particular biofuel feedstocks expands there is a pressing need for objective and quantitative methods to evaluate risks and benefits of their production. In particular, the traits being selected for in biofuel crops are highly aligned...

  10. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    PubMed

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  11. A multiple chamber, semicontinuous, crop carbon dioxide exchange system: design, calibration, and data interpretation

    NASA Technical Reports Server (NTRS)

    van Iersel, M. W.; Bugbee, B.

    2000-01-01

    Long-term, whole crop CO2 exchange measurements can be used to study factors affecting crop growth. These factors include daily carbon gain, cumulative carbon gain, and carbon use efficiency, which cannot be determined from short-term measurements. We describe a system that measures semicontinuously crop CO2 exchange in 10 chambers over a period of weeks or months. Exchange of CO2 in every chamber can be measured at 5 min intervals. The system was designed to be placed inside a growth chamber, with additional environmental control provided by the individual gas exchange chambers. The system was calibrated by generating CO2 from NaHCO3 inside the chambers, which indicated that accuracy of the measurements was good (102% and 98% recovery for two separate photosynthesis systems). Since the systems measure net photosynthesis (P-net, positive) and dark respiration(R-dark, negative), the data can be used to estimate gross photosynthesis, daily carbon gain, cumulative carbon gain, and carbon use efficiency. Continuous whole-crop measurements are a valuable tool that complements leaf photosynthesis measurements. Multiple chambers allow for replication and comparison among several environmental or cultural treatments that may affect crop growth. Example data from a 2 week study with petunia (Petunia x hybrida Hort. Vilm.-Andr.) are presented to illustrate some of the capabilities of this system.

  12. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    PubMed Central

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence. PMID:25568012

  13. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development.

    PubMed

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-Ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-09-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

  14. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism.

    PubMed

    Ke, Tao; Yu, Jingyin; Dong, Caihua; Mao, Han; Hua, Wei; Liu, Shengyi

    2015-01-21

    Oil crop seeds are important sources of fatty acids (FAs) for human and animal nutrition. Despite their importance, there is a lack of an essential bioinformatics resource on gene transcription of oil crops from a comparative perspective. In this study, we developed ocsESTdb, the first database of expressed sequence tag (EST) information on seeds of four large-scale oil crops with an emphasis on global metabolic networks and oil accumulation metabolism that target the involved unigenes. A total of 248,522 ESTs and 106,835 unigenes were collected from the cDNA libraries of rapeseed (Brassica napus), soybean (Glycine max), sesame (Sesamum indicum) and peanut (Arachis hypogaea). These unigenes were annotated by a sequence similarity search against databases including TAIR, NR protein database, Gene Ontology, COG, Swiss-Prot, TrEMBL and Kyoto Encyclopedia of Genes and Genomes (KEGG). Five genome-scale metabolic networks that contain different numbers of metabolites and gene-enzyme reaction-association entries were analysed and constructed using Cytoscape and yEd programs. Details of unigene entries, deduced amino acid sequences and putative annotation are available from our database to browse, search and download. Intuitive and graphical representations of EST/unigene sequences, functional annotations, metabolic pathways and metabolic networks are also available. ocsESTdb will be updated regularly and can be freely accessed at http://ocri-genomics.org/ocsESTdb/ . ocsESTdb may serve as a valuable and unique resource for comparative analysis of acyl lipid synthesis and metabolism in oilseed plants. It also may provide vital insights into improving oil content in seeds of oil crop species by transcriptional reconstruction of the metabolic network.

  15. The food and environmental safety of Bt crops.

    PubMed

    Koch, Michael S; Ward, Jason M; Levine, Steven L; Baum, James A; Vicini, John L; Hammond, Bruce G

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  16. The food and environmental safety of Bt crops

    PubMed Central

    Koch, Michael S.; Ward, Jason M.; Levine, Steven L.; Baum, James A.; Vicini, John L.; Hammond, Bruce G.

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms. PMID:25972882

  17. Environmental biosafety and transgenic potato in a centre of diversity for this crop.

    PubMed

    Celis, Carolina; Scurrah, Maria; Cowgill, Sue; Chumbiauca, Susana; Green, Jayne; Franco, Javier; Main, Gladys; Kiezebrink, Daan; Visser, Richard G F; Atkinson, Howard J

    2004-11-11

    The Nuffield Council on Bioethics suggests that introgression of genetic material into related species in centres of crop biodiversity is an insufficient justification to bar the use of genetically modified crops in the developing world. They consider that a precautionary approach to forgo the possible benefits invokes the fallacy of thinking that doing nothing is itself without risk to the poor. Here we report findings relevant to this and other aspects of environmental biosafety for genetically modified potato in its main centre of biodiversity, the central Andes. We studied genetically modified potato clones that provide resistance to nematodes, principal pests of Andean potato crops. We show that there is no harm to many non-target organisms, but gene flow occurs to wild relatives growing near potato crops. If stable introgression were to result, the fitness of these wild species could be altered. We therefore transformed the male sterile cultivar Revolucion to provide a genetically modified nematode-resistant potato to evaluate the benefits that this provides until the possibility of stable introgression to wild relatives is determined. Thus, scientific progress is possible without compromise to the precautionary principle.

  18. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.

    PubMed

    Friedli, Michael; Kirchgessner, Norbert; Grieder, Christoph; Liebisch, Frank; Mannale, Michael; Walter, Achim

    2016-01-01

    Plant growth is a good indicator of crop performance and can be measured by different methods and on different spatial and temporal scales. In this study, we measured the canopy height growth of maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) under field conditions by terrestrial laser scanning (TLS). We tested the hypotheses whether such measurements are capable to elucidate (1) differences in architecture that exist between genotypes; (2) genotypic differences between canopy height growth during the season and (3) short-term growth fluctuations (within 24 h), which could e.g. indicate responses to rapidly fluctuating environmental conditions. The canopies were scanned with a commercially available 3D laser scanner and canopy height growth over time was analyzed with a novel and simple approach using spherical targets with fixed positions during the whole season. This way, a high precision of the measurement was obtained allowing for comparison of canopy parameters (e.g. canopy height growth) at subsequent time points. Three filtering approaches for canopy height calculation from TLS were evaluated and the most suitable approach was used for the subsequent analyses. For wheat, high coefficients of determination (R(2)) of the linear regression between manually measured and TLS-derived canopy height were achieved. The temporal resolution that can be achieved with our approach depends on the scanned crop. For maize, a temporal resolution of several hours can be achieved, whereas soybean is ideally scanned only once per day, after leaves have reached their most horizontal orientation. Additionally, we could show for maize that plant architectural traits are potentially detectable with our method. The TLS approach presented here allows for measuring canopy height growth of different crops under field conditions with a high temporal resolution, depending on crop species. This method will enable advances in automated phenotyping for breeding and

  19. New oilseed crops on the horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Princen, L.H.

    Fats and oils for food uses are now plentiful on a worldwide basis. Tallow, lard and fish oils, as well as vegetable oils, such as those derived from soybean, sunflower, palm, rapeseed, peanut and cottonseed, are often overproduced. Although many of these products are also used for industrial chemicals, they often are not of the most favorable composition for nonfood applications. A search for new oilseed crops with more advantageous oil composition has led to the development of excellent candidates that are now close to commercial acceptance. Among them are Crambe, Limnanthes, Vernonia, Sapium and Simmondsia. Other crops are atmore » a much lower stage of development but also have excellent potential. They include Cuphea, Foeniculum, Stokesia, Lesquerella and Lunaria. One new oilseed crop which is being considered for hydrocarbon-like fuel is the Chinese tallow tree (Sapium Sebiferum). Recent research estimates predict that seed yield could amount to 10,000 lbs. per acre. At 40% seed lipid levels, this can translate to 4000 lbs. per acre of fuel, more than any other plant species now growing in the US. 24 references, 6 figures, 5 tables.« less

  20. Crown release increases growth of crop trees

    Treesearch

    Neil I. Lamson; H. Clay Smith; Arlyn W. Perkey; Samuel M. Brock; Samuel M. Brock

    1990-01-01

    Two Appalachian hardwood stands in north-central West Virginia were thinned. The principal species were red oak, yellow-poplar, and chestnut oak. For both stands the site index for northern red oak averaged 75 feet. An areawide thinning using "basal-area control" was applied to a 54-yearold stand while specific crop trees were selected and released in a 12-...

  1. Potential of three trap crops in managing Nezara viridula (Hemiptera: Pentatomidae) on tomatoes in Florida

    USDA-ARS?s Scientific Manuscript database

    The southern green stink bug, Nezara viridula (Hemiptera: Pentatomidae), is a serious insect pest of tomatoes in Florida. In this study, we examined the use of three species of trap crops to manage N. viridula in North Florida tomato crops in 2014 and 2015. We used striped sunflower (Helianthus ann...

  2. Are Adult Crambid Snout Moths (Crambinae) and Larval Stages of Lepidoptera Suitable Tools for an Environmental Monitoring of Transgenic Crops? — Implications of a Field Test

    PubMed Central

    Lang, Andreas; Dolek, Matthias; Theißen, Bernhard; Zapp, Andreas

    2011-01-01

    Butterflies and moths (Lepidoptera) have been suggested for the environmental monitoring of genetically modified (GM) crops due to their suitability as ecological indicators, and because of the possible adverse impact of the cultivation of current transgenic crops. The German Association of Engineers (VDI) has developed guidelines for the standardized monitoring of Lepidoptera describing the use of light traps for adult moths, transect counts for adult butterflies, and visual search for larvae. The guidelines suggest recording adults of Crambid Snout Moths during transect counts in addition to butterflies, and present detailed protocols for the visual search of larvae. In a field survey in three regions of Germany, we tested the practicability and effort-benefit ratio of the latter two VDI approaches. Crambid Snout Moths turned out to be suitable and practical indicators, which can easily be recorded during transect counts. They were present in 57% of the studied field margins, contributing a substantial part to the overall Lepidoptera count, thus providing valuable additional information to the monitoring results. Visual search of larvae generated results in an adequate effort-benefit ratio when searching for lepidopteran larvae of common species feeding on nettles. Visual search for larvae living on host plants other than nettles was time-consuming and yielded much lower numbers of recorded larvae. Beating samples of bushes and trees yielded a higher number of species and individuals. This method is especially appropriate when hedgerows are sampled, and was judged to perform intermediate concerning the relationship between invested sampling effort and obtained results for lepidopteran larvae. In conclusion, transect counts of adult Crambid Moths and recording of lepidopteran larvae feeding on nettles are feasible additional modules for an environmental monitoring of GM crops. Monitoring larvae living on host plants other than nettles and beating samples of bushes

  3. Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey.

    PubMed

    Mendil, Durali; Demirci, Zafer; Tuzen, Mustafa; Soylak, Mustafa

    2010-03-01

    Fish species (Sarda sarda, Mulus barbatus ponticus, Trachurus trachurus and Merlangius merlangus) were collected from the Black sea, Turkey between 2008 and 2009 (spring, summer, autumn and winter). The samples were analyzed using flame and graphite furnace atomic absorption spectrometry after microwave digestion. The maximum metal concentrations were found to be as 25.5-41.4 microg/g (Fe), 17.8-25.7 microg/g (Zn), 0.28-0.64 microg/g (Pb), 0.64-0.99 microg/g (Cr), 1.3-3.6 microg/g (Mn), 1.4-1.9 microg/g (Cu), 0.18-0.35 microg/g (Cd) and 0.25-0.42 microg/g (Co) for fish species. The concentration of trace metals in samples is depended on fish species. Some species is accumulated trace metals at high ratio. Trace element levels in analyzed fish species were acceptable to human consumption at nutritional and toxic levels. The levels of lead and cadmium in fish samples were higher than the recommended legal limits. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Remote sensing in precision farming: real-time monitoring of water and fertilizer requirements of agricultural crops

    NASA Astrophysics Data System (ADS)

    Zilberman, Arkadi; Ben Asher, Jiftah; Kopeika, Norman S.

    2016-10-01

    The advancements in remote sensing in combination with sensor technology (both passive and active) enable growers to analyze an entire crop field as well as its local features. In particular, changes of actual evapo-transpiration (ET) as a function of water availability can be measured remotely with infrared radiometers. Detection of crop water stress and ET and combining it with the soil water flow model enable rational irrigation timing and application amounts. Nutrient deficiency, and in particular nitrogen deficiency, causes substantial crop losses. This deficiency needs to be identified immediately. A faster the detection and correction, a lesser the damage to the crop yield. In the present work, to retrieve ET a novel deterministic approach was used which is based on the remote sensing data. The algorithm can automatically provide timely valuable information on plant and soil water status, which can improve the management of irrigated crops. The solution is capable of bridging between Penman-Monteith ET model and Richards soil water flow model. This bridging can serve as a preliminary tool for expert irrigation system. To support decisions regarding fertilizers the greenness of plant canopies is assessed and quantified by using the spectral reflectance sensors and digital color imaging. Fertilization management can be provided on the basis of sampling and monitoring of crop nitrogen conditions using RS technique and translating measured N concentration in crop to kg/ha N application in the field.

  5. Biosecurity strategies for conserving valuable livestock genetic resources.

    PubMed

    Wrathall, Anthony E; Simmons, Hugh A; Bowles, Dianna J; Jones, Sam

    2004-01-01

    The foot and mouth disease (FMD) epidemic in the UK in 2001 highlighted the threat of infectious diseases to rare and valuable livestock and stimulated a renewed interest in biosecurity and conservation. However, not all diseases resemble FMD: their transmission routes and pathological effects vary greatly, so biosecurity strategies must take this into account. Realism is also needed as to which diseases to exclude and which will have to be tolerated. The aim should be to minimise disease generally and to exclude those diseases that threaten the existence of livestock or preclude their national or international movement. Achieving this requires a team effort, bearing in mind the livestock species involved, the farming system ('open' or 'closed') and the premises. Effective biosecurity demands that practically every aspect of farm life is controlled, including movements of people, vehicles, equipment, food, manure, animal carcasses and wildlife. Above all, biosecurity strategies must cover the disease risks associated with moving the livestock themselves and this will require quarantine if adult or juvenile animals are imported into the herd or flock. The present paper emphasises the important role that reproductive technologies, such as artificial insemination and embryo transfer, can have in biosecurity strategies because they offer much safer ways for getting new genetic materials into herds/flocks than bringing in live animals. Embryo transfer is especially safe when the sanitary protocols promoted by the International Embryo Transfer Society and advocated by the Office International des Epizooties (the 'World Organisation for Animal Health') are used. Embryo transfer can also allow the full genetic complement to be salvaged from infected animals. Cryobanking of genetic materials, especially embryos, is another valuable biosecurity strategy because it enables their storage for conservation in the face of contingencies, such as epidemic disease and other

  6. Developing an Agro-Ecological Zoning Model for Tumbleweed (Salsola kali), as Energy Crop in Drylands of Argentina

    NASA Astrophysics Data System (ADS)

    Falasca, Silvia; Pitta-Alvarez, Sandra; Ulberich, Ana

    2016-12-01

    Salsola kali is considered extremely valuable as an energy crop worldwide because it adapts easily to environments with strong abiotic stresses (hydric, saline and alkaline) and produces large amounts of biomass in drylands. This species is categorized as an important weed in Argentina. The aim of this work was to design an agro-ecological zoning model for tumbleweed in Argentina, employing a Geography Information System. Based on the bioclimatic requirements for the species and the climatic data for Argentina (1981-2010 period), an agro-climatic suitability map was drawn. This map was superimposed on the saline and alkaline soil maps delineated by the Food and Agriculture Organization for dry climates, generating the agro-ecological zoning on a scale of 1 : 500 000. This zoning revealed very suitable and suitable cultivation areas on halomorphic soils. The potential growing areas extend from N of the Salta province (approximately 22° S) to the Santa Cruz province (50° S). The use of tumbleweed on halomorphic soils under semi-arid to arid conditions, for the dual purpose of forage use and source of lignocellulosic material for bioenergy, could improve agricultural productivity in these lands. Furthermore, it could also contribute to their environmental sustainability, since the species can be used to reclaim saline soils over the years. Based on international bibliography, the authors outlined an agro-ecological zoning model. This model may be applied to any part of the world, using the agro-ecological limits presented here.

