Sample records for values characterize soil

  1. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  2. Characterization of nicosulfuron availability in aged soils.

    PubMed

    Regitano, Jussara B; Koskinen, William C

    2008-07-23

    Sorption-desorption interactions of pesticides with soil determine their availability for transport, plant uptake, and microbial degradation. These interactions are affected by the physical-chemical properties of the pesticide and soil, and for some pesticides, their residence time in the soil. This research evaluated changes in sorption/availability of nicosulfuron (2-[[[[(4,6-dimethoxy-2-pyrimidinyl]amino]carbonyl]amino]sulfonyl]-N,N-dimethyl-3-pyridinecarboxamide) herbicide with aging in different soils, using a radiolabeled ((14)C) tracer. Aging significantly increased sorption. For instance, after the 41-day incubation, calculated K d,app increased by a factor of 2 to 3 in Mollisols from the Midwestern United States and by a factor of 5 to 9 in Oxisols from Brazil and Hawaii, as compared to freshly treated soils. In view of this outcome, potential transport of nicosulfuron would be overpredicted if freshly treated soil K d values were used to predict transport. The fact that the nicosulfuron solution concentration decreased faster than the soil concentration with time suggested that the increase in sorption was because the rate of degradation in solution and on labile sites was faster than the rate of desorption of the neutral species from the soil particles. It may have also been due to nicosulfuron anion diffusion to less accessible sites with time, leaving the more strongly bound neutral molecules for the sorption characterization. Regardless of the mechanism, these results are further evidence that increases in sorption during pesticide aging should be taken into account during the characterization of the sorption process for mathematical models of pesticide degradation and transport.

  3. Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: An analysis.

    PubMed

    Li, Zijian

    2018-01-01

    Regulations for pesticides in soil are important for controlling human health risk; humans can be exposed to pesticides by ingesting soil, inhaling soil dust, and through dermal contact. Previous studies focused on analyses of numerical standard values for pesticides and evaluated the same pesticide using different standards among different jurisdictions. To understand the health consequences associated with pesticide soil standard values, lifetime theoretical maximum contribution and risk characterization factors were used in this study to quantify the severity of damage using disability-adjusted life years (DALYs) under the maximum "legal" exposure to persistent organic pollutant (POP) pesticides that are commonly regulated by the Stockholm Convention. Results show that computed soil characterization factors for some pesticides present lognormal distributions, and some of them have DALY values higher than 1000.0 per million population (e.g., the DALY for dichlorodiphenyltrichloroethane [DDT] is 14,065 in the Netherlands, which exceeds the tolerable risk of uncertainty upper bound of 1380.0 DALYs). Health risk characterization factors computed from national jurisdictions illustrate that values can vary over eight orders of magnitude. Further, the computed characterization factors can vary over four orders of magnitude within the same national jurisdiction. These data indicate that there is little agreement regarding pesticide soil regulatory guidance values (RGVs) among worldwide national jurisdictions or even RGV standard values within the same jurisdiction. Among these POP pesticides, lindane has the lowest median (0.16 DALYs) and geometric mean (0.28 DALYs) risk characterization factors, indicating that worldwide national jurisdictions provide relatively conservative soil RGVs for lindane. In addition, we found that some European nations and members of the former Union of Soviet Socialist Republics share the same pesticide RGVs and data clusters for the

  4. Linking soil systems to societal value systems

    NASA Astrophysics Data System (ADS)

    Helming, Katharina; Daedlow, Katrin; Techen, Anja; Kaiser, David Brian

    2017-04-01

    Sustainable management of soils is needed to avoid soil degradation and to maintain soil functions. This requires the assessment of how human activities drive soil management, how soil management affect soil functions and soil degradation, which trade-offs occur and how they compromise sustainable development targets. In the frame of the German research programme "Soils as a sustainable resource for the bio-economy - BonaRes", we developed an enhanced approach of the DPSIR (driver-pressure-state-impact-response) cycle which helps to assess these interrelations. Because not all soil functions can be maximized simultaneously in space and time and trade-offs are inevitable, it depends on the societal value system to decide which management practices and respective soil functional performances are valued sustainably. We analysed the applicability of three valuation concepts being prominent in research about social-ecological systems, namely resource efficiency, ecosystem services, and ethics and equity. The concept of resource efficiency is based in the life-cycle thinking and is often applied at the level of the farming systems and in the context of bio-economy strategies. It covers the use of natural (water, energy, nutrients, land) and economic resources. At the landscape level, the concept of ecosystem services is prominent. Here, the contribution of soils to the provisioning, regulating and cultural services of the natural ecosystems is considered. Ethical considerations include the intrinsic values of nature as well as issues of local and global equity between different societal groups, generations, and localities. The three concepts cover different problem dimensions and complexity levels of soil management and decision making. Alone, none of them are capable to discover complex questions of sustainable soil management and development. Rather, the exact spatial and temporal framing of the sustainability problem at stake determines which combination of the value

  5. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties.

    PubMed

    Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C

    2018-02-01

    Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Vital Soil: Function, Value and Properties.

    USDA-ARS?s Scientific Manuscript database

    This article is a review of the book, Vital Soil: Function, Value and Properties. Soil vitality has been defined as the ability of soil ecosystems to stay in balance in a changing world. The soil environment and the life that it supports developed over centuries and millennia, but careless human ac...

  7. Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Patchen, Allan; Taylor, Dong-Hwa S.; Pieters, Carle; Morris, Richard V.; Keller, Lindsay P.; McKay, David S.

    2010-01-01

    With reflectance spectroscopy, one is measuring only properties of the fine-grained regolith, most affected by space weathering. The Lunar Soil Characterization Consortium has undertaken the task of coordinated characterization of lunar soils, with respect to their mineralogical and chemical makeup. It is these lunar soils that are being used as "ground-truth" for all air30 less bodies. Modal abundances and chemistries of minerals and glasses in the finest size fractions (20-45, 10-20, and <10 microns) of four Apollo 14 and six Apollo 16 highland soils have been determined, as well as their bulk chemistry and IS/FeO values. Bi-directional reflectance measurements (0.3-2.6 microns) of all samples were performed in the RELAB. A significant fraction of nanophase Fe(sup 0) (np-Fe(sup 0)) appears to reside in agglutinitic glasses. However, as grain size of a soil decreases, the percentage of total iron present as np-Fe0 increases significantly, whereas the agglutinitic glass content rises only slightly; this is evidence for a large contribution to the IS/FeO values from the surface-correlated nanophase Fe(sup 0), particularly in the <10 micron size fraction. The compositions of the agglutinitic glasses in these fine fractions of the highland soils are different from the bulk-chemistry of that size; however, compositional trends of the glasses are not the same as those observed for mare soils. It is apparent that the glasses in the highland soils contain chemical components from outside their terrains. It is proposed that the Apollo 16 soils have been adulterated by the addition of impact-transported soil components from surrounding maria.

  8. Characterization of soils containing adipocere.

    PubMed

    Fiedler, S; Schneckenberger, K; Graw, M

    2004-11-01

    The formation of adipocere (commonly known as grave wax), a spontaneous inhibition of postmortem changes, has been extensively analyzed in forensic science. However, soils in which adipocere formation occurs have never been described in detail. Therefore, this study is intended as a first step in the characterization of soils containing adipocere. Two grave soils (Gleyic Anthrosols) that prevent the timely reuse of graves due to the occurrence of adipocere and a control soil (Gleyic Luvisol) were selected from a cemetery in the Central Black Forest (Southwest Germany). Descriptions of soil morphology and a wide assay of physical, chemical, and microbiologic soil characteristics were accomplished. In contrast to the control soil, the grave soils were characterized by lower bulk density and pH. The degradation of the soil structure caused by digging led to a higher water table and the expansion of the reducing conditions in the graves where the prevalent absence of oxygen in range of the coffins inhibited decomposition processes. Although the formation of adipocere led to the conservation of the buried corpses, phosphorus, dissolved organic carbon, and cadavarine leaching from the graves was observed. Microbial biomass and microbial activity were higher in the control soil and hence reflected the inert character of adipocere. The study results clearly show the need for additional approaches in forensic, pedologic, and microbiologic research.

  9. Effects of long-term soil and crop management on soil hydraulic properties for claypan soils

    USDA-ARS?s Scientific Manuscript database

    Regional and national soil maps have been developed along with associated soil property databases to assist users in making land management decisions based on soil characteristics. These soil properties include average values from soil characterization for each soil series. In reality, these propert...

  10. Using USDA's National Cooperative Soil Survey Soil Characterization Data to detect soil change: A cautionary tale

    USDA-ARS?s Scientific Manuscript database

    Recently, the USDA-NRCS National Cooperative Soil Survey Soil Characterization Database (NSCD) was reported to provide evidence that total nitrogen (TN) stocks of agricultural soils have increased across the Mississippi basin since 1985. Unfortunately, due to omission of metadata from the NSCD, hist...

  11. Apollo 17 Soil Characterization for Reflectance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.; Pieters, C.; Patchen, A.; Morris, R. V.; Keller, L. P.; Wentworth, S.; McKay, D. S.

    1999-01-01

    It is the fine fractions that dominate the observed spectral signatures of bulk lunar soil, and the next to the smallest size fractions are the most similar to the overall properties of the bulk soil. Thus, our Lunar Soil Characterization Consortium has concentrated on understanding the inter-relations of compositional, mineralogical, and optical properties of the <45-micron size fraction and its component sizes (20-44 micron, 10-20 micron, and <10 micron size fractions). To be able to generalize our results beyond the particular sample set studied, it is necessary to quantitatively identify the observed effects of space weathering and evaluate the processes involved. For this, it is necessary to know the chemistry of each size fraction, modal abundances of each phase, average compositions of the minerals and glasses, I(sub s)/FeO values, reflectance spectra, and the physical makeup of the individual particles and their patinas. This characterization includes the important dissection of the pyroxene minerals into four separate populations, with data on both modes and average chemical compositions. Armed with such data, it should be possible to effectively isolate spectral effects of space weathering from spectral properties related to mineral and glass chemistry. Four mare soils from the Apollo 17 site were selected for characterization based upon similarities in bulk composition and their contrasting maturities, ranging from immature to submature to mature. The methodology of our characterization has been discussed previously. Results of the Apollo 17 mare soils, outlined herein, are being prepared for publication in MAPS. As shown, with decreasing grain size, the agglutinitic (impact) glass content profoundly increases. This is the most impressive change for the mare soils. In several soils we have examined, there is an over two-fold increase in the agglutinitic glass contents between the 90-150- micron and the 10-20-micron size fractions. Accompanying this

  12. Determination of Soil Moisture Content using Laboratory Experimental and Field Electrical Resistivity Values

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.

    2018-04-01

    The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.

  13. Loads Limits Values of Soils with Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dumitru, Mihail; Vladimirescu, Andreea

    2017-04-01

    The high demand for oil and associated products as a source of energy, resulting in increased oil exploitation, producing, refining, transportation, storage, marketing and use led to high levels of environmental pollution. The optimum bioremediation variant proved to be the one in which fertilizer (potassium humate in NPK matrix with microelements and 8% monosaccharides) applied in a 650 l/ha dose was used together with the Zeba absorbent in 32 kg/ha dose, where the TPH level dropped by 58% in 45 days from the pollution with 3% crude oil. Most of these areas are affected by historical pollution. Many organic contaminants may undergo an ongoing process in the soil, whereby over time contaminant become less and less subject to decomposition even though relatively can still be detected in the laboratory analyses. In Romania about 50.000 ha are polluted with oil and/or brine. The bioremediation was the main method of rehabilitation. The Regulation on the assessment of environmental pollution, the following are presented as guide values for total oil hydrocarbons content in soil: - normal: less than 100 mg/kg; - alert values for sensitive soils: 200 mg/kg; - alert values for less sensitive soils: 1000 mg/kg; - intervention values for sensitive soils: 500 mg/kg; - intervention values for less sensitive soils: 2000 mg/kg. Researches done in laboratory monitored the effect of various concentrations of oil (under 2000 mg/kg, 3000 mg/kg, 5000 mg/kg, 7000 mg/kg, 10 000 mg/kg) on germination of wheat seeds at 5 and 7 days after seeding and (fresh and dry) biomass production after 40 days. Tree experiments were done: one with recently contaminated light oil, one with recently contaminated heavy oil and one with old contamination. After 5 days from sowing, the largest number of germinated seeds was found in the experiments with old contamination. The fewest germinated seeds was found in the experience with light oil. The experience with heavy oil showed an intermediate number of

  14. Contribution for the Derivation of a Soil Screening Value (SSV) for Uranium, Using a Natural Reference Soil

    PubMed Central

    Caetano, Ana Luisa; Marques, Catarina R.; Gavina, Ana; Carvalho, Fernando; Gonçalves, Fernando; da Silva, Eduardo Ferreira; Pereira, Ruth

    2014-01-01

    In order to regulate the management of contaminated land, many countries have been deriving soil screening values (SSV). However, the ecotoxicological data available for uranium is still insufficient and incapable to generate SSVs for European soils. In this sense, and so as to make up for this shortcoming, a battery of ecotoxicological assays focusing on soil functions and organisms, and a wide range of endpoints was carried out, using a natural soil artificially spiked with uranium. In terrestrial ecotoxicology, it is widely recognized that soils have different properties that can influence the bioavailability and the toxicity of chemicals. In this context, SSVs derived for artificial soils or for other types of natural soils, may lead to unfeasible environmental risk assessment. Hence, the use of natural regional representative soils is of great importance in the derivation of SSVs. A Portuguese natural reference soil PTRS1, from a granitic region, was thereby applied as test substrate. This study allowed the determination of NOEC, LOEC, EC20 and EC50 values for uranium. Dehydrogenase and urease enzymes displayed the lowest values (34.9 and <134.5 mg U Kg, respectively). Eisenia andrei and Enchytraeus crypticus revealed to be more sensitive to uranium than Folsomia candida. EC50 values of 631.00, 518.65 and 851.64 mg U Kg were recorded for the three species, respectively. Concerning plants, only Lactuca sativa was affected by U at concentrations up to 1000 mg U kg1. The outcomes of the study may in part be constrained by physical and chemical characteristics of soils, hence contributing to the discrepancy between the toxicity data generated in this study and that available in the literature. Following the assessment factor method, a predicted no effect concentration (PNEC) value of 15.5 mg kg−1 dw was obtained for U. This PNEC value is proposed as a SSV for soils similar to the PTRS1. PMID:25353962

  15. 3D soil structure characterization of Biological Soil Crusts from Alpine Tarfala Valley

    NASA Astrophysics Data System (ADS)

    Mele, Giacomo; Gargiulo, Laura; Zucconi, Laura; D'Acqui, Luigi; Ventura, Stefano

    2017-04-01

    Cyanobacteria filaments, microfungal hyphae, lichen rhizinae and anchoring rhizoids of bryophytes all together contribute to induce formation of structure in the thin soil layer beneath the Biological Soil Crusts (BSCs). Quantitative assessment of the soil structure beneath the BSCs is primarily hindered by the fragile nature of the crusts. Therefore, the role of BSCs in affecting such soil physical property has been rarely addressed using direct measurements. In this work we applied non-destructive X-ray microtomography imaging on five different samples of BSCs collected in the Alpine Tarfala Valley (northern Sweden), which have already been characterized in terms of fungal biodiversity in a previous work. We obtained images of the 3D spatial organization of the soil underneath the BSCs and characterized its structure by applying procedures of image analysis allowing to determine pore size distribution, pore connectivity and aggregate size distribution. Results has then been correlated with the different fungal assemblages of the samples.

  16. Ecological risk assessment of agricultural soils for the definition of soil screening values: A comparison between substance-based and matrix-based approaches.

    PubMed

    Pivato, Alberto; Lavagnolo, Maria Cristina; Manachini, Barbara; Vanin, Stefano; Raga, Roberto; Beggio, Giovanni

    2017-04-01

    The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA) and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i) one based on the "substance-based" approach and (ii) a second based on the "matrix-based" approach. In the former the soil screening values (SVs) for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity. The results indicate that the "matrix-based" approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized "substance based" approach is (i) comparable in economic terms and in testing time, (ii) is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii) accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv) can be considered sufficiently conservative.

  17. Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.

    2017-12-01

    The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this

  18. Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils.

    PubMed

    Alves, Paulo Roger L; Natal-da-Luz, Tiago; Sousa, José Paulo; Cardoso, Elke J B N

    2015-09-01

    The impact of sugarcane vinasse on soil invertebrates was assessed through ecotoxicological assays. Increasing concentrations of two vinasses from different distillery plants (VA and VB), and a vinasse from a laboratory production (VC), were amended on two natural tropical Oxisols (LV and LVA) and a tropical artificial soil (TAS) to characterize the effects of the vinasses on earthworms (Eisenia andrei), enchytraeids (Enchytraeus crypticus), mites (Hypoaspis aculeifer) and collembolans (Folsomia candida). The highest concentrations of VA and VB were avoided by earthworms in all soils and by collembolans especially in the natural soils. The presence of VC in all of the tested soils did not cause avoidance behavior in these species. The reproduction of earthworms, enchytraeids and collembolans was decreased in the highest concentrations of VA and VB in the natural soils. In TAS, VB reduced the reproduction of all test species, whereas VA was toxic exclusively to E. andrei and E. crypticus. The vinasse VC only reduced the number of earthworms in TAS and enchytraeids in LVA. The reproduction of mites was reduced by VB in TAS. Vinasses from distillery plants were more toxic than the vinasse produced in laboratory. The vinasse toxicities were influenced by soil type, although this result was most likely because of the way the organisms are exposed to the contaminants in the soils. Toxicity was attributed to the vinasses' high salt content and especially the high potassium concentrations. Data obtained in this study highlights the potential risk of vinasse disposal on tropical soils to soil biota. The toxic values estimated are even more relevant when considering the usual continuous use of vinasses in crop productions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Energy value of soil organic matter and costs of its restoration

    NASA Astrophysics Data System (ADS)

    Kuczuk, Anna

    2017-10-01

    From the point of view of the sustainable soil management, the most important characteristic of soil organic matter (SOM) is associated with the energy content in it. This paper reports the results of an estimation of SOM resources and its energy value for the arable land in a selected farm. For this purpose, soil samples were taken in two fields from a soil depth profile of 30 cm. The testing regarding humus content were conducted at District Chemical and Agricultural Station in Opole. The study involved the assessment of organic matter content at a depth of 30 cm converted per 1 ha, energy value of the SOM resources and the theoretical energy potential was determined. In addition, an example of crop rotation was provided for the analyzed soils, which could be applicable in the process of restoring SOM resources. The cost of restoring the SOM resource was estimated and this value was compared with the energy value of fuel. The total cost of SOM restoration over the period of five years was equal to 3122.26-7845.86 PLN·ha-1 depending on the value of the lost revenue of commercial production, and simultaneously equal to the value of 6.2-16 Mg thermal coal.

  20. Spatial variability structure of soil CO2 emission and soil physical and chemical properties characterized by fractal dimension in sugarcane areas

    NASA Astrophysics Data System (ADS)

    Bicalho, E. S.; Teixeira, D. B.; Panosso, A. R.; Perillo, L. I.; Iamaguti, J. L.; Pereira, G. T.; La Scala, N., Jr.

    2012-04-01

    Soil CO2 emission (FCO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere, varying in time and space depending on environmental conditions, including the management of agricultural area. The aim of this study was to investigate the structure of spatial variability of FCO2 and soil properties by using fractal dimension (DF), derived from isotropic variograms at different scales, and construction of fractograms. The experimental area consisted of a regular grid of 60 × 60 m on sugarcane area under green management, containing 141 points spaced at minimum distances ranging from 0.5 to 10 m. Soil CO2 emission, soil temperature and soil moisture were evaluated over a period of 7 days, and soil chemical and physical properties were determined by sampling at a depth of 0.0 to 0.1 m. FCO2 showed an overall average of 1.51 µmol m-2 s-1, correlated significantly (p < 0.05) with soil physical factors such as soil bulk density, air-filled pore space, macroporosity and microporosity. Significant DF values were obtained in the characterization of FCO2 in medium and large scales (from 20 m). Variations in DF with the scale, which is the fractogram, indicate that the structure of FCO2 variability is similar to that observed for the soil temperature and total pore volume, and reverse for the other soil properties, except for macroporosity, sand content, soil organic matter, carbon stock, C/N ratio and CEC, which fractograms were not significantly correlated to the FCO2 fractogram. Thus, the structure of spatial variability for most soil properties, characterized by fractogram, presents a significant relationship with the structure of spatial variability of FCO2, generally with similar or dissimilar behavior, indicating the possibility of using the fractogram as tool to better observe the behavior of the spatial dependence of the variables along the scale.

  1. Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

    PubMed

    Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F

    2017-11-07

    In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil screening values are not available. Our objective in this study was to develop empirical soil-plant models for Cd, Cu, Pb, Ni, and Zn, in order to derive appropriate soil screening values representative of humid tropical regions such as the state of São Paulo (SP), Brazil. Soil and plant samples from 25 vegetable species in the production areas of SP were collected. The concentrations of metals found in these soil samples were relatively low. Therefore, data from temperate regions were included in our study. The soil-plant relations derived had a good performance for SP conditions for 8 out of 10 combinations of metal and vegetable species. The bioconcentration factor (BCF) values for Cd, Cu, Ni, Pb, and Zn in lettuce and for Cd, Cu, Pb, and Zn in carrot were determined under three exposure scenarios at pH 5 and 6. The application of soil-plant models and the BCFs proposed in this study can be an important tool to derive national soil quality criteria. However, this methodological approach includes data assessed under different climatic conditions and soil types and need to be carefully considered.

  2. Dalton Highway : characterization of foundation soils

    DOT National Transportation Integrated Search

    1984-09-01

    In this report we represent the results of our geotechnical characterization of natural foundation soils along the Dalton Highway from the Livengood to Prudhoe Bay. In addition, it analyzes this data by statistical methods and caracterizes foundation...

  3. A comparison between probability and information measures of uncertainty in a simulated soil map and the economic value of imperfect soil information.

    NASA Astrophysics Data System (ADS)

    Lark, R. Murray

    2014-05-01

    Conventionally the uncertainty of a conventional soil map has been expressed in terms of the mean purity of its map units: the probability that the soil profile class examined at a site would be found to correspond to the eponymous class of the simple map unit that is delineated there (Burrough et al, 1971). This measure of uncertainty has an intuitive meaning and is used for quality control in soil survey contracts (Western, 1978). However, it may be of limited value to the manager or policy maker who wants to decide whether the map provides a basis for decision making, and whether the cost of producing a better map would be justified. In this study I extend a published analysis of the economic implications of uncertainty in a soil map (Giasson et al., 2000). A decision analysis was developed to assess the economic value of imperfect soil map information for agricultural land use planning. Random error matrices for the soil map units were then generated, subject to constraints which ensure consistency with fixed frequencies of the different soil classes. For each error matrix the mean map unit purity was computed, and the value of the implied imperfect soil information was computed by the decision analysis. An alternative measure of the uncertainty in a soil map was considered. This is the mean soil map information which is the difference between the information content of a soil observation, at a random location in the region, and the information content of a soil observation given that the map unit is known. I examined the relationship between the value of imperfect soil information and the purity and information measures of map uncertainty. In both cases there was considerable variation in the economic value of possible maps with fixed values of the uncertainty measure. However, the correlation was somewhat stronger with the information measure, and there was a clear upper bound on the value of an imperfect soil map when the mean information takes some

  4. Geophysical characterization of soil moisture spatial patterns in a tillage experiment

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.

    2009-04-01

    Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the

  5. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    NASA Astrophysics Data System (ADS)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  6. Successive DNA extractions improve characterization of soil microbial communities

    PubMed Central

    de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105

  7. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  8. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image

  9. A Soil Service Index: a method for quantifying the value, vulnerability, and status of soil resources

    NASA Astrophysics Data System (ADS)

    Harden, J. W.; Loisel, J.; Hugelius, G.; Sulman, B. N.; Bond-Lamberty, B. P.; Abramoff, R. Z.; Malhotra, A.; Gill, A. L.

    2017-12-01

    Soils support ecological and human systems by providing a physical and biogeochemical basis for plant growth, ecological functions, water quality, and water storage, and by providing services and functions needed for economic development, human well-being, and conservation of natural resources. Quantitative evaluation of soil services, however, is inconsistent and poorly communicated, in part because we lack a scientific, unified basis for evaluating soils and their potential for serving our needs. We introduce an index of soil service (SSI) in which multiple services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability, and evaluated for a given site or region. Services include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The status of SSI can be evaluated by individual services or by a composite index that combines multiple services. The status can be monitored over time; and key services that are more highly valued for a given soil can be weighted accordingly in comparison to other services. As a first step, existing data for each service are captured from a literature and data review in order to establish the full range of values. A site value establishes the ranking relative to the full range. Key services are weighted according to local values. A final index is the sum of the normalized, weighted products. Metrics can be updated and adapted as new data or services are discovered or recognized. Metrics can be used to compare among sites, regions, or time periods.

  10. A Novel Method for Measurement and Characterization of Soil Macroporosity

    Treesearch

    Christopher Barton; Tasos Karathanasis

    2002-01-01

    Quantitative macropore characterizations were performed in large zero-tension soil lysimeters of a Maury silt loam (fine, mixed, mesic Typic Paleudalf) and a Loradale silt loam (fine, silty, mixed, mesic Typic Axgiudoll) soil in an effort to assess potential colloid transport. Steel pipe sections (50 cm diameter X 100 cm length) were hydraulically driven into the soil...

  11. A Soil Service Index: Peatland soils as a case study for quantifying the value, vulnerability, and status of soils

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Harden, J. W.; Hugelius, G.

    2017-12-01

    What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis

  12. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  13. Determination of the Characteristic Values and Variation Ratio for Sensitive Soils

    NASA Astrophysics Data System (ADS)

    Milutinovici, Emilia; Mihailescu, Daniel

    2017-12-01

    In 2008, Romania adopted Eurocode 7, part II, regarding the geotechnical investigations - called SR EN1997-2/2008. However a previous standard already existed in Romania, by using the mathematical statistics in determination of the calculation values, the requirements of Eurocode can be taken into consideration. The setting of characteristics and calculations values of the geotechnical parameters was finally issued in Romania at the end of 2010 at standard NP122-2010 - “Norm regarding determination of the characteristic and calculation values of the geotechnical parameters”. This standard allows using of data already known from analysed area and setting the calculation values of geotechnical parameters. However, this possibility exist, it is not performed easy in Romania, considering that there isn’t any centralized system of information coming from the geotechnical studies performed for various objectives of private or national interests. Every company performing geotechnical studies tries to organize its own data base, but unfortunately none of them use existing centralized data. When determining the values of calculation, an important role is played by the variation ratio of the characteristic values of a geotechnical parameter. There are recommendations in the mentioned Norm, that could be taken into account, regarding the limits of the variation ratio, but these values are mentioned for Quaternary age soils only, normally consolidated, with a content of organic material < 5%. All of the difficult soils are excluded from the Norm even if they exist and affect the construction foundations on more than a half of the Romania’s surface. A type of difficult soil, extremely widespread on the Romania’s territory, is the contractile soil (with high swelling and contractions, very sensitive to the seasonal moisture variations). This type of material covers and influences the construction foundations in one over third of Romania’s territory. This work is

  14. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during

  15. The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function

    NASA Astrophysics Data System (ADS)

    Chen, Sandy H. L.; Wu, Xinliu

    2018-03-01

    The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.

  16. CHARACTERIZING SOILS FOR HAZAROUDS WASTE SITE ASSESSMENTS

    EPA Science Inventory

    The purpose of this paper is to provide guidance to Remedial Project Managers (RPM) and On-Scene Coordinators (OSC) concerning soil characterization data types required for decision-making in the CERCLA RI/FS process related to risk assessment and remedial alternative evaluation ...

  17. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  18. Next steps in the development of ecological soil clean-up values for metals.

    PubMed

    Wentsel, Randall; Fairbrother, Anne

    2014-07-01

    This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.

  19. Characterization of soils from an industrial complex contaminated with elemental mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carrie L; Watson, David B; Liang, Liyuan

    2013-01-01

    Historic use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA resulted in large deposits of Hg(0)l in the soils. An evaluation of analytical tools for characterizing the speciation of Hg in the soils at the Y-12 facility was conducted and these tequniques were used to examine the speciation of Hg in two soil cores collect at the site. These include X-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption. Hg concentrations determined using XRF, a tool that has been suggestions formore » quick onsite characterization of soils, were lower than concentrations determined by HgT analysis and as a result this technique is not suitable for the evaluation of Hg concentrations in heterogeneous soils containing Hg(0)l. Hg(0)g headspace analysis can be used to examine the presence of Hg(0)l in soils and when coupled with HgT analysis an understanding of the speciation of Hg in soils can be obtained. Two soil cores collected within the Y-12 complex highlight the heterogeneity in the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. At one location Hg(0)l was distributed throughout 3.2 meters of core whereas the core from a location only 12 meters away only contained Hg(0)l in 0.3 m zone of the core. Sequential extractions, used to examine the forms of Hg in the soils, indicated that at depths within the core that have low Hg concentrations organically associated Hg is dominant. Soil from the zone of groundwater inundation showed reduced characteristics and the Hg is likely present as Hg-sulfide species. At this location it appears that Hg transported within the groundwater is a source of Hg to the soil. Overall the characterization of Hg in soils containing Hg(0) l is difficult due to the heterogeneous distribution within the soils and this challenge is enhanced in industrial facilities in which

  20. Disturbed soil characterization workshop: post-meeting summary

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael

    2010-04-01

    Disturbance of ground surfaces can arise from a variety of processes, both manmade and natural. Burying landmines, vehicle movement, and walking are representative examples of processes that disturb ground surfaces. The nature of the specific disturbance process can lead to the observables that can aid the detection and identification of that process. While much research has been conducted in this area, fundamental questions related to the remote detection and characterization of disturbed soil surfaces remain unanswered. Under the sponsorship of the Army Research Office (ARO), the Night Vision and Electronic Sensors Directorate (NVESD), and the U.S. Army Corps of Engineers (USACE) Engineering Research and Development Center (ERDC), Georgia Tech hosted a workshop to address Remote Sensing Methods for Disturbed Soil Characterization. The workshop was held January 15-17, 2008 in Atlanta. The primary objective of this workshop was to take a new look at the disturbed soil problem in general as well as its relation to buried explosive detection and other manmade disturbances. In particular, the participants sought to outline the basic science and technology questions that need to be addressed across the full spectrum of military applications to fully exploit this phenomenon. This presentation will outline the approach taken during the workshop and provide a summary of the conclusions.

  1. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soilmore » erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.« less

  2. Characterization of soils from an industrial complex contaminated with elemental mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carrie L., E-mail: millercl@ornl.gov; Watson, David B.; Lester, Brian P.

    2013-08-15

    Historical use of liquid elemental mercury (Hg(0){sub l}) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0){sub l} in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorptionmore » (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0){sub g} headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0){sub l} in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0){sub l} was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0){sub l} in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0){sub l} is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and

  3. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    NASA Astrophysics Data System (ADS)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  4. Profile of a city: characterizing and classifying urban soils in the city of Ghent

    NASA Astrophysics Data System (ADS)

    Delbecque, Nele; Verdoodt, Ann

    2017-04-01

    Worldwide, urban lands are expanding rapidly. Conversion of agricultural and natural landscapes to urban fabric can strongly influence soil properties through soil sealing, excavation, leveling, contamination, waste disposal and land management. Urban lands, often characterized by intensive use, need to deliver many production, ecological and cultural ecosystem services. To safeguard this natural capital for future generations, an improved understanding of biogeochemical characteristics, processes and functions of urban soils in time and space is essential. Additionally, existing (inter)national soil classification systems, based on the identification of soil genetic horizons, do not always allow a functional classification of urban soils. This research aims (1) to gain insight into urban soils and their properties in the city of Ghent (Belgium), and (2) to develop a procedure to functionally incorporate urban soils into existing (inter)national soil classification systems. Undisturbed soil cores (depth up to 1.25 m) are collected at 15 locations in Ghent with different times since development and land uses. Geotek MSCL-scans are taken to determine magnetic susceptibility and gamma density and to obtain high resolution images. Physico-chemical characterization of the soil cores is performed by means of detailed soil profile descriptions, traditional lab analyses, as well as proximal soil sensing techniques (XRF). The first results of this research will be presented and critically discussed to improve future efforts to characterize, classify and evaluate urban soils and their ecosystem services.

  5. Deriving site-specific soil clean-up values for metals and metalloids: Rationale for including protection of soil microbial processes

    PubMed Central

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-01-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  6. Non-Invasive Methods to Characterize Soil-Plant Interactions at Different Scales

    NASA Astrophysics Data System (ADS)

    Javaux, M.; Kemna, A.; Muench, M.; Oberdoerster, C.; Pohlmeier, A.; Vanderborght, J.; Vereecken, H.

    2006-05-01

    Root water uptake is a dynamic and non-linear process, which interacts with the soil natural variability and boundary conditions to generate heterogeneous spatial distributions of soil water. Soil-root fluxes are spatially variable due to heterogeneous gradients and hydraulic connections between soil and roots. While 1-D effective representation of the root water uptake has been successfully applied to predict transpiration and average water content profiles, finer spatial characterization of the water distribution may be needed when dealing with solute transport. Indeed, root water uptake affects the water velocity field, which has an effect on solute velocity and dispersion. Although this variability originates from small-scale processes, these may still play an important role at larger scales. Therefore, in addition to investigate the variability of the soil hydraulic properties, experimental and numerical tools for characterizing root water uptake (and its effects on soil water distribution) from the pore to the field scales are needed to predict in a proper way the solute transport. Obviously, non-invasive and modeling techniques which are helpful to achieve this objective will evolve with the scale of interest. At the pore scale, soil structure and root-soil interface phenomena have to be investigated to understand the interactions between soil and roots. Magnetic resonance imaging may help to monitor water gradients and water content changes around roots while spectral induced polarization techniques may be used to characterize the structure of the pore space. At the column scale, complete root architecture of small plants and water content depletion around roots can be imaged by magnetic resonance. At that scale, models should explicitly take into account the three-dimensional gradient dependency of the root water uptake, to be able to predict solute transport. At larger scales however, simplified models, which implicitly take into account the heterogeneous

  7. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    NASA Astrophysics Data System (ADS)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  8. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    NASA Astrophysics Data System (ADS)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  9. Hydraulic characterization of a sealed loamy soil in a Mediterranean vineyard

    NASA Astrophysics Data System (ADS)

    Alagna, Vincenzo; Di Prima, Simone; Bagarello, Vincenzo; Guaitoli, Fabio; Iovino, Massimo; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    Water infiltration measurements constitute a common way for an indirect characterization of sealed/crusted soils (Alagna et al., 2013). The Beerkan Estimation of Soil Transfer (BEST) parameters procedure by Lassabatere et al. (2006) is very attractive for practical use since it allows an estimation of both the soil water retention and hydraulic conductivity functions. The BEST method considers certain analytical formulae for the hydraulic characteristic curves and estimates their shape parameters, which are texture dependent, from particle-size analysis by physical-empirical pedotransfer functions. Structure dependent scale parameters are estimated by a beerkan experiment, i.e. a three-dimensional (3D) field infiltration experiment at ideally zero pressure head. BEST substantially facilitates the hydraulic characterization of unsaturated soils, and it is gaining popularity in soil science (Bagarello et al., 2014a; Di Prima, 2015; Di Prima et al., 2016b). Bagarello et al. (2014b) proposed a beerkan derived procedure to explain surface runoff and disturbance phenomena at the soil surface occurring during intense rainfall events. Di Prima et al. (2016a) applied this methodology in a vineyard with a sandy-loam texture. These authors compared this simple methodology with rainfall simulation experiments establishing a physical link between the two methodologies through the kinetic energy of the rainfall and the gravitational potential energy of the water used for the beerkan runs. They also indirectly demonstrated the occurrence of a certain degree of compaction and mechanical breakdown using a minidisk infiltrometer (Decagon, 2014). With this device, they reported a reduction of the unsaturated hydraulic conductivity by 2.3 times, due to the seal formation. The ability of the BEST method to distinguish between crusted and non-crusted soils was demonstrated by Souza et al. (2014). However, the potential of the beerkan runs to detect the effect of the seal on flow and

  10. Characterization of the Resource Potential of Martian Soil using the Integrated Dust/Soil Experiment Package (IDEP)

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Mckay, David S.; Allen, Carlton C.; Hoffman, John H.; Gittleman, Mark E.

    1997-01-01

    The Integrated Dust/Soil Experiment Package (IDEP) is a suite of instruments that can detect and quantify the abundances of useful raw materials on Mars. We focus here on its capability for resource characterization in the martian soil; however, it is also capable of detecting and quantifying gases in the atmosphere. This paper describes the scientific rationale and the engineering design behind the IDEP.

  11. Characterization of agricultural land using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  12. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  13. Mineralogical and Chemical Characterization of Lunar Highland Regolith: Lessons Learned from Mare Soils

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.; Cahill, J. T.; Patchen, A.; Pieters, C.; Morris, R.; Keller, L. P.; McKay, D. S.

    2001-01-01

    The Lunar Soil Characterization Consortium has begun study of the <45 m fractions of ten representative highland soils, chosen for their contrasting maturities. Difficulties are addressed in the modal and chemical analyses of these highland soils. Additional information is contained in the original extended abstract.

  14. Direct soil contact values for ecological receptors exposed to weathered petroleum hydrocarbon (PHC) fraction 2.

    PubMed

    Angell, Robin A; Kullman, Steve; Shrive, Emma; Stephenson, Gladys L; Tindal, Miles

    2012-11-01

    Ecological tier 1 Canada-wide standards (CWS) for petroleum hydrocarbon (PHC) fraction 2 (F2; >nC10-C16) in soil were derived using ecotoxicological assessment endpoints (effective concentrations [ECs]/lethal concentrations [LCs]/inhibitory concentrations, 25% [IC25s]) with freshly spiked (fresh) fine- and coarse-grained soils. These soil standards might be needlessly conservative when applied to field samples with weathered hydrocarbons. The purpose of the present study was to assess the degradation and toxicity of weathered PHC F2 in a fine-grained soil and to derive direct soil contact values for ecological receptors. Fine-grained reference soils were spiked with distilled F2 and weathered for 183 d. Toxicity tests using plants and invertebrates were conducted with the weathered F2-spiked soils. Endpoint EC/IC25s were calculated and used to derive soil standards for weathered F2 in fine-grained soil protective of ecological receptors exposed via direct soil contact. The values derived for weathered F2 were less restrictive than current ecological tier 1 CWS for F2 in soil. Copyright © 2012 SETAC.

  15. Use of laboratory geophysical and geotechnical investigation methods to characterize gypsum rich soils

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Raghava A.

    Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.

  16. Residential surface soil guidance values applied worldwide to the original 2001 Stockholm Convention POP pesticides.

    PubMed

    Jennings, Aaron A; Li, Zijian

    2015-09-01

    Surface soil contamination is a worldwide problem. Many regulatory jurisdictions attempt to control human exposures with regulatory guidance values (RGVs) that specify a soil's maximum allowable concentration. Pesticides are important soil contaminants because of their intentional toxicity and widespread surface soil application. Worldwide, at least 174 regulatory jurisdictions from 54 United Nations member states have published more than 19,400 pesticide RGVs for at least 739 chemically unique pesticides. This manuscript examines the variability of the guidance values that are applied worldwide to the original 2001 Stockholm Convention persistent organic pollutants (POP) pesticides (Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, Mirex, and Toxaphene) for which at least 1667 RGVs have been promulgated. Results indicate that the spans of the RGVs applied to each of these pesticides vary from 6.1 orders of magnitude for Toxaphene to 10.0 orders of magnitude for Mirex. The distribution of values across these value spans resembles the distribution of lognormal random variables, but also contain non-random value clusters. Approximately 40% of all the POP RGVs fall within uncertainty bounds computed from the U.S. Environmental Protection Agency (USEPA) RGV cancer risk model. Another 22% of the values fall within uncertainty bounds computed from the USEPA's non-cancer risk model, but the cancer risk calculations yield the binding (lowest) value for all POP pesticides except Endrin. The results presented emphasize the continued need to rationalize the RGVs applied worldwide to important soil contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of soil properties on the toxicity of Pb: assessment of the appropriateness of guideline values.

    PubMed

    Romero-Freire, A; Martin Peinado, F J; van Gestel, C A M

    2015-05-30

    Soil contamination with lead is a worldwide problem. Pb can cause adverse effects, but its mobility and availability in the terrestrial environment are strongly controlled by soil properties. The present study investigated the influence of different soil properties on the solubility of lead in laboratory spiked soils, and its toxicity in three bioassays, including Lactuca sativa root elongation and Vibrio fischeri illumination tests applied to aqueous extracts and basal soil respiration assays. Final aim was to compare soil-dependent toxicity with guideline values. The L. sativa bioassay proved to be more sensitive to Pb toxicity than the V. fischeri and soil respiration tests. Toxicity was significantly correlated with soil properties, with soil pH, carbonate and organic carbon content being the most important factors. Therefore, these variables should be considered when defining guideline values. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The Value of SMAP Soil Moisture Observations For Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Bolten, J. D.; Crow, W.; Reynolds, C. A.

    2017-12-01

    Knowledge of the amount of soil moisture (SM) in the root zone (RZ) is critical source of information for crop analysts and agricultural agencies as it controls crop development and crop condition changes and can largely impact end-of-season yield. Foreign Agricultural Services (FAS), a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected global crop supply and demand estimates, has been relying on RZSM estimates generated by the modified two-layer Palmer model, which has been enhanced to allow the assimilation of satellite-based soil moisture data. Generally the accuracy of model-based soil moisture estimates is dependent on the precision of the forcing data that drives the model and more specifically, the accuracy of the precipitation data. Data assimilation gives the opportunity to correct for such precipitation-related inaccuracies and enhance the quality of the model estimates. Here we demonstrate the value of ingesting passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission. In terms of agriculture, general understanding is that the change in soil moisture conditions precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop conditions. Therefore, we assess the accuracy of the SMAP enhanced Palmer model by examining the lag rank cross-correlation coefficient between the model generated soil moisture observations and the Normalized Difference Vegetation Index (NDVI).

  19. Soil Physical, Chemical, and Thermal Characterization, Teller Road Site, Seward Peninsula, Alaska, 2016

    DOE Data Explorer

    Graham, David; Kholodov, Alexander; Wilson, Cathy; Moon, Ji-Won; Romanovsky, Vladimir; Busey, Bob

    2018-02-05

    This dataset provides the results of physical, chemical, and thermal characterization of soils at the Teller Road Site, Seward Peninsula, Alaska. Soil pits were dug from 7-14 September 2016 at designated Intensive Stations 2 through 9 at the Teller Road MM 27 Site. This dataset includes field observations and descriptions of soil layers or horizons, field measurements of soil volumetric water content, soil temperature, thermal conductivity, and heat capacity. Laboratory measurements of soil properties include gravimetric water content, bulk density, volumetric water content, and total carbon and nitrogen.

  20. Soil Physical, Chemical, and Thermal Characterization, Council Road Site, Seward Peninsula, Alaska, 2016

    DOE Data Explorer

    Alexander Kholodov; David Graham; Ji-Won Moon

    2018-01-22

    This dataset provides the results of physical, chemical, and thermal characterization of soils at the Council Road Site at MM71, Seward Peninsula, Alaska. Soil pits were dug on 11 September 2016 at three sites. This dataset includes field observations and descriptions of soil layers or horizons, field measurements of soil volumetric water content, soil temperature, thermal conductivity, and heat capacity. Laboratory measurements of soil properties include gravimetric water content, bulk density, volumetric water content, total carbon and nitrogen, and elemental composition from X-ray fluorescence for some elements.

  1. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  2. Characterization of Minerals: From the Classroom to Soils to Talc Deposits

    ERIC Educational Resources Information Center

    McNamee, Brittani D.

    2013-01-01

    This dissertation addresses different methods and challenges surrounding characterizing and identifying minerals in three environments: in the classroom, in soils, and in talc deposits. A lab manual for a mineralogy and optical mineralogy course prepares students for mineral characterization and identification by giving them the methods and tools…

  3. Polybrominated diphenyl ethers (PBDEs) concentration in soil from San Luis Potosi, Mexico: levels and ecological and human health risk characterization.

    PubMed

    Pérez-Vázquez, Francisco J; Orta-García, Sandra T; Ochoa-Martínez, Ángeles C; Pruneda-Álvarez, Lucia G; Ruiz-Vera, Tania; Jiménez-Avalos, Jorge Armando; González-Palomo, Ana K; Pérez-Maldonado, Iván N

    2016-01-01

    The aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs) in soils from the city of San Luis Potosi in Mexico and perform an ecological and human health risk characterization. In order to confirm the presence of PBDEs, outdoor surface soil samples were collected and the concentrations of PBDEs in urban, industrial, agricultural, and brick kiln industry areas were determined. The mean total PBDEs levels obtained in the study sites were 25.0 ± 39.5 μg/kg (geometric mean ± standard deviation) in the brick kiln industry zone; 34.5 ± 36.0 μg/kg in the urban zone; 8.00 ± 7.10 μg/kg in the industrial zone and 16.6 ± 15.3 μg/kg in the agricultural zone. The ecological and human health risk characterization showed relatively low-hazard quotient values. However, the moderately high PBDEs levels found in soils highlight the necessity to establish a systematic monitoring process for PBDEs in environmental and biological samples.

  4. Soil structural quality assessment for soil protection regulation

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  5. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p < 0.001) microbial activities in the soils. The critical mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  6. Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia.

