Sample records for valuable engineering tool

  1. Decision Matrices: Tools to Enhance Middle School Engineering Instruction

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob

    2017-01-01

    Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…

  2. Metabolic engineering tools in model cyanobacteria.

    PubMed

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Engineering With Nature Geographic Project Mapping Tool (EWN ProMap)

    DTIC Science & Technology

    2015-07-01

    EWN ProMap database provides numerous case studies for infrastructure projects such as breakwaters, river engineering dikes, and seawalls that have...the EWN Project Mapping Tool (EWN ProMap) is to assist users in their search for case study information that can be valuable for developing EWN ideas...Essential elements of EWN include: (1) using science and engineering to produce operational efficiencies supporting sustainable delivery of

  4. HISTORICAL ANALYSIS, A VALUABLE TOOL IN COMMUNITY-BASED ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    A historical analysis of the ecological consequences of development can be a valuable tool in community-based environmental protection. These studies can engage the public in environmental issues and lead to informed decision making. Historical studies provide an understanding of...

  5. Computational Tools for Metabolic Engineering

    PubMed Central

    Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.

    2012-01-01

    A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572

  6. A facility monitoring system: The single most valuable and cost-effective tool available to an energy manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, W.A.

    Energy engineering and management combines engineering problem-solving and financial management techniques to reduce utility costs. At present, substantial amounts of time and money are being spent in order to attempt to quantify energy consumption and costs and define opportunities for savings. Unfortunately, accurate verification of results is often overlooked. Advances in technology during the last few years have made the installation of a permanent, PC-based monitoring system possible for any facility, often for no more than the cost of a detailed study. By investing initially in a monitoring system rather than audits or studies, the actual consumption and cost datamore » will be available on a continuing basis and can be used to produce immediate operational savings, more accurately analyze opportunities requiring capital investments, and to verify actual savings resulting from changes. A permanent monitoring system, installed as the first step in a utility cost reduction effort, to identify where and how energy is used in a facility on a dynamic and real-time basis, can provide the most valuable and cost-effective tool available to an energy manager. The resulting data allows energy consumption patterns and utility costs to be understood and managed in the same manner as all other costs within a facility.« less

  7. Analysis of Ten Reverse Engineering Tools

    NASA Astrophysics Data System (ADS)

    Koskinen, Jussi; Lehmonen, Tero

    Reverse engineering tools can be used in satisfying the information needs of software maintainers. Especially in case of maintaining large-scale legacy systems tool support is essential. Reverse engineering tools provide various kinds of capabilities to provide the needed information to the tool user. In this paper we analyze the provided capabilities in terms of four aspects: provided data structures, visualization mechanisms, information request specification mechanisms, and navigation features. We provide a compact analysis of ten representative reverse engineering tools for supporting C, C++ or Java: Eclipse Java Development Tools, Wind River Workbench (for C and C++), Understand (for C++), Imagix 4D, Creole, Javadoc, Javasrc, Source Navigator, Doxygen, and HyperSoft. The results of the study supplement the earlier findings in this important area.

  8. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  9. Process for selecting engineering tools : applied to selecting a SysML tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Spain, Mark J.; Post, Debra S.; Taylor, Jeffrey L.

    2011-02-01

    Process for Selecting Engineering Tools outlines the process and tools used to select a SysML (Systems Modeling Language) tool. The process is general in nature and users could use the process to select most engineering tools and software applications.

  10. Software engineering methodologies and tools

    NASA Technical Reports Server (NTRS)

    Wilcox, Lawrence M.

    1993-01-01

    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.

  11. Cyantraniliprole: a valuable tool for Frankliniella occidentalis (Pergande) management.

    PubMed

    Bielza, Pablo; Guillén, Juan

    2015-08-01

    Frankliniella occidentalis is a worldwide economically important pest. Scarcity of effective products and cross-resistance issues make resistance to existing insecticides a recurring problem that requires the development of new control tools, such as incorporating novel compounds. Lethal effects of cyantraniliprole on adults and larvae from field and insecticide-resistant populations were evaluated. In addition, the sublethal effects on biological features such as fecundity, fertility, feeding, oviposition and mating were studied. Results obtained for larvae produced LC50 values ranging from 33.4 to 109.2 mg L(-1) , with a low natural variability (3.3-fold) and a LC50 composite value of 52.2 mg L(-1) . The susceptibility for adults was 23-fold lower than for larvae. No evidence of cross-resistance between cyantraniliprole and established insecticides used against thrips was evident. Relevant sublethal effects of cyantraniliprole were demonstrated, including reduced fecundity, fertility, feeding, oviposition and mating success. Low variation in susceptibility across contemporary populations of F. occidentalis and a lack of cross-resistance to other insecticides indicate that cyantraniliprole is a potential candidate in rotation programmes within an insecticide resistance management strategy. The combined sublethal effect on reproduction will have an important impact on population reduction. Available data indicate that cyantraniliprole is likely to be a valuable tool for managing thrips populations. © 2014 Society of Chemical Industry.

  12. Motivational interviewing: a valuable tool for the psychiatric advanced practice nurse.

    PubMed

    Karzenowski, Abby; Puskar, Kathy

    2011-01-01

    Motivational Interviewing (MI) is well known and respected by many health care professionals. Developed by Miller and Rollnick (2002) , it is a way to promote behavior change from within and resolve ambivalence. MI is individualized and is most commonly used in the psychiatric setting; it is a valuable tool for the Psychiatric Advanced Nurse Practice Nurse. There are many resources that talk about what MI is and the principles used to apply it. However, there is little information about how to incorporate MI into a clinical case. This article provides a summary of articles related to MI and discusses two case studies using MI and why advanced practice nurses should use MI with their patients.

  13. Hypnosis as a Valuable Tool for Surgical Procedures in the Oral and Maxillofacial Area.

    PubMed

    Montenegro, Gil; Alves, Luiza; Zaninotto, Ana Luiza; Falcão, Denise Pinheiro; de Amorim, Rivadávio Fernandes Batista

    2017-04-01

    Hypnosis is a valuable tool in the management of patients who undergo surgical procedures in the maxillofacial complex, particularly in reducing and eliminating pain during surgery and aiding patients who have dental fear and are allergic to anesthesia. This case report demonstrates the efficacy of hypnosis in mitigating anxiety, bleeding, and pain during dental surgery without anesthesia during implant placement of tooth 14, the upper left first molar.

  14. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique

  15. Computer tools for systems engineering at LaRC

    NASA Technical Reports Server (NTRS)

    Walters, J. Milam

    1994-01-01

    The Systems Engineering Office (SEO) has been established to provide life cycle systems engineering support to Langley research Center projects. over the last two years, the computing market has been reviewed for tools which could enhance the effectiveness and efficiency of activities directed towards this mission. A group of interrelated applications have been procured, or are under development including a requirements management tool, a system design and simulation tool, and project and engineering data base. This paper will review the current configuration of these tools and provide information on future milestones and directions.

  16. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  17. Recent advances in systems metabolic engineering tools and strategies.

    PubMed

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Creating Simple Windchill Admin Tools Using Info*Engine

    NASA Technical Reports Server (NTRS)

    Jones, Corey; Kapatos, Dennis; Skradski, Cory

    2012-01-01

    Being a Windchill administrator often requires performing simple yet repetitive tasks on large sets of objects. These can include renaming, deleting, checking in, undoing checkout, and much more. This is especially true during a migration. Fortunately, PTC has provided a simple way to dynamically interact with Windchill using Info*Engine. This presentation will describe how to create simple Info*Engine tasks capable of saving Windchill 10.0 administrators hours of tedious work. It will also show how these tasks can be combined and displayed on a simple JSP page that acts as a "Windchill Administrator Dashboard/Toolbox". The attendee will learn some valuable tasks Info*Engine capable of performing. The attendee will gain a basic understanding of how to perform and implement Info*Engine tasks. The attendee will learn what's involved in creating a JSP page that displays Info*Engine tasks

  19. A Novel Immunocompetent Mouse Model of Pancreatic Cancer with Robust Stroma: a Valuable Tool for Preclinical Evaluation of New Therapies

    PubMed Central

    Majumder, Kaustav; Arora, Nivedita; Modi, Shrey; Chugh, Rohit; Nomura, Alice; Giri, Bhuwan; Dawra, Rajinder; Ramakrishnan, Sundaram; Banerjee, Sulagna; Saluja, Ashok; Dudeja, Vikas

    2017-01-01

    A valid preclinical tumor model should recapitulate the tumor microenvironment. Immune and stromal components are absent in immunodeficient models of pancreatic cancer. While these components are present in genetically engineered models such as KrasG12D; Trp53R172H; Pdx-1Cre (KPC), immense variability in development of invasive disease makes them unsuitable for evaluation of novel therapies. We have generated a novel mouse model of pancreatic cancer by implanting tumor fragments from KPC mice into the pancreas of wild type mice. Three-millimeter tumor pieces from KPC mice were implanted into the pancreas of C57BL/6J mice. Four to eight weeks later, tumors were harvested, and stromal and immune components were evaluated. The efficacy of Minnelide, a novel compound which has been shown to be effective against pancreatic cancer in a number of preclinical murine models, was evaluated. In our model, consistent tumor growth and metastases were observed. Tumors demonstrated intense desmoplasia and leukocytic infiltration which was comparable to that in the genetically engineered KPC model and significantly more than that observed in KPC tumor-derived cell line implantation model. Minnelide treatment resulted in a significant decrease in the tumor weight and volume. This novel model demonstrates a consistent growth rate and tumor-associated mortality and recapitulates the tumor microenvironment. This convenient model is a valuable tool to evaluate novel therapies. PMID:26582596

  20. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  1. The Tools That Help Systems Engineering

    NASA Technical Reports Server (NTRS)

    Gamertsfelder, Jacob O.

    2017-01-01

    There are many tools that systems engineers use in today's space programs. In my time in the Commercial Crew Program I sought to improve one of the vital tools for the verification and validation team. This was my main project but only a small part of what I have done in the department. I have also had the chance to learn from the best and see actual hardware, this real world experience will help me be a better aerospace engineer when I enter the workforce. I look forward to seeing the Commercial Crew Program progress to launch.

  2. Exploring Engineering instructors' views about writing and online tools to support communication in Engineering

    NASA Astrophysics Data System (ADS)

    Howard, Sarah K.; Khosronejad, Maryam; Calvo, Rafael A.

    2017-11-01

    To be fully prepared for the professional workplace, Engineering students need to be able to effectively communicate. However, there has been a growing concern in the field about students' preparedness for this aspect of their future work. It is argued that online writing tools, to engage numbers of students in the writing process, can support feedback on and development of writing in engineering on a larger scale. Through interviews and questionnaires, this study explores engineering academics' perceptions of writing to better understand how online writing tools may be integrated into their teaching. Results suggest that writing is viewed positively in the discipline, but it is not believed to be essential to success in engineering. Online writing tools were believed to support a larger number of students, but low knowledge of the tools limited academics' understanding of their usefulness in teaching and learning. Implications for innovation in undergraduate teaching are discussed.

  3. Update on SLD Engineering Tools Development

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Potapczuk, Mark G.; Bond, Thomas H.

    2004-01-01

    The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions. In response to this need, NASA and its partners conceived a strategy or Roadmap for developing experimental and analytical SLD simulation tools. Following review and refinement by the airworthiness authorities and other international research partners, this technical strategy has been crystallized into a project plan to guide the SLD Engineering Tool Development effort. This paper will provide a brief overview of the latest version of the project plan and technical rationale, and provide a status of selected SLD Engineering Tool Development research tasks which are currently underway.

  4. The Stirling engine as a low cost tool to educate mechanical engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gros, J.; Munoz, M.; Moreno, F.

    1995-12-31

    The University of Zaragoza through CIRCE, the New Enterprise foundation, an Opel foundation and the local Government of Aragon have been developed a program to introduce the Stirling Engine as a low cost tool to educate students in mechanical engineering. The promotion of a prize like GNAT Power organized by the magazine Model Engineer in London, has improved the practical education of students in the field of mechanical devices and thermal engines. Two editions of the contest, 1993 and 1994, awarded the greatest power Stirling engine made by only using a little candle of paraffin as a heat source. Fourmore » engines were presented in the first edition, with an average power of about 100 mW, and seven engines in the second one, achieving a power of about 230 mW. Presentations in Technical Schools and the University have been carried out. Also low cost tools have been made for measuring an electronic device to draw the real internal pressure volume diagram using a PC. A very didactic software to design classic kinematic alpha, beta and gamma engines plus Ringbom beta and gamma engines has been created. A book is going to be published (in Spanish) explaining the design of small Stirling engines as a way to start with low cost research in thermal engines, a very difficult target with IC engines.« less

  5. Investigating Engineering Practice Is Valuable for Mathematics Learning

    ERIC Educational Resources Information Center

    Goold, Eileen

    2015-01-01

    While engineering mathematics curricula often prescribe a fixed body of mathematical knowledge, this study takes a different approach; second-year engineering students are additionally required to investigate and document an aspect of mathematics used in engineering practice. A qualitative approach is used to evaluate the impact that students'…

  6. An Engineering Innovation Tool: Providing Science Educators a Picture of Engineering in Their Classroom

    ERIC Educational Resources Information Center

    Ross, Julia Myers; Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.

    2018-01-01

    An Engineering Innovation Tool was designed to support science teachers as they navigate the opportunities and challenges the inclusion of engineering affords by providing a useful tool to be used within the professional development environment and beyond. The purpose of this manuscript is to share the design, development and substance of the tool…

  7. Teaching Green Engineering: The Case of Ethanol Lifecycle Analysis

    ERIC Educational Resources Information Center

    Vallero, Daniel A.; Braiser, Chris

    2008-01-01

    Lifecycle assessment (LCA) is a valuable tool in teaching green engineering and has been used to assess biofuels, including ethanol. An undergraduate engineering course at Duke University has integrated LCA with other interactive teaching techniques to enhance awareness and to inform engineering decision making related to societal issues, such as…

  8. EMERGY METHODS: VALUABLE INTEGRATED ASSESSMENT TOOLS

    EPA Science Inventory

    NHEERL's Atlantic Ecology Division is investigating emergy methods as tools for integrated assessment in several projects evaluating environmental impacts, policies, and alternatives for remediation and intervention. Emergy accounting is a methodology that provides a quantitative...

  9. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  10. 3D-Printed specimens as a valuable tool in anatomy education: A pilot study.

    PubMed

    Garas, Monique; Vaccarezza, Mauro; Newland, George; McVay-Doornbusch, Kylie; Hasani, Jamila

    2018-06-06

    Three-dimensional (3D) printing is a modern technique of creating 3D-printed models that allows reproduction of human structures from MRI and CT scans via fusion of multiple layers of resin materials. To assess feasibility of this innovative resource as anatomy educational tool, we conducted a preliminary study on Curtin University undergraduate students to investigate the use of 3D models for anatomy learning as a main goal, to assess the effectiveness of different specimen types during the sessions and personally preferred anatomy learning tools among students as secondary aim. The study consisted of a pre-test, exposure to test (anatomical test) and post-test survey. During pre-test, all participants (both without prior experience and experienced groups) were given a brief introduction on laboratory safety and study procedure thus participants were exposed to 3D, wet and plastinated specimens of the heart, shoulder and thigh to identify the pinned structures (anatomical test). Then, participants were provided a post-test survey containing five questions. In total, 23 participants completed the anatomical test and post-test survey. A larger number of participants (85%) achieved right answers for 3D models compared to wet and plastinated materials, 74% of population selected 3D models as the most usable tool for identification of pinned structures and 45% chose 3D models as their preferred method of anatomy learning. This preliminary small-size study affirms the feasibility of 3D-printed models as a valuable asset in anatomy learning and shows their capability to be used adjacent to cadaveric materials and other widely used tools in anatomy education. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Spreadsheet-based engine data analysis tool - user's guide.

    DOT National Transportation Integrated Search

    2016-07-01

    This record refers to both the spreadsheet tool - Fleet Equipment Performance Measurement Preventive Maintenance Model: Spreadsheet-Based Engine Data Analysis Tool, http://ntl.bts.gov/lib/60000/60000/60007/0-6626-P1_Final.xlsm - and its accompanying ...

  12. Engine dynamic analysis with general nonlinear finite element codes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1991-01-01

    A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.

  13. Professional regulation: a potentially valuable tool in responding to "stem cell tourism".

    PubMed

    Zarzeczny, Amy; Caulfield, Timothy; Ogbogu, Ubaka; Bell, Peter; Crooks, Valorie A; Kamenova, Kalina; Master, Zubin; Rachul, Christen; Snyder, Jeremy; Toews, Maeghan; Zoeller, Sonja

    2014-09-09

    The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet ("stem cell tourism") is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Engineering Design Tools for Shape Memory Alloy Actuators: CASMART Collaborative Best Practices and Case Studies

    NASA Technical Reports Server (NTRS)

    Wheeler, Robert W.; Benafan, Othmane; Gao, Xiujie; Calkins, Frederick T; Ghanbari, Zahra; Hommer, Garrison; Lagoudas, Dimitris; Petersen, Andrew; Pless, Jennifer M.; Stebner, Aaron P.; hide

    2016-01-01

    -of-concept was fabricated and the experimental results and lessons learned are discussed. This analysis presents a collection of CASMART collaborative best practices in order to allow readers to utilize the available design tools and understand their modeling principles. These design tools, which are based on engineering models, can provide first-order optimal designs and are a basic and efficient method for either demonstrating design feasibility or refining design parameters. Although the design and integration of an SMA-based actuation system always requires application- and environment-specific engineering considerations, common modeling tools can significantly reduce the investment required for actuation system development and provide valuable engineering insight.

  15. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  16. Using CASE tools to write engineering specifications

    NASA Astrophysics Data System (ADS)

    Henry, James E.; Howard, Robert W.; Iveland, Scott T.

    1993-08-01

    There are always a wide variety of obstacles to writing and maintaining engineering documentation. To combat these problems, documentation generation can be linked to the process of engineering development. The same graphics and communication tools used for structured system analysis and design (SSA/SSD) also form the basis for the documentation. The goal is to build a living document, such that as an engineering design changes, the documentation will `automatically' revise. `Automatic' is qualified by the need to maintain textual descriptions associated with the SSA/SSD graphics, and the need to generate new documents. This paper describes a methodology and a computer aided system engineering toolset that enables a relatively seamless transition into document generation for the development engineering team.

  17. Project-Based Teaching-Learning Computer-Aided Engineering Tools

    ERIC Educational Resources Information Center

    Simoes, J. A.; Relvas, C.; Moreira, R.

    2004-01-01

    Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…

  18. Design and analysis of lifting tool assemblies to lift different engine block

    NASA Astrophysics Data System (ADS)

    Sawant, Arpana; Deshmukh, Nilaj N.; Chauhan, Santosh; Dabhadkar, Mandar; Deore, Rupali

    2017-07-01

    Engines block are required to be lifted from one place to another while they are being processed. The human effort required for this purpose is more and also the engine block may get damaged if it is not handled properly. There is a need for designing a proper lifting tool which will be able to conveniently lift the engine block and place it at the desired position without any accident and damage to the engine block. In the present study lifting tool assemblies are designed and analyzed in such way that it may lift different categories of engine blocks. The lifting tool assembly consists of lifting plate, lifting ring, cap screws and washers. A parametric model and assembly of Lifting tool is done in 3D modelling software CREO 2.0 and analysis is carried out in ANSYS Workbench 16.0. A test block of weight equivalent to that of an engine block is considered for the purpose of analysis. In the preliminary study, without washer the stresses obtained on the lifting tool were more than the safety margin. In the present design, washers were used with appropriate dimensions which helps to bring down the stresses on the lifting tool within the safety margin. Analysis is carried out to verify that tool design meets the ASME BTH-1 required safety margin.

  19. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste.

    PubMed

    Wang, Weiwei; Xu, Ping; Tang, Hongzhi

    2015-11-17

    Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds.

  20. Software Engineering Tools for Scientific Models

    NASA Technical Reports Server (NTRS)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  1. Professional Regulation: A Potentially Valuable Tool in Responding to “Stem Cell Tourism”

    PubMed Central

    Zarzeczny, Amy; Caulfield, Timothy; Ogbogu, Ubaka; Bell, Peter; Crooks, Valorie A.; Kamenova, Kalina; Master, Zubin; Rachul, Christen; Snyder, Jeremy; Toews, Maeghan; Zoeller, Sonja

    2014-01-01

    The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet (“stem cell tourism”) is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market. PMID:25241736

  2. Applications and issues of GIS as tool for civil engineering modeling

    USGS Publications Warehouse

    Miles, S.B.; Ho, C.L.

    1999-01-01

    A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.

  3. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  4. Open environments to support systems engineering tool integration: A study using the Portable Common Tool Environment (PCTE)

    NASA Technical Reports Server (NTRS)

    Eckhardt, Dave E., Jr.; Jipping, Michael J.; Wild, Chris J.; Zeil, Steven J.; Roberts, Cathy C.

    1993-01-01

    A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE) Public Interface Standard is presented. Over a 10-week time frame, three existing software products were encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard. The software products used were a computer-aided software engineering (CASE) design tool, a software reuse tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a coordinated design process in the Emeraude environment. The project and the features of PCTE used are described, experience with the use of Emeraude environment over the project time frame is summarized, and several related areas for future research are summarized.

  5. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2005-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  6. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2006-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  7. Modular co-culture engineering, a new approach for metabolic engineering.

    PubMed

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Artificial intelligence for turboprop engine maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-01-01

    Long-term maintenance operations, causing the unit to out of action, may seem economical - but they result in reduced operating readiness. Offsetting that concern, careless, hurried maintenance reduces margins of safety and reliability. Any tool that improves maintenance without causing a sharp increase in cost is valuable. Artificial intelligence (AI) is one of the tools. Expert system and neural networks are two different areas of AI that show promise for turboprop engine maintenance.

  9. Computer Assisted Learning for Biomedical Engineering Education: Tools

    DTIC Science & Technology

    2001-10-25

    COMPUTER ASSISTED LEARNING FOR BIOMEDICAL ENGINEERING EDUCATION : TOOLS Ayhan ÝSTANBULLU1 Ýnan GÜLER2 1 Department of Electronic...of Technical Education , Gazi University, 06500 Ankara, Türkiye Abstract- Interactive multimedia learning environment is being proposed...Assisted Learning (CAL) are given and some tools used in this area are explained. Together with the developments in the area of distance education

  10. Critical evaluation of reverse engineering tool Imagix 4D!

    PubMed

    Yadav, Rashmi; Patel, Ravindra; Kothari, Abhay

    2016-01-01

    The comprehension of legacy codes is difficult to understand. Various commercial reengineering tools are available that have unique working styles, and are equipped with their inherent capabilities and shortcomings. The focus of the available tools is in visualizing static behavior not the dynamic one. Therefore, it is difficult for people who work in software product maintenance, code understanding reengineering/reverse engineering. Consequently, the need for a comprehensive reengineering/reverse engineering tool arises. We found the usage of Imagix 4D to be good as it generates the maximum pictorial representations in the form of flow charts, flow graphs, class diagrams, metrics and, to a partial extent, dynamic visualizations. We evaluated Imagix 4D with the help of a case study involving a few samples of source code. The behavior of the tool was analyzed on multiple small codes and a large code gcc C parser. Large code evaluation was performed to uncover dead code, unstructured code, and the effect of not including required files at preprocessing level. The utility of Imagix 4D to prepare decision density and complexity metrics for a large code was found to be useful in getting to know how much reengineering is required. At the outset, Imagix 4D offered limitations in dynamic visualizations, flow chart separation (large code) and parsing loops. The outcome of evaluation will eventually help in upgrading Imagix 4D and posed a need of full featured tools in the area of software reengineering/reverse engineering. It will also help the research community, especially those who are interested in the realm of software reengineering tool building.

  11. Industrial Engineering Tool Use in Quality Improvement Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodin, Wayne; Beruvides, Mario

    This paper presents the results of an examination of industrial engineering tool use in Six Sigma projects for a contractor providing specialty manufacturing and service activities for a United States federal government agency.

  12. Tools for Using Citizen Science in Environmental, Agricultural, and Natural Resources Extension Programs

    ERIC Educational Resources Information Center

    Stofer, Kathryn A.

    2017-01-01

    Citizen science is quickly becoming a valuable tool in the Extension professional's tool kit. This is the case whether you are a 4-H agent looking to involve youth in agriscience and agriculture-related science, technology, engineering, and math experiential learning activities or an agriculture and natural resources agent seeking to help…

  13. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  14. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  15. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.

  16. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review).

    PubMed

    Kriegsmann, Jörg; Kriegsmann, Mark; Casadonte, Rita

    2015-03-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.

  17. CRISPR-enabled tools for engineering microbial genomes and phenotypes.

    PubMed

    Tarasava, Katia; Oh, Eun Joong; Eckert, Carrie A; Gill, Ryan T

    2018-06-19

    In recent years CRISPR-Cas technologies have revolutionized microbial engineering approaches. Genome editing and non-editing applications of various CRISPR-Cas systems have expanded the throughput and scale of engineering efforts, as well as opened up new avenues for manipulating genomes of non-model organisms. As we expand the range of organisms used for biotechnological applications, we need to develop better, more versatile tools for manipulation of these systems. Here we summarize the current advances in microbial gene editing using CRISPR-Cas based tools, and highlight state-of-the-art methods for high-throughput, efficient genome-scale engineering in model organisms Escherichia coli and Saccharomyces cerevisiae. We also review non-editing CRISPR-Cas applications available for gene expression manipulation, epigenetic remodeling, RNA editing, labeling and synthetic gene circuit design. Finally, we point out the areas of research that need further development in order to expand the range of applications and increase the utility of these new methods. This article is protected by copyright. All rights reserved.

  18. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  19. A Design Tool for Liquid Rocket Engine Injectors

    NASA Technical Reports Server (NTRS)

    Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.

    2000-01-01

    A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.

  20. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  1. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    PubMed

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production.

  2. Automatic Differentiation as a tool in engineering design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Hall, Laura E.

    1992-01-01

    Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. In this paper, it is assessed as a tool for engineering design. The paper discusses the forward and reverse modes of AD, their computing requirements, and approaches to implementing AD. It continues with application to two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation. The paper concludes with the observation that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available.

  3. Knowledge Management tools integration within DLR's concurrent engineering facility

    NASA Astrophysics Data System (ADS)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  4. Assess/Mitigate Risk through the Use of Computer-Aided Software Engineering (CASE) Tools

    NASA Technical Reports Server (NTRS)

    Aguilar, Michael L.

    2013-01-01

    The NASA Engineering and Safety Center (NESC) was requested to perform an independent assessment of the mitigation of the Constellation Program (CxP) Risk 4421 through the use of computer-aided software engineering (CASE) tools. With the cancellation of the CxP, the assessment goals were modified to capture lessons learned and best practices in the use of CASE tools. The assessment goal was to prepare the next program for the use of these CASE tools. The outcome of the assessment is contained in this document.

  5. The Theory of Planned Behaviour Applied to Search Engines as a Learning Tool

    ERIC Educational Resources Information Center

    Liaw, Shu-Sheng

    2004-01-01

    Search engines have been developed for helping learners to seek online information. Based on theory of planned behaviour approach, this research intends to investigate the behaviour of using search engines as a learning tool. After factor analysis, the results suggest that perceived satisfaction of search engine, search engines as an information…

  6. Genetic Engineering: A Promising Tool to Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae

    PubMed Central

    Guihéneuf, Freddy; Khan, Asif; Tran, Lam-Son P.

    2016-01-01

    As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest toward a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric carbon dioxide (CO2) into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight), carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors such as nitrogen starvation, salinity, heat shock, etc., can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests. PMID:27066043

  7. Automatic differentiation as a tool in engineering design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois; Hall, Laura E.

    1992-01-01

    Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. AD is assessed as a tool for engineering design. The forward and reverse modes of AD, their computing requirements, as well as approaches to implementing AD are discussed. The application of two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation is also discussed. The observation is made that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available; in some instances, AD may be the alternative to consider in lieu of analytical sensitivity analysis.

  8. An Industrial Engineering Approach to Cost Containment of Pharmacy Education

    PubMed Central

    Bottenberg, Michelle; Chase, Marilea; Chesnut, Renae; Clarke, Cheryl; Schott, Kathryn; Torry, Ronald; Welty, Tim

    2015-01-01

    A 2-semester project explored employing teams of fourth-year industrial engineering students to optimize some of our academic management processes. Results included significant cost savings and increases in efficiency, effectiveness, and student and faculty satisfaction. While we did not adopt all of the students’ recommendations, we did learn some important lessons. For example, an initial investment of time in developing a mutually clear understanding of the problems, constraints, and goals maximizes the value of industrial engineering analysis and recommendations. Overall, industrial engineering was a valuable tool for optimizing certain academic management processes. PMID:26839421

  9. An Industrial Engineering Approach to Cost Containment of Pharmacy Education.

    PubMed

    Duncan, Wendy; Bottenberg, Michelle; Chase, Marilea; Chesnut, Renae; Clarke, Cheryl; Schott, Kathryn; Torry, Ronald; Welty, Tim

    2015-11-25

    A 2-semester project explored employing teams of fourth-year industrial engineering students to optimize some of our academic management processes. Results included significant cost savings and increases in efficiency, effectiveness, and student and faculty satisfaction. While we did not adopt all of the students' recommendations, we did learn some important lessons. For example, an initial investment of time in developing a mutually clear understanding of the problems, constraints, and goals maximizes the value of industrial engineering analysis and recommendations. Overall, industrial engineering was a valuable tool for optimizing certain academic management processes.