  7. Variation block-based genomics method for crop plants.

    PubMed

    Kim, Yul Ho; Park, Hyang Mi; Hwang, Tae-Young; Lee, Seuk Ki; Choi, Man Soo; Jho, Sungwoong; Hwang, Seungwoo; Kim, Hak-Min; Lee, Dongwoo; Kim, Byoung-Chul; Hong, Chang Pyo; Cho, Yun Sung; Kim, Hyunmin; Jeong, Kwang Ho; Seo, Min Jung; Yun, Hong Tai; Kim, Sun Lim; Kwon, Young-Up; Kim, Wook Han; Chun, Hye Kyung; Lim, Sang Jong; Shin, Young-Ah; Choi, Ik-Young; Kim, Young Sun; Yoon, Ho-Sung; Lee, Suk-Ha; Lee, Sunghoon

    2014-06-15

    In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.

  8. Quantitative inheritance of crop timing traits in interspecific hybrid Petunia populations and interactions with crop quality parameters.

    PubMed

    Warner, Ryan M; Walworth, Aaron E

    2010-01-01

    The leaf unfolding rate (i.e., development rate) and the number of nodes forming prior to floral initiation are 2 factors determining production times for floriculture crops. Wild relative species of the cultivated petunia (Petunia x hybrida Vilm.) that exhibited faster development rates than modern cultivars and may therefore be useful genetic sources to develop cultivars with decreased production time were identified. Three interspecific F(2) families, Petunia exserta Stehmann x P. axillaris (Lam.) Britton et al., P. x hybrida 'Mitchell' x P. axillaris, and P. axillaris x P. integrifolia (Hook.) Schinz & Thell. all exhibited transgressive segregation for development rate and node number below the first flower. Development rate and time to flower segregated independently in all families. Leaf number below the first flower was positively correlated with leaf unfolding rate in all families except P. axillaris x P. integrifolia. Time to flower was positively correlated with flower bud number in the P. x hybrida 'Mitchell' x P. axillaris and P. axillaris x P. integrifolia families only. Based on these results, wild Petunia germplasm should be useful for developing petunia cultivars with reduced crop production times, but some negative effects on crop quality parameters may need to be overcome.

  9. Cover crop biomass harvest for bioenergy: implications for crop productivity

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  10. Assessing COSMO-SkyMed capability for crops identification and monitoring

    NASA Astrophysics Data System (ADS)

    Guarini, R.; Dini, L.

    2015-12-01

    In the last decade, it has been possible to better understand the impact of agricultural human practices on the global environmental change at different spatial (from local to global) and time (from seasonal to decadal) scales. This has been achieved thanks to: big dataset continuously acquired by Earth Observation (EO) satellites; the improved capabilities of remote sensing techniques in extracting valuable information from the EO datasets; the new EO data policy which allowed unrestricted data usage; the net technologies which allowed to quickly and easily share national, international and market-derived information; an increasingly performing computing technology which allows to massively process large amount of data easier and at decreasing costs. To better understand the environmental impacts of agriculture and to monitor the consequences of human agricultural activities on the biosphere, scientists require to better identify crops and monitor crop conditions over time and space. Traditionally, NDVI time series maps derived from optical sensors have been used to this aim. As well-known this important source of information is conditioned by cloud cover. Unlike passive systems, synthetic aperture radar (SAR) ones are almost insensitive to atmospheric influences; thus, they are especially suitable for crop identification and condition monitoring. Among the other SAR systems currently in orbit, the Italian Space Agency (ASI) COSMO Sky-Med® (CSK®) constellation (X-band, frequency 9.6 GHz, wavelength 3.1 cm), especially for its peculiar high revisit capability (up to four images in 16 days with same acquisition geometry) seems to be particular suitable for providing information in addition and/or in alternative to other optical EO systems. To assess the capability of the CSK® constellation in identifying crops and in monitoring crops condition in 2013 ASI started the "AGRICIDOT" project. Some of the main project achievements will be presented at the congress.

  11. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection.

    PubMed

    Pilet-Nayel, Marie-Laure; Moury, Benoît; Caffier, Valérie; Montarry, Josselin; Kerlan, Marie-Claire; Fournet, Sylvain; Durel, Charles-Eric; Delourme, Régine

    2017-01-01

    Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  12. Quantitative comparisons of three modeling approaches for characterizing drought response of a highly variable, widely grown crop species

    NASA Astrophysics Data System (ADS)

    Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B. E.; Wienig, C.

    2013-12-01

    Quantifying the drought tolerance of crop species and genotypes is essential in order to predict how water stress may impact agricultural productivity. As climate models predict an increase in both frequency and severity of drought corresponding plant hydraulic and biochemical models are needed to accurately predict crop drought tolerance. Drought can result in cavitation of xylem conduits and related loss of plant hydraulic conductivity. This study tested the hypothesis that a model incorporating a plants vulnerability to cavitation would best assess drought tolerance in Brassica rapa. Four Brassica genotypes were subjected to drought conditions at a field site in Laramie, WY. Concurrent leaf gas exchange, volumetric soil moisture content and xylem pressure measurements were made during the drought period. Three models were used to access genotype specific drought tolerance. All 3 models rely on the Farquhar biochemical/biophysical model of leaf level photosynthesis, which is integrated into the Terrestrial Regional Ecosystem Exchange Simulator (TREES). The models differ in how TREES applies the environmental driving data and plant physiological mechanisms; specifically how water availability at the site of photosynthesis is derived. Model 1 established leaf water availability from a modeled soil moisture content; Model 2 input soil moisture measurements directly to establish leaf water availability; Model 3 incorporated the Sperry soil-plant transport model, which calculates flows and pressure along the soil-plant water transport pathway to establish leaf water availability. This third model incorporated measured xylem pressures thus constraining leaf water availability via genotype specific vulnerability curves. A multi-model intercomparison was made using a Bayesian approach, which assessed the interaction between uncertainty in model results and data. The three models were further evaluated by assessing model accuracy and complexity via deviance information

  13. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    PubMed Central

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  14. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    PubMed

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  15. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    NASA Astrophysics Data System (ADS)

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-07-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  16. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    PubMed Central

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients. PMID:26217490

  17. Non-Crop Host Sampling Yields Insights into Small-Scale Population Dynamics of Drosophila suzukii (Matsumura)

    PubMed Central

    Loeb, Gregory M.

    2018-01-01

    Invasive, polyphagous crop pests subsist on a number of crop and non-crop resources. While knowing the full range of host species is important, a seasonal investigation into the use of non-crop plants adjacent to cropping systems provide key insights into some of the factors determining local population dynamics. This study investigated the infestation of non-crop plants by the invasive Drosophila suzukii (Matsumura), a pest of numerous economically important stone and small fruit crops, by sampling fruit-producing non-crop hosts adjacent to commercial plantings weekly from June through November in central New York over a two-year period. We found D. suzukii infestation rates (number of flies emerged/kg fruit) peaked mid-August through early September, with Rubus allegheniensis Porter and Lonicera morrowii Asa Gray showing the highest average infestation in both years. Interannual infestation patterns were similar despite a lower number of adults caught in monitoring traps the second year, suggesting D. suzukii host use may be density independent. PMID:29301358

  18. Molecular and systems approaches towards drought-tolerant canola crops.

    PubMed

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Mapping croplands, cropping patterns, and crop types using MODIS time-series data

    NASA Astrophysics Data System (ADS)

    Chen, Yaoliang; Lu, Dengsheng; Moran, Emilio; Batistella, Mateus; Dutra, Luciano Vieira; Sanches, Ieda Del'Arco; da Silva, Ramon Felipe Bicudo; Huang, Jingfeng; Luiz, Alfredo José Barreto; de Oliveira, Maria Antonia Falcão

    2018-07-01

    The importance of mapping regional and global cropland distribution in timely ways has been recognized, but separation of crop types and multiple cropping patterns is challenging due to their spectral similarity. This study developed a new approach to identify crop types (including soy, cotton and maize) and cropping patterns (Soy-Maize, Soy-Cotton, Soy-Pasture, Soy-Fallow, Fallow-Cotton and Single crop) in the state of Mato Grosso, Brazil. The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series data for 2015 and 2016 and field survey data were used in this research. The major steps of this proposed approach include: (1) reconstructing NDVI time series data by removing the cloud-contaminated pixels using the temporal interpolation algorithm, (2) identifying the best periods and developing temporal indices and phenological parameters to distinguish croplands from other land cover types, and (3) developing crop temporal indices to extract cropping patterns using NDVI time-series data and group cropping patterns into crop types. Decision tree classifier was used to map cropping patterns based on these temporal indices. Croplands from Landsat imagery in 2016, cropping pattern samples from field survey in 2016, and the planted area of crop types in 2015 were used for accuracy assessment. Overall accuracies of approximately 90%, 73% and 86%, respectively were obtained for croplands, cropping patterns, and crop types. The adjusted coefficients of determination of total crop, soy, maize, and cotton areas with corresponding statistical areas were 0.94, 0.94, 0.88 and 0.88, respectively. This research indicates that the proposed approach is promising for mapping large-scale croplands, their cropping patterns and crop types.

  20. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae)

    NASA Astrophysics Data System (ADS)

    Jin, Yuqing; Ma, Yongpeng; Wang, Shun; Hu, Xian-Ge; Huang, Li-Sha; Li, Yue; Wang, Xiao-Ru; Mao, Jian-Feng

    2016-10-01

    Platycladus orientalis, a widespread conifer with long lifespan and significant adaptability. It is much used in reforestation in north China and commonly planted in central Asia. With the increasing demand for plantation forest in central to north China, breeding programs are progressively established for this species. Efficient use of breeding resources requires good understanding of the genetic value of the founder breeding materials. This study investigated the distribution of genetic variation in 192 elite trees collected for the breeding program for the central range of the species. We developed first set of 27 polymorphic EST-derived SSR loci for the species from transcriptome/genome data. After examination of amplification quality, 10 loci were used to evaluate the genetic variation in the breeding population. We found moderate genetic diversity (average He = 0.348) and low population differentiation (Fst = 0.011). Extensive admixture and no significant geographic population structure characterized this set of collections. Our analyses of the diversity and population structure are important steps toward a long-term sustainable deployment of the species and provide valuable genetic information for conservation and breeding applications.

  1. Spatio-temporal trends in crop damage inform recent climate-mediated expansion of a large boreal herbivore into an agro-ecosystem.

    PubMed

    Laforge, Michel P; Michel, Nicole L; Brook, Ryan K

    2017-11-09

    Large-scale climatic fluctuations have caused species range shifts. Moose (Alces alces) have expanded their range southward into agricultural areas previously not considered moose habitat. We found that moose expansion into agro-ecosystems is mediated by broad-scale climatic factors and access to high-quality forage (i.e., crops). We used crop damage records to quantify moose presence across the Canadian Prairies. We regressed latitude of crop damage against North Atlantic Oscillation (NAO) and crop area to test the hypotheses that NAO-mediated wetland recharge and occurrence of more nutritious crop types would result in more frequent occurrences of crop damage by moose at southerly latitudes. We examined local-scale land use by generating a habitat selection model to test our hypothesis that moose selected for areas of high crop cover in agro-ecosystems. We found that crop damage by moose occurred farther south during dry winters and in years with greater coverage of oilseeds. The results of our analyses support our hypothesis that moose movement into cropland is mediated by high-protein crops, but not by thermoregulatory habitat at the scale examined. We conclude that broad-scale climate combined with changing land-use regimes are causal factors in species' range shifts and are important considerations when studying changing animal distributions.

  2. The Impact of Insects on Second-Year Cone Crops in Red Pine Seed-Production Areas

    Treesearch

    William J. Mattson

    1968-01-01

    Second-year cone crops in red pine seed-production areas have been severely damaged by five species of insects. Control of the two most destructive pests could increase present seed yields in most areas by at least 50 percent. Some seed-production areas may not produce harvestable seed crops until cone-insect populations are suppressed.

  3. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats

    PubMed Central

    Hooftman, Danny A. P.; Bullock, James M.; Morley, Kathryn; Lamb, Caroline; Hodgson, David J.; Bell, Philippa; Thomas, Jane; Hails, Rosemary S.

    2015-01-01

    Background and Aims Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. Methods Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. Key Results The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. Conclusions Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid

  4. The Effect of Altered Soil Moisture on Hybridization Rate in a Crop-Wild System (Raphanus spp.)

    PubMed Central

    Sneck, Michelle E.; Chaplin, Colleen; Mercer, Kristin L.

    2016-01-01

    Since plant mating choices are flexible and responsive to the environment, rates of spontaneous hybridization may vary across ecological clines. Developing a robust and predictive framework for rates of plant gene flow requires assessing the role of environmental sensitivity on plant reproductive traits, relative abundance, and pollen vectors. Therefore, across a soil moisture gradient, we quantified pollinator movement, life-history trait variation, and unidirectional hybridization rates from crop (Raphanus sativus) to wild (Raphanus raphanistrum) radish populations. Both radish species were grown together in relatively dry (no rain), relatively wet (double rain), or control soil moisture conditions in Ohio, USA. We measured wild and crop radish life-history, phenology and pollinator visitation patterns. To quantify hybridization rates from crop-to-wild species, we used a simply inherited morphological marker to detect F1 hybrid progeny. Although crop-to-wild hybridization did not respond to watering treatments, the abundance of hybrid offspring was higher in fruits produced late in the period of phenological overlap, when both species had roughly equal numbers of open flowers. Therefore, the timing of fruit production and its relationship to flowering overlap may be more important to hybrid zone formation in Raphanus spp. than soil moisture or pollen vector movements. PMID:27936159

  5. Survey of Crop Losses in Response to Phytoparasitic Nematodes in the United States for 1994

    PubMed Central

    Koenning, S. R.; Overstreet, C.; Noling, J. W.; Donald, P. A.; Becker, J. O.; Fortnum, B. A.

    1999-01-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema. PMID:19270925

  6. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994.

    PubMed

    Koenning, S R; Overstreet, C; Noling, J W; Donald, P A; Becker, J O; Fortnum, B A

    1999-12-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema.

  7. The Importance of Rotational Crops for Biodiversity Conservation in Mediterranean Areas

    PubMed Central

    Chiatante, Gianpasquale; Meriggi, Alberto

    2016-01-01

    results underlined the negative effects of permanent crops, such as vineyards, olive groves, and orchards, in particular during the winter season. This research highlights the importance of farmland areas mainly for wintering species and the importance of open areas for breeding species in the Mediterranean Basin. This may be true even when the species’ spatial distribution could be affected by biogeography. An important result showed that the hotspots for breeding species cannot be used as a surrogate for the wintering species, which were often not considered in the planning of protected areas. PMID:26918960

  8. Increasing cropping system diversity balances productivity, profitability and environmental health

    USDA-ARS?s Scientific Manuscript database

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  9. Crop responses to elevated CO2 and interactions with H2O, N, and temperature.