    PubMed

    dos Santos, Sabrina Novaes; Alleoni, Luís Reynaldo Ferracciú

    2013-07-01

    Guideline values are used to identify polluted or contaminated areas based on background values. Brazilian law establishes three guideline values for pollutants: a quality reference value (QRV), a prevention value, and an intervention value. Reference values refer to the natural concentration of an element or a substance in soils that have not been modified by anthropogenic impacts. These values inform assessments of soil quality and are used to establish maximum permissible limits. The objective of this study was to determine the natural levels and reference values for Cd, Co, Cr, Cu, Ni, Pb, and Zn in samples from the surface layer (0-20 cm) of 19 representative soils of the states of Mato Grosso and Rondônia, on Brazil's agricultural frontier. Pseudo-total metal concentrations were obtained following microwave-assisted digestion using the aqua regia and EPA3051 methods. QRVs were calculated for each element as the 75th and 90th percentiles of the frequency distribution of the data. Natural levels of heavy metals in the soil samples followed the order: Cr > Zn > Cu > Co > Pb > Ni > and Cd (aqua regia) and Cr > Co > Cu > Pb > Zn > Ni > Cd (EPA3051). These values are generally lower than those reported in the Brazilian and international literature, which highlights the importance of establishing reference values for each state or for each soil type, taking into account the geomorphological, pedological, and geological diversity of the region under study.

  7. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.

  8. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  9. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)

    Yatheendradas, S.; Vivoni, E.

    2007-12-01

    A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.

  10. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  11. Spatial characterization of soil properties and influence in soil formation in oak-grassland of Sierra Morena, S Spain

    NASA Astrophysics Data System (ADS)

    Román-Sánchez, Andrea; Cáceres, Francisco; Pédèches, Remi; Giráldez Cervera, Juan Vicente; Vanwalleghem, Tom

    2016-04-01

    The Mediterranean oak-grassland ecosystem is very important for the rural economy and for the biodiversity of south-western European countries like Spain and Portugal. Nevertheless these ecosystems are not well characterized especially their soils. In this report soil carbon has been evaluated and related to other properties. The principal factors controlling the structure, productivity and evolution of forest ecosystems are bedrock, climate, relief, vegetation and time. Soil carbon has an important influence in the soil and ecosystem structures. The purpose of this study is to determine the relationship between relief, soil properties, spatial distribution of soil carbon and their influence in soil formation and geomorphology. This work is part of another study which aims to elucidate the processes involved in the soil formation and to examine their behaviour on long-term with a modelling. In our study area, located in oak-grassland of Sierra Morena, in Cordoba, S Spain, have been studied 67 points at 6 depths in 262 hectares in order to determine carbon content varying between 0-6%, soil properties such as soil depth between 0-4 m, horizon depth and the rocks amount in surface. The relationship between the soil carbon, soil properties and the relief characteristic like slope, aspect, curvature can shed light the processes that affect the mechanisms of bedrock weathering and their interrelationship with geomorphological processes.

  12. Occurrence and characterization of hitherto unknown Streptomyces species in semi-arid soils.

    PubMed

    Kumar, Surendra; Priya, E; Singh Solanki, Dilip; Sharma, Ruchika; Gehlot, Praveen; Pathak, Rakesh; Singh, S K

    2016-09-01

    Streptomyces the predominant genus of Actinobacteria and plays an important role in the recycling of soil organic matter and production of important secondary metabolites. The occurrence and diversity assessment of Streptomyces species revealed alkaline and poor nutrient status of soils of semi-arid region of Jodhpur, Rajasthan. The morphological and biochemical characterization of 21 Streptomyces isolates facilitated Genus level identification but were insufficient to designate species. Species designation based on 16S rRNA gene delineated 21 isolates into 14 Streptomyces species. Upon BLAST search, the test isolates exhibited 98 to 100% identities with that of the best aligned sequences of the NCBI database. The GC content of 16S rRNA gene sequences of all the Streptomyces isolates tested ranged from 59.03% to 60.94%. The multiple sequence alignment of all the 21 Streptomyces isolates generated a phylogram with high bootstrap values indicating reliable grouping of isolates based on nucleotide sequence variations by way of insertion, deletion and substitutions and 16S rRNA length polymorphism. Some of the Streptomyces species molecularly identified under present study are reported for the first time from semi-arid region of Jodhpur.

  13. Geochemical characterization of soils of the eastern coast of the Northern Sakhalin Lowland

    NASA Astrophysics Data System (ADS)

    Zharikova, E. A.

    2017-01-01

    Concentrations of heavy metals (HMs) were determined in soils of the eastern coast of the Northern Sakhalin Lowland. The total contents of HMs and their distribution in the studied soils differed from those in the world soils. Thus, barium and mercury concentrations exceeded clarke values for the world soils. The reserves of mobile forms of microelements were found to be low. Significant biogenic accumulation in organic soil horizons in the process of soil formation was found for copper, arsenic, and barium.

  14. [Estimation on value of water and soil conservation of agricultural ecosystems in Xi' an metropolitan, Northwest China].

    PubMed

    Yang, Wen-yan; Zhou, Zhong-xue

    2014-12-01

    With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.

  15. Ecological value of soil carbon management

    USDA-ARS?s Scientific Manuscript database

    Management of soil carbon is critical to the climate change debate, as well as to the long-term productivity and ecosystem resilience of the biosphere. Soil organic carbon is a key ecosystem property that indicates inherent productivity of land, controls soil biological functioning and diversity, r...

  16. Bioindication of human-induced soil degradation in enclosed karst depressions (dolines) using Ellenberg indicator values (Classical Karst, Slovenia).

    PubMed

    Breg Valjavec, Mateja; Zorn, Matija; Čarni, Andraž

    2018-05-29

    One of the frequently used bioindication methods is Ellenberg indicator values (EIVs), which are commonly applied in Central Europe as bioindicators of ecological characteristics. However, very few studies have tested EIVs as a bioindication of human-induced soil degradation. We tested the ability of EIVs to distinguish between localities of degraded karst depressions (dolines) and localities of semi-natural (agricultural) soils in preserved dolines on the Kras Plateau (Classical Karst, SW Slovenia). We compared the results of bioindications of soil nutrient content (N), soil reaction (R) and soil moisture (M) with measured soil parameters. Low values of organic carbon, a slightly alkaline soil reaction and low organic sulphur content are chemical indicators of soil degradation in dolines, in comparison with preserved reference dolines (high organic carbon, slightly acid reaction, higher S). EIV reaction is the most reliable plant indicator value that can distinguish between degraded and non-degraded soil plots. According to a regression tree, sulphur (S) and C/N are the most important factors for division on the basis of EIV reaction. By applying the EIV reaction of diagnostic plant species, we significantly improved bioindication of soil degradation, although in the case of EIV nutrients, bioindication was not improved. Copyright © 2018. Published by Elsevier B.V.

  17. Soils in our big back yard: characterizing the state, vulnerabilities, and opportunities for detecting changes in soil carbon storage

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Loiesel, Julie; Ryals, Rebecca; Lawrence, Corey; Blankinship, Joseph; Phillips, Claire; Bond-Lamberty, Ben; Todd-Brown, Katherine; Vargas, Rodrigo; Hugelius, Gustaf; Nave, Luke; Malhotra, Avni; Silver, Whendee; Sanderman, Jon

    2017-04-01

    A number of diverse approaches and sciences can contribute to a robust understanding of the I. state, II. vulnerabilities, and III. opportunities for soil carbon in context of its potential contributions to the atmospheric C budget. Soil state refers to the current C stock of a given site, region, or ecosystem/landuse type. Soil vulnerabilities refers to the forms and bioreactivity of C stocks, which determine how soil C might respond to climate, disturbance, and landuse perturbations. Opportunities refer to the potential for soils in their current state to increase capacity for and rate of C storage under future conditions, thereby impacting atmospheric C budgets. In order to capture the state, vulnerability, and opportunities for soil C, a robust C accounting scheme must include at least three science needs: (1) a user-friendly and dynamic database with transparent, shared coding in which data layers of solid, liquid, and gaseous phases share relational metadata and allow for changes over time (2) a framework to characterize the capacity and reactivity of different soil types based on climate, historic, and landscape factors (3) a framework to characterize landuse practices and their impact on physical state, capacity/reactivity, and potential for C change. In order to transfer our science information to practicable implementations for land policies, societal and social needs must also include: (1) metrics for landowners and policy experts to recognize conditions of vulnerability or opportunity (2)communication schemes for accessing salient outcomes of the science. Importantly, there stands an opportunity for contributions of data, model code, and conceptual frameworks in which scientists, educators, and decision-makers can become citizens of a shared, scrutinized database that contributes to a dynamic, improved understanding of our soil system.

  18. Application of DRIFTS, 13 C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic Matter Composition in a Mollic Xerofluvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margenot, Andrew J.; Calderón, Francisco J.; Magrini, Kimberly A.

    Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treatedmore » soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 13C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm-1 (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil

  19. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    PubMed

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  20. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar

    PubMed Central

    Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco

    2008-01-01

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932

  1. Characterization of H2S removal and microbial community in landfill cover soils.

    PubMed

    Xia, Fang-Fang; Zhang, Hong-Tao; Wei, Xiao-Meng; Su, Yao; He, Ruo

    2015-12-01

    H2S is a source of odors at landfills and poses a threat to the surrounding environment and public health. In this work, compared with a usual landfill cover soil (LCS), H2S removal and biotransformation were characterized in waste biocover soil (WBS), an alternative landfill cover material. With the input of landfill gas (LFG), the gas concentrations of CH4, CO2, O2, and H2S, microbial community and activity in landfill covers changed with time. Compared with LCS, lower CH4 and H2S concentrations were detected in the WBS. The potential sulfur-oxidizing rate and sulfate-reducing rate as well as the contents of acid-volatile sulfide, SO4(2-), and total sulfur in the WBS and LCS were all increased with the input of LFG. After exposure to LFG for 35 days, the sulfur-oxidizing rate of the bottom layer of the WBS reached 82.5 μmol g dry weight (d.w.)(-1) day(-1), which was 4.3-5.4 times of that of LCS. H2S-S was mainly deposited in the soil covers, while it escaped from landfills to the atmosphere. The adsorption, absorption, and biotransformation of H2S could lead to the decrease in the pH values of landfill covers; especially, in the LCS with low pH buffer capacity, the pH value of the bottom layer dropped to below 4. Pyrosequencing of 16S ribosomal RNA (rRNA) gene showed that the known sulfur-metabolizing bacteria Ochrobactrum, Paracoccus, Comamonas, Pseudomonas, and Acinetobacter dominated in the WBS and LCS. Among them, Comamonas and Acinetobacter might play an important role in the metabolism of H2S in the WBS. These findings are helpful to understand sulfur bioconversion process in landfill covers and to develop techniques for controlling odor pollution at landfills.

  2. Physical and chemical characterization of actinides in soil from Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.F.; Bates, J.K.; Buck, E.C.

    1997-02-01

    Characterization of the actinide content of a sample of contaminated coral soil from Johnston Atoll, the site of three non-nuclear destructs of nuclear warhead-carrying THOR missiles in 1962, revealed that >99% of the total actinide content is associated with discrete bomb fragments. After removal of these fragments, there was an inverse correlation between actinide content and soil particle size in particles from 43 to 0.4 {mu}m diameter. Detailed analyses of this remaining soil revealed no discrete actinide phase in these soil particles, despite measurable actinide content. Observations indicate that exposure to the environment has caused the conversion of relatively insolublemore » actinide oxides to the more soluble actinyl oxides and actinyl carbonate coordinated complexes. This process has led to dissolution of actinides from discrete particles and migration to the surrounding soil surfaces, resulting in a dispersion greater than would be expected by physical transport of discrete particles alone. 26 refs., 4 figs., 1 tab.« less

  3. [Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous region].

    PubMed

    Alekseev, I I; Abakumov, E V; Shamilishvili, G A; Lodygin, E D

    In August 2015 there were executed investigations on the study of the soils diversity of the Yamal-Nenets Autonomous Okrug. One of the directions of this work got be the study of urban soils of settlements of the Yamal-Nenents Autonomous Okrug. The sectors for the observation were settlement of Harsaim, village Aksarka, city of Salekhard, settlement Harp and city of Labytnangi. About 20 soil samples were collected during the field work. Samples were collected from a depth of 0-5 cm and 5-20 cm. Heavy metals (HM) were detected with the use of X-ray fluorescent analyzer “Spectroscan-MAX”. The HM content values were compared with the corresponding Approxible Permissible Concentrations and Maximum Allowable Concentrations (MAC) adopted in Russia. Hydrocarbons content was determined by gravimetric method. Values of the hydrocarbons content in studied soils were compared with the existing regulations of the Russian Federation. The levels of soil contamination by hydrocarbons were determined. The study of soil samples from different settlements allowed to reveal characteristic features of soil contamination of separate settlements by HM and hydrocarbons and to compare them against each other. The vast majority of samples are characterized by arsenic exceedance of MAC, which should indicate to a high regional background of this element. For a more adequate assessment of the Zc meaning as the value of the total pollution index of soils there were used not only arithmetical average values of the coefficients of the chemical composition concentration (Kc), but also their average geometric values. According to levels of total soil contamination most of soil samples are characterized as non-hazardous (Zc<16). Calculation of soil pollution index showed that the most of soil samples have values less than 1. It characterizes soils as unpolluted. Statistical processing of obtained data in the media of the analytical software interface STATISTICA 10 showed a statistically

  4. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    PubMed

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization and phylogenetic affiliation of Actinobacteria from tropical soils with potential uses for agro-industrial processes.

    PubMed

    Dornelas, J C M; Figueiredo, J E F; de Abreu, C S; Lana, U G P; Oliveira, C A; Marriel, I E

    2017-08-31

    Secondary metabolites produced by Actinobacteria of tropical soils represent a largely understudied source of novel molecules with relevant application in medicine, pharmaceutical and food industries, agriculture, and environmental bioremediation. The present study aimed to characterize sixty-nine Actinobacteria isolated from compost and tropical soils using morphological, biochemical, and molecular methods. All the isolates showed high variation for morphological traits considering the color of pigments of the aerial and vegetative mycelium and spore chain morphology. The enzymatic activity of amylase, cellulase, and lipase was highly variable. The amylase activity was detected in 53 (76.81%) isolates. Eighteen isolates showed enzymatic index (EI) > 4.0, and the isolates ACJ 45 (Streptomyces curacoi) and ACSL 6 (S. hygroscopicus) showed the highest EI values (6.44 and 6.42, respectively). The cellulase activity varied significantly (P ≤ 0.05) among the isolates. Twenty-nine isolates (42.02%) showed high cellulase activity, and the isolates ACJ 48 (S. chiangmaiensis) and ACJ 53 (S. cyslabdanicus) showed the highest EI values (6.56 for both isolates). The lipase activity varied statistically (P ≤ 0.05) with fourteen isolates (20.29%) considered good lipase producers (EI > 2.0). The isolate ACSL 6 (S. hygroscopicus) showed the highest EI value of 2.60. Molecular analysis of partial 16S rRNA gene sequencing revealed the existence of 49 species, being 38 species with only one representative member and 11 species represented by one or more strains. All species belonged to three genera, namely Streptomyces (82.61%), Amycolatopsis (7.25%), and Kitasatospora (10.14%). The present results showed the high biotechnological potential of different Actinobacteria from tropical soils.

  6. Evaluation and characterization of thyroid-disrupting activities in soil samples along the Second Songhua River, China.

    PubMed

    Kong, Dongdong; Wang, Yafei; Wang, Jinsheng; Teng, Yanguo; Li, Na; Li, Jian

    2016-11-01

    In this study, a recombinant thyroid receptor (TR) gene yeast assay combined with Monte Carlo simulation were used to evaluate and characterize soil samples collected from Jilin (China) along the Second Songhua River, for their ant/agonist effect on TR. No TR agonistic activity was found in soils, but many soil samples exhibited TR antagonistic activities, and the bioassay-derived amiodarone hydrochloride equivalents, which was calculated based on Monte Carlo simulation, ranged from not detected (N.D.) to 35.5μg/g. Hydrophilic substance fractions were determined to be the contributors to TR antagonistic activity in these soil samples. Our results indicate that the novel calculation method is effective for the quantification and characterization of TR antagonists in soil samples, and these data could provide useful information for future management and remediation efforts for contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils.

    PubMed

    Kasozi, Gabriel N; Nkedi-Kizza, Peter; Agyin-Birikorang, Sampson; Zimmerman, Andrew R

    2010-01-27

    The adsorption and degradation of the pesticide diuron in carbonatic and noncarbonatic soils were investigated to better understand the fate and transport of diuron in the environment. Batch adsorption experiments yielded isotherms that were well-described by the linear model. Adsorption coefficients normalized to soil organic carbon content (K(oc)) were lowest for carbonatic soils, averaging 259 +/- 48 (95% CI), 558 +/- 109, 973 +/- 156, and 2090 +/- 1054 for carbonatic soils, Histosols, Oxisols, and Spodosols, respectively. In addition, marl-carbonatic soils had much lower K(oc) values (197 +/- 27) than nonmarl-carbonatic soils. Diuron degradation data fit a first-order reaction kinetics model, yielding half-lives in soils ranging from 40 to 267 days. There was no significant difference between the average diuron degradation rate coefficients of each of the soil groups studied. Given the low adsorption capacity of carbonatic soils, it may be advisable to lower herbicide application rates in agricultural regions with carbonatic soils such as southern Florida to protect aquatic ecosystems and water quality.

  8. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values.

    PubMed

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-10-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight-normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. © 2014 The Authors

  9. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values

    PubMed Central

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-01-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight–normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. Environ Toxicol Chem 2014

  10. Iron-bound organic carbon in forest soils: quantification and characterization

    DOE PAGES

    Zhao, Qian; Poulson, Simon R.; Obrist, Daniel; ...

    2016-08-24

    Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to understand the amount, spatial variability, and characteristics of Fe-bound OC in natural soils. In this study, we investigated the concentrations and characteristics of Fe-bound OC in soils collected from 14 forests in the United States and determined the impact of ecogeographical variables and soil physicochemical properties on the association of OC and Fe minerals. On average, Fe-bound OC contributed 37.8 % of total OC (TOC) in forestmore » soils. Atomic ratios of OC : Fe ranged from 0.56 to 17.7, with values of 1–10 for most samples, and the ratios indicate the importance of both sorptive and incorporative interactions. The fraction of Fe-bound OC in TOC (fFe-OC) was not related to the concentration of reactive Fe, which suggests that the importance of association with Fe in OC accumulation was not governed by the concentration of reactive Fe. Concentrations of Fe-bound OC and fFe-OC increased with latitude and reached peak values at a site with a mean annual temperature of 6.6 °C. Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC also was more enriched in 13C compared to the non-Fe-bound OC, but C/N ratios did not differ substantially. In summary, 13C-enriched OC with less aliphatic carbon and more carboxylic carbon was associated with Fe minerals in the soils, with values of fFe-OC being controlled by both sorptive and incorporative associations between Fe and OC. Overall, this study demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C in forest soils and uncovers the governing factors for the spatial variability and characteristics of Fe-bound OC.« less

  11. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    PubMed

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6soil and the amended soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches

    USDA-ARS?s Scientific Manuscript database

    Communities of soil nematodes impact ecosystem functions, including plant growth, decomposition, and nutrient cycling, all of which are vital processes in agriculture. We used complementary morphological and DNA metabarcoding analyses to characterize soil nematode communities in three cropping syste...

  13. Soil erosion and deposition before and after fire in oak savannas

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Hui Chen; Aaron T. Kauffman; Cody L. Stropki; Daniel G. Neary

    2013-01-01

    Effects of low severity prescribed burning treatments and a wildfire on soil erosion and deposition in the oak savannas in the Southwestern Borderlands are reported. Measurements in the spring and fall, respectively, characterize soil movements following winter rains and high-intensity summer rainstorms. Annual values are also presented. Relationships between soil...

  14. Site and soil characterization of hazardous waste sites using an expert system guide

    NASA Astrophysics Data System (ADS)

    Cameron, Roy E.

    1993-03-01

    An expert system guide (knowledge book) has been devised to assist field personnel who must identify, describe, sample, and interpret size and soil characteristics of hazardous waste sites. The guide takes an approach that will be unfamiliar to most soil and environmental scientists and is directed to on-scene coordinators and project managers and others who may have little soil science training. It meets the need of the U.S. Environmental Protection Agency for standard procedures, guidelines, or protocols that address soil and site contamination, particularly heavy metals. The guide is organized to include: (1) general considerations and processes for collecting and using site and soils data, (2) detailed knowledge frames (descriptive profiles) of likely site and soil conditions, (3) a citation of references, (4) an appendix listing common sources of characterization data, and (5) a glossary of more than 900 general definitions.

  15. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    EPA Science Inventory

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  16. Physicochemical Characterization of Potential Mobile Organic Matter In Five Typical German Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Séquaris, J.-M.; Lewandowski, H.; Vereecken, H.

    Organic matter (OM) in soils plays an important role, i.e., in maintaining soil structure or as source of nutrients. OM is mainly adsorbed at the surface of clay minerals and oxides and remains mostly immobile. However, mobile OM in dissolved form (DOM) or associated with water dispersible colloids (WDC) in soil water may influence trans- port of pollutants. The goal of this study is to compare 5 typical German agricultural soils in terms of distribution and quality of OM in the top soil (0-15 cm). The present report focuses on the physicochemical characterization of potential mobile OM so- lutions obtained after physical fractionation of soil materials based on sedimentation after a prolonged shaking in water or electrolyte solutions. Three soil fractions dif- fering in particle size were separated in function of sedimentation time: a colloidal fraction: < 2 ţm; a microaggregate fraction: 2-20 ţm and a sediment fraction: > 20 ţm. The soil electrolyte phase containing the DOM fraction was obtained by a high-speed centrifugation of the colloidal phase. After a water or low electrolyte concentration (« 1 mM Ca2+) extraction, it can be shown that the mobile fraction of OM or OC (organic carbon) is distributed between the colloidal and the electrolyte phases in a concentration ratio range of 10-40 to 1. A less mobile OC fraction is associated with the microaggregate fraction while immobile OC remains adsorbed in the sediment fraction. An increasing OC and total-N content with diminishing particle-size of soil (colloidal and microaggregate fractions) has been confirmed. A higher OC input due to special soil management is sensitively detected in fractions with a greater particle size (sediment fraction). Increasing the Ca2+ concentration up to 10 mM during the water extraction diminishes the DOC concentration by an average factor of 3 while the OC associated with the dispersed colloids (OCWDC) vanished almost completely. Thus, a critical coagulation concentration of

  17. Characterization of Cultures Enriched from Acidic Polycyclic Aromatic Hydrocarbon-Contaminated Soil for Growth on Pyrene at Low pH▿

    PubMed Central

    Uyttebroek, Maarten; Vermeir, Steven; Wattiau, Pierre; Ryngaert, Annemie; Springael, Dirk

    2007-01-01

    Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil. PMID:17369339

  18. Petrographic characterization of lunar soils: Application of x ray digital-imaging to quantitative and automated analysis

    NASA Technical Reports Server (NTRS)

    Higgins, Stefan J.; Patchen, Allan; Chambers, John G.; Taylor, Lawrence A.; Mckay, David S.

    1994-01-01

    The rocks and soils of the moon will be the raw materials for various engineering needs at a lunar base, such as sources of hydrogen, oxygen, metals, etc. The material of choice for most of the bulk needs is the regolith and its less than 1 cm fraction, the soil. For specific mineral resources it may be necessary to concentrate minerals from either rocks or soils. Therefore, quantitative characterizations of these rocks and soils are necessary in order to better define their mineral resource potential. However, using standard point-counting microscopic procedures, it is difficult to quantitatively determine mineral abundances and virtually impossible to obtain data on mineral distributions within grains. As a start to fulfilling these needs, Taylor et al. and Chambers et al. have developed a procedure for characterization of crushed lunar rocks using x ray digital imaging. The development of a similar digital imaging procedure for lunar soils as obtained from a spectrometer is described.

  19. Assessment of existing roadside swales with engineered filter soil: I. Characterization and lifetime expectancy.

    PubMed

    Ingvertsen, Simon T; Cederkvist, Karin; Régent, Yoann; Sommer, Harald; Magid, Jakob; Jensen, Marina B

    2012-01-01

    Roadside infiltration swales with well-defined soil mixtures (filter soil) for the enhancement of both infiltration and treatment of stormwater runoff from roads and parking areas have been common practice in Germany for approximately two decades. Although the systems have proven hydraulically effective, their treatment efficiency and thus lifetime expectancies are not sufficiently documented. The lack of documentation restricts the implementation of new such systems in Germany as well as other countries. This study provides an assessment of eight roadside infiltration swales with filter soil from different locations in Germany that have been operational for 6 to16 yr. The swales were assessed with respect to visual appearance, infiltration rate, soil pH, and soil texture, as well as soil concentration of organic matter, heavy metals (Cd, Cr, Cu, Pb, Zn), and phosphorus. Visually, the swales appeared highly variable with respect to soil color and textural layering as well as composition of plants and soil-dwelling organisms. Three swales still comply with the German design criteria for infiltration rate (10 m/s), while the remaining swales have lower, yet acceptable, infiltration rates around 10 m/s. Six of the eight studied soils have heavy metal concentrations exceeding the limit value for unpolluted soil. Provided that the systems are able to continuously retain existing and incoming pollutants, our analysis indicates that the soils can remain operational for another 13 to 136 yr if the German limit values for unrestricted usage in open construction works are applied. However, no official guidelines exist for acceptable soil quality in existing infiltration facilities. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Tree Sampling as a Method to Assess Vapor Intrusion Potential at a Site Characterized by VOC-Contaminated Groundwater and Soil.

    PubMed

    Wilson, Jordan L; Limmer, Matthew A; Samaranayake, V A; Schumacher, John G; Burken, Joel G

    2017-09-19

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R 2 values greater than 0.80) and in soil samples (adjusted R 2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m 2 , the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  1. Tree sampling as a method to assess vapor intrusion potential at a site characterized by VOC-contaminated groundwater and soil

    USGS Publications Warehouse

    Wilson, Jordan L.; Limmer, Matthew A.; Samaranayake, V. A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the “sampler’ and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700–1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  2. Characterizing regional soil mineral composition using spectroscopyand geostatistics

    USGS Publications Warehouse

    Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.

    2013-01-01

    This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial

  3. Impacts of heterogeneous organic matter on phenanthrene sorption--Different soil and sediment samples

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Childs, Jeffrey; Sabatini, David A.

    2001-01-01

    Organic petrography has been proposed as a tool for characterizing the heterogeneous organic matter present in soil and sediment samples. A new simplified method is proposed as a quantitative means of interpreting observed sorption behavior for phenanthrene and different soils and sediments based on their organic petrographical characterization. This method is tested under singe solute conditions and at phenanthrene concentration of 1 μg/L. Since the opaque organic matter fraction dominates the sorption process, we propose that by quantifying this fraction one can interpret organic content normalized sorption distribution coefficient (Koc) values for a sample. While this method was developed and tested for various samples within the same aquifer, in the current study the method is validated for soil and sediment samples from different sites that cover a wide range of organic matter origin, age, and organic content. All 10 soil and sediment samples studied had log Koc values for the opaque particles between 5.6 and 6.8. This range of Koc values illustrates the heterogeneity of opaque particles between sites and geological formations and thus the need to characterize the opaque fraction of materials on a site-by-site basis.

  4. Nutrient Characterization of Rainwater, Soil and Groundwater from Two Different Watersheds, Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Thaw, M.; Gao, F.; Yu, Z.; Acharya, K.

    2012-12-01

    Over the past two decades, an increase of nutrients to Lake Taihu, China has resulted in hyper-eutrophication and the production of severe cyanobacterial blooms. While many past studies have focused on how surface water transports nutrients to the lake, this study seeks to characterize the concentration of nutrients in different media, including rainwater, soil and groundwater from two different watersheds. These two watersheds varied in overall land use, and agricultural sites within each watershed varied by crop type and growing method. Samples were collected from the Meilin watershed, a mix of forest and agricultural land and the Zhangjiagang watershed, which consisted of industrial, urban and agricultural lands. Samples included soils, groundwater and rain water. Soils from each site were characterized by aggregate size class and analyzed for total nitrogen and total phosphorus. Rainwater and groundwater samples were analyzed for total nitrogen and total phosphorus.

  5. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  6. Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.

    2016-07-01

    The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985-2014) on the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED-NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED-NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED-NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED-NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.

  7. [Effects of different soil types on the foliar δ13C values of common local plant species in karst rocky desertification area in central Guizhou Province].

    PubMed

    Du, Xue-lian; Wang, Shi-jie; Luo, Xu-qiang

    2014-09-01

    By measuring the foliar δ13C values of common local plant species grown in different soil types in Wangjiazhai catchments, a typical karst desertification area in Qingzhen City, Central Guizhou, we studied the impact of soil type and rocky desertification grade on the foliar δ13C values. The results showed that the foliar δ13C values were more negative in yellow soil area than those in black calcareous area and there was no obvious difference in foliar δ13C values between these two soil types. The distribution interval of foliar δ13C values in yellow soil area was narrower than those in black calcareous area and the variation coefficient of foliar δ13C values in yellow soil area were smaller than those in black calcareous area. With increasing degree of karst rocky desertification, the foliar δ13C values of plant community in black calcareous area increased, whereas those in yellow soil area first increased and then decreased. The result of multiple comparison showed that the difference in foliar δ13C values of plant community among rocky desertification grade was not obvious in yellow soil area, but it was obvious in black calcareous area. Correlation analysis between the foliar δ13C values of plant species and the main environmental factors indicated that slope and soil thickness were the main factors which affected the foliar δ13C values of plants in yellow soil area and soil water contant was the main factor in black calcareous area. The impact of soil on the foliar δ13C values was realized by adjusting the soil moisture in study area.

  8. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    PubMed

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    NASA Astrophysics Data System (ADS)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a

  10. Characteristics and nutrient values of biochars produced from giant reed at different temperatures

    USDA-ARS?s Scientific Manuscript database

    Application of biochars to soils is suggested as an effective way for improving soil quality. To investigate the effect of pyrolysis temperature on properties and nutrients value, biochars were produced from giant reed [Arundo donax L.] at 300-600 degrees Celsius and characterized for their physical...

  11. Timber Harvesting Effects on Spatial Variability of Southeastern U.S. Piedmont Soil Properties

    Treesearch

    J.N. Shaw; Emily A. Carter

    2002-01-01

    Site-specific forestry requires detailed characterization of the spatial distribution of forest soil properties and the magnitude of harvesting impacts in order to prescribe appropriate management schemes. Furthermore, evaluation of the effects of timber harvesting on soil properties conducted on a landscape scale improves the interpretive value of soil survey data....

  12. Adding Value to Ash and Digestate (AVAnD): Performance of Novel Soil Amendents on the Soil-Plant System Under Glasshouse Conditions

    NASA Astrophysics Data System (ADS)

    Lag-Brotons, Alfonso; Marshall, Rachel; Herbert, Ben; Hurst, Lois; Ostle, Nick; Dodd, Ian; Quinton, John; Surridge, Ben; Aiouache, Farid; Semple, Kirk T.

    2017-04-01

    Resource recovery from waste plays a central role in strategies tackling current worldwide sustainability problems. In this sense, two waste streams derived from bioenergy production (anaerobic digestion and incineration), digestate [D] and biomass ash [A], may be especially valuable within agriculture. These materials offer complementary plant nutrient profiles for alternative fertiliser production (i.e. nitrogen [N] from D and phosphorus [P] from A). In addition, incorporating these materials into the soil could impact upon several soil/plant characteristics, and have positive effects on ecosystem services (eg. nutrient cycling). Therefore, this present work assessed the effects of A/D blends on the soil-plant system under controlled conditions (glasshouse). The overarching aim of "Adding Value to Ash and Digestate [AVAnD]" project is to identify novel nutrient-recycling pathways to maximise soil quality and crop productivity utilising waste streams derived from bioenergy production. Two pot experiments of 6 weeks duration were carried out [Exp. A and Exp. B] using contrasting agricultural soils (neutral loam and sandy acidic soil) and wheat as the crop. A factorial randomised block design was selected, with fertilisation treatment and soil condition (planted/unplanted) as factors. Fertilisation treatments (n=13) were applied at a rate of 63/60 kg N/P2O5 per ha and comprised: control ([C], no fertilisation), urea [U], urea+superphosphate [U+P], fly ash [A1], bottom ash [A2], U+A1; U+A2, anaerobic digestates [D1, D2] and ash/digestate blends [D1A1, D1A2, D2A1, D2A2]. Each block (n=5) contained 8 planted and 5 unplanted pots (104 planted + 65 unplanted experimental units). At the end of the experiment, all the plants were assessed for morphometric traits, while for tissue elemental analyses the total number of replicates per treatment was randomly reduced (n=5/treatment). Soil physico-chemical properties (i.e. available nitrogen, pH) were assessed in unplanted and

  13. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    PubMed

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P < 0.01) positively correlated with the contents of Fe2O3, Ni, Cu, As and V in the industrial top soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  14. Background concentrations and reference values for heavy metals in soils of Cuba.

    PubMed

    Alfaro, Mirelys Rodríguez; Montero, Alfredo; Ugarte, Olegario Muñiz; do Nascimento, Clístenes Williams Araújo; de Aguiar Accioly, Adriana Maria; Biondi, Caroline Miranda; da Silva, Ygor Jacques Agra Bezerra

    2015-01-01

    The potential threat of heavy metals to human health has led to many studies on permissible levels of these elements in soils. The objective of this study was to establish quality reference values (QRVs) for Cd, Pb, Zn, Cu, Ni, Cr, Fe, Mn, As, Hg, V, Ba, Sb, Ag, Co, and Mo in soils of Cuba. Geochemical associations between trace elements and Fe were also studied, aiming to provide an index for establishing background concentrations of metals in soils. Surface samples of 33 soil profiles from areas of native forest or minimal anthropic influence were collected. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES. The natural concentrations of metals in soils of Cuba followed the order Fe > Mn > Ni > Cr > Ba > V > Zn > Cu > Pb > Co > As > Sb > Ag > Cd > Mo > Hg. The QRVs found for Cuban soils were as follows (mg kg(-1)): Ag (1), Ba (111), Cd (0.6), Co (25), Cr (153), Cu (83), Fe (54,055), Mn (1947), Ni (170), Pb (50), Sb (6), V (137), Zn (86), Mo (0.1), As (19), and Hg (0.1). The average natural levels of heavy metals are above the global average, especially for Ni and Cr. The chemical fractionation of soil samples presenting anomalous concentrations of metals showed that Cu, Ni, Cr, Sb, and As have low bioavailability. This suggests that the risk of contamination of agricultural products via plant uptake is low. However, the final decision on the establishment of soil QRVs in Cuba depends on political, economic, and social issues and in-depth risk analyses considering all routes of exposure to these elements.

  15. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    PubMed

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  16. Following The Money: Characterizing the Dynamics of Microbial Ecosystems and Labile Organic Matter in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; McNeal, K. S.

    2006-12-01

    The dynamics of soil microbial ecosystems and labile fractions of soil organic matter in grasslands have important implications for the response of these critical ecosystems to perturbations. Organic, inorganic and genetic biomarkers in the solid (e.g. lipids, microbial DNA), liquid (e.g. porewater ions) or gaseous phases (e.g. carbon dioxide) have been used to characterize carbon cycling and soil microbial ecology. These proxies are generally limited in the amount of temporal information that they can provide (i.e., solid-phase proxies) or the amount of specific information they can provide about carbon sources or microbial community processes (e.g. inorganic gases). It is the aim of this research to validate the use of soil volatile organic carbon emissions (VOCs) as useful indicators of subsurface microbial community shifts and processes as a function of ecosystem perturbations. We present results of method validation using laboratory microcosm, where VOC metabolites as characterized by gas chromatography and mass spectrometry (GC-MS), were related to other proxies including carbon dioxide (CO2) via infra-red technology, and microbial community shifts as measured by Biolog© and fatty acid methyl ester (FAME) techniques. Experiments with soil collected from grasslands along the coastal margin region in southern Texas were preformed where environmental factors such as soil water content, soil type, and charcoal content are manipulated. Results indicate that over fifty identifiable VOC metabolites are produced from the soils, where many (~15) can be direct indicators of microbial ecology. Principle component analysis (PCA) evidences these trends through similar cluster patterns for the VOC results, the Biolog© results, and FAME. Regression analysis further shows that VOCs are significant (p < 0.05) indicators of microbial stress. Our results are encouraging that characterizing VOCs production in grassland soils are easy to measure, relatively inexpensive method

  17. Magnetic Measurements of Atmospheric Dust Deposition in Soils

    NASA Astrophysics Data System (ADS)

    Kapička, Aleš; Petrovský, Eduard; Grison, Hana; Podrázský, Vilém; Křížek, Pavel

    2010-05-01

    Atmospheric dust of anthropogenic origin contains significant portion of minerals characterized by ferrimagnetic properties [1,2]. These minerals, mostly iron oxides, can serve as tracers of industrial pollutants in soil layers. Moreover, recent results, e.g., [3,4] show significant correlation between concentration-dependent magnetic parameters (e.g., low-field magnetic susceptibility) and concentration of heavy metals (e.g., Pb, Zn, Cd). In our paper we have investigated magnetic properties of depth soil profiles from Krušné hory Mountains (Czech Republic), which belong to a highly contaminated, so-called Black Triangle in central Europe. Emissions are determined by considerable concentration of big sources of pollution (power plants burning fossil fuel, metallurgical and chemical industry). Increased values of magnetic susceptibility (25 - 200 × 10-5 SI) were clearly identified in the top-soil layers. Thermomagnetic analyses and SEM observation indicate that the accumulated anthropogenic ferrimagnetics dominate these layers. Magnetic enhancement is limited to depths of 4-7 cm below the soil surface, usually in F-H or top of Ah soil horizons; deeper soil horizons contain mainly magnetically weak materials and are characterized by much lower values of susceptibility (up to 30 × 10-5 SI). Significant magnetic parameters (e.g., Curie temperature Tc) and SEM results of contaminated topsoils are comparable with magnetic parameters of atmospheric dust, collected (using high-volume samplers) at the same localities.

  18. Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe

    NASA Astrophysics Data System (ADS)

    Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico

    2014-05-01

    In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (< 10 mg/kg) occurs near the Trans-European Suture Zone, one of the main tectonic borders in Europe, and they are limited on the south by the maximum extent limit of the last glaciation. Cobalt and Cr show distribution patterns similar to Ni in both agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.

  19. Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs).

    PubMed

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-03-01

    Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench was investigated, and the soil microbial community-level physiological profiles (CLPPs) were examined. The growth and the stable strontium ( 88 Sr) accumulations of the energy crop S. bicolor grown on the Sr-spiked soil at the level of 0, 50, 100, 200, and 400 mg/kg soil were characterized through pot soil system after the entire growth period (140 days). Correspondingly, the available content of strontium in soil extracted by Mehlich III extraction solution reached 42.0, 71.9, 151.8, and 242.2 mg/kg, respectively. The Sr-polluted soil microbial community was assessed by a Biolog Eco-plate method. The results showed that the spiked Sr significantly increased the height and the stem biomass weight of the plant. Sr contents in roots, stems, and leaves of the sorghum increased linearly (R 2  > 0.95) with the elevation of the Sr-spiked level in soil. The average Sr concentration in roots, stems, and leaves reached 68.9, 61.3, and 132.6 mg/kg dry weight (DW) under Sr-spiked 400 mg/kg soil, respectively. Sr content in tissues decreased in the order of leaves > roots > stems. The bioconcentration factor (BCF; Sr contents in shoots to soil) values of S. bicolor in soil system was lower than 1 (0.21∼0.39) whether based on the spiked Sr level or on the available Sr level in soil. The transfer factor (TF; Sr contents in shoots to roots) values of S. bicolor in soil system usually is higher than 1 or near to 1 (0.92∼1.29). TF values increased while BCF values decreased as the soil Sr increased. The Biolog Eco-plate assay showed that Sr at the spiked level of 400 mg/kg soil enhanced the soil microbial diversity and activity.

  20. Isolation and characterization of Chilembwe and Sinda Rock Phosphate solubilizing soil microorganisms

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to isolate and characterize soil microorganisms capable of solubilizing Chilembwe and Sinda rock phosphates readily available in Zambia. Single isolates were obtained by direct plating and enrichment cultures with succinate, cellulose and glucose as the carbon sources. Isola...

  1. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption.

    PubMed

    Parolo, María Eugenia; Savini, Mónica Claudia; Loewy, Ruth Miriam

    2017-07-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (K OC ) assuming that the main factor that influences the amount sorbed is the organic carbon content (OC) of the soil. However, K OC can vary across a range of soils. The influence of certain soil characteristics on the chlorpyrifos K OC values variation for 12 representative soils of the Northpatagonian Argentinian region with different physicochemical properties was investigated for this study. The chlorpyrifos sorption coefficients normalized by the OC content were experimentally obtained using the batch equilibrium method; the K OC values ranged between 9000-20,000 L kg -1 . The soil characteristics assessed were pH, clay content and spectral data indicative of soil organic matter (SOM) quality measured by FT-IR on the whole soil. The bands considered in the spectroscopic analyses were those corresponding to the aliphatic components, 2947-2858 cm -1 (band A) and the hydrophilic components, 1647-1633 cm -1 (band B). A significant relationship was found (R 2  = 0.66) between chlorpyrifos sorption (K OC ) and the variables pH and A/B height band ratio. The correlation between the values predicted by the derived model and the experimental data was significant (r = 0.89 p < 0.05). Thus, this methodology could be used to estimate chlorpyrifos sorption coefficient through the use of a simple, rapid, and environmentally-friendly measurement. K OC analysis in relation to soil properties represents a valuable contribution to the understanding of the attenuation phenomena of the organic contaminants off-site migration in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  3. Prediction of resilient modulus from soil index properties.

    DOT National Transportation Integrated Search

    2004-11-01

    Subgrade soil characterization in terms of Resilient Modulus (MR) has become crucial for pavement design. For a new : design, MR values are generally obtained by conducting repeated load triaxial tests on reconstituted/undisturbed cylindrical : speci...

  4. Prediction of resilient modulus from soil index properties

    DOT National Transportation Integrated Search

    2004-11-01

    Subgrade soil characterization in terms of Resilient Modulus (MR) has become crucial for pavement design. For a new design, MR values are generally obtained by conducting repeated load triaxial tests on reconstituted/undisturbed cylindrical specimens...

  5. Assessment of acute toxicity tests and rhizotron experiments to characterize lethal and sublethal control of soil-based pests.

    PubMed

    Agatz, Annika; Schumann, Mario M; French, Bryan W; Brown, Colin D; Vidal, Stefan

    2018-03-24

    Characterizing lethal and sublethal control of soil-based pests with plant protection products is particularly challenging due to the complex and dynamic interplay of the system components. Here, we present two types of studies: acute toxcity experiments (homogenous exposure of individuals in soil) and rhizotron experiments (heterogeneous exposure of individuals in soil) to investigate their ability to strengthen our understanding of mechanisms driving the effectivness of the plant protection product. Experiments were conducted using larvae of the western corn rootworm Diabrotica virgifera LeConte and three pesticide active ingredients: clothianidin (neonicotinoid), chlorpyrifos (organophosphate) and tefluthrin (pyrethroid). The order of compound concentrations needed to invoke a specific effect intensity (EC 50 values) within the acute toxicity tests was chlorpyrifos > tefluthrin > clothianidin. This order changed for the rhizotron experiments because application type, fate and transport of the compounds in the soil profile, and sublethal effects on larvae also influence their effectiveness in controlling larval feeding on corn roots. Beyond the pure measurement of efficacy through observing relative changes in plant injury to control plants, the tests generate mechanistic understanding for drivers of efficacy apart from acute toxicity. The experiments have the potential to enhance efficacy testing and product development, and might be useful tools for assessing resistance development in the future. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  6. Characterization of plasma sprayed and explosively consolidated simulated lunar soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, S.J.; Inal, O.T.; Smith, M.F.

    1997-06-01

    Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibitedmore » good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.« less

  7. Hyperfine and radiological characterization of soils of the province of Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Montes, M. L.; Taylor, M. A.; Mercader, R. C.; Sives, F. R.; Desimoni, J.

    2010-03-01

    The depth profile concentration of both natural and anthropogenic gamma-ray-emitter nuclides were determined in soil samples collected in an area located at 34° 54.452' S, 58° 8.365' W, down to 50 cm in depth, using an hyper-pure Ge spectrometer. The soil samples were also characterized by means of Mössbauer spectrometry and X-ray diffraction. The activities of 238U and 232Th natural chains remain constant in depth at 41 Bq/kg and 46 Bq/kg, respectively, while the 40K activity increases from 531 Bq/kg to 618 Bq/kg between 2.5 cm y 25.5 cm of depth. The only anthropogenic detected nuclide is 137Cs, whose activity changes form 1.4 Bq/kg to values lower than the detection limit (LD) for depths below 25 cm, exhibiting a maximum at 10 cm beneath the surface. The Mössbauer spectra show two magnetic sextets associated with α-Fe2O3 and Fe3O4, as well as two Fe+3 Fe+2 doublets, probably originated in octahedral and tetrahedral sites of paramagnetic phases. The Fe3+ paramagnetic signal relative fraction increases up to 82% at the expense of the α-Fe2O3 one when de depth increases. No correlation between Fe3O4 and the 137Cs was identificated.

  8. Ecological Screening Values for Surface Water, Sediment, and Soil: 2005 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friday, G. P.