  10. 18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, JIB CRANE ABOVE-LOOKING NORTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  11. A Visualization-Based Tutoring Tool for Engineering Education

    NASA Astrophysics Data System (ADS)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  12. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  13. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  14. DEVELOPMENT AND USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOLS FOR POLLUTION PREVENTION

    EPA Science Inventory

    The use of Computer-Aided Process Engineering (CAPE) and process simulation tools has become established industry practice to predict simulation software, new opportunities are available for the creation of a wide range of ancillary tools that can be used from within multiple sim...

  15. Development of a Systems Engineering Competency Model Tool for the Aviation and Missile Research, Development, And Engineering Center (AMRDEC)

    DTIC Science & Technology

    2017-06-01

    The Naval Postgraduate School has developed a competency model for the systems engineering profession and is implementing a tool to support high...stakes human resource functions for the U.S. Army. A systems engineering career competency model (SECCM), recently developed by the Navy and verified by...the Office of Personnel Management (OPM), defines the critical competencies for successful performance as a systems engineer at each general schedule

  16. A Statistical Project Control Tool for Engineering Managers

    NASA Technical Reports Server (NTRS)

    Bauch, Garland T.

    2001-01-01

    This slide presentation reviews the use of a Statistical Project Control Tool (SPCT) for managing engineering projects. A literature review pointed to a definition of project success, (i.e., A project is successful when the cost, schedule, technical performance, and quality satisfy the customer.) The literature review also pointed to project success factors, and traditional project control tools, and performance measures that are detailed in the report. The essential problem is that with resources becoming more limited, and an increasing number or projects, project failure is increasing, there is a limitation of existing methods and systematic methods are required. The objective of the work is to provide a new statistical project control tool for project managers. Graphs using the SPCT method plotting results of 3 successful projects and 3 failed projects are reviewed, with success and failure being defined by the owner.

  17. Uncertainty Quantification and Statistical Engineering for Hypersonic Entry Applications

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana

    2011-01-01

    NASA has invested significant resources in developing and validating a mathematical construct for TPS margin management: a) Tailorable for low/high reliability missions; b) Tailorable for ablative/reusable TPS; c) Uncertainty Quantification and Statistical Engineering are valuable tools not exploited enough; and d) Need to define strategies combining both Theoretical Tools and Experimental Methods. The main reason for this lecture is to give a flavor of where UQ and SE could contribute and hope that the broader community will work with us to improve in these areas.

  18. Tools and Methods for Risk Management in Multi-Site Engineering Projects

    NASA Astrophysics Data System (ADS)

    Zhou, Mingwei; Nemes, Laszlo; Reidsema, Carl; Ahmed, Ammar; Kayis, Berman

    In today's highly global business environment, engineering and manufacturing projects often involve two or more geographically dispersed units or departments, research centers or companies. This paper attempts to identify the requirements for risk management in a multi-site engineering project environment, and presents a review of the state-of-the-art tools and methods that can be used to manage risks in multi-site engineering projects. This leads to the development of a risk management roadmap, which will underpin the design and implementation of an intelligent risk mapping system.

  19. CAE Based Die Face Engineering Development to Contribute to the Revitalization of the Tool & Die Industry

    NASA Astrophysics Data System (ADS)

    Tang, Arthur; Lee, Wing C.; St. Pierre, Shawn; He, Jeanne; Liu, Kesu; Chen, Chin C.

    2005-08-01

    Over the past two decades, the Computer Aided Engineering (CAE) tools have emerged as one of the most important engineering tools in various industries, due to its flexibility and accuracy in prediction. Nowadays, CAE tools are widely used in the sheet metal forming industry to predict the forming feasibility of a wide variety of complex components, ranging from aerospace and automotive components to household products. As the demand of CAE based formability accelerates, the need for a robust and streamlined die face engineering tool becomes more crucial, especially in the early stage when the tooling layout is not available, but a product design decision must be made. Ability to generate blank, binder and addendum surfaces with an appropriate layout of Drawbead, Punch Opening Line, Trim Line are the primary features and functions of a CAE based die face engineering tool. Once the die face layout is ready, a formability study should be followed to verify the die face layout is adequate to produce a formable part. If successful, the established die face surface should be exported back to the CAD/CAM environment to speed up the tooling and manufacturing design process with confidence that this particular part is formable with this given die face. With a CAE tool as described above, the tool & die industry will be greatly impacted as the processes will enable the bypass of hardware try-out and shorten the overall vehicle production timing. The trend has shown that OEMs and first tiers will source to low cost producers in the world which will have a negative impact to the traditional tool & die makers in the developed countries. CAE based tool as described should be adopted, along with many other solutions, in order to maintain efficiency of producing high quality product and meeting time-to-market requirements. This paper will describe how a CAE based die face engineering (DFE) tool could be further developed to enable the traditional tool & die makers to meet the

  20. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  1. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics.

    PubMed

    Jian, Bo; Hou, Wensheng; Wu, Cunxiang; Liu, Bin; Liu, Wei; Song, Shikui; Bi, Yurong; Han, Tianfu

    2009-06-25

    of the highly efficient transformation and the regeneration system of Superroot provides a valuable tool for functional genomics studies in L. corniculatus.

  2. Transported Geothermal Energy Technoeconomic Screening Tool - Calculation Engine

    DOE Data Explorer

    Liu, Xiaobing

    2016-09-21

    This calculation engine estimates technoeconomic feasibility for transported geothermal energy projects. The TGE screening tool (geotool.exe) takes input from input file (input.txt), and list results into output file (output.txt). Both the input and ouput files are in the same folder as the geotool.exe. To use the tool, the input file containing adequate information of the case should be prepared in the format explained below, and the input file should be put into the same folder as geotool.exe. Then the geotool.exe can be executed, which will generate a output.txt file in the same folder containing all key calculation results. The format and content of the output file is explained below as well.

  3. USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOL IN POLLUTION PREVENTION

    EPA Science Inventory

    Computer-Aided Process Engineering has become established in industry as a design tool. With the establishment of the CAPE-OPEN software specifications for process simulation environments. CAPE-OPEN provides a set of "middleware" standards that enable software developers to acces...

  4. New Tool Released for Engine-Airframe Blade-Out Structural Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    2004-01-01

    Researchers at the NASA Glenn Research Center have enhanced a general-purpose finite element code, NASTRAN, for engine-airframe structural simulations during steady-state and transient operating conditions. For steady-state simulations, the code can predict critical operating speeds, natural modes of vibration, and forced response (e.g., cabin noise and component fatigue). The code can be used to perform static analysis to predict engine-airframe response and component stresses due to maneuver loads. For transient response, the simulation code can be used to predict response due to bladeoff events and subsequent engine shutdown and windmilling conditions. In addition, the code can be used as a pretest analysis tool to predict the results of the bladeout test required for FAA certification of new and derivative aircraft engines. Before the present analysis code was developed, all the major aircraft engine and airframe manufacturers in the United States and overseas were performing similar types of analyses to ensure the structural integrity of engine-airframe systems. Although there were many similarities among the analysis procedures, each manufacturer was developing and maintaining its own structural analysis capabilities independently. This situation led to high software development and maintenance costs, complications with manufacturers exchanging models and results, and limitations in predicting the structural response to the desired degree of accuracy. An industry-NASA team was formed to overcome these problems by developing a common analysis tool that would satisfy all the structural analysis needs of the industry and that would be available and supported by a commercial software vendor so that the team members would be relieved of maintenance and development responsibilities. Input from all the team members was used to ensure that everyone's requirements were satisfied and that the best technology was incorporated into the code. Furthermore, because the code

  5. Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application

    NASA Technical Reports Server (NTRS)

    Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond

    2018-01-01

    The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.

  6. Astronomical large projects managed with MANATEE: management tool for effective engineering

    NASA Astrophysics Data System (ADS)

    García-Vargas, M. L.; Mujica-Alvarez, E.; Pérez-Calpena, A.

    2012-09-01

    This paper describes MANATEE, which is the Management project web tool developed by FRACTAL, specifically designed for managing large astronomical projects. MANATEE facilitates the management by providing an overall view of the project and the capabilities to control the three main projects parameters: scope, schedule and budget. MANATEE is one of the three tools of the FRACTAL System & Project Suite, which is composed also by GECO (System Engineering Tool) and DOCMA (Documentation Management Tool). These tools are especially suited for those Consortia and teams collaborating in a multi-discipline, complex project in a geographically distributed environment. Our Management view has been applied successfully in several projects and currently is being used for Managing MEGARA, the next instrument for the GTC 10m telescope.

  7. Exploring Engineering Instructors' Views about Writing and Online Tools to Support Communication in Engineering

    ERIC Educational Resources Information Center

    Howard, Sarah K.; Khosronejad, Maryam; Calvo, Rafael A.

    2017-01-01

    To be fully prepared for the professional workplace, Engineering students need to be able to effectively communicate. However, there has been a growing concern in the field about students' preparedness for this aspect of their future work. It is argued that online writing tools, to engage numbers of students in the writing process, can support…

  8. Software engineering techniques and CASE tools in RD13

    NASA Astrophysics Data System (ADS)

    Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.

    1994-12-01

    The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.

  9. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  10. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  11. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE PAGES

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    2018-04-25

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  12. Engineered Chloroplast Genome just got Smarter

    PubMed Central

    Jin, Shuangxia; Daniell, Henry

    2015-01-01

    Chloroplasts are known to sustain life on earth by providing food, fuel and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for production of industrial enzymes, biopharmaceuticals, bio-products or vaccines. The recent breakthrough in hyper-expression of biopharmaceuticals in edible leaves has facilitated the advancement to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes. PMID:26440432

  13. Development of Systems Engineering Maturity Models and Management Tools

    DTIC Science & Technology

    2011-01-21

    Ph.D., Senior Personnel, Stevens Institute of Technology Abhi Deshmukh, Ph.D., Senior Personnel, Texas A&M University Matin Sarfaraz, Research ...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Stevens Institute of Technology,Systems Engineering Research Center (SERC),1...tools (MPT) for effectively and efficiently addressing these challenges are likewise being challenged. The goal of this research was to develop a

  14. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  15. Interactive Educational Tool for Turbofan and Afterburning Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1997-01-01

    A workstation-based, interactive educational computer program has been developed at the NASA Lewis Research Center to aid in the teaching and understanding of turbine engine design and analysis. This tool has recently been extended to model the performance of two-spool turbofans and afterburning turbojets. The program solves for the flow conditions through the engine by using classical one-dimensional thermodynamic analysis found in various propulsion textbooks. Either an approximately thermally perfect or calorically perfect gas can be used in the thermodynamic analysis. Students can vary the design conditions through a graphical user interface; engine performance is calculated immediately. A variety of graphical formats are used to present results, including numerical results, moving bar charts, and student-generated temperature versus entropy (Ts), pressure versus specific volume (pv), and engine performance plots. The package includes user-controlled printed output, restart capability, online help screens, and a browser that displays teacher-prepared lessons in turbomachinery. The program runs on a variety of workstations or a personal computer using the UNIX operating system and X-based graphics. It is being tested at several universities in the midwestern United States; the source and executables are available free from the author.

  16. An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects

    ERIC Educational Resources Information Center

    Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M.

    2015-01-01

    Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…

  17. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  18. Advancing metabolic engineering through systems biology of industrial microorganisms.

    PubMed

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A computer aided engineering tool for ECLS systems

    NASA Technical Reports Server (NTRS)

    Bangham, Michal E.; Reuter, James L.

    1987-01-01

    The Computer-Aided Systems Engineering and Analysis tool used by NASA for environmental control and life support system design studies is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single-phase active thermal control systems. The designer/analysis interface used is graphics-based, and allows the designer to build a model by constructing a schematic of the system under consideration. Data management functions are performed, and the program is translated into a format that is compatible with the solution routines.

  20. The Classification and Evaluation of Computer-Aided Software Engineering Tools

    DTIC Science & Technology

    1990-09-01

    International Business Machines Corporation Customizer is a Registered Trademark of Index Technology Corporation Data Analyst is a Registered Trademark of...years, a rapid series of new approaches have been adopted including: information engineering, entity- relationship modeling, automatic code generation...support true information sharing among tools and automated consistency checking. Moreover, the repository must record and manage the relationships and

  1. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    PubMed

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Failure environment analysis tool applications

    NASA Astrophysics Data System (ADS)

    Pack, Ginger L.; Wadsworth, David B.

    1993-02-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  3. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1993-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  4. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1994-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within it, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  5. Introduction to metabolic genetic engineering for the production of valuable secondary metabolites in in vivo and in vitro plant systems.

    PubMed

    Benedito, Vagner A; Modolo, Luzia V

    2014-01-01

    Plants are capable of producing a myriad of chemical compounds. While these compounds serve specific functions in the plant, many have surprising effects on the human body, often with positive action against diseases. These compounds are often difficult to synthesize ex vivo and require the coordinated and compartmentalized action of enzymes in living organisms. However, the amounts produced in whole plants are often small and restricted to single tissues of the plant or even cellular organelles, making their extraction an expensive process. Since most natural products used in therapeutics are specialized, secondary plant metabolites, we provide here an overview of the classification of the main classes of these compounds, with its biochemical pathways and how this information can be used to create efficient in and ex planta production pipelines to generate highly valuable compounds. Metabolic genetic engineering is introduced in light of physiological and genetic methods to enhance production of high-value plant secondary metabolites.

  6. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  8. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2017-03-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  9. NASA aviation safety program aircraft engine health management data mining tools roadmap

    DOT National Transportation Integrated Search

    2000-04-01

    Aircraft Engine Health Management Data Mining Tools is a project led by NASA Glenn Research Center in support of the NASA Aviation Safety Program's Aviation System Monitoring and Modeling Thrust. The objective of the Glenn-led effort is to develop en...

  10. Value Innovation in Learner-Centered Design. How to Develop Valuable Learning Tools

    ERIC Educational Resources Information Center

    Breuer, Henning; Schwarz, Heinrich; Feller, Kristina; Matsumoto, Mitsuji

    2014-01-01

    This paper shows how to address technological, cultural and social transformations with empirically grounded innovation. Areas in transition such as higher education and learning techniques today bring about new needs and opportunities for innovative tools and services. But how do we find these tools? The paper argues for using a strategy of…

  11. An end user evaluation of query formulation and results review tools in three medical meta-search engines.

    PubMed

    Leroy, Gondy; Xu, Jennifer; Chung, Wingyan; Eggers, Shauna; Chen, Hsinchun

    2007-01-01

    Retrieving sufficient relevant information online is difficult for many people because they use too few keywords to search and search engines do not provide many support tools. To further complicate the search, users often ignore support tools when available. Our goal is to evaluate in a realistic setting when users use support tools and how they perceive these tools. We compared three medical search engines with support tools that require more or less effort from users to form a query and evaluate results. We carried out an end user study with 23 users who were asked to find information, i.e., subtopics and supporting abstracts, for a given theme. We used a balanced within-subjects design and report on the effectiveness, efficiency and usability of the support tools from the end user perspective. We found significant differences in efficiency but did not find significant differences in effectiveness between the three search engines. Dynamic user support tools requiring less effort led to higher efficiency. Fewer searches were needed and more documents were found per search when both query reformulation and result review tools dynamically adjust to the user query. The query reformulation tool that provided a long list of keywords, dynamically adjusted to the user query, was used most often and led to more subtopics. As hypothesized, the dynamic result review tools were used more often and led to more subtopics than static ones. These results were corroborated by the usability questionnaires, which showed that support tools that dynamically optimize output were preferred.

  12. Introduction to the Discrete Fourier Series Considering Both Mathematical and Engineering Aspects--A Linear Algebra Approach

    ERIC Educational Resources Information Center

    Kohaupt, Ludwig

    2015-01-01

    The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating…

  13. Continued Development of Expert System Tools for NPSS Engine Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewandowski, Henry

    1996-01-01

    The objectives of this grant were to work with previously developed NPSS (Numerical Propulsion System Simulation) tools and enhance their functionality; explore similar AI systems; and work with the High Performance Computing Communication (HPCC) K-12 program. Activities for this reporting period are briefly summarized and a paper addressing the implementation, monitoring and zooming in a distributed jet engine simulation is included as an attachment.

  14. Stationary Engineers Apprenticeship. Related Training Modules. 4.1-4.5 Tools.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of five learning modules on tools is one of 20 such packets developed for apprenticeship training for stationary engineers. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: a lesson goal, performance indicators, study guide…

  15. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.

    PubMed

    Madzak, Catherine

    2018-06-25

    Yarrowia lipolytica is an oleaginous saccharomycetous yeast with a long history of industrial use. It aroused interest several decades ago as host for heterologous protein production. Thanks to the development of numerous molecular and genetic tools, Y. lipolytica is now a recognized system for expressing heterologous genes and secreting the corresponding proteins of interest. As genomic and transcriptomic tools increased our basic knowledge on this yeast, we can now envision engineering its metabolic pathways for use as whole-cell factory in various bioconversion processes. Y. lipolytica is currently being developed as a workhorse for biotechnology, notably for single-cell oil production and upgrading of industrial wastes into valuable products. As it becomes more and more difficult to keep up with an ever-increasing literature on Y. lipolytica engineering technology, this article aims to provide basic and actualized knowledge on this research area. The most useful reviews on Y. lipolytica biology, use, and safety will be evoked, together with a resume of the engineering tools available in this yeast. This mini-review will then focus on recently developed tools and engineering strategies, with a particular emphasis on promoter tuning, metabolic pathways assembly, and genome editing technologies.

  16. E-Portfolio, a Valuable Job Search Tool for College Students

    ERIC Educational Resources Information Center

    Yu, Ti

    2012-01-01

    Purpose: The purpose of this paper is to find answers to the following questions: How do employers think about e-portfolios? Do employers really see e-portfolios as a suitable hiring tool? Which factors in students' e-portfolios attract potential employers? Can e-portfolios be successfully used by students in their search for a job?…

  17. Genetically Engineered Mouse Models of Pituitary Tumors

    PubMed Central

    Cano, David A.; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso

    2014-01-01

    Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field. PMID:25136513

  18. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    PubMed Central

    2012-01-01

    Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO), that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei), a beta-glucosidase (from a cow rumen fungus), a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools. PMID:22839502

  19. Custom Search Engines: Tools & Tips

    ERIC Educational Resources Information Center

    Notess, Greg R.

    2008-01-01

    Few have the resources to build a Google or Yahoo! from scratch. Yet anyone can build a search engine based on a subset of the large search engines' databases. Use Google Custom Search Engine or Yahoo! Search Builder or any of the other similar programs to create a vertical search engine targeting sites of interest to users. The basic steps to…

  20. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    NASA Astrophysics Data System (ADS)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management

  1. Development of a Virtual Tool for Learning Basic Organisation and Planning in Rural Engineering Projects

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.

    2014-01-01

    This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…

  2. Improvement of Selected Logistics Processes Using Quality Engineering Tools

    NASA Astrophysics Data System (ADS)

    Zasadzień, Michał; Žarnovský, Jozef

    2018-03-01

    Increase in the number of orders, the increasing quality requirements and the speed of order preparation require implementation of new solutions and improvement of logistics processes. Any disruption that occurs during execution of an order often leads to customer dissatisfaction, as well as loss of his/her confidence. The article presents a case study of the use of quality engineering methods and tools to improve the e-commerce logistic process. This made it possible to identify and prioritize key issues, identify their causes, and formulate improvement and prevention measures.

  3. Inspection planning development: An evolutionary approach using reliability engineering as a tool

    NASA Technical Reports Server (NTRS)

    Graf, David A.; Huang, Zhaofeng

    1994-01-01

    This paper proposes an evolutionary approach for inspection planning which introduces various reliability engineering tools into the process and assess system trade-offs among reliability, engineering requirement, manufacturing capability and inspection cost to establish an optimal inspection plan. The examples presented in the paper illustrate some advantages and benefits of the new approach. Through the analysis, reliability and engineering impacts due to manufacturing process capability and inspection uncertainty are clearly understood; the most cost effective and efficient inspection plan can be established and associated risks are well controlled; some inspection reductions and relaxations are well justified; and design feedbacks and changes may be initiated from the analysis conclusion to further enhance reliability and reduce cost. The approach is particularly promising as global competitions and customer quality improvement expectations are rapidly increasing.

  4. Spatial Visualization Learning in Engineering: Traditional Methods vs. a Web-Based Tool

    ERIC Educational Resources Information Center

    Pedrosa, Carlos Melgosa; Barbero, Basilio Ramos; Miguel, Arturo Román

    2014-01-01

    This study compares an interactive learning manager for graphic engineering to develop spatial vision (ILMAGE_SV) to traditional methods. ILMAGE_SV is an asynchronous web-based learning tool that allows the manipulation of objects with a 3D viewer, self-evaluation, and continuous assessment. In addition, student learning may be monitored, which…

  5. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases

    PubMed Central

    Bond, Carly; Tang, Yi; Li, Li

    2016-01-01

    Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs. PMID:26850128

  6. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases.

    PubMed

    Bond, Carly; Tang, Yi; Li, Li

    2016-04-01

    Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Valuable Tool in Predicting Poor Outcome due to Sepsis in Pediatric Intensive Care Unit: Tp-e/QT Ratio.

    PubMed

    Ozdemir, Rahmi; Isguder, Rana; Kucuk, Mehmet; Karadeniz, Cem; Ceylan, Gokhan; Katipoglu, Nagehan; Yilmazer, Murat Muhtar; Yozgat, Yilmaz; Mese, Timur; Agin, Hasan

    2016-10-01

    To assess the feasibility of 12-lead electrocardiographic (ECG) measures such as P wave dispersion (PWd), QT interval, QT dispersion (QTd), Tp-e interval, Tp-e/QT and Tp-e/QTc ratio in predicting poor outcome in patients diagnosed with sepsis in pediatric intensive care unit (PICU). Ninety-three patients diagnosed with sepsis, severe sepsis or septic shock and 103 age- and sex-matched healthy children were enrolled into the study. PWd, QT interval, QTd, Tp-e interval and Tp-e/QT, Tp-e/QTc ratios were obtained from a 12-lead electrocardiogram. PWd, QTd, Tp-e interval and Tp-e/QT, Tp-e/QTc ratios were significantly higher in septic patients compared with the controls. During the study period, 41 patients had died. In multivariate logistic regression analyses, only Tp-e/QT ratio was found to be an independent predictor of mortality. The ECG measurements can predict the poor outcome in patients with sepsis. The Tp-e/QT ratio may be a valuable tool in predicting mortality for patients with sepsis in the PICU. © The Author [2016]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. CRISPR/Cas9 System as a Valuable Genome Editing Tool for Wine Yeasts with Application to Decrease Urea Production

    PubMed Central

    Vigentini, Ileana; Gebbia, Marinella; Belotti, Alessandra; Foschino, Roberto; Roth, Frederick P.

    2017-01-01

    An extensive repertoire of molecular tools is available for genetic analysis in laboratory strains of S. cerevisiae. Although this has widely contributed to the interpretation of gene functionality within haploid laboratory isolates, the genetics of metabolism in commercially-relevant polyploid yeast strains is still poorly understood. Genetic engineering in industrial yeasts is undergoing major changes due to Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) engineering approaches. Here we apply the CRISPR/Cas9 system to two commercial “starter” strains of S. cerevisiae (EC1118, AWRI796), eliminating the CAN1 arginine permease pathway to generate strains with reduced urea production (18.5 and 35.5% for EC1118 and AWRI796, respectively). In a wine-model environment based on two grape musts obtained from Chardonnay and Cabernet Sauvignon cultivars, both S. cerevisiae starter strains and CAN1 mutants completed the must fermentation in 8–12 days. However, recombinant strains carrying the can1 mutation failed to produce urea, suggesting that the genetic modification successfully impaired the arginine metabolism. In conclusion, the reduction of urea production in a wine-model environment confirms that the CRISPR/Cas9 system has been successfully established in S. cerevisiae wine yeasts. PMID:29163459

  9. Experimental and analytical tools for evaluation of Stirling engine rod seal behavior

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Cheng, H. S.

    1979-01-01

    The first year of a two year experimental and analytical program is reported. The program is directed at the elastohydrodynamic behavior of sliding elastomeric rod seals for the Stirling engine. During the year, experimental and analytical tools were developed for evaluating seal leakage, seal friction, and the fluid film thickness at the seal/cylinder interface.

  10. Automation of Tooling Backup and Cutter Selection for Engineering Production

    NASA Astrophysics Data System (ADS)

    Terekhov, M. V.; Averchenkov, V. I.; Reutov, A. A.; Handozhko, A. V.

    2017-01-01

    This paper reports the analysis of a tool support procedure for mechanical engineering and basic trends in the automation of this field are revealed. The system of technical-organizational measures directed at the formation, management and development of the tool stock and a high degree of technological readiness of manufacturing are described. The problems of an automated optimum cutter selection are considered. A mathematical support for a choice of cutters with through-away tips is described. A simulator for the description of combined cutters is presented. Basic criteria defining cutter choice are established. The problem of a multi-criterion fuzzy estimation of alternatives at different significance of choice criteria is solved. The criterion significance ranking at the parameter choice of cutter plates and tool supports is carried out. A set of estimations of cutter plate forms and other cutter parameters taking into account a relative significance of criteria is defined. The application of a decisive rule in the choice of an alternative required is described, which consists in the definition of the intersection of sets of alternative estimations.

  11. The re-tooled mind: how culture re-engineers cognition

    PubMed Central

    2010-01-01

    One of the main goals of cognitive science is to discover the underlying principles that characterize human cognition, but this enterprise is complicated by culturally-driven variability. While much fruitful work has focused on how culture influences the contents of cognition, here I argue that culture can in addition exercise a profound effect on the how of cognition—the mechanisms by which cognitive tasks get done. I argue that much of the fundamental processes of daily cognitive activity involve the operation of cognitive tools that are not genetically determined but instead are invented and culturally transmitted. Further, these cognitive inventions become ‘firmware’, consituting a re-engineering of the individual’s cognitive architecture. That is, ontogenetic experience from one’s cultural context serves to re-tool the developing mind into a variety of disparate cognitive phenotypes. Drawing on several mutually isolated literatures, I advance four claims to the effect that cognitive tools (i) are ubitquitous in everyday cognition, (ii) result in reorganization of the neural system, (iii) are founded in embodied representations and (iv) were made possible by the evolution of an unprecedented degree of voluntary control over the body. I conclude by discussing the implications for the agenda of cognitive science. PMID:20068033

  12. Reverse engineering of machine-tool settings with modified roll for spiral bevel pinions

    NASA Astrophysics Data System (ADS)

    Liu, Guanglei; Chang, Kai; Liu, Zeliang

    2013-05-01

    Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse

  13. Causal Relation Analysis Tool of the Case Study in the Engineer Ethics Education

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshio; Morita, Keisuke; Yasui, Mitsukuni; Tanada, Ichirou; Fujiki, Hiroyuki; Aoyagi, Manabu

    In engineering ethics education, the virtual experiencing of dilemmas is essential. Learning through the case study method is a particularly effective means. Many case studies are, however, difficult to deal with because they often include many complex causal relationships and social factors. It would thus be convenient if there were a tool that could analyze the factors of a case example and organize them into a hierarchical structure to get a better understanding of the whole picture. The tool that was developed applies a cause-and-effect matrix and simple graph theory. It analyzes the causal relationship between facts in a hierarchical structure and organizes complex phenomena. The effectiveness of this tool is shown by presenting an actual example.

  14. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.

    PubMed

    Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup

    2014-11-01

    Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protein engineering for metabolic engineering: current and next-generation tools

    PubMed Central

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  16. Protein engineering for metabolic engineering: current and next-generation tools.

    PubMed

    Marcheschi, Ryan J; Gronenberg, Luisa S; Liao, James C

    2013-05-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Front panel engineering with CAD simulation tool

    NASA Astrophysics Data System (ADS)

    Delacour, Jacques; Ungar, Serge; Mathieu, Gilles; Hasna, Guenther; Martinez, Pascal; Roche, Jean-Christophe

    1999-04-01

    THe progress made recently in display technology covers many fields of application. The specification of radiance, colorimetry and lighting efficiency creates some new challenges for designers. Photometric design is limited by the capability of correctly predicting the result of a lighting system, to save on the costs and time taken to build multiple prototypes or bread board benches. The second step of the research carried out by company OPTIS is to propose an optimization method to be applied to the lighting system, developed in the software SPEOS. The main features of the tool requires include the CAD interface, to enable fast and efficient transfer between mechanical and light design software, the source modeling, the light transfer model and an optimization tool. The CAD interface is mainly a prototype of transfer, which is not the subjects here. Photometric simulation is efficiently achieved by using the measured source encoding and a simulation by the Monte Carlo method. Today, the advantages and the limitations of the Monte Carlo method are well known. The noise reduction requires a long calculation time, which increases with the complexity of the display panel. A successful optimization is difficult to achieve, due to the long calculation time required for each optimization pass including a Monte Carlo simulation. The problem was initially defined as an engineering method of study. The experience shows that good understanding and mastering of the phenomenon of light transfer is limited by the complexity of non sequential propagation. The engineer must call for the help of a simulation and optimization tool. The main point needed to be able to perform an efficient optimization is a quick method for simulating light transfer. Much work has been done in this area and some interesting results can be observed. It must be said that the Monte Carlo method wastes time calculating some results and information which are not required for the needs of the simulation

  18. Donor liver histology--a valuable tool in graft selection.

    PubMed

    Flechtenmacher, Christa; Schirmacher, Peter; Schemmer, Peter

    2015-07-01

    Due to a tremendous organ shortage, livers from donors with extended criteria are increasingly considered for transplantation. Pathologists are more and more requested to evaluate these livers histopathologically using frozen sections at high urgency for acceptability. This article reviews the current knowledge on pre-transplant histology in liver transplantation. Prerequisites and conditions for proper pre-transplant evaluation of donor liver tissue are discussed as well as frozen section evaluation and reporting. Data sources include the relevant medical literature, web sites specialized in organ transplantation, and the authors' experiences in liver transplant centers. Pre-transplant histopathological evaluation is a time-effective, accurate, and reliable tool to assess liver quality from candidate deceased donors. Pre-transplant biopsies are of value in the selection of donor livers for transplantation, especially in case of extended criteria donors, and should be performed more frequently in order to avoid unnecessary loss of organs suitable for transplantation and transplantation of inappropriate organs. Correlation of histopathological findings with clinical conditions is essential and requires excellent communication between pathologists, surgeons, and the other members of the transplant team.

