Sample records for valve actuation hva

  1. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  2. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  3. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  4. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  5. Shape Memory Actuated Normally Open Permanent Isolation Valve

    NASA Technical Reports Server (NTRS)

    Ramspacher, Daniel J. (Inventor); Bacha, Caitlin E. (Inventor)

    2017-01-01

    A valve assembly for an in-space propulsion system includes an inlet tube, an outlet tube, a valve body coupling the inlet tube to the outlet tube and defining a propellant flow path, a valve stem assembly disposed within the valve body, an actuator body coupled to the valve body, the valve stem assembly extending from an interior of the valve body to an interior of the actuator body, and an actuator assembly disposed within the actuator body and coupled to the valve stem assembly, the actuator assembly including a shape memory actuator member that when heated to a transition temperature is configured to enable the valve stem assembly to engage the outlet tube and seal the propellant flow path.

  6. Dielectric elastomer actuators used for pneumatic valve technology

    NASA Astrophysics Data System (ADS)

    Giousouf, Metin; Kovacs, Gabor

    2013-10-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.

  7. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  8. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  9. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  10. Torque-actuated valves for microfluidics.

    PubMed

    Weibel, Douglas B; Kruithof, Maarten; Potenta, Scott; Sia, Samuel K; Lee, Andrew; Whitesides, George M

    2005-08-01

    This paper describes torque-actuated valves for controlling the flow of fluids in microfluidic channels. The valves consist of small machine screws (> or =500 microm) embedded in a layer of polyurethane cast above microfluidic channels fabricated in poly(dimethylsiloxane) (PDMS). The polyurethane is cured photochemically with the screws in place; on curing, it bonds to the surrounding layer of PDMS and forms a stiff layer that retains an impression of the threads of the screws. The valves were separated from the ceiling of microfluidic channels by a layer of PDMS and were integrated into channels using a simple procedure compatible with soft lithography and rapid prototyping. Turning the screws actuated the valves by collapsing the PDMS layer between the valve and channel, controlling the flow of fluids in the underlying channels. These valves have the useful characteristic that they do not require power to retain their setting (on/off). They also allow settings between "on" and "off" and can be integrated into portable, disposable microfluidic devices for carrying out sandwich immunoassays.

  11. Compact valve actuation mechanism

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A valve actuation device. The device may include a free floating valve bridge movably supported within a cavity in the engine housing. The bridge may be provided with a cavity and an orifice arrangement for pumping gases entrained with lubricating fluid toward the piston stems as the bridge reciprocates back and forth. The device may also include a rocker arm that has a U-shaped cross-sectional shape for receiving at least a portion of the valve bridge, valve stem valve spring and spring retainer therein. The rocker arm may be provided with lubrication passages for directing lubrication to the point wherein it is pivotally affixed to the engine housing.

  12. Variable Valve Actuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation ismore » a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  13. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  14. Engine including hydraulically actuated valvetrain and method of valve overlap control

    DOEpatents

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  15. Dual-latching solenoid-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron J. (Inventor); Yang, Jeff (Inventor)

    1994-01-01

    A tube-type shutoff valve is electrically positioned to its open or closed position by a concentric electromagnetic solenoid. The valve is dual latching in that the armature of the solenoid maintains the sliding tube of the valve in an open or closed position by means of permanent magnets which are effective when current is not supplied to the solenoid. The valve may also be actuated manually.

  16. One-shot valve may be remotely actuated

    NASA Technical Reports Server (NTRS)

    Kami, S.

    1965-01-01

    One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.

  17. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W [Chillicothe, IL

    2004-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  18. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2005-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  19. Design and development of a large diameter high pressure fast acting propulsion valve and valve actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  20. Design and Development of a Large Diameter, High Pressure, Fast Acting Propulsion Valve and Valve Actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  1. Optothermally actuated capillary burst valve

    NASA Astrophysics Data System (ADS)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  2. Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Moore, W. I.; Lundy, F. E.

    1981-01-01

    Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.

  3. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  4. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  5. Line Fluid Actuated Valve Development Program. [for application on the space shuttle

    NASA Technical Reports Server (NTRS)

    Lynch, R. A.

    1975-01-01

    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.

  6. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  7. Valve, explosive actuated, normally open, pyronetics model 1399

    NASA Technical Reports Server (NTRS)

    Avalos, E.

    1971-01-01

    Results of the tests to evaluate open valve, Model 1399 are reported for the the following tests: proof pressure leakage, actuation, disassembly, and burst pressure. It is concluded that the tests demonstrate the soundness of the structural integrity of the valve.

  8. Fuel and oxidizer valve assembly employs single solenoid actuator

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Valve assembly simultaneously starts or stops the flow of oxidizer and fuel from separate inlet channels to reaction control motors. The assembly combines an oxidizer shutoff valve and a fuel shutoff valve which are mechanically linked and operated by a single high-speed solenoid actuator.