    2005-07-18

    One of the principal components of the environmental remediation program at the Savannah River Site (SRS) is the assessment of ecological risk. Used to support CERCLA, RCRA, and DOE orders, the ecological risk assessment (ERA) can identify environmental hazards and evaluate remedial action alternatives. Ecological risk assessment is also an essential means for achieving DOE's risk based end state vision for the disposition of nuclear material and waste hazards, the decommissioning of facilities, and the remediation of inactive waste units at SRS. The complexity of an ERA ranges from a screening level ERA (SLERA) to a full baseline ERA. Amore » screening level ecological risk assessments, although abbreviated from a baseline risk assessment, is nonetheless considered a complete risk assessment (EPA, 2001a). One of the initial tasks of any ERA is to identify constituents that potentially or adversely affect the environment. Typically, this is accomplished by comparing a constituent's maximum concentration in surface water, sediment, or soil with an ecological screening value (ESV). The screening process can eliminate many constituents from further consideration in the risk assessment, but it also identifies those that require additional evaluation. This document is an update of a previous compilation (Friday, 1998) and provides a comprehensive listing of ecological screening values for surface water, sediment, and soil. It describes how the screening values were derived and recommends benchmarks that can be used for ecological risk assessment. The sources of these updated benchmarks include the U.S. Environmental Protection Agency (EPA), U.S. Fish and Wildlife Service (USFWS), U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), Oak Ridge National Laboratory (ORNL), the State of Florida, the Canadian Council of Ministers of the Environment (CCME), the Dutch Ministry of the Environment (RIVM), and the scientific literature. It

  9. Geophysical and Geotechnical Characterization of Beta-1,3/1,6-glucan Biopolymer treated Soil

    NASA Astrophysics Data System (ADS)

    Chang, I.; Cho, G.

    2012-12-01

    Bacteria or microbes in soil excrete hydrocarbon (e.g. polysaccharide) by-products which are called biopolymers. These biopolymers (or sometime biofilms) recently begun to make a mark on soil erosion control, aggregate stabilization, and drilling enhancement. However, the biological effect on soil behavior (e.g. bio-clogging or bio-cementation) has been poorly understood. In this study, the bio-cementation and bio-clogging effect induced by the existence of β-1,3/1,6-glucan biopolymers in soil were evaluated through a series of geophysical and geotechnical characterization tests in laboratory. According to the experimental test results, as the β-1,3/1,6-glucan content in soil increases, the compressive strength and shear wave velocity increase (i.e., bio-cementation) while the hydraulic conductivity decreases (i.e., bio-clogging) but the electrical conductivity increases due to the high electrical conductivity characteristic of β-1,3/1,6-glucan fibers. Coefficient of consolidation variation with the increases of β-1,3/1,6-glucan content in soil. SEM image of β-1,3/1,6-glucan treated soil. Fibers are form matices with soil particles.

  10. Subgrade characterization for highway pavement design.

    DOT National Transportation Integrated Search

    2000-12-01

    Subgrade soil characterization expressed in terms of Resilient Modulus (MR) has become crucial for pavement design. For a new design, MR : values are generally obtained by conducting repeated triaxial tests on reconstituted/undisturbed cylindrical sp...

  11. Soil Characterization and Site Response of Marine and Continental Environments

    NASA Astrophysics Data System (ADS)

    Contreras-Porras, R. S.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.; Gaherty, J. B.; Collins, J. A.

    2009-05-01

    An in situ soil properties study was conducted to characterize both site and shallow layer sediments under marine and continental environments. Data from the SCoOBA (Sea of Cortez Ocean Bottom Array) seismic experiment and in land ambient vibration measurements on the urban areas of Tijuana, B. C., and Ensenada, B. C., Mexico were used in the analysis. The goal of this investigation is to identify and to analyze the effect of the physical/geotechnical properties of the ground on the site response upon seismic excitations in both marine and continental environments. The time series were earthquakes and background noise recorded within interval of 10/2005 to 10/2006 in the Gulf of California (GoC) with very-broadband Ocean Bottom Seismographs (OBS), and ambient vibration measurements collected during different time periods on Tijuana and Ensenada urban areas. The data processing and analysis was conducted by means of the H/V Spectral Ratios (HVSPR) of multi component data, the Random Decrement Method (RDM), and Blind Deconvolution (BD). This study presents ongoing results of a long term project to characterize the local site response of soil layers upon dynamic excitations using digital signal processing algorithms on time series, as well as the comparison between the results these methodologies are providing.

  12. Characterization studies and indicated remediation methods for plutonium contaminated soils at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.

    An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970's). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles downwind'' of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less

  13. Characterization studies and indicated remediation methods for plutonium contaminated soils at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.

    An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970`s). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles ``downwind`` of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less

  14. Characterizing Gas Transport in Wetland Soil-Root Systems with Dissolved Gas Tracer Techniques

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Jaffe, P. R.

    2016-12-01

    Soil fluxes of methane (CH4), nitrous oxide (N2O), and other biogenic gases depend on coupling between microbial and physiochemical processes within soil media. The importance of plant-mediated transport in wetland CH4 emissions is well known, but a generalized understanding of gas transfer between pore water and root aerenchyma, and how this process competes with biogeochemical production/consumption of gases beyond CH4, is incomplete [1]. A lack of experimental approaches to characterize transport processes in complex soil-water-plant systems at field scale has limited efforts to close this knowledge gap. In this presentation we describe dissolved gas tracer techniques to tease apart effects of transport from simultaneous biochemical reaction on trace gas dynamics in soils. We discuss a push-pull test with helium and sulfur hexafluoride gas tracers to quantify in situ root-mediated gas transfer kinetics in a wetland soil [2]. A Damköhler number analysis is introduced to interpret the results and evaluate the balance between biochemical reaction and root-driven gas transfer in controlling the fate of CH4 and N2O in vegetated wetland soils. We conclude with a brief discussion of other problems in soil gas dynamics that can be addressed with gas tracer approaches. [1] Blagodatsky and Smith 2012. Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry 47, 78-92. [2] Reid et al. 2015. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determind via push-pull tracer tests. Water Resour. Res. 51, doi:10.1002/2014WR016803.

  15. A rapid method for soil cement design : Louisiana slope value method : part II : evaluation.

    DOT National Transportation Integrated Search

    1966-05-01

    This report is an evaluation of the recently developed "Louisiana Slope Value Method". : The conclusion drawn are based on data from 637 separate samples representing nearly all major soil groups in Louisiana that are suitable for cement stabilizatio...

  16. Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum.

    PubMed

    Gajbhiye, Archana; Rai, Alok R; Meshram, Sudhir U; Dongre, A B

    2010-07-01

    Present investigation is based on the isolation of Bacillus subtilis from cotton rhizosphere and their evaluation as biocontrol agent against Fusarium oxysporum. The production of extracellular hydrolytic enzyme was studied for determining the antagonism. 43% of 21 isolates were identified under the B. subtilis group on the basis of biochemical characterization. 38% isolates showed competitive activity against Fusarium oxysporum and exhibit more than 50% mycelial inhibition in dual culture bioassay. The pot assay of cotton by seed treatment and soil amendment technique under green house condition showed the competent activity of the isolates in preventing the wilting of cotton seedlings due to F. oxysporum infection. SVI values of 30 day old seedlings indicated that the soil inoculation with B. subtilis BP-2 and seed treatment with B. subtilis BP-9 significantly promoted the growth of cotton seedlings. RAPD profiling revealed the diversity in the Bacillus subtilis group, ranging from 10 to 32%. The discriminative pattern among the isolates belonging to the same species was validated by 16S rDNA partial sequencing which identified them into four different strains of B. subtilis.

  17. Some physicochemical properties of surface layer soils shelterbelts in agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jaskulska, R.; Szajdak, L.

    2009-04-01

    Shelterbelts belong to very efficient biogeochemical barriers. They decrease the migration of chemical compounds between ecosystems. The investigations were carried out in the Chlapowski's Agroecological Park in Turew situated 40 km South-West of Poznań, Poland. This area is located on loamy soils, which contains 70% cultivated fields and 14% shelterbelts and small afforestations. The shelterbelts represent different ages and the content of plants as well as humus quantity in surface layer. The first one is 100-year-old shelterbelt, where predominant species is Crataegus monogyna Jacq., Quercus rober L., and Fraxinus excelsior (L.) and is characterized by a well-developed humus level. The other one is 14-year-old shelterbelt. It includes 13 species of trees and revealed a small amount of humus. The soil under both shelterbelts is mineral, grey-brown podzolic in surface layer compound from light loamy sands and weakly loamy sands. The soil samples were taken from surface layer (0-20 cm). pH 1N KCl, hydrolytic acidity, cation-exchange capacity, total proper area, total organic carbon and dissociation constants were determined in soils. The study showed that the soil under shelterbelts revealed acidic properties. It was observed that soils of 100-year-old shelterbelt characterizing lowest values pH = 4.2 revealed highest values of hydrolytic acidity equaled to 7.8 cmol(+)ṡkg-1. The physicochemical properties of investigated soils shoved specific surface areas (22.8 m2ṡg-1), cationic sorptive capacity (12.9 cmol(+)ṡkg-1). TOC (1.6%) 100-year-old shelterbelt was higher than in 14-year-old shelterbelt. The dissociation constants were determined by potentiometric titration. This investigation revealed that the pK value was the highest in the humus of 100-year-old shelterbelt (pKa = 3.1). However, soils of 14-year-old shelterbelt characterized by the lovest pK equaled to 2.8. The surface layer soils shelterbelts in agricultural landscape with good humus development

  18. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    NASA Astrophysics Data System (ADS)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters

  19. Integration of Magnetic and Geotechnical methods for Shallow Subsurface Soil Characterization at Sungai Batu, Kedah, Malaysia

    NASA Astrophysics Data System (ADS)

    Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.

    2018-04-01

    Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.

  20. Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction.

    PubMed

    Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N

    2007-07-01

    The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diameters<45 microm). The 7-d Kd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests

  1. Modern soil system constraints on reconstructing deep-time atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Montañez, Isabel P.

    2013-01-01

    Paleosol carbonate-based estimates of paleo-atmospheric CO2 play a prominent role in constraining radiative-forcing and climate sensitivity in the deep-time. Large uncertainty in paleo-CO2 estimates made using the paleosol-carbonate CO2-barometer, however, arises primarily from their sensitivity to soil-respired CO2 (S(z)). This parameter is poorly constrained due to a paucity of soil CO2 measurements during carbonate formation in modern soils and a lack of widely applicable proxies of paleo-soil CO2. Here the δ13C values of carbonate and soil organic matter (SOM) pairs from 130 Holocene soils are applied to a two-component CO2-mixing equation to define soil order-specific ranges of soil CO2 applicable for constraining S(z) in their corresponding paleosol analogs. Equilibrium carbonate-SOM pairs, characterized by Δ13Ccarb-SOM values of 12.2-15.8‰, define a mean effective fractionation of 14.1‰ and overall inferred total soil CO2 contents during calcite formation of <1000-10,000 ppmv. For those Aridisols and Alfisols, characterized by a net soil-moisture deficit, and their paleosol analogs (Calcisols and Argillisols), a best estimate of S(z) during calcite formation is 1500-2000 ppmv (range of 500-2500 ppmv). Overall higher values (2000-5000 ppmv) are indicated by the subset of these soils characterized by higher moisture content and productivity. Near atmospheric levels (400 ± 200 ppmv) of estimated S(z) are indicated by immature soils, recording their low soil productivity. Vertisols define the largest range in total soil CO2 (<1000 to >25,000 ppmv) reflecting their seasonally driven dynamic hydrochemistry. A S(z) range of 1000-10,000 ppmv is suggested for paleo-Vertisols for which calcite precipitation can be constrained to have occurred in an open system with two-component CO2 mixing, with a best estimate of 2000 ppmv ± 1000 ppmv appropriate for paleo-Vertisols for which evidence of protracted water saturation is lacking. Mollisol pairs define a best

  2. Determination of threshold value of soil water content for field and vegetable plants with lysimeter measurements

    NASA Astrophysics Data System (ADS)

    Knoblauch, S.

    2009-04-01

    Both the potential water consumption of plants and their ability to withdraw soil water are necessary in order to estimate actual evapotranspiration and to predict irrigation timing and amount. In relating to root water uptake the threshold value at which plants reducing evapotranspiration is an important parameter. Since transpiration is linearly correlated to dry matter production, under the condition that the AET/PET-Quotient is smaller than 1.0 (de Wit 1958, Tanner & Sinclair 1983), the dry matter production begins to decline too. Plants respond to drought with biochemical, physiological and morphological modifications in order to avoid damages, for instance by increasing the root water uptake. The objective of the study is to determine threshold values of soil water content and pressure head respectively for different field and vegetable plants with lysimeter measurements and to derive so called reduction functions. Both parameter, potenzial water demand in several growth stages and threshold value of soil water content or pressure head can be determined with weighable field lysimeter. The threshold value is reached, when the evapotranspiration under natural rainfall condition (AET) drop clearly (0.8 PET) below the value under well watered condition (PET). Basis for the presented results is the lysimeter plant Buttelstedt of the Thuringian State Institute of Agriculture. It consist of two lysimeter cellars, each with two weighable monolithic lysimeters. The lysimeter are 2.5 m deep with a surface area of 2 m2 to allow a non-restrictive root growth and to arrange a representative number of plants. The weighing accuracy amounts to 0.05 mm. The percolating water is collected by ceramic suction cups with suction up to 0.3 MPa at a depth of 2.3 m. The soil water content is measured by using neutron probe. One of the two lysimeter cellars represents the will irrigated, the other one the non irrigated and/or reduced irrigated part of field. The soil is a Haplic

  3. A study of the effectiveness of the use of gypsum and volcanic ash against the stability of clay soil in terms of UCT and CBR values

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Hastuty, IP; Lubis, AIU

    2018-02-01

    Soil stabilization is an effort to improve engineering properties of soil. The conventional soil stabilization is by adding additives to the soil such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and volcanic ash. The research purposes were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% volcanic ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT values of original soil and original soil plus 2% gypsum were 1.40 kg/cm2 and 1.66 kg/cm2 respectively. The CBR soaked and unsoaked values of original soil were 4.44% and 6.28% correspondingly. Meanwhile, CBR soaked and CBR unsoaked values of original soil plus 2% gypsum were 6.74% and 8.02% respectively. The research results showed that the additives materials of gypsum and volcanic ash improved the engineering properties of clay. The UCT result from the stabilized soil by 2% gypsum and 10% volcanic ash gave value of 2.79 kg/cm2 (increased 99.28% from original soil). For CBR test, the most effective mixture were in variation of 2% gypsum and 9% volcanic ash which gave value of 9.07% (104.27% increase from original soil) for CBR soaked and 10.29% (63.85% increase from original soil) for CBR unsoaked. The stabilized soil with 2% gypsum and 9% volcanic ash was classified as CL based on USCS and was classified as A-6 (4) based on AASHTO classification system.

  4. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    PubMed

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  5. Effects of Long-term Soil and Crop Management on Soil Hydraulic Properties for Claypan Soils

    USDA-ARS?s Scientific Manuscript database

    Regional and national soil maps and associated databases of soil properties have been developed to help land managers make decisions based on soil characteristics. Hydrologic modelers also utilize soil hydraulic properties provided in these databases, in which soil characterization is based on avera...

  6. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    PubMed

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Hydrodynamic characterization of soils within a representative watershed in northeast Brazil

    NASA Astrophysics Data System (ADS)

    Sales, E. G.; Almeida, C. D. N.; Farias, A. S.; Coelho, V. H. R.

    2014-09-01

    Studies about the infiltration of water in the soil, based on hydraulic conductivity and retention curve, are important to simulate hydrological processes and pollution fluxes. This paper aims to present the hydrodynamic soil behaviour of the Gramame watershed, located in northeast Brazil. This basin is representative of several other watersheds located on the coastal region of northeast Brazil, where sugarcane crops constitute the main land use. For this study, three different land uses and land covers were considered: sugarcane crops, pineapple crops and Atlantic Forest, which is the native forest of this region. The Beerkan method and the BEST program were used in order to get retention and hydraulic conductivity curves. The results show that the highest values of hydraulic conductivity were obtained at points located in native vegetation and deforestation impacts the soil hydrodynamic characteristics.

  8. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a

  9. Chemical characterization of iron-mediated soil organic matter stabilization in tropical subsoils

    NASA Astrophysics Data System (ADS)

    Coward, E.; Plante, A. F.; Thompson, A.

    2015-12-01

    Tropical forest soils contribute disproportionately to the poorly-characterized and persistent deep soil carbon (C) pool. Highly-weathered and often extending one to two meters deep, these soils also contain an abundance of semicrystalline, Fe- and Al-containing short-range-order (SRO) minerals, metastable derivatives of framework silicate and ferromagnesian parent materials. SRO minerals are capable of soil organic matter (SOM) stabilization through sorption or co-precipitation, a faculty enhanced by their high specific surface area (SSA). As such, SRO-mediated organomineral associations may prove a critical, yet matrix-selective, driver of SOM stabilization capacity in tropical soils, particularly at depth. Surface (0-20 cm) and subsoil (50-80 cm) samples were taken from 20 quantitative soil pits dug in the Luquillo Critical Zone Observatory, located in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials, spanning primary mineral contents of 5 to 40%. Selective dissolution procedures were used to isolate distinct forms of Fe-C interactions: (1) sodium pyrophosphate to isolate organo-mineral complexes, (2) hydroxylamine and (3) oxalate to isolate SRO phases, and (4) inorganic dithionite to isolate crystalline Fe oxides. Extracts were analysed for dissolved organic C (DOC) and Fe and Al concentrations to estimate SOM associated with each mineral phase. Soils were also subjected to SSA analysis, 57Fe-Mössbauer spectroscopy and X-ray diffraction before and after extraction to determine the contribution of extracted mineral phases to SOM stabilization capacity. Preliminary results indicate a dominance of secondary (hydr)oxides and kaolin minerals in surface soils, strongly driven by parent material. With depth, however, we observe a marked shift towards SRO mineral phases across both parent materials, suggesting that SRO-mediated organomineral associations are significant contributors to observed C storage in tropical

  10. Soil health in the Mediterranean region: Development and consolidation of a multifactor index to characterize the health of agricultural lands

    NASA Astrophysics Data System (ADS)

    Gil, Eshel; Guy, Levy; Oshri, Rinot; Michael, Borisover; Uri, Yermiyahu; Leah, Tsror; Hanan, Eizenberg; Tal, Svoray; Alex, Furman; Yael, Mishael; Yosef, Steinberger

    2017-04-01

    that are difficult to control), soil-borne diseases, and pesticide fixation and release. We, a group of more than ten Israeli scientists, have recently started a multidisciplinary study aimed at developing and consolidating a multiparameter soil-health index to characterize the health of agricultural soils in Mediterranean regions. Such an index will enable us to quantitatively evaluate the contribution of different cultivation managements and reclamation activities. In order to achieve our goal, a three steps approach was adopted: 1) acquiring a multivariate component database (about 42 variables) that will be quantified in the laboratory and in the fields in two soil types of the most important agricultural region of Israel, at three different soil usage: orchard, field crops and "native" as a reference. The acquired biological, physical, and chemical variables comprise basic quantitative values in the soil health of agricultural land; (2) developing a multivariate soil-health index based on a multivariate correlation, in addition to conducting meetings with farmers and panel discussions with other scientists in the field. The whole study angled to evaluate the relative contribution of each of the biotic and abiotic parameters in order to develop a model related to soil health; and (3) to validate the efficiency of the developed index for characterizing and assessing soil-health state at the various agricultural regions in Israel where conservation and reclamation activities took place. We are open to extend our study to other areas with a Mediterranean climate and look forward to establishing cooperative activities with other research groups.

  11. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR SOIL CHARACTERIZATION (UA-L-11.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures to be followed in splitting and determining the grain size characteristics, electrical conductivity, and pH of the "Composite Soil" and "Foundation Soil" samples. This procedure applies to the general characterization of sedi...

  12. Soil

    USDA-ARS?s Scientific Manuscript database

    Soil is a diverse natural material characterized by solid, liquid, and gas phases that impart unique chemical, physical, and biological properties. Soil provides many key functions, including supporting plant growth and providing environmental remediation. Monitoring key soil properties and processe...

  13. Microbiological characterization of vegetables and their rhizosphere soil in Eastern Poland.

    PubMed

    Kłapeć, Teresa; Wójcik-Fatla, Angelina; Cholewa, Alicja; Cholewa, Grażyna; Dutkiewicz, Jacek

    2016-12-23

    The aim of this study was to investigate the bacteriological quality of 5 kinds of vegetables (lettuce, dill, radish, beetroot, carrot) and their rhizosphere soil, originating from conventional farms located in the Lublin Province of Eastern Poland. A total number of 35 samples of fresh vegetables (FV) taken immediately from soil, 35 samples of soil from rhizosphere of these vegetables (SR) and 35 samples of vegetables sold at retail in the markets in Lublin (VR) were examined. The samples were analysed for the content of: aerobic mesophilic bacteria (AMB) grown at 30°C and 37°C, Gram-negative bacteria of Enterobacteriaceae family, faecal coliform (FC) bacteria, Salmonella spp., and Clostridium perfringens. Median AMB values determined at 30°C for FV, SR and VR were 5.27, 5.00, and 5.00 log 10 CFU g -1 , respectively, being significantly greater compared to those recorded at 37°C. The exceeding of the threshold value of 6.0 log 10 CFU g -1 proposed by Gelosa (1998) was noted only in 5 FV samples grown at 30°C (14.3%), and in 3 FV samples grown at 37°C (8.6%). The threshold value was never exceeded in SR and VR samples. Median concentrations of Enterobacteriaceae determined for FV, SR and VR were 4.03, 3.87, and 3.04 log 10 CFU g -1 , respectively. Eleven species of Enterobacteriaceae were identified in the FV, SR and VR samples. The percent of samples containing Escherichia coli was greatest for VR (22.9%), smaller for FV (17.1%) and smallest for SR (5.7%). The median concentrations of the faecal coliform bacteria (FC), determined by culture at 44°C, were low, amounting to 1.000 log 10 CFU g -1 for FV and SR and 0.00 for VR. All examined vegetable and soil samples tested negative for the presence of Salmonella. The median concentrations of Clostridium perfringens were low, amounting to 0.00 log 10 CFU g -1 for all categories of samples. This bacterium was relatively common in soil samples with the prevalence of 40.0%, but very rare in vegetable samples

  14. Soil pollution in Central district of Saint-Petersburg (Russia)

    NASA Astrophysics Data System (ADS)

    Terekhina, Natalia; Ufimtseva, Margarita

    2015-04-01

    Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of

  15. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  16. Soil organic matter stabilization in grazing highland soils from the Andean Plateau

    NASA Astrophysics Data System (ADS)

    Muñoz, M. A.; Faz, A.; Zornoza, R.

    2012-04-01

    Grasslands comprise approximately 40% of the earth's land area and play a critical role in the global carbon cycle. Apolobamba is a grazing highland located in the Andean Plateau where sustainable vicuna (Vicugna vicugna) management programme is carried out. Understanding the soil properties and the organic matter dynamics is fundamental to determine the grazing impacts in the carbon reservoirs. However, the labile and recalcitrant fractions of C have not been widely studied under field conditions, especially in high grasslands. The objectives of this survey were to: (i) achieve a soil characterization through general physico-chemical properties and (ii) study soil organic matter stabilization through recalcitrant and labile carbon budgets in Apolobamba. Regarding the lastly vicuna censuses carried out in the studied area, eight representative zones with different vicuna densities were selected and soil samples were collected. Other characteristics were also considered to select the study zones: (1) alpaca densities, (2) vegetation communities (3) plant cover and (4) landscape and geo-morphological description. Recalcitrant and water soluble organic carbon were determined as well as recalcitrant index. General soil characterization showed strongly acid and no saline soils with high cation exchange capacity and sandy-loam and loam textures. Total nitrogen contents indicated no limitation for the native vegetation growth. In general, no relationships were found among general soil properties, vicuna and alpaca densities; however, zones with highest alpaca density could be prone to soil erosion based on the available P distribution and the texture results. Additionally, a negative alpaca grazing influence in the soil organic carbon stocks was observed. On the other hand, high soil recalcitrant carbon contents (3.7 ± 0.3 kg m-2) and recalcitrance index (0.8 ± 0.1) were found. Likewise, labile C exhibited similar values to those obtained from researchers conducted in

  17. Characterization of P status in forest soils: stocks, fluxes and models

    NASA Astrophysics Data System (ADS)

    Achat, D. L.; Morel, C.; Bakker, M.; Augusto, L.; Gallet-Budynek, A.; Gonzalez, M.; Jonard, M.

    2010-12-01

    Phosphorus (P) is a critical limiting factor of plant growth and production in many ecosystems, which often require to be fertilized. However, there is an increasing concern regarding appropriate local and global management of phosphorus resources, since the existing finite phosphate reserves are rapidly being depleted. This implies to understand what processes (biological, physico-chemical) are governing soil P availability in agroecosystems, and in particular in forests, which will be increasingly managed for their C-sink potential in the future. We characterized the P status in forest soils of the largest managed pine forest in Europe (Landes of Gascogne, southwest of France) using isotopic and extraction methods, as well as modelling approaches. Total P concentration in topsoils were extremely low, ranging from 7 to 195 mg Pkg-1. The concentration of phosphate ions in solution decreased with depth and was related to the Al and Fe oxide content, which controlled the diffusion of P from the soil solid phase to the solution. The gross amount of diffusive P in one week as determined by 32P isotopic dilution in batch experiments was low, ranging from 0.2 to 52 mg P kg-1 in the topsoil layer, and could be predicted by pedotransfer functions built on the Al and Fe oxide and soil organic matter contents. Organic P represented 80% of total P in litter and 60% in the surface mineral soil layer, suggesting a higher contribution of biological processes to soil P cycling. Biological mineralization of organic P was quantified using a long-term incubation study (154 days) of a low-sorbing soil labelled with 33P, associated with a batch experiment with 32P labelled soil: gross mineralization of dead soil organic matter and diffusive phosphate P were low (<1 mg kg-1 ) compared to the remineralization of microbial P (14mg kg-1). A modelling approach combined to these isotopic measurements showed that 80 % of microbial P turned over very quickly (5-9 days), while 20% turned over

  18. Geochemical characterization of elements in Vitis vinifera cv. Negroamaro grape berries grown under different soil managements.

    PubMed

    Pepi, Salvatore; Coletta, Antonio; Crupi, Pasquale; Leis, Marilena; Russo, Sabrina; Sansone, Luigi; Tassinari, Renzo; Chicca, Milvia; Vaccaro, Carmela

    2016-04-01

    The present geochemical study concerns the impact of viticultural practices in the chemical composition of the grape cultivar "Negroamaro" in Apulia, a southern Italian region renowned for its quality wine. Three types of soil management (SM), two cover cropping with different mixtures, and a soil tillage were considered. For each SM, the vines were irrigated according to two irrigation levels. Chemical composition of soil and of berries of Vitis vinifera cultivar "Negroamaro" were analyzed by X-ray fluorescence, inductively coupled plasma-mass spectrometry and multivariate statistics (linear discrimination analysis). In detail, we investigated major and trace elements behavior in the soil according to irrigation levels, the related index of bioaccumulation (BA) and the relationship between trace element concentration and soil management in "Negroamaro" grapes. The results indicate that soil management affects the mobility of major and trace elements. A specific assimilation of these elements in grapes from vines grown under different soil management was confirmed by BA. Multivariate statistics allowed to associate the vines to the type of soil management. This geochemical characterization of elements could be useful to develop fingerprints of vines of the cultivar "Negroamaro" according to soil management and geographical origin.

  19. Characterization of bacterial communities and functions of two submerged soils from San Vitale park (Italy)

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Chiellini, Carolina; Lagomarsino, Alessandra; Ferronato, Chiara; Vittori Antisari, Livia; Vianello, Gilmo

    2015-04-01

    Subaqueous soils has been introduced in the last edition of the Keys to Soil Taxonomy (Soil surveystaff, 2014), to describe soils covered by a water column of up to 2.5 m where different pedogenetic processes can be recognized. However, the role of bacterial community structure and function in such environments and its potential use as pedogenetic indicator is still largely unknown. Two submerged soils (WAS-2 and WAS-4) were collected from San Vitale park (Italy), a site where the evolution of the landscape from subaqueous wetland to interdunal and dunal system, and the interfacing of freshwater with saltwater, made this site particularly suitable for examining the pedogenetic indicators which can characterize and predict the soil hydromorphism in trasitional ecosystems. The two soils were classified and their physicochemical and morphological features were investigated. Selective media were used to isolate both culturable aerobic and anaerobic (microaerophilic) bacteria associated with each horizon. In WAS-2 seven horizons were identified (depths 4-0, 0-6, 6-13, 13-20, 20-36, 36-59/60, and 59/60-83 cm) while in WAS-4, five horizons were identified (depths 0-14, 14-20, 20-40, 40-45, 45-100 cm) for a total of 12 horizons (samples). For each sample, aerobic bacterial plate count was performed on solid LB medium, coupled with microaerophilic bacterial plate count either on SA500 minimal medium and AYE medium (0.5% soft agar each). Molecular identification (16S rRNA gene sequencing) of ~100 strains isolated from each of the three used medium was performed, for a total of ~300 strains for each sample. To complete the characterization of the microbial communities in all horizons, Next Generation Sequencing (NGS) analysis was carried out with 454 platform on each of the 12 samples. Moreover, the N2O and CH4 emissions were determined from each pedon. All the parameters were used to highlight the similarities and the differences between and within the pedons. The results

  20. Soil organic carbon distribution in roadside soils of Singapore.

    PubMed

    Ghosh, Subhadip; Scharenbroch, Bryant C; Ow, Lai Fern

    2016-12-01

    Soil is the largest pool of organic carbon in terrestrial systems and plays a key role in carbon cycle. Global population living in urban areas are increasing substantially; however, the effects of urbanization on soil carbon storage and distribution are largely unknown. Here, we characterized the soil organic carbon (SOC) in roadside soils across the city-state of Singapore. We tested three hypotheses that SOC contents (concentration and density) in Singapore would be positively related to aboveground tree biomass, soil microbial biomass and land-use patterns. Overall mean SOC concentrations and densities (0-100 cm) of Singapore's roadside soils were 29 g kg -1 (4-106 g kg -1 ) and 11 kg m -2 (1.1-42.5 kg m -2 ) with median values of 26 g kg -1 and 10 kg m -2 , respectively. There was significantly higher concentration of organic carbon (10.3 g kg -1 ) in the top 0-30 cm soil depth compared to the deeper (30-50 cm, and 50-100 cm) soil depths. Singapore's roadside soils represent 4% of Singapore's land, but store 2.9 million Mg C (estimated range of 0.3-11 million Mg C). This amount of SOC is equivalent to 25% of annual anthropogenic C emissions in Singapore. Soil organic C contents in Singapore's soils were not related to aboveground vegetation or soil microbial biomass, whereas land-use patterns to best explain variance in SOC in Singapore's roadside soils. We found SOC in Singapore's roadside soils to be inversely related to urbanization. We conclude that high SOC in Singapore roadside soils are probably due to management, such as specifications of high quality top-soil, high use of irrigation and fertilization and also due to an optimal climate promoting rapid growth and biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China.

    PubMed

    Li, Jian; Wang, Yafei; Kong, Dongdong; Wang, Jinsheng; Teng, Yanguo; Li, Na

    2015-11-01

    In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 μg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 μg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.

  2. 14C tebuconazole degradation in Colombian soils.

    PubMed

    Mosquera, C S; Martínez, M J; Guerrero, J A

    2010-01-01

    Tebuconazole is a fungicide used on onion crops (Allium Fistulosum L) in Colombia. Persistence of pesticides in soils is characterized by the half-life (DT50), which is influenced by their chemical structure, the physical and chemical properties of the soil and the previous soil history. Based on its structural and chemical properties, tebuconazole should be expected to be relatively persistent in soils. Laboratory incubation studies were conducted to evaluate persistence and bond residues of 14C tebuconazole in three soils, two inceptisol (I) and one histosol (H). Textural classifications were: loam (101), loamy sand (102) and loam (H03), respectively. Data obtained followed a first-order degradation kinetics (R2 > or = 0.899) with DT50 values between 158 and 198 days. The production of 14CO2 from the 14C-ring-labelled test chemicals was very low and increased slightly during 63 days in all cases. The methanol extractable 14C-residues were higher than aqueous ones and both decreased over incubation time for the three soils. The formation of bound 14C-residues increased with time and final values were 11.3; 5.55 and 7.87% for 101, 102 and H03 respectively. Soil 101 showed the lowest mineralization rate and the highest bound residues formation, which might be explained by the clay fraction content. In contrast, an inverse behavior was found for soils 102 and H03, these results might be explained by the higher soil organic carbon content.

  3. Fungi from geothermal soils in Yellowstone National Park

    USGS Publications Warehouse

    Redman, R.S.; Litvintseva, A.; Sheehan, K.B.; Henson, J.M.; Rodriguez, R.J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70??C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22??C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.

  4. Fungi from Geothermal Soils in Yellowstone National Park

    PubMed Central

    Redman, Regina S.; Litvintseva, Anastassia; Sheehan, Kathy B.; Henson, Joan M.; Rodriguez, Rusty J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70°C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22°C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature. PMID:10583964

  5. Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: relationships to carbon functionalities.

    PubMed

    Dodla, Syam K; Wang, Jim J; Delaune, Ronald D

    2012-10-01

    Adequate characterization of labile organic carbon (LOC) is essential to the understanding of C cycling in soil. There has been very little evaluation about the nature of LOC characterizations in coastal wetlands, where soils are constantly influenced by different redox fluctuations and salt water intrusions. In this study, we characterized and compared LOC fractions in coastal wetland soils of the Mississippi River deltaic plain using four different methods including 1) aerobically mineralizable C (AMC), 2) cold water extractable C (CWEC), 3) hot water extractable C (HWEC), and 4) salt extractable C (SEC), as well as acid hydrolysable C (AHC) which includes both labile and slowly degradable organic C. Molecular organic C functional groups of these wetland soils were characterized by (13)C solid-state nuclear magnetic resonance (NMR). The LOC and AHC increased with soil organic C (SOC) regardless of wetland soil type. The LOC estimates by four different methods were positively and significantly linearly related to each other (R(2)=0.62-0.84) and with AHC (R(2)=0.47-0.71). The various LOC fractions accounted for ≤4.3% of SOC whereas AHC fraction represented 16-49% of SOC. AMC was influenced positively by O/N-alkyl and carboxyl C but negatively by alkyl C, whereas CWEC and SEC fractions were influenced only positively by carboxyl C but negatively by alkyl C in SOC. On the other hand, HWEC fraction was found to be only influenced positively by carbonyl C, and AHC positively by O/N-alkyl and alkyl C but negatively by aromatic C groups in SOC. Overall these relations suggested different contributions of various molecular organic C moieties to LOC in these wetlands from those often found for upland soils. The presence of more than 50% non-acid hydrolysable C suggested the dominance of relatively stable SOC pool that would be sequestered in these Mississippi River deltaic plain coastal wetland soils. The results have important implications to the understanding of the

  6. Airflow dispersion in unsaturated soil.

    PubMed

    Gidda, T; Cann, D; Stiver, W H; Zytner, R G

    2006-01-05

    Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied.

  7. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    PubMed Central

    Jiménez, Diego Javier; Montaña, José Salvador; Martínez, María Mercedes

    2011-01-01

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA). After digestion of 16S rDNA Y1-Y3 PCR products (1487pb) with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum) grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708) and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis) grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91%) with A. nigricans (AB175651) sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils. PMID:24031700

  8. Soil Eroison, T Values, and Sustainability: A Review and Exercise.

    ERIC Educational Resources Information Center

    Beach, Timothy; Gersmehl, Philip

    1993-01-01

    Reviews issues related to soil erosion and soil loss tolerance in the United States. Describes an instructional plan in which students estimate soil loses in three geographical regions using the Universal Soil Loss Equation (USLE). Recommends integrating the geography of soil erosion with broader conceptual questions in physical geography. (CFR)

  9. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  10. Regional Characterization of Soil Properties via a Combination of Methods from Remote Sensing, Geophysics and Geopedology

    NASA Astrophysics Data System (ADS)

    Meyer, Uwe; Fries, Elke; Frei, Michaela

    2016-04-01

    Soil is one of the most precious resources on Earth. Preserving, using and enriching soils are most complex processes that fundamentally need a sound regional data base. Many countries lack this sort of extensive data or the existing data must be urgently updated when land use recently changed in major patterns. The project "RECHARBO" (Regional Characterization of Soil Properties) aims at the combination of methods from remote sensing, geophysics and geopedology in order to develop a new system to map soils on a regional scale in a quick and efficient manner. First tests will be performed on existing soil monitoring districts, using newly available sensing systems as well as established techniques. Especially hyperspectral and infrared data measured from satellites or airborne platforms shall be combined. Moreover, a systematic correlation between hyperspectral imagery and gamma-ray spectroscopy shall be established. These recordings will be compared and correlated to measurements upon ground and on soil samples to get hold of properties such as soil moisture, soil density, specific resistance plus analytic properties like clay content, anorganic background, organic matter etc. The goal is to generate a system that enables users to map soil patterns on a regional scale using airborne or satellite data and to fix their characteristics with only a limited number of soil samples.

  11. Soil quality and soil degradation in agricultural loess soils in Central Europe - impacts of traditional small-scale and modernized large-scale agriculture

    NASA Astrophysics Data System (ADS)

    Schneider, Christian

    2017-04-01

    The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.

  12. Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm

    NASA Astrophysics Data System (ADS)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.

  13. A mower detector to judge soil sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramlitt, E.T.; Johnson, N.R.

    1995-12-31

    Thermo Nuclear Services (TNS) has developed a mower detector as an inexpensive and fast means for deciding potential value of soil sorting for cleanup. It is a shielded detector box on wheels pushed over the ground (as a person mows grass) at 30 ft/min with gamma-ray counts recorded every 0.25 sec. It mirror images detection by the TNS transportable sorter system which conveys soil at 30 ft/min and toggles a gate to send soil on separate paths based on counts. The mower detector shows if contamination is variable and suitable for sorting, and by unique calibration sources, it indicates detectionmore » sensitivity. The mower detector has been used to characterize some soil at Department of Energy sites in New Jersey and South Carolina.« less

  14. The impact of fog on soil moisture dynamics in the Namib Desert

    NASA Astrophysics Data System (ADS)

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Vogt, Roland; Li, Lin; Seely, Mary K.

    2018-03-01

    Soil moisture is a crucial component supporting vegetation dynamics in drylands. Despite increasing attention on fog in dryland ecosystems, the statistical characterization of fog distribution and how fog affects soil moisture dynamics have not been seen in literature. To this end, daily fog records over two years (Dec 1, 2014-Nov 1, 2016) from three sites within the Namib Desert were used to characterize fog distribution. Two sites were located within the Gobabeb Research and Training Center vicinity, the gravel plains and the sand dunes. The third site was located at the gravel plains, Kleinberg. A subset of the fog data during rainless period was used to investigate the effect of fog on soil moisture. A stochastic modeling framework was used to simulate the effect of fog on soil moisture dynamics. Our results showed that fog distribution can be characterized by a Poisson process with two parameters (arrival rate λ and average depth α (mm)). Fog and soil moisture observations from eighty (Aug 19, 2015-Nov 6, 2015) rainless days indicated a moderate positive relationship between soil moisture and fog in the Gobabeb gravel plains, a weaker relationship in the Gobabeb sand dunes while no relationship was observed at the Kleinberg site. The modeling results suggested that mean and major peaks of soil moisture dynamics can be captured by the fog modeling. Our field observations demonstrated the effects of fog on soil moisture dynamics during rainless periods at some locations, which has important implications on soil biogeochemical processes. The statistical characterization and modeling of fog distribution are of great value to predict fog distribution and investigate the effects of potential changes in fog distribution on soil moisture dynamics.

  15. Controlled release formulations of Atrazine and Mesotrione: characterization and sorption on soils

    NASA Astrophysics Data System (ADS)

    Pinheiro Dick, D.; Gomes de Ávila, L.; Benvenuti Leite, S.; Raffin Pohlmann, A.

    2009-04-01

    Atrazine is a widely used herbicide on corn and sugar cane plantations, which, along with soybeans, are the most productive crops in Brazil and are responsible for 36.5% of the annual national consumption of herbicides. Mesotrione is a new herbicide registered in the last years used for controlling weeds in corn plantations as a tentative substitution for atrazine. After its application in the field, reactions between the herbicide and chemical groups from the soil matrix surface occur, and this complexed form remains in the soil, representing a potential source for environmental contamination and also affecting its agronomic efficiency. Therefore, the application of herbicides associated to carrier systems may represent an alternative to mitigate the environmental impact caused by their intense usage, considering that the interaction between the soil matrix and the xenobiotic is reduced, and thus, diminishes the recommended dosis and reduces the environmental pollution. The objectives of this study are to evaluate the chemical and morphological characteristics of controlled release formulations of atrazine (ATZ) and of mesotrione (MES) and to investigate their sorptive behavior in three representative Brazilian soils. To assess the feasibility of using these associated systems, four formulations (SGATZ) containing different concentrations of atrazine and four formulations (SGMES) containing different levels of mesotrione (MES) were synthesized by the sol-gel method (SG), using tetraetil-ortho-silicate as precursor and NaF as catalyst. The formulations were characterized by elemental analysis, adsorption and desorption isotherms of nitrogen, thermal analysis (DSC), scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). For comparison, samples of pure xerogel (SG), commercial MES (Callisto-Syngenta), pure ATZ (99% of active principle, Milênia), granulated ATZ (Gesaprim GrDA Syngenta) and dried commercial ATZ (Nortox 500 SC) were analyzed. The

  16. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  17. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water

    USGS Publications Warehouse

    Coupe, R.H.

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.

  18. Relationships between nuclear magnetic resonance parameters used to characterize weathering spilled oil and soil toxicity in central Patagonia.

    PubMed

    Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma

    2014-01-01

    Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.

  19. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    USGS Publications Warehouse

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  20. Pre-incubation in soil improves the nitrogen fertiliser value of hair waste.

    PubMed

    Malepfane, N M; Muchaonyerwa, P

    2018-01-25

    Global generation of human hair waste and its disposal at landfills could contribute to the leaching of nitrates into ground water. High concentrations of nitrogen (N) and other elements suggest that the waste could be a source of plant nutrients and differences in ethnic hair types could affect nutrient release and fertiliser value. The objective of this study was to determine the effects of hair type, as an N source, and pre-incubation time on dry-matter yield, nutrient uptake by spinach (Spinacia oleracea L.) and residual soil nutrients. Salons in Pietermaritzburg provided bulk African and Caucasian hair waste, without distinguishing age, sex, health status or livelihood of the individuals. The hair waste was analysed for elemental composition. A pot experiment was set up under glasshouse conditions. The hair waste was incorporated (400 kg N ha -1 ) into a loamy oxisol and pre-incubated for 0, 28, 56 and 84 days before planting spinach. Potassium (K) and phosphorus (P) were corrected to the same level for all treatments. Spinach seedlings were then cultivated for 6 weeks. Shoot dry-matter and the uptake of all nutrients, except P, were increased by the pre-incubation of hair. African hair pre-incubated for 28 days resulted in greater dry-matter, N, K, Mn and S uptake than Caucasian hair. Increasing pre-incubation resulted in a decline in the residual soil pH and exchangeable K. The findings suggested that pre-incubation improves the N fertiliser value of hair and that African hair has greater value than Caucasian hair when pre-incubated for a short period.

  1. Linking Carbon Flux Dynamics and Soil Structure in Dryland Soils

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Caylor, K. K.

    2016-12-01

    Biological sources in the form of microbes and plants play a fundamental role in determining the magnitude of carbon flux. However, the geophysical structure of the soil (which the carbon must pass through before entering the atmosphere) often serves as a constraining entity, which has the potential to serve as instigators or mitigators of those carbon and hydrologic flux processes. We characterized soil carbon dynamics in three dryland soil systems: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Structure of the soil systems, with a focus on the macro-crack structure, were characterized using a combined resin-casting/X-ray imaging technique. Results show fundamental differences in carbon dynamics between the different soil systems/structures: control soils have gaussian distributions of carbon flux that decrease with progressive drying of the soil, while biocompacted soils exhibit exponentially distributed fluxes that do not regularly decrease with increased drying of the soil. Bioturbated soils also exhibit an exponential distribution of carbon flux, though at a much higher magnitude. These differences are evaluated in the context of the underlying soil structure: while the control soils exhibit a shallow and narrow crack structure, the biocompacted soils exhibit a "systematic" crack network with moderate cracking intensity and large depth. The deep crack networks of the biocompacted soils may serve to physically enhance an otherwise weak source of carbon via advection and/or convection, inducing fluxes that are equal or greater than an otherwise carbon-rich soil. The bioturbated soils exhibit a "surficial" crack network that is shallow but extensive, but additionally have deep holes known to convectively vent carbon, which may explain their periodically large carbon fluxes. Our results

  2. DEVELOPING ECOLOGICAL SOIL SCREENING LEVELS: BENCHMARK VALUES FOR SOIL INVERTEBRATES, PLANTS, AND MICROBIAL FUNCTIONS

    EPA Science Inventory

    Soils are repositories for environmental contaminants (COCs) in terrestrial ecosystems. Time, effort, and money repeatedly are invested in literature-based evaluations of potential soil-ecotoxicity...

  3. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  4. Is received dose from ingested soil independent of soil PAH concentrations?-Animal model results.

    PubMed

    Peters, Rachel E; James, Kyle; Cave, Mark; Wickstrom, Mark; Siciliano, Steven D

    2016-09-01

    Polycyclic aromatic hydrocarbon (PAH) bioavailability from ingested soils will vary between soils; however, the nature of this variation is not well characterized. A juvenile swine model was used to link external exposure to internal benzo[a]pyrene (BaP) and anthracene exposure following oral PAH ingestion of 27 different impacted site soils, soots, or spiked artificial soils. Internal exposure of BaP and anthracene, represented by area under the plasma-time curve, did not relate to soil concentration in impacted site soils, but did relate in spiked artificial soil. Point of departure modeling identified soil PAH concentrations greater than 1900 mg kg(-1) as the point where area under the curve becomes proportional to external dose. A BaP internal exposure below 1900 mg kg(-1) had an upper 95% confidence interval estimate of 33% of external exposure. Weak relationships between soil:simulated gastrointestinal fluid PAH partitioning and area under the curve values suggest that differences in internal PAH exposure between soils may not be dominated by differences in PAH partitioning. The data seem to best support exposure assessment assuming constant internal PAH exposure below soil concentrations of 1900 mg kg(-1) . However, because constant internal exposure would challenge several existing paradigms, a bioavailability estimate of 33% of the external exposure is suggested as a likely workable solution. Environ Toxicol Chem 2016;35:2261-2269. © 2016 SETAC. © 2016 SETAC.