  19. An Engineering Tool for the Prediction of Internal Dielectric Charging

    NASA Astrophysics Data System (ADS)

    Rodgers, D. J.; Ryden, K. A.; Wrenn, G. L.; Latham, P. M.; Sorensen, J.; Levy, L.

    1998-11-01

    A practical internal charging tool has been developed. It provides an easy-to-use means for satellite engineers to predict whether on-board dielectrics are vulnerable to electrostatic discharge in the outer radiation belt. The tool is designed to simulate irradiation of single-dielectric planar or cylindrical structures with or without shielding. Analytical equations are used to describe current deposition in the dielectric. This is fast and gives charging currents to sufficient accuracy given the uncertainties in other aspects of the problem - particularly material characteristics. Time-dependent internal electric fields are calculated, taking into account the effect on conductivity of electric field, dose rate and temperature. A worst-case model of electron fluxes in the outer belt has been created specifically for the internal charging problem and is built into the code. For output, the tool gives a YES or NO decision on the susceptibility of the structure to internal electrostatic breakdown and if necessary, calculates the required changes to bring the system below the breakdown threshold. A complementary programme of laboratory irradiations has been carried out to validate the tool. The results for Epoxy-fibreglass samples show that the code models electric field realistically for a wide variety of shields, dielectric thicknesses and electron spectra. Results for Teflon samples indicate that some further experimentation is required and the radiation-induced conductivity aspects of the code have not been validated.

  20. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.

    PubMed

    Gaj, Thomas; Sirk, Shannon J; Barbas, Carlos F

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. © 2013 Wiley Periodicals, Inc.

  1. Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering

    PubMed Central

    Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993

  2. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases.

    PubMed

    Cahn, Jackson K B; Werlang, Caroline A; Baumschlager, Armin; Brinkmann-Chen, Sabine; Mayo, Stephen L; Arnold, Frances H

    2017-02-17

    The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).

  3. Design mentoring tool.

    DOT National Transportation Integrated Search

    2011-01-01

    In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers : mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves se...

  4. Value engineering on the designed operator work tools for brick and rings wells production

    NASA Astrophysics Data System (ADS)

    Ayu Bidiawati J., R.; Muchtiar, Yesmizarti; Wariza, Ragil Okta

    2017-06-01

    Operator working tools in making brick and ring wells were designed and made, and the value engineering was calculated to identify and develop the function of these tools in obtaining the balance between cost, reliability and appearance. This study focused on the value of functional components of the tools and attempted to increase the difference between the costs incurred by the generated values. The purpose of this study was to determine the alternatives of tools design and to determine the performance of each alternative. The technique was developed using FAST method that consisted of five stages: information, creative, analytical, development and presentation stage. The results of the analysis concluded that the designed tools have higher value and better function description. There were four alternative draft improvements for operator working tools. The best alternative was determined based on the rank by using matrix evaluation. Best performance was obtained by the alternative II, amounting to 98.92 with a value of 0.77.

  5. Engineering of Impulse Mechanism for Mechanical Hander Power Tools

    NASA Astrophysics Data System (ADS)

    Nikolaevich Drozdov, Anatoliy

    2018-03-01

    The solution to the problem of human security in cities should be considered on the basis of an integrated and multidisciplinary approach, including issues of security and ecology in the application of technical means used to ensure the viability and development of technocracy. In this regard, an important task is the creation of a safe technique with improved environmental properties with high technological characteristics. This primarily relates to mechanised tool — the division of technological machines with built in engines is that their weight is fully or partially perceived by the operator’s hands, making the flow and control of the car. For this subclass of machines is characterized by certain features: a built-in motor, perception of at least part of their weight by the operator during the work, the implementation of feeding and management at the expense of the muscular power of the operator. Therefore, among the commonly accepted technical and economic characteristics, machines in this case, important ergonomic (ergonomics), regulation of levels which ensures the safety of the operator. To ergonomics include vibration, noise characteristics, mass, and force feeding machine operator. Vibration is a consequence of the dynamism of the system operator machine - processed object (environment) in which the engine energy is redistributed among all the structures, causing their instability. In the machine vibration caused by technological and constructive (transformative mechanisms) unbalance of individual parts of the drive, the presence of technological and design (impact mechanisms) clearances and other reasons. This article describes a new design of impulse mechanism for hander power tools (wrenches, screwdrivers) with enhanced torque. The article substantiates a simulation model of dynamic compression process in an operating chamber during impact, provides simulation results and outlines further lines of research.

  6. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.

    PubMed

    Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander

    2017-07-01

    In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological

  7. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  8. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  9. Methods Developed by the Tools for Engine Diagnostics Task to Monitor and Predict Rotor Damage in Real Time

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa

    2003-01-01

    Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.

  10. Infusion of a Gaming Paradigm into Computer-Aided Engineering Design Tools

    DTIC Science & Technology

    2012-05-03

    Virtual Test Bed (VTB), and the gaming tool, Unity3D . This hybrid gaming environment coupled a three-dimensional (3D) multibody vehicle system model...from Google Earth to the 3D visual front-end fabricated around Unity3D . The hybrid environment was sufficiently developed to support analyses of the...ndFr Cti3r4 G’OjrdFr ctior-2 The VTB simulation of the vehicle dynamics ran concurrently with and interacted with the gaming engine, Unity3D which

  11. ReProTool Version 2.0: Re-Engineering Academic Curriculum Using Learning Outcomes, ECTS and Bologna Process Concepts

    ERIC Educational Resources Information Center

    Pouyioutas, Philippos; Gjermundrod, Harald; Dionysiou, Ioanna

    2012-01-01

    Purpose: The purpose of this paper is to present ReProTool Version 2.0, a software tool that is used for the European Credit Transfer System (ECTS) and the Bologna Process re-engineering of academic programmes. The tool is the result of an 18 months project (February 2012-July 2013) project, co-financed by the European Regional Development Fund…

  12. Jettison Engineering Trajectory Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz; Walter, Patrick; Pascucci, Joseph; Armstrong, Phyllis; Hallbick, Patricia; Morgan, Randal; Cooney, James

    2013-01-01

    The Jettison Engineering Trajectory Tool (JETT) performs the jettison analysis function for any orbiting asset. It provides a method to compute the relative trajectories between an orbiting asset and any jettisoned item (intentional or unintentional) or sublimating particles generated by fluid dumps to assess whether an object is safe to jettison, or if there is a risk with an item that was inadvertently lost overboard. The main concern is the interaction and possible recontact of the jettisoned object with an asset. This supports the analysis that jettisoned items will safely clear the vehicle, ensuring no collisions. The software will reduce the jettison analysis task from one that could take days to complete to one that can be completed in hours, with an analysis that is more comprehensive than the previous method. It provides the ability to define the jettison operation relative to International Space Station (ISS) structure, and provides 2D and 3D plotting capability to allow an analyst to perform a subjective clearance assessment with ISS structures. The developers followed the SMP to create the code and all supporting documentation. The code makes extensive use of the object-oriented format of Java and, in addition, the Model-View-Controller architecture was used in the organization of the code, allowing each piece to be independent of updates to the other pieces. The model category is for maintaining data entered by the user and generated by the analysis. The view category provides capabilities for data entry and displaying all or a portion of the analysis data in tabular, 2D, and 3D representation. The controller category allows for handling events that affect the model or view(s). The JETT utilizes orbital mechanics with complex algorithms. Since JETT is written in JAVA, it is essentially platform-independent.

  13. Certificates of confidentiality: a valuable tool for protecting genetic data.

    PubMed

    Earley, C L; Strong, L C

    1995-09-01

    Protecting the confidentiality of genetic research data is an important aspect of genetic research that has been discussed in various forums. Research data must be protected to prevent discrimination and its use in litigation. The certificate of confidentiality was created to protect the subjects of alcohol- and drug-abuse studies, who may be engaging in illegal activities. As revised in 1988, the certificate protects investigators engaging in other kinds of studies from being compelled to reveal information about subjects. Because the certificate protects information that could damage a subject's financial or social standing or employability, it is an appropriate tool to use to maintain the confidentiality of genetic data. The Department of Health and Human Services issues the certificates; the procedure for applying for a certificate of confidentiality is presented.

  14. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  15. The integration of automated knowledge acquisition with computer-aided software engineering for space shuttle expert systems

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    A prediction was made that the terms expert systems and knowledge acquisition would begin to disappear over the next several years. This is not because they are falling into disuse; it is rather that practitioners are realizing that they are valuable adjuncts to software engineering, in terms of problem domains addressed, user acceptance, and in development methodologies. A specific problem was discussed, that of constructing an automated test analysis system for the Space Shuttle Main Engine. In this domain, knowledge acquisition was part of requirements systems analysis, and was performed with the aid of a powerful inductive ESBT in conjunction with a computer aided software engineering (CASE) tool. The original prediction is not a very risky one -- it has already been accomplished.

  16. How Mockups, a Key Engineering Tool, Help to Promote Science, Technology, Engineering, and Mathematics Education

    NASA Technical Reports Server (NTRS)

    McDonald, Harry E.

    2010-01-01

    The United States ranking among the world in science, technology, engineering, and mathematics (STEM) education is decreasing. To counteract this problem NASA has made it part of its mission to promote STEM education among the nation s youth. Mockups can serve as a great tool when promoting STEM education in America. The Orion Cockpit Working Group has created a new program called Students Shaping America s Next Space Craft (SSANS) to outfit the Medium Fidelity Orion Mockup. SSANS will challenge the students to come up with unique designs to represent the flight design hardware. There are two main types of project packages created by SSANS, those for high school students and those for university students. The high school projects will challenge wood shop, metal shop and pre-engineering classes. The university projects are created mainly for senior design projects and will require the students to perform finite element analysis. These projects will also challenge the undergraduate students in material selection and safety requirements. The SSANS program will help NASA in its mission to promote STEM education, and will help to shape our nations youth into the next generation of STEM leaders.

  17. Towards a theoretical clarification of biomimetics using conceptual tools from engineering design.

    PubMed

    Drack, M; Limpinsel, M; de Bruyn, G; Nebelsick, J H; Betz, O

    2017-12-13

    Many successful examples of biomimetic products are available, and most research efforts in this emerging field are directed towards the development of specific applications. The theoretical and conceptual underpinnings of the knowledge transfer between biologists, engineers and architects are, however, poorly investigated. The present article addresses this gap. We use a 'technomorphic' approach, i.e. the application of conceptual tools derived from engineering design, to better understand the processes operating during a typical biomimetic research project. This helps to elucidate the formal connections between functions, working principles and constructions (in a broad sense)-because the 'form-function-relationship' is a recurring issue in biology and engineering. The presented schema also serves as a conceptual framework that can be implemented for future biomimetic projects. The concepts of 'function' and 'working principle' are identified as the core elements in the biomimetic knowledge transfer towards applications. This schema not only facilitates the development of a common language in the emerging science of biomimetics, but also promotes the interdisciplinary dialogue among its subdisciplines.

  18. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    PubMed

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  19. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  20. English Digital Dictionaries as Valuable Blended Learning Tools for Palestinian College Students

    ERIC Educational Resources Information Center

    Dwaik, Raghad A. A.

    2015-01-01

    Digital technology has become an indispensable aspect of foreign language learning around the globe especially in the case of college students who are often required to finish extensive reading assignments within a limited time period. Such pressure calls for the use of efficient tools such as digital dictionaries to help them achieve their…

  1. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  2. Productivity improvement using industrial engineering tools

    NASA Astrophysics Data System (ADS)

    Salaam, H. A.; How, S. B.; Faisae, M. F.

    2012-09-01

    Minimizing the number of defects is important to any company since it influence their outputs and profits. The aim of this paper is to study the implementation of industrial engineering tools in a manufacturing recycle paper box company. This study starts with reading the standard operation procedures and analyzing the process flow to get the whole idea on how to manufacture paper box. At the same time, observations at the production line were made to identify problem occurs in the production line. By using check sheet, the defect data from each station were collected and have been analyzed using Pareto Chart. From the chart, it is found that glue workstation shows the highest number of defects. Based on observation at the glue workstation, the existing method used to glue the box was inappropriate because the operator used a lot of glue. Then, by using cause and effect diagram, the root cause of the problem was identified and solutions to overcome the problem were proposed. There are three suggestions proposed to overcome this problem. Cost reduction for each solution was calculated and the best solution is using three hair drier to dry the sticky glue which produce only 6.4 defects in an hour with cost of RM 0.0224.

  3. Ocular static and dynamic light scattering: a noninvasive diagnostic tool for eye research and clinical practice

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.

    2004-01-01

    The noninvasive techniques of static and dynamic light scattering are emerging as valuable diagnostic tools for the early detection of ocular and systemic diseases. These include corneal abnormalities, pigmentary dispersion syndrome, glaucoma, cataract, diabetic vitreopathy, and possibly macular degeneration. Systemic conditions such as diabetes and possibly Alzheimer's disease can potentially be detected early via ocular tissues. The current state of development of these techniques for application to ophthalmic research and ultimately clinical practice is reviewed. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  4. Permanent foresty plots: a potentially valuable teaching resource in undergraduate biology porgrams for the Caribbean

    Treesearch

    H. Valles; C.M.S. Carrington

    2016-01-01

    There has been a recent proposal to change the way that biology is taught and learned in undergraduate biology programs in the USA so that students develop a better understanding of science and the natural world. Here, we use this new, recommended teaching– learning framework to assert that permanent forestry plots could be a valuable tool to help develop biology...

  5. Are consumer surveys valuable as a service improvement tool in health services? A critical appraisal.

    PubMed

    Patwardhan, Anjali; Patwardhan, Prakash

    2009-01-01

    In the recent climate of consumerism and consumer focused care, health and social care needs to be more responsive than ever before. Consumer needs and preferences can be elicited with accepted validity and reliability only by strict methodological control, customerisation of the questionnaire and skilled interpretation. To construct, conduct, interpret and implement improved service provision, requires a trained work force and infrastructure. This article aims to appraise various aspects of consumer surveys and to assess their value as effective service improvement tools. The customer is the sole reason organisations exist. Consumer surveys are used worldwide as service and quality of care improvement tools by all types of service providers including health service providers. The article critically appraises the value of consumer surveys as service improvement tools in health services tool and its future applications. No one type of survey is the best or ideal. The key is the selection of the correct survey methodology, unique and customised for the particular type/aspect of care being evaluated. The method used should reflect the importance of the information required. Methodological rigor is essential for the effectiveness of consumer surveys as service improvement tools. Unfortunately so far there is no universal consensus on superiority of one particular methodology over another or any benefit of one specific methodology in a given situation. More training and some dedicated resource allocation is required to develop consumer surveys. More research is needed to develop specific survey methodology and evaluation techniques for improved validity and reliability of the surveys as service improvement tools. Measurement of consumer preferences/priorities, evaluation of services and key performance scores, is not easy. Consumer surveys seem impressive tools as they provide the customer a voice for change or modification. However, from a scientific point

  6. MESSI: metabolic engineering target selection and best strain identification tool.

    PubMed

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae's ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae's metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains' natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels.Database URL: http://sbb.hku.hk/MESSI/. © The Author(s) 2015. Published by Oxford University

  7. 'HoneySweet' plum - a valuable genetically engineered fruit-tree cultivar and germplasm resource

    USDA-ARS?s Scientific Manuscript database

    ‘HoneySweet’ is a plum variety developed through genetic engineering to be highly resistant to plum pox potyvirus (PPV), the causal agent of sharka disease, that threatens stone-fruit industries world-wide and most specifically, in Europe. Field testing for over 15 years in Europe has demonstrated ...

  8. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  9. A new DoD initiative: the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program

    NASA Astrophysics Data System (ADS)

    Arevalo, S.; Atwood, C.; Bell, P.; Blacker, T. D.; Dey, S.; Fisher, D.; Fisher, D. A.; Genalis, P.; Gorski, J.; Harris, A.; Hill, K.; Hurwitz, M.; Kendall, R. P.; Meakin, R. L.; Morton, S.; Moyer, E. T.; Post, D. E.; Strawn, R.; Veldhuizen, D. v.; Votta, L. G.; Wynn, S.; Zelinski, G.

    2008-07-01

    In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a 360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams.

  10. Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.

    PubMed

    Fontana, Jason; Voje, William E; Zalatan, Jesse G; Carothers, James M

    2018-05-08

    Dynamic control of gene expression is emerging as an important strategy for controlling flux in metabolic pathways and improving bioproduction of valuable compounds. Integrating dynamic genetic control tools with CRISPR-Cas transcriptional regulation could significantly improve our ability to fine-tune the expression of multiple endogenous and heterologous genes according to the state of the cell. In this mini-review, we combine an analysis of recent literature with examples from our own work to discuss the prospects and challenges of developing dynamically regulated CRISPR-Cas transcriptional control systems for applications in synthetic biology and metabolic engineering.

  11. Logistics Process Analysis ToolProcess Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2008-03-31

    LPAT is the resulting integrated system between ANL-developed Enhanced Logistics Intra Theater Support Tool (ELIST) sponsored by SDDC-TEA and the Fort Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the process Anlysis Tool (PAT) which evolved into a stand=-along tool for detailed process analysis at a location. Combined with ELIST, an inter-installation logistics component was added to enable users to define large logistical agent-based models without having to program. PAT is the evolution of an ANL-developed software system called Fortmore » Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the Process Analysis Tool(PAT) which evolved into a stand-alone tool for detailed process analysis at a location (sponsored by the SDDC-TEA).« less

  12. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  13. Engineering bacterial translation initiation - Do we have all the tools we need?

    PubMed

    Vigar, Justin R J; Wieden, Hans-Joachim

    2017-11-01

    Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier

  14. Valuable water

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    In some places, money flows with water. Studying both the water quality and property values around 22 lakes in south-central Maine, Kevin Boyle and Holly James of the University of Maine and Roy Bouchard of the Maine Department of Environmental Protection have found that good water quality makes waterfront property even more valuable. To gauge water quality, the researchers used Secchi disks to measure the clarity of the water at depth. They also reviewed 543 lakefront property sales between 1990 and 1994 to determine how values correlated with changing water conditions. The group also considered such factors as lake frontage, sizes of the houses and lots, and size of the lake.

  15. Interactive simulations as teaching tools for engineering mechanics courses

    NASA Astrophysics Data System (ADS)

    Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes

    2013-07-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.

  16. Using a formal requirements management tool for system engineering: first results at ESO

    NASA Astrophysics Data System (ADS)

    Zamparelli, Michele

    2006-06-01

    The attention to proper requirement analysis and maintenance is growing in modern astronomical undertakings. The increasing degree of complexity that current and future generations of projects have reached requires substantial system engineering efforts and the usage of all available technology to keep project development under control. One such technology is a tool which helps managing relationships between deliverables at various development stages, and across functional subsystems and disciplines as different as software, mechanics, optics and electronics. The immediate benefits are traceability and the possibility to do impact analysis. An industrially proven tool for requirements management is presented together with the first results across some projects at ESO and a cost/benefit analysis of its usage. Experience gathered so far shows that the extensibility and configurability of the tool from one hand, and integration with common documentation formats and standards on the other, make it appear as a promising solution for even small scale system development.

  17. System engineering toolbox for design-oriented engineers

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Everhart, K.; Stevens, R.; Babbitt, N., III; Clemens, P.; Stout, L.

    1994-01-01

    This system engineering toolbox is designed to provide tools and methodologies to the design-oriented systems engineer. A tool is defined as a set of procedures to accomplish a specific function. A methodology is defined as a collection of tools, rules, and postulates to accomplish a purpose. For each concept addressed in the toolbox, the following information is provided: (1) description, (2) application, (3) procedures, (4) examples, if practical, (5) advantages, (6) limitations, and (7) bibliography and/or references. The scope of the document includes concept development tools, system safety and reliability tools, design-related analytical tools, graphical data interpretation tools, a brief description of common statistical tools and methodologies, so-called total quality management tools, and trend analysis tools. Both relationship to project phase and primary functional usage of the tools are also delineated. The toolbox also includes a case study for illustrative purposes. Fifty-five tools are delineated in the text.

  18. Tying Profit to Performance: A Valuable Tool, But Use With Good Judgment

    DTIC Science & Technology

    2015-06-01

    tool that ties profit to performance in a way that has been dem- onstrated to be a win-win for DoD and industry. PBL is...understood the definition of suc-cess: It was profit . If something made a profit for a business, it was good. If some- thing did not make a profit for a ... bankruptcy . Declining profits make it harder for businesses to raise capital or to invest for their futures. These

  19. Engineer's Notebook--A Design Assessment Tool

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  20. Software engineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan

    1993-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.

  1. A general engineering scenario for concurrent engineering environments

    NASA Astrophysics Data System (ADS)

    Mucino, V. H.; Pavelic, V.

    The paper describes an engineering method scenario which categorizes the various activities and tasks into blocks seen as subjects which consume and produce data and information. These methods, tools, and associated utilities interact with other engineering tools by exchanging information in such a way that a relationship between customers and suppliers of engineering data is established clearly, while data exchange consistency is maintained throughout the design process. The events and data transactions are presented in the form of flowcharts in which data transactions represent the connection between the various bricks, which in turn represent the engineering activities developed for the particular task required in the concurrent engineering environment.

  2. The Stand-Alone Microprocessor System: A Valuable Tool in College Admissions and Recruitment.

    ERIC Educational Resources Information Center

    Garrett, Larry Neal

    1983-01-01

    The stand-alone microprocessor is seen as one innovative tool that can be used both in the organizational management of decline and in meeting specific organizational needs such as those of the admissions director and staff. The term "microprocessor" is defined. (MLW)

  3. Design mentoring tool : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves seni...

  4. Educating Tomorrow's Valuable Citizen.

    ERIC Educational Resources Information Center

    Burstyn, Joan N., Ed.

    This collection of essays by various authors discusses the dilemmas that face those who would educate tomorrow's valuable citizens and describes the day-to-day commitment needed to maintain a community. The book gives guidelines for action through examples of current programs that provide a forum for civic discussion and public consensus on the…

  5. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  6. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    PubMed

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  7. Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2014-10-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.

  8. Development of a new Clinical Engineering Management Tool & Information System (CLE-MANTIS).

    PubMed

    Panousis, S G; Malataras, P; Patelodimou, C; Kolitsi, Z; Pallikarakis, N

    1997-01-01

    The evolution of the field of biomedical technology has led to the diffusion of an impressive number of medical devices into healthcare institutions. In this environment, Clinical Engineering Departments (CEDs) are expanding their role in healthcare technology management, by changing their structure and introducing quality systems in order to improve their services and monitor the outcomes. In the framework of the national project BIOTECHNET II, a software tool for the management of biomedical technology, named CLE-MANTIS, has been developed, with the aim to assist CEDs in their tasks. CLE-MANTIS functions include the upkeep of an inventory, the support and monitoring of scheduled maintenance, corrective maintenance, vigilance, equipment acquisition and replacement, service contract management and user training. The system offers clinical engineers the possibility to monitor and evaluate the quality and cost-effectiveness of their departments through the monitoring of quality and cost indicators. This paper presents the main features and functions of the system.

  9. Retraining the Modern Civil Engineer.

    ERIC Educational Resources Information Center

    Priscoli, Jerome Delli

    1983-01-01

    Discusses why modern engineering requires social science and the nature of planning. After these conceptional discussions, 12 practical tools which social science brings to engineering are reviewed. A tested approach to training engineers in these tools is then described. Tools include institutional analysis, policy profiling, and other impact…

  10. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed formore » unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.« less

  11. Effective standards and regulatory tools for respiratory gas monitors and pulse oximeters: the role of the engineer and clinician.

    PubMed

    Weininger, Sandy

    2007-12-01

    Developing safe and effective medical devices involves understanding the hazardous situations that can arise in clinical practice and implementing appropriate risk control measures. The hazardous situations may have their roots in the design or in the use of the device. Risk control measures may be engineering or clinically based. A multidisciplinary team of engineers and clinicians is needed to fully identify and assess the risks and implement and evaluate the effectiveness of the control measures. In this paper, I use three issues, calibration/accuracy, response time, and protective measures/alarms, to highlight the contributions of these groups. This important information is captured in standards and regulatory tools to control risk for respiratory gas monitors and pulse oximeters. This paper begins with a discussion of the framework of safety, explaining how voluntary standards and regulatory tools work. The discussion is followed by an examination of how engineering and clinical knowledge are used to support the assurance of safety.

  12. A novel paradigm for engineering education: virtual internships with individualized mentoring and assessment of engineering thinking.

    PubMed

    Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David

    2015-02-01

    Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.

  13. Nastran's Application in Agricultural Engineering

    NASA Technical Reports Server (NTRS)

    Vanwicklen, G. L.

    1985-01-01

    Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.

  14. Tool post modification allows easy turret lathe cutting-tool alignment

    NASA Technical Reports Server (NTRS)

    Fouts, L.

    1966-01-01

    Modified tool holder and tool post permit alignment of turret lathe cutting tools on the center of the spindle. The tool is aligned with the spindle by the holder which is kept in position by a hydraulic lock in feature of the tool post. The tool post is used on horizontal and vertical turret lathes and other engine lathes.

  15. RetroPath2.0: A retrosynthesis workflow for metabolic engineers.

    PubMed

    Delépine, Baudoin; Duigou, Thomas; Carbonell, Pablo; Faulon, Jean-Loup

    2018-01-01

    Synthetic biology applied to industrial biotechnology is transforming the way we produce chemicals. However, despite advances in the scale and scope of metabolic engineering, the research and development process still remains costly. In order to expand the chemical repertoire for the production of next generation compounds, a major engineering biology effort is required in the development of novel design tools that target chemical diversity through rapid and predictable protocols. Addressing that goal involves retrosynthesis approaches that explore the chemical biosynthetic space. However, the complexity associated with the large combinatorial retrosynthesis design space has often been recognized as the main challenge hindering the approach. Here, we provide RetroPath2.0, an automated open source workflow for retrosynthesis based on generalized reaction rules that perform the retrosynthesis search from chassis to target through an efficient and well-controlled protocol. Its easiness of use and the versatility of its applications make this tool a valuable addition to the biological engineer bench desk. We show through several examples the application of the workflow to biotechnological relevant problems, including the identification of alternative biosynthetic routes through enzyme promiscuity or the development of biosensors. We demonstrate in that way the ability of the workflow to streamline retrosynthesis pathway design and its major role in reshaping the design, build, test and learn pipeline by driving the process toward the objective of optimizing bioproduction. The RetroPath2.0 workflow is built using tools developed by the bioinformatics and cheminformatics community, because it is open source we anticipate community contributions will likely expand further the features of the workflow. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. CRISPR/Cas9 Immune System as a Tool for Genome Engineering.

    PubMed

    Hryhorowicz, Magdalena; Lipiński, Daniel; Zeyland, Joanna; Słomski, Ryszard

    2017-06-01

    CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) adaptive immune systems constitute a bacterial defence against invading nucleic acids derived from bacteriophages or plasmids. This prokaryotic system was adapted in molecular biology and became one of the most powerful and versatile platforms for genome engineering. CRISPR/Cas9 is a simple and rapid tool which enables the efficient modification of endogenous genes in various species and cell types. Moreover, a modified version of the CRISPR/Cas9 system with transcriptional repressors or activators allows robust transcription repression or activation of target genes. The simplicity of CRISPR/Cas9 has resulted in the widespread use of this technology in many fields, including basic research, biotechnology and biomedicine.

  17. Combined measurement of plasma cystatin C and low-density lipoprotein cholesterol: A valuable tool for evaluating progressive supranuclear palsy.

    PubMed

    Weng, Ruihui; Wei, Xiaobo; Yu, Bin; Zhu, Shuzhen; Yang, Xiaohua; Xie, Fen; Zhang, Mahui; Jiang, Ying; Feng, Zhong-Ping; Sun, Hong-Shuo; Xia, Ying; Jin, Kunlin; Chan, Piu; Wang, Qing; Gao, Xiaoya

    2018-07-01

    Progressive supranuclear palsy (PSP) was previously thought as a cause of atypical Parkinsonism. Although Cystatin C (Cys C) and low-density cholesterol lipoprotein-C (LDL-C) are known to play critical roles in Parkinsonism, it is unknown whether they can be used as markers to distinguish PSP patients from healthy subjects and to determine disease severity. We conducted a cross-sectional study to determine plasma Cys C/HDL/LDL-C levels of 40 patients with PSP and 40 healthy age-matched controls. An extended battery of motor and neuropsychological tests, including the PSP-Rating Scale (PSPRS), the Non-Motor Symptoms Scale (NMSS), Geriatric Depression Scale (GDS) and Mini-Mental State Examination (MMSE), was used to evaluate the disease severity. Receiver operating characteristic (ROC) curves were adopted to assess the prognostic accuracy of Cys C/LDL-C levels in distinguishing PSP from healthy subjects. Patients with PSP exhibited significantly higher plasma levels of Cys C and lower LDL-C. The levels of plasma Cys C were positively and inversely correlated with the PSPRS/NMSS and MMSE scores, respectively. The LDL-C/HDL-C ratio was positively associated with PSPRS/NMSS and GDS scores. The ROC curve for the combination of Cys C and LDL-C yielded a better accuracy for distinguishing PSP from healthy subjects than the separate curves for each parameter. Plasma Cys C and LDL-C may be valuable screening tools for differentiating PSP from healthy subjects; while they could be useful for the PSP intensifies and severity evaluation. A better understanding of Cys C and LDL-C may yield insights into the pathogenesis of PSP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    NASA Technical Reports Server (NTRS)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  19. The Design and Development of a Computerized Tool Support for Conducting Senior Projects in Software Engineering Education

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Teng, Kao-Chiuan

    2011-01-01

    This paper presents a computerized tool support, the Meetings-Flow Project Collaboration System (MFS), for designing, directing and sustaining the collaborative teamwork required in senior projects in software engineering (SE) education. Among many schools' SE curricula, senior projects serve as a capstone course that provides comprehensive…

  20. Statistical Analysis Tools for Learning in Engineering Laboratories.

    ERIC Educational Resources Information Center

    Maher, Carolyn A.