  9. A numerical insight into elastomer normally closed micro valve actuation with cohesive interfacial cracking modelling

    NASA Astrophysics Data System (ADS)

    Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi

    2018-05-01

    Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.

  10. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    NASA Technical Reports Server (NTRS)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  11. Modular microfluidic valve structures based on reversible thermoresponsive ionogel actuators.

    PubMed

    Benito-Lopez, Fernando; Antoñana-Díez, Marta; Curto, Vincenzo F; Diamond, Dermot; Castro-López, Vanessa

    2014-09-21

    This paper reports for the first time the use of a cross-linked poly(N-isopropylacrylamide) ionogel encapsulating the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulphate as a thermoresponsive and modular microfluidic valve. The ionogel presents superior actuation behaviour to its equivalent hydrogel. Ionogel swelling and shrinking mechanisms and kinetics are investigated as well as the performance of the ionogel when integrated as a valve in a microfluidic device. The modular microfluidic valve demonstrates fully a reversible on-off behaviour without failure for up to eight actuation cycles and a pressure resistance of 1100 mbar.

  12. Real-Time Prognostics of a Rotary Valve Actuator

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  13. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.

    PubMed

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-03-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.

  14. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips

    PubMed Central

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-01-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736

  15. Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane

    NASA Astrophysics Data System (ADS)

    Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan

    2017-08-01

    Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.

  16. Normally-Closed Zero-Leak Valve with Magnetostrictive Actuator

    NASA Technical Reports Server (NTRS)

    Ramspacher, Daniel J. (Inventor); Richard, James A. (Inventor)

    2017-01-01

    A non-pyrotechnic, normally-closed, zero-leak valve is a replacement for the pyrovalve used for both in-space and launch vehicle applications. The valve utilizes a magnetostrictive alloy for actuation, rather than pyrotechnic charges. The alloy, such as Terfenol-D, experiences magnetostriction, i.e. a gross elongation, when exposed to a magnetic field. This elongation fractures a parent metal seal, allowing fluid flow through the valve. The required magnetic field is generated by redundant coils that are isolated from the working fluid.

  17. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  18. Valve actuator for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T.

    1987-06-16

    A valve actuating mechanism is described for an overhead valve and overhead cam type internal combustion engine in which the camshaft is positioned above and between the valve and a cam follower seat member in a cylinder head of the engine. The cam follower seat member is threadedly mounted in the cylinder head and has a semi-spherical recess facing upwardly. A cam follower has an adjustable bolt threadedly received in one end of the cam follower. The adjustable bolt has a spherical fulcrum engaging the semispherical recess of the seat member. The cam follower also has a downwardly facing meansmore » on the other end for engaging the valve and an upwardly facing slipper face for sliding engagement with a cam on the camshaft. The cam is adapted to rotate across the slipper face in the direction of the valve. The slipper face has a surface shape for engaging the cam at the start of valve-lifting movement of the cam follower at a point through which a line tangent to the slipper face is substantially parallel to a line through contact points between the cam follower. The seat member and valve for minimizing the lateral forces are imposed on the cam follower by the cam at the start of the valve-lifting movement.« less

  19. Evaluation test program, valve, explosive actuated, normally closed Pyronetics model 1400

    NASA Technical Reports Server (NTRS)

    Avalos, E.

    1971-01-01

    Evaluation tests of the explosive actuated normally closed valves used to control and isolate hydrazine flow in the TOPS spacecraft, are presented. The malfunctions, modifications, service life, and reliability of the valve are also outlined.

  20. Cylinder To Cylinder Balancing Using Intake Valve Actuation

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Kilkenny, Jonathan P.

    2005-01-18

    A method and apparatus for balancing a combustion phasing between a plurality of cylinders located in an engine. The method and apparatus includes a determining a combustion timing in each cylinder, establishing a baseline parameter for a desired combustion timing, and varying actuation of at least one of a plurality of intake valves, each intake valve being in fluid communication with a corresponding cylinder, such that the combustion timing in each cylinder is substantially equal to the desired combustion timing.

  1. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  2. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MISKA, C.R.

    1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  3. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN KATWIJK, C.

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  4. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN KATWIJK, C.

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  5. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization broughtmore » a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.« less

  6. Magnetorheological valve based actuator for improvement of passively controlled turbocharger system

    NASA Astrophysics Data System (ADS)

    Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.

    2016-03-01

    Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.

  7. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications

    PubMed Central

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B.

    2017-01-01

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench. PMID:29258270

  8. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    PubMed

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  9. Plasma HVA in psychiatric patients: longitudinal studies.