  5. Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields

    NASA Astrophysics Data System (ADS)

    Xu, Yiming; Smith, Scot E.; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P.

    2017-01-01

    Soil prediction models based on spectral indices from some multispectral images are too coarse to characterize spatial pattern of soil properties in small and heterogeneous agricultural lands. Image pan-sharpening has seldom been utilized in Digital Soil Mapping research before. This research aimed to analyze the effects of pan-sharpened (PAN) remote sensing spectral indices on soil prediction models in smallholder farm settings. This research fused the panchromatic band and multispectral (MS) bands of WorldView-2, GeoEye-1, and Landsat 8 images in a village in Southern India by Brovey, Gram-Schmidt and Intensity-Hue-Saturation methods. Random Forest was utilized to develop soil total nitrogen (TN) and soil exchangeable potassium (Kex) prediction models by incorporating multiple spectral indices from the PAN and MS images. Overall, our results showed that PAN remote sensing spectral indices have similar spectral characteristics with soil TN and Kex as MS remote sensing spectral indices. There is no soil prediction model incorporating the specific type of pan-sharpened spectral indices always had the strongest prediction capability of soil TN and Kex. The incorporation of pan-sharpened remote sensing spectral data not only increased the spatial resolution of the soil prediction maps, but also enhanced the prediction accuracy of soil prediction models. Small farms with limited footprint, fragmented ownership and diverse crop cycle should benefit greatly from the pan-sharpened high spatial resolution imagery for soil property mapping. Our results show that multiple high and medium resolution images can be used to map soil properties suggesting the possibility of an improvement in the maps' update frequency. Additionally, the results should benefit the large agricultural community through the reduction of routine soil sampling cost and improved prediction accuracy.

  6. Characterizing Martian Soils: Correlating Orbital Observations with Chemistry and Mineralogy from Landed Missions

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2010-12-01

    Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to <125 µm. Both the dried pellet spectrum and the crushed pellet spectrum are darker than the original spectrum of the same composition. Erosion and weathering are likely the dominant

  7. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  8. Algological and Mycological Characterization of Soils under Pine and Birch Forests in the Pasvik Reserve

    NASA Astrophysics Data System (ADS)

    Korneikova, M. V.; Redkina, V. V.; Shalygina, R. R.

    2018-02-01

    The structure of algological and mycological complexes in Al-Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpina, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria-algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest

  9. Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) can limit crop production in many soils, but P loss from soils may impair water quality; soil testing can guide fertilizer recommendations to optimize crop growth while minimizing P loss. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis...

  10. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    NASA Astrophysics Data System (ADS)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  11. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical

  12. Estimation of factors from natural and anthropogenic radioactivity present in the surface soil and comparison with DCF values.

    PubMed

    Ranade, A K; Pandey, M; Datta, D

    2013-01-01

    A study was conducted to evaluate the absorbed rate coefficient of (238)U, (232)Th, (40)K and (137)Cs present in soil. A total of 31 soil samples and the corresponding terrestrial dose rates at 1 m from different locations were taken around the Anushaktinagar region, where the litho-logy is dominated by red soil. A linear regression model was developed for the estimation of these factors. The estimated coefficients (nGy h(-1) Bq(-1) kg(-1)) were 0.454, 0.586, 0.035 and 0.392, respectively. The factors calculated were in good agreement with the literature values.

  13. Study of microarthopod communities to assess soil quality in different managed vineyards

    NASA Astrophysics Data System (ADS)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-01-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly requested. The determination of communities' structures of edaphic fauna can represent an efficient tool. In this study, in some vineyards in Piedmont (Italy), the effects of two different management systems, organic and integrated pest management (IPM), on soil biota were evaluated. As microarthropods living in soil surface are an important component of soil ecosystem interacting with all the other system components, a multi disciplinary approach was adopted by characterizing also some soil physical and chemical characteristics (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate). Soil samplings were carried out on Winter 2011 and Spring 2012. All specimens were counted and determined up to the order level. The biological quality of the soil was defined through the determination of ecological indices, such as QBS-ar, species richness and indices of Shannon-Weaver, Pielou, Margalef and Simpson. The mesofauna abundance was affected by both the type of management and the soil texture. The analysis of microarthropod communities by QBS-ar showed higher values in organic than in IPM managed vineyards; in particular, the values registered in organic vineyards were similar to those characteristic of preserved soils.

  14. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.

    PubMed

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami

    2007-08-01

    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  15. Effects of Salt Accumulation in Soil by Evaporation on Unsaturated Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, Q.

    2017-12-01

    Soil salinization is one type of soil degradation caused by saline groundwater evaporation. Salt accumulation in the soil will change the pore structure of soil, which should change the unsaturated soil hydraulic properties including the soil water characteristic curve (SWCC). To investigate the effect of salt accumulation on the SWCC and find the best suitable SWCC model to characterize the relationship of soil moisture and soil matrix potential, we have conducted laboratory SWCC experiments with the soil columns saturated by NaCl solution with different concentration (deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L). As the concentration of initial solution increases, the matrix potential corresponding to the same moisture increases. As the water was evaporated, the salt would precipitate in soil continuously, which would decrease the porosity of soils and increase the negative pressure of soils. With higher initial concentration, the more salt accumulation caused the more residual water content in the soils. For van Genuchten-Mualem model, the residual water contents θr were 0.0159, 0.0181, 0.0182, 0.0328, 0.0312, 0.0723, 0.0864 in the columns initially saturated by deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L, respectively. The van Genuchten-Mualem model, Fredlund-Xing model, Gardern model, Mckee-Bumb model and Brooks-Corey model were fitted by MATLAB with the experiments data, and the fitted coefficients were compared. The Fredlund-Xing model has the best fitting coefficients and the calculated value was consistent with the observed data.

  16. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  17. Cadmium background concentrations to establish reference quality values for soils of São Paulo State, Brazil.

    PubMed

    de Oliveira, Vinicius Henrique; de Abreu, Cleide Aparecida; Coelho, Ricardo Marques; Melo, Leônidas Carrijo Azevedo

    2014-03-01

    Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg(-1), and the background concentration was 0.5 mg kg(-1). After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg(-1) of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg(-1)) was higher than in Ultisols (0.3 mg kg(-1)). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R (2) = 0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.

  18. Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals

    DTIC Science & Technology

    1990-04-01

    Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental

  19. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  20. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of

  1. Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils.

    PubMed

    Sydow, Mateusz; Chrzanowski, Łukasz; Cedergreen, Nina; Owsianiak, Mikołaj

    2017-08-01

    Development of comparative toxicity potentials of cationic metals in soils for applications in hazard ranking and toxic impact assessment is currently jeopardized by the availability of experimental effect data. To compensate for this deficiency, data retrieved from experiments carried out in standardized artificial soils, like OECD soils, could potentially be tapped as a source of effect data. It is, however, unknown whether such data are applicable to natural soils where the variability in pore water concentrations of dissolved base cations is large, and where mass transfer limitations of metal uptake can occur. Here, free ion activity models (FIAM) and empirical regression models (ERM, with pH as a predictor) were derived from total metal EC50 values (concentration with effects in 50% of individuals) using speciation for experiments performed in artificial OECD soils measuring ecotoxicological endpoints for terrestrial earthworms, potworms, and springtails. The models were validated by predicting total metal based EC50 values using backward speciation employing an independent set of natural soils with missing information about ionic composition of pore water, as retrieved from a literature review. ERMs performed better than FIAMs. Pearson's r for log 10 -transformed total metal based EC50s values (ERM) ranged from 0.25 to 0.74, suggesting a general correlation between predicted and measured values. Yet, root-mean-square-error (RMSE) ranged from 0.16 to 0.87 and was either smaller or comparable with the variability of measured EC50 values, suggesting modest performance. This modest performance was mainly due to the omission of pore water concentrations of base cations during model development and their validation, as verified by comparisons with predictions of published terrestrial biotic ligand models. Thus, the usefulness of data from artificial OECD soils for global-scale assessment of terrestrial ecotoxic impacts of Cd, Pb and Zn in soils is limited due to

  2. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    PubMed

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  3. Influence of Herbicide Triasulfuron on Soil Microbial Community in an Unamended Soil and a Soil Amended with Organic Residues

    PubMed Central

    Pose-Juan, Eva; Igual, José M.; Sánchez-Martín, María J.; Rodríguez-Cruz, M. S.

    2017-01-01

    The effect of organic amendments and pesticides on a soil microbial community has garnered considerable interest due to the involvement of microorganisms in numerous soil conservation and maintenance reactions. The aim of this work was to assess the influence on a soil microbial community of the simultaneous application of the herbicide triasulfuron at three doses (2, 10, and 50 mg kg-1), with an organic amendment [sewage sludge (SS) or green compost (GC)]. Dissipation kinetics, soil microbial biomass, dehydrogenase activity (DHA) and respiration, and the profile of phospholipid fatty acids (PLFAs) extracted from the soil, were determined in unamended (S) soil and amended (S+SS and S+GC) ones. Triasulfuron dissipation followed the single first-order kinetics model. Half-life (DT50) values were higher in the amended soils than in the unamended one for the 10 and 50 mg kg-1 doses. The dissipation rates were lower in the S+GC soil for the three herbicide doses applied. In general, soil biomass, DHA and respiration values increased in SS- and GC-amended soils compared to the unamended one. DHA values decreased (S and S+SS) or increased (S+GC) with the incubation time of soil with herbicide at the different doses applied. Respiration values increased with the herbicide doses applied and decreased with the incubation time, although maximum values were obtained for soils treated with the highest dose after 70 days of incubation. PLFA analysis indicated different effects of triasulfuron on the soil microbial community structure depending on the organic amendments. While the increasing triasulfuron doses resulted in deeper alterations in the S soil, the time after triasulfuron application was the most important variation in the S+SS and S+GC soils. The overall results indicate that the soil amendment has an effect on herbicide dissipation rate and the soil microbial community. Initially, a high dose of triasulfuron had detrimental effects on the soil microbial community

  4. Dynamic Site Characterization and Correlation of Shear Wave Velocity with Standard Penetration Test ` N' Values for the City of Agartala, Tripura State, India

    NASA Astrophysics Data System (ADS)

    Sil, Arjun; Sitharam, T. G.

    2014-08-01

    Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes ( M w > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity ( V s) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets ( V s profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity ( V s30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V s30 and SPT-N classified the study area as seismic site class D and E categories, indicating that

  5. The value of metals bioavailability and speciation information for ecological risk assessment in arid soils.

    PubMed

    Suedel, Burton C; Nicholson, Andrew; Day, Christopher H; Spicer, James

    2006-10-01

    When evaluating the risk chemicals may pose to mammals and birds in ecological risk assessments (ERAs), it is common practice to conservatively assume that all (100%) of a chemical in an environmental medium is bioavailable to receptors. This assumption often leads to overestimating ecological risk and may ultimately result in costly and unnecessary risk management actions. While effects of bioavailability and speciation of metals such as arsenic (As) and lead (Pb) have been considered in human health risk assessment, these effects are rarely taken into consideration when assessing risks to mammals and birds. An ERA was conducted at the former Col-Tex refinery site in Colorado City, Texas, USA, to characterize risks to select wildlife species from exposure to chromium (Cr) and Pb found in soils. The focus on these metals was based on results of a screening-level ERA that found that Cr and Pb were posing ecological risks at the site. Soils were analyzed for total Cr and Pb, trivalent Cr (CrIII), hexavalent Cr (CrVI), organic Pb, and the bioavailability and speciation of Pb. Results for Pb and Cr indicated that >94% of the Cr was present as the less toxic and immobile Cr(III) and that >99% of the Pb in soils was present as inorganic Pb. Lead bioaccessibility measured by in vitro testing ranged from 8% to 77.8%, depending on location of individual soil samples. Results demonstrated that Pb and Cr bioavailability and speciation information can raise soil cleanup concentrations while being protective of ecological receptors. The costs of performing the ERA were de minimus compared to the reduction in remediation costs at the site. The refined hazard estimates allowed informed decision making in the management and segregation of soils, allowing for effective risk management at the site.

  6. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities.

    PubMed

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J; Mora, María de la Luz; Pozo, María J

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  7. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Local versus field scale soil heterogeneity characterization - a challenge for representative sampling in pollution studies

    NASA Astrophysics Data System (ADS)

    Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.

    2015-06-01

    This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.

  9. Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge.

    PubMed

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy

    2012-01-01

    The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha(-1) and 26 Mg·ha(-1)) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments.

  10. Community Level Physiological Profiles (CLPP), Characterization and Microbial Activity of Soil Amended with Dairy Sewage Sludge

    PubMed Central

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy

    2012-01-01

    The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha−1 and 26 Mg·ha−1) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon–Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments. PMID:22737006

  11. Soil organic matter persistence as a stochastic process: age and transit time distributions of carbon in soils

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos

    2017-04-01

    The question of why some organic matter is more persistent than other that decomposes quickly in soils has sparkled a large amount of research in recent years. Persistence is commonly characterized as the turnover or mean residence time of specific compounds or soil organic matter (SOM) pools. However, turnover and residence times are ambiguous measures of persistence, which is better characterized by the probability distribution of ages in the system and in particular pools. We calculated age distributions for a wide range of SOM models, which showed long-tail distributions far from the mean value. Age and transit time distributions from a variety of models also showed: 1) transit times are lower than ages of SOM, 2) turnover times differ significantly from mean ages in slow cycling pools, 3) change in the inputs, without changes in the allocation of photosynthetic products, has no effect on transit times, but does affect system and pool ages. We propose an index to assess persistence of C in soils that can be derived from observations alone or from models. We also ask whether random chance is an important contributor to the persistence of SOM.

  12. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property

  13. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    PubMed

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Soil porosity correlation and its influence in percolation dynamics

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alfredo; Capa-Morocho, Mirian; Ruis-Ramos, Margarita; Tarquis, Ana M.

    2016-04-01

    The prediction of percolation in natural soils is relevant for modeling root growth and optimizing infiltration of water and nutrients. Also, it would improve our understanding on how pollutants as pesticides, and virus and bacteria (Darnault et al., 2003) reach significant depths without being filtered out by the soil matrix (Beven and Germann, 2013). Random walk algorithms have been used successfully to date to characterize the dynamical characteristics of disordered media. This approach has been used here to describe how soil at different bulk densities and with different threshold values applied to the 3D gray images influences the structure of the pore network and their implications on particle flow and distribution (Ruiz-Ramos et al., 2009). In order to do so first we applied several threshold values to each image analyzed and characterized them through Hurst exponents, then we computed random walks algorithms to calculate distances reached by the particles and speed of those particles. At the same time, 3D structures with a Hurst exponent of ca 0.5 and with different porosities were constructed and the same random walks simulations were replicated over these generated structures. We have found a relationship between Hurst exponents and the speed distribution of the particles reaching percolation of the total soil depth. REFERENCES Darnault, C.J. G., P. Garnier, Y.J. Kim, K.L. Oveson, T.S. Steenhuis, J.Y. Parlange, M. Jenkins, W.C. Ghiorse, and P. Baveye (2003), Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments, Water Environ. Res., 75, 113-120. Beven, Keith and Germann, Peter. 2013. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. DOI: 10.1002/wrcr.20156. Ruiz-Ramos, M., D. del Valle, D. Grinev, and A.M. Tarquis. 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, 11, EGU2009-6234.

  15. Isolation and characterization of oxalotrophic bacteria from tropical soils.

    PubMed

    Bravo, Daniel; Braissant, Olivier; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2015-01-01

    The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.

  16. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    PubMed Central

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J.; Mora, María de la Luz; Pozo, María J.

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous “Mapuche” communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control. PMID:28861064

  17. Spatial interpolation of soil organic carbon using apparent electrical conductivity as secondary information

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.

    2009-04-01

    Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between

  18. Fractionation and characterization of soil organic carbon during transition to organic farming

    NASA Astrophysics Data System (ADS)

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  19. Microscopic and spectroscopic characterization of humic substances from a compost amended copper contaminated soil: main features and their potential effects on Cu immobilization.

    PubMed

    Medina, Jorge; Monreal, Carlos; Chabot, Denise; Meier, Sebastián; González, María Eugenia; Morales, Esteban; Parillo, Rita; Borie, Fernando; Cornejo, Pablo

    2017-06-01

    We characterized humic substances (HS) extracted from a Cu-contaminated soil without compost addition (C) or amended with a wheat straw-based compost (WSC) (H1), co-composted with Fe 2 O 3 (H2), or co-composted with an allophane-rich soil (H3). Extracted HS were characterized under electron microscopy (SEM/TEM), energy-dispersive X-ray (X-EDS), and Fourier transform infrared (FTIR) spectroscopy. In addition, HS extracted from WSC (H4) were characterized at pH 4.0 and 8.0 with descriptive purposes. At pH 4.0, globular structures of H4 were observed, some of them aggregating within a large network. Contrariwise, at pH 8.0, long tubular and disaggregated structures prevailed. TEM microscopy suggests organo-mineral interactions at scales of 1 to 200 nm with iron oxide nanoparticles. HS extracted from soil-compost incubations showed interactions at nanoscale with minerals and crystal compounds into the organic matrix of HS. Bands associated to acidic functional groups of HS may suggest potential sorption interactions with transition metals. We conclude that metal ions and pH have an important role controlling the morphology and configuration of HS from WSC. Characterization of H4 extracted from WSC showed that physicochemical protection of HS could be present in composting systems treated with inorganic materials. Finally, the humified fractions obtained from compost-amended soils may have an important effect on metal-retention, supporting their potential use in metal-contaminated soils.

  20. Delineation of colluvial soils in different soil regions

    NASA Astrophysics Data System (ADS)

    Zádorová, Tereza; Penížek, Vít; Vašát, Radim

    2015-04-01

    Colluvial soils are considered to be the direct result of accelerated soil erosion in agricultural landscape, resulting in accumulation of humus-rich soil material in terrain depressions and toe slopes. They represent an important soil cover element in landscapes influenced by soil erosion and form an important soil organic carbon (SOC) pool. Delineation of colluvial soils can identify areas with high sediment input and potential deep organic carbon storage and thus improve our knowledge on soil mass and SOC stock redistribution in dissected landscapes. Different prediction methods (ordinary kriging, multiple linear regression, supervised fuzzy classification, artificial neural network, support vector machines) for colluvial soils delineation have been tested in three different soil regions (Cambisol, Luvisol and Chernozem) at two scales (plot and watershed) in the Czech Republic. The approach is based on exploitation of relationship between soil and terrain units and assumes that colluvial soil can be defined by particular range of terrain attributes values. Terrain attributes derived from precise DEMs were used as predictors in applied models. The soil-terrain relationship was assessed using a large dataset of field investigations (300 cores at each plot and 100 cores at each watershed). Models were trained at plot scale (15-33 ha) and the best performing model was then calibrated and validated at watershed scale (25-55 km2). The study proved high potential of terrain variables as predictors in colluvial soil delineation. Support vector machines method was the best performing method for colluvial soil occurrence prediction at all the three sites. However, significant differences in performance have been identified among the studied plots. The best results were obtained in Luvisol region where both determination coefficient and prediction accuracy reached the highest values. The model performance was satisfactory also in Chernozem region. The model showed its

  1. Agricultural areas in potentially contaminated sites: characterization, risk, management.

    PubMed

    Vanni, Fabiana; Scaini, Federica; Beccaloni, Eleonora

    2016-01-01

    In Italy, the current legislation for contaminants in soils provides two land uses: residential/public or private gardens and commercial/industrial; there are not specific reference values for agricultural soils, even if a special decree has been developed and is currently going through the legislative approval process. The topic of agricultural areas is relevant, also in consideration of their presence near potentially contaminated sites. Aim and results. In this paper, contamination sources and transport modes of contaminants from sources to the target in agricultural areas are examined and a suitable "conceptual model" to define appropriate characterization methods and risk assessment procedures is proposed. These procedures have already been used by the National Institute of Health in various Italian areas characterized by different agricultural settings. Finally, specific remediation techniques are suggested to preserve soil resources and, if possible, its particular land use.

  2. δ13C values of soil organic matter in semiarid grassland with mesquite (Prosopis) encroachment in southeastern Arizona

    USGS Publications Warehouse

    Biggs, Thomas H.; Quade, Jay; Webb, Robert H.

    2002-01-01

    Over the past century, C3 woody plants and trees have increased in abundance in many semiarid ecosystems, displacing native C4 grasses. Livestock grazing, climatic fluctuations, and fire suppression are several reasons proposed for this shift. Soil carbon isotopic signatures are an ideal technique to evaluate carbon turnover rates in such ecosystems. On the gunnery ranges of Fort Huachuca in southeastern Arizona, study sites were established on homogeneous granitic alluvium to investigate the effects of fire frequency on δ13C values in surface soil organic matter (SOM). These ranges have had no livestock grazing for 50 years and a well-documented history of fires. Prosopis velutina Woot. (mesquite) trees have altered SOM δ13C pools by the concentration of plant nutrients and the addition of isotopically light litter. These soil carbon changes do not extend beyond canopy margins. Elevated total organic carbon (TOC), plant nutrient (N and P) concentrations, and depleted SOM δ13C values are associated with C3Prosopis on an unburned plot, which enables recognition of former Prosopis-occupied sites on plots with recent fire histories. Elevated nutrient concentrations associated with former Prosopis are retained in SOM for many decades. Surface SOM δ13C values indicate the estimated minimum turnover time of C4-derived carbon beneath large mature Prosopis is about 100–300 years. In contrast, complete turnover of original C3 carbon to C4 carbon under grasslands is estimated to take a minimum of 150–500 years. Our study confirms that C4 grass cover has declined over the past 100 years, although isolated C3 trees or shrubs were not uncommon on the historic C4-dominated grasslands. We find evidence in surface soil layers for a modern C3 plant expansion reflected in the substantial shift of SOM δ13C values from C4 grasses to C3 shrublands.

  3. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse

    PubMed Central

    Giné, Ariadna; Carrasquilla, Marc; Martínez-Alonso, Maira; Gaju, Núria; Sorribas, Francisco J.

    2016-01-01

    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2–6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non

  4. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse.

    PubMed

    Giné, Ariadna; Carrasquilla, Marc; Martínez-Alonso, Maira; Gaju, Núria; Sorribas, Francisco J

    2016-01-01

    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2-6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non

  5. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  6. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana

    2014-09-01

    The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (χlf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the χlf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (κis) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between χlf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier

  7. Characterization of magnetically enhanced buried soil layer in arid environment

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Grison, H.; Kapicka, A.; Silva, P. F.; Font, E.

    2011-12-01

    Magnetic susceptibility (MS) of soils, reflecting the presence of magnetite/maghemite, can be used in several environmental applications. Magnetic topsoil mapping is often used to outline areas polluted by atmospherically deposited dust. However, in these studies, the magnetically enhanced layer is usually shallow, some 5-6 cm under the surface. In our contribution, we present the case when the magnetic susceptibility is enhanced in deeper soil layers. Investigated soils are mostly sandy soils, from several localities in Portugal, in a zone with arid climate. Sample profiles were collected always in forests or forest stands with pines, cork oaks or eucalyptus trees in two areas: around the city of Sines (on the coast south of Lisbon) and around the city of Abrantes (inland, north-east of Lisbon). Both areas are presumably affected by one major source of pollution - power plant. Surface magnetic susceptibility measurements were performed by Bartington MS2D loop; values vary from 10 to 300 x 10-5 SI units. Vertical distribution of magnetic susceptibility was measured already in situ using the SM400 (ZHInstruments) on profiles about 40cm in length. Mass-specific MS was determined using Bartington MS2B dual frequency meter and Agico MFK1. Nine vertical profiles were selected for detailed analyses including the ARM, IRM and hysteresis measurements. Distinctly enhanced magnetic layers were detected in deeper horizons. This enhancement can be ascribed to several mechanisms. Migration of magnetic particles seems to be probable, as observed in our model experiments with sand columns. In coastal areas, the enhanced layer could be due to tsunami deposits, as described in other areas. Finally, in particular at sites close to power plants, the construction works followed by surface remediation have to be also considered as one of the possible mechanisms.

  8. Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods

    PubMed Central

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D.; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890

  9. Metagenomic Characterization and Biochemical Analysis of Cellulose-Degrading Bacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials, and Soil

    DTIC Science & Technology

    2016-01-04

    Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials,and Soil In an effort to...degrading bacteria from various samples, including termite gut, sheep rumen, soil, and decaying plant materials. Using selective media culture with...Metagenomic Characterization and Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant

  10. Kd Values for Agricultural and Surface Soils for Use in Hanford Site Farm, Residential, and River Shoreline Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey

    This report provides best estimate Kd values and a minimum and maximum range of Kd values to be used for agricultural soils and Columbia River bank sediments that exist today or would exist in the future when portions of the Hanford Site are released for farming, residential, and recreational use after the U. S. Department of Energy (DOE) completes clean up of defense waste on the site. The Kd values should be used to determine the fate and transport rates of contaminants and their availability for plant and animal uptake in selected non-groundwater scenarios included in Hanford Site environmental impactmore » statements, risk assessments and specific facility performance assessments. This report describes scenarios such as a small farm where drilling of a well inadvertently goes through buried waste and brings waste to the surface, allowing the tailings to become available for direct human exposure or incorporation into garden crops and farm animals used for food by the farm family. The Kd values recommended in this report can also be used to calculate sediment-water partitioning factors used to predict plant and animal uptake from interaction with the contaminated soil.« less

  11. NMR characterization and sorption behavior of agricultural and forest soil humic substances

    NASA Astrophysics Data System (ADS)

    Li, Chengliang; Berns, Anne E.; Séquaris, Jean-Marie; Klumpp, Erwin

    2010-05-01

    Humic substances are the predominant components of the organic matter in the terrestrial system, which are not only important for the physicochemical properties of soil but are also dominant factors for controlling the environmental behaviors and fates of some organic contaminants, such as hydrophobic compounds. Nonylphenol [4-(1-ethyl-1, 3 dimethylpentyl) phenol] (NP), a ubiquitous hydrophobic pollutant, has recently focused the attention owing to its endocrine disruptors property. Sorption behavior of NP on humic substances, which were isolated from agricultural and forest soils, was investigated by using the dialysis technique at room temperature. 14C-labeled NP was used to quantify the partitioning behavior. Humic substances were characterized by 13C Cross-Polarization/Magic-Angle-Spinning Nuclear Magnetic Resonance (CP/MAS NMR). The results showed that the partition parameters of NP on various humic acids were slightly different. Relationships between partition coefficients and the functional groups of humic substances identified by CP/MAS NMR were analyzed.

  12. 13C NMR spectroscopy characterization of particle-size fractionated soil organic carbon in subalpine forest and grassland ecosystems.

    PubMed

    Shiau, Yo-Jin; Chen, Jenn-Shing; Chung, Tay-Lung; Tian, Guanglong; Chiu, Chih-Yu

    2017-12-01

    Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state 13 C nuclear magnetic resonance spectroscopy in each fraction. The SOC content was higher in forest than grassland soil in the particle-size fraction samples. The O-alkyl-C content (carbohydrate-derived structures) was higher in the grassland than the forest soils, but the alkyl-C content (recalcitrant substances) was higher in forest than grassland soils, for a higher humification degree (alkyl-C/O-alkyl-C ratio) in forest soils for all the soil particle-size fractions. High humification degree was found in forest soils. The similar aromaticity between forest and grassland soils might be attributed to the fire-induced aromatic-C content in the grassland that offsets the original difference between the forest and grassland. High alkyl-C content and humification degree and low C/N ratios in the fine particle-size fractions implied that undecomposed recalcitrant substances tended to accumulate in the fine fractions of soils.

  13. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, Kristen M.; Allgaier, Martin; Chavarria, Yaucin

    2011-04-29

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less

  14. Characterization of trapped lignin-degrading microbes in tropical forest soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.

    2011-03-01

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less

  15. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin

    2011-07-14

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in themore » soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.« less

  16. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    PubMed Central

    DeAngelis, Kristen M.; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian L.; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee L.; Hazen, Terry C.

    2011-01-01

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition. PMID:21559391

  17. Critical soil bulk density for soybean growth in Oxisols

    NASA Astrophysics Data System (ADS)

    Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli

    2015-10-01

    The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.

  18. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites.

    PubMed

    Kumar, Govind; Kumar, Rajesh; Sharma, Anita

    2015-09-01

    Three bacterial isolates (G1, G2 and G3) characterized as Pseudomonas plecoglossicida, Lysinibacillus fusiformis and Bacillus safensis were recovered from contaminated soil of oil refinery. These bacterial isolates produced biosurfactants in MSM medium in stationary phase. Biosurfactants were characterized on the basis of their emulsifying properties with petrol, diesel, mobil oil and petrol engine oil. Reduction in surface tension (below 40 mN m(-1)) and blood hemolysis were also included in biosurfactants characterization. Emulsification indices of G1, G2 and G3 were in the range of 98.82, 23.53 and 58.82 for petrol; 29.411,1.05 and 70.588 for diesel; 35.31, 2.93 and 17.60 for mobil oil and 35.284, 58.82 and 17.647 for petrol engine oil respectively. Dry weight of the extracted biosurfactant was 4.6, 1.4 and 2.4 g I(-1) for G1, G2 and G3 respectively. Structural analysis of the biosurfactants by Fourier Transform Infrared Spectroscopy (FTIR) revealed significant differences in the bonding pattern of individual biosurfactant.

  19. Degradation and adsorption of tralkoxydim in Chinese soils and water-sediment environments.

    PubMed

    Wu, Wen Zhu; Shan, Zheng Jun; Kong, De Yang; He, Jian

    2017-06-01

    Tralkoxydim is a cyclohexanedione herbicide primarily used for gramineous weed control in China. In this paper, we present results of a tralkoxydim laboratory environmental fate study characterizing its degradation, adsorption, and mobility behavior in three different soils and two water-sediment systems (river and lake) in China. Degradation half-life of tralkoxydim in soil under aerobic conditions was 5.1, 7.7, and 7.9 days in Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Under anaerobic and flooding conditions, half-life values were 6.2, 15.1, and 19.8 days for the same three soils, respectively. Soil pH was the major factor effecting tralkoxydim degradation. In the aerobic water-sediment experiments, tralkoxydim degraded faster in the river system (total system half-life 43.3 days) than the lake system (total system half-life 99.0 days). Correspondingly, its anaerobic degradation half-life values were 46.2 and 53.3 days for the river and lake systems, respectively. Tralkoxydim adsorption in the three soils was found to follow the empirical Freundlich isotherm. The adsorption coefficient (K d ) was 8.60, 1.00, and 1.57 for Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Soil pH was the major factor effecting tralkoxydim adsorption. Adsorption free energy change was less than 40 kJ mol -1 in all three soils, indicating a physical mechanism in the process. Thin-layer chromatography (TLC) tests showed that relative to the solvent transport to 11.5 cm, the travel distance of tralkoxydim was 8-10 cm in the three soils, corresponding Rf values at 0.05, 0.35, and 0.75 for Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Results of this work suggest that under alkaline conditions, tralkoxydim adsorption becomes smaller; thus, assessments on its mobility and potential groundwater impact should focus on these soil types.

  20. Spatial and temporal variability of soil hydraulic properties of topsoil affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonin; Kodesova, Radka; Jaksik, Ondrej; Jirku, Veronika; Klement, Ales; Fer, Miroslav

    2014-05-01

    This study is focused on the comparison of soil hydraulic properties of topsoil that is affected by erosion processes. In order to include variable morphological and soil properties along the slope three sites - Brumovice, Vidim and Sedlčany were selected. Two transects (A, B) and five sampling sites along each one were chosen. Soil samples were taken in Brumovice after the tillage and sowing of winter wheat in October 2010 and after the wheat harvest in August 2011. At locality Vidim and Sedlčany samples were collected in May and August 2012. Soil hydraulic properties were studied in the laboratory on the undisturbed 100-cm3 soil samples placed in Tempe cells using the multi-step outflow test. Soil water retention data points were obtained by calculating water balance in the soil sample at each pressure head step of the experiment. The single-porosity model in HYDRUS-1D was applied to analyze the multi-step outflow and to obtain the parameters of soil hydraulic properties using the numerical inversion. The saturated hydraulic conductivities (Ks) and unsaturated hydraulic conductivities (Kw) for the pressure head of -2 cm of topsoil were also measured after the harvest using Guelph permeameter and Minidisk tensiometer, respectively. In general soil water retention curves measured before and after vegetation period apparently differed, which indicated soil material consolidation and soil-porous system rearrangement. Soil water retention curves obtained on the soil samples and hydraulic conductivities measured in the field reflected the position at the elevation transect and the effect of erosion/accumulation processes on soil structure and consequently on the soil hydraulic properties. The highest Ks values in Brumovice were obtained at the steepest parts of the elevation transects, that have been the most eroded. The Ks values at the bottom parts decreased due to the sedimentation of eroded soil particles. The change of the Kw values along transects didn't show

  1. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  2. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  3. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Wang, Qibing; Li, Yuncong; Zhang, Min

    2015-12-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (δ13C) in plants and soil organic carbon (SOC) in an undisturbed natural wetland (UNW) and three wetlands restored respectively in 1989, 1996 and 1999 (WR89, WR96 and WR99). The older restored wetlands (WR89 and WR96) are characterized by greater SOC and mineral nitrogen. The values of soil dehydrogenase and phosphatase activities in the four wetlands follow the order: UNW > WR89 > WR96 > WR99, and are consistent with changes in vegetation coverage. The principal component analysis shows that dehydrogenase and phosphatase activities are the vital variables contributing to the soil of UNW. The similar δ13C values of SOC and plants in the restored wetlands suggest the formation of SOC during restoration is mainly derived from the associated plants. These results indicate that the newly restored soils develop toward the soil in the UNW with time since restoration.

  4. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades.

    PubMed

    Wang, Qibing; Li, Yuncong; Zhang, Min

    2015-12-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (δ(13)C) in plants and soil organic carbon (SOC) in an undisturbed natural wetland (UNW) and three wetlands restored respectively in 1989, 1996 and 1999 (WR89, WR96 and WR99). The older restored wetlands (WR89 and WR96) are characterized by greater SOC and mineral nitrogen. The values of soil dehydrogenase and phosphatase activities in the four wetlands follow the order: UNW > WR89 > WR96 > WR99, and are consistent with changes in vegetation coverage. The principal component analysis shows that dehydrogenase and phosphatase activities are the vital variables contributing to the soil of UNW. The similar δ(13)C values of SOC and plants in the restored wetlands suggest the formation of SOC during restoration is mainly derived from the associated plants. These results indicate that the newly restored soils develop toward the soil in the UNW with time since restoration.

  5. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  6. Extraction and characterization of ternary complexes between natural organic matter, cations, and oxyanions from a natural soil.

    PubMed

    Peel, Hannah R; Martin, David P; Bednar, Anthony J

    2017-06-01

    Natural organic matter (NOM) can have a significant influence on the mobility and fate of inorganic oxyanions, such as arsenic and selenium, in the environment. There is evidence to suggest that interactions between NOM and these oxyanions are facilitated by bridging cations (primarily Fe 3+ ) through the formation of ternary complexes. Building on previous work characterizing ternary complexes formed in the laboratory using purified NOM, this study describes the extraction and characterization of intact ternary complexes directly from a soil matrix. The complexes are stable to the basic extraction conditions (pH 12) and do not appear to change when the pH of the extract is adjusted back to neutral. The results suggest that ternary complexes between NOM, cations, and inorganic oxyanions exist in natural soils and could play a role in the speciation of inorganic oxyanions in environmental matrices. Published by Elsevier Ltd.

  7. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    NASA Astrophysics Data System (ADS)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  8. Thermoregulatory value of cracking-clay soil shelters for small vertebrates during extreme desert conditions.

    PubMed

    Waudby, Helen P; Petit, Sophie

    2017-05-01

    Deserts exhibit extreme climatic conditions. Small desert-dwelling vertebrates have physiological and behavioral adaptations to cope with these conditions, including the ability to seek shelter. We investigated the temperature (T) and relative humidity (RH) regulating properties of the soil cracks that characterize the extensive cracking-clay landscapes of arid Australia, and the extent of their use by 2 small marsupial species: fat-tailed and stripe-faced dunnarts (Sminthopsis crassicaudata and Sminthopsis macroura). We measured hourly (over 24-h periods) the T and RH of randomly-selected soil cracks compared to outside conditions, during 2 summers and 2 winters. We tracked 17 dunnarts (8 Sminthopsis crassicaudata and 9 Sminthopsis macroura) to quantify their use of cracks. Cracks consistently moderated microclimate, providing more stable conditions than available from non-crack points, which often displayed comparatively dramatic fluctuations in T and RH. Both dunnart species used crack shelters extensively. Cracks constitute important shelter for small animals during extreme conditions by providing a stable microclimate, which is typically cooler than outside conditions in summer and warmer in winter. Cracks likely play a fundamental sheltering role by sustaining the physiological needs of small mammal populations. Globally, cracking-clay areas are dominated by agricultural land uses, including livestock grazing. Management of these systems should focus not only on vegetation condition, but also on soil integrity, to maintain shelter resources for ground-dwelling fauna. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  9. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  10. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Treesearch

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  11. Factors of soil diversity in the Batumi delta (Georgia)

    NASA Astrophysics Data System (ADS)

    Turgut, Bülent; Ateş, Merve

    2017-01-01

    The aim of this study was to determine certain basic properties of soils in the Batumi delta (southwestern Georgia) to determine the relationships of studied properties and to identify differences with regards to these properties between different sampling sites in the delta that were selected based on the delta morphology. In this context, a total of 125 soil samples were collected from five different sampling sites, and the clay, silt and sand content of the samples were determined along with their mean weight diameter (MWD) values, aggregate stability (AS) values, amount of water retained under -33 (FC) and -1500 kPa (WP) pressure and organic matter (OM) content. Correlation analysis indicated that clay content and OM were positively correlated with MWD, and OM was positively correlated with AS. However, the sand content was found to be negatively correlated with MWD. In addition, clay, silt and OM content were positive correlated with FC and WP. Variance analysis results determined statistically significant differences between the sampling sites with respect to all of the evaluated properties. The active delta section of the study area was characterized by high sand content, while the lower delta plain was characterized by high OM and AS values, and the upper delta plain was characterized by high MWD values, high FC and WP moisture content levels and high clay and silt content. In conclusion, it was demonstrated that the examined properties were significantly affected by the different morphological positions and usages of these different areas. These results may help with the management of agricultural lands in the Batumi delta, which has never been studied before.

  12. Characterizations of matrix and operator-valued Φ-entropies, and operator Efron-Stein inequalities.

    PubMed

    Cheng, Hao-Chung; Hsieh, Min-Hsiu

    2016-03-01

    We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19 , 1-30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron-Stein inequality.

  13. Characterizations of matrix and operator-valued Φ-entropies, and operator Efron–Stein inequalities

    PubMed Central

    Cheng, Hao-Chung; Hsieh, Min-Hsiu

    2016-01-01

    We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19, 1–30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron–Stein inequality. PMID:27118909

  14. Soil magnetic susceptibility reflects soil moisture regimes and the adaptability of tree species to these regimes

    USGS Publications Warehouse

    Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.

    2008-01-01

    Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.

  15. Characterization of extractable soil organic matter pools from African Dark Earths (AfDE): A case study in historical biochar and organic waste amendments

    NASA Astrophysics Data System (ADS)

    Fujiu, Manna; Plante, Alain; Ohno, Tsutomu; Solomon, Dawit; Lehmann, Johannes; Fraser, James; Leach, Melissa; Fairhead, James

    2014-05-01

    Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils that were formed from the original highly-weathered infertile yellowish to red Oxisols and Ultisols through an extant but hitherto overlooked climate-smart sustainable soil management system that has long been an important feature of the indigenous West African agricultural repertoire. Studies have demonstrated that ADE soils in general have significantly different organic matter properties compared to adjacent non-DE soils, largely attributable to the presence of high concentrations of ash-derived carbon. Quantification and characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) confirmed substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant or relatively stable, but the goal of the current study was to characterize the presumably labile, more rapidly cycling, pools of C in AfDEs through the characterization of hot water- and pyrophosphate-extractable fractions, referred to as HWEOC and PyroC respectively. Extracts were analyzed for carbon content, as well as composition using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FTICR-MS). The amount of extractable C as a proportion of total soil C was relatively low: less than ~0.8% for HWEOC and 2.8% for PyroC. The proportion of HWEOC did not differ (P = 0.18, paired t-test) between the AfDE and the non-AfDE soils, while the proportions of PyroC were significantly larger (P = 0.001) in the AfDE soils compared to the non-AfDE soils. Preliminary analysis of the EEM/PARAFAC data suggests that AfDE samples had

  16. Micromorphological Aspects of Forensic Geopedology II: Ultramicroscopic vs Microscopic Characterization of Phosphatic Impregnations on Soil Particles in Experimental Burials

    NASA Astrophysics Data System (ADS)

    Ern, S. I. E.; Trombino, L.; Cattaneo, C.

    2012-04-01

    Grows up the importance of the role played by soil scientists in the modern forensic sciences, in particular when buried human remains strongly decomposed or skeletonized are found in different environment situations. Among the different techniques normally used in geopedology, it is usefull to apply in such forensic cases, soil micromorphology (including optical microscopy and ultramicroscopy) that has been underused up today, for various kind of reasons. An interdisciplinary Italian-team, formed by earth scientists and legal medicine, is working on several sets of experimental burial of pigs and piglets in different soil types and for different times of burial, in order to get new evidences on environmental behaviour related to the burial, focalising on geopedological and micropedological aspects. The present work is focused on: - ultramicroscopic (SEM-EDS) characterization of the phosphatic impregnation (by body fluids) on soils sampled under the dead bodies of five couples of pigs, buried respectively for one month, six month, one year, two years and two years and half in two different areas; - microscopic (petrographic microscope) and ultramicroscopic (SEM-EDS) cross characterization of the phosphatic impregnation (by body fluids) on soils sampled under the dead bodies of several piglets, buried for twenty months. The first results show trends of persistency of such phosphatic features, mainly related to the grain size of the impregnated soil particles and weather conditions (or seasons) of exhumation, while apparently time since burial is only marginally effective for the investigated burial period. Further experiments are in progress in order to clarify the pathways of phosphorus precipitation and leaching for longer times of burial and different seasons of exhumation, both from the microscopic and the pedological/chemical point of view.

  17. Medusahead: Available soil N and microbial communities in native and invasive soils

    Treesearch

    Robert R. Blank; Rene Sforza; Tye Morgan

    2008-01-01

    To better understand why medusahead (Taeniatherum caput-medusae) is invasive, we quantified soil N availability and characterized soil microbial communities between native and invasive populations. No consistent differences in soil N mineralization potentials were noted between native medusahead sites in Spain, Turkey, France, and Greece and two...

  18. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  19. Characterizing effects of wind erosion on soil microtopography in a semiarid grassland using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Washington-Allen, R. A.; Okin, G. S.

    2010-12-01

    Aeolian processes play important roles in microtopography and associated soil-plant interactions in arid and semiarid landscapes. Most previous research has focused on scales larger than plant-interspaces and the dynamics of “fertile islands” associated with individual shrubs. Arid and semiarid ecosystems are notoriously heterogeneous in both microtopography and soil nutrients, and investigations of soil topography and plant-soil interactions at much finer scales (e.g., a few millimeters) are difficult using traditional point based sampling methods. Terrestrial laser scanners (TLS) are novel tools for which techniques can be developed to accurately characterize micro-scale topography with a spot diameter of 4.5 mm, and 2 mm ranging accuracy at 50 kHz. In this study, we employed a portable TLS (a Leica ScanStation 2) to digitally capture the 3-dimensional soil microtopography in a Chihuahuan desert grassland located in southern New Mexico. Soil surface on this site had been exposed to enhanced wind erosion since the spring of 2004. A control plot, located adjacent to the wind erosion plot, was also scanned to provide soil microtopography bench mark. A nearest neighbor interpolation was used on the elevation point clouds to yield bare ground, vegetation, and combined digital surface models for both plots. Additionally, measures of height and foliage diversity, vegetation and bare ground cover, and surface roughness were calculated. The results from this field study clearly demonstrate that TLS can provide insights on changes in microtopography affected by aeolian processes. Moreover, within the known distribution of soil nutrients, the 3D surface model of the soil microtopography provided unprecedented detail on the distribution of “mini” fertile islands associated with topography that were not revealed by studies at plant-interspace scale.

  20. Resolving inter-annual terrestrial water storage variations using microwave-based surface soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    Due to their shallow vertical support, remotely-sensed surface soil moisture retrievals are commonly regarded as being of limited value for water budget applications requiring the characterization of temporal variations in total terrestrial water storage (S). However, advances in our ability to esti...

  1. The Biotoxicity of Mars Soils

    NASA Technical Reports Server (NTRS)

    Kerney, Krystal

    2010-01-01

    Recent evidence from the Opportunity and Spirit rovers suggests that the soils on Mars might be very high in biotoxic materials induding sulfate salts, chlorides, and acidifying agents. Yet, very little is known about how the chemistries of Mars soils might affect the survival and growth of terrestrial microorganisms. The primary objectives of the proposed research will be to: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, chlorides, and acidifying minerals; (2) use the stimulants to conduct a series of toxicology assays to determine if terrestrial microorganisms from spacecraft or extreme environments can survive direct exposure to the biotoxic soils, and (3) mix soils from extreme environments on Earth into Mars analog soils to determine if terrestrial microorganisms can grow and replicate under Martian conditions. The Mars analog soils will be thoroughly characterized by a wide diversity of soil chemistry assays to determine the exact nature of the soluble biotoxic components following hydration. The microbial experiments will be designed to test the effects of Mars stimulants on microbial survival, growth and replication during direct challenge experiments. Toxicology experiments will be designed to mimic terrestrial microbes coming into contact with biotoxic soils with and without liquid water. Results are expected to help" ... characterize the limits of life in ... planetary environments ... " and may help constrain the search for life on Mars.