    1990-01-01

    Described are engineering programs that have used automated data acquisition systems to implement data collection and analyze experiments. Applications include a biochemical engineering laboratory, heat transfer performance, engineering materials testing, mechanical system reliability, statistical control laboratory, thermo-fluid laboratory, and a…

  1. Magnetic targeting of mechanosensors in bone cells for tissue engineering applications.

    PubMed

    Hughes, Steven; Dobson, Jon; El Haj, Alicia J

    2007-01-01

    Mechanical signalling plays a pivotal role in maintaining bone cell function and remodelling of the skeleton. Our previous work has highlighted the potential role of mechano-induction in tissue engineering applications. In particular, we have highlighted the potential for using magnetic particle techniques for tissue engineering applications. Previous studies have shown that manipulation of integrin attached magnetic particles leads to changes in intracellular calcium signalling within osteoblasts. However, due to the phenomenon of particle internalisation, previous studies have typically focused on short-term stimulation experiments performed within 1-2 h of particle attachment. For tissue engineering applications, bone tissue growth occurs over a period of 3-5 weeks. To date, no study has investigated the cellular responses elicited from osteoblasts over time following stimulation with internalised magnetic particles. Here, we demonstrate the long-term biocompatibility of 4.5 microm RGD-coated particles with osteoblasts up to 21 days in culture, and detail a time course of responses elicited from osteoblasts following mechanical stimulation with integrin attached magnetic particles (<2h post attachment) and internalised particles (>48h post attachment). Mechanical manipulation of both integrin attached and internalised particles were found to induce intracellular calcium signalling. It is concluded that magnetic particles offer a tool for applying controlled mechanical forces to osteoblasts, and can be used to stimulate intracellular calcium signalling over prolonged periods of time. Magnetic particle technology presents a potentially valuable tool for tissue engineering which permits the delivery of highly localised mechano-inductive forces directly to cells.

  2. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  3. ProtaBank: A repository for protein design and engineering data.

    PubMed

    Wang, Connie Y; Chang, Paul M; Ary, Marie L; Allen, Benjamin D; Chica, Roberto A; Mayo, Stephen L; Olafson, Barry D

    2018-03-25

    We present ProtaBank, a repository for storing, querying, analyzing, and sharing protein design and engineering data in an actively maintained and updated database. ProtaBank provides a format to describe and compare all types of protein mutational data, spanning a wide range of properties and techniques. It features a user-friendly web interface and programming layer that streamlines data deposition and allows for batch input and queries. The database schema design incorporates a standard format for reporting protein sequences and experimental data that facilitates comparison of results across different data sets. A suite of analysis and visualization tools are provided to facilitate discovery, to guide future designs, and to benchmark and train new predictive tools and algorithms. ProtaBank will provide a valuable resource to the protein engineering community by storing and safeguarding newly generated data, allowing for fast searching and identification of relevant data from the existing literature, and exploring correlations between disparate data sets. ProtaBank invites researchers to contribute data to the database to make it accessible for search and analysis. ProtaBank is available at https://protabank.org. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  4. Metabolic Engineering for the Production of Natural Products

    PubMed Central

    Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng

    2014-01-01

    Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617

  5. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges.

    PubMed

    Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta

    2009-08-01

    Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.

  6. The futures of climate engineering

    NASA Astrophysics Data System (ADS)

    Low, Sean

    2017-01-01

    This piece examines the need to interrogate the role of the conceptions of the future, as embedded in academic papers, policy documents, climate models, and other artifacts that serve as currencies of the science-society interface, in shaping scientific and policy agendas in climate engineering. Growing bodies of work on framings, metaphors, and models in the past decade serve as valuable starting points, but can benefit from integration with science and technology studies work on the sociology of expectations, imaginaries, and visions. Potentially valuable branches of work to come might be the anticipatory use of the future: the design of experimental spaces for exploring the future of an engineered climate in service of responsible research and innovation, and the integration of this work within the unfolding context of the Paris Agreement.

  7. CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.

    1987-01-01

    To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.

  8. Using Visual Simulation Tools And Learning Outcomes-Based Curriculum To Help Transportation Engineering Students And Practitioners To Better Understand And Design Traffic Signal Control Systems

    DOT National Transportation Integrated Search

    2012-06-01

    The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...

  9. Advances in the biotechnological glycosylation of valuable flavonoids.

    PubMed

    Xiao, Jianbo; Muzashvili, Tamar S; Georgiev, Milen I

    2014-11-01

    The natural flavonoids, especially their glycosides, are the most abundant polyphenols in foods and have diverse bioactivities. The biotransformation of flavonoid aglycones into their glycosides is vital in flavonoid biosynthesis. The main biological strategies that have been used to achieve flavonoid glycosylation in the laboratory involve metabolic pathway engineering and microbial biotransformation. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoid glycosides using biotechnology, as well as the impact of glycosylation on flavonoid bioactivity. Uridine diphosphate glycosyltransferases play key roles in decorating flavonoids with sugars. Modern metabolic engineering and proteomic tools have been used in an integrated fashion to generate numerous structurally diverse flavonoid glycosides. In vitro, enzymatic glycosylation tends to preferentially generate flavonoid 3- and 7-O-glucosides; microorganisms typically convert flavonoids into their 7-O-glycosides and will produce 3-O-glycosides if supplied with flavonoid substrates having a hydroxyl group at the C-3 position. In general, O-glycosylation reduces flavonoid bioactivity. However, C-glycosylation can enhance some of the benefits of flavonoids on human health, including their antioxidant and anti-diabetic potential. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering

    PubMed Central

    Bonde, Mads T.; Klausen, Michael S.; Anderson, Mads V.; Wallin, Annika I.N.; Wang, Harris H.; Sommer, Morten O.A.

    2014-01-01

    Recombineering and multiplex automated genome engineering (MAGE) offer the possibility to rapidly modify multiple genomic or plasmid sites at high efficiencies. This enables efficient creation of genetic variants including both single mutants with specifically targeted modifications as well as combinatorial cell libraries. Manual design of oligonucleotides for these approaches can be tedious, time-consuming, and may not be practical for larger projects targeting many genomic sites. At present, the change from a desired phenotype (e.g. altered expression of a specific protein) to a designed MAGE oligo, which confers the corresponding genetic change, is performed manually. To address these challenges, we have developed the MAGE Oligo Design Tool (MODEST). This web-based tool allows designing of MAGE oligos for (i) tuning translation rates by modifying the ribosomal binding site, (ii) generating translational gene knockouts and (iii) introducing other coding or non-coding mutations, including amino acid substitutions, insertions, deletions and point mutations. The tool automatically designs oligos based on desired genotypic or phenotypic changes defined by the user, which can be used for high efficiency recombineering and MAGE. MODEST is available for free and is open to all users at http://modest.biosustain.dtu.dk. PMID:24838561

  11. Image-Based 3d Reconstruction Data as AN Analysis and Documentation Tool for Architects: the Case of Plaka Bridge in Greece

    NASA Astrophysics Data System (ADS)

    Kouimtzoglou, T.; Stathopoulou, E. K.; Agrafiotis, P.; Georgopoulos, A.

    2017-02-01

    Μodern advances in the field of image-based 3D reconstruction of complex architectures are valuable tools that may offer the researchers great possibilities integrating the use of such procedures in their studies. In the same way that photogrammetry was a well-known useful tool among the cultural heritage community for years, the state of the art reconstruction techniques generate complete and easy to use 3D data, thus enabling engineers, architects and other cultural heritage experts to approach their case studies in an exhaustive and efficient way. The generated data can be a valuable and accurate basis upon which further plans and studies will be drafted. These and other aspects of the use of image-based 3D data for architectural studies are to be presented and analysed in this paper, based on the experience gained from a specific case study, the Plaka Bridge. This historic structure is of particular interest, as it was recently lost due to extreme weather conditions and serves as a strong proof that preventive actions are of utmost importance in order to preserve our common past.

  12. Modeling the emissions of a dual fuel engine coupled with a biomass gasifier-supplementing the Wiebe function.

    PubMed

    Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco

    2018-03-12

    There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.

  13. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  14. FRACTAL Systems & Project suite: engineering tools for improving development and operation of the systems

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; Mujica-Alvarez, E.; Osinde-Lopez, J.; García-Vargas, M.

    2008-07-01

    This paper describes the FRACTAL Systems & Projects suite. This suite is composed by several tools (GECO, DOCMA and SUMO) that provide the capabilities that all organizations need to store and manage the system information generated along the project's lifetime, from the design phase to the operation phase. The amount of information that is generated in a project keeps growing in size and complexity along the project's lifetime, to an extent that it becomes impossible to manage it without the aid of specific computer-based tools. The suite described in this paper is the solution developed by FRACTAL to assist the execution of different scientific projects, mainly related with telescopes and instruments, for astronomical research centres. These tools help the system and project engineers to maintain the technical control of the systems and to ensure an optimal use of the resources. GECO eases the control of the system configuration data; DOCMA provides the means to organise and manage the documents generated in the project; SUMO allows managing and scheduling the operation, the maintenance activities and the resources during the operational phase of a system. These tools improve the project communication making the information available to the authorized users (project team, customers, Consortium's members, etc). Finally and depending on the project needs, these three tools can be used integrated or in an independent manner.

  15. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    PubMed

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enterprise resource planning (ERP) implementation using the value engineering methodology and Six Sigma tools

    NASA Astrophysics Data System (ADS)

    Leu, Jun-Der; Lee, Larry Jung-Hsing

    2017-09-01

    Enterprise resource planning (ERP) is a software solution that integrates the operational processes of the business functions of an enterprise. However, implementing ERP systems is a complex process. In addition to the technical issues, companies must address problems associated with business process re-engineering, time and budget control, and organisational change. Numerous industrial studies have shown that the failure rate of ERP implementation is high, even for well-designed systems. Thus, ERP projects typically require a clear methodology to support the project execution and effectiveness. In this study, we propose a theoretical model for ERP implementation. The value engineering (VE) method forms the basis of the proposed framework, which integrates Six Sigma tools. The proposed framework encompasses five phases: knowledge generation, analysis, creation, development and execution. In the VE method, potential ERP problems related to software, hardware, consultation and organisation are analysed in a group-decision manner and in relation to value, and Six Sigma tools are applied to avoid any project defects. We validate the feasibility of the proposed model by applying it to an international manufacturing enterprise in Taiwan. The results show improvements in customer response time and operational efficiency in terms of work-in-process and turnover of materials. Based on the evidence from the case study, the theoretical framework is discussed together with the study's limitations and suggestions for future research.

  17. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.

    PubMed

    Siddiqui, Michael S; Thodey, Kate; Trenchard, Isis; Smolke, Christina D

    2012-03-01

    Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Differential Targeting of Unpaired Bases within Duplex DNA by the Natural Compound Clerocidin: A Valuable Tool to Dissect DNA Secondary Structure

    PubMed Central

    Nadai, Matteo; Palù, Giorgio; Palumbo, Manlio; Richter, Sara N.

    2012-01-01

    Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix. Here we performed a comprehensive analysis on several non-canonical DNA secondary structures, namely mismatches, nicks, bulges, hairpins, with sequence variations in both the single-stranded region and the double-stranded flanking segment. By analysis of clerocidin reactivity, we were able to identify the exposed reactive residues which provided information on both the secondary structure and the accessibility of the non-paired sites. Mismatches longer than 1 base were necessary to be reached by clerocidin reactive groups, while 1-base nicks were promptly targeted by clerocidin; in hairpins, clerocidin reactivity increased with the length of the hairpin loop, while, interestingly, reactivity towards bulges reached a maximum in 3-base-long bulges and declined in longer bulges. Electrophoretic mobility shift analysis demonstrated that bulges longer than 3 bases (i.e. 5- and 7-bases) folded or stacked on the duplex region therefore being less accessible by the compound. Clerocidin thus represents a new valuable diagnostic tool to dissect DNA secondary structures. PMID:23285245

  19. Differential targeting of unpaired bases within duplex DNA by the natural compound clerocidin: a valuable tool to dissect DNA secondary structure.

    PubMed

    Nadai, Matteo; Palù, Giorgio; Palumbo, Manlio; Richter, Sara N

    2012-01-01

    Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix. Here we performed a comprehensive analysis on several non-canonical DNA secondary structures, namely mismatches, nicks, bulges, hairpins, with sequence variations in both the single-stranded region and the double-stranded flanking segment. By analysis of clerocidin reactivity, we were able to identify the exposed reactive residues which provided information on both the secondary structure and the accessibility of the non-paired sites. Mismatches longer than 1 base were necessary to be reached by clerocidin reactive groups, while 1-base nicks were promptly targeted by clerocidin; in hairpins, clerocidin reactivity increased with the length of the hairpin loop, while, interestingly, reactivity towards bulges reached a maximum in 3-base-long bulges and declined in longer bulges. Electrophoretic mobility shift analysis demonstrated that bulges longer than 3 bases (i.e. 5- and 7-bases) folded or stacked on the duplex region therefore being less accessible by the compound. Clerocidin thus represents a new valuable diagnostic tool to dissect DNA secondary structures.

  20. Searching Choices: Quantifying Decision-Making Processes Using Search Engine Data.

    PubMed

    Moat, Helen Susannah; Olivola, Christopher Y; Chater, Nick; Preis, Tobias

    2016-07-01

    When making a decision, humans consider two types of information: information they have acquired through their prior experience of the world, and further information they gather to support the decision in question. Here, we present evidence that data from search engines such as Google can help us model both sources of information. We show that statistics from search engines on the frequency of content on the Internet can help us estimate the statistical structure of prior experience; and, specifically, we outline how such statistics can inform psychological theories concerning the valuation of human lives, or choices involving delayed outcomes. Turning to information gathering, we show that search query data might help measure human information gathering, and it may predict subsequent decisions. Such data enable us to compare information gathered across nations, where analyses suggest, for example, a greater focus on the future in countries with a higher per capita GDP. We conclude that search engine data constitute a valuable new resource for cognitive scientists, offering a fascinating new tool for understanding the human decision-making process. Copyright © 2016 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  1. Nurturing Competitive Teamwork with Individual Excellence in an Engineering Classroom

    ERIC Educational Resources Information Center

    Kanyarusoke, Kant E.

    2017-01-01

    Team working and business competitiveness awareness are valuable skills for engineering graduates. This paper describes one way to nurture them while motivating individual student excellence in a normal engineering course. In six years, four groups of students were nurtured through real engineering business situations in a model similar to…

  2. A new comprehension and communication tool: a valuable resource for internationally educated occupational therapists.

    PubMed

    Nguyen, Tram; Baptiste, Sue; Jung, Bonny; Wilkins, Seanne

    2014-06-01

    The need was identified for a way to assess internationally educated occupational therapists’ skills in understanding and communicating professional terminology used in occupational therapy practice. The project aim was to develop and validate such a resource. A scenario-based assessment was developed using a three-phase process for tool development. The development process involved completion of a literature scan of professional terminology used in occupational therapy practice; selection of terms and concepts commonly used in occupational therapy practice; and, creation of practice-based scenarios illustrating key concepts complete with rating rubrics. An advisory group provided oversight, and a sample of internationally educated occupational therapists completed pilot and validity testing. The initial findings showed the assessment to be easy to complete and sensitive to testing understanding of the defined terms. The final outcome is an assessment tool that has broad application for occupational therapists wishing to enter professional practice in a new country. © 2013 Occupational Therapy Australia.

  3. Engineering Design Modules as Physics Teaching Tools

    ERIC Educational Resources Information Center

    Oliver, Douglas L.; Kane, Jackie

    2011-01-01

    Pre-engineering is increasingly being taught as a high school subject. This development presents challenges as well as opportunities for the physics education community. If pre-engineering is taught as a separate class, it may divert resources and students from traditional physics classes. However, design modules can be used as physics teaching…

  4. Seismic tomography as a tool for measuring stress in mines

    USGS Publications Warehouse

    Scott, Douglas F.; Williams, T.J.; Denton, D.K.; Friedel, M.J.

    1999-01-01

    Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,220-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress, engineers will be able to assure that miners are working in a safer environment.Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,200-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress. engineers will be able to assure that miners are

  5. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    NASA Technical Reports Server (NTRS)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  6. Rescuing valuable genomes by animal cloning: a case for natural disease resistance in cattle.

    PubMed

    Westhusin, M E; Shin, T; Templeton, J W; Burghardt, R C; Adams, L G

    2007-01-01

    Tissue banking and animal cloning represent a powerful tool for conserving and regenerating valuable animal genomes. Here we report an example involving cattle and the rescue of a genome affording natural disease resistance. During the course of a 2-decade study involving the phenotypic and genotypic analysis for the functional and genetic basis of natural disease resistance against bovine brucellosis, a foundation sire was identified and confirmed to be genetically resistant to Brucella abortus. This unique animal was utilized extensively in numerous animal breeding studies to further characterize the genetic basis for natural disease resistance. The bull died in 1996 of natural causes, and no semen was available for AI, resulting in the loss of this valuable genome. Fibroblast cell lines had been established in 1985, cryopreserved, and stored in liquid nitrogen for future genetic analysis. Therefore, we decided to utilize these cells for somatic cell nuclear transfer to attempt the production of a cloned bull and salvage this valuable genotype. Embryos were produced by somatic cell nuclear transfer and transferred to 20 recipient cows, 10 of which became pregnant as determined by ultrasound at d 40 of gestation. One calf survived to term. At present, the cloned bull is 4.5 yr old and appears completely normal as determined by physical examination and blood chemistry. Furthermore, in vitro assays performed to date indicate this bull is naturally resistant to B. abortus, Mycobacterium bovis, and Salmonella typhimurium, as was the original genetic donor.

  7. The Tracking Meteogram, an AWIPS II Tool for Time-Series Analysis

    NASA Technical Reports Server (NTRS)

    Burks, Jason Eric; Sperow, Ken

    2015-01-01

    A new tool has been developed for the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) II through collaboration between NASA's Short-term Prediction Research and Transition (SPoRT) and the NWS Meteorological Development Laboratory (MDL). Referred to as the "Tracking Meteogram", the tool aids NWS forecasters in assessing meteorological parameters associated with moving phenomena. The tool aids forecasters in severe weather situations by providing valuable satellite and radar derived trends such as cloud top cooling rates, radial velocity couplets, reflectivity, and information from ground-based lightning networks. The Tracking Meteogram tool also aids in synoptic and mesoscale analysis by tracking parameters such as the deepening of surface low pressure systems, changes in surface or upper air temperature, and other properties. The tool provides a valuable new functionality and demonstrates the flexibility and extensibility of the NWS AWIPS II architecture. In 2014, the operational impact of the tool was formally evaluated through participation in the NOAA/NWS Operations Proving Ground (OPG), a risk reduction activity to assess performance and operational impact of new forecasting concepts, tools, and applications. Performance of the Tracking Meteogram Tool during the OPG assessment confirmed that it will be a valuable asset to the operational forecasters. This presentation reviews development of the Tracking Meteogram tool, performance and feedback acquired during the OPG activity, and future goals for continued support and extension to other application areas.

  8. A new technology perspective and engineering tools approach for large, complex and distributed mission and safety critical systems components

    NASA Technical Reports Server (NTRS)

    Carrio, Miguel A., Jr.

    1988-01-01

    Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.

  9. Systems Engineering Models and Tools | Wind | NREL

    Science.gov Websites

    (tm)) that provides wind turbine and plant engineering and cost models for holistic system analysis turbine/component models and wind plant analysis models that the systems engineering team produces. If you integrated modeling of wind turbines and plants. It provides guidance for overall wind turbine and plant

  10. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.

    PubMed

    Vanegas, Katherina García; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-02-08

    The yeast Saccharomyces cerevisiae is increasingly used as a cell factory. However, cell factory construction time is a major obstacle towards using yeast for bio-production. Hence, tools to speed up cell factory construction are desirable. In this study, we have developed a new Cas9/dCas9 based system, SWITCH, which allows Saccharomyces cerevisiae strains to iteratively alternate between a genetic engineering state and a pathway control state. Since Cas9 induced recombination events are crucial for SWITCH efficiency, we first developed a technique TAPE, which we have successfully used to address protospacer efficiency. As proof of concept of the use of SWITCH in cell factory construction, we have exploited the genetic engineering state of a SWITCH strain to insert the five genes necessary for naringenin production. Next, the naringenin cell factory was switched to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell factory construction.

  11. Eukaryotic and prokaryotic promoter databases as valuable tools in exploring the regulation of gene transcription: a comprehensive overview.

    PubMed

    Majewska, Małgorzata; Wysokińska, Halina; Kuźma, Łukasz; Szymczyk, Piotr

    2018-02-20

    The complete exploration of the regulation of gene expression remains one of the top-priority goals for researchers. As the regulation is mainly controlled at the level of transcription by promoters, study on promoters and findings are of great importance. This review summarizes forty selected databases that centralize experimental and theoretical knowledge regarding the organization of promoters, interacting transcription factors (TFs) and microRNAs (miRNAs) in many eukaryotic and prokaryotic species. The presented databases offer researchers valuable support in elucidating the regulation of gene transcription. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Integrated modeling tool for performance engineering of complex computer systems

    NASA Technical Reports Server (NTRS)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  13. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    NASA Astrophysics Data System (ADS)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  14. 454-pyrosequencing: A tool for discovery and biomarker development

    USDA-ARS?s Scientific Manuscript database

    The Roche GS-FLX (454) sequencer has made possible what was thought impossible just a few years ago: sequence >1 million high-quality nucleotide reads (mean 400 bp) in less than 12 h. This technology provides valuable species-specific sequence information, and is a valuable tool to discover and und...

  15. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  16. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  17. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    NASA Astrophysics Data System (ADS)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  18. System Maturity and Architecture Assessment Methods, Processes, and Tools

    DTIC Science & Technology

    2012-03-02

    Deshmukh , and M. Sarfaraz. Development of Systems Engineering Maturity Models and Management Tools. Systems Engineering Research Center Final Technical...Ramirez- Marquez, D. Nowicki, A. Deshmukh , and M. Sarfaraz. Development of Systems Engineering Maturity Models and Management Tools. Systems Engineering

  19. Valuable use of computer-aided surgery in congenital bony aural atresia.

    PubMed

    Caversaccio, Marco; Romualdez, Joel; Baechler, Richard; Nolte, Lutz-Peter; Kompis, Martin; Häusler, Rudolf

    2003-04-01

    Congenital aural atresia repair is difficult owing to unpredictable anatomy. Benefits may be gained from computer-aided surgery (CAS), but its exact role has yet to be clearly defined. This is a retrospective study of 18 patients with bony type C (Schuknecht classification) congenital atresia. In the first group (n = 9), repair was performed with CAS while in the second group (n = 9), similar intervention was applied without CAS. Intra- and post-operative clinical and audiological findings were compared. CAS computed tomography (CT) images correlated well with intra-operative findings giving the surgeon more security and reducing operative time by 25 minutes. In our estimation, CAS is valuable for type C congenital aural atresia repair. It serves as an educational tool and as a guide for the experienced surgeon in critical situations where anatomical landmarks are distorted and where access is limited.

  20. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Facebook: A Potentially Valuable Educational Tool?

    ERIC Educational Resources Information Center

    Voivonta, Theodora; Avraamidou, Lucy

    2018-01-01

    This paper is concerned with the educational value of Facebook and specifically how it can be used in formal educational settings. As such, it provides a review of existing literature of how Facebook is used in higher education paying emphasis on the scope of its use and the outcomes achieved. As evident in existing literature, Facebook has been…

  2. Lasers: A Valuable Tool for Chemists.

    ERIC Educational Resources Information Center

    Findsen, E. W.; Ondrias, M. R.

    1986-01-01

    Discusses the properties of laser light, reviews types of lasers, presents operating principles, and considers mechanical aspects of laser light production. Applications reviewed include spectroscopy, photochemical reaction initiation, and investigation of biological processes involving porphyrins. (JM)

  3. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

  4. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  5. Management Tools in Engineering Education.

    ERIC Educational Resources Information Center

    Fehr, M.

    1999-01-01

    Describes a teaching model that applies management tools such as delegation, total quality management, time management, teamwork, and Deming rules. Promotes the advantages of efficiency, reporting, independent scheduling, and quality. (SK)

  6. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  7. In silico study of breast cancer associated gene 3 using LION Target Engine and other tools.

    PubMed

    León, Darryl A; Cànaves, Jaume M

    2003-12-01

    Sequence analysis of individual targets is an important step in annotation and validation. As a test case, we investigated human breast cancer associated gene 3 (BCA3) with LION Target Engine and with other bioinformatics tools. LION Target Engine confirmed that the BCA3 gene is located on 11p15.4 and that the two most likely splice variants (lacking exon 3 and exons 3 and 5, respectively) exist. Based on our manual curation of sequence data, it is proposed that an additional variant (missing only exon 5) published in a public sequence repository, is a prediction artifact. A significant number of new orthologs were also identified, and these were the basis for a high-quality protein secondary structure prediction. Moreover, our research confirmed several distinct functional domains as described in earlier reports. Sequence conservation from multiple sequence alignments, splice variant identification, secondary structure predictions, and predicted phosphorylation sites suggest that the removal of interaction sites through alternative splicing might play a modulatory role in BCA3. This in silico approach shows the depth and relevance of an analysis that can be accomplished by including a variety of publicly available tools with an integrated and customizable life science informatics platform.

  8. Virtual modelling of components of a production system as the tool of lean engineering

    NASA Astrophysics Data System (ADS)

    Monica, Z.

    2015-11-01

    Between the most effective techniques of manufacturing management is considered the Lean Engineering. The term “lean engineering” was created by Japanese manufacturers. The high efficiency of this method resulted in a meaningful growth in concern in the philosophy of Lean among European companies, and consequently the use of its European markets. Lean philosophy is an approach to manufacturing to minimize the use of all resources, including time. These are resources that are used in the company for a variety of activities. This implies, first identify and then eliminate activities which does not generate added value in the field of design, manufacturing, supply chain management, and customer relations. The producers of these principles not only employ teams multi-professional employees at all levels of the organization, but also use a more automated machines to produce large quantities of products with a high degree of diversity. Lean Engineering is to use a number of principles and practical guidelines that allow you to reduce costs by eliminating absolute extravagance, and also simplification of all manufacturing processes and maintenance. Nowadays it could be applied the powerful engineering programs to realize the concept of Lean Engineering. They could be described using the term CAD/CAM/CAE. They consist of completely different packages for both the design of elements, as well process design. Their common feature is generally considered with their application area. They are used for computer programs assisting the design, development and manufacturing phases of a manufacturing process. The idea of the presented work is to use the Siemens NX software for aiding the process of Lean Engineering system creating. The investigated system is a robotized workcell. In the NX system are created the components of the designed workcell such as machine tools, as industrial robot, as conveyors and buffers. The system let to functionally link these components to

  9. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    ERIC Educational Resources Information Center

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  10. Preliminary engineering design of sodium-cooled CANDLE core

    NASA Astrophysics Data System (ADS)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  11. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    PubMed

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  12. E-TALEN: a web tool to design TALENs for genome engineering.

    PubMed

    Heigwer, Florian; Kerr, Grainne; Walther, Nike; Glaeser, Kathrin; Pelz, Oliver; Breinig, Marco; Boutros, Michael

    2013-11-01

    Use of transcription activator-like effector nucleases (TALENs) is a promising new technique in the field of targeted genome engineering, editing and reverse genetics. Its applications span from introducing knockout mutations to endogenous tagging of proteins and targeted excision repair. Owing to this wide range of possible applications, there is a need for fast and user-friendly TALEN design tools. We developed E-TALEN (http://www.e-talen.org), a web-based tool to design TALENs for experiments of varying scale. E-TALEN enables the design of TALENs against a single target or a large number of target genes. We significantly extended previously published design concepts to consider genomic context and different applications. E-TALEN guides the user through an end-to-end design process of de novo TALEN pairs, which are specific to a certain sequence or genomic locus. Furthermore, E-TALEN offers a functionality to predict targeting and specificity for existing TALENs. Owing to the computational complexity of many of the steps in the design of TALENs, particular emphasis has been put on the implementation of fast yet accurate algorithms. We implemented a user-friendly interface, from the input parameters to the presentation of results. An additional feature of E-TALEN is the in-built sequence and annotation database available for many organisms, including human, mouse, zebrafish, Drosophila and Arabidopsis, which can be extended in the future.

  13. Digital-flight-control-system software written in automated-engineering-design language: A user's guide of verification and validation tools

    NASA Technical Reports Server (NTRS)

    Saito, Jim

    1987-01-01

    The user guide of verification and validation (V&V) tools for the Automated Engineering Design (AED) language is specifically written to update the information found in several documents pertaining to the automated verification of flight software tools. The intent is to provide, in one document, all the information necessary to adequately prepare a run to use the AED V&V tools. No attempt is made to discuss the FORTRAN V&V tools since they were not updated and are not currently active. Additionally, the current descriptions of the AED V&V tools are contained and provides information to augment the NASA TM 84276. The AED V&V tools are accessed from the digital flight control systems verification laboratory (DFCSVL) via a PDP-11/60 digital computer. The AED V&V tool interface handlers on the PDP-11/60 generate a Univac run stream which is transmitted to the Univac via a Remote Job Entry (RJE) link. Job execution takes place on the Univac 1100 and the job output is transmitted back to the DFCSVL and stored as a PDP-11/60 printfile.