    PubMed

    Javaid, J I; Sharma, R P; Janicak, P G; Davis, J M

    1990-01-01

    Plasma homovanillic acid (pHVA) was measured in 40 inpatients (25 schizophrenic and 15 nonschizophrenic patients) who underwent up to 3 weeks of drug washout. Schizophrenic patients were then treated with trifluoperazine for 4 weeks, and weekly behavioral and pHVA measures were obtained. The baseline pHVA had no relationship to age, sex, washout period, diagnosis, or behavioral rating scores. In schizophrenic patients, the baseline pHVA did not differ significantly from any value obtained during 4 weeks of treatment. Although there was significant improvement in clinical symptoms, this was not related to changes in pHVA. Further, changes in any of the four Brief Psychiatric Rating Scale (BPRS) factors (i.e., positive symptoms, negative symptoms, hostility/suspicion, or anxiety/depression) were not correlated with changes in pHVA. Although other studies have reported a positive correlation between pHVA and psychotic symptoms, results of this study suggest that any observed relationship between pHVA and psychosis must be carefully interpreted.

  10. In-plane cost-effective magnetically actuated valve for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Pugliese, Marco; Ferrara, Francesco; Bramanti, Alessandro Paolo; Gigli, Giuseppe; Maiorano, Vincenzo

    2017-04-01

    We present a new in-plane magnetically actuated microfluidic valve. Its simple design includes a circular area joining two channels lying on the same plane. The area is parted by a septum lying on and adhering to a magneto-active polymeric ‘floor’ membrane, keeping the channels normally separated (valve closed). Under the action of a magnetic field, the membrane collapses, letting the liquid flow below the septum (valve open). The valve was extensively characterized experimentally, and modeled and optimized theoretically. The growing interest in lab on chips, especially for diagnostics and precision medicine, is driving researchers towards smart, efficient and low cost solutions to the management of biological samples. In this context, the valve developed in this work represents a useful building-block for microfluidic applications requiring precise flow control, its main features being easy and rapid manufacturing, biocompatibility and low cost.

  11. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  12. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    NASA Astrophysics Data System (ADS)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  13. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  14. Drive piston assembly for a valve actuator assembly

    DOEpatents

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  15. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  16. Combined effects of hydrazine exposure and endurance testing on solenoid-actuated valve performance

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1974-01-01

    Results are presented from a test program which was conducted to assess the capability of various solenoid-actuated valve design concepts to provide performance characteristics commensurate with long-duration (ten-year) missions to explore the outer planets. The valves were installed in a hydrazine flow test setup and periodically cycled during a nine-month test period under test conditions comparable to anticipated mission operating conditions. In situ valve performance was periodically determined, and leakage was continuously monitored.

  17. A high performance normally closed solenoid-actuated cold valve.

    PubMed

    Taminiau, I A J; Benningshof, O W B; Jochemsen, R

    2009-08-01

    An electromagnetically driven normally closed valve for liquid helium is presented, which is meant to regulate the input flow to a 1 K pot. An earlier design is modified to be normally closed (not actuated) and tuned for durability and reliability. A new feature is presented which prevents seat deformation at room temperature and provides comfort and durability for intensive use.

  18. Electrical isolation and characteristics of permanent magnet-actuated valves for PDMS microfluidics.

    PubMed

    Chen, Chang-Yu; Chen, Chang-Hung; Tu, Ting-Yuan; Lin, Cheng-Ming; Wo, Andrew M

    2011-02-21

    This paper presents a magnetically driven valve via a permanent magnet pressing a spacer against deformable polydimethylsiloxane (PDMS) to fully close a microchannel. Its ability for electrical isolation, time response, and resistance to backpressure are interrogated. Simulation of the valve closing process was commenced along with experimental verification. Effects of PDMS thickness, and dimension and aspect ratio of microchannels were characterized. Up to 10 GΩ electrical isolation was demonstrated, as well as 50-70 ms valve response and ∼200 kPa resistible pressure. On-demand actuation for arbitrary flow patterns further quantifies its utility. With advantages of simple fabrication, flexible valving location, and no external power requirement, the on/off valve could be leveraged for proof-of-concept microfluidic devices and other applications.

  19. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  20. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  1. Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator.

    PubMed

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M; Suits, Arthur G

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  2. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan

    2014-11-15

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercialmore » fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.« less

  3. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  4. Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation.

    PubMed

    Deng, Wenxiang; Yao, Jianyong; Ma, Dawei

    2017-09-01

    This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Fast acting check valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1979-01-01

    A check valve which closes more rapidly to prevent wearing of the valve seat and of the valve member that seals thereagainst, including a solenoid or other actuator that aids the normal spring to quickly close the valve at approximately the time when downpath fluid flow would stop, the actuator then being deenergized. The control circuit that operates the actuator can include a pair of pressure sensors sensing pressure both upstream and downstream from the valve seat. Where the valve is utilized to control flow to or from a piston pump, energization of the actuator can be controlled by sensing when the pump piston reaches its extreme of travel.

  6. Bellows sealed plug valve

    DOEpatents

    Dukas, Jr., Stephen J.

    1990-01-01

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  7. Vct system having closed loop control employing spool valve actuated by a stepper motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quin, S.B. Jr.; Siemon, E.C.