    PubMed

    Kimball, Bruce A

    2016-06-01

    About twenty-seven years ago, free-air CO2 enrichment (FACE) technology was developed that enabled the air above open-field plots to be enriched with CO2 for entire growing seasons. Since then, FACE experiments have been conducted on cotton, wheat, ryegrass, clover, potato, grape, rice, barley, sugar beet, soybean, cassava, rape, mustard, coffee (C3 crops), and sorghum and maize (C4 crops). Elevated CO2 (550ppm from an ambient concentration of about 353ppm in 1990) decreased evapotranspiration about 10% on average and increased canopy temperatures about 0.7°C. Biomass and yield were increased by FACE in all C3 species, but not in C4 species except when water was limiting. Yields of C3 grain crops were increased on average about 19%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Candidate Species Selection: Cultural and Photosynthetic Aspects

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1982-01-01

    Cultural information is provided for a data base that will be used to select candidate crop species for a controlled ecological life support system (CELSS). Lists of food crops which will satisfy most nutritional requirements of humans and also fit within the scope of cultural restrictions that logically would apply to a closed, regenerating system were generated. Cultural and environmental conditions that will allow the most rapid production of edible biomass from candidate species in the shortest possible time are identified. Cultivars which are most productive in terms of edible biomass production by (CE) conditions, and which respond to the ever-closed approach to optimization realized by each shortened production cycle are selected. The experimental approach with lettuce was to grow the crop hydroponically in a growth chamber and to manipulate such variables as light level and duration, day/night temperature, and nutrient form and level in the solution culture.

  11. Assessing pesticide risks to threatened and endangered species using population models: Findings and recommendations from a CropLife America Science Forum.

    PubMed

    Forbes, V E; Brain, R; Edwards, D; Galic, N; Hall, T; Honegger, J; Meyer, C; Moore, D R J; Nacci, D; Pastorok, R; Preuss, T G; Railsback, S F; Salice, C; Sibly, R M; Tenhumberg, B; Thorbek, P; Wang, M

    2015-07-01

    This brief communication reports on the main findings and recommendations from the 2014 Science Forum organized by CropLife America. The aim of the Forum was to gain a better understanding of the current status of population models and how they could be used in ecological risk assessments for threatened and endangered species potentially exposed to pesticides in the United States. The Forum panelists' recommendations are intended to assist the relevant government agencies with implementation of population modeling in future endangered species risk assessments for pesticides. The Forum included keynote presentations that provided an overview of current practices, highlighted the findings of a recent National Academy of Sciences report and its implications, reviewed the main categories of existing population models and the types of risk expressions that can be produced as model outputs, and provided examples of how population models are currently being used in different legislative contexts. The panel concluded that models developed for listed species assessments should provide quantitative risk estimates, incorporate realistic variability in environmental and demographic factors, integrate complex patterns of exposure and effects, and use baseline conditions that include present factors that have caused the species to be listed (e.g., habitat loss, invasive species) or have resulted in positive management action. Furthermore, the panel advocates for the formation of a multipartite advisory committee to provide best available knowledge and guidance related to model implementation and use, to address such needs as more systematic collection, digitization, and dissemination of data for listed species; consideration of the newest developments in good modeling practice; comprehensive review of existing population models and their applicability for listed species assessments; and development of case studies using a few well-tested models for particular species to

  12. Pick and Eat Crop Testing: Dwarf Tomato and Pepper as Candidate Space Crops

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Massa, G. D.; Stutte, G. W.; Spencer, L. E.; Hummerick, M. E.; Sirmons, T.; Douglas, G. L.

    2016-01-01

    Dwarf tomato and pepper plants were grown in controlled environment chambers to assess their potential as space crops for supplementing the crew's diet. Six cultivars of each species were compared in initial tests and then down-selected to three cultivars of each. Initial selection criteria included fruit yield, growth height, and nutritional value. Following completion of a second production test with the three best performing cultivars, sample fruits of both tomato and peppers were then assessed for acceptance using tasting panels. Based on the criteria considered in these studies, Red Robin tomato and Pompeii pepper were recommended for consideration for use in space.

  13. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    NASA Astrophysics Data System (ADS)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips

  14. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  15. The Pangean origin of 'Candidatus Liberibacter' species

    USDA-ARS?s Scientific Manuscript database

    There are six currently recognized “Candidatus Liberibacter” species. Three are associated with Huanglongbing of citrus, and one with Zebra Chip and Psyllid Yellows in Solanaceous crops and Yellows Decline in carrots. Another is an apparently asymptomatic infection of apple, pear and related specie...

  16. Molecular mechanisms involved in convergent crop domestication.

    PubMed

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops.

    PubMed

    Rodriguez-Furlán, Cecilia; Miranda, Giovanna; Reggiardo, Martín; Hicks, Glenn R; Norambuena, Lorena

    2016-04-01

    Plant growth regulators (PGRs) have become an integral part of agricultural and horticultural practices. Accordingly, there is an increased demand for new and cost-effective products. Nevertheless, the market is limited by insufficient innovation. In this context chemical genomics has gained increasing attention as a powerful approach addressing specific traits. Here is described the successful implementation of a highly specific, sensitive and efficient high throughput screening approach using Arabidopsis as a model. Using a combination of techniques, 10,000 diverse compounds were screened and evaluated for several important plant growth traits including root and leaf growth. The phenotype-based selection allowed the compilation of a collection of putative Arabidopsis growth regulators with a broad range of activities and specificities. A subset was selected for evaluating their bioactivity in agronomically valuable plants. Their validation as growth regulators in commercial species such as tomato, lettuce, carrot, maize and turfgrasses reinforced the success of the screening in Arabidopsis and indicated that small molecules activity can be efficiently translated to commercial species. Therefore, the chemical genomics approach in Arabidopsis is a promising field that can be incorporated in PGR discovery programs and has a great potential to develop new products that can be efficiently used in crops. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Weed species composition and distribution pattern in the maize crop under the influence of edaphic factors and farming practices: A case study from Mardan, Pakistan.

    PubMed

    Ahmad, Zeeshan; Khan, Shujaul Mulk; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz Abdullah; Hashem, Abeer

    2016-11-01

    Weeds are unwanted plant species growing in ordinary environment. In nature there are a total of 8000 weed species out of which 250 are important for agriculture world. The present study was carried out on weed species composition and distribution pattern with special reference to edaphic factor and farming practices in maize crop of District Mardan during the months of August and September, 2014. Quadrates methods were used to assess weed species distribution in relation to edaphic factor and farming practices. Phytosociological attributes such as frequency, relative frequency, density, relative density and Importance Values were measured by placing 9 quadrates (1 × 1 m 2 ) randomly in each field. Initial results showed that the study area has 29 diverse weed species belonging to 27 genera and 15 families distributed in 585 quadrats. Presence and absence data sheet of 29 weed species and 65 fields were analyzed through PC-ORD version 5. Cluster and Two Way Cluster Analyses initiated four different weed communities with significant indicator species and with respect to underlying environmental variables using data attribute plots. Canonical Correspondence Analyses (CCA) of CANOCO software version 4.5 was used to assess the environmental gradients of weed species. It is concluded that among all the edaphic factors the strongest variables were higher concentration of potassium, organic matter and sandy nature of soil. CCA plots of both weed species and sampled fields based on questionnaire data concluded the farming practices such as application of fertilizers, irrigation and chemical spray were the main factors in determination of weed communities.

  19. Application of high-resolution melting analysis for authenticity testing of valuable Dendrobium commercial products.

    PubMed

    Dong, Xiaoman; Jiang, Chao; Yuan, Yuan; Peng, Daiyin; Luo, Yuqin; Zhao, Yuyang; Huang, Luqi

    2018-01-01

    The accurate identification of botanical origin in commercial products is important to ensure food authenticity and safety for consumers. The Dendrobium species have long been commercialised as functional food supplements and herbal medicines in Asia. Three valuable Dendrobium species, namely Dendrobium officinale, D. huoshanense and D. moniliforme, are often mutually adulterated in trade products in pursuit of higher profit. In this paper, a rapid and reliable semi-quantitative method for identifying the botanical origin of Dendrobium products in terminal markets was developed using high-resolution melting (HRM) analysis with specific primer pairs to target the trnL-F region. The HRM analysis method detected amounts of D. moniliforme adulterants as low as 1% in D. huoshanense or D. officinale products. The results have demonstrated that HRM analysis is a fast and effective tool for the differentiation of these Dendrobium species both for their authenticity as well as for the semi-quantitative determination of the purity of their processed products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Uptake of {sup 137}Cs in vegetable crops grown on a contaminated lakebed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seel, J.F.; Adriano, D.C.; Whicker, F.W.

    1995-06-01

    Mean concentration and plant:soil concentration ratios of {sup 137}Cs were determined for six vegetable crops grown on an exposed, contaminated lakebed of a former reactor cooling reservoir in South Carolina. Each crop species was grown with or without potassium fertilizer. Selected crops were also irrigated with either reservoir water or groundwater. Subsamples of crops were prepared for human consumption before analysis to determine the extent of any loss. Plant:soil concentration ratios (dry basis) ranged from 0.22 to 6.82, values which were substantially higher than those used in generic assessment models. While there was no statistically significant effect of irrigation sourcemore » or culinary preparation, the effect of potassium-fertilizer was dramatic. In many cases, concentrations of {sup 137}Cs in those plants receiving potassium were less than half of the concentrations in plants that did not receive potassium. Significant differences among species and {sup 131}Cs plant parts for concentrations were observed. Dose/risk calculations for the ingestion of these vegetables by a hypothetical 30-y resident indicates the possibility of a lifetime fatal cancer risk well-above the U.S. Environmental Protection Agency`s regulatory guideline of 10{sup -4}. 33 refs., 4 figs., 2 tabs.« less

  1. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].

    PubMed

    Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin

    2013-09-01

    Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.

  2. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed Central

    Patterson, Sara E.; Bolivar-Medina, Jenny L.; Falbel, Tanya G.; Hedtcke, Janet L.; Nevarez-McBride, Danielle; Maule, Andrew F.; Zalapa, Juan E.

    2016-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730

  3. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed

    Patterson, Sara E; Bolivar-Medina, Jenny L; Falbel, Tanya G; Hedtcke, Janet L; Nevarez-McBride, Danielle; Maule, Andrew F; Zalapa, Juan E

    2015-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.

  4. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    NASA Astrophysics Data System (ADS)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    Population growth and changing diets due to economic development lead to an additional demand for land for food and feed production. Slowly but surely turning into a mass market, also the cultivation of non-food biomass crops for fibre (bio-based products) and fuel (biofuels and bioenergy) is increasingly contributing to the pressure on global agricultural land. As a consequence, the already prevailing competition for land might even intensify over the next decades. Against this background, the possibilities of shifting the cultivation of non-food biomass crops to so-called 'marginal lands' are investigated. The EC-funded project 'Sustainable exploitation of biomass for bioenergy from marginal lands in Europe' (SEEMLA) aims at the establishment of suitable innovative land-use strategies for a sustainable production of bioenergy from lignocellulosic crops on marginal lands while improving general ecosystem services. For a complete understanding of the environmental benefits and drawbacks of the envisioned cultivation of bioenergy crops on marginal land, life cycle assessments (LCA) have proven to be a suitable and valuable tool. Thus, embedded into a comprehensive sustainability assessment, a screening LCA is carried out for the entire life cycles of the bioenergy carriers researched in SEEMLA. Investigated systems, on the one hand, include the specific field trials carried out by the SEEMLA partners in Ukraine, Greece and Germany. On the other hand, generic scenarios are investigated in order to derive reliable general statements on the environmental impacts of bioenergy from marginal lands in Europe. Investigated crops include woody and herbaceous species such as black locust, poplar, pine, willow and Miscanthus. Conversion technologies cover the use in a domestic or a district heating plant, power plant, CHP as well as the production of Fischer-Tropsch diesel (FT diesel) and lignocellulosic ethanol. Environmental impacts are compared to conventional reference

  5. The historical role of species from the Solanaceae plant family in genetic research.

    PubMed

    Gebhardt, Christiane

    2016-12-01

    This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.

  6. Unraveling the secrets of rice wild species

    USDA-ARS?s Scientific Manuscript database

    The rice wild species (Oryza spp.) genepool is a relatively untapped source of novel alleles for crop improvement. Several different accessions of rice wild species have been crossed as donor parents with several different Asian rice (O. sativa) cultivars, as the recurrent parent to develop mappi...

  7. The beginnings of crop phosphoproteomics: exploring early warning systems of stress

    PubMed Central

    Rampitsch, Christof; Bykova, Natalia V.

    2012-01-01

    This review examines why a knowledge of plant protein phosphorylation events is important in devising strategies to protect crops from both biotic and abiotic stresses, and why proteomics should be included when studying stress pathways. Most of the achievements in elucidating phospho-signaling pathways in biotic and abiotic stress are reported from model systems: while these are discussed, this review attempts mainly to focus on work done with crops, with examples of achievements reported from rice, maize, wheat, grape, Brassica, tomato, and soy bean after cold acclimation, hormonal and oxidative hydrogen peroxide treatment, salt stress, mechanical wounding, or pathogen challenge. The challenges that remain to transfer this information into a format that can be used to protect crops against biotic and abiotic stresses are enormous. The tremendous increase in the speed and ease of DNA sequencing is poised to reveal the whole genomes of many crop species in the near future, which will facilitate phosphoproteomics and phosphogenomics research. PMID:22783265

  8. Improving Crop Productions Using the Irrigation & Crop Production Model Under Drought

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Lee, T.; Lee, S. H.; Kim, J.; Jang, W.; Park, S.

    2017-12-01

    We aimed to improve crop productions by providing optimal irrigation water amounts (IWAs) for various soils and crops using the Irrigation & Crop Production (ICP) model under various hydro-climatic regions. We selected the Little Washita (LW 13/21) and Bangdong-ri sites in Oklahoma (United States of America) and Chuncheon (Republic of Korea) for the synthetic studies. Our results showed that the ICP model performed well for improving crop productions by providing optimal IWAs during the study period (2000 to 2016). Crop productions were significantly affected by the solar radiation and precipitation, but the maximum and minimum temperature showed less impact on crop productions. When we considerd that the weather variables cannot be adjusted by artifical activities, irrigation might be the only solution for improving crop productions under drought. Also, the presence of shallow ground water (SGW) table depths higlhy influences on crop production. Although certainties exist in the synthetic studies, our results showed the robustness of the ICP model for improving crop productions under the drought condition. Thus, the ICP model can contribute to efficient water management plans under drought in regions at where water availability is limited.

  9. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    PubMed

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  10. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops.

    PubMed

    Bhatnagar-Mathur, Pooja; Sunkara, Sowmini; Bhatnagar-Panwar, Madhurima; Waliyar, Farid; Sharma, Kiran Kumar

    2015-05-01

    Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing pre-harvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Rubisco Catalytic Properties and Temperature Response in Crops.

    PubMed

    Hermida-Carrera, Carmen; Kapralov, Maxim V; Galmés, Jeroni

    2016-08-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    PubMed

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  13. Genome editing for crop improvement: Challenges and opportunities

    PubMed Central

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    ABSTRACT Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted

  14. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation

    Treesearch

    Ying Ouyang; Jiaen Zhang; Theodor D. Leininger; Brent R. Frey

    2015-01-01

    Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH4...

  15. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    hydrologic simulation provides a valuable addition for hydrologic modelling as well as for crop modelling.

  16. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

    DOE PAGES

    Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; ...

    2015-06-05

    Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.