  14. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.

    PubMed

    Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi

    2017-02-13

    Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).

  15. Advanced Risk Reduction Tool (ARRT) Special Case Study Report: Science and Engineering Technical Assessments (SETA) Program

    NASA Technical Reports Server (NTRS)

    Kirsch, Paul J.; Hayes, Jane; Zelinski, Lillian

    2000-01-01

    This special case study report presents the Science and Engineering Technical Assessments (SETA) team's findings for exploring the correlation between the underlying models of Advanced Risk Reduction Tool (ARRT) relative to how it identifies, estimates, and integrates Independent Verification & Validation (IV&V) activities. The special case study was conducted under the provisions of SETA Contract Task Order (CTO) 15 and the approved technical approach documented in the CTO-15 Modification #1 Task Project Plan.

  16. Ravens reconcile after aggressive conflicts with valuable partners.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2011-03-25

    Reconciliation, a post-conflict affiliative interaction between former opponents, is an important mechanism for reducing the costs of aggressive conflict in primates and some other mammals as it may repair the opponents' relationship and reduce post-conflict distress. Opponents who share a valuable relationship are expected to be more likely to reconcile as for such partners the benefits of relationship repair should outweigh the risk of renewed aggression. In birds, however, post-conflict behavior has thus far been marked by an apparent absence of reconciliation, suggested to result either from differing avian and mammalian strategies or because birds may not share valuable relationships with partners with whom they engage in aggressive conflict. Here, we demonstrate the occurrence of reconciliation in a group of captive subadult ravens (Corvus corax) and show that it is more likely to occur after conflicts between partners who share a valuable relationship. Furthermore, former opponents were less likely to engage in renewed aggression following reconciliation, suggesting that reconciliation repairs damage caused to their relationship by the preceding conflict. Our findings suggest not only that primate-like valuable relationships exist outside the pair bond in birds, but that such partners may employ the same mechanisms in birds as in primates to ensure that the benefits afforded by their relationships are maintained even when conflicts of interest escalate into aggression. These results provide further support for a convergent evolution of social strategies in avian and mammalian species.

  17. Simulation-Based e-Learning Tools for Science,Engineering, and Technology Education(SimBeLT)

    NASA Astrophysics Data System (ADS)

    Davis, Doyle V.; Cherner, Y.

    2006-12-01

    The focus of Project SimBeLT is the research, development, testing, and dissemination of a new type of simulation-based integrated e-learning set of modules for two-year college technical and engineering curricula in the areas of thermodynamics, fluid physics, and fiber optics that can also be used in secondary schools and four-year colleges. A collection of sophisticated virtual labs is the core component of the SimBeLT modules. These labs will be designed to enhance the understanding of technical concepts and underlying fundamental principles of these topics, as well as to master certain performance based skills online. SimBeLT software will help educators to meet the National Science Education Standard that "learning science and technology is something that students do, not something that is done to them". A major component of Project SimBeLT is the development of multi-layered technology-oriented virtual labs that realistically mimic workplace-like environments. Dynamic data exchange between simulations will be implemented and links with instant instructional messages and data handling tools will be realized. A second important goal of Project SimBeLT labs is to bridge technical skills and scientific knowledge by enhancing the teaching and learning of specific scientific or engineering subjects. SimBeLT builds upon research and outcomes of interactive teaching strategies and tools developed through prior NSF funding (http://webphysics.nhctc.edu/compact/index.html) (Project SimBeLT is partially supported by a grant from the National Science Foundation DUE-0603277)

  18. The Engineering of Engineering Education: Curriculum Development from a Designer's Point of View

    ERIC Educational Resources Information Center

    Rompelman, Otto; De Graaff, Erik

    2006-01-01

    Engineers have a set of powerful tools at their disposal for designing robust and reliable technical systems. In educational design these tools are seldom applied. This paper explores the application of concepts from the systems approach in an educational context. The paradigms of design methodology and systems engineering appear to be suitable…

  19. Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses

    PubMed Central

    Torre, Denis; Krawczuk, Patrycja; Jagodnik, Kathleen M.; Lachmann, Alexander; Wang, Zichen; Wang, Lily; Kuleshov, Maxim V.; Ma’ayan, Avi

    2018-01-01

    Biomedical data repositories such as the Gene Expression Omnibus (GEO) enable the search and discovery of relevant biomedical digital data objects. Similarly, resources such as OMICtools, index bioinformatics tools that can extract knowledge from these digital data objects. However, systematic access to pre-generated ‘canned’ analyses applied by bioinformatics tools to biomedical digital data objects is currently not available. Datasets2Tools is a repository indexing 31,473 canned bioinformatics analyses applied to 6,431 datasets. The Datasets2Tools repository also contains the indexing of 4,901 published bioinformatics software tools, and all the analyzed datasets. Datasets2Tools enables users to rapidly find datasets, tools, and canned analyses through an intuitive web interface, a Google Chrome extension, and an API. Furthermore, Datasets2Tools provides a platform for contributing canned analyses, datasets, and tools, as well as evaluating these digital objects according to their compliance with the findable, accessible, interoperable, and reusable (FAIR) principles. By incorporating community engagement, Datasets2Tools promotes sharing of digital resources to stimulate the extraction of knowledge from biomedical research data. Datasets2Tools is freely available from: http://amp.pharm.mssm.edu/datasets2tools. PMID:29485625

  20. Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses.

    PubMed

    Torre, Denis; Krawczuk, Patrycja; Jagodnik, Kathleen M; Lachmann, Alexander; Wang, Zichen; Wang, Lily; Kuleshov, Maxim V; Ma'ayan, Avi

    2018-02-27

    Biomedical data repositories such as the Gene Expression Omnibus (GEO) enable the search and discovery of relevant biomedical digital data objects. Similarly, resources such as OMICtools, index bioinformatics tools that can extract knowledge from these digital data objects. However, systematic access to pre-generated 'canned' analyses applied by bioinformatics tools to biomedical digital data objects is currently not available. Datasets2Tools is a repository indexing 31,473 canned bioinformatics analyses applied to 6,431 datasets. The Datasets2Tools repository also contains the indexing of 4,901 published bioinformatics software tools, and all the analyzed datasets. Datasets2Tools enables users to rapidly find datasets, tools, and canned analyses through an intuitive web interface, a Google Chrome extension, and an API. Furthermore, Datasets2Tools provides a platform for contributing canned analyses, datasets, and tools, as well as evaluating these digital objects according to their compliance with the findable, accessible, interoperable, and reusable (FAIR) principles. By incorporating community engagement, Datasets2Tools promotes sharing of digital resources to stimulate the extraction of knowledge from biomedical research data. Datasets2Tools is freely available from: http://amp.pharm.mssm.edu/datasets2tools.

  1. PanDaTox: A tool for accelerated metabolic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amitai, Gil; Sorek, Rotem

    2012-07-18

    Metabolic engineering is often facilitated by cloning of genes encoding enzymes from various heterologous organisms into E. coli. Such engineering efforts are frequently hampered by foreign genes that are toxic to the E. coli host. We have developed PanDaTox (www.weizmann.ac.il/pandatox), a web-based resource that provides experimental toxicity information for more than 1.5 million genes from hundreds of different microbial genomes. The toxicity predictions, which were extensively experimentally verified, are based on serial cloning of genes into E. coli as part of the Sanger whole genome shotgun sequencing process. PanDaTox can accelerate metabolic engineering projects by allowing researchers to exclude toxicmore » genes from the engineering plan and verify the clonability of selected genes before the actual metabolic engineering experiments are conducted.« less

  2. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesismore » libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural

  3. Multi-mission telecom analysis tool

    NASA Technical Reports Server (NTRS)

    Hanks, D.; Kordon, M.; Baker, J.

    2002-01-01

    In the early formulation phase of a mission it is critically important to have fast, easy to use, easy to integrate space vehicle subsystem analysis tools so that engineers can rapidly perform trade studies not only by themselves but in coordination with other subsystem engineers as well. The Multi-Mission Telecom Analysis Tool (MMTAT) is designed for just this purpose.

  4. Theory of Technical Systems--Educational Tool for Engineering

    ERIC Educational Resources Information Center

    Eder, Wolfgang Ernst

    2016-01-01

    Hubka's theory of technical systems (TTS) is briefly outlined. It describes commonalities in all engineering devices, whatever their physical principles of action. This theory is based on a general transformation system (TrfS), which can be used to show engineering in the contexts of society, economics and historic developments. The life cycle of…

  5. Efflux systems in bacteria and their metabolic engineering applications.

    PubMed

    Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F

    2015-11-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.

  6. Integrated Data Visualization and Virtual Reality Tool

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  7. Storytelling: a leadership and educational tool.

    PubMed

    Kowalski, Karren

    2015-06-01

    A powerful tool that leaders and educators can use to engage the listeners-both staff and learners-is storytelling. Stories demonstrate important points, valuable lessons, and the behaviors that are preferred by the leader. Copyright 2015, SLACK Incorporated.

  8. Electrical stimulation: a novel tool for tissue engineering.

    PubMed

    Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H

    2013-02-01

    New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.

  9. Integrating Computational Science Tools into a Thermodynamics Course

    ERIC Educational Resources Information Center

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of…

  10. The environment power system analysis tool development program

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.

  11. Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering.

    PubMed

    Yang, Yunpeng; Nie, Xiaoqun; Jiang, Yuqian; Yang, Chen; Gu, Yang; Jiang, Weihong

    2018-02-22

    Solventogenic clostridia, a group of important industrial microorganisms, have exceptional substrate and product diversity, capable of producing a series of two-carbon and even long-chain chemicals and fuels by using various substrates, including sugars, cellulose and hemicellulose, and C1 gases. For the sake of in-depth understanding and engineering these anaerobic microorganisms for broader applications, studies on metabolic regulation of solventogenic clostridia had been extensively carried out during the past ten years, based on the rapid development of various genetic tools. To date, a number of regulators that are essential for cell physiological and metabolic processes have been identified in clostridia, and the relevant mechanisms have also been dissected, providing a wealth of valuable information for metabolic engineering. Here, we reviewed the latest research progresses on the metabolic regulation for chemical production and substrate utilization in solventogenic clostridia, by focusing on three typical Clostridium species, the saccharolytic C. acetobutylicum and C. beijerinckii, as well as the gas-fermenting C. ljungdahlii. On this basis, future directions in the study and remodeling of clostridial regulation systems, were proposed for effective modification of these industrially important anaerobes. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Modeling Single Ventricle Physiology: Review of Engineering Tools to Study First Stage Palliation of Hypoplastic Left Heart Syndrome

    PubMed Central

    Biglino, Giovanni; Giardini, Alessandro; Hsia, Tain-Yen; Figliola, Richard; Taylor, Andrew M.; Schievano, Silvia

    2013-01-01

    First stage palliation of hypoplastic left heart syndrome, i.e., the Norwood operation, results in a complex physiological arrangement, involving different shunting options (modified Blalock-Taussig, RV-PA conduit, central shunt from the ascending aorta) and enlargement of the hypoplastic ascending aorta. Engineering techniques, both computational and experimental, can aid in the understanding of the Norwood physiology and their correct implementation can potentially lead to refinement of the decision-making process, by means of patient-specific simulations. This paper presents some of the available tools that can corroborate clinical evidence by providing detailed insight into the fluid dynamics of the Norwood circulation as well as alternative surgical scenarios (i.e., virtual surgery). Patient-specific anatomies can be manufactured by means of rapid prototyping and such models can be inserted in experimental set-ups (mock circulatory loops) that can provide a valuable source of validation data as well as hydrodynamic information. Such models can be tuned to respond to differing the patient physiologies. Experimental set-ups can also be compatible with visualization techniques, like particle image velocimetry and cardiovascular magnetic resonance, further adding to the knowledge of the local fluid dynamics. Multi-scale computational models include detailed three-dimensional (3D) anatomical information coupled to a lumped parameter network representing the remainder of the circulation. These models output both overall hemodynamic parameters while also enabling to investigate the local fluid dynamics of the aortic arch or the shunt. As an alternative, pure lumped parameter models can also be employed to model Stage 1 palliation, taking advantage of a much lower computational cost, albeit missing the 3D anatomical component. Finally, analytical techniques, such as wave intensity analysis, can be employed to study the Norwood physiology, providing a mechanistic

  13. Humanitarian engineering in the engineering curriculum

    NASA Astrophysics Data System (ADS)

    Vandersteen, Jonathan Daniel James

    placements are a valuable pedagogical experience but risk benefiting the student disproportionately more than the receiving community. Local development placements offer different rewards and liabilities. To conclude, a major adjustment in engineering curriculum to address human development is appropriate and this new curriculum should include both local and international placements. However, the great force of altruism must be directed towards creating meaningful and lasting change.

  14. Remote Sensing: A valuable tool in the Forest Service decision making process. [in Utah

    NASA Technical Reports Server (NTRS)

    Stanton, F. L.

    1975-01-01

    Forest Service studies for integrating remotely sensed data into existing information systems highlight a need to: (1) re-examine present methods of collecting and organizing data, (2) develop an integrated information system for rapidly processing and interpreting data, (3) apply existing technological tools in new ways, and (4) provide accurate and timely information for making right management decisions. The Forest Service developed an integrated information system using remote sensors, microdensitometers, computer hardware and software, and interactive accessories. Their efforts substantially reduce the time it takes for collecting and processing data.

  15. Hemodynamic exercise testing. A valuable tool in the selection of cardiac transplantation candidates.

    PubMed

    Chomsky, D B; Lang, C C; Rayos, G H; Shyr, Y; Yeoh, T K; Pierson, R N; Davis, S F; Wilson, J R

    1996-12-15

    Peak exercise oxygen consumption (Vo2), a noninvasive index of peak exercise cardiac output (CO), is widely used to select candidates for heart transplantation. However, peak exercise Vo2 can be influenced by noncardiac factors such as deconditioning, motivation, or body composition and may yield misleading prognostic information. Direct measurement of the CO response to exercise may avoid this problem and more accurately predict prognosis. Hemodynamic and ventilatory responses to maximal treadmill exercise were measured in 185 ambulatory patients with chronic heart failure who had been referred for cardiac transplantation (mean left ventricular ejection fraction, 22 +/- 7%; mean peak Vo2, 12.9 +/- 3.0 mL. min-1.kg-1). CO response to exercise was normal in 83 patients and reduced in 102. By univariate analysis, patients with normal CO responses had a better 1-year survival rate (95%) than did those with reduced CO responses (72%) (P < .0001). Survival in patients with peak Vo2 of > 14 mL.min-1.kg-1 (88%) was not different from that of patients with peak Vo2 of < or = 14 mL.min-1.kg-1 (79%) (P = NS). However, survival was worse in patients with peak Vo2 of < or = 10 mL.min-1.kg-1 (52%) versus those with peak Vo2 of > 10 mL.min-1.kg-1 (89%) (P < .0001). By Cox regression analysis, exercise CO response was the strongest independent predictor of survival (risk ratio, 4.3), with peak Vo2 dichotomized at 10 mL. min-1.kg-1 (risk ratio, 3.3) as the only other independent predictor. Patients with reduced CO responses and peak Vo2 of < or = 10 mL.min-1.kg-1 had an extremely poor 1-year survival rate (38%). Both CO response to exercise and peak exercise Vo2 provide valuable independent prognostic information in ambulatory patients with heart failure. These variables should be used in combination to select potential heart transplantation candidates.

  16. Climate consequences of large-scale land-use changes as climate engineering tools

    NASA Astrophysics Data System (ADS)

    Mayer, Dorothea; Kracher, Daniela; Reick, Christian; Pongratz, Julia

    2015-04-01

    Terrestrial carbon sinks are much-discussed as climate engineering methods both in politics and science. The debate focuses mostly on their potential for carbon sequestration and fossil-fuel substitution, whereas other effects such as changes in heat and water fluxes are often ignored. We assess potentials and side-effects of two different land-use types suggested as climate engineering tools, forest and herbaceous biomass plantations. We integrate herbaceous biomass plantations as new plant functional types into the land component (JSBACH) of the Max-Planck-Institute Earth System Model (MPI-ESM). Herbaceous biomass plantations alter surface albedo, carbon and water cycles compared to forests. We adapted the JSBACH carbon cycle (assimilation and respiration) to reflect a highly productive biomass grass and the phenology to account for harvests just before the beginning of the growing season. The harvested material is transferred to a separate pool that can be adapted to reflect different biomass utilization pathways. Where possible, the model was validated using yield measurements and water-use efficiency calculations available from literature data. We compare the potentials and side-effects of afforestation and herbaceous biomass plantations in a plausible global scenario: under the representative concentration pathway (RCP) 4.5, large areas of agricultural lands are projected to be abandoned as food production intensifies on the most productive soils. We intend to model the climatic consequences of using these abandoned croplands for afforestation or biomass plantations, under an RCP 8.5 forcing (high CO2 emissions). We emphasize differences between biogeochemical and biogeophysical effects of land-use on climate and how these factors interact on the local and global scale. Apart from direct climatic effects (energy, water, and carbon fluxes), we attempt to consistently account for fossil-fuel substitution effects of biomass plantations in a coupled model. This

  17. BMTC: --A Tool for Standardized Tissue Engineering on Ground and in Space ---

    NASA Astrophysics Data System (ADS)

    Kern, Peter; Kemmerle, Kurt; Jones, David

    experiment specific reactors. The functional principles and the essential features for controlled experiments will be reported. This facility complements the research done on ground on osteoporosis and the bone and muscle loss during bed rest studies during space flights. It is considered to become a new in-orbit research tool for tissue engineering and the verification of mechanical or pharmaceutical countermeasures.

  18. Emerging Engineers Design a Paper Table

    ERIC Educational Resources Information Center

    Enderson, Mary C.; Grant, Melva R.

    2013-01-01

    With the advancement of specialized middle schools and high schools focusing on the arts, communication, engineering, mathematics, and science, many students who attend traditional schools miss out on valuable learning opportunities--in particular, when it comes to learning mathematics. Mathematics classrooms can be filled with real-world…

  19. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems

    NASA Astrophysics Data System (ADS)

    Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek

    2015-03-01

    The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.

  20. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tellurium as a valuable tool for studying the prokaryotic origins of mitochondria.

    PubMed

    Pontieri, Paola; De Stefano, Mario; Massardo, Domenica Rita; Gunge, Norio; Miyakawa, Isamu; Sando, Nobundo; Pignone, Domenico; Pizzolante, Graziano; Romano, Roberta; Alifano, Pietro; Del Giudice, Luigi

    2015-04-01

    Mitochondria are eukaryotic organelles which contain the own genetic material and evolved from free-living Eubacteria, namely hydrogen-producing Alphaproteobacteria. Since 1965, biologists provided, by research at molecular level, evidence for the prokaryotic origins of mitochondria. However, determining the precise origins of mitochondria is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. The use of new tools to evidence the prokaryotic origin of mitochondria could be useful to gain an insight into the bacterial endosymbiotic event that resulted in the permanent acquisition of bacteria, from the ancestral cell, that through time were transformed into mitochondria. Electron microscopy has shown that both proteobacterial and yeast cells during their growth in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture due to elemental tellurium (Te(0)) that formed large deposits either along the proteobacterial membrane or along the yeast cell wall and mitochondria. Since the mitochondrial inner membrane composition is similar to that of proteobacterial membrane, in the present work we evidenced the black tellurium deposits on both, cell wall and mitochondria of ρ(+) and respiratory deficient ρ(-) mutants of yeast. A possible role of tellurite in studying the evolutionary origins of mitochondria will be discussed. Copyright © 2015. Published by Elsevier B.V.

  2. Creating Simple Admin Tools Using Info*Engine and Java

    NASA Technical Reports Server (NTRS)

    Jones, Corey; Kapatos, Dennis; Skradski, Cory; Felkins, J. D.

    2012-01-01

    PTC has provided a simple way to dynamically interact with Windchill using Info*Engine. This presentation will describe how to create a simple Info*Engine Tasks capable of saving Windchill 10.0 administration of tedious work.

  3. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool.

    PubMed

    Wettstein, Rahel; Bodak, Maxime; Ciaudo, Constance

    2016-01-01

    CRISPR/Cas9, originally discovered as a bacterial immune system, has recently been engineered into the latest tool to successfully introduce site-specific mutations in a variety of different organisms. Composed only of the Cas9 protein as well as one engineered guide RNA for its functionality, this system is much less complex in its setup and easier to handle than other guided nucleases such as Zinc-finger nucleases or TALENs.Here, we describe the simultaneous transfection of two paired CRISPR sgRNAs-Cas9 plasmids, in mouse embryonic stem cells (mESCs), resulting in the knockout of the selected target gene. Together with a four primer-evaluation system, it poses an efficient way to generate new independent knockout mouse embryonic stem cell lines.

  5. Computer-aided design for metabolic engineering.

    PubMed

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Spectroscopy applied to feed additives of the European Union Reference Laboratory: a valuable tool for traceability.

    PubMed

    Omar, Jone; Slowikowski, Boleslaw; Boix, Ana; von Holst, Christoph

    2017-08-01

    Feed additives need to be authorised to be placed on the market according to Regulation (EU) No. 1831/2003. Next to laying down the procedural requirements, the regulation creates the European Union Reference Laboratory for Feed Additives (EURL-FA) and requires that applicants send samples to the EURL-FA. Once authorised, the characteristics of the marketed feed additives should correspond to those deposited in the sample bank of the EURL-FA. For this purpose, the submitted samples were subjected to near-infrared (NIR) and Raman spectroscopy for spectral characterisation. These techniques have the valuable potential of characterising the feed additives in a non-destructive manner without any complicated sample preparation. This paper describes the capability of spectroscopy for a rapid characterisation of products to establish whether specific authorisation criteria are met. This study is based on the analysis of feed additive samples from different categories and functional groups, namely products containing (1) selenium, (2) zinc and manganese, (3) vitamins and (4) essential oils such as oregano and thyme oil. The use of chemometrics turned out to be crucial, especially in cases where the differentiation of spectra by visual inspection was very difficult.

  7. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    PubMed

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  8. Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Briscoe, Victoria (Compiler)

    2002-01-01

    These are the proceedings of the 5th Annual FAA/Air Force/NASA/Navy Workshop on the Probabilistic Methods for Gas Turbine Engines hosted by NASA Glenn Research Center and held at the Holiday Inn Cleveland West. The history of this series of workshops stems from the recognition that both military and commercial aircraft engines are inevitably subjected to similar design and manufacturing principles. As such, it was eminently logical to combine knowledge bases on how some of these overlapping principles and methodologies are being applied. We have started the process by creating synergy and cooperation between the FAA, Air Force, Navy, and NASA in these workshops. The recent 3-day workshop was specifically designed to benefit the development of probabilistic methods for gas turbine engines by addressing recent technical accomplishments and forging new ideas. We accomplished our goals of minimizing duplication, maximizing the dissemination of information, and improving program planning to all concerned. This proceeding includes the final agenda, abstracts, presentations, and panel notes, plus the valuable contact information from our presenters and attendees. We hope that this proceeding will be a tool to enhance understanding of the developers and users of probabilistic methods. The fifth workshop doubled its attendance and had the success of collaboration with the many diverse groups represented including government, industry, academia, and our international partners. So, "Start your engines!" and utilize these proceedings towards creating safer and more reliable gas turbine engines for our commercial and military partners.

  9. Prelude to corneal tissue engineering – Gaining control of collagen organization

    PubMed Central

    Ruberti, Jeffrey W.; Zieske, James D.

    2012-01-01

    By most standard engineering practice principles, it is premature to credibly discuss the “engineering” of a human cornea. A professional design engineer would assert that we still do not know what a cornea is (and correctly so), therefore we cannot possibly build one. The proof resides in the fact that there are no clinically viable corneas based on classical tissue engineering methods available. This is possibly because tissue engineering in the classical sense (seeding a degradable scaffolding with a population synthetically active cells) does not produce conditions which support the generation of organized tissue. Alternative approaches to the problem are in their infancy and include the methods which attempt to recapitulate development or to produce corneal stromal analogs de novo which require minimal remodeling. Nonetheless, tissue engineering efforts, which have been focused on producing the fundamental functional component of a cornea (organized alternating arrays of collagen or “lamellae”) may have already provided valuable new insights and tools relevant to development, growth, remodeling and pathologies associated with connective tissue in general. This is because engineers ask a fundamentally different question (How can that be done?) than do biological scientists (How is that done?). The difference in inquiry has prompted us to closely examine (and to mimic) development as well as investigate collagen physicochemical behavior so that we may exert control over organization both in cell-culture (in vitro) and on the benchtop (de novo). Our initial results indicate that reproducing corneal stroma-like local and long-range organization of collagen may be simpler than we anticipated while controlling spacing and fibril morphology remains difficult, but perhaps not impossible in the (reasonably) near term. PMID:18775789

  10. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    NASA Astrophysics Data System (ADS)

    Jaggi, S.

    1993-02-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  11. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure... your test engine has a major mechanical failure that requires you to take it apart, you may no longer...

  12. 40 CFR 1065.410 - Maintenance limits for stabilized test engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure... your test engine has a major mechanical failure that requires you to take it apart, you may no longer...

  13. Valuable human capital: the aging health care worker.

    PubMed

    Collins, Sandra K; Collins, Kevin S

    2006-01-01

    With the workforce growing older and the supply of younger workers diminishing, it is critical for health care managers to understand the factors necessary to capitalize on their vintage employees. Retaining this segment of the workforce has a multitude of benefits including the preservation of valuable intellectual capital, which is necessary to ensure that health care organizations maintain their competitive advantage in the consumer-driven market. Retaining the aging employee is possible if health care managers learn the motivators and training differences associated with this category of the workforce. These employees should be considered a valuable resource of human capital because without their extensive expertise, intense loyalty and work ethic, and superior customer service skills, health care organizations could suffer severe economic repercussions in the near future.

  14. Engineering Graphics Educational Outcomes for the Global Engineer: An Update

    ERIC Educational Resources Information Center

    Barr, R. E.

    2012-01-01

    This paper discusses the formulation of educational outcomes for engineering graphics that span the global enterprise. Results of two repeated faculty surveys indicate that new computer graphics tools and techniques are now the preferred mode of engineering graphical communication. Specifically, 3-D computer modeling, assembly modeling, and model…

  15. Educational websites--Bioinformatics Tools II.

    PubMed

    Lomberk, Gwen

    2009-01-01

    In this issue, the highlighted websites are a continuation of a series of educational websites; this one in particular from a couple of years ago, Bioinformatics Tools [Pancreatology 2005;5:314-315]. These include sites that are valuable resources for many research needs in genomics and proteomics. Bioinformatics has become a laboratory tool to map sequences to databases, develop models of molecular interactions, evaluate structural compatibilities, describe differences between normal and disease-associated DNA, identify conserved motifs within proteins, and chart extensive signaling networks, all in silico. Copyright 2008 S. Karger AG, Basel and IAP.

  16. Surface engineering approaches to micropattern surfaces for cell-based assays.

    PubMed

    Falconnet, Didier; Csucs, Gabor; Grandin, H Michelle; Textor, Marcus

    2006-06-01

    The ability to produce patterns of single or multiple cells through precise surface engineering of cell culture substrates has promoted the development of cellular bioassays that provide entirely new insights into the factors that control cell adhesion to material surfaces, cell proliferation, differentiation and molecular signaling pathways. The ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. Furthermore, cell patterning is an important tool for organizing cells on transducers for cell-based sensing and cell-based drug discovery concepts. From a material engineering standpoint, patterning approaches have greatly profited by combining microfabrication technologies, such as photolithography, with biochemical functionalization to present to the cells biological cues in spatially controlled regions where the background is rendered non-adhesive ("non-fouling") by suitable chemical modification. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional (flat) surfaces with the aim to provide an introductory overview and critical assessment of the many techniques described in the literature. In particular, the importance of non-fouling surface chemistries, the combination of hard and soft lithography with molecular assembly techniques as well as a number of less well known, but useful patterning approaches, including direct cell writing, are discussed.

  17. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.

    PubMed

    Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S; Adams, Paul D; Keasling, Jay D; Petzold, Christopher J; Lee, Taek Soon

    2013-09-01

    Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative. © 2013 Elsevier Inc. All rights reserved.

  18. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. MEMS product engineering: methodology and tools

    NASA Astrophysics Data System (ADS)

    Ortloff, Dirk; Popp, Jens; Schmidt, Thilo; Hahn, Kai; Mielke, Matthias; Brück, Rainer

    2011-03-01

    The development of MEMS comprises the structural design as well as the definition of an appropriate manufacturing process. Technology constraints have a considerable impact on the device design and vice-versa. Product design and technology development are therefore concurrent tasks. Based on a comprehensive methodology the authors introduce a software environment that links commercial design tools from both area into a common design flow. In this paper emphasis is put on automatic low threshold data acquisition. The intention is to collect and categorize development data for further developments with minimum overhead and minimum disturbance of established business processes. As a first step software tools that automatically extract data from spreadsheets or file-systems and put them in context with existing information are presented. The developments are currently carried out in a European research project.

  20. Information Discovery and Retrieval Tools

    DTIC Science & Technology

    2004-12-01

    information. This session will focus on the various Internet search engines , directories, and how to improve the user experience through the use of...such techniques as metadata, meta- search engines , subject specific search tools, and other developing technologies.

  1. Information Discovery and Retrieval Tools

    DTIC Science & Technology

    2003-04-01

    information. This session will focus on the various Internet search engines , directories, and how to improve the user experience through the use of...such techniques as metadata, meta- search engines , subject specific search tools, and other developing technologies.