    1993-06-15

    An internal combustion engine is described comprising: a crankshaft, the crankshaft being rotable about an axis; a cam shaft, the cam shaft being rotatable about a second axis, the second axis being parallel to the axis, the cam shaft being subject to torque reversals during the rotation thereof; a vane, the vane having at least one lobe, the vane being attached to the cam shaft, being rotatable with the cam shaft and being non-oscillatable with respect to the cam shaft; a housing, the housing being rotatable with the cam shaft and being oscillatable with respect to the cam shaft, themore » housing having at least one recess, the recess receiving the lobe, the lobe being oscillatable within the recess; rotary movement transmitting means for transmitting rotary movement from the crankshaft to the housing; actuating means for varying the position of the housing relative to the cam shaft in reaction to torque reversals in the cam shaft, the actuating means comprising a stepper motor, a lead screw and a proportional spool valve, the position of the spool valve being controlled by the position of the lead screw driven by the stepper motor, the actuating means also delivering hydraulic fluid to the vane; and processing means for controlling the position of the actuating means.« less

  8. Remote actuated valve implant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  9. Explosive-actuated valve design concept that eliminates blow-by. [for the TOPS spacecraft trajectory correction propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1974-01-01

    A method of evaluating the normally open normally closed, explosive actuated valves that were selected for use in the trajectory correction propulsion subsystem of the Thermoelectric Outer Planet Spacecraft (TOPS) program is presented. The design philosophy which determined the requirements for highly reliable valves that could provide the performance capability during long duration (10 year) missions to the outer planets is discussed. The techniques that were used to fabricate the valves and manifold ten valves into an assembly with the capability of five propellant-flow initiation/isolation sequences are described. The test program, which was conducted to verify valve design requirements, is outlined and the more significant results are shown.

  10. Electro-Mechanical Coaxial Valve

    NASA Technical Reports Server (NTRS)

    Patterson, Paul R (Inventor)

    2004-01-01

    Coaxial valves usually contain only one moving part. It has not been easy, then, to provide for electric motor actuation. Many actuators being proposed involve designs which lead to bulky packages. The key facing those improving coaxial valves is the provision of suitable linear actuation. The valve herein indudes a valve housing with a flow channel there-through. Arranged in the flow channel is a closing body. In alignment with the closing body is a ball screw actuator which includes a ball nut and a cylindrical screw. The ball nut sounds a threaded portion of the cylindrical screw. The cylindrical screw is provided with a passageway there-through through which fluid flows. The cylindrical screw is disposed in the flow channel to become a control tube adapted to move toward and away from the valve seat. To rotate the ball nut an actuating drive is employed driven by a stepper motor.

  11. Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui

    2016-02-01

    The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.

  12. Evolution of plasma homovanillic acid (HVA) in chronic schizophrenic patients treated with haloperidol.

    PubMed

    Galinowski, A; Poirier, M F; Aymard, N; Leyris, A; Beauverie, P; Bourdel, M C; Loo, H

    1998-06-01

    In a 4-week study of 14 drug-free schizophrenic patients (according to DSM-III-R), free and conjugated fractions of plasma homovanillic acid (pHVA) were repeatedly measured. Free HVA levels decreased during the first 2 h of haloperidol intake (P < 0.03). Conjugated HVA levels slowly decreased during the following weeks (P < 0.05), while free HVA levels remained stable. After 4 weeks, free HVA levels remained unchanged 2 h after morning haloperidol intake, but conjugated HVA levels tended to increase. In haloperidol responders, at baseline the free/total HVA ratio was significantly higher than that in non-responders (P < 0.01). Tolerant patients, i.e. those whose post-treatment free HVA levels decreased below pre-treatment levels, were not found to respond better to haloperidol than non-tolerant patients. The balance between free and conjugated pHVA may be a better reflection of the action of haloperidol than free pHVA levels and it may be of prognostic value in terms of drug response.

  13. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  14. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  15. Valve system incorporating single failure protection logic

    DOEpatents

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  16. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  17. A biomodal distribution of plasma HVA/MHPG in the psychoses.

    PubMed

    Ottong, S E; Garver, D L

    1997-03-24

    In an attempt to estimate dopamine production in psychotic patients, pHVA and pMHPG were assessed from morning blood samples of fasting, neuroleptic-free patients. The (pHVA/pMHPG) ratio was bimodally distributed. The upper mode delineated a cluster of psychotics with excess central dopamine activity. Despite a comparable duration of illness, the high ratio cluster had an earlier age of onset and a more complete subacute response during neuroleptic treatment than did lower ratio patients. Comparisons were made between these clusters and clusters defined by the distribution of pHVA alone. The data suggest a disorder of feedback control of central dopamine metabolism in the high pHVA/pMHPG cluster.

  18. Slow opening valve. [valve design for shuttle portable oxygen system

    NASA Technical Reports Server (NTRS)

    Drapeau, D. F. (Inventor)

    1984-01-01

    A valve control is described having a valve body with an actuator stem and a rotating handle connected to the actuator stem by a differential drive mechanism which, during uniform movement of the handle in one direction, initially opens the valve at a relatively slow rate and, thereafter, complete the valve movement at a substantially faster rate. A series of stop rings are received about the body in frictional abutting relationship and serially rotated by the handle to uniformly resist handle movement independently of the extent of handle movement.