  17. Crop tree release improves competitiveness of northern red oak growing in association with black cherry

    Treesearch

    Thomas M. Schuler

    2006-01-01

    In 1993, a crop tree study was established in a pole-sized stand consisting of black cherry (Prunus serotina Ehrh.) and northern red oak (Quercus rubra L.). Black cherry was the predominant species in the stand and appeared to be on the verge of virtually eliminating northern red oak based on its greater height growth potential. To assess crop tree management for...

  18. Effects of cover crops with potential for use in anaerobic soil disinfestation (asd) on reproduction of meloidogyne spp.

    USDA-ARS?s Scientific Manuscript database

    Several cover crops were assessed for their susceptibility to invasion and galling by three species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on their potential for use as the organic amendment component in anaerobic soil disinfestation (AS...

  19. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.

    PubMed

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-02-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank.

  20. A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae)

    PubMed Central

    Duan, Jian J.; Marvier, Michelle; Huesing, Joseph; Dively, Galen; Huang, Zachary Y.

    2008-01-01

    Background Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. Methodology/Principal Findings We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings. Conclusions/Significance Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator. PMID:18183296

  1. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Arkebauer, Timothy J; Suyker, Andrew E

    2015-04-01

    Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active "green" vegetation (LUE(green)) based on radiation absorbed by "green" photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUE(green), as well as sensitivity of LUE(green) to the magnitude of incident radiation and drought events. Large (2-3-fold) variation of daily LUE(green) over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUE(green) oscillated with magnitude 10-15% around the seasonal LUE(green) trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUE(green) between C3 and C4 crop species (1.43 g C/MJ vs. 2.24 g C/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUE(green) as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and

  2. Rubisco Catalytic Properties and Temperature Response in Crops1

    PubMed Central

    2016-01-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. PMID:27329223

  3. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  4. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    PubMed

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  5. Bee pollination improves crop quality, shelf life and commercial value.

    PubMed

    Klatt, Björn K; Holzschuh, Andrea; Westphal, Catrin; Clough, Yann; Smit, Inga; Pawelzik, Elke; Tscharntke, Teja

    2014-01-22

    Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.

  6. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    PubMed

    Alhmedi, A; Haubruge, E; Bodson, B; Francis, F

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to

  7. Integrated modelling of crop production and nitrate leaching with the Daisy model.

    PubMed

    Manevski, Kiril; Børgesen, Christen D; Li, Xiaoxin; Andersen, Mathias N; Abrahamsen, Per; Hu, Chunsheng; Hansen, Søren

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: •Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables.•Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. •Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability.

  8. Characterizing the community of Phytophthora species in an Oregon forest stream

    Treesearch

    Philippe Remigi; Wendy Sutton; Paul Reeser; Everett Hansen

    2009-01-01

    Phytophthora species are best known as pathogens of agricultural crops, or invasive pathogens destroying forests. Little is known about indigenous species, especially in wild ecosystems. Previous work showed that Phytophthora species are relatively abundant in natural streams in forests, but the species present are poorly...

  9. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance... Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and replace the reference...

  10. 78 FR 47214 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed... Insurance Regulations, Extra Long Staple (ELS) Cotton Crop Insurance Provisions to make the ELS Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop Insurance Provisions and to allow a late...

  11. Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop-wild hybrids under drought, salinity and nutrient deficiency conditions.

    PubMed

    Uwimana, Brigitte; Smulders, Marinus J M; Hooftman, Danny A P; Hartman, Yorike; van Tienderen, Peter H; Jansen, Johannes; McHale, Leah K; Michelmore, Richard W; van de Wiel, Clemens C M; Visser, Richard G F

    2012-10-01

    With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F(2:3) families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na(+), Cl(-) and K(+)) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop-wild hybridization takes place.

  12. Ecological and agriculture impacts of bakery yeast wastewater use on weed communities and crops in an arid environment.

    PubMed

    Abu-Dieyeh, Mohammed H; Diab, Mahmoud; Al-Ghouti, Mohammad A

    2017-06-01

    The goal of this study was to evaluate the impact of using yeast wastewater (YW) on weed communities. The study showed that all ecological parameters including species richness, dispersion, density, frequency, and % of vegetation cover were significantly increased in the site irrigated with YW compared to a natural rain fed site and another site irrigated with fresh water. The vegetation cover (%) was significantly increased by 2-folds in the site irrigated with YW (52%) than the one irrigated with fresh water (27%). Species richness increases to 23 in the site irrigated with yeast wastewater compared to 12 species in natural rain fed site and 7 species in areas irrigated with fresh water. The 10 studied weed species germinated better at 10 and 20% dilutions of baker's YW. However, only five species achieved few germination (3-25%) at 50% of YW and the two species Sisymbrim irio and Cardariia droba achieved (6-13%) germination using 100% YW. No germination occurred for the crop seeds (tomato, squash, lentil, and barley) at 50 and 100% YW. For tomato, 10 and 20% of YW achieved better germination (82 and 63%, respectively) than the seeds of other species, followed by barley with 80 and 53% of germination. Squash showed the lowest germination percentage with 59 and 42% at 10 and 20% of YW, respectively. Yeast wastewater seems to be crop specific and can affect weed species composition and relative abundances and care should be taken before using the effluent for irrigation of tree plantations and crops.

  13. Processed eucalyptus trees as a substrate component for greenhouse crop production

    USDA-ARS?s Scientific Manuscript database

    Fast growing eucalyptus species are selected for commercial plantings worldwide and are harvested for a variety of uses. Eucalyptus plantings in south Florida are harvested for landscape mulch production, yet this material may have potential as a container substrate for horticulture crop production....

  14. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    USDA-ARS?s Scientific Manuscript database

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  15. The cost of being valuable: predictors of extinction risk in marine invertebrates exploited as luxury seafood

    PubMed Central

    Purcell, Steven W.; Polidoro, Beth A.; Hamel, Jean-François; Gamboa, Ruth U.; Mercier, Annie

    2014-01-01

    Extinction risk has been linked to biological and anthropogenic variables. Prediction of extinction risk in valuable fauna may not follow mainstream drivers when species are exploited for international markets. We use results from an International Union for Conservation of Nature Red List assessment of extinction risk in all 377 known species of sea cucumber within the order Aspidochirotida, many of which are exploited worldwide as luxury seafood for Asian markets. Extinction risk was primarily driven by high market value, compounded by accessibility and familiarity (well known) in the marketplace. Extinction risk in marine animals often relates closely to body size and small geographical range but our study shows a clear exception. Conservation must not lose sight of common species, especially those of high value. Greater human population density and poorer economies in the geographical ranges of endangered species illustrate that anthropogenic variables can also predict extinction risks in marine animals. Local-level regulatory measures must prevent opportunistic exploitation of high-value species. Trade agreements, for example CITES, may aid conservation but will depend on international technical support to low-income tropical countries. The high proportion of data deficient species also stresses a need for research on the ecology and population demographics of unglamorous invertebrates. PMID:24598425

  16. The cost of being valuable: predictors of extinction risk in marine invertebrates exploited as luxury seafood.

    PubMed

    Purcell, Steven W; Polidoro, Beth A; Hamel, Jean-François; Gamboa, Ruth U; Mercier, Annie

    2014-04-22

    Extinction risk has been linked to biological and anthropogenic variables. Prediction of extinction risk in valuable fauna may not follow mainstream drivers when species are exploited for international markets. We use results from an International Union for Conservation of Nature Red List assessment of extinction risk in all 377 known species of sea cucumber within the order Aspidochirotida, many of which are exploited worldwide as luxury seafood for Asian markets. Extinction risk was primarily driven by high market value, compounded by accessibility and familiarity (well known) in the marketplace. Extinction risk in marine animals often relates closely to body size and small geographical range but our study shows a clear exception. Conservation must not lose sight of common species, especially those of high value. Greater human population density and poorer economies in the geographical ranges of endangered species illustrate that anthropogenic variables can also predict extinction risks in marine animals. Local-level regulatory measures must prevent opportunistic exploitation of high-value species. Trade agreements, for example CITES, may aid conservation but will depend on international technical support to low-income tropical countries. The high proportion of data deficient species also stresses a need for research on the ecology and population demographics of unglamorous invertebrates.

  17. Assessing the levels of food shortage using the traffic light metaphor by analyzing the gathering and consumption of wild food plants, crop parts and crop residues in Konso, Ethiopia

    PubMed Central

    2012-01-01

    Background Humanitarian relief agencies use scales to assess levels of critical food shortage to efficiently target and allocate food to the neediest. These scales are often labor-intensive. A lesser used approach is assessing gathering and consumption of wild food plants. This gathering per se is not a reliable signal of emerging food stress. However, the gathering and consumption of some specific plant species could be considered markers of food shortage, as it indicates that people are compelled to eat very poor or even health-threatening food. Methods We used the traffic light metaphor to indicate normal (green), alarmingly low (amber) and fully depleted (red) food supplies and identified these conditions for Konso (Ethiopia) on the basis of wild food plants (WFPs), crop parts (crop parts not used for human consumption under normal conditions; CPs) and crop residues (CRs) being gathered and consumed. Plant specimens were collected for expert identification and deposition in the National Herbarium. Two hundred twenty individual households free-listed WFPs, CPs, and CRs gathered and consumed during times of food stress. Through focus group discussions, the species list from the free-listing that was further enriched through key informants interviews and own field observations was categorized into species used for green, amber and red conditions. Results The study identified 113 WFPs (120 products/food items) whose gathering and consumption reflect the three traffic light metaphors: red, amber and green. We identified 25 food items for the red, 30 food items for the amber and 65 food items for the green metaphor. We also obtained reliable information on 21 different products/food items (from 17 crops) normally not consumed as food, reflecting the red or amber metaphor and 10 crop residues (from various crops), plus one recycled stuff which are used as emergency foods in the study area clearly indicating the severity of food stress (red metaphor) households are

  18. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE PAGES

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.; ...

    2015-10-03

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes

  19. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes

  20. Green-cane harvested sugarcane crop residue decomposition as a function of temperature, soil moisture, and particle size

    USDA-ARS?s Scientific Manuscript database

    Sugarcane, a complex hybrid of Saccharum species, is grown on over 170,000 ha in the state of Louisiana. In 2016, the crop was worth $750 million US. Green-cane harvest, widely used in sugarcane producing countries, deposits up to 20 Mg ha-1 of crop residue annually. Green cane harvesting of sugarca...

  1. 78 FR 70485 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...-0002] RIN 0563-AC41 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY... Cotton Crop Insurance Provisions to make the Extra Long Staple (ELS) Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop Insurance Provisions and to allow a late planting period. The intended...

  2. Frequency of Verticillium Species in Commercial Spinach Fields and Transmission of V. dahliae from Spinach to Subsequent Lettuce Crops.

    PubMed

    Short, D P G; Gurung, S; Koike, S T; Klosterman, S J; Subbarao, K V

    2015-01-01

    Verticillium wilt caused by V. dahliae is a devastating disease of lettuce in California (CA). The disease is currently restricted to a small geographic area in central coastal CA, even though cropping patterns in other coastal lettuce production regions in the state are similar. Infested spinach seed has been implicated in the introduction of V. dahliae into lettuce fields but direct evidence linking this inoculum to wilt epidemics in lettuce is lacking. In this study, 100 commercial spinach fields in four coastal CA counties were surveyed to evaluate the frequency of Verticillium species recovered from spinach seedlings and the area under spinach production in each county was assessed. Regardless of the county, V. isaacii was the most frequently isolated species from spinach followed by V. dahliae and, less frequently, V. klebahnii. The frequency of recovery of Verticillium species was unrelated to the occurrence of Verticillium wilt on lettuce in the four counties but was related to the area under spinach production in individual counties. The transmission of V. dahliae from infested spinach seeds to lettuce was investigated in microplots. Verticillium wilt developed on lettuce following two or three plantings of Verticillium-infested spinach, in independent experiments. The pathogen recovered from the infected lettuce from microplots was confirmed as V. dahliae by polymerase chain reaction assays. In a greenhouse study, transmission of a green fluorescence protein-tagged mutant strain of V. dahliae from spinach to lettuce roots was demonstrated, after two cycles of incorporation of infected spinach residue into the soil. This study presents conclusive evidence that V. dahliae introduced via spinach seed can cause Verticillium wilt in lettuce.

  3. Distribution of Amblydromalus limonicus in northeastern Spain and diversity of phytoseiid mites (Acari: Phytoseiidae) in tomato and other vegetable crops after its introduction.

    PubMed

    Chorąży, Alicja; Kropczyńska-Linkiewicz, Danuta; Sas, Daniel; Escudero-Colomar, Lucia-Adriana

    2016-08-01

    Amblydromalus limonicus (Garman and McGregor) was detected for the first time in 2011 on tomatoes of several locations of the northeastern Spain. During 2012 and 2013 samplings on tomato crop cultivars in the two provinces of Catalonia where the species was found were carried out. The goals of the study were to know the range of spread of the species in these two provinces, its abundance in tomato cultivars, non-crop vegetation among them, in the different parts of the tomato plant and in some other vegetable crops. Results showed that A. limonicus was present at both regions sampled, although there were significant differences in the abundance of the species between sampling points. It is the second in abundance in tomato and the cultivars that most frequently host A. limonicus were Anaidis, Hybrid and Marmande. No significant differences were found in the abundance of A. limonicus among tomato plant canopy strata. On average, it accounted for 31.6 % of all sampled phytoseiids. It was present in four crops (tomato, bean, cucumber and strawberry) and in Amaranthus cruentus, Chenopodium polyspermum, Cynodon dactylon, Mentha sp., Parietaria officinalis and Phleum pratense. Amblydromalus limonicus is well established in the extreme northeast of Spain all year round in crops and non-crops.

  4. Crop water use efficiency following biochar application on maize cropping systems on sandy soils of tropical semiarid eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Sukartono, S.; Utomo, W.

    2012-04-01

    A field study was conducted to evaluate the effect of biochar on crop water use efficiency under three consecutive maize cropping system on sandy loam of Lombok, eastern Indonesia from December 2010 to October 2011.The treatments tested were: coconut shell- biochar (CSB), cattle dung-biochar (CDB), cattle manure applied at only early first crop (CM1) and cattle manure applied at every planting time (CM2) and no organic amendment as the control. Evaluation after the end of third maize, the application of organic amendments (biochar and cattle manure) slightly altered the pore size distribution resulting changes in water retention and the available water capacity. The available water capacity was relatively comparable between biochar treated soils (0.206 cm3 cm-3) and soil treated with cattle manure applied at every planting time (0.220 cm3 cm-3). Water use efficiency (WUE) of maize under biochars were 9.44 kg/mm (CSB) and 9.24 kg/mm (CDB) while WUE for CM1 and CM2 were 8.54 and 9.97 kg/mm respectively, and control was 8.08 kg/mm. Thus, biochars as well as cattle manure applied at every planting time improved water use efficiency by 16.83% and 23.39 respectively compared to control. Overall, this study confirms that biochar and cattle manure are both valuable amendments for improving water use efficiency and to sustain maize production in the sandy loam soils of semiarid North Lombok, eastern Indonesia. However, unlike bicohar, in order to maintain its posivtive effect, cattle manure should be applied at every planting time, and this make cattle manure application is more costly. Keywords: Biochar, organic management, catle manure, water retention, maize yield

  5. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.

    PubMed

    Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M

    2017-04-01

    Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Crop and cattle production responses to tillage and cover crop management in an integrated crop-livestock system in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...

  7. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation.