  2. Integrating Engineering into K-6 Curriculum: Developing Talent in the STEM Disciplines

    ERIC Educational Resources Information Center

    Mann, Eric L.; Mann, Rebecca L.; Strutz, Michele L.; Duncan, Daphne; Yoon, So Yoon

    2011-01-01

    The fields of gifted and engineering education share many common interests, and their students share many common attributes. Infusing and making engineering implicit in the K-6 education programs creates opportunities to develop concepts, skills, and habits of the mind that are valuable in all disciplines while providing opportunities to discover…

  3. Microbial population Diversity of indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Kim, B.; Cho, K.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    A taxon- or group-specific PCR primer serves as a valuable tool for studying the bioleaching mechanisms of a particular group of microorganisms. Especially for an uncultured (or very difficult to isolate from their environments) group of microorganisms, the group-specific PCR primer is essential for the investigation of distribution patterns and the estimation of genetic diversity of the target microorganisms. This study investigated the Biodiversity through molecular biology method using the three different indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea and acidic hot spring in Hatchnobaru, Japan. We performed the optical analysis (phase-contrast microscope and SEM), base sequencing. In the phase-contrast microscope(X 4,000) and SEM analysis, the rod-shaped bacteria with 1μm in length were observed. The results of base sequencing using EzTaxon server data revealed Acidithiobacillus ferrooxidans (Go-seong - 97.79%, Yeon-hwa - 97.90% and Hatchnobaru - 97.97%)

  4. Integrated computational materials engineering: Tools, simulations and new applications

    DOE PAGES

    Madison, Jonathan D.

    2016-03-30

    Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].

  5. Engineering intracellular active transport systems as in vivo biomolecular tools.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptionalmore » regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications

  6. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  7. Using hybrid expert system approaches for engineering applications

    NASA Technical Reports Server (NTRS)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  8. CFD Multiphysics Tool

    NASA Technical Reports Server (NTRS)

    Perrell, Eric R.

    2005-01-01

    The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of

  9. An Evaluation of Teaching Introductory Geomorphology Using Computer-based Tools.

    ERIC Educational Resources Information Center

    Wentz, Elizabeth A.; Vender, Joann C.; Brewer, Cynthia A.

    1999-01-01

    Compares student reactions to traditional teaching methods and an approach where computer-based tools (GEODe CD-ROM and GIS-based exercises) were either integrated with or replaced the traditional methods. Reveals that the students found both of these tools valuable forms of instruction when used in combination with the traditional methods. (CMK)

  10. Tools for Large-Scale Mobile Malware Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierma, Michael

    Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000more » Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.« less

  11. Microteaching as a Self-Learning Tool. Students' Perceptions in the Preparation and Exposition of a Microlesson in a Tissue Engineering Course

    ERIC Educational Resources Information Center

    Campos-Sánchez, Antonio; del Carmen Sánchez-Quevedo, María; Crespo-Ferrer, Pascual Vicente; García-López, José Manuel; Alaminos, Miguel

    2013-01-01

    Microteaching is a didactic tool of recent application to undergraduate and postgraduate students as a way to promote self-learning. In this work we compared the perceptions of the students who provide instruction in tissue engineering using microteaching and the perceptions of the same students when they receive such instructions. Two similar…

  12. Engine throat/nozzle optics for plume spectroscopy

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Duncan, D. B.

    1991-01-01

    The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.

  13. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  14. 'Food for Engineers': Intellectual Property Education for Innovators

    ERIC Educational Resources Information Center

    Soetendorp, Ruth

    2004-01-01

    Intellectual property competence can assist individuals and organizations to capitalize on opportunities presented by accelerating developments in the knowledge economy. Engineers translate ideas into concrete solutions, which are frequently useful and commercially valuable, if the intrinsic intellectual property has been identified and protected.…

  15. Opti-Tool: EPA Region 1's Stormwater Management Optimization Tool

    EPA Pesticide Factsheets

    Opti-Tool assists stormwater managers & consulting engineers in preparing technically sound & cost-effective watershed SW mgmt plans to achieve needed pollutant & volume reductions more affordably from developed landscapes throughout the New England Region

  16. A Software Engineering Environment for the Navy.

    DTIC Science & Technology

    1982-03-31

    Engineering Pr.cess . - 55 ?art II: Description of A Software Engineering Env.Lonnmeut 1. Data Base ........................................ 7 -3 L.I...Methodology to Tool 1-54 2.2.2.2-6 Flow of Management: Activity to Methodology to Tool 21- 55 2.2.2.2-7 Pipelining for Activity-Specific Tools 11-56 A.1.1-1 A...testing techniques. 2.2. 2 Methodciogies and Tools: Correctness Analysis Pai e T- 4Metboioioo ies aews - Pev2.ews Jeicrmine the in ernai ’ Qolc .. ness and

  17. An integrated tool to support engineers for WMSDs risk assessment during the assembly line balancing.

    PubMed

    Di Benedetto, Raffaele; Fanti, Michele

    2012-01-01

    This paper wants to present an integrated approach to Line Balancing and Risk Assessment and a Software Tool named ErgoAnalysis that makes it easy to control the whole production process and produces a Risk Index for the actual work tasks in an Assembly Line. Assembly Line Balancing, or simply Line Balancing, is the problem of assigning operations to workstations along an assembly line, in such a way that the assignment be optimal in some sense. Assembly lines are characterized by production constraints and restrictions due to several aspects such as the nature of the product and the flow of orders. To be able to respond effectively to the needs of production, companies need to frequently change the workload and production models. Each manufacturing process might be quite different from another. To optimize very specific operations, assembly line balancing might utilize a number of methods and the Engineer must consider ergonomic constraints, in order to reduce the risk of WMDSs. Risk Assessment may result very expensive because the Engineer must evaluate it at every change. ErgoAnalysis can reduce cost and improve effectiveness in Risk Assessment during the Line Balancing.

  18. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  19. Ani s 11-Like Protein Is a Pepsin- and Heat-Resistant Major Allergen of Anisakis spp. and a Valuable Tool for Anisakis Allergy Component-Resolved Diagnosis.

    PubMed

    Carballeda-Sangiao, Noelia; Rodríguez-Mahillo, Ana I; Careche, Mercedes; Navas, Alfonso; Caballero, Teresa; Dominguez-Ortega, Javier; Jurado-Palomo, Jesús; González-Muñoz, Miguel

    2016-01-01

    Anisakis simplex is a fish parasite responsible for gastrointestinal and allergic symptoms in humans. The Ani s 11-like protein has been proposed as an Anisakis allergen because its primary structure is similar to that of Ani s 11. The aims of this work were to analyse the frequency of detection of the Ani s 11-like protein and assess its diagnostic value. rAni s 11-like protein, rAni s 5 and rAni s 4 were expressed in Escherichia coli and rAni s 1 was produced in Pichia pastoris. Recombinant allergen detection patterns in 37 Anisakis-sensitised patients were determined. The stability to pepsin digestion and heat treatment of rAni s 11-like protein was also analysed by IgE immunoblotting. Ani s 11-like protein is a major allergen detected by 78% of Anisakis-allergic patients, and 13.5% of patients detect only the rAni s 11-like allergen. This allergen is heat stable because it retains its capability of binding IgE after boiling for 30 min and it is resistant to pepsin digestion for 120 min. These data indicate that the Ani s 11-like protein is a pepsin- and heat-resistant major allergen (Ani s 11.0201) of Anisakis spp. and a valuable tool for Anisakis allergy component-resolved diagnosis. © 2016 S. Karger AG, Basel.

  20. A New Approach in Applying Systems Engineering Tools and Analysis to Determine Hepatocyte Toxicogenomics Risk Levels to Human Health.

    PubMed

    Gigrich, James; Sarkani, Shahryar; Holzer, Thomas

    2017-03-01

    There is an increasing backlog of potentially toxic compounds that cannot be evaluated with current animal-based approaches in a cost-effective and expeditious manner, thus putting human health at risk. Extrapolation of animal-based test results for human risk assessment often leads to different physiological outcomes. This article introduces the use of quantitative tools and methods from systems engineering to evaluate the risk of toxic compounds by the analysis of the amount of stress that human hepatocytes undergo in vitro when metabolizing GW7647 1 over extended times and concentrations. Hepatocytes are exceedingly connected systems that make it challenging to understand the highly varied dimensional genomics data to determine risk of exposure. Gene expression data of peroxisome proliferator-activated receptor-α (PPARα) 2 binding was measured over multiple concentrations and varied times of GW7647 exposure and leveraging mahalanombis distance to establish toxicity threshold risk levels. The application of these novel systems engineering tools provides new insight into the intricate workings of human hepatocytes to determine risk threshold levels from exposure. This approach is beneficial to decision makers and scientists, and it can help reduce the backlog of untested chemical compounds due to the high cost and inefficiency of animal-based models.

  1. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    PubMed Central

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664

  2. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.

    PubMed

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  3. Microphysics in the Gamma-Ray Burst Central Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janiuk, Agnieszka, E-mail: agnes@cft.edu.pl

    We calculate the structure and evolution of a gamma-ray burst central engine where an accreting torus has formed around the newly born black hole. We study the general relativistic, MHD models and we self-consistently incorporate the nuclear equation of state. The latter accounts for the degeneracy of relativistic electrons, protons, and neutrons, and is used in the dynamical simulation, instead of a standard polytropic γ -law. The EOS provides the conditions for the nuclear pressure in the function of density and temperature, which evolve with time according to the conservative MHD scheme. We analyze the structure of the torus andmore » outflowing winds, and compute the neutrino flux emitted through the nuclear reaction balance in the dense and hot matter. We also estimate the rate of transfer of the black-hole rotational energy to the bipolar jets. Finally, we elaborate on the nucleosynthesis of heavy elements in the accretion flow and the wind, through computations of the thermonuclear reaction network. We discuss the possible signatures of the radioactive element decay in the accretion flow. We suggest that further detailed modeling of the accretion flow in the GRB engine, together with its microphysics, may be a valuable tool to constrain the black-hole mass and spin. It can be complementary to the gravitational wave analysis if the waves are detected with an electromagnetic counterpart.« less

  4. Putting engineering back into protein engineering: bioinformatic approaches to catalyst design.

    PubMed

    Gustafsson, Claes; Govindarajan, Sridhar; Minshull, Jeremy

    2003-08-01

    Complex multivariate engineering problems are commonplace and not unique to protein engineering. Mathematical and data-mining tools developed in other fields of engineering have now been applied to analyze sequence-activity relationships of peptides and proteins and to assist in the design of proteins and peptides with specified properties. Decreasing costs of DNA sequencing in conjunction with methods to quickly synthesize statistically representative sets of proteins allow modern heuristic statistics to be applied to protein engineering. This provides an alternative approach to expensive assays or unreliable high-throughput surrogate screens.

  5. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    PubMed

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-07-22

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.

  6. The complementarity of the technical tools of tissue engineering and the concepts of artificial organs for the design of functional bioartificial tissues.

    PubMed

    Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus

    2008-09-01

    Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.

  7. Glasgow Coma Scale and Its Components on Admission: Are They Valuable Prognostic Tools in Acute Mixed Drug Poisoning?

    PubMed Central

    Eizadi Mood, N.; Sabzghabaee, A. M.; Yadegarfar, Gh.; Yaraghi, A.; Ramazani Chaleshtori, M.

    2011-01-01

    Introduction. The verbal, eye, and motor components of Glasgow coma scale (GCS) may be influenced by poisoned patients' behavior in an attempted suicide. So, the values of admission GCS and its components for outcomes prediction in mixed drugs poisoning were investigated. Materials and Methods. A followup study data was performed on patients with mixed drugs poisoning. Outcomes were recorded as without complications and with complications. Discrimination was evaluated by calculating the area under the receiver operating characteristic curves (AUC). Results. There was a significant difference between the mean value of each component of GCS as well as the total GCS between patients with and without complication. Discrimination was best for GCS (AUC: 0.933 ± 0.020) and verbal (0.932 ± 0.021), followed by motor (0.911 ± 0.025), then eye (0.89 ± 0.028). Conclusions. Admission GCS and its components seem to be valuable in outcome prediction of patients with mixed drug poisoning. PMID:21559299

  8. Women in biomedical engineering and health informatics.

    PubMed

    McGregor, Carolyn; Frize, Monique

    2008-01-01

    A valuable session for anyone whether student or not, interested in learning more about Biomedical Engineering and Health Informatics as a career choice for women. Prominent women within the domains Biomedical Engineering and Health Informatics will present their research and their humanitarian interests that motivate them. Utilise the fantastic networking opportunity that will conclude this session to build and establish new professional networks with other women interested in your fields of expertise. Bring your contact details and be ready to make new contacts that are relevant for you.

  9. Engineering the future with America's high school students

    NASA Technical Reports Server (NTRS)

    Farrance, M. A.; Jenner, J. W.

    1993-01-01

    The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.

  10. OPTIMIZING USABILITY OF AN ECONOMIC DECISION SUPPORT TOOL: PROTOTYPE OF THE EQUIPT TOOL.

    PubMed

    Cheung, Kei Long; Hiligsmann, Mickaël; Präger, Maximilian; Jones, Teresa; Józwiak-Hagymásy, Judit; Muñoz, Celia; Lester-George, Adam; Pokhrel, Subhash; López-Nicolás, Ángel; Trapero-Bertran, Marta; Evers, Silvia M A A; de Vries, Hein

    2018-01-01

    Economic decision-support tools can provide valuable information for tobacco control stakeholders, but their usability may impact the adoption of such tools. This study aims to illustrate a mixed-method usability evaluation of an economic decision-support tool for tobacco control, using the EQUIPT ROI tool prototype as a case study. A cross-sectional mixed methods design was used, including a heuristic evaluation, a thinking aloud approach, and a questionnaire testing and exploring the usability of the Return of Investment tool. A total of sixty-six users evaluated the tool (thinking aloud) and completed the questionnaire. For the heuristic evaluation, four experts evaluated the interface. In total twenty-one percent of the respondents perceived good usability. A total of 118 usability problems were identified, from which twenty-six problems were categorized as most severe, indicating high priority to fix them before implementation. Combining user-based and expert-based evaluation methods is recommended as these were shown to identify unique usability problems. The evaluation provides input to optimize usability of a decision-support tool, and may serve as a vantage point for other developers to conduct usability evaluations to refine similar tools before wide-scale implementation. Such studies could reduce implementation gaps by optimizing usability, enhancing in turn the research impact of such interventions.

  11. Computer aided systems human engineering: A hypermedia tool

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  12. OEXP Analysis Tools Workshop

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Wright, Robert L.; Badi, Deborah; Findlay, John T.

    1988-01-01

    This publication summarizes the software needs and available analysis tools presented at the OEXP Analysis Tools Workshop held at the NASA Langley Research Center, Hampton, Virginia on June 21 to 22, 1988. The objective of the workshop was to identify available spacecraft system (and subsystem) analysis and engineering design tools, and mission planning and analysis software that could be used for various NASA Office of Exploration (code Z) studies, specifically lunar and Mars missions.

  13. Caesy: A software tool for computer-aided engineering

    NASA Technical Reports Server (NTRS)

    Wette, Matt

    1993-01-01

    A new software tool, Caesy, is described. This tool provides a strongly typed programming environment for research in the development of algorithms and software for computer-aided control system design. A description of the user language and its implementation as they currently stand are presented along with a description of work in progress and areas of future work.

  14. Computer Aided Drafting and Design, Industrial Manufacturing Technician, and Mechanical Engineering Technician and Machine Tool, Die and Moldmaking Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Mid-East Ohio Tech Prep Consortium, Zanesville.

    This document contains competency profiles in four areas: computer-aided drafting and design; industrial manufacturing technician; mechanical engineering technician; and machine tool, die, and moldmaking technology occupations. The profiles are intended for use in articulating tech prep programs from high school through associate degrees in Ohio.…

  15. Overview of codes and tools for nuclear engineering education

    NASA Astrophysics Data System (ADS)

    Yakovlev, D.; Pryakhin, A.; Medvedeva, L.

    2017-01-01

    The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.

  16. Engine System Model Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  17. Integrating Reliability Analysis with a Performance Tool

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael

    1995-01-01

    A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.

  18. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  19. HISTORICAL ANALYSIS OF ECOLOGICAL EFFECTS: A USEFUL EDUCATIONAL TOOL

    EPA Science Inventory

    An historical analysis that presents the ecological consequences of development can be a valuable educational tool for citizens, students, and environmental managers. In highly impacted areas, the cumulative impacts of multiple stressors can result in complex environmental condit...

  20. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  1. Multiwavelength digital holography for polishing tool shape measurement

    NASA Astrophysics Data System (ADS)

    Lédl, Vít.; Psota, Pavel; Václavík, Jan; Doleček, Roman; Vojtíšek, Petr

    2013-09-01

    Classical mechano-chemical polishing is still a valuable technique, which gives unbeatable results for some types of optical surfaces. For example, optics for high power lasers requires minimized subsurface damage, very high cosmetic quality, and low mid spatial frequency error. One can hardly achieve this with use of subaperture polishing. The shape of the polishing tool plays a crucial role in achieving the required form of the optical surface. Often the shape of the polishing tool or pad is not known precisely enough during the manufacturing process. The tool shape is usually premachined and later is changed during the polishing procedure. An experienced worker could estimate the shape of the tool indirectly from the shape of the polished element, and that is why he can achieve the required shape in few reasonably long iterative steps. Therefore the lack of the exact tool shape knowledge is tolerated. Sometimes, this indirect method is not feasible even if small parts are considered. Moreover, if processes on machines like planetary (continuous) polishers are considered, the incorrect shape of the polishing pad could extend the polishing times extremely. Every iteration step takes hours. Even worse, polished piece could be wasted if the pad has a poor shape. The ability of the tool shape determination would be very valuable in those types of lengthy processes. It was our primary motivation to develop a contactless measurement method for large diffusive surfaces and demonstrate its usability. The proposed method is based on application of multiwavelength digital holographic interferometry with phase shift.

  2. Formalization of the engineering science discipline - knowledge engineering

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an

  3. Teachers Talking about Writing Assessment: Valuable Professional Learning?

    ERIC Educational Resources Information Center

    Reid, Lesley

    2007-01-01

    This article argues that the engagement of teachers in collaborative discussions about assessment can provide a fruitful context for valuable professional learning. It is of interest to those who provide Continuous Professional Development (CPD) opportunities for teachers and teachers themselves. It looks particularly at the value of writing…

  4. The Kamusi Project Edit Engine: A Tool for Collaborative Lexicography.

    ERIC Educational Resources Information Center

    Benjamin, Martin; Biersteker, Ann

    2001-01-01

    Discusses the design and implementation of the Kamusi Project Edit Engine, a Web-based software system uniquely suited to the needs of Swahili collaborative lexicography. Describes the edit engine, including organization of the lexicon and the mechanics by which participants use the system, discusses philosophical issues confronted in the design,…

  5. Engineering Change Management Method Framework in Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    Stekolschik, Alexander

    2016-11-01

    Engineering changes make an impact on different process chains in and outside the company, and lead to most error costs and time shifts. In fact, 30 to 50 per cent of development costs result from technical changes. Controlling engineering change processes can help us to avoid errors and risks, and contribute to cost optimization and a shorter time to market. This paper presents a method framework for controlling engineering changes at mechanical engineering companies. The developed classification of engineering changes and accordingly process requirements build the basis for the method framework. The developed method framework comprises two main areas: special data objects managed in different engineering IT tools and process framework. Objects from both areas are building blocks that can be selected to the overall business process based on the engineering process type and change classification. The process framework contains steps for the creation of change objects (both for overall change and for parts), change implementation, and release. Companies can select singleprocess building blocks from the framework, depending on the product development process and change impact. The developed change framework has been implemented at a division (10,000 employees) of a big German mechanical engineering company.

  6. New Therapies Offer Valuable Options for Patients with Melanoma

    Cancer.gov

    Two phase III clinical trials of new therapies for patients with metastatic melanoma presented in June at the 2011 ASCO conference confirmed that vemurafenib and ipilimumab (Yervoy™) offer valuable new options for the disease.

  7. The database management system: A topic and a tool

    NASA Technical Reports Server (NTRS)

    Plummer, O. R.

    1984-01-01

    Data structures and data base management systems are common tools employed to deal with the administrative information of a university. An understanding of these topics is needed by a much wider audience, ranging from those interested in computer aided design and manufacturing to those using microcomputers. These tools are becoming increasingly valuable to academic programs as they develop comprehensive computer support systems. The wide use of these tools relies upon the relational data model as a foundation. Experience with the use of the IPAD RIM5.0 program is described.

  8. Data and Tools - Alphabetical Listing | NREL

    Science.gov Websites

    Climate Action Planning Tool Community Solar Scenario Tool Comparative PV Levelized Cost of Energy (LCOE Design Response Toolbox WEC-Sim: Wave Energy Converter Simulator West Associates Solar Monitoring Network Design and Engineering Model

  9. Sign Language Legislation as a Tool for Sustainability

    ERIC Educational Resources Information Center

    Pabsch, Annika

    2017-01-01

    This article explores three models of sustainability (environmental, economic, and social) and identifies characteristics of a sustainable community necessary to sustain the Deaf community as a whole. It is argued that sign language legislation is a valuable tool for achieving sustainability for the generations to come.

  10. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.

    PubMed

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  11. Engineering Robustness of Microbial Cell Factories.

    PubMed

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  13. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  14. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  15. Facebook: an effective tool for participant retention in longitudinal research.

    PubMed

    Mychasiuk, R; Benzies, K

    2012-09-01

    Facebook is currently one of the world's most visited websites, and home to millions of users who access their accounts on a regular basis. Owing to the website's ease of accessibility and free service, demographic characteristics of users span all domains. As such, Facebook may be a valuable tool for locating and communicating with participants in longitudinal research studies. This article outlines the benefit gained in a longitudinal follow-up study, of an intervention programme for at-risk families, through the use of Facebook as a search engine. Using Facebook as a resource, we were able to locate 19 participants that were otherwise 'lost' to follow-up, decreasing attrition in our study by 16%. Additionally, analysis indicated that hard-to-reach participants located with Facebook differed significantly on measures of receptive language and self-esteem when compared to their easier-to-locate counterparts. These results suggest that Facebook is an effective means of improving participant retention in a longitudinal intervention study and may help improve study validity by reaching participants that contribute differing results. © 2011 Blackwell Publishing Ltd.

  16. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.

    PubMed

    Fong, Stephen S

    2014-08-01

    Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.

  17. Virtual Engine a Tool for Truck Reliability Increase

    NASA Astrophysics Data System (ADS)

    Stodola, Jiri; Novotny, Pavel

    2017-06-01

    The internal combustion engine development process requires CAD models which deliver results for the concept phase at a very early stage and which can be further detailed on the same program platform as the development process progresses. The vibratory and acoustic behaviour of the powertrain is highly complex, consisting of many components that are subject to loads that vary greatly in magnitude and which operate at a wide range of speeds. The interaction of the crank and crankcase is a major problem for powertrain designers when optimising the vibration and noise characteristics of the powertrain. The Finite Element Method (FEM) and Multi-Body Systems (MBS) are suitable for the creation of 3-D calculation models. Non-contact measurements make it possible to verify complex calculation models. All numerical simulations and measurements are performed on a Diesel six-cylinder in-line engine.

  18. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  19. Early Engagement of Safety and Mission Assurance Expertise Using Systems Engineering Tools: A Risk-Based Approach to Early Identification of Safety and Assurance Requirements

    NASA Technical Reports Server (NTRS)

    Darpel, Scott; Beckman, Sean

    2016-01-01

    Decades of systems engineering practice have demonstrated that the earlier the identification of requirements occurs, the lower the chance that costly redesigns will needed later in the project life cycle. A better understanding of all requirements can also improve the likelihood of a design's success. Significant effort has been put into developing tools and practices that facilitate requirements determination, including those that are part of the model-based systems engineering (MBSE) paradigm. These efforts have yielded improvements in requirements definition, but have thus far focused on a design's performance needs. The identification of safety & mission assurance (S&MA) related requirements, in comparison, can occur after preliminary designs are already established, yielding forced redesigns. Engaging S&MA expertise at an earlier stage, facilitated by the use of MBSE tools, and focused on actual project risk, can yield the same type of design life cycle improvements that have been realized in technical and performance requirements.

  20. What makes a sustainability tool valuable, practical and useful in real-world healthcare practice? A mixed-methods study on the development of the Long Term Success Tool in Northwest London

    PubMed Central

    Lennox, Laura; Doyle, Cathal; Reed, Julie E

    2017-01-01

    Objectives Although improvement initiatives show benefits to patient care, they often fail to sustain. Models and frameworks exist to address this challenge, but issues with design, clarity and usability have been barriers to use in healthcare settings. This work aimed to collaborate with stakeholders to develop a sustainability tool relevant to people in healthcare settings and practical for use in improvement initiatives. Design Tool development was conducted in six stages. A scoping literature review, group discussions and a stakeholder engagement event explored literature findings and their resonance with stakeholders in healthcare settings. Interviews, small-scale trialling and piloting explored the design and tested the practicality of the tool in improvement initiatives. Setting National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care for Northwest London (CLAHRC NWL). Participants CLAHRC NWL improvement initiative teams and staff. Results The iterative design process and engagement of stakeholders informed the articulation of the sustainability factors identified from the literature and guided tool design for practical application. Key iterations of factors and tool design are discussed. From the development process, the Long Term Success Tool (LTST) has been designed. The Tool supports those implementing improvements to reflect on 12 sustainability factors to identify risks to increase chances of achieving sustainability over time. The Tool is designed to provide a platform for improvement teams to share their own views on sustainability as well as learn about the different views held within their team to prompt discussion and actions. Conclusion The development of the LTST has reinforced the importance of working with stakeholders to design strategies which respond to their needs and preferences and can practically be implemented in real-world settings. Further research is required to study the use and

  1. Systems Prototyping with Fourth Generation Tools.

    ERIC Educational Resources Information Center

    Sholtys, Phyllis

    1983-01-01

    The development of information systems using an engineering approach that uses both traditional programing techniques and fourth generation software tools is described. Fourth generation applications tools are used to quickly develop a prototype system that is revised as the user clarifies requirements. (MLW)

  2. Optimizing Engineering Tools Using Modern Ground Architectures

    DTIC Science & Technology

    2017-12-01

    Considerations,” International Journal of Computer Science & Engineering Survey , vol. 5, no. 4, 2014. [10] R. Bell. (n.d). A beginner’s guide to big O notation...scientific community. Traditional computing architectures were not capable of processing the data efficiently, or in some cases, could not process the...thesis investigates how these modern computing architectures could be leveraged by industry and academia to improve the performance and capabilities of

  3. Development of a comprehensive software engineering environment

    NASA Technical Reports Server (NTRS)

    Hartrum, Thomas C.; Lamont, Gary B.

    1987-01-01

    The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.

  4. Protein engineering and its applications in food industry.

    PubMed

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  5. You're a What? Usability Engineer.

    ERIC Educational Resources Information Center

    Crosby, Olivia

    2001-01-01

    Describes the work of usability engineers, who improve computer hardware, software, and websites by focusing on how users perceive and manipulate those tools. Discusses education, training, salaries, and talents needed by usability engineers. (Author/JOW)

  6. Perceived Utility of Pharmacy Licensure Examination Preparation Tools

    PubMed Central

    Peak, Amy Sutton; Sheehan, Amy Heck; Arnett, Stephanie

    2006-01-01

    Objectives To identify board examination preparation tools most commonly used by recent pharmacy graduates and determine which tools are perceived as most valuable and representative of the actual content of licensure examinations. Methods An electronic survey was sent to all 2004 graduates of colleges of pharmacy in Indiana. Participants identified which specific preparation tools were used and rated tools based on usefulness, representativeness of licensure examination, and monetary value, and provided overall recommendations to future graduates. Results The most commonly used preparation tools were the Pharmacy Law Review Session offered by Dr. Thomas Wilson at Purdue University, the Complete Review for Pharmacy, Pre-NAPLEX, PharmPrep, and the Kaplan NAPLEX Review. Tools receiving high ratings in all categories included Dr. Wilson's Pharmacy Law Review Session, Pre-NAPLEX, Comprehensive Pharmacy Review, Kaplan NAPLEX Review, and Review of Pharmacy. Conclusions Although no preparation tool was associated with a higher examination pass rate, certain tools were clearly rated higher than others by test takers. PMID:17149406

  7. Software Engineering Laboratory (SEL) compendium of tools, revision 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A set of programs used to aid software product development is listed. Known as software tools, such programs include requirements analyzers, design languages, precompilers, code auditors, code analyzers, and software librarians. Abstracts, resource requirements, documentation, processing summaries, and availability are indicated for most tools.

  8. Measuring Light with Useful Tools

    ERIC Educational Resources Information Center

    Peek, Gina; Hebert, Paulette; Frazier, Robert Scott; Knag, Mihyun

    2013-01-01

    Lighting, a necessary part of our home and work environment, is often considered as an afterthought. This article describes tools that Extension educators (Agriculture, Family and Consumer Sciences, and 4-H) can use to measure light levels. 4-H youth may also participate. These tools include light meters and Illuminating Engineering Society (IES)…

  9. Integrating Computational Science Tools into a Thermodynamics Course

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  10. What makes a sustainability tool valuable, practical and useful in real-world healthcare practice? A mixed-methods study on the development of the Long Term Success Tool in Northwest London.