  19. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  20. Hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  1. Miniaturised electrically actuated high pressure injection valve for portable capillary liquid chromatography.

    PubMed

    Li, Yan; Pace, Kirsten; Nesterenko, Pavel N; Paull, Brett; Stanley, Roger; Macka, Mirek

    2018-04-01

    A miniaturised high pressure 6-port injection valve has been designed and evaluated for its performance in order to facilitate the development of portable capillary high performance liquid chromatography (HPLC). The electrically actuated valve features a very small size (65 × 19 × 19mm) and light weight (33g), and therefore can be easily integrated in a miniaturised modular capillary LC system suited for portable field analysis. The internal volume of the injection valve was determined as 98 nL. The novel conical shape of the stator and rotor and the spring-loaded rotor performed well up to 32MPa (4641psi), the maximum operating pressure investigated. Suitability for application was demonstrated using a miniaturised capillary LC system applied to the chromatographic separation of a mixture of biogenic amines and common cations. The RSD (relative standard deviation) values of retention times and peak areas of 6 successive runs were 0.5-0.7% and 1.8-2.8% for the separation of biogenic amines, respectively, and 0.1-0.2% and 2.1-3.0% for the separation of cations, respectively. This performance was comparable with bench-top HPLC systems thus demonstrating the applicability of the valve for use in portable and miniaturised capillary HPLC systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microfluidic Valves Made From Polymerized Polyethylene Glycol Diacrylate

    PubMed Central

    Rogers, Chad I.; Oxborrow, Joseph B.; Anderson, Ryan R.; Tsai, Long-Fang; Nordin, Gregory P.; Woolley, Adam T.

    2013-01-01

    Pneumatically actuated, non-elastomeric membrane valves fabricated from polymerized polyethylene glycol diacrylate (poly-PEGDA) have been characterized for temporal response, valve closure, and long-term durability. A ~100 ms valve opening time and a ~20 ms closure time offer valve operation as fast as 8 Hz with potential for further improvement. Comparison of circular and rectangular valve geometries indicates that the surface area for membrane interaction in the valve region is important for valve performance. After initial fabrication, the fluid pressure required to open a closed circular valve is ~50 kPa higher than the control pressure holding the valve closed. However, after ~1000 actuations to reconfigure polymer chains and increase elasticity in the membrane, the fluid pressure required to open a valve becomes the same as the control pressure holding the valve closed. After these initial conditioning actuations, poly-PEGDA valves show considerable robustness with no change in effective operation after 115,000 actuations. Such valves constructed from non-adsorptive poly-PEGDA could also find use as pumps, for application in small volume assays interfaced with biosensors or impedance detection, for example. PMID:24357897

  3. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  4. Conical Seat Shut-Off Valve

    NASA Technical Reports Server (NTRS)

    Farner, Bruce

    2013-01-01

    A moveable valve for controlling flow of a pressurized working fluid was designed. This valve consists of a hollow, moveable floating piston pressed against a stationary solid seat, and can use the working fluid to seal the valve. This open/closed, novel valve is able to use metal-to-metal seats, without requiring seat sliding action; therefore there are no associated damaging effects. During use, existing standard high-pressure ball valve seats tend to become damaged during rotation of the ball. Additionally, forces acting on the ball and stem create large amounts of friction. The combination of these effects can lead to system failure. In an attempt to reduce damaging effects and seat failures, soft seats in the ball valve have been eliminated; however, the sliding action of the ball across the highly loaded seat still tends to scratch the seat, causing failure. Also, in order to operate, ball valves require the use of large actuators. Positioning the metal-to-metal seats requires more loading, which tends to increase the size of the required actuator, and can also lead to other failures in other areas such as the stem and bearing mechanisms, thus increasing cost and maintenance. This novel non-sliding seat surface valve allows metal-to-metal seats without the damaging effects that can lead to failure, and enables large seating forces without damaging the valve. Additionally, this valve design, even when used with large, high-pressure applications, does not require large conventional valve actuators and the valve stem itself is eliminated. Actuation is achieved with the use of a small, simple solenoid valve. This design also eliminates the need for many seals used with existing ball valve and globe valve designs, which commonly cause failure, too. This, coupled with the elimination of the valve stem and conventional valve actuator, improves valve reliability and seat life. Other mechanical liftoff seats have been designed; however, they have only resulted in

  5. Long life valve design concepts

    NASA Technical Reports Server (NTRS)

    Jones, J. R.; Hall, A. H., Jr.

    1975-01-01

    Valve concept evaluation, final candidate selection, design, manufacture, and demonstration testing of a pneumatically actuated 10-inch hybrid poppet butterfly shutoff valve are presented. Conclusions and recommendations regarding those valve characteristics and features which would serve to guide in the formulation of future valve procurements are discussed. The pertinent design goals were temperature range of plus 200 to minus 423 F, valve inlet pressure 35 psia, actuation pressure 750 psia, main seal leakage 3 x 0.00001 sccs at 35 psia valve inlet pressure, and a storage and operating life of 10 years. The valve was designed to be compatible with RP-1, propane, LH2, LO2, He, and N2.