    PubMed

    von Wettberg, Eric J B; Chang, Peter L; Başdemir, Fatma; Carrasquila-Garcia, Noelia; Korbu, Lijalem Balcha; Moenga, Susan M; Bedada, Gashaw; Greenlon, Alex; Moriuchi, Ken S; Singh, Vasantika; Cordeiro, Matilde A; Noujdina, Nina V; Dinegde, Kassaye Negash; Shah Sani, Syed Gul Abbas; Getahun, Tsegaye; Vance, Lisa; Bergmann, Emily; Lindsay, Donna; Mamo, Bullo Erena; Warschefsky, Emily J; Dacosta-Calheiros, Emmanuel; Marques, Edward; Yilmaz, Mustafa Abdullah; Cakmak, Ahmet; Rose, Janna; Migneault, Andrew; Krieg, Christopher P; Saylak, Sevgi; Temel, Hamdi; Friesen, Maren L; Siler, Eleanor; Akhmetov, Zhaslan; Ozcelik, Huseyin; Kholova, Jana; Can, Canan; Gaur, Pooran; Yildirim, Mehmet; Sharma, Hari; Vadez, Vincent; Tesfaye, Kassahun; Woldemedhin, Asnake Fikre; Tar'an, Bunyamin; Aydogan, Abdulkadir; Bukun, Bekir; Penmetsa, R Varma; Berger, Jens; Kahraman, Abdullah; Nuzhdin, Sergey V; Cook, Douglas R

    2018-02-13

    Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for improvement, while our methods inform collection of other wild crop progenitor species.

  8. Important biological factors for utilizing native plant species

    Treesearch

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  9. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  10. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats.

    PubMed

    Hooftman, Danny A P; Bullock, James M; Morley, Kathryn; Lamb, Caroline; Hodgson, David J; Bell, Philippa; Thomas, Jane; Hails, Rosemary S

    2015-01-01

    Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment. © The Author

  11. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    PubMed

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  13. Moving Species Redundancy Toward a More Predictive Framework

    EPA Science Inventory

    Human activities are driving rapid changes in species diversity in a wide range of habitats globally. These changes in species diversity raise questions about the ability of altered systems to continue to offer valuable ecosystem services. Maintenance of ecosystem services unde...

  14. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    PubMed

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  15. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  16. Cryptic Plutella species show deep divergence despite the capacity to hybridize.

    PubMed

    Perry, Kym D; Baker, Gregory J; Powis, Kevin J; Kent, Joanne K; Ward, Christopher M; Baxter, Simon W

    2018-05-29

    Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world's most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1

  17. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.

    PubMed

    Bhandari, Shiva Ram; Jo, Jung Su; Lee, Jun Gu

    2015-08-31

    Glucosinolate (GSL) profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot) were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g(-1)) and sprouts (162.19 µmol·g(-1)), whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g(-1)) and roots (73.61 µmol·g(-1)). The lowest GSL concentrations were observed in radish across all tissues examined.

  18. Distribution and diversity of twelve Curcuma species in China.

    PubMed

    Zhang, Lanyue; Wei, Jingwen; Yang, Zhiwen; Chen, Feng; Xian, Qiqiu; Su, Ping; Pan, Wanyi; Zhang, Kun; Zheng, Xi; Du, Zhiyun

    2018-02-01

    Genus Curcuma a wild species presents an important source of valuable characters for improving the cultivated Curcuma varieties. Based on the collected germplasms, herbariums, field surveys and other literatures, the ecogeographical diversity of Genus Curcuma and its potential distributions under the present and future climate are analysed by DIVA-GIS. The results indicate Genus Curcuma is distributed over 17 provinces in China, and particularly abundant in Guangxi and Guangdong provinces. The simulated current distributions are close to the actual distribution regions. In the future climate, the suitable areas for four Curcuma species will be extended, while for other three species the regions will be significantly decreased, and thus these valuable resources need protecting.

  19. Use of Carabids for the Post-Market Environmental Monitoring of Genetically Modified Crops

    PubMed Central

    Skoková Habuštová, Oxana; Svobodová, Zdeňka; Cagáň, Ľudovít; Sehnal, František

    2017-01-01

    Post-market environmental monitoring (PMEM) of genetically modified (GM) crops is required by EU legislation and has been a subject of debate for many years; however, no consensus on the methodology to be used has been reached. We explored the suitability of carabid beetles as surrogates for the detection of unintended effects of GM crops in general PMEM surveillance. Our study combines data on carabid communities from five maize field trials in Central Europe. Altogether, 86 species and 58,304 individuals were collected. Modeling based on the gradual elimination of the least abundant species, or of the fewest categories of functional traits, showed that a trait-based analysis of the most common species may be suitable for PMEM. Species represented by fewer than 230 individuals (all localities combined) should be excluded and species with an abundance higher than 600 should be preserved for statistical analyses. Sixteen species, representing 15 categories of functional traits fulfill these criteria, are typical dominant inhabitants of agroecocoenoses in Central Europe, are easy to determine, and their functional classification is well known. The effect of sampling year is negligible when at least four samples are collected during maize development beginning from 1 April. The recommended methodology fulfills PMEM requirements, including applicability to large-scale use. However, suggested thresholds of carabid comparability should be verified before definitive conclusions are drawn. PMID:28353663

  20. Modulation of phytochrome signaling networks for improved biomass accumulation using a bioenergy crop model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mockler, Todd C.

    Plant growth and development, including stem elongation, flowering time, and shade-avoidance habits, are affected by wavelength composition (i.e., light quality) of the light environment. the molecular mechanisms underlying light perception and signaling pathways in plants have been best characterized in Arabidopsis thaliana where dozens of genes have been implicated in converging, complementary, and antagonistic pathways communicating light quality cues perceived by the phytochrome (red/far-red) cryptochrome (blue) and phototropin (blue) photorecptors. Light perception and signaling have been studied in grasses, including rice and sorghum but in much less detail than in Arabidopsis. During the course of the Mocker lab's DOE-funded wrokmore » generating a gene expression atlas in Brachypodium distachyon we observed that Brachypodium plants grown in continuous monochromatic red light or continuous white light enriched in far-red light accumulated significantly more biomass and exhibited significantly greater seed yield than plants grown in monochromatic blue light or white light. This phenomenon was also observed in two other grasses, switchgrass and rice. We will systematically manipulate the expression of genes predicted to function in Brachypodium phytochrome signaling and assess the phenotypic consequences in transgenic Brachypodium plants in terms of morphology, stature, biomass accumulation, and cell wall composition. We will also interrogate direct interactions between candidate phytochrome signaling transcription factors and target promoters using a high-throughput yeast one-hybrid system. Brachypodium distachyon has emerged as a model grass species and is closely related to candidate feedstock crops for bioethanol production. Identification of genes capable of modifying growth characteristics of Brachypodium, when misexpressed, in particular increasing biomass accumulation, by modulating photoreceptor signaling will provide valuable candidates for

  1. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef).

    PubMed

    Cannarozzi, Gina; Plaza-Wüthrich, Sonia; Esfeld, Korinna; Larti, Stéphanie; Wilson, Yi Song; Girma, Dejene; de Castro, Edouard; Chanyalew, Solomon; Blösch, Regula; Farinelli, Laurent; Lyons, Eric; Schneider, Michel; Falquet, Laurent; Kuhlemeier, Cris; Assefa, Kebebew; Tadele, Zerihun

    2014-07-09

    Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.

  2. In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, April Lea

    Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore » policies and programs.« less

  3. In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development

    DOE PAGES

    Pope, April Lea

    2015-05-01

    Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore » policies and programs.« less

  4. Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops.

    PubMed

    Aureli, Federica; Ouerdane, Laurent; Bierla, Katarzyna; Szpunar, Joanna; Prakash, Nagaraja Tejo; Cubadda, Francesco

    2012-08-01

    Several novel selenium containing compounds were characterized in staple crops (wheat, rice and maize) grown on soils naturally rich in selenium. A dedicated method based on the coupling of liquid chromatography with multiplexed detection (ICP-MS, ESI-Orbitrap MS(/MS)) was developed for the speciation of low-molecular weight (<5 kDa) selenium metabolites. Nine species present in different proportions as a function of the crop type were identified by cation-exchange HPLC-ESI-Orbitrap MS on the basis of the accurate molecular mass and MS/MS spectra. The natural origin of these species was then validated by varying extraction conditions and by using hydrophilic interaction LC (HILIC)-ESI-Orbitrap MS(/MS). Among the identified compounds, Se-containing monosaccharides (hexose moiety, m/z 317 and m/z 358) or Se-containing disaccharides (hexose-pentose moiety, m/z 407 and m/z 408) were the first selenosugars reported in edible plants. It is also the first report of the presence of 2,3-dihydroxypropionyl-selenolanthionine (m/z 345) in rice. Because these crops can be an important source of selenium in animal and human nutrition, the understanding of the origin and the fate of these species during metabolic processes will be of great interest.

  5. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  6. Biotechnology: herbicide-resistant crops

    USDA-ARS?s Scientific Manuscript database

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  7. 76 FR 4201 - Common Crop Insurance Regulations, Macadamia Nut Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Insurance Regulations, Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance... pertinent, related to the insurance of macadamia nuts. DATES: Effective Date: January 25, 2011. FOR FURTHER... Nut Crop Insurance Provisions to specify the correct crop year to which it was applicable. It was...

  8. Agave as a model CAM crop system for a warming and drying world

    PubMed Central

    Stewart, J. Ryan

    2015-01-01

    As climate change leads to drier and warmer conditions in semi-arid regions, growing resource-intensive C3 and C4 crops will become more challenging. Such crops will be subjected to increased frequency and intensity of drought and heat stress. However, agaves, even more than pineapple (Ananas comosus) and prickly pear (Opuntia ficus-indica and related species), typify highly productive plants that will respond favorably to global warming, both in natural and cultivated settings. With nearly 200 species spread throughout the U.S., Mexico, and Central America, agaves have evolved traits, including crassulacean acid metabolism (CAM), that allow them to survive extreme heat and drought. Agaves have been used as sources of food, beverage, and fiber by societies for hundreds of years. The varied uses of Agave, combined with its unique adaptations to environmental stress, warrant its consideration as a model CAM crop. Besides the damaging cycles of surplus and shortage that have long beset the tequila industry, the relatively long maturation cycle of Agave, its monocarpic flowering habit, and unique morphology comprise the biggest barriers to its widespread use as a crop suitable for mechanized production. Despite these challenges, agaves exhibit potential as crops since they can be grown on marginal lands, but with more resource input than is widely assumed. If these constraints can be reconciled, Agave shows considerable promise as an alternative source for food, alternative sweeteners, and even bioenergy. And despite the many unknowns regarding agaves, they provide a means to resolve disparities in resource availability and needs between natural and human systems in semi-arid regions. PMID:26442005

  9. Precise, flexible and affordable gene stacking for crop improvement.

    PubMed

    Chen, Weiqiang; Ow, David W

    2017-09-03

    The genetic engineering of plants offers a revolutionary advance for crop improvement, and the incorporation of transgenes into crop species can impart new traits that would otherwise be difficult to obtain through conventional breeding. Transgenes introduced into plants, however, can only be useful when bred out to field cultivars. As new traits are continually added to further improve transgenic cultivars, clustering new DNA near previously introduced transgenes keep from inflating the number of segregating units that breeders must assemble back into a breeding line. Here we discuss various options to introduce DNA site-specifically into an existing transgenic locus. As food security is becoming a pressing global issue, the old proverb resonates true to this day: "give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime." Hence, we describe a recombinase-mediate gene stacking system designed with freedom to operate, providing an affordable option for crop improvement by less developed countries where food security is most at risk.

  10. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    PubMed Central

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  11. Increasing cropping system diversity balances productivity, profitability and environmental health.

    PubMed

    Davis, Adam S; Hill, Jason D; Chase, Craig A; Johanns, Ann M; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003-2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.

  12. Opportunistic Market-Driven Regional Shifts of Cropping Practices Reduce Food Production Capacity of China

    NASA Astrophysics Data System (ADS)

    Yuan, Wenping; Liu, Shuguang; Liu, Wei; Zhao, Shuqing; Dong, Wenjie; Tao, Fulu; Chen, Min; Lin, Hui

    2018-04-01

    China is facing the challenge of feeding a growing population with the declining cropland and increasing shortage of water resources under the changing climate. This study identified that the opportunistic profit-driven shifts of planting areas and crop species composition have strongly reduced the food production capacity of China. First, the regional cultivation patterns of major crops in China have substantially shifted during the past five decades. Southeast and South China, the regions with abundant water resources and fewer natural disasters, have lost large planting areas of cropland in order to pursue industry and commerce. Meanwhile, Northeast and Northwest China, the regions with low water resources and frequent natural disasters, have witnessed increases in planting areas. These macroshifts have reduced the national food production by 1.02% per year. The lost grain production would have been enough to feed 13 million people. Second, the spatial shifts have been accompanied by major changes in crop species composition, with substantial increases in planting area and production of maize, due to its low water consumption and high economic returns. Consequently, the stockpile of maize in China has accounted for more than half of global stockpile, and the stock to use ratio of maize in China has exceeded the reliable level. Market-driven regional shifts of cropping practices have resulted in larger irrigation requirements and aggravated environmental stresses. Our results highlighted the need for Chinese food policies to consider the spatial shifts in cultivation, and the planting crop compositions limited by regional water resources and climate change.

  13. Trace gas emissions from a sun and shade grown ornamental crop

    USDA-ARS?s Scientific Manuscript database

    Previous work has begun to establish baseline approximations for greenhouse gas (GHG) (CO2, CH4, and N2O) emissions of several horticultural crops, though much work is still needed to expand contingencies for multiple best management practices. In this study, GHG emissions from one shade-grown speci...

  14. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... 0563-AC27 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal... (FCIC) finalizes amendments made to the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and replace the references...

  15. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops.

    PubMed

    Anderson, Jennifer A; Staley, Jamie; Challender, Mary; Heuton, Jamie

    2018-02-01

    Genetically modified crops undergo extensive evaluation to characterize their food, feed and environmental safety prior to commercial introduction, using a well-established, science-based assessment framework. One component of the safety assessment includes an evaluation of each introduced trait, including its source organism, for potential adverse pathogenic, toxic and allergenic effects. Several Pseudomonas species have a history of safe use in agriculture and certain species represent a source of genes with insecticidal properties. The ipd072Aa gene from P. chlororaphis encodes the IPD072Aa protein, which confers protection against certain coleopteran pests when expressed in maize plants. P. chlororaphis is ubiquitous in the environment, lacks known toxic or allergenic properties, and has a history of safe use in agriculture and in food and feed crops. This information supports, in part, the safety assessment of potential traits, such as IPD072Aa, that are derived from this source organism.

  16. Host and habitat index for Phytophthora species in Oregon

    Treesearch

    Everett Hansen; Paul Reeser; Wendy Sutton; Laura Sims

    2013-01-01

    Phytophthora species are known as pathogens of agricultural crops or invasive pathogens destroying forests, and their prominent inclusion in various host-pathogen indices reflects this importance. It is increasingly evident, however, that Phytophthora species are abundant in streams in healthy forests and widespread in forest...