  2. Characterization of soil fauna under the influence of mercury atmospheric deposition in Atlantic Forest, Rio de Janeiro, Brazil.

    PubMed

    Buch, Andressa Cristhy; Correia, Maria Elizabeth Fernandes; Teixeira, Daniel Cabral; Silva-Filho, Emmanoel Vieira

    2015-06-01

    The increasing levels of mercury (Hg) found in the atmosphere arising from anthropogenic sources, have been the object of great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of strong importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transference to the soil through litter, playing an important role as sink of this element. Soil microarthropods are keys to understanding the soil ecosystem, and for such purpose were characterized by the soil fauna of two Units of Forest Conservation of the state of the Rio de Janeiro, inwhich one of the areas suffer quite interference from petrochemicals and industrial anthropogenic activities and other area almost exempts of these perturbations. The results showed that soil and litter of the Atlantic Forest in Brazil tend to stock high mercury concentrations, which could affect the abundance and richness of soil fauna, endangering its biodiversity and thereby the functioning of ecosystems. Copyright © 2015. Published by Elsevier B.V.

  3. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola

    2015-05-19

    Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soilsmore » with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.« less

  4. Contribution of soil fauna to soil functioning in degraded environments: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan

    2016-04-01

    The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure

  5. Standard Operating Procedure for Using the NAFTA Guidance to Calculate Representative Half-life Values and Characterizing Pesticide Degradation

    EPA Pesticide Factsheets

    Results of the degradation kinetics project and describes a general approach for calculating and selecting representative half-life values from soil and aquatic transformation studies for risk assessment and exposure modeling purposes.

  6. Impact of set-aside management on soil mesofauna

    NASA Astrophysics Data System (ADS)

    Landi, Silvia; d'Errico, Giada; Mazza, Giuseppe; Mocali, Stefano; Bazzoffi, Paolo; Roversi, Pio Federico

    2014-05-01

    (MI) resulted significantly higher in set-aside managements than in conventional crops in Fagna and Metaponto sites. In contrast, Caorle was characterized by a significant soil degradation (prevalence of extreme colonizers) and any increase of MI values in the set-aside have been not detected. About microarthropods, the taxa richness was significantly higher in set-aside managements than conventional crops in all the sites sampled. QBS index showed the same trend, but the differences were not significant. Caorle site was characterized by a lack of balance in the relative abundance among soil microarthropods taxa. In particular, set-aside managements showed a strong prevalence of an aggressive ants Solenopsis fugax (Hymenoptera: Formicidae). In conclusion, the best results were observed in Fagna and Metaponto sites, where MI and QBS values increased under set-aside management as compared to the conventional. Further analyses will be carried out over a long period to better understand the possible correlation between the enhancement of the organic matter observed in the soils less degraded and the biological quality improvement.

  7. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils br

  8. Bioelectric potentials in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  9. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological

  10. Characterization of Growing Soil Bacterial Communities across a pH gradient Using H218O DNA-Stable Isotope Probing

    NASA Astrophysics Data System (ADS)

    Welty-Bernard, A. T.; Schwartz, E.

    2014-12-01

    Recent studies have established consistent relationships between pH and bacterial diversity and community structure in soils from site-specific to landscape scales. However, these studies rely on DNA or PLFA extraction techniques from bulk soils that encompass metabolically active and inactive, or dormant, communities, and loose DNA. Dormant cells may comprise up to 80% of total live cells. If dormant cells dominate a particular environment, it is possible that previous interpretations of the soil variables assumed to drive communities could be profoundly affected. We used H218O stable isotope probing and bar-coded illumina sequencing of 16S rRNA genes to monitor the response of actively growing communities to changes in soil pH in a soil microcosm over 14 days. This substrate-independent approach has several advantages over 13C or 15N-labelled molecules in that all growing bacteria should be able to make use of water, allowing characterization of whole communities. We hypothesized that Acidobacteria would increasingly dominate the growing community and that Actinobacteria and Bacteroidetes would decline, given previously established responses by these taxa to soil pH. Instead, we observed the reverse. Actinobacteria abundance increased three-fold from 26 to 76% of the overall community as soil pH fell from pH 5.6 to pH 4.6. Shifts in community structure and decreases in diversity with declining soil pH were essentially driven by two families, Streptomyceaca and Microbacteracea, which collectively increased from 2 to 40% of the entire community. In contrast, Acidobacteria as a whole declined although numbers of subdivision 1 remained stable across all soil pH levels. We suggest that the brief incubation period in this SIP study selected for growth of acid-tolerant Actinobacteria over Acidobacteria. Taxa within Actinomycetales have been readily cultured over short time frames, suggesting rapid growth patterns. Conversely, taxa within Acidobacteria have been

  11. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    PubMed

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  12. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    NASA Astrophysics Data System (ADS)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  13. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    PubMed Central

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values. PMID:26956399

  14. Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values.

    PubMed

    Rodriguez-Ruiz, A; Etxebarria, J; Boatti, L; Marigómez, I

    2015-09-01

    Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.

  15. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

    PubMed Central

    Verastegui, Y.; Cheng, J.; Engel, K.; Kolczynski, D.; Mortimer, S.; Lavigne, J.; Montalibet, J.; Romantsov, T.; Hall, M.; McConkey, B. J.; Rose, D. R.; Tomashek, J. J.; Scott, B. R.

    2014-01-01

    ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. PMID:25028422

  16. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, F.; Wang, K.; Zhang, R.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared withmore » the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.« less

  17. Soil and geomorphological parameters to characterize natural environmental and human induced changes within the Guadarrama Range (Central Spain)

    NASA Astrophysics Data System (ADS)

    Schmid, Thomas; Inclán-Cuartas, Rosa M.; Santolaria-Canales, Edmundo; Saa, Antonio; Rodríguez-Rastrero, Manuel; Tanarro-Garcia, Luis M.; Luque, Esperanza; Pelayo, Marta; Ubeda, Jose; Tarquis, Ana; Diaz-Puente, Javier; De Marcos, Javier; Rodriguez-Alonso, Javier; Hernandez, Carlos; Palacios, David; Gallardo-Díaz, Juan; Fidel González-Rouco, J.

    2016-04-01

    Mediterranean mountain ecosystems are often complex and remarkably diverse and are seen as important sources of biological diversity. They play a key role in the water and sediment cycle for lowland regions as well as preventing and mitigating natural hazards especially those related to drought such as fire risk. However, these ecosystems are fragile and vulnerable to changes due to their particular and extreme climatic and biogeographic conditions. Some of the main pressures on mountain biodiversity are caused by changes in land use practices, infrastructure and urban development, unsustainable tourism, overexploitation of natural resources, fragmentation of habitats, particularly when located close to large population centers, as well as by pressures related toclimate change. The objective of this work is to select soil and geomorphological parameters in order to characterize natural environmental and human induced changes within the newly created National Park of the Sierra de Guadarrama in Central Spain, where the presence of the Madrid metropolitan area is the main factor of impact. This is carried out within the framework of the Guadarrama Monitoring Network (GuMNet) of the Campus de ExcelenciaInternacionalMoncloa, where long-term monitoring of the atmosphere, soil and bedrock are priority. This network has a total of ten stations located to the NW of Madrid and in this case, three stations have been selected to represent different ecosystems that include: 1) an alluvial plain in a lowland pasture area (La Herreria at 920 m a.s.l.), 2) mid mountain pine-forested and pasture area (Raso del Pino at 1801 m a.s.l.) and 3) high mountain grassland and rock area (Dos Hermanas at 2225 m a.s.l.). At each station a site geomorphological description, soil profile description and sampling was carried out. In the high mountain area information was obtained for monitoring frost heave activity and downslope soil movement. Basic soil laboratory analyses have been carried out

  18. Development of soft extraction method for structural characterization of boreal forest soil proteins with MALDI-TOF/MS

    NASA Astrophysics Data System (ADS)

    Kanerva, Sanna; Ketola, Raimo A.; Kitunen, Veikko; Smolander, Aino; Kotiaho, Tapio

    2010-05-01

    Nitrogen (N) is usually the nutrient restricting productivity in boreal forests. Forest soils contain a great amount of nitrogen, but only a small part of it is in mineral form. Most part of soil N is bound in the structures of different organic compounds such as proteins, peptides, amino acids and more stabilized, refractory compounds. Due to the fact that soil organic N has a very important role in soil nutrient cycling and in plant nutrition, there is a need for more detailed knowledge of its chemistry in soil. Conventional methods to extract and analyze soil organic N are usually very destructive for structures of higher molecular weight organic compounds, such as proteins. The aim of this study was to characterize proteins extracted from boreal forest soil by "soft" extraction methods in order to maintain their molecular structure. The organic layer (F) from birch forest floor containing 78% of organic matter was sieved, freeze dried, pulverized, and extracted with a citrate or phosphate buffer (pH 6 or 8). Sequential extraction with the citrate or phosphate buffer and an SDS buffer (pH 6.8), slightly modified from the method of Chen et al. (2009, Proteomics 9: 4970-4973), was also done. Proteins were purified from the soil extract by extraction with buffered phenol and precipitated with methanol + 0.1M ammonium acetate at -20°C. Characterization of proteins was performed with matrix assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF/MS) and the concentration of total proteins was measured using Bradford's method. Bovine serum albumin (BSA) was used as a positive control in the extractions and as a standard protein in Bradford's method. Our results showed that sequential extraction increased the amount of extracted proteins compared to the extractions without the SDS-buffer; however, it must be noted that the use of SDS-buffer very probably increased denaturization of proteins. Purification of proteins from crude soil extracts

  19. Characterization of the N2O isotopic composition (15N, 18O and N2O isotopomers) emitted from incubated Amazon forest soils. Implications for the global N2O isotope budget

    NASA Astrophysics Data System (ADS)

    Pérez, T.; García, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Park, S.; Boering, K.; Cerri, C.

    2003-04-01

    consumption of N2O as a potential method to determine the contributions of nitrification and denitrification. We measured the isotopomer composition of the incubated soils and calculated the site preference of each process for each soils. The site preference for nitrification and denitrification are: -114.5 and 56.6 per mil for clay Santarem soil, -75.2 and 11.8 per mil for sandy Santarem soil and -209.7 and 28.8 per mil for Nova Vida Farm soils, respectively. To our knowledge these are the first N2O isotopomer characterizations for nitrification and denitrification in soils. The results show that nitrifying bacteria population has 15N site preference fingerprints smaller by up to 200 per mil than denitrifying bacteria. This data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial processes producing N2O. We can conclude that nitrifiers produce N2O with a smaller site preference values and more negative del 15N beta than do denitrifiers. These results show a new proxy to differentiate N2O formation processes in soil and will contribute to produce interpretations of the site preference isotopomeric N2O values found in the troposphere.

  20. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  1. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry.

    PubMed

    Tfaily, Malak M; Chu, Rosalie K; Tolić, Nikola; Roscioli, Kristyn M; Anderton, Christopher R; Paša-Tolić, Ljiljana; Robinson, Errol W; Hess, Nancy J

    2015-01-01

    Soil organic matter (SOM), a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and accurately predict how terrestrial carbon fluxes will respond to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O/C ratios (<0.1); water (H2O) was selective for carbohydrates with high O/C ratios; acetonitrile (ACN) preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O/C > 0.5; methanol (MeOH) has higher selectivity toward compounds characterized with low O/C < 0.5; and hexane, MeOH, ACN, and H2O solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils. We present the first comparative study of the molecular composition of SOM from different ecosystems using ultra high-resolution mass spectrometry.

  2. Preparation, Characterization, and UV Irradiation of Mars Soil Analogues Under Simulated Martian Conditions to Support Detection of Molecular Biomarkers

    NASA Astrophysics Data System (ADS)

    Fornaro, T.; Brucato, J. R.; ten Kate, I. L.; Siljeström, S.; Steele, A.; Cody, G. D.; Hazen, R. M.

    2018-04-01

    We present laboratory activities of preparation, characterization, and UV irradiation processing of Mars soil analogues, which are key to support both in situ exploration and sample return missions devoted to detection of molecular biomarkers on Mars.

  3. Converting Soil Moisture Observations to Effective Values for Improved Validation of Remotely Sensed Soil Moisture

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Crosson, William L.; Limaye, Ashutosh; Manu, Andrew; Archer, Frank

    2005-01-01

    We compare soil moisture retrieved with an inverse algorithm with observations of mean moisture in the 0-6 cm soil layer. A significant discrepancy is noted between the retrieved and observed moisture. Using emitting depth functions as weighting functions to convert the observed mean moisture to observed effective moisture removes nearly one-half of the discrepancy noted. This result has important implications in remote sensing validation studies.

  4. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of

  5. [Variations of soil fertility level in red soil region under long-term fertilization].

    PubMed

    Yu, Han-qing; Xu, Ming-gang; Lü, Jia-long; Bao, Yao-xian; Sun, Nan; Gao, Ju-sheng

    2010-07-01

    Based on the long-term (1982-2007) field experiment of "anthropogenic mellowing of raw soil" at the Qiyang red soil experimental station under Chinese Academy of Agricultural Sciences, and by using numerical theory, this paper studied the variations of the fertility level of granite red soil, quaternary red soil, and purple sandy shale soil under six fertilization patterns. The fertilization patterns included non-fertilization (CK), straw-returning without fertilizers (CKR), chemical fertilization (NPK), NPK plus straw-return (NPKR), rice straw application (M), and M plus straw-return (MR). The soil integrated fertility index (IFI) was significantly positively correlated with relative crop yield, and could better indicate soil fertility level. The IFI values of the three soils all were in the order of NPK, NPKR > M, MR > CK, CKR, with the highest value in treatment NPKR (0.77, 0.71, and 0.71 for granite red soil, quaternary red soil, and purple sandy shale soil, respectively). Comparing with that in the treatments of no straw-return, the IFI value in the treatments of straw return was increased by 6.72%-18.83%. A turning point of the IFI for all the three soils was observed at about 7 years of anthropogenic mellowing, and the annual increasing rate of the IFI was in the sequence of purple sandy shale soil (0.016 a(-1)) > quaternary red clay soil (0.011 a(-1)) > granite red soil (0.006 a(-1)). It was suggested that a combined application of organic and chemical fertilizers and/or straw return could be an effective and fast measure to enhance the soil fertility level in red soil region.

  6. Characterization of tillage effects on soil permeability using different measures of macroporosity derived from tension infiltrometry

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Schwen, A.; Scholl, P.; Kammerer, G.; Buchan, G.; Kaul, H.-P.; Loiskandl, W.

    2010-05-01

    approaches (direct vs. inverse evaluation, capillary vs. flow weighted pore radius). We will show the influence of the distinct evaluation procedures on the resulting effective macroporosity, as well as on the relationships between macropore radius and hydraulic conductivity (Moret and Arrúe, 2007) and pore fraction respectively (Carey et al., 2007). The infiltration measurements used in this study were obtained in a long-term tillage trial located in the semi-arid region of Eastern Austria. Measurements were taken five times over the vegetation period, starting immediately after tillage until harvest of the winter wheat crop. Three tillage systems were evaluated, being conventional tillage with plough, minimum tillage with chisel and no-tillage. Additional to infiltration measurements, also soil water content was monitored continuously by a capacitance probe in all three replicates of each tillage treatment in 10, 20 and 40 cm soil depth. Water content time series are used to derive flow velocity in the wet range by cross-correlation analysis (Wu et al., 1997). This effective parameter of water transmission will then be compared to the flow behaviour expected from the characterization of soil macroporosity. We will show that mainly in no-tillage systems large macropores contribute essentially to flow and therefore the decision on pore measure and evaluation procedure to be used leads to substantial differences. For a detailed comparison of tillage effects on soil hydraulic properties it is therefore essential to analyse the contribution of different tension infiltrometry based evaluation methods to explain effective water transmission through the complex porous network of the soil. References Carey, S.K., Quinton, W.L., Goeller, N.T. 2007. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrol. Process. 21, 2560-2571. Moret, D., Arrúe, J.L. 2007. Characterizing soil water conducting macro- and mesoporosity

  7. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.

    PubMed

    Kumar B N, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-07-07

    A soil habitat consists of an enormous number of pigmented bacteria with the pigments mainly composed of diverse carotenoids. Most of the pigmented bacteria in the top layer of the soil are photoprotected from exposure to huge amounts of UVA radiation on a daily basis by these carotenoids. The photostability of these carotenoids depends heavily on the presence of specific features like a carbonyl group or an ionone ring system on its overall structure. Resonance Raman spectroscopy is one of the most sensitive and powerful techniques to detect and characterize these carotenoids and also monitor processes associated with them in their native system at a single cell resolution. However, most of the resonance Raman profiles of carotenoids have very minute differences, thereby making it extremely difficult to confirm if these differences are attributed to the presence of different carotenoids or if it is a consequence of their interaction with other cellular components. In this study, we devised a method to overcome this problem by monitoring also the photodegradation of the carotenoids in question by UVA radiation wherein a differential photodegradation response will confirm the presence of different carotenoids irrespective of the proximities in their resonance Raman profiles. Using this method, the detection and characterization of carotenoids in pure cultures of five species of pigmented coccoid soil bacteria is achieved. We also shed light on the influence of the structure of the carotenoid on its photodegradation which can be exploited for use in the characterization of carotenoids via resonance Raman spectroscopy.

  8. Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements (case of the Strengbach watershed)

    NASA Astrophysics Data System (ADS)

    Gangloff, Sophie; Stille, Peter; Pierret, Marie-Claire; Weber, Tiphaine; Chabaux, François

    2014-04-01

    Dissolved Organic Carbon (DOC) plays an important role in the behavior of major and trace elements in the soil and influences their transfer from soil to soil solution. The first objective of this study is to characterize different organic functional groups for the Water Extractable Organic Carbon (WEOC) fractions of a forest soil as well as their evolution with depth. The second objective is to clarify the influence of these organic functional groups on the migration of the trace elements in WEOC fractions compared to those in the soil solution obtained by lysimeter plates. All experiments have been performed on an acidic forest soil profile (five depths in the first meter) of the experimental spruce parcel in the Stengbach catchment. The Infra-red spectra of the freeze-dried WEOC fractions show a modification of the molecular structure with depth, i.e. a decrease of the polar compounds such as polysaccharides and an increase of the less polar hydro-carbon functional groups with a maximum value of the aromaticity at 30 cm depth. A Hierarchical Ascending Classification (HAC) of the evolution of Water Extractable Chemical Elements (WECE) with the evolution of the organic functional groups in the organic matter (OM) enriched soil compartments permits recognition of relationships between trace element behavior and the organic functional group variations. More specifically, Pb is preferentially bound to the carboxylic acid function of DOC mainly present in the upper soil compartment and rare earth elements (REE) show similar behavior to Fe, V and Cr with a good affinity to carboxy-phenolic and phenolic groups of DOC. The experimental results show that heavy REE compared to light REE are preferentially bound to the aromatic functional group. This different behavior fractionates the REE pattern of soil solutions at 30 cm depth due to the here observed aromaticity enrichment of DOC. These different affinities for the organic functional groups of the DOC explain some

  9. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  10. Characterization of atrazine binding to dissolved organic matter of soil under different types of land use.

    PubMed

    Zhu, Long-Ji; Zhao, Yue; Chen, Yan-Ni; Cui, Hong-Yang; Wei, Yu-Quan; Liu, Hai-Long; Chen, Xiao-Meng; Wei, Zi-Min

    2018-01-01

    Atrazine is widely used in agriculture. In this study, dissolved organic matter (DOM) from soils under four types of land use (forest (F), meadow (M), cropland (C) and wetland (W)) was used to investigate the binding characteristics of atrazine. Fluorescence excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis, two-dimensional correlation spectroscopy (2D-COS) and Stern-Volmer model were combined to explore the complexation between DOM and atrazine. The EEM-PARAFAC indicated that DOM from different sources had different structures, and humic-like components had more obvious quenching effects than protein-like components. The Stern-Volmer model combined with correlation analysis showed that log K values of PARAFAC components had a significant correlation with the humification of DOM, especially for C3 component, and they were all in the same order as follows: meadow soil (5.68)>wetland soil (5.44)>cropland soil (5.35)>forest soil (5.04). The 2D-COS further confirmed that humic-like components firstly combined with atrazine followed by protein-like components. These findings suggest that DOM components can significantly influence the bioavailability, mobility and migration of atrazine in different land uses. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Uncertainty in Pedotransfer Functions from Soil Survey Data

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Rawls, W. J.

    2002-05-01

    Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of

  12. Characterizing permafrost soil active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    DOE PAGES

    Yi, Yonghong; Kimball, John S.; Chen, Richard; ...

    2017-05-30

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less

  13. Characterizing permafrost soil active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Yonghong; Kimball, John S.; Chen, Richard

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less

  14. Caresoil: A multidisciplinar Project to characterize, remediate, monitor and evaluate the risk of contaminated soils in Madrid (Spain)

    NASA Astrophysics Data System (ADS)

    Muñoz-Martín, Alfonso; Antón, Loreto; Granja, Jose Luis; Villarroya, Fermín; Montero, Esperanza; Rodríguez, Vanesa

    2016-04-01

    Soil contamination can come from diffuse sources (air deposition, agriculture, etc.) or local sources, these last being related to anthropogenic activities that are potentially soil contaminating activities. According to data from the EU, in Spain, and particularly for the Autonomous Community of Madrid, it can be considered that heavy metals, toxic organic compounds (including Non Aqueous Phases Liquids, NAPLs) and combinations of both are the main problem of point sources of soil contamination in our community. The five aspects that will be applied in Caresoil Program (S2013/MAE-2739) in the analysis and remediation of a local soil contamination are: 1) the location of the source of contamination and characterization of soil and aquifer concerned, 2) evaluation of the dispersion of the plume, 3) application of effective remediation techniques, 4) monitoring the evolution of the contaminated soil and 5) risk analysis throughout this process. These aspects involve advanced technologies (hydrogeology, geophysics, geochemistry,...) that require new developing of knowledge, being necessary the contribution of several researching groups specialized in the fields previously cited, as they are those integrating CARESOIL Program. Actually two cases concerning hydrocarbon spills, as representative examples of soil local contamination in Madrid area, are being studied. The first is being remediated and we are monitoring this process to evaluate its effectiveness. In the second location we are defining the extent of contamination in soil and aquifer to define the most effective remediation technique.

  15. Soil cover characterization at large scale: the example of Perugia Province in central Italy

    NASA Astrophysics Data System (ADS)

    Fanelli, Giulia; Salciarini, Diana; Tamagnini, Claudio

    2015-04-01

    In the last years, physically-based models aimed at predicting the occurrence of landslides have had a large diffusion because the opportunity of having landslide susceptibility maps can be essential to reduce damages and human losses. On one hand physically-based models rationally analyse problems, because mathematically describe the physical processes that actually happen, on the other hand their diffusion is limited by the difficulty of having and managing accurate data over large areas. For this reason, and also because in the Perugia province geotechnical data are partial and not regularly distributed, a data collection campaign has been started in order to have a wide physical-mechanical data set that can be used to apply any physically-based model. The collected data have been derived from mechanical tests and investigations performed to characterize the soil. The data set includes about 3000 points and each record is characterized by the following quantitative information: coordinates, geological description, cohesion, friction angle. Besides, the records contain the results of seismic tests that allow knowing the shear waves velocity in the first 30 meters of soil. The database covers the whole Perugia province territory and it can be used to evaluate the effects of both rainfall-induced and earthquake-induced landslides. The database has been analysed in order to exclude possible outliers; starting from the all data set, 16 lithological units have been isolated, each one with homogeneous geological features and the same mechanical behaviour. It is important to investigate the quality of the data and know how much they are reliable; therefore statistical analyses have been performed to quantify the dispersion of the data - i.e. relative and cumulative frequency - and also geostatistical analyses to know the spatial correlation - i.e. the variogram. The empirical variogram is a common and useful tool in geostatistics because it quantifies the spatial

  16. Maximizing the value of pressure data in saline aquifer characterization

    NASA Astrophysics Data System (ADS)

    Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.

    2017-11-01

    The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.

  17. Magnetic Susceptibility Measurements for in Situ Characterization of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Oder, R. R.

    1992-01-01

    Magnetic separation is a viable method for concentration of components of lunar soils and rocks for use as feedstocks for manufacture of metals, oxygen, and for recovery of volatiles such as He-3. Work with lunar materials indicates that immature soils are the best candidates for magnetic beneficiation. The magnetic susceptibility at which selected soil components such as anorthite, ilmenite, or metallic iron are separated is not affected by soil maturity, but the recovery of the concentrated components is. Increasing soil maturity lowers recovery. Mature soils contain significant amounts of glass-encased metallic iron. Magnetic susceptibility, which is sensitive to metallic iron content, can be used to measure soil maturity. The relationship between the ratio of magnetic susceptibility and iron oxide and the conventional maturity parameter, I(sub s)/FeO, ferromagnetic resonant intensity divided by iron oxide content is given. The magnetic susceptibilities were determined using apparatus designed for magnetic separation of the lunar soils.

  18. Characterization of interactions between soil solid phase and soil solution in the initial ecosystem development phase

    NASA Astrophysics Data System (ADS)

    Zimmermann, Claudia; Schaaf, Wolfgang

    2010-05-01

    analyzed in two weeks intervals for C and N contents (including δ13C), pH and ion concentrations. The results show that the initial phase of the experiment is characterized by intensive leaching of C and N from the litter and transformation as well as leaching from the substrate. Calcium leaching is caused mainly by carbonate dissolution from the substrates. In contrast, magnesium and especially potassium are leached in initially high amounts from the litter, but are strongly retained in the soil. The addition of litter promotes microbial CO2 production as shown by a strong increase of respiration due to easily available organic substances at the beginning of the experiment. Litter of L. corniculatus induced also a high initial peak in N2O emission as well as higher nitrification and NO3-N leaching. Leaching of DOC and TDN was clearly affected by the substrate texture, illustrated by intensive DOC leaching from the sand at the beginning of the experiment but shifting later to higher leaching rates from the loamy sand. References: Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009) The artificial catchment 'Chicken Creek' (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecolological Engineering 35, 1786-1796.

  19. Soil property effects on wind erosion of organic soils

    NASA Astrophysics Data System (ADS)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    stability. The effect of soil properties on sediment flux varied among flux types. Saltation flux was adequately predicted with simple linear regression models. Dry mechanical stability was the best single soil property linearly related to saltation flux. Simple linear models with soil properties as independent variables were not well correlated with PM10E values (mass flux). A second order polynomial equation with OM as the independent variable was found to be most highly correlated with PM10E values. These results demonstrate that variations in sediment and dust emissions can be linked to soil properties using simple models based on one or more soil properties to estimate saltation mass flux and PM10E values from organic and organic-rich soils.

  20. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    PubMed

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  1. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells.

    PubMed

    Vida, Carmen; Cazorla, Francisco M; de Vicente, Antonio

    The improvement in soil quality of avocado crops through organic amendments with composted almond shells has a positive effect on crop yield and plant health, and enhances soil suppressiveness against the phytopathogenic fungus Rosellinia necatrix. In previous studies, induced soil suppressiveness against this pathogen was related to stimulation of Gammaproteobacteria, especially some members of Pseudomonas spp. with biocontrol-related activities. In this work, we isolated bacteria from this suppressiveness-induced amended soil using a selective medium for Pseudomonas-like microorganisms. We characterized the obtained bacterial collection to aid in identification, including metabolic profiles, antagonistic responses, hybridization to biosynthetic genes of antifungal compounds, production of lytic exoenzymatic activities and plant growth-promotion-related traits, and sequenced and compared amplified 16S rDNA genes from representative bacteria. The final selection of representative strains mainly belonged to the genus Pseudomonas, but also included the genera Serratia and Stenotrophomonas. Their biocontrol-related activities were assayed using the experimental avocado model, and results showed that all selected strains protected the avocado roots against R. necatrix. This work confirmed the biocontrol activity of these Gammaproteobacteria-related members against R. necatrix following specific stimulation in a suppressiveness-induced soil after a composted almond shell application. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Measurement of δ13C values of soil amino acids by GC-C-IRMS using trimethylsilylation: a critical assessment.

    PubMed

    Rubino, Mauro; Milin, Sylvie; D'Onofrio, Antonio; Signoret, Patrick; Hatté, Christine; Balesdent, Jérôme

    2014-01-01

    In this study, we evaluated trimethylsilyl (TMS) derivatives as derivatization reagents for the compound-specific stable carbon isotope analysis of soil amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). We used non-proteinogenic amino acids to show that the extraction-derivatization-analysis procedure provides a reliable method to measure δ(13)C values of amino acids extracted from soil. However, we found a number of drawbacks that significantly increase the final total uncertainty. These include the following: production of multiple peaks for each amino acid, identified as di-, tri- and tetra-TMS derivatives; a number of TMS-carbon (TMS-C) atoms added lower than the stoichiometric one, possibly due to incomplete combustion; different TMS-C δ(13)C for di-, tri- and tetra-TMS derivatives. For soil samples, only four amino acids (leucine, valine, threonine and serine) provide reliable δ(13)C values with a total average uncertainty of 1.3 ‰. We conclude that trimethylsilyl derivatives are only suitable for determining the (13)C incorporation in amino acids within experiments using (13)C-labelled tracers but cannot be applied for amino acids with natural carbon isotope abundance until the drawbacks described here are overcome and the measured total uncertainty significantly decreased.

  3. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization.

    PubMed

    Fuess, Lucas T; Rodrigues, Isabella J; Garcia, Marcelo L

    2017-09-19

    This paper reports the characterization of the polluting potential of sugarcane vinasse, the main wastewater from ethanol production. Compositional data from vinasse samples collected from sugarcane biorefineries were used to predict negative effects on the soil, water resources and crops potentially associated with fertirrigation, the primary final destination of vinasse in Brazil. High risks of soil salinization were associated with the land disposal of vinasse, as evidenced by the high levels of total dissolved solids (TDS; >4,000 mg L -1 ) and electrical conductivity (>6.7 dS m -1 ). The high TDS levels coupled with the high biodegradable organic content of vinasse (>14 g L -1 ) also favor organic overloading events, leading to local anaerobiosis conditions. Conversely, soil sodification should not be observed in areas fertirrigated with sugarcane vinasse, given the low Na concentrations (<66 mg L -1 ) relative to Mg (>145.1 mg L -1 ) and Ca (>458.4 mg L -1 ) levels. Priority pollutants (Cu, Cr, Ni, Pb and Zn) and phytotoxic elements (Al and Fe) were also found in the analyzed samples; however, relevant environmental impacts should not be associated with these particular constituents. Overall, the relatively simple methodology used herein could efficiently replace massive field data collection to provide a basic understanding of the fate of vinasse in the environment in order to highlight the priority points to be considered in the management of this effluent. In summary, the prompt implementation of treatment plants in distilleries, in addition to a continuous and broad compositional characterization of vinasse, is essential to guarantee its adequate reuse.

  4. Soil types and forest canopy structures in southern Missouri: A first look with AIS data

    NASA Technical Reports Server (NTRS)

    Green, G. M.; Arvidson, R. E.

    1986-01-01

    Spectral reflectance properties of deciduous oak-hickory forests covering the eastern half of the Rolla Quadrangle were examined using Thematic Mapper (TM) data acquired in August and December, 1982 and Airborne Imaging Spectrometer (AIS) data acquired in August, 1985. For the TM data distinctly high relative reflectance values (greater than 0.3) in the near infrared (Band 4, 0.73 to 0.94 micrometers) correspond to regions characterized by xeric (dry) forests that overlie soils with low water retention capacities. These soils are derived primarily from rhyolites. More mesic forests characterized by lower TM band 4 relative reflectances are associated with soils of higher retention capacities derived predominately from non-cherty carbonates. The major factors affecting canopy reflectance appear to be the leaf area index (LAI) and leaf optical properties. The Suits canopy reflectance model predicts the relative reflectance values for the xeric canopies. The mesic canopy reflectance is less well matched and incorporation of canopy shadowing caused by the irregular nature of the mesic canopy may be necessary. Preliminary examination of high spectral resolution AIS data acquired in August of 1985 reveals no more information than found in the broad band TM data.

  5. Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application.

    PubMed

    Duarte, L; Teodoro, A C; Gonçalves, J A; Soares, D; Cunha, M

    2016-06-01

    Soil erosion is a serious environmental problem. An estimation of the expected soil loss by water-caused erosion can be calculated considering the Revised Universal Soil Loss Equation (RUSLE). Geographical Information Systems (GIS) provide different tools to create categorical maps of soil erosion risk which help to study the risk assessment of soil loss. The objective of this study was to develop a GIS open source application (in QGIS), using the RUSLE methodology for estimating erosion rate at the watershed scale (desktop application) and provide the same application via web access (web application). The applications developed allow one to generate all the maps necessary to evaluate the soil erosion risk. Several libraries and algorithms from SEXTANTE were used to develop these applications. These applications were tested in Montalegre municipality (Portugal). The maps involved in RUSLE method-soil erosivity factor, soil erodibility factor, topographic factor, cover management factor, and support practices-were created. The estimated mean value of the soil loss obtained was 220 ton km(-2) year(-1) ranged from 0.27 to 1283 ton km(-2) year(-1). The results indicated that most of the study area (80 %) is characterized by very low soil erosion level (<321 ton km(-2) year(-1)) and in 4 % of the studied area the soil erosion was higher than 962 ton km(-2) year(-1). It was also concluded that areas with high slope values and bare soil are related with high level of erosion and the higher the P and C values, the higher the soil erosion percentage. The RUSLE web and the desktop application are freely available.

  6. REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS

    EPA Science Inventory

    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  7. Designation of less favorable areas by the regionalization of soil degradation on various spatial scales

    NASA Astrophysics Data System (ADS)

    Pásztor, L.; Szabó, J.; Bakacsi, Zs.; Laborczi, A.

    2009-04-01

    One of the main objectives of the EU's Common Agricultural Policy is to encourage maintaining agricultural production in less favorable areas (LFA) in order (among others) to sustain agricultural production and use natural resources, in such a way to secure both stable production and income to farmers and to protect the environment. LFA assignment has both ecological and severe economical aspects. Delimitation of LFAs can be carried out by using biophysical diagnostic criteria on low soil productivity and poor climate conditions. Identification of low-productivity areas requires regionalization of soil functions related to food and other biomass production. This process can be carried out in different scales from national to local level, but always requires map-based pedological and further environmental information with appropriate spatial resolution. For the regionalization of less productive areas in national scale a functional approach was used which integrates the knowledge on soil degradation processes in nationwide level. Specific soil threats were classified into ranked categories. Supposing (quasi)uniform distribution of vulnerability measure along these classes, we introduced a "standardized" value as a ratio of the class order to the maximum class order expressed in percentage. For the overall spatial characterization of degradation status, spatial information was integrated in a result map by summarizing the degradation specific "standardized" cell values. This map in one hand has been used for the delineation of soil degradation regions. On the other hand appropriate spatial aggregation of index values on geographical and administrative regions is suitable for their quantitative comparison thus they can be ranked and this feature can be used for the identification of less favorable areas. At the more detailed, county level the Digital Kreybig Soil Information System was used as a tool of the regionalization of soil functions related to soil

  8. Strategies to improve reference databases for soil microbiomes

    DOE PAGES

    Choi, Jinlyung; Yang, Fan; Stepanauskas, Ramunas; ...

    2016-12-09

    A database of curated genomes is needed to better assess soil microbial communities and their processes associated with differing land management and environmental impacts. Interpreting soil metagenomic datasets with existing sequence databases is challenging because these datasets are biased towards medical and biotechnology research and can result in misleading annotations. We have curated a database of 928 genomes of soil-associated organisms (888 bacteria, 34 archaea, and 6 fungi). Using this database as a representation of the current state of knowledge of soil microbes that are well-characterized, we evaluated its composition and compared it to broader microbial databases, specifically NCBI’s RefSeq,more » as well as 3,035 publicly available soil amplicon datasets. These comparisons identified phyla and functions that are enriched in soils as well as those that may be underrepresented in RefSoil. For example, RefSoil was observed to have increased representation of Firmicutes despite its low abundance in soil environments and also lacked representation of Acidobacteria and Verrucomicrobia, which are abundant in soils. Our comparison of RefSoil to soil amplicon datasets allowed us to identify targets that if cultured or sequenced would significantly increase the biodiversity represented within RefSoil. To demonstrate the opportunities to access these underrepresented targets, we employed single cell genomics in a pilot experiment to recover 14 genomes from the "most wanted" list, which improved RefSoil's representation of EMP sequences by 7% by abundance. This effort demonstrates the value of RefSoil in the guidance of future research efforts and the capability of single cell genomics as a practical means to fill the existing genomic data gaps.« less

  9. Strategies to improve reference databases for soil microbiomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jinlyung; Yang, Fan; Stepanauskas, Ramunas

    A database of curated genomes is needed to better assess soil microbial communities and their processes associated with differing land management and environmental impacts. Interpreting soil metagenomic datasets with existing sequence databases is challenging because these datasets are biased towards medical and biotechnology research and can result in misleading annotations. We have curated a database of 928 genomes of soil-associated organisms (888 bacteria, 34 archaea, and 6 fungi). Using this database as a representation of the current state of knowledge of soil microbes that are well-characterized, we evaluated its composition and compared it to broader microbial databases, specifically NCBI’s RefSeq,more » as well as 3,035 publicly available soil amplicon datasets. These comparisons identified phyla and functions that are enriched in soils as well as those that may be underrepresented in RefSoil. For example, RefSoil was observed to have increased representation of Firmicutes despite its low abundance in soil environments and also lacked representation of Acidobacteria and Verrucomicrobia, which are abundant in soils. Our comparison of RefSoil to soil amplicon datasets allowed us to identify targets that if cultured or sequenced would significantly increase the biodiversity represented within RefSoil. To demonstrate the opportunities to access these underrepresented targets, we employed single cell genomics in a pilot experiment to recover 14 genomes from the "most wanted" list, which improved RefSoil's representation of EMP sequences by 7% by abundance. This effort demonstrates the value of RefSoil in the guidance of future research efforts and the capability of single cell genomics as a practical means to fill the existing genomic data gaps.« less

  10. Thermal properties of degraded lowland peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat

  11. Calculations of microwave brightness temperature of rough soil surfaces: Bare field

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Wang, J. R.

    1985-01-01

    A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.

  12. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    NASA Astrophysics Data System (ADS)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  13. Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile

    USGS Publications Warehouse

    Quade, Jay; Rech, Jason A.; Latorre, Claudio; Betancourt, Julio L.; Gleeson, Erin; Kalin, Mary T.K.

    2007-01-01

    We evaluate the impact of exceptionally sparse plant cover (0–20%) and rainfall (2–114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from -8.2% at the wettest sites to +7.9% at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229–240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20–30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1%) of carbonate from the driest study sites indicates it formed&mdahs;perhaps abiotically—in the presence of pure atmospheric CO2. δ18O (VPDB) values from soil carbonate range from -5.9% at the wettest sites to +7.3% at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.

  14. Induced polarization for characterizing and monitoring soil stabilization processes

    NASA Astrophysics Data System (ADS)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  15. Characteristic variations in reflectance of surface soils

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1982-01-01

    Surface soil samples from a wide range of naturally occurring soils were obtained for the purpose of studying the characteristic variations in soil reflectance as these variations relate to other soil properties and soil classification. A total 485 soil samples from the U.S. and Brazil representing 30 suborders of the 10 orders of 'Soil Taxonomy' was examined. The spectral bidirectional reflectance factor was measured on uniformly moist soils over the 0.52 to 2.32 micron wavelength range with a spectroradiometer adapted for indoor use. Five distinct soil spectral reflectance curve forms were identified according to curve shape, the presence or absence of absorption bands, and the predominance of soil organic matter and iron oxide composition. These curve forms were further characterized according to generically homogeneous soil properties in a manner similar to the subdivisions at the suborder level of 'Soil Taxonomy'. Results indicate that spectroradiometric measurements of soil spectral bidirectional reflectance factor can be used to characterize soil reflectance in terms that are meaningful to soil classification, genesis, and survey.

  16. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1998-01-01

    requires that hydraulic characterization be carried out at a much finer spatial scale, for which adequate information on geometric detail is not forthcoming. Traditional methods of interpretation of field data have relied heavily on analytic solutions to specific, highly idealized initial-value problems. The availability of efficient numerical models and versatile spreadsheets of personal computers offer promising opportunities to relax many unavoidable assumptions of analytical solutions and interpret field data much more generally and with fewer assumptions. Currently, a lot of interest is being devoted to the characterization of permeability. However, all groundwater systems are transient on appropriate timescales. The dynamics of groundwater systems cannot be understood without paying attention to capacitance. Much valuable insights about the dynamic attributes of groundwater systems could be gained by long-term passive monitoring of responses of groundwater systems to barometric changes, Earth tides, and ocean tides.

  17. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Treesearch

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  18. The use of sensory perception indicators for improving the characterization and modelling of total petroleum hydrocarbon (TPH) grade in soils.

    PubMed

    Roxo, Sónia; de Almeida, José António; Matias, Filipa Vieira; Mata-Lima, Herlander; Barbosa, Sofia

    2016-03-01

    This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.

  19. Magnetism of soils applied for estimation of erosion at an agricultural land

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Dlouha, Sarka; Grison, Hana; Jaksik, Ondrej; Kodesova, Radka; Petrovsky, Eduard

    2013-04-01

    A detailed field study on small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic), followed by laboratory analyses, has been carried out in order to test the applicability of magnetic methods in soil erosion estimation. The approach is based on the well-established differentiation in magnetic signature of topsoil from subsoil horizons as a result of "in situ" formation of strongly magnetic iron oxides e.g. (Maher 1986). Introducing a simple tillage homogenization model for predicting magnetic signal after uniform mixing of soil material as a result of tillage and subsequent erosion, Royall (2001) showed that magnetic susceptibility and its frequency dependence can be used to estimate soil loss. Haplic Chernozem is an original dominant soil unit in the wider area, nowadays progressively transformed into different soil units along with intensive soil erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). The side valley represented a major line of concentrated runoff emptying into a colluvial fan (Zadorova et al., 2011; Jaksik et al., 2011). Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points. Bulk soil material for laboratory investigation was gathered from all grid points. Mass specific magnetic susceptibility χ and its frequency dependence kFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin. Thermomagnetic analyses, hysteresis measurement and SEM were used in order to determine dominant ferrimagnetic carriers in top-soil and sub-soil layers. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). At the same time, no correlations were found between the values of kFD and mass specific susceptibility. Values of organic carbon

  20. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations.

    PubMed

    Demnerová, Katerina; Mackova, Martina; Spevákova, Veronika; Beranova, Katarina; Kochánková, Lucie; Lovecká, Petra; Ryslavá, Edita; Macek, Tomas

    2005-09-01

    As part of the EU project MULTIBARRIERS, six new endogenous aerobic bacterial isolates able to grow in the presence of BTmX (benzene, toluene, m-xylene) were characterized with respect to their growth specificities. Preliminary analysis included restriction fragment length polymorphism profiles and 16S rDNA sequencing. The diversity of these strains was confirmed by denaturing gradient gel electrophoresis. Additional aerobic bacterial strains were isolated from the rhizospheres of plants grown in polychlorinated biphenyl (PCB)-contaminated soils. Pot experiments were designed to show the beneficial effect of plants on the bacterial degradation of PCBs. The effect of PCB removal from soil was evaluated and bacteria isolated from three different plant species were examined for the presence of the bph operon.

  1. Geophysical surveys combined with laboratory soil column experiments to identify and explore risk areas for soil and water pollution in feedlots

    NASA Astrophysics Data System (ADS)

    Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl

    2014-05-01

    Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial

  2. Reading the Molecular Code in Soils

    NASA Astrophysics Data System (ADS)

    Hess, N. J.; Tfaily, M. M.; O'Brien, S. L.; Tolic, N.; Jastrow, J. D.; Amonette, J. E.

    2015-12-01

    There is much that we understand about the relationship between plants, microbes, soil, and water but that understanding is incomplete at the molecular scale. With advent of high throughput genomic sequencing we are beginning to appreciate the diversity of microbial community structure and function and its response to the rhythm of plant function. Through the lens of high-resolution mass spectrometry we are getting our first glimpses of the diversity of soil and pore water organic chemistry at the molecular level. In combination, these diverse data streams are revealing traces of chemical metabolic pathways. This approach promises to reveal many exciting future discoveries, shedding light into the "black box" that exists beneath our feet. In this talk we discuss our experience with the molecular characterization of soils from native prairie to restored prairie to active corn-soybean soils from the DOE funded CSiTE project in Batavia, Illinois. We focus on how common soil separation and fractionation techniques can affect the resulting molecular soil characterization by comparing whole soils to those that have been fractionated into micro- and macro-aggregates and their corresponding silt and clay fractions. When carefully utilized and interpreted these fractionation techniques can be utilized for deepening understanding of the biotic and abiotic chemical pathways effecting the organic chemistry in the different soil fractions. In highly fractionated soils we find significant differences in organic chemistry between silt and clay separates of corresponding hierarchical aggregate fractions. However the most biologically rich information resides in the whole soil. Here we see significant gradients in soil chemistry across to active agricultural to restored to native prairie soils. These results suggest a cautionary note, namely that soil fractionation prior to molecular characterization can reveal much about the "abiotic" interactions between organic molecules and

  3. Observed effects of soil organic matter content on the microwave emissivity of soils

    NASA Technical Reports Server (NTRS)

    O'Neill, P. E.; Jackson, T. J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  4. Observed effects of soil organic matter content on the microwave intensity of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1988-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  5. Probability Models Based on Soil Properties for Predicting Presence-Absence of Pythium in Soybean Roots.