  6. Zero-leak valve

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F., Jr.

    1980-01-01

    Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.

  7. Electromechanical rotary actuator

    NASA Technical Reports Server (NTRS)

    Smith, S. P.; Mcmahon, W. J.

    1995-01-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  8. Electromechanical rotary actuator

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; McMahon, W. J.

    1995-05-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  9. Clinical ratings and plasma HVA during cocaine abstinence.

    PubMed

    Martin, S D; Yeragani, V K; Lodhi, R; Galloway, M P

    1989-08-01

    Six patients were evaluated over a 21-day period during inpatient recovery from chronic repeated cocaine use. Serial evaluations of Hamilton depression rating, cocaine craving, plasma homovanillic acid (pHVA), and plasma 3-methoxy-4-hydroxyphenylethyleneglycol (pMHPG) concentrations were determined. There was a distinct increase in cocaine craving between 1 and 2 weeks after the last cocaine use. Levels of pHVA also increased at the time of heightened craving. The data provide preliminary evidence to suggest that changes in cocaine craving during abstinence are positively correlated with changes in dopamine turnover.

  10. Dual-Latching, Solenoid-Actuated Tube Valve

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron J.

    1993-01-01

    Tube-type shutoff valve electrically positioned to open or closed state by concentric solenoid. Solenoid dual latching: it holds position until changed electrically or manually. In tube valve, central tube slides axially, closing off flow when held against seat and allowing flow when backed away from seat. Simple to balance pressure on seal between seat and sharp edge of tube. With pressure-balanced seal, only small force needed to hold valve in position, regardless of pressure acting on valve.

  11. Evolution of plasma homovanillic acid (HVA) levels during treatment in schizo-affective disorder.

    PubMed

    Galinowski, A; Castelnau, C; Spreux-Varoquaux, O; Bourdel, M C; Olie, J P; Loo, H; Poirier, M F

    2000-11-01

    1. Plasma Homovanillic Acid (p HVA) levels were measured by HPLC (high performance liquid chromatography) in 5 schizo-affective depressed patients receiving a standardized treatment. (lithium, chlorpromazine and clomipramine) during 4 weeks. 2. Four patients were pretreated, without a washout period. 3. No significant difference was observed between patients and normal controls at baseline. Under treatment, pHVA levels increased (p<0.02) with clinical improvement (MADRS and PANSS scores). 4. Although effects of medications prior to the study period were not controlled, these findings suggest that depressed schizo-affective patients may have normal pHVA levels that increase with clinical improvement, unlike schizophrenic patients whose increased pHVA concentrations decline with neuroleptic treatment.

  12. Plasma HVA levels following debrisoquine administration do not reflect cerebral dopamine loss in early Parkinson's disease.

    PubMed

    Rose, S; Hindmarsh, J G; Steiger, M J; Bhatt, M; Quinn, N P; Jenner, P; Marsden, C D

    1994-06-01

    Plasma levels of homovanillic acid (pHVA) following debrisoquine (DBQ) administration may be indicative of central dopaminergic activity. The effect of DBQ (10-20 mg) administration on pHVA in young healthy volunteers was studied to establish a protocol for use in de novo patients with Parkinson's disease. Subsequently, pHVA in de novo patients with Parkinson's disease were measured and compared to young healthy volunteers. Following DBQ (10 mg) administration to healthy volunteers, pHVA fell with time to a maximum of 62% of control values at 6 h. The decrease in pHVA was not affected by loading with DBQ (10 mg) 10 h previously (pHVA: 67.6 +/- 5.8% of preDBQ levels) or increasing the dose to 20 mg (56.1 +/- 11.8% of preDBQ levels) compared to a single 10 mg dose of debrisoquine (66.5 +/- 4.5% of preDBQ levels). pHVA was reduced in both de novo patients with Parkinson's disease and in healthy volunteers following DBQ (10 mg) administration. However, there was no difference in pHVA before or after DBQ administration when comparing the two groups. These results suggest that, following DBQ administration, pHVA does not reflect dopamine neuronal loss in de novo patients with Parkinson's disease, so it is unlikely to detect the disease before the clinical symptoms manifest themselves.

  13. Larger-Stroke Piezoelectrically Actuated Microvalve

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be

  14. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  15. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.

    PubMed

    Toley, Bhushan J; Wang, Jessica A; Gupta, Mayuri; Buser, Joshua R; Lafleur, Lisa K; Lutz, Barry R; Fu, Elain; Yager, Paul

    2015-03-21

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically after a) a certain period of time, or b) the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50 s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods - both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device.