  17. Eastern cottonwood and black willow biomass crop production in the Lower Mississippi Alluvial Valley under four planting densities

    Treesearch

    Ray A. Souter; Emile S Gardiner; Theodor D. Leininger; Dana Mitchell; Robert B. Rummer

    2015-01-01

    "Wood is an obvious alternative energy source": Johnson and others (2007) declare the potential of short-rotation intensively-managed woody crop systems to produce biomass for energy. While obvious as an energy source, costs of production need to be measured to assess the economic viability of selected tree species as woody perennial energy crops

  18. An original experiment to determine impact of catch crop introduction in a crop rotation on N2O production fate

    NASA Astrophysics Data System (ADS)

    Tallec, Tiphaine; Le Dantec, Valérie; Zawilski, Bartosz; Brut, Aurore; Boussac, Marion; Ferlicoq, Morgan; Ceschia, Eric

    2015-04-01

    The raise in N2O concentration from the preindustrial era (280 ppb) to nowadays (324 ppb) is estimated to account for approximately 6% of the predicted global warming (IPCC 2014). Worldwide, soils are considered to be the dominant source of N2O, releasing an estimated 9.5 Tg N2O-N y-1 (65% of global N2O emissions), of which 36.8% are estimated to originate from agricultural soils (IPCC 2001). Most N2O originating from agricultural soils is a by- or end-product of nitrification or denitrification. The fate of N2O produced by microbiological processes in the subsoil is controlled by biotic (crop species, occurring soil organic matter, human pressure via mineral and organic nitrogen fertilisation) and abiotic (environmental conditions such as temperature, soil moisture, pH, etc.) factors. In cropland, contrary to forest and grassland, long bare soil periods can occurred between winter and summer crops with a high level of mineral (fertilizer) and organic (residues) nitrogen remaining in the soil, causing important emissions of carbon and nitrogen induced by microbial activities. Introduction of catch crop has been identified as an important mitigation option to reduce environmental impact of crops mainly thanks to their ability to increase CO2 fixation, to decrease mineral nitrogen lixiviation and also reduce the potential fate of N2O production. Uncertainty also remains about the impact of released mineral nitrogen coming from crushed catch crop on N2O production if summer crop seedling and mineral nitrogen release are not well synchronized. To verify those assumptions, a unique paired-plot experiment was carried in the south-west of France from September 2013 to august 2014 to test impact of management change on N2O budget and production dynamic. A crop plot was divided into two subplots, one receiving a catch crop (mustard), the other one remaining conventionally managed (bare-soil during winter). This set-up allowed avoiding climate effect. Each subplot was

  19. Transfer of antibiotics from wastewater or animal manure to soil and edible crops.

    PubMed

    Pan, Min; Chu, L M

    2017-12-01

    Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log K ow ), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Expected increase in staple crop imports in water-scarce countries in 2050

    NASA Astrophysics Data System (ADS)

    Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen

    2017-04-01

    Water scarcity is a major challenge in the coming decades. The increasing population and the changing pattern of water availability that results from global warming reduce the potential of sufficient food production in many countries over the world. Today, two thirds of the global population are already living under conditions of severe water scarcity at least one month of the year. This rises the importance of addressing the present and future relationship between water availability and food import in water-scarce countries. The net import of staple crops (barley, cassava, maize, millet and products, oats, potatoes, rice, rye, sorghum, soybeans, sweet potatoes, wheat and yams) is analysed in relation to water availability per capita for the period 1961-2010, considering five decadal averages. The relation found is used together with the low, medium and high population growth scenarios from the United Nations to project the staple crops import in water-scarce countries for the year 2050. Additionally, we investigate the uncertainties related to the three population scenarios. Results will help countries to better understand the impact of population growth and limited water resources on their future food trade. This study will provide a valuable supporting tool for policy makers towards more sustainable and water-efficient food production as targeted with the Sustainable Development Goals. Keywords: Water Availability, Food Import, Staple Crops, Water Scarcity, Water-Use Efficiency, Sustainable Development Goals.

  1. Assessing transmission of crop diseases by insect vectors in a landscape context.

    PubMed

    Carrière, Y; Degain, B; Hartfield, K A; Nolte, K D; Marsh, S E; Ellers-Kirk, C; Van Leeuwen, W J D; Liesner, L; Dutilleul, P; Palumbo, J C

    2014-02-01

    Theory indicates that landscape composition affects transmission of vector-borne crop diseases, but few empirical studies have investigated how landscape composition affects plant disease epidemiology. Since 2006, Bemisia tabaci (Gennadius) has vectored the cucurbit yellow stunting disorder virus (CYSDV) to cantaloupe and honeydew melons (Cucumis melo L.) in the southwestern United States and northern Mexico, causing significant reductions in yield of fall melons and increased use of insecticides. Here, we show that a landscape-based approach allowing simultaneous assessment of impacts of local (i.e., planting date) and regional (i.e., landscape composition) factors provides valuable insights on how to reduce crop disease risks. Specifically, we found that planting fall melon fields early in the growing season, eliminating plants germinating from seeds produced by spring melons after harvest, and planting fall melon fields away from cotton and spring melon fields may significantly reduce the incidence of CYSDV infection in fall melons. Because the largest scale of significance of the positive association between abundance of cotton and spring melon fields and CYSDV incidence was 1,750 and 3,000 m, respectively, reducing areas of cotton and spring melon fields within these distances from fall melon fields may decrease CYSDV incidence. Our results indicate that landscape-based studies will be fruitful to alleviate limitations imposed on crop production by vector-borne diseases.

  2. Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species, Bituminaria bituminosa

    PubMed Central

    2011-01-01

    Background Bituminaria bituminosa is a perennial legume species from the Canary Islands and Mediterranean region that has potential as a drought-tolerant pasture species and as a source of pharmaceutical compounds. Three botanical varieties have previously been identified in this species: albomarginata, bituminosa and crassiuscula. B. bituminosa can be considered a genomic 'orphan' species with very few genomic resources available. New DNA sequencing technologies provide an opportunity to develop high quality molecular markers for such orphan species. Results 432,306 mRNA molecules were sampled from a leaf transcriptome of a single B. bituminosa plant using Roche 454 pyrosequencing, resulting in an average read length of 345 bp (149.1 Mbp in total). Sequences were assembled into 3,838 isotigs/contigs representing putatively unique gene transcripts. Gene ontology descriptors were identified for 3,419 sequences. Raw sequence reads containing simple sequence repeat (SSR) motifs were identified, and 240 primer pairs flanking these motifs were designed. Of 87 primer pairs developed this way, 75 (86.2%) successfully amplified primarily single fragments by PCR. Fragment analysis using 20 primer pairs in 79 accessions of B. bituminosa detected 130 alleles at 21 SSR loci. Genetic diversity analyses confirmed that variation at these SSR loci accurately reflected known taxonomic relationships in original collections of B. bituminosa and provided additional evidence that a division of the botanical variety bituminosa into two according to geographical origin (Mediterranean region and Canary Islands) may be appropriate. Evidence of cross-pollination was also found between botanical varieties within a B. bituminosa breeding programme. Conclusions B. bituminosa can no longer be considered a genomic orphan species, having now a large (albeit incomplete) repertoire of expressed gene sequences that can serve as a resource for future genetic studies. This experimental approach was

  3. Potential economic pests of solanaceous crops: a new species of Solanum-feeding psyllid from Australia and first record from New Zealand of Acizzia solanicola (Hemiptera: Psyllidae).

    PubMed

    Taylor, Gary S; Kent, Deborah S

    2013-02-11

    Acizzia credoensis sp. n. is described from a single population on the native plant, Solanum lasiophyllum, from semi-arid Western Australia. The host range of Acizzia solanicola Kent & Taylor, initially recorded as damaging eggplant, S. melongena, in commercial crops and gardens and on wild tobacco bush, S. mauritianum in eastern Australia, is expanded to include the following Solanaceae: rock nightshade, S. petrophilum, cape gooseberry, Physalis peruviana, and an undetermined species of angel's trumpet Brugmansia and Datura. New Zealand specimens of A. solanicola collected in early 2012 from S. mauritianum are the first record for this species from outside Australia, and possibly represent a very recent incursion. The potential for the solanaceous-inhabiting Psyllidae to vector Candidatus Liberibacter solanacearum, an economically important plant pathogen, on native Australian Solanaceae is discussed. The occurrence of A. credoensis and A. solanicola on native Australian Solanum supports the Australian origin for the solanaceous-inhabiting Acizzia psyllids.

  4. The perspective crops for the bioregenerative human life support systems

    NASA Astrophysics Data System (ADS)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  5. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  6. Innovations in LED lighting for reduced-ESM crop production in space

    NASA Astrophysics Data System (ADS)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    of lower leaves. One system modification has led to lightsicles of different lengths, allowing a wider array of intracanopy lighting configurations. Another development is an adaptive system in which each light engine can be operated independently, and photodiodes can detect reflectance patterns off of leaves from flashing green LEDs, thereby indicating positions of leaves within the foliar canopy relative to any given light engine on a lightsicle. When this advanced hardware is coupled to tailored software, the reflectance can be used to auto-detect changes in plant growth and adjust the lighting accordingly. These lighting systems have been tested with cowpea, pepper (Capsicum annuum L. cv. Triton) and Lettuce (Lactuca sativa L. cv. Waldmanns Green) with limited testing of other ALS candidate crop species. The versatility of these LED lighting systems will allow energy-efficient light delivery to a wide variety of crops with different growth habits, including planophile, erectophile, and rosette species. This research has been supported by NASA grants NAG5-12686 (NSCORT) and NNK05OA20C (SBIR Phase 1) and NNK06OM01C (SBIR Phase 2).

  7. Spider fauna of semiarid eastern Colorado agroecosystems: diversity, abundance, and effects of crop intensification.

    PubMed

    Kerzicnik, Lauren M; Peairs, Frank B; Cushing, Paula E; Draney, Michael L; Merrill, Scott C

    2013-02-01

    Spiders are critical predators in agroecosystems. Crop management practices can influence predator density and diversity, which, in turn, can influence pest management strategies. Crop intensification is a sustainable agricultural technique that can enhance crop production although optimizing soil moisture. To date, there is no information on how crop intensification affects natural enemy populations, particularly spiders. This study had two objectives: to characterize the abundance and diversity of spiders in eastern Colorado agroecosystems, and to test the hypothesis that spider diversity and density would be higher in wheat (Triticum aestivum L.) in crop-intensified rotations compared with wheat in conventional rotations. We collected spiders through pitfall, vacuum, and lookdown sampling from 2002 to 2007 to test these objectives. Over 11,000 spiders in 19 families from 119 species were captured from all sampling techniques. Interestingly, the hunting spider guild represented 89% of the spider fauna captured from all sites with the families Gnaphosidae and Lycosidae representing 75% of these spiders. Compared with European agroecosystems, these agroecosystems had greater diversity, which can be beneficial for the biological control of pests. Overall, spider densities were low in these semiarid cropping systems, and crop intensification effects on spider densities were not evident at this scale.

  8. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

    USDA-ARS?s Scientific Manuscript database

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, we performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and...

  9. 605 Salad crops: Root, bulb, and tuber Crops

    USDA-ARS?s Scientific Manuscript database

    Root and tuber crops (potato, cassava, sweet potato, and yams) comprise 4 of the 10 major food staples of the world and serve as a major source of energy for the poor of developing nations. Minimal strain placed on agro ecosystems by root and tuber crops highlight their welcomed contribution to the ...

  10. Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study.

    PubMed

    Légère, Anne

    2005-03-01

    Data from the literature and recent experiments with herbicide-resistant (HR) canola (Brassica napus L) repeatedly confirm that genes and transgenes will flow and hybrids will form if certain conditions are met. These include sympatry with a compatible relative (weedy, wild or crop), synchrony of flowering, successful fertilization and viable offspring. The chance of these events occurring is real; however, it is generally low and varies with species and circumstances. Plants of the same species (non-transgenic or with a different HR transgene) in neighbouring fields may inherit the new HR gene, potentially generating plants with single and multiple HR. For canola, seed losses at harvest and secondary dormancy ensures the persistence over time of the HR trait(s) in the seed bank, and the potential presence of crop volunteers in subsequent crops. Although canola has many wild/weedy relatives, the risk of gene flow is quite low for most of these species, except with Brassica rapa L. Introgression of genes and transgenes in B rapa populations occurs with apparently little or no fitness costs. Consequences of HR canola gene flow for the agro-ecosystem include contamination of seed lots, potentially more complex and costly control strategy, and limitations in cropping system design. Consequences for non-agricultural habitats may be minor but appear largely undocumented. Minister of Public Works and Government Services Canada 2005

  11. Species Trials at the Waiakea Arboretum, Hilo, Hawaii

    Treesearch

    George B. Richmond

    1963-01-01

    Survival counts were made of 84 exotic tree species planted during 1956-1960 in a cleared rain-forest area near Hilo, Hawaii. Growth measurements were recorded for 5- and 6-year-old plantings. Most species had good survival, but some failed entirely. Soil depth was found to have a strong influence on rate of growth, but not on survival. Several valuable timber species...

  12. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay

    PubMed Central

    Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A.; Martínez, Sebastián; Casales, Luis; Caraballo, María P.; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    Abstract The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country. PMID:29755261

  13. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay.

    PubMed

    Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.

  14. Effects of Stocking Rate on the Variability of Peak Standing Crop in a Desert Steppe of Eurasia Grassland

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwu; Jiao, Shuying; Han, Guodong; Zhao, Mengli; Ding, Haijun; Zhang, Xinjie; Wang, Xiaoliang; Ayers, Eldon L.; Willms, Walter D.; Havsatad, Kris; A, Lata; Liu, Yongzhi

    2014-02-01

    Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha-1 month-1; light (LG), 0.15 sheep ha-1 month-1; moderate (MG), 0.30 sheep ha-1 month-1; and heavy (HG), 0.45 sheep ha-1 month-1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased ( P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May-July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease ( P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase ( P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower ( P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.

  15. A spatially-explicit data driven approach to assess the effect of agricultural land occupation on species groups

    NASA Astrophysics Data System (ADS)

    Elshout, P.; van Zelm, R.; Karuppiah, R.; Laurenzi, I.; Huijbregts, M.

    2013-12-01

    Change of vegetation cover and increased land use intensity can directly affect the natural habitat and the wildlife it houses. The actual impact of agricultural land use is region specific as crops are grown under various climatic conditions and ways of cultivation and refining. Furthermore, growing a specific crop in a tropical region may require clearance of rainforest while the same crop may replace natural grasslands in temperate regions. Within life cycle impact assessment (LCIA), methods to address impacts of land use on a global scale are still in need of development. We aim to extend existing methods to improve the robustness of LCIA by allowing spatial differentiation of agricultural land use impacts. The goal of this study is to develop characterization factors for the direct impact of land use on biodiversity, which results from the replacement of natural habitat with farmland. The characterization factor expresses the change in species richness under crop cultivation compared to the species richness in the natural situation over a certain area. A second goal was to identify the differences in impacts caused by cultivation of different crop types, sensitivity of different taxonomic groups, and differences in natural land cover. Empirical data on species richness were collected from literature for both natural reference situations and agricultural land use situations. Reference situations were selected on an ecoregion or biome basis. We calculated characterization factors for four crop groups (oil palm, low crops, cereals, and perennial grasses), four species groups (arthropods, birds, mammals, vascular plants), and six biomes.

  16. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    PubMed

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  17. How complete is our knowledge of the ecosystem services impacts of Europe's top 10 invasive species?

    NASA Astrophysics Data System (ADS)

    McLaughlan, C.; Gallardo, B.; Aldridge, D. C.