    PubMed

    Zitnick-Anderson, Kimberly K; Norland, Jack E; Del Río Mendoza, Luis E; Fortuna, Ann-Marie; Nelson, Berlin D

    2017-10-01

    Associations between soil properties and Pythium groups on soybean roots were investigated in 83 commercial soybean fields in North Dakota. A data set containing 2877 isolates of Pythium which included 26 known spp. and 1 unknown spp. and 13 soil properties from each field were analyzed. A Pearson correlation analysis was performed with all soil properties to observe any significant correlation between properties. Hierarchical clustering, indicator spp., and multi-response permutation procedures were used to identify groups of Pythium. Logistic regression analysis using stepwise selection was employed to calculate probability models for presence of groups based on soil properties. Three major Pythium groups were identified and three soil properties were associated with these groups. Group 1, characterized by P. ultimum, was associated with zinc levels; as zinc increased, the probability of group 1 being present increased (α = 0.05). Pythium group 2, characterized by Pythium kashmirense and an unknown Pythium sp., was associated with cation exchange capacity (CEC) (α < 0.05); as CEC increased, these spp. increased. Group 3, characterized by Pythium heterothallicum and Pythium irregulare, were associated with CEC and calcium carbonate exchange (CCE); as CCE increased and CEC decreased, these spp. increased (α = 0.05). The regression models may have value in predicting pathogenic Pythium spp. in soybean fields in North Dakota and adjacent states.

  6. Influence of land use on soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogeon, H.; Lemée, L.; Chabbi, A.; Ambles, A.

    2009-04-01

    fractionated and derivatised (methylation and acetylation) prior to GC-MS analysis. They are mainly of plant origin from surface to 50 cm horizons (long odd chained hydrocarbons, long even chained alcohols and fatty acids) whereas they clearly have a different origin in the deepest horizons. The fatty acids fraction is of particular interest since it is possible to distinguish bacterial from plant inputs. The isotopic carbon ratio composition (delta 13C) of a whole soil gives information about the photosynthesis process. Therefore, this technique could be used to differentiate bacterial from plant inputs into the fatty acid fraction. Indeed the obtained delta 13C values of fatty acids from bacterial and plant origins are different. It is particularly interesting to notice that branched compounds (bacterial input) present higher values than linear compounds. Humic substances were obtained from IHSS (International Humic Substances Society) protocol. Contrarily to lipids, humin is less present in the arable soil (60%of the sample) than in the other soils (90%). In the case of the forest and the grassland, the increase in this refractory pool of OM with depth indicates that SOM become more resistant to biodegradation in deepest horizons. Furthermore, humic acids and humin were characterized by thermochemolysis using TMAH as alkylating agent. The major pyrolysis products of humic acids and humin are short chained (Soils and Global Change, pp 9-26 [2] Lal, R., et al., (2004), Soil carbon sequestration to mitigate climate change, Geoderma 123, 1-22. [3] IPCC, 2001. Summary for policymakers. In: Watson, R., (Ed.), Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, 1-20.

  7. Characterizing agricultural soil nitrous acid (HONO) and nitric oxide (NO) emissions with their nitrogen isotopic composition

    NASA Astrophysics Data System (ADS)

    Chai, J.; Miller, D. J.; Guo, F.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2017-12-01

    Nitrous acid (HONO) is a major source of atmospheric hydroxyl radical (OH), which greatly impacts air quality and climate. Fertilized soils may be important sources of HONO in addition to nitric oxide (NO). However, soil HONO emissions are especially challenging to quantify due to huge spatial and temporal variation as well as unknown HONO chemistry. With no in-situ measurements available, soil HONO emissions are highly uncertain. Isotopic analysis of HONO may provide a tool for tracking these sources. We characterize in situ soil HONO and NO fluxes and their nitrogen isotopic composition (δ15N) across manure management and meteorological conditions during a sustainable dairy cropping study in State College, Pennsylvania. HONO and NO were simultaneously collected at hourly resolution from a custom-coated dynamic soil flux chamber ( 3 LPM) using annular denuder system (ADS) coupled with an alkaline-permanganate NOx collection system for offline isotopic analysis of δ15N with ±0.6 ‰ (HONO) and ±1.5 ‰ (NO) precision. The ADS method was tested using laboratory generated HONO flowing through the chamber to verify near 100% collection (with no isotopic fractionation) and suitability for soil HONO collection. Corn-soybean rotation plots (rain-fed) were sampled following dairy manure application with no-till shallow-disk injection (112 kg N ha-1) and broadcast with tillage incorporation (129 kg N ha-1) during spring 2017. Soil HONO fluxes (n=10) ranged from 0.1-0.6 ng N-HONO m-2 s-1, 4-28% of total HONO+NO mass fluxes. HONO and NO fluxes were correlated, with both declining during the measurement period. The soil δ15N-HONO flux weighted mean ±1σ of -15 ± 6‰ was less negative than δ15N of simultaneously collected NO (-29 ± 8‰). This can potentially be explained by fractionations associated with microbial conversion of nitrite, abiotic production of HONO from soil nitrite, and uptake and release with changing soil moisture. Our results have implications for

  8. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges

  9. Changes of soil particle size distribution in tidal flats in the Yellow River Delta.

    PubMed

    Lyu, Xiaofei; Yu, Junbao; Zhou, Mo; Ma, Bin; Wang, Guangmei; Zhan, Chao; Han, Guangxuan; Guan, Bo; Wu, Huifeng; Li, Yunzhao; Wang, De

    2015-01-01

    The tidal flat is one of the important components of coastal wetland systems in the Yellow River Delta (YRD). It can stabilize shorelines and protect coastal biodiversity. The erosion risk in tidal flats in coastal wetlands was seldom been studied. Characterizing changes of soil particle size distribution (PSD) is an important way to quantity soil erosion in tidal flats. Based on the fractal scale theory and network analysis, we determined the fractal characterizations (singular fractal dimension and multifractal dimension) soil PSD in a successional series of tidal flats in a coastal wetland in the YRD in eastern China. The results showed that the major soil texture was from silt loam to sandy loam. The values of fractal dimensions, ranging from 2.35 to 2.55, decreased from the low tidal flat to the high tidal flat. We also found that the percent of particles with size ranging between 0.4 and 126 μm was related with fractal dimensions. Tide played a great effort on soil PSD than vegetation by increasing soil organic matter (SOM) content and salinity in the coastal wetland in the YRD. Tidal flats in coastal wetlands in the YRD, especially low tidal flats, are facing the risk of soil erosion. This study will be essential to provide a firm basis for the coast erosion control and assessment, as well as wetland ecosystem restoration.

  10. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH.

    PubMed

    Xie, Hong; Huang, Zhi-Yong; Cao, Ying-Lan; Cai, Chao; Zeng, Xiang-Cheng; Li, Jian

    2012-08-01

    Pollution of Pb in the surface of agricultural soils is of increasing concern due to its serious impact on the plant growth and the human health through the food chain. However, the mobility, activity and bioavailability of Pb rely mainly on its various chemical species in soils. In the present study, E and L values, the labile pools of isotopically exchangeable Pb, were estimated using the method of isotope dilution in three vegetable-growing soils. The experiments involved adding a stable enriched isotope ((206)Pb > 96%) to a soil suspension and to soils in which plants are subsequently grown, the labile pools of Pb were then estimated by measuring the isotopic composition of Pb in soil solutions and in the plant tissues, respectively. In addition, the correlation of E values and soil pH was investigated at the ranges of pH 4.5-7.0. The amount of labile Pb in soils was also estimated using different single chemical extractants and a modified BCR approach. The results showed that after spiking the enriched isotopes of (206)Pb (>96%) for 24 hours an equilibration of isotopic exchanges in soil suspensions was achieved, and the isotope ratios of (208)Pb/(206)Pb measured at that time was used for calculating the E(24 h) values. The labile pools of Pb by %E(24 h) values, ranging from 53.2% to 61.7% with an average 57%, were found to be significantly higher (p < 0.05) than the values estimated with L values, single chemical extractants and the Σ(BCR) values obtained with the BCR approach, respectively. A strong negative correlation (R(2) = 0.984) between E(24 h) values and soil pH was found in the tested soil sample. The results indicate that the %E(24 h) value can more rapidly and easily predict the labile pools of Pb in soils compared with L values, but it might be readily overestimated because of the artificial soil acidity derived from the spiked isotopic tracer and the excess of spiked enriched isotopes. The results also suggest that the amounts of Pb extracted

  11. Soil Water Retention as Indicator for Soil Physical Quality - Examples from Two SoilTrEC European Critical Zone Observatories

    NASA Astrophysics Data System (ADS)

    Rousseva, Svetla; Kercheva, Milena; Shishkov, Toma; Dimitrov, Emil; Nenov, Martin; Lair, Georg J.; Moraetis, Daniel

    2014-05-01

    Soil water retention is of primary importance for majority of soil functions. The characteristics derived from Soil Water Retention Curve (SWRC) are directly related to soil structure and soil water regime and can be used as indicators for soil physical quality. The aim of this study is to present some parameters and relationships based on the SWRC data from the soil profiles characterising the European SoilTrEC Critical Zone Observatories Fuchsenbigl and Koiliaris. The studied soils are representative for highly productive soils managed as arable land in the frame of soil formation chronosequence at "Marchfeld" (Fuchsenbigl CZO), Austria and heavily impacted soils during centuries through intensive grazing and farming, under severe risk of desertification in context of climatic and lithological gradient at Koiliaris, Crete, Greece. Soil water retention at pF ≤ 2.52 was determined using the undisturbed soil cores (100 cm3 and 50 cm3) by a suction plate method. Water retention at pF = 4.2 was determined by a membrane press method and at pF ≥ 5.6 - by adsorption of water vapour at controlled relative humidity, both using ground soil samples. The soil physical quality parameter (S-parameter) was defined as the slope of the water retention curve at its inflection point (Dexter, 2006), determined with the obtained parameters of van Genuhten (1980) water retention equation. The S-parameter values were categorised to assess soil physical quality as follows: S < 0.020 very poor, 0.020 ≤ S < 0.035 poor, 0.035 ≤ S < 0.050 good, S ≥ 0.050 very good (Dexter, 2004). The results showed that most of the studied topsoil horizons have good physical quality according to both the S-parameter and the Plant-Available Water content (PAW), with the exception of the soils from croplands at CZO Fuxenbigl (F4, F5) which are with poor soil structure. The link between the S-parameter and the indicator of soil structure stability (water stable soil aggregates with size 1-3 mm) is not

  12. Inversion of soil electrical conductivity data to estimate layered soil properties

    USDA-ARS?s Scientific Manuscript database

    CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...

  13. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.

    PubMed

    Uematsu, Shinichiro; Smolders, Erik; Sweeck, Lieve; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde

    2015-08-15

    The high variability of the soil-to-plant transfer factor of radiocaesium (RCs) compels a detailed analysis of the radiocaesium interception potential (RIP) of soil, which is one of the specific factors ruling the RCs transfer. The range of the RIP values for agricultural soils in the Fukushima accident affected area has not yet been fully surveyed. Here, the RIP and other major soil chemical properties were characterised for 51 representative topsoils collected in the vicinity of the Fukushima contaminated area. The RIP ranged a factor of 50 among the soils and RIP values were lower for Andosols compared to other soils, suggesting a role of soil mineralogy. Correlation analysis revealed that the RIP was most strongly and negatively correlated to soil organic matter content and oxalate extractable aluminium. The RIP correlated weakly but positively to soil clay content. The slope of the correlation between RIP and clay content showed that the RIP per unit clay was only 4.8 mmol g(-1) clay, about threefold lower than that for clays of European soils, suggesting more amorphous minerals and less micaceous minerals in the clay fraction of Japanese soils. The negative correlation between RIP and soil organic matter may indicate that organic matter can mask highly selective sorption sites to RCs. Multiple regression analysis with soil organic matter and cation exchange capacity explained the soil RIP (R(2)=0.64), allowing us to map soil RIP based on existing soil map information. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    USGS Publications Warehouse

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  15. Identifying key soil cyanobacteria easy to isolate and culture for arid soil restoration

    NASA Astrophysics Data System (ADS)

    Roncero-Ramos, Beatriz; Ángeles Muñoz-Martín, M.; Chamizo, Sonia; Román, Raúl; Rodriguez-Caballero, Emilio; Mateo, Pilar; Cantón, Yolanda

    2017-04-01

    Drylands represent an important fraction of the Earth land's surface. Low cover of vascular plants characterizes these regions, and the large open areas among plants are often colonized by cyanobacteria, mosses, lichens, algae, bryophytes, bacteria and fungi, known as biocrusts. Because these communities are on or within the soil surface, they contribute to improve physicochemical properties of the uppermost soil layers and have important effects on soil fertility and stability, so they could play an important role on soil restoration. Cyanobacteria appear to be a cross component of biocrusts and they have been demonstrated to enhance water availability, soil fertility (fixing atmospheric C and N), and soil aggregation (thanks to their filamentous morphology and the exopolysaccharides they excrete), and significantly reduce water and wind erosion. Besides, they are able to tolerate high temperatures and UV radiation. All these features convert cyanobacteria in pioneer organisms capable of colonizing degraded soils and may be crucial in facilitating the succession of more developed organisms such as vascular plants. Therefore, the use of native cyanobacteria, already adapted to site environmental conditions, could guarantee a successful restoration approach of degraded soils. However, previous to their application for soil restoration, the most representative species inhabiting these soils should be identified. The objective of this study was to identify (morphologically and genetically) and isolate representative native cyanobacteria species from arid soils in SE Spain, characterized for being easily isolated and cultured with the aim of using them to inoculate degraded arid soil. We selected two study areas in Almería, SE Spain, where biocrust cover most of the open spaces between plants: El Cautivo experimental site located in the Tabernas desert and a limestone quarry located at the southeastern edge of the Gádor massif. The first site is characterized by

  16. Determination of resilient modulus values for typical plastic soils in Wisconsin.

    DOT National Transportation Integrated Search

    2011-09-01

    "The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...

  17. Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel.

    PubMed

    Zhang, Xiaoqing; Li, Jumei; Wei, Dongpu; Li, Bo; Ma, Yibing

    2015-01-01

    Soil soluble nickel (Ni) concentration is very important for determining soil Ni toxicity. In the present study, the relationships between soil properties, total and soluble Ni concentrations in soils were developed in a wide range of soils with different properties and climate characteristics. The multiple regressions showed that soil pH and total soil Ni concentrations were the most significant parameters in predicting soluble Ni concentrations with the adjusted determination coefficients (Radj2) values of 0.75 and 0.68 for soils spiked with soluble Ni salt and the spiked soils leached with artificial rainwater to mimic field conditions, respectively. However, when the soils were divided into three categories (pH < 7, 7-8 and > 8), they obtained better predictions with Radj2 values of 0.78-0.90 and 0.79-0.94 for leached and unleached soils, respectively. Meanwhile, the other soil properties, such as amorphous Fe and Al oxides and clay, were also found to be important for determining soluble Ni concentrations, indicating that they were also presented as active adsorbent surfaces. Additionally, the whole soil speciation including bulk soil properties and total soils Ni concentrations were analyzed by mechanistic speciation models WHAM VI and Visual MINTEQ3.0. It was found that WHAM VI provided the best predictions for the soils with pH < 7, was relatively reasonable for pH 7 to 8, and gave an overestimation for pH > 8. The Visual MINTEQ3.0 could provide better estimation for pH < 8 and meanwhile quite reasonable results for pH > 8. These results indicated the possibility and applicability of these models to predict soil soluble Ni concentration by soil properties.

  18. Spatiotemporal characterization of soil moisture fields in agricultural areas using cosmic-ray neutron probes and data fusion

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; Wang, Tiejun

    2015-04-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  19. Characterizing soil erosion potential using electrical resistivity imaging : technical summary.

    DOT National Transportation Integrated Search

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics : including: plasticity, water content, grain size, percent clay, compaction, and shear : strength. Many of these characteristics also influence soil in situ bulk electric...

  20. Characterizing soil erosion potential using electrical resistivity imaging : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics including: plasticity, : water content, grain size, percent clay, compaction, and shear strength. Many of these characteristics also : influence soil in situ bulk electric...

  1. NEGLECTED COMPONENTS OF BIODIVERSITY: SOIL ORIBATID MITES, COMMUNITY STRUCTURE AND SOIL RECOVERY

    EPA Science Inventory

    Oribatid mites are an abundant and diverse component of soils in regional pine forests, and are valuable in characterizing the biodiversity of these forested lands. We sampled oribatid mites using soil cores and leaf litterbags, in young aggrading forest stands. Comparing these...

  2. Soil amendments effects on radiocesium translocation in forest soils.

    PubMed

    Sugiura, Yuki; Ozawa, Hajime; Umemura, Mitsutoshi; Takenaka, Chisato

    2016-12-01

    We conducted an experiment to investigate the potential of phytoremediation by soil amendments in a forest area. To desorb radiocesium ( 137 Cs) from variable charges in the soil, ammonium sulfate (NH 4 + ) and elemental sulfur (S) (which decrease soil pH) were applied to forest soil collected from contaminated area at a rate of 40 and 80 g/m 2 , respectively. A control condition with no soil treatment was also considered. We defined four groups of aboveground conditions: planted with Quercus serrata, planted with Houttuynia cordata, covered with rice straw as litter, and unplanted/uncovered (control). Cultivation was performed in a greenhouse with a regular water supply for four months. Following elemental sulfur treatment, soil pH values were significantly lower than pH values following ammonium sulfate treatment and no treatment. During cultivation, several plant species germinated from natural seeds. No clear differences in aboveground tissue 137 Cs concentrations in planted Q. serrata and H. cordata were observed among the treatments. However, aboveground tissue 137 Cs concentration values in the germinated plants following elemental sulfur treatment were higher than the values following the ammonium sulfate treatment and no treatment. Although biomass values for Q. serrata, H. cordata, and germinated plants following elemental sulfur treatment tended to be low, the total 137 Cs activities in the aboveground tissue of germinated plants were higher than those following ammonium sulfate treatment and no treatment in rice straw and unplanted conditions. Although no significant differences were observed, 137 Cs concentrations in rice straw following ammonium sulfate and elemental sulfur treatments tended to be higher than those in the control case. The results of this study indicate that elemental sulfur lowers the soil pH for a relatively long period and facilitates 137 Cs translocation to newly emerged and settled plants or litter, but affects plant growth in

  3. An Evaluation of Vegetation Influences on Infiltration in Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    Perkins, K. S.; Stock, J. D.; Nimmo, J. R.

    2016-12-01

    Changes in vegetation communities such as removing trees, introducing grazing ungulates, and replacing native plants with invasive species have substantially altered soil infiltration processes and rates and therefore runoff, erosion, and aquifer recharge. We hypothesize that broad vegetation communities can be characterized by distributions of saturated hydraulic conductivity (Kfs). We used 300 field measurements of hydraulic conductivity from six sites on five of the Hawaiian Islands to show this effect. We analyzed the data using three broad ecosystem categories: grasses, trees and shrubs, or bare soil. The soils of each site have co-evolved with past and present ecological community without significant mechanical disturbance by agriculture or other human activities. Geometric mean values Kfs are 203 mm/h for soils hosting trees and shrubs, 50 mm/h for grasses, and 13 mm/h for bare soil. Differences are statistically significant at the 95% confidence level. These examples show that it is feasible to make maps of Kfs based on field and ecosystem data. These ecosystem trends can be used to estimate ongoing changes to runoff and recharge from climate and land use change.

  4. Mineralogy and geochemistry of soils from glass houses and solariums

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Filipov, Feodor; Rusu, Constantin; Bulgariu, Laura

    2010-05-01

    very difficult. Practically, each type of soil from this category has distinct pedological and chemical-mineralogical characteristics, mostly determined by the nature of parental material and by the exploitation technologies. Concerning to the pedogeochemistry of soils from glasshouses have not yet been written summary studies, most existing papers from literature are in fact, case studies of particular situations. The deficit of information from this field, together with the ambiguity of pedogenetical characters of diagnostic, makes difficult the unitary characterization of soils from glasshouses. Characteristic for the soils from glass houses are the intense modifications of soil profile, the large variability of mineralogy and chemistry, and the salinization processes of superior horizons. From chemical point of view, the soils from glass houses is characterized by high values of bases saturation, accessible phosphorus and ration between humic and fulvic acids. From mineralogical point of view, the soils from glass houses studied is characterized by a high heterogeneity degree, both as contents, and as occurrence and distribution forms of mineral and organic components in profile. Predominant quantitatively are clay minerals and as variety, the crystalline forms are most abundant. As regard the clay minerals type, the kaolin and illites have dominant weights in comparison with smectites and the other mineral components. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).

  5. Soil tension mediates isotope fractionation during soil water evaporation

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  6. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide.

    PubMed

    Chen, Zhang; Wang, Ruixin; Han, Pengyuan; Sun, Hailong; Sun, Haifeng; Li, Chengjun; Yang, Lixia

    2018-04-01

    Soil water repellency (SWR) causes reduced soil water storage, enhanced runoff and reduced ecosystem productivity. Therefore, characterization of SWR is a prerequisite for effective environmental management. SWR has been reported under different soils, land uses and regions of the world, particularly in forest land and after wildfires; however, the understanding of this variable in the artificial soil of rocky slope eco-engineering is still rather limited. This study presented the characterization of SWR in the artificial soil affected by the polyacrylamide (PAM) and drought stress. There were two molecular weights of PAM, and the CK was without PAM application. Three types of soil were studied: natural soil and two types of artificial soil which have been sprayed for 1y and 5y, respectively. The drought stress experiments had three drought gradients, lasted for three weeks. Water repellency index (WRI) and soil-water contact angle (β) were determined using intrinsic sorptivity method by measuring the water sorptivity (S W ) and ethanol sorptivity (S E ) in all soil samples. The results showed that (1) Polyacrylamide treatments significantly increased S W by 3% to 38%, and reduced S E by 1% to 15%, WRI by 6% to 38%, β by 3% to 23% compared to the control group. Polyacrylamide treatments also increased water-stable aggregates content and total porosity by 22% to 33%, 11% to 20% relative to the control, while PAM with a higher molecular weight performed best. (2) The interaction between PAM and drought stress had a significant effect on WRI and β for all soil types (P<0.01) while it only had a significant effect on S W and S E for the artificial soil (P<0.01). (3) The artificial soil had a greater WRI and β than the natural soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area

  8. Mercury in soils of the agro-industrial zone of Zima city (Irkutsk oblast)

    NASA Astrophysics Data System (ADS)

    Butakov, E. V.; Kuznetsov, P. V.; Kholodova, M. S.; Grebenshchikova, V. I.

    2017-11-01

    Data on mercury concentrations in soils of the agro-industrial zone of Zima city in Irkutsk oblast are discussed. It is shown that mercury concentrations in the plow horizon of studied soils exceed background values. The distribution pattern of mercury in soils of the investigated area is characterized. The revealed mercury anomalies are allocated to the industrial zone of the Sayanskkhimprom plant. The combined analysis of data on mercury concentrations in the plow and subplow horizons and on the chemical composition of snow indicates that mercury enters the soil mainly with atmospheric precipitation and is present there in the adsorbed form. The correlation analysis indicates that the local thermal power station plays a significant role as the source of mercury emission to the atmosphere. Close relationships between mercury concentrations and concentrations of mobile forms of elements attest to the presence of mobile organomineral mercury compounds in the studied soils.

  9. Impact of land management on soil structure and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2010-05-01

    Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks

  10. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 2. Inverse modeling for eff ective properties

    USGS Publications Warehouse

    Mirus, B.B.; Perkins, K.S.; Nimmo, J.R.; Singha, K.

    2009-01-01

    To understand their relation to pedogenic development, soil hydraulic properties in the Mojave Desert were investi- gated for three deposit types: (i) recently deposited sediments in an active wash, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. Eff ective parameter values were estimated for a simplifi ed model based on Richards' equation using a fl ow simulator (VS2D), an inverse algorithm (UCODE-2005), and matric pressure and water content data from three ponded infi ltration experiments. The inverse problem framework was designed to account for the eff ects of subsurface lateral spreading of infi ltrated water. Although none of the inverse problems converged on a unique, best-fi t parameter set, a minimum standard error of regression was reached for each deposit type. Parameter sets from the numerous inversions that reached the minimum error were used to develop probability distribu tions for each parameter and deposit type. Electrical resistance imaging obtained for two of the three infi ltration experiments was used to independently test fl ow model performance. Simulations for the active wash and Holocene soil successfully depicted the lateral and vertical fl uxes. Simulations of the more pedogenically developed Pleistocene soil did not adequately replicate the observed fl ow processes, which would require a more complex conceptual model to include smaller scale heterogeneities. The inverse-modeling results, however, indicate that with increasing age, the steep slope of the soil water retention curve shitis toward more negative matric pressures. Assigning eff ective soil hydraulic properties based on soil age provides a promising framework for future development of regional-scale models of soil moisture dynamics in arid environments for land-management applications. ?? Soil Science Society of America.

  11. Evaluation of fine soil moisture data from the IFloodS (NASA GPM) Ground Validation campaign using a fully-distributed ecohydrological model

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.

    2014-12-01

    The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.

  12. Biochar alters the resistance and resilience to drought in a tropical soil

    NASA Astrophysics Data System (ADS)

    Liang, Chenfei; Zhu, Xiaolin; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2014-05-01

    Soil microbes play a key role in nutrient cycling and carbon sequestration. Global change can alter soil microbial population composition and behavior. Biochar addition has been explored in the last years as a way to mitigate global warming. However, responses of microbial communities to biochar addition in particular in relation to abiotic disturbances are seldom documented. An example of these disturbances, which is predicted to be exacerbated with global warming, is regional drought. It has been known that fungal-based food webs are more resistant to drought than their bacterial counterparts. Our study found that biochar addition can increase the resistance of both the bacterial and fungal networks to drought. Contrary to expected, this result was not related to a change in the dominance of fungal or bacteria. In general, soil amended with biochar was characterized by a faster recovery of soil microbial properties to its basal values. Biochar addition to the soil also suppressed the Birch effect, a result that has not been previously reported.

  13. Tolerable soil erosion in Europe

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  14. Soil respiration dynamics in the middle taiga of Central Siberia region

    NASA Astrophysics Data System (ADS)

    Makhnykina, Anastasia; Prokushkin, Anatoly; Polosukhina, Daria

    2017-04-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2 emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was located in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer -LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths -5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest was characterized by the intermediate values of soil respiration. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and climatic conditions identified the parameters with

  15. Ash effects on the thermal conductivity of a mediterranean loam soil

    NASA Astrophysics Data System (ADS)

    Rubio, Carles; Pereira, Paulo; Ubeda, Xavier

    2014-05-01

    The purpose of this work is to explore the variability on the soil thermal conductivity for a burnt soil and assessing the effects of the ashes on the heat transfer when they were incorporated into the soil matrix. A set of 42 soil samples from the Montgrí massif experimental plot between surface and 5 cm depth was collected before and after the soil was burnt. A thermal characterization of the soil was carried out. For that a dry out curve was constructed, which presented the relationship between water content and thermal conductivity for both types of soil samples, burnt and non-burnt soil. The results shown changes in the heat pulse transfer, being more conductive the soil before to be burnt (0.378 W•m-1•C-1) than the soil after to be exposed to the fire (0.337 W•m-1•C-1). Indeed, on the whole of moisture scenarios the values of thermal conductivity decreased after soil was burnt. Another experimental concern was based on to observe the soil thermal behaviour when ash collected after fire was incorporated into the burnt soil matrix. In this case, soil thermal and soil hydrodynamic behaviour presented differences according to the type of ash. Soil mixed with fly ash showed higher thermal conductivity than soil mixed with bottom ash. To sum up; the soil thermal conductivity decreased when soil was burnt. On the other hand, soil thermal conductivity shown differences depending on the type of ash incorporated into the matrix. Fly ash transferred the heat pulse better than bottom ash.

  16. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  17. Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model.

    PubMed

    Wako, Hiroshi; Abe, Haruo

    2016-01-01

    The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding.

  18. Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model

    PubMed Central

    Wako, Hiroshi; Abe, Haruo

    2016-01-01

    The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding. PMID:28409079

  19. Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel

    PubMed Central

    Zhang, Xiaoqing; Li, Jumei; Wei, Dongpu; Li, Bo; Ma, Yibing

    2015-01-01

    Soil soluble nickel (Ni) concentration is very important for determining soil Ni toxicity. In the present study, the relationships between soil properties, total and soluble Ni concentrations in soils were developed in a wide range of soils with different properties and climate characteristics. The multiple regressions showed that soil pH and total soil Ni concentrations were the most significant parameters in predicting soluble Ni concentrations with the adjusted determination coefficients (Radj 2) values of 0.75 and 0.68 for soils spiked with soluble Ni salt and the spiked soils leached with artificial rainwater to mimic field conditions, respectively. However, when the soils were divided into three categories (pH < 7, 7–8 and > 8), they obtained better predictions with Radj 2 values of 0.78–0.90 and 0.79–0.94 for leached and unleached soils, respectively. Meanwhile, the other soil properties, such as amorphous Fe and Al oxides and clay, were also found to be important for determining soluble Ni concentrations, indicating that they were also presented as active adsorbent surfaces. Additionally, the whole soil speciation including bulk soil properties and total soils Ni concentrations were analyzed by mechanistic speciation models WHAM VI and Visual MINTEQ3.0. It was found that WHAM VI provided the best predictions for the soils with pH < 7, was relatively reasonable for pH 7 to 8, and gave an overestimation for pH > 8. The Visual MINTEQ3.0 could provide better estimation for pH < 8 and meanwhile quite reasonable results for pH > 8. These results indicated the possibility and applicability of these models to predict soil soluble Ni concentration by soil properties. PMID:26217951

  20. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  1. Enhanced degradation and soil depth effects on the fate of atrazine and major metabolites in Colorado and Mississippi soils.

    PubMed

    Krutz, L Jason; Shaner, Dale L; Zablotowicz, Robert M

    2010-01-01

    The aim of this report is to inform modelers of the differences in atrazine fate between s-triazine-adapted and nonadapted soils as a function of depth in the profile and to recommend atrazine and metabolite input values for pesticide process submodules. The objectives of this study were to estimate the atrazine-mineralizing bacterial population, cumulative atrazine mineralization, atrazine persistence, and metabolite (desethylatrazine [DEA], deisopropylatrazine [DIA], and hydroxyatrazine [HA]) formation and degradation in Colorado and Mississippi s-triazine-adapted and nonadapted soils at three depths (0-5, 5-15, and 15-30 cm). Regardless of depth, the AMBP and cumulative atrazine mineralization was at least 3.8-fold higher in s-triazine-adapted than nonadapted soils. Atrazine half-life (T1/2) values pooled over nonadapted soils and depths approximated historic estimates (T1/2 = 60 d). Atrazine persistence in all depths of s-triazine-adapted soils was at least fourfold lower than that of the nonadapted soil. Atrazine metabolite concentrations were lower in s-triazine-adapted than in nonadapted soil by 35 d after incubation regardless of depth. Results indicate that (i) reasonable fate and transport modeling of atrazine will require identifying if soils are adapted to s-triazine herbicides. For example, our data confirm the 60-d T1/2 for atrazine in nonadapted soils, but a default input value of 6 d for atrazine is required for s-triazine adapted soils. (ii) Literature estimates for DEA, DIA, and HA T1/2 values in nonadapted soils are 52, 36, and 60 d, respectively, whereas our analysis indicates that reasonable T1/2 values for s-triazine-adapted soils are 10 d for DEA, 8 d for DIA, and 6 d for HA. (iii) An estimate for the relative distribution of DIA, DEA, and HA produced in nonadapted soils is 18, 72, and 10% of parent, respectively. In s-triazine-adapted soils, the values were 6, 23, and 71% for DIA, DEA, and HA, respectively. The effects of soil adaptation on

  2. Issues in the inverse modeling of a soil infiltration process

    NASA Astrophysics Data System (ADS)

    Kuraz, Michal; Jacka, Lukas; Leps, Matej

    2017-04-01

    This contribution addresses issues in evaluation of the soil hydraulic parameters (SHP) from the Richards equation based inverse model. The inverse model was representing single ring infiltration experiment on mountainous podzolic soil profile, and was searching for the SHP parameters of the top soil layer. Since the thickness of the top soil layer is often much lower than the depth required to embed the single ring or Guelph permeameter device, the SHPs for the top soil layer are very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the single ring infiltration process, where, especially, the initial unsteady part of the experiment is expected to provide very useful data for evaluating the retention curve parameters (excluding the residual water content) and the saturated hydraulic conductivity. The main issue, which is addressed in this contribution, is the uniqueness of the Richards equation inverse model. We tried to answer the question whether is it possible to characterize the unsteady infiltration experiment with a unique set of SHPs values, and whether are all SHP parameters vulnerable with the non-uniqueness. Which is an important issue, since we could further conclude whether the popular gradient methods are appropriate here. Further the issues in assigning the initial and boundary condition setup, the influence of spatial and temporal discretization on the values of the identified SHPs, and the convergence issues with the Richards equation nonlinear operator during automatic calibration procedure are also covered here.

  3. Magnetic susceptibility for use in delineating hydric soils

    USGS Publications Warehouse

    Grimley, D.A.; Vepraskas, M.J.

    2000-01-01

    Field indicators are used to identify hydric soil boundaries and to delineate wetlands. The most common field indicators may not be seen in some soils with thick, dark, mollic epipedons, and do not form in Fe-poor soils. This study evaluated magnetic susceptibility (MS) meter as a field tool to determine hydric soil boundaries. Five Mollisoldominated sites formed in glacial deposits in Illinois were evaluated along with one Ultisol-dominated site formed in Coastal Plain sediments of North Carolina. Measurements of volumetric MS were made along transects at each site that extended from wetland into upland areas. One created wetland was evaluated. Field indicators were used to identify the hydric soils. Results showed that volumetric MS values were significantly (P 0.15) differences in MS were found for Coastal Plain hydric and nonhydric soils where MS values were low (<10 ?? 10-5 SI). Critical MS values that separated hydric and nonhydric soils varied between 20 ?? 10-5 and 30 ?? 10-5 SI for the loessal soils evaluated in Illinois. Such critical values will have to be determined on site using field indicators until specific values can be defined for hydric soils within a given parent material. With a critical MS value in hand, a wetland delineator can make MS measurements along transects perpendicular to the envisioned hydric soil boundary to quickly and quantitatively identify it.

  4. Soils of the Summer Garden (Saint Petersburg)

    NASA Astrophysics Data System (ADS)

    Matinyan, N. N.; Bakhmatova, K. A.; Korentsvit, V. A.

    2017-06-01

    Soils of the Summer Garden—the first regular (French-style) garden in Russia—are characterized on the basis of the materials of field study performed during reconstruction of the garden in 2005-2011. Most of these soils are filled soils—urbostratozems—underlain by the loamy sands deposited in the Littorina Sea or by the buried gray-humus gleyic and gleyed soils. Urbostratozems are characterized by the slightly acid reaction in the topsoil horizons and slightly alkaline reaction in the middle-profile and lower horizons. The humus content in them varies from 0.2 to 6.8%; in the buried gray-humus soils, it is within 1.3-2.6%. The soils of the garden are characterized by the high and extremely high content of available phosphorus and the predominantly low content of available potassium as determined by Machigin's method. The bulk content of Pb in the surface soil horizons during the period of our study exceeded the maximum permissible concentration by 3-20 times; the bulk contents of Cu and Zn exceeded the tentative permissible concentrations for coarse-textured soils by 2-6 and 4-20 times, respectively. The main sources of the soil contamination by the heavy metals are the nearby highways. Local contaminated area was also found near the household yard.

  5. Vermicompost affects soil properties and spinach growth, physiology, and nutritional value

    USDA-ARS?s Scientific Manuscript database

    The use of vermicompost to improve soil fertility and enhance crop yield has gained considerable momentum due to its contribution to agroecological sustainability. Short-term (35-days after transplanting) effects of vermicompost, applied either as a soil amendment (5% and 10%, v/v), or a drench (40 ...

  6. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  7. Characterization of PCC Cement by Addition of Napa Soil from Subdistrict Sarilamak 50 Kota District as Alternative Additional Material for Semen Padang

    NASA Astrophysics Data System (ADS)

    Mawardi, M.; Deyundha, D.; Zainul, R.; Zalmi P, R.

    2018-04-01

    The study has been conducted to determine characteristics of the portland composite cement by the addition of napa soil from Sarilamak subdistrict, 50 Kota District as an alternative additional material at PT. Semen Padang. Napa soil is a natural material highly containing silica and alumina minerals so that it can be one of material in producing cement. This study aims to determine the effect of napa soil on the quality of portland composite cement. Napa soil used in the variation compositions 0%, 4%, 8%, 12% and 16%, for control of cement used 8 % of pozzolan and 0 % of napa soil. Determination of cement quality by testing cement characteristics include blaine test, sieving, lost of ignition or LOI, insoluble residue, normal consistency, setting time and compressive strength. Cement was characterized using XRF. Fineness of cement decreases with the addition of napa soil. Lost of Ignition of cement decreased, while the insoluble residue increased with the addition of napa soil. Normal consistency of cement increasing, so does initial setting time and final setting time of cement. While the resultant compressive strength decreases with the addition of napa soil on 28 days, 342, 325, 307, 306, and 300 kg / cm2.

  8. Impact of drainage on wettability of fen peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Szatyłowicz, J.; Brandyk, T.

    2009-04-01

    High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat

  9. Characterization of Soil Heterogeneity Across Scales in an Intensively Investigated Soil Volume

    NASA Astrophysics Data System (ADS)

    Patterson, Matthew; Gimenez, Daniel; Nemes, Attila; Dathe, Annette; French, Helen; Bloem, Esther; Koestel, John; Jarvis, Nick

    2016-04-01

    Heterogeneous water flow in undisturbed soils is a natural occurrence that is complex to model due to potential changes in hydraulic properties in soils over changes in space. The use of geophysical methods, such as Electrical Resistivity Tomography (ERT), can provide a minimally-invasive approximation of the spatial heterogeneity of the soil. This spatial distribution can then be combined with measured hydraulic properties to inform a model. An experiment was conducted on an Intensively Investigated Soil Volume (IISV), with dimensions of 2m x 1m x 0.8m, located in an agricultural field that is part of the Gryteland catchment in Ås, Norway. The location of the IISV was determined through surface ERT runs at two sequential resolutions. The first run was used to find an area of higher apparent electrical resistivity in a 23.5 x 11.5 m area with 0.5 m spacing. The second run measured apparent electrical resistivity in a 4.7 x 1 m area with 0.1 m spacing, from which the final IISV volume was derived. Distinct features found in the higher resolution run of the IISV, including a recent tire track from a harvester, were used as a spatial reference point for the installation of 20 pairs of TDR probes and tensiometers. The instruments measured water content, temperature and pressure potential at 10 minute intervals and ran continuously for a period of two weeks. After completion of the data collection the IISV was intensively sampled, with 30 samples taken for bulk density, 62 for hydraulic property measurements, and 20 to be used for both CT scanning and hydraulic property measurements. The measurement of hydraulic properties is ongoing and retention will be measured in the 0 - 100 cm range on a sand table, and from 100 - approx. 900 cm with an automated evaporation method. The formation of spatial clusters to represent the soil heterogeneity as relatively homogeneous units based on mesoscale properties like apparent electrical resistivity, bulk density, texture, in

  10. Prediction of Ba, Mn and Zn for tropical soils using iron oxides and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Marques Júnior, José; Arantes Camargo, Livia; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angelica

    2017-04-01

    Agricultural activity is an important source of potentially toxic elements (PTEs) in soil worldwide but particularly in heavily farmed areas. Spatial distribution characterization of PTE contents in farming areas is crucial to assess further environmental impacts caused by soil contamination. Designing prediction models become quite useful to characterize the spatial variability of continuous variables, as it allows prediction of soil attributes that might be difficult to attain in a large number of samples through conventional methods. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Mn, Zn) and their spatial variability using iron oxides and magnetic susceptibility (MS). Soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, mineralogical properties, as well as magnetic susceptibility (MS). PTE prediction models were calibrated by multiple linear regression (MLR). MLR calibration accuracy was evaluated using the coefficient of determination (R2). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy by means of geostatistics. The high correlations between the attributes clay, MS, hematite (Hm), iron oxides extracted by sodium dithionite-citrate-bicarbonate (Fed), and iron oxides extracted using acid ammonium oxalate (Feo) with the elements Ba, Mn, and Zn enabled them to be selected as predictors for PTEs. Stepwise multiple linear regression showed that MS and Fed were the best PTE predictors individually, as they promoted no significant increase in R2 when two or more attributes were considered together. The MS-calibrated models for Ba, Mn, and Zn prediction exhibited R2 values of 0.88, 0.66, and 0.55, respectively. These are promising results since MS is a fast, cheap, and non-destructive tool, allowing the prediction of a large number of samples, which in turn enables detailed mapping of

  11. What is soil organic matter worth?

    PubMed

    Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A

    2006-01-01

    The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.

  12. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    PubMed

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  13. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data

    PubMed Central

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579

  14. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  15. An objective and reproducible landform and topography description approach based on digital terrain analysis used for soil profile site characteristics

    NASA Astrophysics Data System (ADS)

    Gruber, Fabian E.; Baruck, Jasmin; Hastik, Richard; Geitner, Clemens

    2015-04-01

    profile is situated (aided by additional information such as topographic maps and aerial images). Variation of the L-value furthermore presents the opportunity to mimic the different scales at which surveyors describe soil profile locations. We first illustrate the use of r.geomorphon for site descriptions using exemplary artificial elevation profiles resembling typic catenas at different scales (L-values). We then compare the results of a landform element map computed with r.geomorphon to the relief descriptions in the test dataset. We link the surveyors' landform classification to the computed landform elements. Using a multi-scale approach we characterize raster cell locations in a way similar to the micro-, meso- and macroscale definitions used in soil survey, resulting in so-called geomorphon-signatures, such as "pit (meso-scale) located on a ridge (macro-scale)". We investigate which ranges of L-values best represent the different observation-scales as noted by soil surveyors and discuss the impacts of using a large dataset of profile location descriptions performed by different surveyors. Issues that arise are possible individual differences in landscape structure perception, but also questions regarding the accuracy of position and resulting topographic measurements in soil profile site description.

  16. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    PubMed

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  17. Soil-moisture constants and their variation

    Treesearch

    Walter M. Broadfoot; Hubert D. Burke

    1958-01-01

    "Constants" like field capacity, liquid limit, moisture equivalent, and wilting point are used by most students and workers in soil moisture. These constants may be equilibrium points or other values that describe soil moisture. Their values under specific soil and cover conditions have been discussed at length in the literature, but few general analyses and...

  18. Stable isotope composition (δ(13)C and δ(15)N values) of slime molds: placing bacterivorous soil protozoans in the food web context.

    PubMed

    Tiunov, Alexei V; Semenina, Eugenia E; Aleksandrova, Alina V; Tsurikov, Sergey M; Anichkin, Alexander E; Novozhilov, Yuri K

    2015-08-30

    Data on the bulk stable isotope composition of soil bacteria and bacterivorous soil animals are required to estimate the nutrient and energy fluxes via bacterial channels within detrital food webs. We measured the isotopic composition of slime molds (Myxogastria, Amoebozoa), a group of soil protozoans forming macroscopic spore-bearing fruiting bodies. An analysis of largely bacterivorous slime molds can provide information on the bulk stable isotope composition of soil bacteria. Fruiting bodies of slime molds were collected in a monsoon tropical forest of Cat Tien National Park, Vietnam, and analyzed by continuous-flow isotope ratio mass spectrometry. Prior to stable isotope analysis, carbonates were removed from a subset of samples by acidification. To estimate the trophic position of slime molds, their δ(13) C and δ(15) N values were compared with those of plant debris, soil, microbial destructors (litter-decomposing, humus-decomposing, and ectomycorrhizal fungi) and members of higher trophic levels (oribatid mites, termites, predatory macroinvertebrates). Eight species of slime molds represented by at least three independent samples were 3-6‰ enriched in (13) C and (15) N relative to plant litter. A small but significant difference in the δ(13) C and δ(15) N values suggests that different species of myxomycetes can differ in feeding behavior. The slime molds were enriched in (15) N compared with litter-decomposing fungi, and depleted in (15) N compared with mycorrhizal or humus-decomposing fungi. Slime mold sporocarps and plasmodia largely overlapped with oribatid mites in the isotopic bi-plot, but were depleted in (15) N compared with predatory invertebrates and humiphagous termites. A comparison with reference groups of soil organisms suggests strong trophic links of slime molds to saprotrophic microorganisms which decompose plant litter, but not to humus-decomposing microorganisms or to mycorrhizal fungi. Under the assumption that slime molds are

  19. Epidemiology of soil-transmitted helminths, Schistosoma mansoni, and haematocrit values among schoolchildren in Ethiopia.

    PubMed

    Abera, Bayeh; Alem, Genetu; Yimer, Mulat; Herrador, Zaida

    2013-03-14

    This study aimed to determine the prevalence of intestinal helminths, risk factors and haematocrit values among primary schoolchildren. Across-sectional study was conducted in 12 primary schools in March 2011. Stool samples were randomly selected from 778 children and were microscopically examined using Kato-Katz and formal-ether concentration methods. Haematocrit values were measured using heparinized capillary tubes. The overall prevalence of intestinal helminths was 51.5% (rural = 68.3%, urban = 36.2%). Hookworm spp., Schistosoma mansoni and Schistosoma stercoralis were more prevalent in rural schools, whereas Hymenolepis nana was higher in urban schools (p = 0.0001). With regard to haematocrit, 34% of rural and 21.7% of urban schoolchildren had haematocrit values below the median (40.5%) (p=0.001). Hookworm spp. and S. mansoni infected children had lower haematocrit values than non-infected children (p = 0.001). Lack of footwear was positively associated with intestinal helminths infection in rural schools [OR = 2.5 (95% CI: 1.5-4.1)], and having dirty fingernails and untrimmed fingernails were positively associated with the prevalence of intestinal helminths in urban samples [OR = 1.58 (95% CI: 1.03-2.5)]. The prevalence of soil-transmitted helminths and S. mansoni differs by geographical area of the schools and social determinants. Primary school de-worming and health education on proper hygiene are recommended.