  16. Non-Pyrotechnic Zero-Leak Normally Closed Valve

    NASA Technical Reports Server (NTRS)

    Gillespie, Rebecca

    2010-01-01

    This valve is designed to create a zero-leak seal in a liquid propulsion system that is a functional replacement for the normally closed pyrovalve. Unlike pyrovalves, Nitinol is actuated by simply heating the material to a certain temperature, called the transition temperature. Like a pyrovalve, before actuation, the upstream and downstream sections are separated from one another and from the external environment by closed welded seals. Also like pyrovalves, after actuation, the propellant or pressurant gas can flow without a significant pressure drop but are still separated from the external environment by a closed welded seal. During manufacture, a Nitinol bar is compressed to 93 percent of its original length and fitted tightly into the valve. During operation, the valve is heated until the Nitinol reaches the transition temperature of 95 C; the Nitinol "remembers" its previous longer shape with a very large recovery force causing it to expand and break the titanium parent metal seal to allow flow. Once open, the valve forever remains open. The first prototype valve was designed for high pressure [5,000 psi (=34.5 MPa)] and low flow, typical requirements for pressurant gas valves in liquid propulsion systems. It is possible to modify the dimensions to make low-pressure models or high-flow models, for use downstream of the propellant tanks. This design is simpler, lower risk, and less expensive than the pyrovalve. Although the valve must be in a thermally controlled state (kept below 80 C) to prevent premature actuation, the pyrovalves and electrically actuated initiators have far more taxing handling requirements.

  17. Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Mehmed, O.; Lorenzo, C. F.

    1980-01-01

    An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made.

  18. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices

    PubMed Central

    Toley, Bhushan J.; Wang, Jessica A.; Gupta, Mayuri; Buser, Joshua R.; Lafleur, Lisa K.; Lutz, Barry R.; Fu, Elain; Yager, Paul

    2015-01-01

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically a) after a certain period of time, or b) after the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods – both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device. PMID:25606810

  19. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  20. Overflow control valve

    DOEpatents

    Hundal, Rolv; Kessinger, Boyd A.; Parlak, Edward A.

    1984-07-24

    An overflow control valve for use in a liquid sodium coolant pump tank which valve can be extended to create a seal with the pump tank wall or retracted to break the seal thereby accommodating valve removal. An actuating shaft which controls valve disc position also has cams which bear on roller surfaces to force retraction of a sliding cylinder against spring tension to retract the cylinder from sealing contact with the pump tank.

  1. Transient chaos and crisis phenomena in butterfly valves driven by solenoid actuators

    NASA Astrophysics Data System (ADS)

    Naseradinmousavi, Peiman; Nataraj, C.

    2012-11-01

    Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called "smart valve" systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.

  2. Design and modeling of new suspension system using direct drive servo-valve system actuated by piezostack actuator

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Kim, Wan Ho; Choi, Seung-Bok

    2016-04-01

    This paper proposes a new type of a direct-drive valve (DDV) suspension system for vehicle controlled by the piezostack actuator associated with displacement amplifier. In order to achieve this goal, a new type of controllable piezostack DDV damper is designed and its performance evaluation of damping force is undertaken. Next, a full vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the governing equations of the motion for the proposed the piezostack DDV suspension system, the skyhook controller is implemented for the realization of the full vehicle. Analytical model of the whole suspension system is then derived and performance characteristics are analyzed through numerical simulation. Finally, vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and sine road conditions.

  3. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  4. Pneumatic Variable Series Elastic Actuator

    PubMed Central

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-01-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755

  5. Lightweight Motorized Valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Vandewalle, J.

    1986-01-01

    Redesigned actuator assembly weighs 50 percent less. Isolator valve operated by ac motor instead of usual dc solenoid. Valve weighs only 3 lb (1.4 kg). New valve functions with either two-phase or three-phase power. Developed for isolating fluids in propellant tanks, manifolds, and interconnecting lines of Space Shuttle reaction control and orbital maneuvering subsystems, valve suited to applications in which leakage must be kept to minimum at high pressure differences - in petroleum and chemical processing.

  6. Evaluation of a high response electrohydraulic digital control valve

    NASA Technical Reports Server (NTRS)

    Anderson, R. L.

    1973-01-01

    The application is described of a digital control valve on an electrohydraulic servo actuator. The digital control problem is discussed in general as well as the design and evaluation of a breadboard actuator. The evaluation revealed a number of problems associated with matching the valve to a hydraulic load. The problems were related to lost motion resulting from bulk modulus and leakage. These problems were effectively minimized in the breadboard actuator by maintaining a 1000 psi back pressure on the valve circuit and thereby improving the effective bulk modulus.

  7. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  8. Quickly Removable Valve

    NASA Technical Reports Server (NTRS)

    Robbins, John S.

    1988-01-01

    Unit removed with minimal disturbance. Valve inlet and outlet ports adjacent to each other on same side of valve body. Ports inserted into special manifold on fluid line. Valve body attached to manifold by four bolts or, alternatively, by toggle clamps. Electromechanical actuator moves in direction parallel to fluid line to open and close valve. When necessary to clean valve, removed simply by opening bolts or toggle clamps. No need to move or separate ports of fluid line. Valve useful where disturbance of fluid line detrimental or where fast maintenance essential - in oil and chemical industries, automotive vehicles, aircraft, and powerplants.