    2014-01-01

    Invasive non-native species have complex multilevel impacts on their introduced ecosystems, leading to far-ranging effects on fundamental ecosystem services, from the provision of food from that system, to human health and wellbeing. For this reason, there is an emerging interest in basing risk assessments not only on the species' ecological and economic impacts, but also on the effects related to ecosystem services. We investigated the quality and extent of baseline data detailing the effects that the top 10 of the 'worst' invasive species in Europe are having on their adopted ecosystems. The results were striking, as the 10 species showed a wide range of impacts on ecosystem services, a number of which were actually positive for ecosystems and human well-being. For instance, the bivalve Dreissena polymorpha is a prolific biofouler of pipes and boats, but it can improve water quality through its filtration of nuisance algae, a valuable effect that is often overlooked. We found that negative effects, particularly economic ones, were often assumed rather than quantitatively evidenced; for example, the cost of crop damage by species such as Myocastor coypus and Branta canadensis. In general, the evidence for impacts of these 'worst' invaders was severely lacking. We conclude that invasive species management requires prioritization, which should be based on informed and quantified assessment of the potential ecological and economic costs of species (both positive and negative), considered in the proper context of the invader and ecosystem. The Millennium Ecosystem Approach provides a useful framework to undertake such prioritization from a new perspective combining ecological and societal aspects. However, standard guidelines of evaluation are urgently needed in order to unify definitions, methods and evaluation scores.

  18. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    NASA Astrophysics Data System (ADS)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  19. Micronutrients in Soils, Crops, and Livestock

    NASA Astrophysics Data System (ADS)

    Gupta, Umesh C.; Wu, Kening; Liang, Siyuan

    Micronutrient concentrations are generally higher in the surface soil and decrease with soil depth. In spite of the high concentration of most micronutrients in soils, only a small fraction is available to plants. Micronutrients, also known as trace elements, are required in microquantities but their lack can cause serious crop production and animal health problems. Crops vary considerably in their response to various micronutrients. Brassicas and legumes are highly responsive to molybdenum (Mo) and boron (B), whereas corn and other cereals are more responsive to zinc (Zn) and copper (Cu). Micronutrient deficiencies are more common in humid temperate regions, as well as in humid tropical regions, because of intense leaching associated with high precipitation. Soil pH is one of the most important factors affecting the availability of micronutrients to plants. With increasing pH, the availability of these nutrients is reduced with the exception of Mo whose availability increases as soil pH increases. In most plant species, leaves contain higher amounts of nutrients than other plant parts. Therefore, whenever possible, leaves should be sampled to characterize the micronutrient status of crops. Deficiency symptoms for most micronutrients appear on the younger leaves at the top of the plant, whereas toxicity symptoms generally appear on the older leaves of plants. As summarized by Deckers and Steinnes, micronutrient deficiencies are widespread in developing countries, which have much poorer soil resources than the fertile soils of Europe and North America. Many of these areas lie in the humid tropics with extremely infertile, highly weathered, and/or highly leached soils, which are intensely deficient in nutrients. The rest of such soils are in the semiarid and areas adjacent to the latter, where alkaline and calcareous soil conditions severely limit the availability of micronutrients to plants. Frequently, the Cu, iron (Fe), manganese (Mn), Zn, and selenium (Se) levels

  20. Cranes and Crops: Investigating Farmer Tolerances toward Crop Damage by Threatened Blue Cranes (Anthropoides paradiseus) in the Western Cape, South Africa.

    PubMed

    van Velden, Julia L; Smith, Tanya; Ryan, Peter G

    2016-12-01

    The Western Cape population of Blue Cranes (Anthropoides paradiseus) in South Africa is of great importance as the largest population throughout its range. However, Blue Cranes are strongly associated with agricultural lands in the Western Cape, and therefore may come into conflict with farmers who perceive them as damaging to crops. We investigated the viability of this population by exploring farmer attitudes toward crane damage in two regions of the Western Cape, the Swartland and Overberg, using semi-structured interviews. Perceptions of cranes differed widely between regions: farmers in the Swartland perceived crane flocks to be particularly damaging to the feed crop sweet lupin (65 % of farmers reported some level of damage by cranes), and 40 % of these farmers perceived cranes as more problematic than other common bird pests. Farmers in the Overberg did not perceive cranes as highly damaging, although there was concern about cranes eating feed at sheep troughs. Farmers who had experienced large flocks on their farms and farmers who ranked cranes as more problematic than other bird pests more often perceived cranes to be damaging to their livelihoods. Biographical variables and crop profiles could not be related to the perception of damage, indicating the complexity of this human-wildlife conflict. Farmers' need for management alternatives was related to the perceived severity of damage. These results highlight the need for location-specific management solutions to crop damage by cranes, and contribute to the management of this vulnerable species.

  1. Cranes and Crops: Investigating Farmer Tolerances toward Crop Damage by Threatened Blue Cranes ( Anthropoides paradiseus) in the Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    van Velden, Julia L.; Smith, Tanya; Ryan, Peter G.

    2016-12-01

    The Western Cape population of Blue Cranes ( Anthropoides paradiseus) in South Africa is of great importance as the largest population throughout its range. However, Blue Cranes are strongly associated with agricultural lands in the Western Cape, and therefore may come into conflict with farmers who perceive them as damaging to crops. We investigated the viability of this population by exploring farmer attitudes toward crane damage in two regions of the Western Cape, the Swartland and Overberg, using semi-structured interviews. Perceptions of cranes differed widely between regions: farmers in the Swartland perceived crane flocks to be particularly damaging to the feed crop sweet lupin (65 % of farmers reported some level of damage by cranes), and 40 % of these farmers perceived cranes as more problematic than other common bird pests. Farmers in the Overberg did not perceive cranes as highly damaging, although there was concern about cranes eating feed at sheep troughs. Farmers who had experienced large flocks on their farms and farmers who ranked cranes as more problematic than other bird pests more often perceived cranes to be damaging to their livelihoods. Biographical variables and crop profiles could not be related to the perception of damage, indicating the complexity of this human-wildlife conflict. Farmers' need for management alternatives was related to the perceived severity of damage. These results highlight the need for location-specific management solutions to crop damage by cranes, and contribute to the management of this vulnerable species.

  2. COLT: seasonal prediction of crop irrigation needs

    NASA Astrophysics Data System (ADS)

    Villani, Giulia; Spisni, Andrea; Mariani, Maria Cristina; Pratizzoli, William; Pavan, Valentina; Tomei, Fausto; Botarelli, Lucio; Marletto, Vittorio

    2013-04-01

    COLT is an operational chain to predict summer (June, July, August) crop irrigation needs in Emilia-Romagna (Northern Italy) at the regional and lower scales. Set up by ARPA-SIMC in 2010, it has been applied since with good results. COLT predicts summer irrigation needs in May, i.e. at the beginning of the irrigation season in Emilia-Romagna. COLT is based on the production of yearly updated land use maps, observed daily weather data, a regional soil map and ensemble probabilistic seasonal weather forecasts obtained from the EUROSIP multi-model operational system and a geographical soil water balance model (CRITERIA). The first step of the operational scheme is the supervised classification of crops through field surveys and a set of multitemporal satellite images acquired during the first months of the growing period. As the identification of all crop species during the satellite working windows is not feasible, they are grouped in six classes: summer field crops (including corn, sorghum, tomato, sugar beet, potato and others), winter crops (wheat, barley, oat, etc.), perennial grasses (alfa-alfa and meadows), rice, vineyards and orchards, on the whole regional plain, covering about 775000 ha. The second step involves the statistical downscaling of the EUROSIP ensemble predictions over Emilia-Romagna and the use of a weather generator to synthetically produce a number (usually 50) replicated meteorological summer daily data series, consistent with the predicted and downscaled summer anomalies of temperature, rainfall and other related indices. During the final step the CRITERIA model computes crop development and soil water balance on the crop classification map using observed meteorological daily data up to the end of May. Afterword forecasts are used up to the end of the summer irrigation season, i.e. August 31st. The statistical distribution projections of summer irrigation needs at the regional and reclamation consortia scale are then issued and disseminated

  3. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    PubMed Central

    Etesami, Hassan; Beattie, Gwyn A.

    2018-01-01

    Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress. PMID:29472908

  4. DNA-informed breeding of rosaceous crops: promises, progress and prospects

    PubMed Central

    Peace, Cameron P

    2017-01-01

    Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the ‘chasm’ between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists. PMID:28326185

  5. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    NASA Astrophysics Data System (ADS)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  6. Plant-Pathogenic Oomycetes, Escherichia coli Strains, and Salmonella spp. Frequently Found in Surface Water Used for Irrigation of Fruit and Vegetable Crops in New York State

    PubMed Central

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    In the United States, surface water is commonly used to irrigate a variety of produce crops and can harbor pathogens responsible for food-borne illnesses and plant diseases. Understanding when pathogens infest water sources is valuable information for produce growers to improve the food safety and production of these crops. In this study, prevalence data along with regression tree analyses were used to correlate water quality parameters (pH, temperature, turbidity), irrigation site properties (source, the presence of livestock or fowl nearby), and precipitation data to the presence and concentrations of Escherichia coli, Salmonella spp., and hymexazol-insensitive (HIS) oomycetes (Phytophthora and Pythium spp.) in New York State surface waters. A total of 123 samples from 18 sites across New York State were tested for E. coli and Salmonella spp., of which 33% and 43% were positive, respectively. Additionally, 210 samples from 38 sites were tested for HIS oomycetes, and 88% were found to be positive, with 10 species of Phytophthora and 11 species of Pythium being identified from the samples. Regression analysis found no strong correlations between water quality parameters, site factors, or precipitation to the presence or concentration of E. coli in irrigation sources. For Salmonella, precipitation (≤0.64 cm) 3 days before sampling was correlated to both presence and the highest counts. Analyses for oomycetes found creeks to have higher average counts than ponds, and higher turbidity levels were associated with higher oomycete counts. Overall, information gathered from this study can be used to better understand the food safety and plant pathogen risks of using surface water for irrigation. PMID:24878603

  7. [Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato].

    PubMed

    Meng, Pin-Pin; Liu, Xing; Qiu, Hui-Zhen; Zhang, Wen-Ming; Zhang, Chun-Hong; Wang, Di; Zhang, Jun-Lian; Shen, Qi-Rong

    2012-11-01

    Continuous cropping obstacle is one of the main restriction factors in potato industry. In order to explore the mechanisms of potato's continuous cropping obstacle and to reduce the impact on potato's tuber yield, a field experiment combined with PCR-DGGE molecular fingerprinting was conducted to investigate the fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. With the increasing year of potato' s continuous cropping, the numbers of visible bands in rhizosphere fungal DGGE profiles increased obviously. As compared with that of CK (rotation cropping), the operational taxonomic unit (OTU) in treatments of one to five years continuous cropping was increased by 38.5%, 38.5%, 30.8%, 46.2%, and 76.9% respectively, indicating that potato's continuous cropping caused an obvious increase in the individual numbers of dominant fungal populations in rhizosphere soil. Also with the increasing year of potato's continuous cropping, the similarity of the fungal population structure among the treatments had a gradual decrease. The sequencing of the fungal DGGE bands showed that with the increasing year of continuous cropping, the numbers of the potato's rhizosphere soil-borne pathogens Fusarium oxysporum and F. solani increased obviously, while the number of Chaetomium globosum, as a biocontrol species, had a marked decrease in the fifth year of continuous cropping. It was suggested that potato' s continuous cropping caused the pathogen fungal populations become the dominant microbial populations in rhizosphere soil, and the rhizosphere micro-ecological environment deteriorated, which in turn affected the root system, making the root vigor and its absorption area reduced, and ultimately, the tuber yield decreased markedly.

  8. Short term impacts provide a management window for minimizing invasions from bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    In anticipation of the expansion of perennial bioenergy cultivation, we experimentally introduced Miscanthus sinensis and Miscanthus × giganteus (two non-native candidate bioenergy species) into two different non-crop habitats (old field and flood-plain forest) to evaluate their establishment succes...

  9. Exploitation of allelopathy for weed control in annual and perennial cropping systems.

    PubMed

    Putnam, A R; Defrank, J; Barnes, J P

    1983-08-01

    A variety of crops, cultivars, and accessions have been evaluated over the past six years for superior capability to suppress weed growth. The most successful of these approaches has been to grow cover crops of rye (Secale cereale), wheat (Triticum aestivum), sorghum (Sorghum bicolor), or barley (Hordeum vulgare) to a height of 40-50 cm, desiccate the crops by contact herbicides or freezing, and allow their residues to remain on the soil surface. Often, up to 95% control of important agroecosystem weed species was obtained for a 30- to 60-day period following desiccation of the cover crop. The plant residues on the soil surface exhibit numerous physical and chemical attributes that contribute to weed suppression. Physical aspects include shading and reduced soil temperatures which were similarly achieved using poplar (Populus) excelsior as a control mulch. Chemical aspects apparently include direct release of toxins, as well as production of phytotoxic microbial products. Numerous chemicals appear to work in concert or in an additive or synergistic manner to reduce weed germination and growth.

  10. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    PubMed Central

    2011-01-01

    Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully. PMID:21812981

  11. Phytophthora Species in Rivers and Streams of the Southwestern United States

    PubMed Central

    Stamler, Rio A.; Sanogo, Soumalia; Goldberg, Natalie P.

    2016-01-01

    ABSTRACT Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia. Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. IMPORTANCE Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents. PMID:27235435

  12. Venoms, toxins and derivatives from the Brazilian fauna: valuable sources for drug discovery.

    PubMed

    De Marco Almeida, Flávia; de Castro Pimenta, Adriano Monteiro; Oliveira, Mônica Cristina; De Lima, Maria Elena

    2015-06-25

    Animal venoms have been widely investigated throughout the world. The great number of biotechnological articles as well as patent applications in the field of drug discovery based on these compounds indicates how important the source is. This review presents a list of the most studied Brazilian venomous animal species and shows the most recent patent applications filed from 2000 to 2013, which comprise Brazilian venoms, toxins and derivatives. We analyze the data according to the species, the type of products claimed and the nationality of the inventors. Fifty-five patent applications were found, involving 8 genera. Crotalus, Lachesis, Bothrops and Loxosceles represented 78% of the patent applications. The other 22% were represented by Phoneutria, Tityus, Acanthoscurria and Phyllomedusa. Most of the inventions (42%) involved anticancer, immunomodulator or antimicrobial drugs, while 13% involved anti-venoms and vaccines, 11% involved hypotensive compositions, 9% involved antinociceptive and/or anti-inflammatory compositions, and the other 25% involved methods, kits or compositions for various purposes. Brazilian inventors filed 49% of the patent applications, but other countries, mainly the United States of America, Germany, Russia and France, also filed patent applications claiming products comprising venoms, toxins and/or derivatives from the Brazilian fauna. Brazil holds an important number of patent applications which mostly belong to universities and research institutes, but the pharmaceutical industry in this field is still weak in Brazil. Although, Brazilian venomous animal species have been reported in drug discovery throughout the world, many species remain to be explored as valuable and promising tools for drug discovery and development.

  13. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species

    USDA-ARS?s Scientific Manuscript database

    Intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth & D.R. Dewey], a segmental autoallohexaploid (2n=6x=42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.) improvement. Throughout the scientific literature, there continues to be...

  14. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  15. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  16. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  17. Reproductive Impacts of Endocrine-Disrupting Chemicals on Wildlife Species: Implications for Conservation of Endangered Species.

    PubMed

    Tubbs, Christopher W; McDonough, Caitlin E

    2018-02-15

    Wildlife have proven valuable to our understanding of the potential effects of endocrine-disrupting chemicals (EDCs) on human health by contributing considerably to our understanding of the mechanisms and consequences of EDC exposure. But the threats EDCs present to populations of wildlife species themselves are significant, particularly for endangered species whose existence is vulnerable to any reproductive perturbation. However, few studies address the threats EDCs pose to endangered species owing to challenges associated with their study. Here, we highlight those barriers and review the available literature concerning EDC effects on endangered species. Drawing from other investigations into nonthreatened wildlife species, we highlight opportunities for new approaches to advance our understanding and potentially mitigate the effects of EDCs on endangered species to enhance their fertility.