  20. Transfer of copper, lead and zinc in soil-grass ecosystem in aspect of soils properties, in Poland.

    PubMed

    Niesiobędzka, Krystyna

    2012-04-01

    The total metal concentrations in soil samples from polluted area (roadside soils) ranged from 13.87 to 195.76 mg/kg for Cu; 13.56-310.17 mg/kg for Pb and 18.43-894.11 mg/kg for Zn and they were, respectively about 5, 2 and 13 times above the corresponding values in soil samples from country area. The mean values of EDTA-extractable concentrations in soil samples at unpolluted sites were: 2.47 mg/kg for Cu, 6.33 mg/kg for Pb and 4.94 mg/kg for Zn. The highest concentrations of Cu, Pb and Zn in grass were measured in soils from polluted area. Higher values of proportions of EDTA-extractable metals (24% for Cu, 40% for Pb and 38% for Zn) indicate that anthropogenic metals were more mobile and bioavailable than the same metals in soils from unpolluted area (20, 16 and 20% for Cu, Pb and Zn, respectively). The availability of Cu, Pb and Zn are affected by soil properties such as pH, organic matter content and cation exchange capacity. Correlation between the EDTA-extractable forms concentrations of metals and the total concentration in the various soils was observed. The coefficients of determination (R(2)) varied between 0.809 for Cu; 0,709 for Pb and 0.930 for Zn in polluted soils and they are higher than corresponding values in unpolluted soils.

  1. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  2. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum).

    PubMed

    Benucci, Gian Maria Niccolò; Lefevre, Charles; Bonito, Gregory

    2016-07-01

    Many truffle species in the genus Tuber are endemic to North America. Some of these have commercial value such as Tuber oregonense and Tuber gibbosum, commonly known as Oregon white truffles. Most of what is known about the ecology of these truffles comes from observational data. These truffle species form ectomycorrhizas with Douglas-fir (Pseudotsuga menziesii) and sometimes fruit abundantly in early successional forest regrowth. The goal of this study was to characterize fungal communities and soils associated with truffle-producing Douglas-fir sites. We extracted DNA from roots of five trees at four different truffle-producing Douglas-fir sites (n = 20). We amplified the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) and sequenced amplicons with 454 pyrosequencing. After quality filtering, we assembled 15,713 sequences into 150 fungal operational taxonomic units (OTUs). Pezizomycetes (Tuber and Pyronemataceae) were the most abundant taxa detected followed by Helotiales. Agaricomycetes represented most by Thelephoraceae, Russulaceae, and Inocybaceae were also abundant. A total of five Tuber species were detected. T. oregonense was the most abundant OTU, followed by T. gibbosum and Wilcoxina mikolae. Fungal root endophytes were also detected and well represented by Chalara and Phialocephala spp. Fungal community structure and soil chemistry differed between sites. This study represents the first characterization of the fungal communities in Douglas-fir stands producing Oregon white truffles. We found that Tuber species can be dominant ectomycorrhizal symbionts of Douglas-fir. Truffle fungi are also important in forest health, food webs, and as a non-timber forest resource that can contribute to rural economies.

  3. Hydrodispersive characterization of a sandy porous medium by tracer tests carried out in laboratory on undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Ferrante, Aldo Pedro; Fallico, Carmine; Rios, Ana C.; Fernanda Rivera, Maria; Santillan, Patricio; Salazar, Mario

    2013-04-01

    The contamination of large areas and correspondent aquifers often imposes to implement some recovery operations which are generally complex and very expensive. Anyway, these interventions necessarily require the preventive characterization of the aquifers to be reclaimed and in particular the knowledge of the relevant hydrodispersive parameters. The determination of these parameters requires the implementation tracer tests for the specific site (Sauty JP, 1978). To reduce cost and time that such test requires tracer tests on undisturbed soil samples, representative of the whole aquifer, can be performed. These laboratory tests are much less expensive and require less time, but the results are certainly less reliable than those obtained by field tests for several reasons, including the particular scale of investigation. In any case the hydrodispersive parameters values, obtained by tests carried out in laboratory, can provide useful information on the considered aquifer, allowing to carry out initial verifications on the transmission and propagation of the pollutants in the aquifer considered. For this purpose, tracer tests with inlet of short time were carried out in the Soil Physics Laboratory of the Department of Soil Protection (University of Calabria), on a series of sandy soil samples with six different lengths, repeating each test with three different water flow velocities (5 m/d; 10 m/s and 15 m/d) (J. Feyen et al., 1998). The lengths of the samples taken into account are respectively 15 cm, 24 cm, 30 cm, 45 cm, 60 cm and 75 cm, while the solution used for each test was made of 100 ml of water and NaCl with a concentration of this substance corresponding to 10 g/L. For the porous medium taken into consideration a particle size analysis was carried out, resulting primarily made of sand, with total porosity equal to 0.33. Each soil sample was placed in a flow cell in which was inlet the tracer from the bottom upwards, measuring by a conductivimeter the

  4. A global spectral library to characterize the world's soil

    USDA-ARS?s Scientific Manuscript database

    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about so...

  5. Prediction of Ba, Co and Ni for tropical soils using diffuse reflectance spectroscopy and X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica

    2017-04-01

    Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.

  6. Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland

    USDA-ARS?s Scientific Manuscript database

    Vegetation restoration probably has great effects on the process of soil detachment. This study was conducted to investigate the effects of near soil surface characteristics on soil detachment by overland flow in a 7-year naturally restored grassland. Four treatments were designed to characterize th...

  7. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Svendsen, Claus; Soares, Amadeu M V M; Loureiro, Susana

    2012-08-01

    Metal-based nanoparticles (NPs) (e.g., silver, zinc oxide, titanium dioxide, iron oxide) are being widely used in the nanotechnology industry. Because of the release of particles from NP-containing products, it is likely that NPs will enter the soil compartment, especially through land application of sewage sludge derived from wastewater treatment. This review presents an overview of the literature dealing with the fate and effects of metal-based NPs in soil. In the environment, the characteristics of NPs (e.g., size, shape, surface charge) and soil (e.g., pH, ionic strength, organic matter, and clay content) will affect physical and chemical processes, resulting in NP dissolution, agglomeration, and aggregation. The behavior of NPs in soil will control their mobility and their bioavailability to soil organisms. Consequently, exposure characterization in ecotoxicological studies should obtain as much information as possible about dissolution, agglomeration, and aggregation processes. Comparing existing studies is a challenging task, because no standards exist for toxicity tests with NPs. In many cases, the reporting of associated characterization data is sparse, or missing, making it impossible to interpret and explain observed differences in results among studies. Copyright © 2012 SETAC.

  8. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil.

    PubMed

    Burges, Aritz; Epelde, Lur; Blanco, Fernando; Becerril, José M; Garbisu, Carlos

    2017-04-15

    Mining sites shelter a characteristic biodiversity with large potential for the phytoremediation of metal contaminated soils. Endophytic plant growth-promoting bacteria were isolated from two metal-(hyper)accumulator plant species growing in a metal contaminated mine soil. After characterizing their plant growth-promoting traits, consortia of putative endophytes were used to carry out an endophyte-assisted phytoextraction experiment using Noccaea caerulescens and Rumex acetosa (singly and in combination) under controlled conditions. We evaluated the influence of endophyte-inoculated plants on soil physicochemical and microbial properties, as well as plant physiological parameters and metal concentrations. Data interpretation through the grouping of soil properties within a set of ecosystem services was also carried out. When grown together, we observed a 41 and 16% increase in the growth of N. caerulescens and R. acetosa plants, respectively, as well as higher values of Zn phytoextraction and soil microbial biomass and functional diversity. Inoculation of the consortia of putative endophytes did not lead to higher values of plant metal uptake, but it improved the plants' physiological status, by increasing the content of chlorophylls and carotenoids by up to 28 and 36%, respectively, indicating a reduction in the stress level of plants. Endophyte-inoculation also stimulated soil microbial communities: higher values of acid phosphatase activity (related to the phosphate solubilising traits of the endophytes), bacterial and fungal abundance, and structural diversity. The positive effects of plant growth and endophyte inoculation on soil properties were reflected in an enhancement of some ecosystem services (biodiversity, nutrient cycling, water flow regulation, water purification and contamination control). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent.

    PubMed

    Xu, Feng; Liang, Xinmiao; Lin, Bingcheng; Schramm, Karl-Werner; Kettrup, Antonius

    2002-08-30

    The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (Koc) was developed based on correlations with k in soil/water systems. Strong log Koc versus log k correlations (r>0.96) were found. The estimated Koc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated Koc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications.

  10. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was <10% for most elements. LIBS limits of detection were <33 ppm and bias <40% for most elements. In a proof of principle study, the LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  11. Worldwide organic soil carbon and nitrogen data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  12. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  13. Identification and characterization of natural pipe systems in forested tropical soils

    NASA Astrophysics Data System (ADS)

    Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel

    2017-04-01

    Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.

  14. Wet deposition and soil content of Beryllium - 7 in a micro-watershed of Minas Gerais (Brazil).

    PubMed

    Esquivel L, Alexander D; Moreira, Rubens M; Monteiro, Roberto Pellacani G; Dos Santos, Anômora A Rochido; Juri Ayub, Jimena; Valladares, Diego L

    2017-04-01

    Beryllium-7 ( 7 Be) is a natural radionuclide of cosmogenic origin, normally used as a tracer for several environmental processes; such as soil redistribution, sediment source discrimination, atmospheric mass transport, and trace metal scavenging from the atmosphere. In this research the content of 7 Be in soil, its seasonal variation throughout the year and its relationship with the rainfall regime in the Mato Frio creek micro-watershed was investigated, to assess its potential use in estimating soil erosion. The 7 Be content in soil shows a marked variation throughout the year. Minimum 7 Be values were observed in the dry season (from April to September) and were between 7 and 14 times higher in the rainy season (from October to March). The seasonal oscillations in 7 Be soil content could be explained by the asymmetric rainfall regime. A highly linear relationship between rainfall amount and 7 Be deposition was observed in rain water. A good agreement between 7 Be soil content and 7 Be atmospheric deposition was noticed, mainly in wet months. 7 Be penetration in soil reaches a 5 cm depth, this could be explained by the soil type in the region. The soils are Acrisol type, characterized by low pH values and clay illuviation in deeper layers of the soil. In some regions of Brazil special attention should be paid if this radionuclide will be used as soil erosion tracer, taking into account the soil origin and its particular properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    PubMed

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  16. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2008-12-01

    A metal-resistant bacterial strain SM3 isolated from a serpentine soil in the north-east of Portugal was characterized as Bacillus weihenstephanensis based on the morphological and biochemical characteristics and on the comparative analysis of the partial 16S ribosomal DNA sequence. Bacillus weihenstephanensis SM3 showed a high degree of resistance to nickel (1500 mg l(-1)), copper (500 mg l(-1)) and zinc (700 mg l(-1)) and also to antibiotics (ampicillin, penicillin, kanamycin and streptomycin). Strain SM3 has also exhibited the capability of solubilizing phosphate and producing indole-3-acetic acid (IAA) both in the absence and in the presence of metals (Ni, Cu and Zn). A pot experiment was conducted to elucidate the effects of strain SM3 on plant growth and uptake of Ni, Cu or Zn by Helianthus annuus. Inoculation with strain SM3 increased the shoot and root biomass of H. annuus grown in both non-contaminated and contaminated soil. Furthermore, strain SM3 increased the accumulation of Cu and Zn in the root and shoot systems. A batch experiment was also conducted to assess the metal mobilization potential of strain SM3 in soil. Inoculation with this strain increased the concentrations of water soluble Ni, Cu and Zn in soil. Metal solubilization by this bacterial strain may be an important process to promote the uptake of heavy metals by plants. This study elucidates the multifarious role of strain SM3 in plant growth promotion and its metal mobilizing potential.

  17. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  18. The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils.

    PubMed

    Yin, Yujun; Impellitteri, Christopher A; You, Sun-Jae; Allen, Herbert E

    2002-03-15

    The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution extraction ratio and the roles of soil properties on metal desorption. Dcsorption was examined for each metal by computing distribution coefficients (Kd) for each metal in each soil where Kd = [M]soil/[M]solution, Results from soil:solution ratio studies demonstrated that Kd values for the metals tended to increase with increasing soil:solution ratio. This result also held true for distribution of soil organic matter (SOM). Because the soil:solution ratio has a significant effect on measured metal distributions, we selected a high soil:solution ratio to more closely approach natural soil conditions. Copper showed strong affinity to operationally defined dissolved organic matter (DOM). In this study, DOM was operationally defined based on the total organic carbon (TOC) content in 0.45-microm or 0.22-microm filtrates of the extracts. The Kd of Cu correlated linearly (r2 = 0.91) with the Kd of organic matter (Kd-om) where the Kd-om is equal to SOM as measured by Walkley-Black wet combustion and converted to total carbon (TC) by a factor of 0.59. These values representing solid phase TC were then divided by soluble organic carbon as measured by TOC analysis (DOM). The conversion factor of 0.59 was employed in order to construct Kd-om values based on solid phase carbon and solution phase carbon. SOM plays a significant role in the fate of Cu in soil systems. Soil-solution distribution of Ni and Zn, as well as the activity of free Cu2+, were closely related to SOM, but not to DOM. Kd values for Ni, Zn and free Cu2+ in a particular soil were divided by the SOM content in the same soil. This normalization of the Kd values for Ni, Zn, and free Cu2+ to the SOM content resulted in significant

  19. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  20. Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing.

    PubMed

    Zheng, Z M; Zhang, T Q; Kessel, C; Tan, C S; O'Halloran, I P; Wang, Y T; Speranzini, D; Van Eerd, L L

    2015-11-01

    Phosphorus applied to soils in excess of crop requirement could create situations favorable to P enrichment in subsurface flow that contributes to eutrophication of surface water. This pathway of P loss can be more severe in muck (i.e., organic) soils where agricultural production is intensive. This study evaluated the suitability of various environmental and agronomic soil P tests initially designed for mineral soils to predict dissolved reactive P (DRP) in subsurface flow from organic soils. Intact soil columns were collected from 44 muck soils in Ontario to provide a wide range of soil test P levels. A lysimeter leaching study was conducted by evenly adding water in an amount equivalent to 5 mm of rainfall. The leachate DRP concentration was linearly related to soil water-extractable P and CaCl-extractable P with values of 0.90 and 0.93, respectively, and to Bray-1 P and FeO-impregnated filter paper extractable P in a split-line model with a change point. Mehlich-3 P and Olsen P, a method recommended for agronomic P calibration in Ontario, were not related to leachate DRP concentration. All P sorption index (PSI) based degree of P saturation (DPS) values were closely related to leachate DRP in split-line models, with the DPS indices expressed as Bray-1 P/PSI and FeO-P/PSI having the highest correlation with leachate DRP concentration. Because it is desirable from practical and economic standpoints that the environmental risk assessment shares the same soil test with agronomic P calibration, the two PSI-based DPS indices as presented can be considered as environmental risk indicators of DRP subsurface loss from organic soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Sorption-desorption of indaziflam in selected agricultural soils.

    PubMed

    Alonso, Diego G; Koskinen, William C; Oliveira, Rubem S; Constantin, Jamil; Mislankar, Suresh

    2011-12-28

    Indaziflam, a new alkylazine herbicide that inhibits cellulose biosynthesis, is under current development for soil applications in perennial crops and nonagricultural areas. Sorption and desorption of indaziflam in six soils from Brazil and three soils from the United States, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in <24 h. The Freundlich equation described the sorption behavior of the herbicide for all soils (R(2) > 0.99). K(f) values of the Brazilian oxisols ranged from 4.66 to 29.3, and 1/n values were ≥ 0.95. Sorption was positively correlated to %OC and clay contents. U.S. mollisol K(f) values ranged from 6.62 to 14.3; 1/n values for sorption were ≥ 0.92. K(f) values from mollisols were also positively correlated with %OC. These results suggest that indaziflam potential mobility, based solely on its sorption coefficients, would range from moderate to low in soil. Desorption was hysteretic on all soils, further decreasing its potential mobility for offsite transport.

  2. How Indigenous values shaped a successful multi-year Soil Health program in Aotearoa-New Zealand (presented from both indigenous Māori and western science perspectives)

    NASA Astrophysics Data System (ADS)

    Stevenson, B.; Harmsworth, G.; Kalaugher, E.

    2017-12-01

    New Zealand is a multicultural society, founded on the Treaty of Waitangi which when enshrined into various legislation and national policy, provides incentive to incorporate indigenous Māori world views into nationally funded science and research programmes. Here we discuss how the integration of indigenous world views and western science were combined in a research proposal that resulted in successful funding for a 5 year collaborative science programme. The programme strives to develop an expanded national soil health framework for New Zealand that will be used by policy makers, local government, indigenous Māori, industry, and primary sector groups to maintain the natural capital and productivity of soils within environmental constraints. Soil health is fundamental to economic, social, and human wellbeing, and provides a myriad of ecosystem and environmental services, such as those sustaining food and fibre production. Typically soil health is defined by "dynamic" soil characteristics that are susceptible to changes in land use or land management over relatively short time frames (years to decades). Soil resilience, however, is a much longer-term concept that is not well captured in current soil health thinking. The Māori world view encapsulates such long term thinking through interconnected Māori values and inter-generational concepts (e.g., whakapapa, rangatiratanga, manawhenua, kaitiakitanga, mauri) that provide the basis for indigenous resource management in Aotearoa-New Zealand. These values and recognition of the Treaty of Waitangi provide authority and rights to manage resources according to tikanga (customs, principles). Māori environmental concepts and knowledge combined with science concepts for understanding soil health and resilience, served as a powerful central theme for the design and implementation of this science program. Māori involvement and capability development are integral to this research effort and we believe the synthesis of M

  3. The influence of land-use and land-management on Soil Organic Carbon concentrations: Limitations of making predictions using only soil order data

    NASA Astrophysics Data System (ADS)

    Bell, M. J.; Worrall, F.

    2009-04-01

    In light of recent concern over the extent of global warming and the role of soil carbon as a potential store of atmospheric carbon, there is increasing demand for regions to estimate their current soil organic carbon (SOC) stocks with the greatest possible accuracy. Several previous attempts at calculating SOC baselines at global, national or regional scale have used mean values for soil orders and multiplied these values by the mapped areas of the soils they represent. Other methods have approached the task from a land cover point of view, making estimates using only land-use, or soil order/land-use combinations and others have included variables such as altitude, climate and soil texture. This study aimed to assess the major controls on SOC concentrations (%SOC) at the National Trust Wallington estate in Northumberland, NE England (area = 55km2) where an extensive soil sampling campaign was used to test what level of accuracy could be achieved in modelling the %SOC values on the Estate. Mapped %SOC values were compared to the values predicted from The National Soils Resources Institute (NSRI) representative soil profile data for major soil group, soil series and land-use corrected soil series values, as well as land-use/major soil group combinations from the Countryside Survey database. The results of this study can be summarised as follows: When only soil series or land-use were used as predictors only 48% and 44% of the variation in the dataset were explained. When soil series/land-use combinations were used explanatory power increased to 57% both altitude and soil pH are major controls on %SOC and including these variables gave an improvement to 59% A further improvement from 59% to 66% in the ability to predict %SOC levels at point locations when farm tenancy was included indicates that differences in land-management practices between farm tenancies explained more of the variation than either soil series or land-use in %SOC. Further work will involve a

  4. Isolation and Characterization of Alfalfa-Nodulating Rhizobia Present in Acidic Soils of Central Argentina and Uruguay

    PubMed Central

    del Papa, María F.; Balagué, Laura J.; Sowinski, Susana Castro; Wegener, Caren; Segundo, Eduardo; Abarca, Francisco Martínez; Toro, Nicolás; Niehaus, Karsten; Pühler, Alfred; Aguilar, O. Mario; Martínez-Drets, Gloria; Lagares, Antonio

    1999-01-01

    We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes encoding 16S rRNA and genomic PCR-fingerprinting with MBOREP1 and BOXC1 primers, demonstrated that the new isolates share a genetic background closely related to that of the previously reported Rhizobium sp. Or191 recovered from an acid soil in Oregon (B. D. Eardly, J. P. Young, and R. K. Selander, Appl. Environ. Microbiol. 58:1809–1815, 1992). Growth curves, melanin production, temperature tolerance, and megaplasmid profiles of the AT isolates were all coincident with these characteristics in strain Or191. In addition to the ability of all of these strains to nodulate alfalfa (Medicago sativa) inefficiently, the AT isolates also nodulated the common bean and Leucaena leucocephala, showing an extended host range for nodulation of legumes. In alfalfa, the time course of nodule formation by the AT isolate LPU 83 showed a continued nodulation restricted to the emerging secondary roots, which was probably related to the low rate of nitrogen fixation by the largely ineffective nodules. Results demonstrate the complexity of the rhizobial populations present in the acidic soils represented by a main group of N2-fixing rhizobia and a second group of ineffective and less-predominant isolates related to the AT strain Or191. PMID:10103231

  5. Water movement in stony soils: The influence of stoniness on soil water content profiles

    NASA Astrophysics Data System (ADS)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil

  6. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and (31)P-NMR spectroscopy analysis.

    PubMed

    Turrion, María-Belén; Lafuente, Francisco; Aroca, María-José; López, Olga; Mulas, Rafael; Ruipérez, Cesar

    2010-07-15

    This study was conducted to investigate the long-term effects of fire on soil phosphorus (P) and to determine the efficiency of different procedures in extracting soil P forms. Different P forms were determined: labile forms (Olsen-P, Bray-P, and P extracted by anion exchange membranes: AEM-P); moderately labile inorganic and organic P, obtained by NaOH-EDTA extraction after removing the AEM-P fraction; and total organic and inorganic soil P. (31)P-NMR spectroscopy was used to characterize the structure of alkali-soluble P forms (orthophosphate, monoester, pyrophosphate, and DNA). The studied area was a Pinus pinaster forest located at Arenas de San Pedro (southern Avila, Spain). The soils were Dystric Cambisols over granites. Soil samples were collected at 0-2 cm, 2-5 cm, and 10-15 cm depths, two years after a fire in the burned area and in an adjacent unburned forest area. Fire increased the total N, organic C, total P, and organic and inorganic P content in the surface soil layer. In burned soil, the P extracted by the sequential procedure (AEM and NaOH+EDTA) was about 95% of the total P. Bray extraction revealed a fire-induced increase in the sorption surfaces. Analysis by chemical methods overestimated the organic P fraction in the EDTA-NaOH extract in comparison with the determination by ignition procedure. This overestimation was more important in the burned than unburned soil samples, probably due to humification promoted by burning, which increased P sorption by soil particles. The fire-induced changes on the structure of alkali-soluble P were an increase in orthophosphate-P and a decrease in monoester-P and DNA-P. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Soils in art as a teaching tool in soil science

    NASA Astrophysics Data System (ADS)

    Poch, Rosa M.

    2017-04-01

    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  8. Surface Wave Characterization of New Orleans Levee Soil Foundations

    NASA Astrophysics Data System (ADS)

    Delisser, T. A.; Lorenzo, J. M.; Hayashi, K.; Craig, M. S.

    2016-12-01

    Standard geotechnical tests such as the drilling of boreholes and cone penetration tests are able to assess soil stability at point locations vertically but lack lateral resolution in a complex sedimentary environment, such as the Louisiana Coastal system. Multi-Channel Analysis of Surface Waves (MASW) can complement geotechnical tests to improve certainty in resolving lateral features when predicting soil types in the near surface of levee soil foundations. A portion of the Inner-Harbor Navigation Canal levee wall that intersects the 9th Ward of New Orleans failed in the aftermath of Hurricane Katrina in 2005. Failures were attributed to floodwaters overtopping the levee wall and eroding its base. Geotechnical and geological data from test points can be used to calibrate continuous shear strength estimates derived from MASW. It is important to understand soil stability and strength to prevent future failures in New Orleans levee foundation soils. MASW analyzes the dispersive property of Rayleigh waves to develop shear wave velocity profiles for the near surface. Data are acquired using a seismic land streamer containing 4.5-Hz vertical-component geophones and a sledgehammer as the source. We plot and contour 18 inverted models of the interpreted fundamental mode and generate a 200-m-long profile to help us (1) better understand the characteristics of levee foundation soils as well as (2) improve existing geological cross-sections to help in future planning and maintenance of the levees. In comparison to the prior geological models, we find unexpected large vertical and horizontal shear-velocity gradients, as well as relatively low shear strengths throughout the seismic profile.

  9. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon

  10. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (< 2 μm) fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better

  11. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate.

    PubMed

    Yan, Lijuan; Sinkko, Hanna; Penttinen, Petri; Lindström, Kristina

    2016-01-15

    The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability

    USDA-ARS?s Scientific Manuscript database

    Indices derived from remotely-sensed imagery are commonly used to predict soil properties with digital soil mapping (DSM) techniques. The use of images from single dates or a small number of dates is most common for DSM; however, selection of the appropriate images is complicated by temporal variabi...

  13. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    PubMed

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  14. Changes in quantity and spectroscopic properties of water-extractable organic matter during soil aquifer treatment.

    PubMed

    Xue, S; Zhao, Q L; Wei, L L; Ma, X P; Tie, M

    2013-01-01

    The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm.

  15. SH-wave refraction/reflection and site characterization

    USGS Publications Warehouse

    Wang, Z.; Street, R.L.; Woolery, E.W.; Madin, I.P.

    2000-01-01

    Traditionally, nonintrusive techniques used to characterize soils have been based on P-wave refraction/reflection methods. However, near-surface unconsolidated soils are oftentimes water-saturated, and when groundwater is present at a site, the velocity of the P-waves is more related to the compressibility of the pore water than to the matrix of the unconsolidated soils. Conversely, SH-waves are directly relatable to the soil matrix. This makes SH-wave refraction/reflection methods effective in site characterizations where groundwater is present. SH-wave methods have been used extensively in site characterization and subsurface imaging for earthquake hazard assessments in the central United States and western Oregon. Comparison of SH-wave investigations with geotechnical investigations shows that SH-wave refraction/reflection techniques are viable and cost-effective for engineering site characterization.

  16. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    PubMed

    Santorufo, Lucia; Van Gestel, Cornelis A M; Maisto, Giulia

    2012-07-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Geochemical background/baseline values in top soils of Campania region: assessment of the toxic elements threat to ecosystem and human health

    NASA Astrophysics Data System (ADS)

    de Vivo, B.; Lima, A.; Albanese, S.; Bove, M.; Cicchella, D.; Civitillo, D.; Cosenza, A.; Grezzi, G.

    2009-04-01

    In the late years an intense geochemical prospecting activity on the whole territory of Campania region (Southern Italy) has been carried aiming at the definition of the geochemical backgrounds/baselines at both regional and local scale. At the end of 2003 the first edition of an atlas containing 200 maps showing the distribution patterns of 40 chemical elements on the whole regional territory was published (De Vivo et al., 2003, 2006a; Albanese et al., 2007a). The atlas provided a base knowledge of environmental status of the region and allowed to individuate some critical areas to be further investigated by topsoils sampling follow up activity; the topsoils are considered as the best media in order to examine closely the sources and the distribution patterns of harmful elements at a local scale. The topsoils sampling was mainly focused on anthropized areas (at urban and metropolitan scale), industrial settlments, brownfields and intensely cultivated zones, aimed at: • showing the distribution of concentration values and to determine baseline values (or backgrounds, depending on local conditions) of each analyzed element (38) in the top soils; • assessing harmful elements pollution levels and their geographic distribution; • providing reliable analytical data for assessment of toxic element pollution threat to ecosystem and human health; • creating a sound basis for policy makers and legislators who need to address the public concerns regarding environmental pollution. Five atlases (De Vivo et al., 2006b; Albanese et al., 2007b; Lima et al., 2007; Fedele et al., 2007 Cicchella et al., 2009) were produced reporting soil geochemical maps compiled using 1620 samples collected both in the metropolitan and provincial area of Napoli and in the cities of Avellino, Benevento, Caserta and Salerno. Further studies were also carried out taking into account Pb isotopes (Cicchella et al., 2008a), PGE's (Cicchella et al., 2003; 2008b) and bioavailability of harmful

  18. Soil moisture and vegetation patterns in northern California forests

    Treesearch

    James R. Griffin

    1967-01-01

    Twenty-nine soil-vegetation plots were studied in a broad transect across the southern Cascade Range. Variations in soil moisture patterns during the growing season and in soil moisture tension values are discussed. Plot soil moisture values for 40- and 80-cm. depths in August and September are integrated into a soil drought index. Vegetation patterns are described in...

  19. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this

  20. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    PubMed Central

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  1. Mycobiota of peat-gleyic soils during the process of recultivation

    NASA Astrophysics Data System (ADS)

    Ibatullina, I.; Khabibullina, F.

    2009-04-01

    Zhakkar coefficient of similarity to show the difference of mycobiota structure of rehabilitated ecosystems. The greatest similarity was observed between the communities of soil micromycetes from recultivated area and the area with low pollution (42.8%), the smallest - mycobiota of a non-polluted and heavily contaminated soil (5.4%). Mikobiota of virgin soil is characterized with the richest biodiversity of micromycetes species; rates of similarity coefficient between the mycobiota of virgin soils and oil-polluted here have the lowest value. In summary, we want to mark that micromycet complexes are changing in soils under the influence of oil pollution: first, a reduction in the diversity of fungal complexes in the soil, compared with the background, and secondly, there is an increase of dominant and often encountered species and reducing the number of rare species. There is also the appearance of fungi, which are typical for the more southern regions. Influenced by oil pollution the investigated soils become a sphere of accumulation of potentially hazardous to human species of micromycetes: Aspergillus fumigatus, Paecilomyces variotii, etc.

  2. Metals in European roadside soils and soil solution--a review.

    PubMed

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  4. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. field experiments evaluating plant-relevant soil water behavior

    USGS Publications Warehouse

    Nimmo, J.R.; Perkins, K.S.; Schmidt, K.M.; Miller, D.M.; Stock, J.D.; Singha, K.

    2009-01-01

    To assess the eff ect of pedogenesis on the soil moisture dynamics infl uencing the character and quality of ecological habitat, we conducted infi ltration and redistribution experiments on three alluvial deposits in the Mojave National Preserve: (i) recently deposited active wash sediments, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. At each, we ponded water in a 1-m-diameter infi ltration ring for 2.3 h and monitored soil water content and matric pressure during and atier infi ltration, using probes and electrical resistivity imaging (ERI). Infi ltration and downward fl ow rates were greater in younger material, favoring deep-rooted species. Deep-rooted species tend to colonize the margins of washes, where they are unaff ected by sediment transport that inhibits colonization. The ERI results support important generalizations, for example that shallower than 0.5 m, infi ltrated water persists longer in highly developed soil, favoring shallow-rooted species. Soil moisture data for the two youngest soils suggested that saturation overshoot, which may have signifi cant but unexplored hydroecologic and pedogenic eff ects, occurred at the horizontally advancing weting front. Spatial heterogeneity of soil properties generally increased with pedogenic development. Evidence suggested that some early-stage developmental processes may promote uniformity; the intermediate- age soil appeared to have the least heterogeneity in terms of textural variation with depth, and also the least anisotropy. Lateral heterogeneity was pronounced in older soil, having a multitude of eff ects on the distribution and retention of soil water, and may facilitate certain water-conserving strategies of plants over what would be possible in a laterally homogeneous soil. ?? Soil Science Society of America.

  5. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    PubMed

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Comparison of different models for predicting soil bulk density. Case study - Slovakian agricultural soils

    NASA Astrophysics Data System (ADS)

    Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn

    2017-10-01

    Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.

  7. Ecological risk assessment: influence of texture on background concentration of microelements in soils of Russia.

    NASA Astrophysics Data System (ADS)

    Beketskaya, Olga

    2010-05-01

    , organic matter content, concentration of microelements and pH value. On the basis of this data base massive of data for Forest-steppe and Steppe regions was create, which was divided by texture. For all data statistics method was done and was calculated maximum level natural microelements content for soils with different texture (?+3*δ). As a result of our statistic calculation we got middle and the top limit of background concentration of microelements in sandy and clay soils (conditional border - sandy loam) of two regions. We showed, that for all territory of European part of Russia and for Forest-steppe and Steppe regions separately middle content and maximum level natural microelements concentrations (?+3*σ) are higher in clay soils, rather then in sandy soils. Data characterizing soils, in different regions, of similar texture differs less than the data collected for sandy and clay soils of the same region. After all this calculation we can notice, that data of middle and top limit of background microelements concentration in soils, based on statistic method, can be used in the aim of ecological risk assessment. Using offered method allow to calculate top limit of background concentration for sandy and clay soils for large-scale geographic regions, exceeding which will be evidence of anthropogenic contamination of soil.

  8. Predicting available water of soil from particle-size distribution and bulk density in an oasis-desert transect in northwestern China

    NASA Astrophysics Data System (ADS)

    Li, Danfeng; Gao, Guangyao; Shao, Ming'an; Fu, Bojie

    2016-07-01

    A detailed understanding of soil hydraulic properties, particularly the available water content of soil, (AW, cm3 cm-3), is required for optimal water management. Direct measurement of soil hydraulic properties is impractical for large scale application, but routinely available soil particle-size distribution (PSD) and bulk density can be used as proxies to develop various prediction functions. In this study, we compared the performance of the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Arya and Heitman (AH) model, and Rosetta program in predicting the soil water characteristic curve (SWCC) at 34 points with experimental SWCC data in an oasis-desert transect (20 × 5 km) in the middle reaches of the Heihe River basin, northwestern China. The idea of the three models emerges from the similarity of the shapes of the PSD and SWCC. The AP model, MV model, and Rosetta program performed better in predicting the SWCC than the AH model. The AW determined from the SWCCs predicted by the MV model agreed better with the experimental values than those derived from the AP model and Rosetta program. The fine-textured soils were characterized by higher AW values, while the sandy soils had lower AW values. The MV model has the advantages of having robust physical basis, being independent of database-related parameters, and involving subclasses of texture data. These features make it promising in predicting soil water retention at regional scales, serving for the application of hydrological models and the optimization of soil water management.

  9. Characterization of the spatial variability of soil available zinc at various sampling densities using grouped soil type information.

    PubMed

    Song, Xiao-Dong; Zhang, Gan-Lin; Liu, Feng; Li, De-Cheng; Zhao, Yu-Guo

    2016-11-01

    The influence of anthropogenic activities and natural processes involved high uncertainties to the spatial variation modeling of soil available zinc (AZn) in plain river network regions. Four datasets with different sampling densities were split over the Qiaocheng district of Bozhou City, China. The difference of AZn concentrations regarding soil types was analyzed by the principal component analysis (PCA). Since the stationarity was not indicated and effective ranges of four datasets were larger than the sampling extent (about 400 m), two investigation tools, namely F3 test and stationarity index (SI), were employed to test the local non-stationarity. Geographically weighted regression (GWR) technique was performed to describe the spatial heterogeneity of AZn concentrations under the non-stationarity assumption. GWR based on grouped soil type information (GWRG for short) was proposed so as to benefit the local modeling of soil AZn within each soil-landscape unit. For reference, the multiple linear regression (MLR) model, a global regression technique, was also employed and incorporated the same predictors as in the GWR models. Validation results based on 100 times realization demonstrated that GWRG outperformed MLR and can produce similar or better accuracy than the GWR approach. Nevertheless, GWRG can generate better soil maps than GWR for limit soil data. Two-sample t test of produced soil maps also confirmed significantly different means. Variogram analysis of the model residuals exhibited weak spatial correlation, rejecting the use of hybrid kriging techniques. As a heuristically statistical method, the GWRG was beneficial in this study and potentially for other soil properties.

  10. Ecotoxicological characterization of hazardous wastes.

    PubMed

    Wilke, B-M; Riepert, F; Koch, Christine; Kühne, T

    2008-06-01

    In Europe hazardous wastes are classified by 14 criteria including ecotoxicity (H 14). Standardized methods originally developed for chemical and soil testing were adapted for the ecotoxicological characterization of wastes including leachate and solid phase tests. A consensus on which tests should be recommended as mandatory is still missing. Up to now, only a guidance on how to proceed with the preparation of waste materials has been standardized by CEN as EN 14735. In this study, tests including higher plants, earthworms, collembolans, microorganisms, duckweed and luminescent bacteria were selected to characterize the ecotoxicological potential of a boiler slag, a dried sewage sludge, a thin sludge and a waste petrol. In general, the instructions given in EN 14735 were suitable for all wastes used. The evaluation of the different test systems by determining the LC/EC(50) or NOEC-values revealed that the collembolan reproduction and the duckweed frond numbers were the most sensitive endpoints. For a final classification and ranking of wastes the Toxicity Classification System (TCS) using EC/LC(50) values seems to be appropriate.

  11. Chemical and mineralogical composition of the Mongolian rural soils and their uranium sorption behavior.

    PubMed

    Tserenpil, Sh; Maslov, O D; Norov, N; Liu, Q C; Fillipov, M F; Theng, Benny K G; Belov, A G

    2013-04-01

    Distribution of uranium (VI) between soil solids and solutions is a key parameter in assessing the risk to the biosphere of disposing uranium-rich waste products from nuclear plants as well as uranium (U) ore mining. Both of these topics have recently been brought to public attention in Mongolia. Regional background levels of soil elements are an important dataset for accessing the actual environmental situation and monitoring pollution levels. Little information, however, is available on background concentrations of various elements in Mongolian soils. Thirteen rural soils were sampled from six provinces in Mongolia, and the concentrations of macro-, micro- and trace elements were measured. The values obtained served as a reference (baseline) for uncontaminated soils. The soils were characterized with slightly acidic to strongly alkaline pH values. With the exception of the sample from a western province, all the soils investigated contained little organic matter. The content of soil elements did not vary widely among geographical regions. The concentration of most micro elements was within the range of worldwide soil values but the value for Zn tended to be moderately higher. The U (VI) sorption into the soils was investigated using the batch technique and the (237)U radionuclide tracer, produced by the photo fission reaction (238)U(γ, n) (237)U at an electron accelerator. The (237)U distribution coefficient (K(d)), derived from the sorption isotherms, was related to solution pH and varying from 9 to 2547 mL g(-1) when the pH ranged between 3 and 7.7. The sorption process was interpreted in terms of the formation of different U (VI) species at given concentrations, calculated using the Speciation program with and without carbonate in the system. The U sorption isotherm displayed two general patterns: one where sorption decreased as solution pH increased, showing a maximum at pH 3, and another pattern revealed an adsorption maximum at pH 5 and then decreased up

  12. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology

    PubMed Central

    Heil, Kurt

    2017-01-01

    Fast and accurate assessment of within-field variation is essential for detecting field-wide heterogeneity and contributing to improvements in the management of agricultural lands. The goal of this paper is to provide an overview of field scale characterization by electromagnetic induction, firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil water turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs. Furthermore, results concerning special applications in agriculture, horticulture and archaeology are included. In addition to these investigations, this survey also presents a wide range of practical methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific locality is determined by the intensity at which soil factors influence these values in relationship to the desired information. The interpretation and utility of apparent electrical conductivity (ECa) readings are highly location- and soil-specific, so soil properties influencing the measurement of ECa must be clearly understood. From the various calibration results, it appears that regression constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe), texture, yield, etc., are not necessarily transferable from one region to another. The modelling of ECa, soil properties, climate and yield are important for identifying the location to which specific utilizations of ECa technology (e.g., ECa−texture relationships) can be appropriately applied. In general, the determination of absolute levels of ECa is frequently not possible, but it appears to be quite a robust method to detect relative differences, both spatially and temporally. Often, the use of ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather than as absolute terms. PMID:29113048

  13. Assessment of natural radioactivity levels in soil samples from some areas in Assiut, Egypt.

    PubMed

    El-Gamal, Hany; Farid, M El-Azab; Abdel Mageed, A I; Hasabelnaby, M; Hassanien, Hassanien M

    2013-12-01

    The natural radioactivity of soil samples from Assiut city, Egypt, was studied. The activity concentrations of 28 samples were measured with a NaI(Tl) detector. The radioactivity concentrations of (226)Ra, (232)Th, and (40)K showed large variations, so the results were classified into two groups (A and B) to facilitate the interpretation of the results. Group A represents samples collected from different locations in Assiut and characterized by low activity concentrations with average values of 46.15 ± 9.69, 30.57 ± 4.90, and 553.14 ± 23.19 for (226)Ra, (232)Th, and (40)K, respectively. Group B represents samples mainly collected from the area around Assiut Thermal Power Plant and characterized by very high activity concentrations with average values of 3,803 ± 145, 1,782 ± 98, and 1,377 ± 78 for (226)Ra, (232)Th, and (40)K, respectively. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity (Raeq), the absorbed dose rate (D), the annual effective dose rate (E), the external hazard index (H ex), and the annual gonadal dose equivalent (AGDE) have been calculated and compared with the internationally approved values. For group A, the calculated averages of these parameters are in good agreement with the international recommended values except for the absorbed dose rate and the AGDE values which are slightly higher than the international recommended values. However, for group B, all obtained averages of these parameters are much higher by several orders of magnitude than the international recommended values. The present work provides a background of radioactivity concentrations in the soil of Assiut.

  14. The Soil-Water Characteristic Curve of Unsaturated Tropical Residual Soil

    NASA Astrophysics Data System (ADS)

    Yusof, M. F.; Setapa, A. S.; Tajudin, S. A. A.; Madun, A.; Abidin, M. H. Z.; Marto, A.

    2016-07-01

    This study was conducted to determine the SWCC of unsaturated tropical residual soil in Kuala Lumpur, Malaysia. Undisturbed soil samples at five locations of high-risk slopes area were taken at a depth of 0.5 m using block sampler. In the determination of the SWCC, the pressure plate extractor with the capacity of 1500 kN/m2 has been used. The index properties of the soil such as natural moisture content, Atterberg limits, specific gravity, and soil classification are performed according to BS 1377: Part 2: 1990. The results of index properties show that the natural moisture content of the soil is between 36% to 46%, the plasticity index is between 10% - 26%, the specific gravity is between 2.51 - 2.61 and the soils is classified as silty organic clay of low plasticity. The SWCC data from the pressure plate extractor have been fitted with the Fredlund and Xing equation. The results show that the air entry value and residual matric suction for residual soils are in the range of 17 kN/m2 to 24 kN/m2 and 145 kN/m2 to 225 kN/m2 respectively. From the fitting curve, it is found that the average value of the Fredlund and Xing parameters such as a, n and m are in the range of 0.24-0.299, 1.7-4.8 and 0.142-0.440 respectively.

  15. Interactions of Hydrazine and of Hydrazine Derivatives with Soil Constituents and with Soils.

    DTIC Science & Technology

    1982-01-31

    exchangeable metal cations held by the clay and humic colloids, or the metal of the hydrous oxide colloids. The pH values of the natural soil solution of most...hydrazine into a soil system will tend to increase the pH of the soil solution . Hydrous oxides of iron and aluminium are insoluble at high pH, and these...aeration, and by the soil solution pH. Treatment of contaminated soils can alter these properties in order to promote the degradation or immobilization of

  16. Average pollutant concentration in soil profile simulated with Convective-Dispersive Equation. Model and Manual

    USDA-ARS?s Scientific Manuscript database

    Different parts of soil solution move with different velocities, and therefore chemicals are leached gradually from soil with infiltrating water. Solute dispersivity is the soil parameter characterizing this phenomenon. To characterize the dispersivity of soil profile at field scale, it is desirable...

  17. Diversity and Ecology of Viruses in Hyperarid Desert Soils

    PubMed Central

    Zablocki, Olivier; Adriaenssens, Evelien M.

    2015-01-01

    In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies. PMID:26590289

  18. Estimates of Soil Ingestion in a Population of Chinese Children

    PubMed Central

    Wang, Beibei; Cui, Xiaoyong; Xu, Dongqun; Cheng, Hongguang; Wang, Qin; Ma, Jin; Chai, Tuanyao; Duan, Xiaoli; Liu, Xitao; Ma, Junwei; Zhang, Xuan; Liu, Yanzhong

    2017-01-01

    Background: China’s soil pollution poses serious health risks. However, data regarding the soil ingestion rate (SIR) of the Chinese population, which is critical to assessing associated health risks, are lacking. Objectives: We estimated soil ingestion of 177 Chinese children from Guangdong, Hubei, and Gansu Provinces. Methods: We conducted this investigation by employing a tracer mass-balance method. We collected a duplicate of all food consumed and all feces and urine excreted on 1 d (n=153) and over 3 consecutive d (n=24), as well as soil samples from play areas and drinking-water samples. We analyzed concentrations of the tracer elements Al, Ba, Ce, Mn, Sc, Ti, V, and Y in these samples using ICP-AES and ICP-MS and estimated the SIR for each subject. Results: The estimated SIR data based on each tracer element were characterized by a skewed distribution, as well as higher inter-tracer and inter-subject variation, with several outliers. After removing the outliers, daily SIR median (range) values in milligrams per day were Al, 27.8 (−42.0 to 257.3); Ba, 36.5 (−230.3 to 412.7); Ce, 35.3 (−21.2 to 225.8); Mn, 146.6 (−1259.4 to 1827.7); Sc, 54.8 (−4.5 to 292.0); Ti, 36.7 (−233.7 to 687.0); V, 92.1 (10.4 to 308.0); and Y, 59.1 (−18.4 to 283.0). Daily SIR median/95th percentile (range) values based on the best tracer method (BTM) were 51.7/216.6 (−9.5 to 297.6) mg/d. Conclusions: Based on the BTM, recommended SIR values for the general population of Chinese children (2.5 to 12 years old) are 52mg/d for the central tendency and 217mg/d for the upper percentile. We did not differentiate between outside soil and indoor dust. Considering the lower concentration of tracer elements in indoor dust than outside soil, actual soil and dust ingestion rates could be higher. https://doi.org/10.1289/EHP930 PMID:28728141

  19. Molecular characterization of biochars and their influence on microbiological properties of soil.

    PubMed

    Chintala, Rajesh; Schumacher, Thomas E; Kumar, Sandeep; Malo, Douglas D; Rice, James A; Bleakley, Bruce; Chilom, Gabriela; Clay, David E; Julson, James L; Papiernik, Sharon K; Gu, Zheng Rong

    2014-08-30

    The tentative connection between the biochar surface chemical properties and their influence on microbially mediated mineralization of C, N, and S with the help of enzymes is not well established. This study was designed to investigate the effect of different biomass conversion processes (microwave pyrolysis, carbon optimized gasification, and fast pyrolysis using electricity) on the composition and surface chemistry of biochar materials produced from corn stover (Zea mays L.), switchgrass (Panicum virgatum L.), and Ponderosa pine wood residue (Pinus ponderosa Lawson and C. Lawson) and determine the effect of biochars on mineralization of C, N, and S and associated soil enzymatic activities including esterase (fluorescein diacetate hydrolase, FDA), dehydrogenase (DHA), β-glucosidase (GLU), protease (PROT), and aryl sulfatase (ARSUL) in two different soils collected from footslope (Brookings) and crest (Maddock) positions of a landscape. Chemical properties of biochar materials produced from different batches of gasification process were fairly consistent. Biochar materials were found to be highly hydrophobic (low H/C values) with high aromaticity, irrespective of biomass feedstock and pyrolytic process. The short term incubation study showed that biochar had negative effects on microbial activity (FDA and DHA) and some enzymes including β-glucosidase and protease. Published by Elsevier B.V.