    PubMed

    Lennox, Laura; Doyle, Cathal; Reed, Julie E; Bell, Derek

    2017-09-24

    Although improvement initiatives show benefits to patient care, they often fail to sustain. Models and frameworks exist to address this challenge, but issues with design, clarity and usability have been barriers to use in healthcare settings. This work aimed to collaborate with stakeholders to develop a sustainability tool relevant to people in healthcare settings and practical for use in improvement initiatives. Tool development was conducted in six stages. A scoping literature review, group discussions and a stakeholder engagement event explored literature findings and their resonance with stakeholders in healthcare settings. Interviews, small-scale trialling and piloting explored the design and tested the practicality of the tool in improvement initiatives. National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care for Northwest London (CLAHRC NWL). CLAHRC NWL improvement initiative teams and staff. The iterative design process and engagement of stakeholders informed the articulation of the sustainability factors identified from the literature and guided tool design for practical application. Key iterations of factors and tool design are discussed. From the development process, the Long Term Success Tool (LTST) has been designed. The Tool supports those implementing improvements to reflect on 12 sustainability factors to identify risks to increase chances of achieving sustainability over time. The Tool is designed to provide a platform for improvement teams to share their own views on sustainability as well as learn about the different views held within their team to prompt discussion and actions. The development of the LTST has reinforced the importance of working with stakeholders to design strategies which respond to their needs and preferences and can practically be implemented in real-world settings. Further research is required to study the use and effectiveness of the tool in practice and assess engagement with

  11. Systems metabolic engineering: genome-scale models and beyond.

    PubMed

    Blazeck, John; Alper, Hal

    2010-07-01

    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.

  12. Industrial Sponsor Perspective on Leveraging Capstone Design Projects to Enhance Their Business

    ERIC Educational Resources Information Center

    Weissbach, Robert S.; Snyder, Joseph W.; Evans, Edward R., Jr.; Carucci, James R., Jr.

    2017-01-01

    Capstone design projects have become commonplace among engineering and engineering technology programs. These projects are valuable tools when assessing students, as they require students to work in teams, communicate effectively, and demonstrate technical competency. The use of industrial sponsors enhances these projects by giving these projects…

  13. Voss retrieves a small tool from a tool kit in ISS Node 1/Unity

    NASA Image and Video Library

    2001-08-13

    STS105-E-5175 (13 August 2001) --- Astronaut James S. Voss, retrieves a small tool from a tool case in the U.S.-built Unity node aboard the International Space Station (ISS). The Expedition Two flight engineer is only days away from returning to Earth following five months aboard the orbital outpost. The image was recorded with a digital still camera.

  14. Engineering Escherichia coli K12 MG1655 to use starch

    PubMed Central

    2014-01-01

    Background To attain a sustainable bioeconomy, fuel, or valuable product, production must use biomass as substrate. Starch is one of the most abundant biomass resources and is present as waste or as a food and agroindustry by-product. Unfortunately, Escherichia coli, one of the most widely used microorganisms in biotechnological processes, cannot use starch as a carbon source. Results We engineered an E. coli strain capable of using starch as a substrate. The genetic design employed the native capability of the bacterium to use maltodextrins as a carbon source plus expression and secretion of its endogenous α-amylase, AmyA, in an adapted background. Biomass production improved using 35% dissolved oxygen and pH 7.2 in a controlled bioreactor. Conclusion The engineered E. coli strain can use starch from the milieu and open the possibility of optimize the process to use agroindustrial wastes to produce biofuels and other valuable chemicals. PMID:24886307

  15. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  16. Wildlife as valuable natural resources vs. intolerable pests: A suburban wildlife management model

    USGS Publications Warehouse

    DeStefano, S.; Deblinger, R.D.

    2005-01-01

    Management of wildlife in suburban environments involves a complex set of interactions between both human and wildlife populations. Managers need additional tools, such as models, that can help them assess the status of wildlife populations, devise and apply management programs, and convey this information to other professionals and the public. We present a model that conceptualizes how some wildlife populations can fluctuate between extremely low (rare, threatened, or endangered status) and extremely high (overabundant) numbers over time. Changes in wildlife abundance can induce changes in human perceptions, which continually redefine species as a valuable resource to be protected versus a pest to be controlled. Management programs thatincorporate a number of approaches and promote more stable populations of wildlife avoid the problems of the resource versus pest transformation, are less costly to society, and encourage more positive and less negative interactions between humans and wildlife. We presenta case example of the beaver Castor canadensis in Massachusetts to illustrate how this model functions and can be applied. ?? 2005 Springer Science + Business Media, Inc.

  17. Recent Advances in Algal Genetic Tool Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Dahlin, Lukas; T. Guarnieri, Michael

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  18. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  19. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  20. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering

    PubMed Central

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  1. Engineering cyanobacteria to generate high-value products.

    PubMed

    Ducat, Daniel C; Way, Jeffrey C; Silver, Pamela A

    2011-02-01

    Although many microorganisms have been used for the bioindustrial generation of valuable metabolites, the productive potential of cyanobacterial species has remained largely unexplored. Cyanobacteria possess several advantages as organisms for bioindustrial processes, including simple input requirements, tolerance of marginal agricultural environments, rapid genetics, and carbon-neutral applications that could be leveraged to address global climate change concerns. Here, we review recent research involving the engineering of cyanobacterial species for the production of valuable bioindustrial compounds, including natural cyanobacterial products (e.g. sugars and isoprene), biofuels (e.g. alcohols, alkanes and hydrogen), and other commodity chemicals. Biological and economic obstacles to scaled cyanobacterial production are highlighted, and methods for increasing cyanobacterial production efficiencies are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Interchange Safety Analysis Tool (ISAT) : user manual

    DOT National Transportation Integrated Search

    2007-06-01

    This User Manual describes the usage and operation of the spreadsheet-based Interchange Safety Analysis Tool (ISAT). ISAT provides design and safety engineers with an automated tool for assessing the safety effects of geometric design and traffic con...

  3. NASA Engineering and Technology Advancement Office: A proposal to the administrator

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    NASA has continually had problems with cost, schedule, performance, reliability, quality, and safety aspects in programs. Past solutions have not provided the answers needed, and a major change is needed in the way of doing business. A new approach is presented for consideration. These problems are all engineering matters, and therefore, require engineering solutions. Proper engineering tools are needed to fix engineering problems. Headquarters is responsible for providing the management structure to support programs with appropriate engineering tools. A guide to define those tools and an approach for putting them into place is provided. Recommendations include establishing a new Engineering and Technology Advancement Office, requesting a review of this proposal by the Administrator since this subject requires a top level decision. There has been a wide peer review conducted by technical staff at Headquarters, the Field Installations, and others in industry as discussed.

  4. Gifting of timberland as an estate planning tool

    Treesearch

    William C. Siegel

    2004-01-01

    Estate planning and associated tax considerations frequently focus on the transfer of property at death. Lifetime gifts, however, are also a valuable planning tool. The "ability to afford the gift" should be the first consideration in a giving program. Timberland and other property that someday might be needed should not be given away.

  5. Systems engineering technology for networks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The report summarizes research pursued within the Systems Engineering Design Laboratory at Virginia Polytechnic Institute and State University between May 16, 1993 and January 31, 1994. The project was proposed in cooperation with the Computational Science and Engineering Research Center at Howard University. Its purpose was to investigate emerging systems engineering tools and their applicability in analyzing the NASA Network Control Center (NCC) on the basis of metrics and measures.

  6. CAD tools for detector design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Womersley, J.; DiGiacomo, N.; Killian, K.

    1990-04-01

    Detailed detector design has traditionally been divided between engineering optimization for structural integrity and subsequent physicist evaluation. The availability of CAD systems for engineering design enables the tasks to be integrated by providing tools for particle simulation within the CAD system. We believe this will speed up detector design and avoid problems due to the late discovery of shortcomings in the detector. This could occur because of the slowness of traditional verification techniques (such as detailed simulation with GEANT). One such new particle simulation tool is described. It is being used with the I-DEAS CAD package for SSC detector designmore » at Martin-Marietta Astronautics and is to be released through the SSC Laboratory.« less

  7. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  8. The contribution of bacterial genome engineering to sustainable development.

    PubMed

    Reuß, Daniel R; Commichau, Fabian M; Stülke, Jörg

    2017-09-01

    The United Nations' Sustainable Development Goals define important challenges for the prosperous development of mankind. To reach several of these goals, among them the production of value-added compounds, improved economic and ecologic balance of production processes, prevention of climate change and protection of ecosystems, the use of engineered bacteria can make valuable contributions. We discuss the strategies for genome engineering and how they can be applied to meet the United Nations' goals for sustainable development. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Combining Simulation Tools for End-to-End Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min

    2015-01-01

    Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.

  10. Design of Smart Educational Robot as a Tool For Teaching Media Based on Contextual Teaching and Learning to Improve the Skill of Electrical Engineering Student

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Basuki, I.; Asto, B. I. G. P.; Anifah, L.

    2018-04-01

    The development of robotics in Indonesia has been very encouraging. The barometer is the success of the Indonesian Robot Contest. The focus of research is a teaching module manufacturing, planning mechanical design, control system through microprocessor technology and maneuverability of the robot. Contextual Teaching and Learning (CTL) strategy is the concept of learning where the teacher brings the real world into the classroom and encourage students to make connections between knowledge possessed by its application in everyday life. This research the development model used is the 4-D model. This Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with the aim to produce a tool of learning in the form of smart educational robot modules and kit based on Contextual Teaching and Learning at the Department of Electrical Engineering to improve the skills of the Electrical Engineering student. Socialization questionnaires showed that levels of the student majoring in electrical engineering competencies image currently only limited to conventional machines. The average assessment is 3.34 validator included in either category. Modules developed can give hope to the future are able to produce Intelligent Robot Tool for Teaching.

  11. Small Engine Technology (SET) - Task 14 Axisymmetric Engine Simulation Environment

    NASA Technical Reports Server (NTRS)

    Miller, Max J.

    1999-01-01

    As part of the NPSS (Numerical Propulsion Simulation System) project, NASA Lewis has a goal of developing an U.S. industry standard for an axisymmetric engine simulation environment. In this program, AlliedSignal Engines (AE) contributed to this goal by evaluating the ENG20 software and developing support tools. ENG20 is a NASA developed axisymmetric engine simulation tool. The project was divided into six subtasks which are summarized below: Evaluate the capabilities of the ENG20 code using an existing test case to see how this procedure can capture the component interactions for a full engine. Link AE's compressor and turbine axisymmetric streamline curvature codes (UD0300M and TAPS) with ENG20, which will provide the necessary boundary conditions for an ENG20 engine simulation. Evaluate GE's Global Data System (GDS), attempt to use GDS to do the linking of codes described in Subtask 2 above. Use a turbofan engine test case to evaluate various aspects of the system, including the linkage of UD0300M and TAPS with ENG20 and the GE data storage system. Also, compare the solution results with cycle deck results, axisymmetric solutions (UD0300M and TAPS), and test data to determine the accuracy of the solution. Evaluate the order of accuracy and the convergence time for the solution. Provide a monthly status report and a final formal report documenting AE's evaluation of ENG20. Provide the developed interfaces that link UD0300M and TAPS with ENG20, to NASA. The interface that links UD0300M with ENG20 will be compatible with the industr,, version of UD0300M.

  12. Update of GRASP/Ada reverse engineering tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1992-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation of Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAS 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3, the prototype was evaluated by software engineering students at Auburn University and then updated with significant enhancements to the user interface including editing capabilities. Version 3.2 of the prototype was prepared for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application.

  13. Portable hyperspectral device as a valuable tool for the detection of protective agents applied on hystorical buildings

    NASA Astrophysics Data System (ADS)

    Vettori, S.; Pecchioni, E.; Camaiti, M.; Garfagnoli, F.; Benvenuti, M.; Costagliola, P.; Moretti, S.

    2012-04-01

    In the recent past, a wide range of protective products (in most cases, synthetic polymers) have been applied to the surfaces of ancient buildings/artefacts to preserve them from alteration [1]. The lack of a detailed mapping of the permanence and efficacy of these treatments, in particular when applied on large surfaces such as building facades, may be particularly noxious when new restoration treatments are needed and the best choice of restoration protocols has to be taken. The presence of protective compounds on stone surfaces may be detected in laboratory by relatively simple diagnostic tests, which, however, normally require invasive (or micro-invasive) sampling methodologies and are time-consuming, thus limiting their use only to a restricted number of samples and sampling sites. On the contrary, hyperspectral sensors are rapid, non-invasive and non-destructive tools capable of analyzing different materials on the basis of their different patterns of absorption at specific wavelengths, and so particularly suitable for the field of cultural heritage [2,3]. In addition, they can be successfully used to discriminate between inorganic (i.e. rocks and minerals) and organic compounds, as well as to acquire, in short times, many spectra and compositional maps at relatively low costs. In this study we analyzed a number of stone samples (Carrara Marble and biogenic calcarenites - "Lecce Stone" and "Maastricht Stone"-) after treatment of their surfaces with synthetic polymers (synthetic wax, acrylic, perfluorinated and silicon based polymers) of common use in conservation-restoration practice. The hyperspectral device used for this purpose was ASD FieldSpec FR Pro spectroradiometer, a portable, high-resolution instrument designed to acquire Visible and Near-Infrared (VNIR: 350-1000 nm) and Short-Wave Infrared (SWIR: 1000-2500 nm) punctual reflectance spectra with a rapid data collection time (about 0.1 s for each spectrum). The reflectance spectra so far obtained in

  14. The Waukesha Turbocharger Control Module: A tool for improved engine efficiency and response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, J.R.; Reinbold, E.O.; Mueller, J.

    1996-12-31

    The Waukesha Turbocharger Control Module allows optimum control of turbochargers on lean burn gaseous fueled engines. The Turbocharger Control Module is user programmed to provide either maximum engine efficiency or best engine response to load changes. In addition, the Turbocharger Control Module prevents undesirable turbocharger surge. The Turbocharger Control Module consists of an electronic control box, engine speed, intake manifold pressure, ambient temperature sensors, and electric actuators driving compressor bypass and wastegate valves. The Turbocharger Control Module expands the steady state operational environment of the Waukesha AT27GL natural gas engine from sea level to 1,525 m altitude with one turbochargermore » match and improves the engine speed turn down by 80 RPM. Finally, the Turbocharger Control Module improves engine response to load changes.« less

  15. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  16. Design tools for complex dynamic security systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systemsmore » are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.« less

  17. Kidney Paired Donation and the "Valuable Consideration" Problem: The Experiences of Australia, Canada, and the United States.

    PubMed

    Toews, Maeghan; Giancaspro, Mark; Richards, Bernadette; Ferrari, Paolo

    2017-09-01

    As organ donation rates remain unable to meet the needs of individuals waiting for transplants, it is necessary to identify reasons for this shortage and develop solutions to address it. The introduction of kidney paired donation (KPD) programs represents one such innovation that has become a valuable tool in donation systems around the world. Although KPD has been successful in increasing kidney donation and transplantation, there are lingering questions about its legality. Donation through KPD is done in exchange for-and with the expectation of-a reciprocal kidney donation and transplantation. It is this reciprocity that has caused concern about whether KPD complies with existing law. Organ donation systems around the world are almost universally structured to legally prohibit the commercial exchange of organs. Australia, Canada, and the United States have accomplished this goal by prohibiting the exchange of an organ for "valuable consideration," which is a legal term that has not historically been limited to monetary exchange. Whether or not KPD programs violate this legislative prohibition will depend on the specific legislative provision being considered, and the legal system and case law of the particular jurisdiction in question. This article compares the experiences of Australia, Canada, and the United States in determining the legality of KPD and highlights the need for legal clarity and flexibility as donation and transplantation systems continue to evolve.

  18. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    PubMed Central

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2008-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085

  19. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  20. Proceedings of the Workshop on software tools for distributed intelligent control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herget, C.J.

    1990-09-01

    The Workshop on Software Tools for Distributed Intelligent Control Systems was organized by Lawrence Livermore National Laboratory for the United States Army Headquarters Training and Doctrine Command and the Defense Advanced Research Projects Agency. The goals of the workshop were to the identify the current state of the art in tools which support control systems engineering design and implementation, identify research issues associated with writing software tools which would provide a design environment to assist engineers in multidisciplinary control design and implementation, formulate a potential investment strategy to resolve the research issues and develop public domain code which can formmore » the core of more powerful engineering design tools, and recommend test cases to focus the software development process and test associated performance metrics. Recognizing that the development of software tools for distributed intelligent control systems will require a multidisciplinary effort, experts in systems engineering, control systems engineering, and compute science were invited to participate in the workshop. In particular, experts who could address the following topics were selected: operating systems, engineering data representation and manipulation, emerging standards for manufacturing data, mathematical foundations, coupling of symbolic and numerical computation, user interface, system identification, system representation at different levels of abstraction, system specification, system design, verification and validation, automatic code generation, and integration of modular, reusable code.« less

  1. Nanotechnology as an adjunct tool for transplanting engineered cells and tissues.

    PubMed

    Borlongan, Cesar V; Masuda, Tadashi; Walker, Tiffany A; Maki, Mina; Hara, Koichi; Yasuhara, Takao; Matsukawa, Noriyuki; Emerich, Dwaine F

    2007-11-01

    Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.

  2. Levulinic acid: a valuable platform chemical for fermentative syntheses

    USDA-ARS?s Scientific Manuscript database

    In 2004 the DOE included levulinic acid (LA) as a top platform molecule because of its production from renewable resources in large yields and its broad application potential as a precursor for many valuable chemical derivatives. While LA and its chemical derivatives have high application potential,...

  3. Comet: an open-source MS/MS sequence database search tool.

    PubMed

    Eng, Jimmy K; Jahan, Tahmina A; Hoopmann, Michael R

    2013-01-01

    Proteomics research routinely involves identifying peptides and proteins via MS/MS sequence database search. Thus the database search engine is an integral tool in many proteomics research groups. Here, we introduce the Comet search engine to the existing landscape of commercial and open-source database search tools. Comet is open source, freely available, and based on one of the original sequence database search tools that has been widely used for many years. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multi-mission space vehicle subsystem analysis tools

    NASA Technical Reports Server (NTRS)

    Kordon, M.; Wood, E.

    2003-01-01

    Spacecraft engineers often rely on specialized simulation tools to facilitate the analysis, design and operation of space systems. Unfortunately these tools are often designed for one phase of a single mission and cannot be easily adapted to other phases or other misions. The Multi-Mission Pace Vehicle Susbsystem Analysis Tools are designed to provide a solution to this problem.

  5. Patient-Centered Tools for Medication Information Search.

    PubMed

    Wilcox, Lauren; Feiner, Steven; Elhadad, Noémie; Vawdrey, David; Tran, Tran H

    2014-05-20

    Recent research focused on online health information seeking highlights a heavy reliance on general-purpose search engines. However, current general-purpose search interfaces do not necessarily provide adequate support for non-experts in identifying suitable sources of health information. Popular search engines have recently introduced search tools in their user interfaces for a range of topics. In this work, we explore how such tools can support non-expert, patient-centered health information search. Scoping the current work to medication-related search, we report on findings from a formative study focused on the design of patient-centered, medication-information search tools. Our study included qualitative interviews with patients, family members, and domain experts, as well as observations of their use of Remedy, a technology probe embodying a set of search tools. Post-operative cardiothoracic surgery patients and their visiting family members used the tools to find information about their hospital medications and were interviewed before and after their use. Domain experts conducted similar search tasks and provided qualitative feedback on their preferences and recommendations for designing these tools. Findings from our study suggest the importance of four valuation principles underlying our tools: credibility, readability, consumer perspective, and topical relevance.

  6. Comparing the Efficacy of an Engineered-Based System (College Livetext) with an Off-the-Shelf General Tool (Hyperstudio) for Developing Electronic Portfolios in Teacher Education

    ERIC Educational Resources Information Center

    Johnson-Leslie, Natalie A.

    2009-01-01

    In teacher education, electronic portfolios provide an authentic form of assessment documenting students' personal and professional growth. Using the engineered-based system, College LiveText, and an off-the-shelf general tool, HyperStudio, pre-service teachers constructed e-portfolios as part of their teacher preparation requirements. This case…

  7. Travel fosters tool use in wild chimpanzees

    PubMed Central

    Gruber, Thibaud; Zuberbühler, Klaus; Neumann, Christof

    2016-01-01

    Ecological variation influences the appearance and maintenance of tool use in animals, either due to necessity or opportunity, but little is known about the relative importance of these two factors. Here, we combined long-term behavioural data on feeding and travelling with six years of field experiments in a wild chimpanzee community. In the experiments, subjects engaged with natural logs, which contained energetically valuable honey that was only accessible through tool use. Engagement with the experiment was highest after periods of low fruit availability involving more travel between food patches, while instances of actual tool-using were significantly influenced by prior travel effort only. Additionally, combining data from the main chimpanzee study communities across Africa supported this result, insofar as groups with larger travel efforts had larger tool repertoires. Travel thus appears to foster tool use in wild chimpanzees and may also have been a driving force in early hominin technological evolution. DOI: http://dx.doi.org/10.7554/eLife.16371.001 PMID:27431611

  8. Travel fosters tool use in wild chimpanzees.

    PubMed

    Gruber, Thibaud; Zuberbühler, Klaus; Neumann, Christof

    2016-07-19

    Ecological variation influences the appearance and maintenance of tool use in animals, either due to necessity or opportunity, but little is known about the relative importance of these two factors. Here, we combined long-term behavioural data on feeding and travelling with six years of field experiments in a wild chimpanzee community. In the experiments, subjects engaged with natural logs, which contained energetically valuable honey that was only accessible through tool use. Engagement with the experiment was highest after periods of low fruit availability involving more travel between food patches, while instances of actual tool-using were significantly influenced by prior travel effort only. Additionally, combining data from the main chimpanzee study communities across Africa supported this result, insofar as groups with larger travel efforts had larger tool repertoires. Travel thus appears to foster tool use in wild chimpanzees and may also have been a driving force in early hominin technological evolution.

  9. Engineering Ecosystems and Synthetic Ecologies#

    PubMed Central

    Mee, Michael T; Wang, Harris H

    2012-01-01

    Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

  10. The engineering of cybernetic systems

    NASA Astrophysics Data System (ADS)

    Fry, Robert L.

    2002-05-01

    This tutorial develops a logical basis for the engineering of systems that operate cybernetically. The term cybernetic system has a clear quantitative definition. It is a system that dynamically matches acquired information to selected actions relative to a computational issue that defines the essential purpose of the system or machine. This notion requires that information and control be further quantified. The logic of questions and assertions as developed by Cox provides one means of doing this. The design and operation of cybernetic systems can be understood by contrasting these kinds of systems with communication systems and information theory as developed by Shannon. The joint logic of questions and assertions can be seen to underlie and be common to both information theory as applied to the design of discrete communication systems and to a theory of discrete general systems. The joint logic captures a natural complementarity between systems that transmit and receive information and those that acquire and act on it. Specific comparisons and contrasts are made between the source rate and channel capacity of a communication system and the acquisition rate and control capacity of a general system. An overview is provided of the joint logic of questions and assertions and the ties that this logic has to both conventional information theory and to a general theory of systems. I-diagrams, the interrogative complement of Venn diagrams, are described as providing valuable reasoning tools. An initial framework is suggested for the design of cybernetic systems. Two examples are given to illustrate this framework as applied to discrete cybernetic systems. These examples include a predator-prey problem as illustrated through "The Dog Chrysippus Pursuing its Prey," and the derivation of a single-neuron system that operates cybernetically and is biologically plausible. Future areas of research are highlighted which require development for a mature engineering framework.

  11. Engine System Loads Development for the Fastrac 60K Flight Engine

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph

    2000-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.

  12. Benchmarking expert system tools

    NASA Technical Reports Server (NTRS)

    Riley, Gary

    1988-01-01

    As part of its evaluation of new technologies, the Artificial Intelligence Section of the Mission Planning and Analysis Div. at NASA-Johnson has made timing tests of several expert system building tools. Among the production systems tested were Automated Reasoning Tool, several versions of OPS5, and CLIPS (C Language Integrated Production System), an expert system builder developed by the AI section. Also included in the test were a Zetalisp version of the benchmark along with four versions of the benchmark written in Knowledge Engineering Environment, an object oriented, frame based expert system tool. The benchmarks used for testing are studied.

  13. 43 CFR 2568.94 - Can I receive an allotment of land that is valuable for minerals?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... valuable for minerals? 2568.94 Section 2568.94 Public Lands: Interior Regulations Relating to Public Lands... be or believed to be valuable for coal, oil, or gas, but the ownership of these minerals remains with the Federal government. BLM cannot convey to you land valuable for other kinds of minerals such as...

  14. 43 CFR 2568.94 - Can I receive an allotment of land that is valuable for minerals?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... valuable for minerals? 2568.94 Section 2568.94 Public Lands: Interior Regulations Relating to Public Lands... be or believed to be valuable for coal, oil, or gas, but the ownership of these minerals remains with the Federal government. BLM cannot convey to you land valuable for other kinds of minerals such as...

  15. 43 CFR 2568.94 - Can I receive an allotment of land that is valuable for minerals?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... valuable for minerals? 2568.94 Section 2568.94 Public Lands: Interior Regulations Relating to Public Lands... be or believed to be valuable for coal, oil, or gas, but the ownership of these minerals remains with the Federal government. BLM cannot convey to you land valuable for other kinds of minerals such as...

  16. Common Database Interface for Heterogeneous Software Engineering Tools.

    DTIC Science & Technology

    1987-12-01

    SUB-GROUP Database Management Systems ;Programming(Comuters); 1e 05 Computer Files;Information Transfer;Interfaces; 19. ABSTRACT (Continue on reverse...Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Systems ...Literature ..... 8 System 690 Configuration ......... 8 Database Functionis ............ 14 Software Engineering Environments ... 14 Data Manager

  17. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.

    PubMed

    Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Hyeon Yoo, Tae; Lee, Chong-Soon; Yun, Hyungdon

    2015-12-01

    The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts.

    PubMed

    Boominathan, Vijay P; Ferreira, Tracie L

    2012-12-01

    Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.

  19. A Registry for Planetary Data Tools and Services

    NASA Astrophysics Data System (ADS)

    Hardman, S.; Cayanan, M.; Hughes, J. S.; Joyner, R.; Crichton, D.; Law, E.

    2018-04-01

    The PDS Engineering Node has upgraded a prototype Tool Registry developed by the International Planetary Data Alliance to increase the visibility and enhance functionality along with incorporating the registered tools into PDS data search results.

  20. A Design Tool for Liquid Rocket Engine Injectors

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary; Trinh, Huu Phuoc; Tucker, P. Kevin; Hutt, John

    1999-01-01

    A practical design tool for the analysis of flowfields near the injector face has been developed and used to analyze the Fastrac engine. The objective was to produce a computational design tool which was detailed enough to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows. To obtain a model which could be used to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe liquid and vapor sub- and super-critical flows, the model included thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. A homogeneous model was constructed such that the local state of the flow was determined directly, i.e. the quality of the flow was calculated. Such a model does not identify drops or their distribution, but it does allow the flow along the injector face and into the acoustic cavity to be predicted. It also allows the film coolant flow to be accurately described. The initial evaluation of the injector code was made by simulating cold flow from an unlike injector element and from a like-on-like overlapping fan (LOL) injector element. The predicted mass flux distributions of these injector elements compared well to cold flow test results. These are the same cold flow tests which serve as the data base for the JANNAF performance prediction codes. The flux distributions 1 inch downstream of the injector face are very similar; the differences were somewhat larger at further distances from the faceplate. Since the cold flow testing did not achieve good mass balances when integrations across the entire fan were made, the CFD simulation appears to be reasonable alternative to future cold flow testing. To simulate the Fastrac, an RP-1/LOX combustion model must be chosen. This submodel must be relatively simple to accomplish three-dimensional, multiphase flow simulations. Single RP-1

  1. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  2. Update of GRASP/Ada reverse engineering tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1993-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional pretty printed Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype CSD generator (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3,e two update phases were completed. Update'92 focused on the initial analysis of evaluation data collected from software engineering students at Auburn University and the addition of significant enhancements to the user interface. Update'93 (the current update) focused on the statistical analysis of the data collected in the previous update and preparation of Version 3.4 of the prototype for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical

  3. 43 CFR 2430.4 - Additional criteria for classification of lands valuable for public purposes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Additional criteria for classification of... (2000) DISPOSAL CLASSIFICATIONS Criteria for Disposal Classifications § 2430.4 Additional criteria for classification of lands valuable for public purposes. (a) To be valuable for public purposes, lands must be...

  4. multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2017-11-01

    Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.

  5. Field Trips as Valuable Learning Experiences in Geography Courses

    ERIC Educational Resources Information Center

    Krakowka, Amy Richmond

    2012-01-01

    Field trips have been acknowledged as valuable learning experiences in geography. This article uses Kolb's (1984) experiential learning model to discuss how students learn and how field trips can help enhance learning. Using Kolb's experiential learning theory as a guide in the design of field trips helps ensure that field trips contribute to…

  6. Small Engine Repair. Two-Stroke and Four-Stroke Cycle.

    ERIC Educational Resources Information Center

    Hires, Bill; And Others

    This curriculum guide is intended to assist persons teaching a course in repairing two- and four-stroke cycle small engines. Addressed in the individual units of instruction are the following topics: safety, tools, fasteners, and measurement techniques; basic small engine theory (engine identification and inspection, basic engine principles and…

  7. Supporting information retrieval from electronic health records: A report of University of Michigan's nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE).