  18. Climatic, Edaphic Factors and Cropping History Help Predict Click Beetle (Coleoptera: Elateridae) (Agriotes spp.) Abundance.

    PubMed

    Kozina, A; Lemic, D; Bazok, R; Mikac, K M; Mclean, C M; Ivezić, M; Igrc Barčić, J

    2015-01-01

    It is assumed that the abundance of Agriotes wireworms (Coleoptera: Elateridae) is affected by agro-ecological factors such as climatic and edaphic factors and the crop/previous crop grown at the sites investigated. The aim of this study, conducted in three different geographic counties in Croatia from 2007 to 2009, was to determine the factors that influence the abundance of adult click beetle of the species Agriotes brevis Cand., Agriotes lineatus (L.), Agriotes obscurus (L.), Agriotes sputator (L.), and Agriotes ustulatus Schall. The mean annual air temperature, total rainfall, percentage of coarse and fine sand, coarse and fine silt and clay, the soil pH, and humus were investigated as potential factors that may influence abundance. Adult click beetle emergence was monitored using sex pheromone traps (YATLORf and VARb3). Exploratory data analysis was preformed via regression tree models and regional differences in Agriotes species' abundance were predicted based on the agro-ecological factors measured. It was found that the best overall predictor of A. brevis abundance was the previous crop grown. Conversely, the best predictor of A. lineatus abundance was the current crop being grown and the percentage of humus. The best predictor of A. obscurus abundance was soil pH in KCl. The best predictor of A. sputator abundance was rainfall. Finally, the best predictors of A. ustulatus abundance were soil pH in KCl and humus. These results may be useful in regional pest control programs or for predicting future outbreaks of these species. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. Temporal Downscaling of Crop Coefficient and Crop Water Requirement from Growing Stage to Substage Scales

    PubMed Central

    Shang, Songhao

    2012-01-01

    Crop water requirement is essential for agricultural water management, which is usually available for crop growing stages. However, crop water requirement values of monthly or weekly scales are more useful for water management. A method was proposed to downscale crop coefficient and water requirement from growing stage to substage scales, which is based on the interpolation of accumulated crop and reference evapotranspiration calculated from their values in growing stages. The proposed method was compared with two straightforward methods, that is, direct interpolation of crop evapotranspiration and crop coefficient by assuming that stage average values occurred in the middle of the stage. These methods were tested with a simulated daily crop evapotranspiration series. Results indicate that the proposed method is more reliable, showing that the downscaled crop evapotranspiration series is very close to the simulated ones. PMID:22619572

  20. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms.

    PubMed

    Wach, Michael; Hellmich, Richard L; Layton, Raymond; Romeis, Jörg; Gadaleta, Patricia G

    2016-08-01

    Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered insect resistant (GEIR) crops. Species commonly used in GEIR crop testing include beneficial organisms such as honeybees, arthropod predators, and parasitoids. The choice of appropriate surrogates is influenced by scientific factors such as the knowledge of the mode of action and the spectrum of activity as well as societal factors such as protection goals that assign value to certain ecosystem services such as pollination or pest control. The primary reasons for using surrogates include the inability to test all possible organisms, the restrictions on using certain organisms in testing (e.g., rare, threatened, or endangered species), and the ability to achieve greater sensitivity and statistical power by using laboratory testing of certain species. The acceptance of surrogate species data can allow results from one region to be applied or "transported" for use in another region. On the basis of over a decade of using surrogate species to evaluate potential effects of GEIR crops, it appears that the current surrogates have worked well to predict effects of GEIR crops that have been developed (Carstens et al. GM Crops Food 5:1-5, 2014), and it is expected that they should work well to predict effects of future GEIR crops based on similar technologies.

  1. Species From the Heliothinae Complex (Lepidoptera: Noctuidae) in Tucumán, Argentina, an Update of Geographical Distribution of Helicoverpa armigera

    PubMed Central

    Murúa, M. Gabriela; Cazado, Lucas E.; Casmuz, Augusto; Herrero, M. Inés; Villagrán, M. Elvira; Vera, Alejandro; Sosa-Gómez, Daniel R.; Gastaminza, Gerardo

    2016-01-01

    The Heliothinae complex in Argentina encompasses Helicoverpa gelotopoeon (Dyar), Helicoverpa zea (Boddie), Helicoverpa armigera (Hübner), and Chloridea virescens (Fabricius). In Tucumán, the native species H. gelotopoeon is one of the most voracious soybean pests and also affects cotton and chickpea, even more in soybean-chickpea succession cropping systems. Differentiation of the Heliothinae complex in the egg, larva, and pupa stages is difficult. Therefore, the observation of the adult wing pattern design and male genitalia is useful to differentiate species. The objective of this study was to identify the species of the Heliothinae complex, determine population fluctuations of the Heliothinae complex in soybean and chickpea crops using male moths collected in pheromone traps in Tucuman province, and update the geographical distribution of H. armigera in Argentina. The species found were H. gelotopoeon, H. armigera, H. zea, and C. virescens. Regardless of province, county, crop, and year, the predominant species was H. gelotopoeon. Considering the population dynamics of H. gelotopoeon and H. armigera in chickpea and soybean crops, H. gelotopoeon was the most abundant species in both crops, in all years sampled, and the differences registered were significant. On the other hand, according to the Sistema Nacional Argentino de Vigilancia y Monitoreo de Plagas (SINAVIMO) database and our collections, H. armigera was recorded in eight provinces and 20 counties of Argentina, and its larvae were found on soybean, chickpea, sunflower crops and spiny plumeless thistle (Carduus acanthoides). This is the first report of H. armigera in sunflower and spiny plumeless thistle in Argentina. PMID:27324588

  2. Weather effects on the success of longleaf pine cone crops

    Treesearch

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  3. Phosphorus acquisition and utilisation in crop legumes under global change.

    PubMed

    Pang, Jiayin; Ryan, Megan H; Lambers, Hans; Siddique, Kadambot Hm

    2018-05-28

    Improving phosphorus (P)-use efficiency in legumes is a worldwide challenge in the face of an increasing world population, dwindling global rock phosphate reserves, the relatively high P demand of legumes and global change. This review focuses on P acquisition of crop legumes in response to climate change. We advocate further studies on: firstly, the response of carboxylate exudation, mycorrhizas and root morphology to climate change and their role in P acquisition as dependent on edaphic factors; secondly, developing intercropping systems with a combination of a legume and another crop species to enhance P acquisition; and thirdly, the impact of the interactions of the major climate change factors on P acquisition in the field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  5. The Influence of Life History Milestones and Association Networks on Crop-Raiding Behavior in Male African Elephants

    PubMed Central

    Chiyo, Patrick I.; Moss, Cynthia J.; Alberts, Susan C.

    2012-01-01

    Factors that influence learning and the spread of behavior in wild animal populations are important for understanding species responses to changing environments and for species conservation. In populations of wildlife species that come into conflict with humans by raiding cultivated crops, simple models of exposure of individual animals to crops do not entirely explain the prevalence of crop raiding behavior. We investigated the influence of life history milestones using age and association patterns on the probability of being a crop raider among wild free ranging male African elephants; we focused on males because female elephants are not known to raid crops in our study population. We examined several features of an elephant association network; network density, community structure and association based on age similarity since they are known to influence the spread of behaviors in a population. We found that older males were more likely to be raiders than younger males, that males were more likely to be raiders when their closest associates were also raiders, and that males were more likely to be raiders when their second closest associates were raiders older than them. The male association network had sparse associations, a tendency for individuals similar in age and raiding status to associate, and a strong community structure. However, raiders were randomly distributed between communities. These features of the elephant association network may limit the spread of raiding behavior and likely determine the prevalence of raiding behavior in elephant populations. Our results suggest that social learning has a major influence on the acquisition of raiding behavior in younger males whereas life history factors are important drivers of raiding behavior in older males. Further, both life-history and network patterns may influence the acquisition and spread of complex behaviors in animal populations and provide insight on managing human-wildlife conflict. PMID:22347468

  6. Two new species of Daidalotarsonemus (Acari: Prostigmata: Tarsonemidae) from Brazil

    USDA-ARS?s Scientific Manuscript database

    Two new tarsonemid species of the genus Daidalotarsonemus found on both native and crop plants in Brazil are described herein, based on adult females: Daidalotarsonemus esalqi sp. n. and Daidalotarsonemus savanicus sp. n. A key is provided to distinguish females of Daidalotarsonemus species known to...

  7. Draft Genome Sequence, and a Sequence-Defined Genetic Linkage Map of the Legume Crop Species Lupinus angustifolius L

    PubMed Central

    Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W.; Howieson, John G.; Li, Chengdao

    2013-01-01

    Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species. PMID:23734219

  8. Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L.

    PubMed

    Yang, Huaan; Tao, Ye; Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W; Howieson, John G; Li, Chengdao

    2013-01-01

    Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species.

  9. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing.

    PubMed

    Ni, Kuikui; Minh, Tang Thuy; Tu, Tran Thi Minh; Tsuruta, Takeshi; Pang, Huili; Nishino, Naoki

    2017-02-01

    The microbiota of pre-ensiled crop and silage were examined using denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS). Wilted Italian ryegrass (IR), whole crop corn (WC), and wilted alfalfa (AL) silages stored for 2 months were examined. All silages contained lactic acid as a predominant fermentation product. Across the three crop species, DGGE detected 36 and 28 bands, and NGS identified 253 and 259 genera in the pre-ensiled crops and silages, respectively. The NGS demonstrated that, although lactic acid bacteria (LAB) became prevalent in all silages after 2 months of storage, the major groups were different between crops: Leuconostoc spp. and Pediococcus spp. for IR silage, Lactobacillus spp. for WC silage, and Enterococcus spp. for AL silage. The predominant silage LAB genera were also detected by DGGE, but the presence of diverse non-LAB species in pre-ensiled crops was far better detected by NGS. Likewise, good survival of Agrobacterium spp., Methylobacterium spp., and Sphingomonas spp. in IR and AL silages was demonstrated by NGS. The diversity of the microbiota described by principal coordinate analysis was similar between DGGE and NGS. Our finding that analysis of pre-ensiled crop microbiota did not help predict silage microbiota was true for both DGGE and NGS.

  10. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    PubMed Central

    French, Katherine E.

    2017-01-01

    Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to

  11. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health.

    PubMed

    French, Katherine E

    2017-01-01

    Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to

  12. An image based method for crop yield prediction using remotely sensed and crop canopy data: the case of Paphos district, western Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, G.; Hadjimitsis, D.

    2014-08-01

    Remote sensing techniques development have provided the opportunity for optimizing yields in the agricultural procedure and moreover to predict the forthcoming yield. Yield prediction plays a vital role in Agricultural Policy and provides useful data to policy makers. In this context, crop and soil parameters along with NDVI index which are valuable sources of information have been elaborated statistically to test if a) Durum wheat yield can be predicted and b) when is the actual time-window to predict the yield in the district of Paphos, where Durum wheat is the basic cultivation and supports the rural economy of the area. 15 plots cultivated with Durum wheat from the Agricultural Research Institute of Cyprus for research purposes, in the area of interest, have been under observation for three years to derive the necessary data. Statistical and remote sensing techniques were then applied to derive and map a model that can predict yield of Durum wheat in this area. Indeed the semi-empirical model developed for this purpose, with very high correlation coefficient R2=0.886, has shown in practice that can predict yields very good. Students T test has revealed that predicted values and real values of yield have no statistically significant difference. The developed model can and will be further elaborated with more parameters and applied for other crops in the near future.

  13. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  14. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  15. Genetic variation in isolates of the Fusarium incarnatum-equiseti species complex recovered from cereals

    USDA-ARS?s Scientific Manuscript database

    The Fusarium incarnatum-equiseti species complex (FIESC) includes mycotoxigenic species associated with several diseases of cereals and other crops. These species are considered moderately aggressive and are reported to produce multiple mycotoxins, including beauvericin, zearalenone, equisetin, fusa...

  16. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    PubMed

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  17. Identification of agricultural crops by computer processing of ERTS MSS data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Cipra, J. E.

    1973-01-01

    Quantitative evaluation of computer-processed ERTS MSS data classifications has shown that major crop species (corn and soybeans) can be accurately identified. The classifications of satellite data over a 2000 square mile area not only covered more than 100 times the area previously covered using aircraft, but also yielded improved results through the use of temporal and spatial data in addition to the spectral information. Furthermore, training sets could be extended over far larger areas than was ever possible with aircraft scanner data. And, preliminary comparisons of acreage estimates from ERTS data and ground-based systems agreed well. The results demonstrate the potential utility of this technology for obtaining crop production information.

  18. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil

    DOE PAGES

    McDaniel, M. D.; Grandy, A. S.; Tiemann, L. K.; ...

    2016-08-11

    Agricultural crop rotations have been shown to increase soil carbon (C), nitrogen (N), and microbial biomass. The mechanisms behind these increases remain unclear, but may be linked to the diversity of crop residue inputs to soil organic matter (SOM). Here, we used a residue mixture incubation to examine how variation in long-term diversity of plant communities in agroecosystems influences decomposition of residue mixtures, thus providing a comparison of the effects of plant diversification on decomposition in the long term (via crop rotation) and short term (via residue mixtures). Three crop residue mixtures, ranging in diversity from two to four species,more » were incubated for 360 d with soils from five crop rotations, ranging from monoculture corn (mC) to a complex five-crop rotation. In response, we measured fundamental soil pools and processes underlying C and N cycling. These included soil respiration, inorganic N, microbial biomass, and extracellular enzymes. We hypothesized that soils with more diverse cropping histories would show greater synergistic mixture effects than mC. For most variables (except extracellular enzymes), crop rotation history, or the long-term history of plant diversity in the field, had a stronger effect on soil processes than mixture composition. In contrast to our hypothesis, the mC soil had nearly three and seven times greater synergistic mixture effects for respiration and microbial biomass N, respectively, compared with soils from crop rotations. This was due to the low response of the mC soils to poor quality residues (corn and wheat), likely resulting from a lack of available C and nutrients to cometabolize these residues. These results indicate that diversifying crop rotations in agricultural systems alter the decomposition dynamics of new residue inputs, which may be linked to the benefits of increasing crop rotation diversity on soil nutrient cycling, SOM dynamics, and yields.« less

  19. Cerebellar Abiotrophy Across Domestic Species.

    PubMed

    Scott, Erica Yuki; Woolard, Kevin Douglas; Finno, Carrie J; Murray, James D

    2018-06-01

    Cerebellar abiotrophy (CA) is a neurodegenerative disorder affecting the cerebellum and occurs in multiple species. Although CA is well researched in humans and mice, domestic species such as the dog, cat, sheep, cow, and horse receive little recognition. This may be due to few studies addressing the mechanism of CA in these species. However, valuable information can still be extracted from these cases. A review of the clinicohistologic phenotype of CA in these species and determining the various etiologies of CA may aid in determining conserved and required pathways necessary for proper cerebellar development and function. This review outlines research approaches of studies of CA in domestic species, compared to the approaches used in mice, with the objective of comparing CA in domestic species while identifying areas for further research efforts.

  20. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.

    PubMed

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W; Iorizzo, Massimo; Ismail, Abdelbagi M; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Simon, Philipp W; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Wullschleger, Stan D; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.