  20. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  1. Event- and site-specific soil wetting and seasonal change in amount of soil water

    USDA-ARS?s Scientific Manuscript database

    Numerous studies have examined ways to characterize the central tendency of soil water within a field or watershed. Extreme changes in water content reveal more about water movement within the area. The purpose of this study was to determine if extreme soil water changes varied among sites, and to s...

  2. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S

    NASA Astrophysics Data System (ADS)

    Passos, Tassia R. G.; Artur, Adriana G.; Nóbrega, Gabriel N.; Otero, Xosé L.; Ferreira, Tiago O.

    2016-06-01

    The performance of the Walkley-Black wet oxidation chemical method for soil organic carbon (SOC) determination in coastal wetland soils (mangroves, coastal lagoons, and hypersaline tidal flats) was evaluated in the state of Ceará along the semiarid coast of Brazil, assessing pyrite oxidation and its effects on soil C stock (SCS) quantification. SOC determined by the chemical oxidation method (CWB) was compared to that assessed by means of a standard elemental analyzer (CEA) for surficial samples (<30 cm depth) from the three wetland settings. The pyrite fraction was quantified in various steps of the chemical oxidation method, evaluating the effects of pyrite oxidation. Regardless of the method used, and consistent with site-specific physicochemical conditions, higher pyrite and SOC contents were recorded in the mangroves, whereas lower values were found in the other settings. CWB values were higher than CEA values. Significant differences in SCS calculations based on CWB and CEA were recorded for the coastal lagoons and hypersaline tidal flats. Nevertheless, the CWB and CEA values were strongly correlated, indicating that the wet oxidation chemical method can be used in such settings. In contrast, the absence of correlation for the mangroves provides evidence of the inadequacy of this method for these soils. Air drying and oxidation decrease the pyrite content, with larger effects rooted in oxidation. Thus, the wet oxidation chemical method is not recommended for mangrove soils, but seems appropriate for SOC/SCS quantification in hypersaline tidal flat and coastal lagoon soils characterized by lower pyrite contents.

  3. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    PubMed

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration

    NASA Astrophysics Data System (ADS)

    Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; von Fischer, Joseph C.

    2016-06-01

    There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.

  5. Effect of moisture and compost on fate of azoxystrobin in soils.

    PubMed

    Singh, Neera; Singh, Shashi B

    2010-10-01

    The effect of compost-amendment and moisture status on the persistence of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy) phenyl}-3-methoxyacrylate], a strobilurin fungicide, in two rice-growing soils was studied. Azoxystrobin is more sorbed in the silt loam (K f – 4.66) soil than the sandy loam (K f – 2.98) soil. Compost-amendment at 5 % levels further enhanced the azoxystrobin sorption and the respective Kf values in silt loam and sandy loam soils were 8.48 and 7.6. Azoxystrobin was more persistent in the sandy loam soil than the silt loam soil. The half–life values of azoxystrobin in nonflooded and flooded silt loam soil were 54.7 and 46.3 days, respectively. The corresponding half–life values in the sandy loam soils were 64 and 62.7 days, respectively. Compost application enhanced persistence of azoxystrobin in the silt loam soil under both moisture regimes and half-life values in non–flooded and flooded soils were 115.7 and 52.8 days, respectively. However, compost enhanced azoxystrobin degradation in the sandy loam soil and half-life values were 59 (nonflooded) and 54.7 days (flooded). The study indicates that compost amendment enhanced azoxystrobin sorption in the soils. Azoxystrobin is more persistent in non-flooded soils than the flooded soils. Compost applications to soils had mixed effect on the azoxystrobin degradation.

  6. Assessment of soil quality in different ecosystems (with soils of Podolsk and Serpukhov districts of Moscow oblast as examples)

    NASA Astrophysics Data System (ADS)

    Gavrilenko, E. G.; Ananyeva, N. D.; Makarov, O. A.

    2013-12-01

    The values of the soil-ecological index and microbiological parameters (the carbon of microbial biomass Cmic, its ratio to the total organic carbon Cmic/Corg, and basal respiration) were determined for the soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, and gray forest soils under different land uses (forest, fallow, cropland, and urban areas) in the Podolsk and Serpukhov districts of Moscow oblast (237 and 45 sampling points, respectively). The soil sampling from the upper 10 cm (without the litter horizon) was performed in September and October. To calculate the soil-ecological index, both soil (physicochemical and agrochemical) and climatic characteristics were taken into account. Its values for fallow, cropland, and urban ecosystems averaged 70.2, 72.8, and 64.2 points ( n = 90, 17, and 24, respectively). For the soils of forest ecosystems, the average value of the soil-ecological index was lower (54.4; n = 151). At the same time, the micro-biological characteristics of the studied forest soils were generally higher than those in the soils of fallow, cropland, and urban ecosystems. In this context, to estimate the soil quality in different ecosystems on the basis of the soil-ecological index, the use of a correction coefficient for the biological properties of the soils (the Cmic content) was suggested. The ecological substantiation of this approach for assessing the quality of soils in different ecosystems is presented in the paper.

  7. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.

    PubMed

    Katseanes, Chelsea K; Chappell, Mark A; Hopkins, Bryan G; Durham, Brian D; Price, Cynthia L; Porter, Beth E; Miller, Lesley F

    2016-11-01

    After nearly a century of use in numerous munition platforms, TNT and RDX contamination has turned up largely in the environment due to ammunition manufacturing or as part of releases from low-order detonations during training activities. Although the basic knowledge governing the environmental fate of TNT and RDX are known, accurate predictions of TNT and RDX persistence in soil remain elusive, particularly given the universal heterogeneity of pedomorphic soil types. In this work, we proposed a new solution for modeling the sorption and persistence of these munition constituents as multivariate mathematical functions correlating soil attribute data over a variety of taxonomically distinct soil types to contaminant behavior, instead of a single constant or parameter of a specific absolute value. To test this idea, we conducted experiments measuring the sorption of TNT and RDX on taxonomically different soil types that were extensively physical and chemically characterized. Statistical decomposition of the log-transformed, and auto-scaled soil characterization data using the dimension-reduction technique PCA (principal component analysis) revealed a strong latent structure based in the multiple pairwise correlations among the soil properties. TNT and RDX sorption partitioning coefficients (KD-TNT and KD-RDX) were regressed against this latent structure using partial least squares regression (PLSR), generating a 3-factor, multivariate linear functions. Here, PLSR models predicted KD-TNT and KD-RDX values based on attributes contributing to endogenous alkaline/calcareous and soil fertility criteria, respectively, exhibited among the different soil types: We hypothesized that the latent structure arising from the strong covariance of full multivariate geochemical matrix describing taxonomically distinguished soil types may provide the means for potentially predicting complex phenomena in soils. The development of predictive multivariate models tuned to a local soil

  8. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  9. Spatial variability of soil and vegetation characteristics in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Sarah, Pariente; Zhevelev, Helena M.; Oz, Atar

    2010-05-01

    Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments. Six microenvironments were within the park: area under Ceratonia siliqua (Cs-U), area under Ficus sycomorus (Fi-U), a rest area under F. sycomorus (Re-U), an open area with bare soil (Oa-S), an open area with biological crusts (Oa-C), and an open area with herbaceous vegetation (Oa-V). Outside the park were two control microenvironments, located, respectively, on a flat area (Co-P) and an inclined open area (Co-S). The soil was sampled from two depths (0-2 and 5-10 cm), during the peak of the growing season (March). For each soil sample, moisture content, organic matter content, CaCO3 content, texture, pH, electrical conductivity, and soluble ions contents were determined in 1:1 water extraction. In addition, prior to the soil sampling, vegetation cover, number of species, and species diversity of herbaceous vegetation were measured. The barbecue fires and visitors in each of the microenvironments were counted. Whereas the soil organic matter and vegetation in Fi-U differed from those in the control(Co-P, Co-S), those in Oa-V were similar to those in the control. Fi-U was characterized by higher values of soil moisture, organic matter, penetration depth, and vegetation cover than Cs-U. Open microenvironments within the park (Oa-S, Oa-C, Oa-V) showed lower values of soil penetration than the control microenvironments. In Oa-V unique types of plants such as Capsella bursa-pastoris and Anagallis arvensis, which did not appear in the control microenvironments, were found. This was true also for Fi-U, in which species like Oxalis pes

  10. soilphysics: An R package to determine soil preconsolidation pressure

    NASA Astrophysics Data System (ADS)

    da Silva, Anderson Rodrigo; de Lima, Renato Paiva

    2015-11-01

    Preconsolidation pressure is a parameter obtained from the soil compression curve and has been used as an indicator of load-bearing capacity of soil, as well as to characterize the impacts suffered by the use of machines. Despite its importance in soil physics, there is a few software or computational routines to support its determination. In this paper we present a computational package in R language, the package soilphysics, which contains implementations of the main methods for determining preconsolidation pressure, such as the method of Casagrande, Pacheco Silva, regression methods and the method of the virgin compression line intercept. There is still a consensus that Casagrande is the standard method, although the method of Pacheco Silva has shown similar values. The method of the virgin compression line intercept can be used when trying to be more conservative on the value (smaller) of preconsolidation pressure. Furthermore, Casagrande could be replaced by a regression method when the compression curve is obtained from saturated soils. The theory behind each method is presented and the algorithms are thoroughly described. We also give some support on how to use the R functions. Examples are used to illustrate the capabilities of the package, and the results are briefly discussed. The latter were validated using a recently published VBA. With soilphysics, the user has all the graphical and statistical power of R to determine preconsolidation pressure using different methods. The package is distribution free (under the GPL-2|3) and is currently available from the Comprehensive R Archive Network.

  11. Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates.

    PubMed

    Zhang, Qiu; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Long, Lingzhi; Huang, Mei; Zhai, Xiuqing; Zeng, Guangming

    2017-01-01

    The influence of land use change from paddy soil to vegetable soil on the adsorption-desorption behavior of Cd in soil aggregates and the variation in soil properties were investigated. The vegetable soil was characterized by lower pH, organic matter content, cation exchange capacity (CEC), free iron oxides, manganese oxides, and catalase activity and higher urease activity compared with the paddy soil. In the isothermal adsorption and desorption experiments, the adsorption characteristics of Cd of the two soils could be well described by Langmuir and Freundlich equations. The adsorption capacity of vegetable soil decreased 22.72 %, and the desorption rate increased 35 % with respect to paddy soil. Therefore, conversion from paddy to vegetable field can reduce the adsorption ability to Cd of the soil to a certain extent. Both the two soils reached the maximum adsorption capacity and the minimum desorption rate in the <0.002-mm faction. The adsorption capacity of Cd in paddy and vegetable soils exhibited great reliance on the content of CEC. Desorption rate was negatively correlated with the four indicators: organic matter, CEC, free iron oxides, and manganese oxides, and specific adsorption was primarily controlled by soil organic matter and manganese oxides.

  12. Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry

    NASA Astrophysics Data System (ADS)

    Jin, Lixin; Williams, Erika L.; Szramek, Kathryn J.; Walter, Lynn M.; Hamilton, Stephen K.

    2008-02-01

    Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition. Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO 2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg 2+/Ca 2+ ratio of 0.4. Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca 2+ and Mg 2+ in natural waters. Dolomite dissolution appears to be a major process

  13. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.

    PubMed

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-10-15

    The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity and the predicted environmental concentrations based on the conditions of use are lower than the NOAEC for soils but higher than the NOAEC for water, posing a potential risk to the waters due to the levels of foaming agents in the muck. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multiscale Analysis of Soil Porosity from Hg Injection Curves in Soils from Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Miranda, J. G. V.; Paz-Ferreiro, J.

    2012-04-01

    The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are currently used to characterize soil structure. Mercury injection porosimetry is useful for assessing equivalent pore size diameters in the range from about 0,5 nm to 100 μm. Here, the multifractal formalism was employed to describe Hg injection curves measured in duplicate samples collected on 54 horizons from 19 profiles in Minas Gerais state, Brazil. Ten of the studied profiles were classified as Ferralsols (Latosols, Oxisols). Besides these, other wide different soil groups were sampled, including Nitisol, Acrisol, Alisol, Luvisol, Planosol, Cambisol, Andosol and Leptosol. Clay content varied from 4 to 86% and pore volume in the range from 100 to 0.005 μm was between 5.52 a 53.76 cm3100g-1. All the horizons taken on Ferralsols and Nitisols as well as in Bt argic horizons from Acrisol Alisol, Luvisol and Planosol clearly showed a bimodal pore size distribution. Pore volume in the range from 100 to 0.005 μm and microporosity (0,2-0.005 μm) showed a significant relationship with clay content an Al2O3. All the Hg injection data sets studied soil showed remarkably good scaling trends and could be fitted reasonably well with multifractal models. The capacity dimensions, D0, was not significantly different from the Euclidean dimension. The entropy dimension, D1, varied from 0.590 to 0.946 , whereas the Hölder exponent of order zero, α0was between 1.027 and 1.451, and these two parameters showed a lineal negatives relationship, as expected. The highest D1 values, ranging from 0.913 to 0.980, were obtained for the Leptosol, whereas the lowest D1 values, ranging from 0.641 to 0.766 corresponded to the Nitisol. This

  15. Mitigation of Water Stress on Apple Trees under Rotational Irrigation Conditions by Increasing the Application Rate of Organic Fertilizers to Sandy Soils

    NASA Astrophysics Data System (ADS)

    Hamed, Lamy Mamdoh Mohamed; Ramadan Eid, Abdelraouf; Mohsmed Rabie Abdellatif Abdelaziz, Adel; Fathy Abdelsalam Essa, El-Sayed

    2016-04-01

    Egypt, as part of Mediterranean regions, is characterized by irregular and low rainfall amount which varies between (30-150 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. On the other hand, New reclaimed soils are mostly occupies around 84 % of total area of Egypt, which is mainly sandy soils. These soils generally characterized by low water capacity holding, soil organic matter, and weak in nutrients retention. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency and increasing of nutrient retention in sandy soils. In this context, two field experiments were carried out on sand soil located in north Cairo-Egypt at the experimental farm of National Research Center, El-NUBARIA, (latitude 30° 30' N, and longitude 30° 19' E). The effect of compost rates on soil hydraulic characteristics, fruit yields, quality traits, and water use efficiency and productivity of apple tree (Apple Anna Cultivar), was studied under deficit irrigation conditions. Four rates of compost [I1: control, I2: 12 ton.ha-1., I3: 24 ton.ha-1., I4: 36 ton.ha-1. and I5:48 ton.ha-1.] were applied under irrigation frequencies of (IF1 :once per week; IF2 :twice per week, IF3 :three times per week). The obtained results indicated that by increasing the application rate of compost, the available water capacity and saturated water content of sandy soil have been enhanced. In the same time, the fruit yield, quality traits and water productivity were increased by increasing the application rate of compost. It is worthy to mention that the I5IF3 treatment gave the highest values of fruit yield, quality traits and water productivity, whereas I1IF1 treatment gave the lowest values of all the above mentioned variables. As result, for apple cultivation in El-NUBARIA region, the recommended rate of compost is 48 ton.ha-1 and irrigation frequency

  16. Characterizing Soil Lead Contamination Near Streams in Oakland, California

    NASA Astrophysics Data System (ADS)

    Tanouye, D.

    2017-12-01

    Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.

  17. Geochemical Background and Baseline Values Determination and Spatial Distribution of Heavy Metal Pollution in Soils of the Andes Mountain Range (Cajamarca-Huancavelica, Peru).

    PubMed

    Santos-Francés, Fernando; Martinez-Graña, Antonio; Alonso Rojo, Pilar; García Sánchez, Antonio

    2017-07-31

    Concentrations of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and one metalloid (As) as well as various parameters (pH, organic carbon, granulometric analysis and cation exchange capacity) were analyzed in 77 soil samples collected in the mining areas of La Zanja and Colquirrumi (Department of Cajamarca) and Julcani (Department of Huancavelica). Our study proposed geochemical baseline values for heavy metals in a natural region (La Zanja) from samples collected during the period of the environmental impact study (2006), that is, from an earlier period which occurred at the beginning of the exploitation of the current gold mine. The baseline values obtained were as follows: 8.26 mg kg-1 for Cr; 56.97 mg kg-1 for Ni; 22, 20 mg kg-1 for the Cu; 47.42 mg kg-1 for Zn; 27.50 mg kg-1 for As; 4.36 mg kg-1 for Cd; 4.89 mg kg-1 for Hg, and 44.87 mg kg-1 for Pb. Through the use of different indices of heavy metal contamination (geo-accumulation index (Igeo), improved Nemerow index (IIN) and potential ecological risk index (RI)), the degree of pollution caused by mining activities in two areas, Colquirrumi and Julcani, which have a high density of mining sites in operation, was determined. The values obtained from these indices indicated that the Colquirrumi region was the most contaminated, followed by Julcani. The area of La Zanja, despite being free of mining operations, presented slight diffuse pollution. Several positive correlations were obtained, with a high level of significance, between pH, organic carbon content, cation exchange capacity, and the Cr, Pb and Ni concentrations of the soils. The spatial distribution of the heavy metals was realized by means of the interpolation method of ordinary kriging. The results obtained and the experience gained in this work were necessary to facilitate the identification of soil contamination processes in high altitude areas of the Andes Western Cordillera (Peru) as a basis for taking appropriate measures when restoring

  18. Geochemical Background and Baseline Values Determination and Spatial Distribution of Heavy Metal Pollution in Soils of the Andes Mountain Range (Cajamarca-Huancavelica, Peru)

    PubMed Central

    Santos-Francés, Fernando; Alonso Rojo, Pilar; García Sánchez, Antonio

    2017-01-01

    Concentrations of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and one metalloid (As) as well as various parameters (pH, organic carbon, granulometric analysis and cation exchange capacity) were analyzed in 77 soil samples collected in the mining areas of La Zanja and Colquirrumi (Department of Cajamarca) and Julcani (Department of Huancavelica). Our study proposed geochemical baseline values for heavy metals in a natural region (La Zanja) from samples collected during the period of the environmental impact study (2006), that is, from an earlier period which occurred at the beginning of the exploitation of the current gold mine. The baseline values obtained were as follows: 8.26 mg·kg−1 for Cr; 56.97 mg·kg−1 for Ni; 22, 20 mg·kg−1 for the Cu; 47.42 mg·kg−1 for Zn; 27.50 mg·kg−1 for As; 4.36 mg·kg−1 for Cd; 4.89 mg·kg−1 for Hg, and 44.87 mg·kg−1 for Pb. Through the use of different indices of heavy metal contamination (geo-accumulation index (Igeo), improved Nemerow index (IIN) and potential ecological risk index (RI)), the degree of pollution caused by mining activities in two areas, Colquirrumi and Julcani, which have a high density of mining sites in operation, was determined. The values obtained from these indices indicated that the Colquirrumi region was the most contaminated, followed by Julcani. The area of La Zanja, despite being free of mining operations, presented slight diffuse pollution. Several positive correlations were obtained, with a high level of significance, between pH, organic carbon content, cation exchange capacity, and the Cr, Pb and Ni concentrations of the soils. The spatial distribution of the heavy metals was realized by means of the interpolation method of ordinary kriging. The results obtained and the experience gained in this work were necessary to facilitate the identification of soil contamination processes in high altitude areas of the Andes Western Cordillera (Peru) as a basis for taking appropriate

  19. Critical state of sand matrix soils.

    PubMed

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  20. A Study of Soil and Duricrust Models for Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2001-03-01

    Analysis of soil and duricrust formation mechanisms on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic).

  1. Sequential Desorption of Nitroaromatic Compounds (NAC) from Soils

    DTIC Science & Technology

    2005-03-01

    the soil solution . Weissmahr et al. [20] suggest an electron donor acceptor (EDA) complex between oxygens of the siloxane surface of the clays and the...release of NACs into the soil solution . At high pH values desorption is superimposed by NACs hydrolysis. Therefore, in- creasing pH values impedes the...presented demonstrate that both the cation present in the soil solution and its concentration may affect the desorption behavior of NACs in contaminated soils

  2. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    NASA Astrophysics Data System (ADS)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm

  3. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    NASA Astrophysics Data System (ADS)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (<20 µm). Short-term (10d) aerobic incubation of high and low saturation frequency soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to

  4. Index for characterizing post-fire soil environments in temperate coniferous forests

    USGS Publications Warehouse

    Jain, Theresa B.; Pilliod, David S.; Graham, Russell T.; Lentile, Leigh B.; Sandquist, Jonathan E.

    2012-01-01

    Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available science and ecological thresholds. Using over 50 literature sources, we identified a minimum of five broad categories of post-fire outcomes: (a) unburned, (b) abundant surface organic matter ( > 85% surface organic matter), (c) moderate amount of surface organic matter ( ≥ 40 through 85%), (d) small amounts of surface organic matter ( < 40%), and (e) absence of surface organic matter (no organic matter left). We then subdivided each broad category on the basis of post-fire mineral soil colors providing a more fine-tuned post-fire soil index. We related each PFI category to characteristics such as soil temperature and duration of heating during fire, and physical, chemical, and biological responses. Classifying or describing post-fire soil conditions consistently will improve interpretations of fire effects research and facilitate communication of potential responses or outcomes (e.g., erosion potential) from fires of varying severities.

  5. Plot-scale soil loss estimation with laser scanning and photogrammetry methods

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán; Somogyi, Árpád; Barsi, Árpád

    2017-04-01

    Structure from Motion (SfM) is an automatic feature-matching algorithm, which nowadays is widely used tool in photogrammetry for geoscience applications. SfM method and parallel terrestrial laser scanning measurements are widespread and they can be well accomplished for quantitative soil erosion measurements as well. Therefore, our main scope was soil erosion characterization quantitatively and qualitatively, 3D visualization and morphological characterization of soil-erosion-dynamics. During the rainfall simulation, the surface had been measured and compared before and after the rainfall event by photogrammetry (SfM - Structure from Motion) and laser scanning (TLS - Terrestrial Laser Scanning) methods. The validation of the given results had been done by the caught runoff and the measured soil-loss value. During the laboratory experiment, the applied rainfall had 40 mm/h rainfall intensity. The size of the plot was 0.5 m2. The laser scanning had been implemented with Faro Focus 3D 120 S type equipment, while the SfM shooting had been carried out by 2 piece SJCAM SJ4000+ type, 12 MP resolution and 4K action cams. The photo-reconstruction had been made with Agisoft Photoscan software, while evaluation of the resulted point-cloud from laser scanning and photogrammetry had been implemented partly in CloudCompare and partly in ArcGIS. The resulted models and the calculated surface changes didn't prove to be suitable for estimating soil-loss, only for the detection of changes in the vertical surface. The laser scanning resulted a quite precise surface model, while the SfM method is affected by errors at the surface model due to other factors. The method needs more adequate technical laboratory preparation.

  6. Silicification of holocene soils in northern Monitor Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.

    1989-02-01

    Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.

  7. Silicification of holocene soils in northern Monitor Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.

    1989-01-01

    Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.

  8. Use of Ultrasonic Technology for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  9. Mitigation of biases in SMOS Level 2 soil moisture retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Ali; Richaume, Philippe; Kerr, Yann

    2017-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA) relies on the L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer models to retrieve soil moisture (SM). These models require, as input, parameters which characterize the target like soil water content and temperature. The Soil Water Volume at Level 1 (SWVL1) from the European Centre for Medium-Range Weather Forecast (ECMWF) is used in the SMOS Level 2 SM algorithms as both an initial guess for SM in the iterative retrieval process and to compute fixed contributions from the so called "default" fractions. In case of mixed fractions of nominal (low vegetation land) and forest, retrieval is performed over one fraction while the contribution of the other is assumed to be fixed and known based on ECMWF data. Studies have shown that ECMWF SWVL1 is biased when compared to SMOS SM and represents values at a deeper layer of soil ( 7 cm) than that represented by SMOS ( 2 to 5 cm). This study uses a well know bias reduction technique based on matching of the Cumulative Distribution Functions (CDF) of the two distributions to help reduce the biases. Early results using a linear matching method provide very encouraging results. A complication with respect to performing CDF matching is that SMOS SM values are not available where they are needed, i.e. over the default fractions. In order to remedy this, we treat mixed fractions as homogeneous targets to retrieve SM over the whole target. The obtained values are then used to derive the CDF matching coefficients. A set of CDF coefficients derived using average and standard deviation of soil moisture values for 2014 has been used in reprocessing SMOS data for 2014 and 2015, as well as over selected sites (with in-situ data) over a longer period. The 2014 was selected due to its lower Radio Frequency Interference (RFI) contamination in comparison with other years. The application of CDF coefficients has lead to a wetter SM for

  10. Effect of new organic supplement (Panchgavya) on seed germination and soil quality.

    PubMed

    Jain, Paras; Sharma, Ravi Chandra; Bhattacharyya, Pradip; Banik, Pabitra

    2014-04-01

    We studied the suitability of Panchgavya (five products of cow), new organic amendment, application on seed germination, plant growth, and soil health. After characterization, Panchgavya was mixed with water to form different concentration and was tested for seed germination, germination index, and root and shoot growth of different seedlings. Four percent solution of Panchgavya was applied to different plants to test its efficacy. Panchgavya and other two organic amendments were incorporated in soil to test the change of soil chemical and microbiological parameters. Panchgavya contained higher nutrients as compared to farm yard manure (FYM) and vermicompost. Its application on different seeds has positively influenced germination percentage, germination index, root and shoot length, and fresh and dry weight of the seedling. Water-soluble macronutrients including pH and metal were positively and negatively correlated with the growth parameters, respectively. Four percent solution of Panchgavya application on some plants showed superiority in terms of plant height and chlorophyll content. Panchgavya-applied soil had higher values of macro and micronutrients (zinc, copper, and manganese), microbial activity as compared to FYM, and vermicompost applied soils. Application of Panchgavya can be gainfully used as an alternative organic supplement in agriculture.

  11. Developing and using artificial soils to analyze soil microbial processes

    NASA Astrophysics Data System (ADS)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  12. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia.

    PubMed

    Yustiawati; Kihara, Yusuke; Sazawa, Kazuto; Kuramitz, Hideki; Kurasaki, Masaaki; Saito, Takeshi; Hosokawa, Toshiyuki; Syawal, M Suhaemi; Wulandari, Linda; Hendri I; Tanaka, Shunitz

    2015-02-01

    When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight.

  13. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  14. Soil gas radon concentrations measurements in terms of great soil groups.

    PubMed

    Içhedef, Mutlu; Saç, Müslim Murat; Camgöz, Berkay; Bolca, Mustafa; Harmanşah, Çoşkun

    2013-12-01

    In this study, soil gas radon concentrations were investigated according to locations, horizontal soil layers and great soil groups around Tuzla Fault, Seferihisar-İzmir. Great soil groups are a category that described the horizontal soil layers under soil classification system and distributions of radon concentration in the great soil groups are firstly determined by the present study. According to the obtained results, it has been showed that the radon concentrations in the Koluvial soil group are higher than the other soil groups in the region. Also significant differences on location in same great soil group were determined. The radon concentrations in the Koluvial soil groups were measured with respect to soil layers structures (A, B, C1, and C2). It has been observed that the values increase with depth of soil (C2>C1>B>A). The main reason may be due to the meteorological factors that have limited effect on radon escape from deep layers. Although fault lines pass thought the study area radon concentrations were varied location to location, layer to layer and great group to great group. The study shows that a detailed location description should be performed before soil radon measurements for earthquake predictions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Parameterizing the binding properties of dissolved organic matter with default values skews the prediction of copper solution speciation and ecotoxicity in soil.

    PubMed

    Djae, Tanalou; Bravin, Matthieu N; Garnier, Cédric; Doelsch, Emmanuel

    2017-04-01

    Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu 2+  = -log 10 [Cu 2+ ]) measured in 55 soil sample solutions with pCu 2+ predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu 2+ were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu 2+ by up to 2.7 pCu 2+ units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu 2+ (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC. © 2016 SETAC.

  16. Conversion of sweet sorghum bagasse into value-added biochar

    USDA-ARS?s Scientific Manuscript database

    Sweet sorghum bagasse is an untapped resourceful carbon-rich material that can be thermochemically converted into value-added biochars. These biochars can be applied to the field as soil amendment for soil health enhancement, improved soil carbon content, water holding capacity, soil drainage and a...

  17. Relationship between apparent soil electrical conductivity (ECa) and soil attributes at an experimental parcel under pasture in a region of Galicia, Spain

    NASA Astrophysics Data System (ADS)

    Marinho, M. D.; Paz-Gonzalez, A.; Dafonte, J. D.; Armesto, M. V.; Raposo, J. R.

    2012-12-01

    Spatial characterization of the variability of soil properties is a central point in site-specific agricultural management and precision agriculture. Geospatial measures of geophysical attributes are useful not only to rapidly characterize the spatial variability of soil properties but also for soil sampling optimization. This work reports partial results obtained at an experimental parcel under pasture located at Castro de Ribeira do Lea (Lugo/ Galicia/ Spain). An ECa automated survey was conducted in September 2011 employing an EM-38 DD (Geonics Ltd.) installed in a nonmetallic car, according to parallel lines spaced 10m one from each other and oriented at the east-west direction. The ECa values were recorded every second with a field computer and the locations were geo-referenced using a GPS. The entire survey was carried out in 1hour and 45 minutes and corrections due to differences in temperature were made. A total of 9.581 ECa registers were retained, configuring a sampling intensity of approximately 1 register per 1.5 m2. Employing the software ESAP 2.35 and the computational tool ESAP-RSSD, eighty positions were selected at the field to extract disturbed and undisturbed soil samples at two depths: 0.0-0.2m, 0.2-0.4m. Ten physical attributes (clay, silt, total sand, coarse sand and fine sand contents, soil bulk density, particle density, total porosity, soil water content, percentage of gravels) and 17 chemical attributes (soil organic matter-SOM, pH, P, K, Ca, Mg, Al, H+Al, Sum of bases-S, Cation exchange capacity-CEC, Base saturation-V%, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined. The relationship between the geophysical variables and the soil attributes was performed using statistical and spatial analysis. There were significant correlations (p<0.01) between the geophysical variables and the textural attributes clay, silt, total sand and coarse sand contents. The biggest correlation (0.5623) was between ECa-V (vertical component) and clay content

  18. Soil warming opens the nitrogen cycle at the alpine treeline.

    PubMed

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  19. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  20. Biologically Active Organic Matter in Soils of European Russia

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  1. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.

  2. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers

    PubMed Central

    Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-01-01

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for

  3. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers.

    PubMed

    Gao, Zhenran; Zhu, Yan; Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-05-21

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0⁻100 cm. According to the calibration results, the degree of fitting ( R ²) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0⁻1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R ² of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R ² between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R ² between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration

  4. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: Source apportionment and soil-air partitioning.

    PubMed

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan

    2018-02-01

    While various investigations have been driven on polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) in different framework around the world, information about contamination and fate of PBDEs and other FRs in developing countries especially in the Indian subcontinent is uncommon. Nepal being located in the Indian subcontinent, very little is known about contamination level of semi-volatile organic pollutants discharged into the environment. This motivated us to investigate the environmental fate of halogenated flame retardant (HFRs) in Nepalese condition. In this study, we investigated the concentration, fate, and sources of 9 PBDEs, 2 dechlorane plus isomers (DPs), and 6 novel brominated flame retardants (NBFRs). Moreover, air-soil exchange and soil-air partitioning were also evaluated to characterize the pattern of air-soil exchange and environmental fate. In general, the concentrations of NBFRs in soil were more prevalent than PBDEs and DPs, and accounted 95% of ∑HFRs. By and large, the concentrations of NBFRs and DPs were measured high in Kathmandu, while PBDEs level exceeded in Pokhara. Principal component analysis (PCA) study suggested contributions from commercial penta-, octa-, and deca-BDEs products and de-bromination of highly brominated PBDEs as the significant source of PBDEs. Likewise, low f anti ratio suggested DPs in soil might have originated from long-range atmospheric transport from remote areas, while high levels of decabromodiphenyl ethane (DBDPE) in soil were linked with the use of wide varieties of consumer products. The estimated fugacity fraction (ff) for individual HFR was quite lower (<0.05) than equilibrium value, suggesting that deposition and net transport from air to the soil is overwhelming. Soil-air partitioning study revealed neither octanol-air partition coefficient (K OA ) nor black carbon partition coefficient (K BC-A ) is an appropriate surrogate for soil organic matter (SOM), subsequently, absorption by

  5. Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.

    2015-12-01

    The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a

  6. Influence of long-term fertilization on soil physicochemical properties in a brown soil

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2018-01-01

    This study aims to explore the influence on soil physicochemical properties under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen and phosphate fertilizer).The results showed thatthe long-term application of chemical fertilizers reduced soil pH value, while the application of organic fertilizers increased pH value. Fertilization significantly increased the content of AHN, TN and SOM. Compared with the CK treatment and chemical fertilizer treatments, organic fertilizer treatments significantly increased the content of AP and TP. The content of AK and TK were no significant difference in different treatment.

  7. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could

  8. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure.

    PubMed

    Klimkowicz-Pawlas, Agnieszka; Smreczak, Bozena; Ukalska-Jaruga, Aleksandra

    2017-04-01

    The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 μg kg -1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (C org ) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg -1 ), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/C org or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.

  9. Characterizing potential water quality impacts from soils treated with dust suppressants.

    PubMed

    Beighley, R Edward; He, Yiping; Valdes, Julio R

    2009-01-01

    Two separate laboratory experiment series, surface runoff and steady-state seepage, were performed to determine if dust suppressant products can be applied to soils with an expected minimal to no negative impact on water quality. The experiments were designed to mimic arid field conditions and used two soils (clayey and sandy) and six different dust suppressants. The two experiments consisted of: (i) simulated rainfall (intensities of 18, 33, or 61 mm h(-1)) and associated runoff from soil trays at a surface slope of 33%; and (ii) steady-state, constant head seepage through soil columns. Both experiment series involved two product application scenarios and three application ages (i.e., to account for degradation effects) for a total of 126 surface runoff and 80 column experiments. One composite effluent sample was collected from each experiment and analyzed for pH, electrical conductivity, total suspended solids (TSS), total dissolved solids, dissolved oxygen, total organic carbon, nitrate, nitrite, and phosphate. Paired t tests at 1 and 5% levels of significance and project specific data quality objectives are used to compare water quality parameters from treated and untreated soils. Overall, the results from this laboratory scale study suggest that the studied dust suppressants have minimal potential for adverse impacts to selected water quality parameters. The primary impacts were increased TSS for two synthetic products from the surface runoff experiments on both soils. The increase in TSS was not expected based on previous studies and may be attributed to this study's focus on simulating real-world soil agitation/movement at an active construction site subjected to rough grading.

  10. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  11. Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Stefan; Swenson, Tami L.; Lau, Rebecca

    Exometabolomics enables analysis of metabolite utilization of low molecular weight organic substances by soil bacteria. Thus, environmentally-based defined media are needed to examine ecologically relevant patterns of substrate utilization. Here, we describe an approach for the construction of defined media using untargeted characterization of water soluble soil microbial metabolites from a saprolite soil collected from the Oak Ridge Field Research Center (ORFRC). To broadly characterize metabolites, both liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) were used. With this approach, 96 metabolites were identified, including amino acids, amino acid derivatives, sugars, sugar alcohols, mono- and di-carboxylic acids,more » nucleobases, and nucleosides. From this pool of metabolites, 25 were quantified. Molecular weight cut-off filtration determined the fraction of carbon accounted for by the quantified metabolites and revealed that these soil metabolites have an uneven quantitative distribution (e.g., trehalose accounted for 9.9% of the < 1 kDa fraction). This quantitative information was used to formulate two soil defined media (SDM), one containing 23 metabolites (SDM1) and one containing 46 (SDM2). To evaluate the viability of the SDM, we examined the growth of 30 phylogenetically diverse soil bacterial isolates from the ORFRC field site. The simpler SDM1 supported the growth of 13 isolates while the more complex SDM2 supported 15 isolates. To investigate SDM1 substrate preferences, one isolate, Pseudomonas corrugata strain FW300-N2E2 was selected for a time-series exometabolomics analysis. Interestingly, it was found that this organism preferred lower-abundance substrates such as guanine, glycine, proline and arginine and glucose and did not utilize the more abundant substrates maltose, mannitol, trehalose and uridine. These results demonstrate the viability and utility of using exometabolomics to construct a

  12. Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites

    PubMed Central

    Jenkins, Stefan; Swenson, Tami L.; Lau, Rebecca; Rocha, Andrea M.; Aaring, Alex; Hazen, Terry C.; Chakraborty, Romy; Northen, Trent R.

    2017-01-01

    Exometabolomics enables analysis of metabolite utilization of low molecular weight organic substances by soil bacteria. Environmentally-based defined media are needed to examine ecologically relevant patterns of substrate utilization. Here, we describe an approach for the construction of defined media using untargeted characterization of water soluble soil microbial metabolites from a saprolite soil collected from the Oak Ridge Field Research Center (ORFRC). To broadly characterize metabolites, both liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) were used. With this approach, 96 metabolites were identified, including amino acids, amino acid derivatives, sugars, sugar alcohols, mono- and di-carboxylic acids, nucleobases, and nucleosides. From this pool of metabolites, 25 were quantified. Molecular weight cut-off filtration determined the fraction of carbon accounted for by the quantified metabolites and revealed that these soil metabolites have an uneven quantitative distribution (e.g., trehalose accounted for 9.9% of the <1 kDa fraction). This quantitative information was used to formulate two soil defined media (SDM), one containing 23 metabolites (SDM1) and one containing 46 (SDM2). To evaluate the viability of the SDM, we examined the growth of 30 phylogenetically diverse soil bacterial isolates from the ORFRC field site. The simpler SDM1 supported the growth of 13 isolates while the more complex SDM2 supported 15 isolates. To investigate SDM1 substrate preferences, one isolate, Pseudomonas corrugata strain FW300-N2E2 was selected for a time-series exometabolomics analysis. Interestingly, it was found that this organism preferred lower-abundance substrates such as guanine, glycine, proline and arginine and glucose and did not utilize the more abundant substrates maltose, mannitol, trehalose and uridine. These results demonstrate the viability and utility of using exometabolomics to construct a tractable

  13. Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites

    DOE PAGES

    Jenkins, Stefan; Swenson, Tami L.; Lau, Rebecca; ...

    2017-12-22

    Exometabolomics enables analysis of metabolite utilization of low molecular weight organic substances by soil bacteria. Thus, environmentally-based defined media are needed to examine ecologically relevant patterns of substrate utilization. Here, we describe an approach for the construction of defined media using untargeted characterization of water soluble soil microbial metabolites from a saprolite soil collected from the Oak Ridge Field Research Center (ORFRC). To broadly characterize metabolites, both liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) were used. With this approach, 96 metabolites were identified, including amino acids, amino acid derivatives, sugars, sugar alcohols, mono- and di-carboxylic acids,more » nucleobases, and nucleosides. From this pool of metabolites, 25 were quantified. Molecular weight cut-off filtration determined the fraction of carbon accounted for by the quantified metabolites and revealed that these soil metabolites have an uneven quantitative distribution (e.g., trehalose accounted for 9.9% of the < 1 kDa fraction). This quantitative information was used to formulate two soil defined media (SDM), one containing 23 metabolites (SDM1) and one containing 46 (SDM2). To evaluate the viability of the SDM, we examined the growth of 30 phylogenetically diverse soil bacterial isolates from the ORFRC field site. The simpler SDM1 supported the growth of 13 isolates while the more complex SDM2 supported 15 isolates. To investigate SDM1 substrate preferences, one isolate, Pseudomonas corrugata strain FW300-N2E2 was selected for a time-series exometabolomics analysis. Interestingly, it was found that this organism preferred lower-abundance substrates such as guanine, glycine, proline and arginine and glucose and did not utilize the more abundant substrates maltose, mannitol, trehalose and uridine. These results demonstrate the viability and utility of using exometabolomics to construct a

  14. Case study of microarthropod communities to assess soil quality in different managed vineyards

    NASA Astrophysics Data System (ADS)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-07-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly sought, and the determination of community structures of edaphic fauna can represent an efficient tool. In the area of Langhe (Piedmont, Italy), eight vineyards characterized for physical and chemical properties (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate) were selected. We evaluated the effect of two types of crop management, organic and integrated pest management (IPM), on abundance and biodiversity of microarthropods living at the soil surface. Soil sampling was carried out in winter 2011 and spring 2012. All specimens were counted and determined up to the order level. The biodiversity analysis was performed using ecological indexes (taxa richness, dominance, Shannon-Wiener, Buzas and Gibson's evenness, Margalef, equitability, Berger-Parker), and the biological soil quality was assessed with the BSQ-ar index. The mesofauna abundance was affected by both the type of management and sampling time. On the whole, a higher abundance was in organic vineyards (N = 1981) than in IPM ones (N = 1062). The analysis performed by ecological indexes showed quite a high level of biodiversity in this environment, particularly in May 2012. Furthermore, the BSQ-ar values registered were similar to those obtained in preserved soils.

  15. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  16. Evaluation on expansive performance of the expansive soil using electrical responses

    NASA Astrophysics Data System (ADS)

    Chu, Ya; Liu, Songyu; Bate, Bate; Xu, Lei

    2018-01-01

    Light structures, such as highways and railroads, built on expansive soils are prone to damages from the swelling of their underlain soil layers. Considerable amount of research has been conducted to characterize the swelling properties of expansive soils. Current swell characterization models, however, are limited by lack of standardized tests. Electrical methods are non-destructive, and are faster and less expensive than the traditional geotechnical methods. Therefore, geo-electrical methods are attractive for defining soil characteristics, including the swelling behavior. In this study, comprehensive laboratory experiments were undertaken to measure the free swelling and electrical resistivity of the mixtures of commercial kaolinite and bentonite. The electrical conductivity of kaolinite-bentonite mixtures was measured by a self-developed four-electrode soil resistivity box. Increasing the free swelling rate of the kaolinite-bentonite mixtures (0.72 to 1 of porosity of soils samples) led to a reduction in the electrical resistivity and an increase in conductivity. A unique relationship between free swelling rate and normalized surface conductivity was constructed for expensive soils by eliminating influences of porosity and m exponent. Therefore, electrical response measurement can be used to characterize the free swelling rate of expensive soils.

  17. Critical State of Sand Matrix Soils

    PubMed Central

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  18. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    PubMed

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-value<0.01; R IRB,CIT  = -0.835, p-value<0.05; R FEX,CIT  = -0.759, p-value<0.05) and by the reverse relationships between the K F values and soil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Viscarra Rossel, R. A.; Bui, E. N.; de Caritat, P.; McKenzie, N. J.

    2010-12-01

    Iron (Fe) oxide mineralogy in most Australian soils is poorly characterized, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential, moisture, and temperature in the soil environment. The strong pigmenting effect of Fe oxides gives most soils their color, which is largely a reflection of the soil's Fe mineralogy. Visible-near-infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil, and the visible range can be used to derive tristimuli soil color information. The aims of this paper are (1) to measure the abundance of hematite and goethite in Australian soils from their vis-NIR spectra, (2) to compare these results to measurements of soil color, and (3) to describe the spatial variability of hematite, goethite, and soil color and map their distribution across Australia. We measured the spectra of 4606 surface soil samples from across Australia using a vis-NIR spectrometer with a wavelength range of 350-2500 nm. We determined the Fe oxide abundance for each sample using the diagnostic absorption features of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalized iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalized across Australia with its spatial uncertainty using sequential indicator simulation, which resulted in a map of the probability of the occurrence of hematite and goethite. We also derived soil RGB color from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB color values were made into a composite true color image and were also converted to Munsell hue, value, and chroma. These color maps were compared to the map of the NIODI, and both were used to interpret our results. The work presented here was validated by randomly splitting the data into training and test data sets, as well as by comparing

  20. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil.

    PubMed

    Ren, Jie; Wang, Fenghua; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2017-12-01

    To investigate hydrochar as a soil amendment for the immobilization of Cd, the characteristics of hydrochars (HCs) under three temperatures and residence times, were studied, with a particular interest in soil properties, as well as the speciation, availability and plant uptake of Cd. HCs were obtained by a hydrothermal carbonization (HTC) reaction of sewage sludge (SS). Based on the study of HC properties, we found that HCs present weak acidity with relatively high ash content and low electrical conductivity (EC) values. The addition of HCs to soil decreased soil pH and EC values but increased the abundance of soil microorganism. HCs also promoted the transformation of Cd from unstable to stable speciation and can decrease the content of phyto-available Cd (optimum condition and efficiency: A13, 2 15.38%), which restrained cabbage from assimilating Cd from soil both the aboveground (optimum condition and efficiency: A35, 52.29%) and underground (optimum condition and efficiency: C15, 57.53%) parts of it. Copyright © 2017 Elsevier Ltd. All rights reserved.