    PubMed

    Hanauer, David A; Mei, Qiaozhu; Law, James; Khanna, Ritu; Zheng, Kai

    2015-06-01

    This paper describes the University of Michigan's nine-year experience in developing and using a full-text search engine designed to facilitate information retrieval (IR) from narrative documents stored in electronic health records (EHRs). The system, called the Electronic Medical Record Search Engine (EMERSE), functions similar to Google but is equipped with special functionalities for handling challenges unique to retrieving information from medical text. Key features that distinguish EMERSE from general-purpose search engines are discussed, with an emphasis on functions crucial to (1) improving medical IR performance and (2) assuring search quality and results consistency regardless of users' medical background, stage of training, or level of technical expertise. Since its initial deployment, EMERSE has been enthusiastically embraced by clinicians, administrators, and clinical and translational researchers. To date, the system has been used in supporting more than 750 research projects yielding 80 peer-reviewed publications. In several evaluation studies, EMERSE demonstrated very high levels of sensitivity and specificity in addition to greatly improved chart review efficiency. Increased availability of electronic data in healthcare does not automatically warrant increased availability of information. The success of EMERSE at our institution illustrates that free-text EHR search engines can be a valuable tool to help practitioners and researchers retrieve information from EHRs more effectively and efficiently, enabling critical tasks such as patient case synthesis and research data abstraction. EMERSE, available free of charge for academic use, represents a state-of-the-art medical IR tool with proven effectiveness and user acceptance. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Grand challenges for biological engineering

    PubMed Central

    Yoon, Jeong-Yeol; Riley, Mark R

    2009-01-01

    Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society. PMID:19772647

  9. SimEngine v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Hai D.

    2017-03-02

    SimEngine provides the core functionalities and components that are key to the development of discrete event simulation tools. These include events, activities, event queues, random number generators, and basic result tracking classes. SimEngine was designed for high performance, integrates seamlessly into any Microsoft .Net development environment, and provides a flexible API for simulation developers.

  10. Characterization and Recovery of Valuables from Waste Copper Smelting Slag

    NASA Astrophysics Data System (ADS)

    Prince, Sarfo; Young, Jamie; Ma, Guojun; Young, Courtney

    Silicate slags produced from smelting copper concentrates contains valuables such as Cu and Fe as well as heavy metals such as Pb and As which are considered hazardous. In this paper, various slags were characterized with several techniques: SEM-MLA, XRD, TG-DTA and ICP-MS. A recovery process was developed to separate the valuables from the silicates thereby producing value-added products and simultaneously reducing environmental concerns. Results show that the major phases in air-cooled slag are fayalite and magnetite whereas the water-cooled slag is amorphous. Thermodynamic calculations and carbothermal reduction experiments indicate that most of Cu and Fe can be recovered from both types using minor amounts of lime and alumina and treating at 1350°C (1623K) or higher for 30 min. The secondary slag can be recycled to the glass and/or ceramic industries.

  11. Regional Sediment Management (RSM) Modeling Tools: Integration of Advanced Sediment Transport Tools into HEC-RAS

    DTIC Science & Technology

    2014-06-01

    Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment

  12. Patient-Centered Tools for Medication Information Search

    PubMed Central

    Wilcox, Lauren; Feiner, Steven; Elhadad, Noémie; Vawdrey, David; Tran, Tran H.

    2016-01-01

    Recent research focused on online health information seeking highlights a heavy reliance on general-purpose search engines. However, current general-purpose search interfaces do not necessarily provide adequate support for non-experts in identifying suitable sources of health information. Popular search engines have recently introduced search tools in their user interfaces for a range of topics. In this work, we explore how such tools can support non-expert, patient-centered health information search. Scoping the current work to medication-related search, we report on findings from a formative study focused on the design of patient-centered, medication-information search tools. Our study included qualitative interviews with patients, family members, and domain experts, as well as observations of their use of Remedy, a technology probe embodying a set of search tools. Post-operative cardiothoracic surgery patients and their visiting family members used the tools to find information about their hospital medications and were interviewed before and after their use. Domain experts conducted similar search tasks and provided qualitative feedback on their preferences and recommendations for designing these tools. Findings from our study suggest the importance of four valuation principles underlying our tools: credibility, readability, consumer perspective, and topical relevance. PMID:28163972

  13. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  14. Challenges Facing Design and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)

    2001-01-01

    The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools

  15. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  16. Advances in yeast genome engineering.

    PubMed

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  17. Reverse engineering of legacy agricultural phenology modeling system

    USDA-ARS?s Scientific Manuscript database

    A program which implements predictive phenology modeling is a valuable tool for growers and scientists. Such a program was created in the late 1980's by the creators of general phenology modeling as proof of their techniques. However, this first program could not continue to meet the needs of the fi...

  18. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  19. OptFlux: an open-source software platform for in silico metabolic engineering.

    PubMed

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization

  20. OptFlux: an open-source software platform for in silico metabolic engineering

    PubMed Central

    2010-01-01

    Background Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. Conclusions The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from

  1. Systematic Propulsion Optimization Tools (SPOT)

    NASA Technical Reports Server (NTRS)

    Bower, Mark; Celestian, John

    1992-01-01

    This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.

  2. Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis.

    PubMed

    English, Andrew; Azeem, Ayesha; Spanoudes, Kyriakos; Jones, Eleanor; Tripathi, Bhawana; Basu, Nandita; McNamara, Karrina; Tofail, Syed A M; Rooney, Niall; Riley, Graham; O'Riordan, Alan; Cross, Graham; Hutmacher, Dietmar; Biggs, Manus; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-11-01

    Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these

  3. The microbiome as engineering tool: Manufacturing and trading between microorganisms.

    PubMed

    De Vrieze, Jo; Christiaens, Marlies E R; Verstraete, Willy

    2017-10-25

    The integration of microbial technologies within the framework of the water-energy nexus has been taking place for over a century, but these mixed microbial communities are considered hard to deal with 'black boxes'. Process steering is mainly based on avoiding process failure by monitoring conventional parameters, e.g., pH and temperature, which often leads to operation far below the intrinsic potential. Mixed microbial communities do not reflect a randomised individual mix, but an interacting microbiological entity. Advance monitoring to obtain effective engineering of the microbiome is achievable, and even crucial to obtain the desired performance and products. This can be achieved via a top-down or bottom-up approach. The top-down strategy is reflected in the microbial resource management concept that considers the microbial community as a well-structured network. This network can be monitored by means of molecular techniques that will allow the development of accurate and quick decision tools. In contrast, the bottom-up approach makes use of synthetic cultures that can be composed starting from defined axenic cultures, based on the requirements of the process under consideration. The success of both approaches depends on real-time monitoring and control. Of particular importance is the necessity to identify and characterise the key players in the process. These key players not only relate with the establishment of functional conversions, but also with the interaction between partner bacteria. This emphasises the importance of molecular (screening) techniques to obtain structural and functional insights, minimise energy input, and maximise product output by means of integrated microbiome processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Web Feet Guide to Search Engines: Finding It on the Net.

    ERIC Educational Resources Information Center

    Web Feet, 2001

    2001-01-01

    This guide to search engines for the World Wide Web discusses selecting the right search engine; interpreting search results; major search engines; online tutorials and guides; search engines for kids; specialized search tools for various subjects; and other specialized engines and gateways. (LRW)

  5. Engineering Education for a New Era

    NASA Astrophysics Data System (ADS)

    Ohgaki, Shinichiro

    Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.

  6. Myths and realities: Defining re-engineering for a large organization

    NASA Technical Reports Server (NTRS)

    Yin, Sandra; Mccreary, Julia

    1992-01-01

    This paper describes the background and results of three studies concerning software reverse engineering, re-engineering, and reuse (R3) hosted by the Internal Revenue Service in 1991 and 1992. The situation at the Internal Revenue--aging, piecemeal computer systems and outdated technology maintained by a large staff--is familiar to many institutions, especially among management information systems. The IRS is distinctive for the sheer magnitude and diversity of its problems; the country's tax records are processed using assembly language and COBOL and spread across tape and network DBMS files. How do we proceed with replacing legacy systems? The three software re-engineering studies looked at methods, CASE tool support, and performed a prototype project using re-engineering methods and tools. During the course of these projects, we discovered critical issues broader than the mechanical definitions of methods and tool technology.

  7. GRASP/Ada 95: Reverse Engineering Tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1996-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for

  8. Reverse engineering of integrated circuits

    DOEpatents

    Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.

    2003-01-01

    Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.

  9. Application of high-resolution melting analysis for authenticity testing of valuable Dendrobium commercial products.

    PubMed

    Dong, Xiaoman; Jiang, Chao; Yuan, Yuan; Peng, Daiyin; Luo, Yuqin; Zhao, Yuyang; Huang, Luqi

    2018-01-01

    The accurate identification of botanical origin in commercial products is important to ensure food authenticity and safety for consumers. The Dendrobium species have long been commercialised as functional food supplements and herbal medicines in Asia. Three valuable Dendrobium species, namely Dendrobium officinale, D. huoshanense and D. moniliforme, are often mutually adulterated in trade products in pursuit of higher profit. In this paper, a rapid and reliable semi-quantitative method for identifying the botanical origin of Dendrobium products in terminal markets was developed using high-resolution melting (HRM) analysis with specific primer pairs to target the trnL-F region. The HRM analysis method detected amounts of D. moniliforme adulterants as low as 1% in D. huoshanense or D. officinale products. The results have demonstrated that HRM analysis is a fast and effective tool for the differentiation of these Dendrobium species both for their authenticity as well as for the semi-quantitative determination of the purity of their processed products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Infrared Thermal Imaging as a Tool in University Physics Education

    ERIC Educational Resources Information Center

    Mollmann, Klaus-Peter; Vollmer, Michael

    2007-01-01

    Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…

  11. The Culture Audit: A Leadership Tool for Assessment and Strategic Planning in Diverse Schools and Colleges

    ERIC Educational Resources Information Center

    Bustamante, Rebecca M.

    2006-01-01

    This module is designed to introduce educational leaders to an organizational assessment tool called a "culture audit." Literature on organizational cultural competence suggests that culture audits are a valuable tool for determining how well school policies, programs, and practices respond to the needs of diverse groups and prepare…

  12. LTPP Climate Tool [Tech Brief

    DOT National Transportation Integrated Search

    2017-01-01

    This Product Brief describes the Long-Term Pavement Performance (LTPP) Climate Tool (intended for use by infrastructure engineers) that provides convenient access to the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective An...

  13. Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool

    ERIC Educational Resources Information Center

    Thomas, Gary; Darayan, Shahryar

    2018-01-01

    Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…

  14. Microfluidic tools toward industrial biotechnology.

    PubMed

    Oliveira, Aline F; Pessoa, Amanda C S N; Bastos, Reinaldo G; de la Torre, Lucimara G

    2016-11-01

    Microfluidics is a technology that operates with small amounts of fluids and makes possible the investigation of cells, enzymes, and biomolecules and encapsulation of biocatalysts in a greater variety of conditions than permitted using conventional methods. This review discusses technological possibilities that can be applied in the field of industrial biotechnology, presenting the principal definitions and fundamental aspects of microfluidic parameters to better understand advanced approaches. Specifically, concentration gradient generators, droplet-based microfluidics, and microbioreactors are explored as useful tools that can contribute to industrial biotechnology. These tools present potential applications, inclusive as commercial platforms to optimizing in bioprocesses development as screening cells, encapsulating biocatalysts, and determining critical kinetic parameters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1372-1389, 2016. © 2016 American Institute of Chemical Engineers.

  15. Practical Education Support to Foster Engineers at Manufacturing and Engineering Design Center in Muroran Institute of Technology

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki

    To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.

  16. Know-how and know-why in biochemical engineering.

    PubMed

    von Stockar, U; Valentinotti, S; Marison, I; Cannizzaro, C; Herwig, C

    2003-08-01

    This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.

  17. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models.

    PubMed

    Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris

    2017-01-01

    The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.

  18. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2015-01-01

    Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  19. A modeling tool to support decision making in future hydropower development in Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Hermansen, C.; Cerda, J. P.; Olivares, M. A.; Gomez, T. I.; Toha, E.; Poblete, D.; Mao, L.; Falvey, M. J.; Pliscoff, P.; Melo, O.; Lacy, S.; Peredo, M.; Marquet, P. A.; Maturana, J.; Gironas, J. A.

    2017-12-01

    Modeling tools support planning by providing transparent means to assess the outcome of natural resources management alternatives within technical frameworks in the presence of conflicting objectives. Such tools, when employed to model different scenarios, complement discussion in a policy-making context. Examples of practical use of this type of tool exist, such as the Canadian public forest management, but are not common, especially in the context of developing countries. We present a tool to support the selection from a portfolio of potential future hydropower projects in Chile. This tool, developed by a large team of researchers under the guidance of the Chilean Energy Ministry, is especially relevant in the context of evident regionalism, skepticism and change in societal values in a country that has achieved a sustained growth alongside increased demands from society. The tool operates at a scale of a river reach, between 1-5 km long, on a domain that can be defined according to the scale needs of the related discussion, and its application can vary from river basins to regions or other spatial configurations that may be of interest. The tool addresses both available hydropower potential and the existence (inferred or observed) of other ecological, social, cultural and productive characteristics of the territory which are valuable to society, and provides a means to evaluate their interaction. The occurrence of each of these other valuable characteristics in the territory is measured by generating a presence-density score for each. Considering the level of constraint each characteristic imposes on hydropower development, they are weighted against each other and an aggregate score is computed. With this information, optimal trade-offs are computed between additional hydropower capacity and valuable local characteristics over the entire domain, using the classical knapsack 0-1 optimization algorithm. Various scenarios of different weightings and hydropower

  20. Tools for Observation: Art and the Scientific Process

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Coryell-Martin, M.; Maisch, K.

    2015-12-01

    Art can support the scientific process during different phases of a scientific discovery. Art can help explain and extend the scientific concepts for the general public; in this way art is a powerful tool for communication. Art can aid the scientist in processing and interpreting the data towards an understanding of the concepts and processes; in this way art is powerful - if often subconscious - tool to inform the process of discovery. Less often acknowledged, art can help engage students and inspire scientists during the initial development of ideas, observations, and questions; in this way art is a powerful tool to develop scientific questions and hypotheses. When we use art as a tool for communication of scientific discoveries, it helps break down barriers and makes science concepts less intimidating and more accessible and understandable for the learner. Scientists themselves use artistic concepts and processes - directly or indirectly - to help deepen their understanding. Teachers are following suit by using art more to stimulate students' creative thinking and problem solving. We show the value of teaching students to use the artistic "way of seeing" to develop their skills in observation, questioning, and critical thinking. In this way, art can be a powerful tool to engage students (from elementary to graduate) in the beginning phase of a scientific discovery, which is catalyzed by inquiry and curiosity. Through qualitative assessment of the Girls on Ice program, we show that many of the specific techniques taught by art teachers are valuable for science students to develop their observation skills. In particular, the concepts of contour drawing, squinting, gesture drawing, inverted drawing, and others can provide valuable training for student scientists. These art techniques encourage students to let go of preconceptions and "see" the world (the "data") in new ways they help students focus on both large-scale patterns and small-scale details.

  1. Sensors As Tools for Quantitation, Nanotoxicity and Nanomonitoring Assessment of Engineered Nanomaterials

    EPA Science Inventory

    The discovery of fullerenes in 1985 has ushered in an explosive growth in the applications of engineered nanomaterials and consumer products. Nanotechnology and engineered nanomaterials (ENMs) are being incorporated into a range of commercial products such as consumer electronic...

  2. Voss with soldering tool in Service Module

    NASA Image and Video Library

    2001-03-28

    ISS002-E-5068 (28 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, prepares to use a soldering tool for a maintenance task in the Zvezda Service Module onboard the International Space Station (ISS). Astronaut Susan J. Helms, flight engineer, is in the background. The image was recorded with a digital still camera.

  3. Per-operative vibration analysis: a valuable tool for defining correct stem insertion: preliminary report.

    PubMed

    Mulier, Michiel; Pastrav, Cesar; Van der Perre, Georges

    2008-01-01

    Defining the stem insertion end point during total hip replacement still relies on the surgeon's feeling. When a custom-made stem prosthesis with an optimal fit into the femoral canal is used, the risk of per-operative fractures is even greater than with standard prostheses. Vibration analysis is used in other clinical settings and has been tested as a means to detect optimal stem insertion in the laboratory. The first per-operative use of vibration analysis during non-cemented custom-made stem insertion in 30 patients is reported here. Thirty patients eligible for total hip replacement with uncemented stem prosthesis were included. The neck of the stem was connected with a shaker that emitted white noise as excitation signal and an impedance head that measured the frequency response. The response signal was sent to a computer that analyzed the frequency response function after each insertion phase. A technician present in the operating theatre but outside the laminated airflow provided feed-back to the surgeon. The correlation index between the frequency response function measured during the last two insertion hammering sessions was >0.99 in 86.7% of the cases. In four cases the surgeon stopped the insertion procedure because of a perceived risk of fracture. Two special cases illustrating the potential benefit of per-operative vibration analysis are described. The results of intra-operative vibration analysis indicate that this technique may be a useful tool assisting the orthopaedic surgeon in defining the insertion endpoint of the stem. The development of a more user-friendly device is therefore warranted.

  4. Engineering Encounters: Can a Student Really Do What Engineers Do?

    ERIC Educational Resources Information Center

    Brown, Sherri; Newman, Channa; Dearing-Smith, Kelley; Smith, Stephanie

    2014-01-01

    "Framework for K-12 Science Education" states that "children are natural engineers … they spontaneously build sand castles, dollhouses, and hamster enclosures and use a variety of tools and materials for their own playful purposes" (NRC 2012, p. 70). The "Next Generation Science Standards" ("NGSS") also…

  5. λ5-Phosphorus-Containing α-Diazo Compounds: A Valuable Tool for Accessing Phosphorus-Functionalized Molecules.

    PubMed

    Marinozzi, Maura; Pertusati, Fabrizio; Serpi, Michaela

    2016-11-23

    The compounds characterized by the presence of a λ 5 -phosphorus functionality at the α-position with respect to the diazo moiety, here referred to as λ 5 -phosphorus-containing α-diazo compounds (PCDCs), represent a vast class of extremely versatile reagents in organic chemistry and are particularly useful in the preparation of phosphonate- and phosphinoxide-functionalized molecules. Indeed, thanks to the high reactivity of the diazo moiety, PCDCs can be induced to undergo a wide variety of chemical transformations. Among them are carbon-hydrogen, as well as heteroatom-hydrogen insertion reactions, cyclopropanation, ylide formation, Wolff rearrangement, and cycloaddition reactions. PCDCs can be easily prepared from readily accessible precursors by a variety of different methods, such as diazotization, Bamford-Stevens-type elimination, and diazo transfer reactions. This evidence along with their relative stability and manageability make them appealing tools in organic synthesis. This Review aims to demonstrate the ongoing utility of PCDCs in the modern preparation of different classes of phosphorus-containing compounds, phosphonates, in particular. Furthermore, to address the lack of precedent collective papers, this Review also summarizes the methods for PCDCs preparation.

  6. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    PubMed

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mason Bee Habitations: Teaching Proper "Making" Skill through Authentic Engineering Design Contests. Resources in Technology and Engineering

    ERIC Educational Resources Information Center

    Cool, Nate; Strimel, Greg J.; Croly, Michael; Grubbs, Michael E.

    2017-01-01

    To be technologically and engineering literate, people should be able to "make" or produce quality solutions to engineering design challenges while recognizing and understanding how to avoid hazards in a broad array of situations when properly using tools, machines, and materials (Haynie, 2009; Gunter, 2007; ITEA/ITEEA, 2000/2002/2007).…

  8. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures.

    PubMed

    Kohlmann, Rebekka; Hoffmann, Alexander; Geis, Gabriele; Gatermann, Sören

    2015-01-01

    approach allowed an optimized treatment recommendation. MALDI-TOF MS following 4h pre-culture is a valuable tool for rapid pathogen identification from positive blood cultures, allowing easy integration in diagnostic routine and the opportunity of considerably earlier treatment adaptation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Encouraging the learning of hydraulic engineering subjects in agricultural engineering schools

    NASA Astrophysics Data System (ADS)

    Rodríguez Sinobas, Leonor; Sánchez Calvo, Raúl

    2014-09-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of 'online' and web tools in two undergraduate courses. Results from their application to encourage learning and communication skills in Hydraulic Engineering subjects are analysed and compared to the initial situation. Student's academic performance has improved since their application, but surveys made among students showed that not all the methodological proposals were perceived as beneficial. Their participation in the 'online', classroom and reading activities was low although they were well assessed.

  10. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    PubMed Central

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  11. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    PubMed

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  12. Advanced engineering environment pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solutionmore » to deploy the AEE across the NWC.« less

  13. Interactive Media and Simulation Tools for Technical Training

    NASA Technical Reports Server (NTRS)

    Gramoll, Kurt

    1997-01-01

    Over the last several years, integration of multiple media sources into a single information system has been rapidly developing. It has been found that when sound, graphics, text, animations, and simulations are skillfully integrated, the sum of the parts exceeds the individual parts for effective learning. In addition, simulations can be used to design and understand complex engineering processes. With the recent introduction of many high-level authoring, animation, modeling, and rendering programs for personal computers, significant multimedia programs can be developed by practicing engineers, scientists and even managers for both training and education. However, even with these new tools, a considerable amount of time is required to produce an interactive multimedia program. The development of both CD-ROM and Web-based programs are discussed in addition to the use of technically oriented animations. Also examined are various multimedia development tools and how they are used to develop effective engineering education courseware. Demonstrations of actual programs in engineering mechanics are shown.

  14. Search engine as a diagnostic tool in difficult immunological and allergologic cases: is Google useful?

    PubMed

    Lombardi, C; Griffiths, E; McLeod, B; Caviglia, A; Penagos, M

    2009-07-01

    Web search engines are an important tool in communication and diffusion of knowledge. Among these, Google appears to be the most popular one: in August 2008, it accounted for 87% of all web searches in the UK, compared with Yahoo's 3.3%. Google's value as a diagnostic guide in general medicine was recently reported. The aim of this comparative cross-sectional study was to evaluate whether searching Google with disease-related terms was effective in the identification and diagnosis of complex immunological and allergic cases. Forty-five case reports were randomly selected by an independent observer from peer-reviewed medical journals. Clinical data were presented separately to three investigators, blinded to the final diagnoses. Investigator A was a Consultant with an expert knowledge in Internal Medicine and Allergy (IM&A) and basic computing skills. Investigator B was a Registrar in IM&A. Investigator C was a Research Nurse. Both Investigators B and C were familiar with computers and search engines. For every clinical case presented, each investigator independently carried out an Internet search using Google to provide a final diagnosis. Their results were then compared with the published diagnoses. Correct diagnoses were provided in 30/45 (66%) cases, 39/45 (86%) cases, and in 29/45 (64%) cases by investigator A, B, and C, respectively. All of the three investigators achieved the correct diagnosis in 19 cases (42%), and all of them failed in two cases. This Google-based search was useful to identify an appropriate diagnosis in complex immunological and allergic cases. Computing skills may help to get better results.

  15. 40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...

  16. 40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...

  17. 40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...

  18. 40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...

  19. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  20. ERTS program of the US Army Corps of Engineers. [water resources

    NASA Technical Reports Server (NTRS)

    Jarman, J. W.

    1974-01-01

    The Army Corps of Engineers research and development efforts associated with the ERTS Program are confined to applications of investigation, design, construction, operation, and maintenance of water resource projects. Problems investigated covered: (1) resource inventory; (2) environmental impact; (3) pollution monitoring; (4) water circulation; (5) sediment transport; (6) data collection systems; (7) engineering; and (8) model verification. These problem areas were investigated in relation to bays, reservoirs, lakes, rivers, coasts, and regions. ERTS-1 imagery has been extremely valuable in developing techniques and is now being used in everyday applications.

  1. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  2. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  3. The Principles of Engineering Immune Cells to Treat Cancer

    PubMed Central

    Lim, Wendell A.; June, Carl H.

    2017-01-01

    Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics. PMID:28187291

  4. Content Analysis in Systems Engineering Acquisition Activities

    DTIC Science & Technology

    2016-04-30

    Acquisition Activities Karen Holness, Assistant Professor, NPS Update on the Department of the Navy Systems Engineering Career Competency Model Clifford...systems engineering toolkit . Having a common analysis tool that is easy to use would support the feedback of observed system performance trends from the

  5. Taming the Information Jungle with WWW Search Engines.

    ERIC Educational Resources Information Center

    Repman, Judi; And Others

    1997-01-01

    Because searching the Web with different engines often produces different results, the best strategy is to learn how each engine works. Discusses comparing search engines; qualities to consider (ease of use, relevance of hits, and speed); and six of the most popular search tools (Yahoo, Magellan. InfoSeek, Alta Vista, Lycos, and Excite). Lists…

  6. The production of audiovisual teaching tools in minimally invasive surgery.

    PubMed

    Tolerton, Sarah K; Hugh, Thomas J; Cosman, Peter H

    2012-01-01

    Audiovisual learning resources have become valuable adjuncts to formal teaching in surgical training. This report discusses the process and challenges of preparing an audiovisual teaching tool for laparoscopic cholecystectomy. The relative value in surgical education and training, for both the creator and viewer are addressed. This audiovisual teaching resource was prepared as part of the Master of Surgery program at the University of Sydney, Australia. The different methods of video production used to create operative teaching tools are discussed. Collating and editing material for an audiovisual teaching resource can be a time-consuming and technically challenging process. However, quality learning resources can now be produced even with limited prior video editing experience. With minimal cost and suitable guidance to ensure clinically relevant content, most surgeons should be able to produce short, high-quality education videos of both open and minimally invasive surgery. Despite the challenges faced during production of audiovisual teaching tools, these resources are now relatively easy to produce using readily available software. These resources are particularly attractive to surgical trainees when real time operative footage is used. They serve as valuable adjuncts to formal teaching, particularly in the setting of minimally invasive surgery. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  7. Desmopressin test during petrosal sinus sampling: a valuable tool to discriminate pituitary or ectopic ACTH-dependent Cushing's syndrome.

    PubMed

    Castinetti, F; Morange, I; Dufour, H; Jaquet, P; Conte-Devolx, B; Girard, N; Brue, T

    2007-09-01

    Corticotropin-releasing hormone (CRH)-stimulated petrosal sinus sampling is currently the gold standard method for the differential diagnosis between pituitary and ectopic ACTH-dependent Cushing's syndrome. Our objective was to determine sensitivity and specificity of desmopressin test during petrosal sinus sampling. Forty-three patients had petrosal sinus sampling because of the lack of visible adenoma on magnetic resonance imaging (MRI) and/or because of discordant cortisol response to high-dose dexamethasone suppression test. ACTH sampling was performed in an antecubital vein, right and left petrosal sinuses, then at each location 5 and 10 min after injection of desmopressin. Diagnosis was based on the ACTH ratio between petrosal sinus and humeral vein ACTH after desmopressin test. Diagnosis was confirmed after surgery. A receiver operating characteristics curve was used to determine optimal sensitivity and specificity. Thirty-six patients had Cushing's disease (CD) and seven had ectopic ACTH secretion. A ratio > 2 after desmopressin was found in 35 of the 36 cases of CD (sensitivity: 95%). A ratio < or = 2 was found in the seven patients with ectopic ACTH secretion (specificity: 100%). Sinus sampling was ineffective in determining the left or right localization of the adenoma (sensitivity = 50%). No major adverse effects were observed during or after the procedure. Desmopressin test during petrosal sinus sampling is a safe and effective diagnostic procedure in ACTH-dependent Cushing's syndrome. It thus represents a valuable alternative to CRH.

  8. RDD-100 and the systems engineering process

    NASA Technical Reports Server (NTRS)

    Averill, Robert D.

    1994-01-01

    An effective systems engineering approach applied through the project life cycle can help Langley produce a better product. This paper demonstrates how an enhanced systems engineering process for in-house flight projects assures that each system will achieve its goals with quality performance and within planned budgets and schedules. This paper also describes how the systems engineering process can be used in combination with available software tools.

  9. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  10. Macromedia Flash as a Tool for Mathematics Teaching and Learning

    ERIC Educational Resources Information Center

    Garofalo, Joe; Summers, Tim

    2004-01-01

    Macromedia Flash is a powerful and robust development tool. Because of its graphical, sound, and animation capabilities (and ubiquitous browser plug-in), major companies employ it in their website development (see www.nike.com or www.espn.com). These same features also make Flash a valuable environment for building multi-representational "movies"…

  11. Cooperative Engineering as a Joint Action

    ERIC Educational Resources Information Center

    Joffredo-Le Brun, Sophie; Morellato, Mireille; Sensevy, Gérard; Quilio, Serge

    2018-01-01

    This paper describes some elements of a specific kind of design-based research, cooperative engineering. In the first part of the paper, we argue that cooperative engineering can be analyzed through a joint action framework. We first present some conceptual tools that the Joint Action Theory in Didactics proposes in order to understand didactic…

  12. DIC-CAM recipe for reverse engineering

    NASA Astrophysics Data System (ADS)

    Romero-Carrillo, P.; Lopez-Alba, E.; Dorado, R.; Diaz-Garrido, F. A.

    2012-04-01

    Reverse engineering (RE) tries to model and manufacture an object from measurements one of a reference object. Modern optical measurement systems and computer aided engineering software have improved reverse engineering procedures. We detail the main RE steps from 3D digitalization by Digital Image Correlation to manufacturing. The previous description is complemented with an application example, which portrays the performance of RE. The differences between original and manufactured objects are less than 2 mm (close to the tool radius).

  13. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  14. Advances and Computational Tools towards Predictable Design in Biological Engineering

    PubMed Central

    2014-01-01

    The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated. PMID:25161694

  15. Application of Statistics in Engineering Technology Programs

    ERIC Educational Resources Information Center

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  16. State analysis requirements database for engineering complex embedded systems

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  17. Systems Engineering Awareness

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2016-01-01

    The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..

  18. Transporter engineering in biomass utilization by yeast.

    PubMed

    Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko

    2017-11-01

    Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  20. Innovation Development--An Action Learning Programme for Medical Scientists and Engineers

    ERIC Educational Resources Information Center

    Beniston, Lee; Ellwood, Paul; Gold, Jeff; Roberts, James; Thorpe, Richard

    2014-01-01

    There is increasing evidence that action learning is valuable in a higher education setting. This paper goes on to report a personal development programme, based on principles of critical action learning, where the aim is to equip early-career scientists and engineers working in a university setting with the knowledge, skills and confidence to…