  9. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  10. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  11. Plasma HVA, tardive dyskinesia and psychotic symptoms in long-term drug-free inpatients with schizophrenia.

    PubMed

    Muscettola, G; Barbato, G; de Bartolomeis, A; Monteleone, P; Pickar, D

    1990-09-01

    Plasma homovanillic acid (pHVA) levels were measured in 16 chronically ill patients with schizophrenia who also suffered from tardive dyskinesia, and in a group of 14 chronically ill patients with schizophrenia who did not have tardive dyskinesia. All patients were studied following an extensive drug-free period (mean = 32.9 months). Patients with orofacial dyskinesia had significantly lower levels of pHVA than did controls. In patients without tardive dyskinesia, pHVA levels were significantly correlated with both positive and negative symptomatology. In contrast, pHVA levels from patients with tardive dyskinesia bore neither a significant nor a nearly significant relationship to symptomatology. The implications of these findings for dopaminergic models of tardive dyskinesia are discussed.

  12. High speed hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Iman, Imdad

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.

  13. Valve assembly for use with high temperature and high pressure fluids

    DOEpatents

    De Feo, Angelo

    1982-01-01

    The valve assembly for use with high temperature and high pressure fluids has inner and outer spaced shells and a valve actuator support of inner and outer spaced members which are connected at their end portions to the inner and outer shells, respectively, to extend substantially normal to the longitudinal axis of the inner shell. A layer of resilient heat insulating material covers the outer surfaces of the inner shell and the inner actuator support member and is of a thickness to only occupy part of the spaces between the inner and outer shells and inner and outer actuator support members. The remaining portion of the space between the inner and outer shells and the space between the inner and outer members is substantially filled with a body of castable, rigid refractory material. A movable valve member is disposed in the inner shell. A valve actuator assembly is supported in the valve actuator support to extend into the inner shell for connection with the movable valve member for movement of the movable valve member to positions from a fully open to a fully closed position to control flow of fluid through the inner shell. An anchor mneans is disposed adjacent opposite sides of the axis of the valve actuator support and attached to the inner shell so that relative radial movement between the inner and outer shell is permitted by the layer of resilient heat insulating material and relative longitudinal movement of the inner shell to the outer shell is permitted in opposite directions from the anchor means to thereby maintain the functional integrity of the movable valve member by providing an area of the inner shell surrounding the movable valve member longitdinally stationary, but at the same time allowing radial movement.

  14. Propellant isolation shutoff valve program

    NASA Technical Reports Server (NTRS)

    Merritt, F. L.

    1973-01-01

    An analysis and design effort directed to advancing the state-of-the-art of space storable isolation valves for control of flow of the propellants liquid fluorine/hydrazine and Flox/monomethylhydrazine is discussed. Emphasis is on achieving zero liquid leakage and capability of withstanding missions up to 10 years in interplanetary space. Included is a study of all-metal poppet sealing theory, an evaluation of candidate seal configurations, a valve actuator trade-off study and design description of a pneumo-thermally actuated soft metal poppet seal valve. The concepts and analysis leading to the soft seal approach are documented. A theoretical evaluation of seal leakage versus seal loading, related finishes and yield strengths of various materials is provided. Application of a confined soft aluminum seal loaded to 2 to 3 times yield strength is recommended. Use of either an electro-mechanical or pneumatic actuator appears to be feasible for the application.

  15. Design criteria monograph for valve assemblies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph is limited to valve selection factors for trade-off studies, configuration analyses, actuator selection, and integration of components. Material is organized along lines of valve design sequence.

  16. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  17. Apparatus comprising magnetically actuated valves and uses thereof

    DOEpatents

    Edwards, Thayne L.; Harper, Jason C.

    2016-07-12

    The present invention, in part, relates to an apparatus having a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. In some examples, the valve is opened by bringing a magnet in proximity to the valve element to provide a magnetic force that delaminates the valve element from the adhesive coating. In particular, the apparatus can be useful for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.

  18. High speed hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Iman, I.

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.

  19. Principle design and actuation of a dual chamber electromagnetic micropump with coaxial cantilever valves.

    PubMed

    Zordan, Enrico; Amirouche, Farid; Zhou, Yu

    2010-02-01

    This paper deals with the design and characterization of an electromagnetic actuation micropump with superimposed dual chambers. An integral part of microfluidic system includes micropumps which have become a critical design focus and have the potential to alter treatment and drug delivery requirements to patients. In this paper, conceptual design of variable geometrical nozzle/diffuser elements, coaxial cantilever valve, is proposed. It takes advantages of cantilever fluctuating valves with preset geometry to optimize and control fluid flow. The integration of this conceptual valve into a dual chamber micropump has increased the flow rate when compared to a single chamber micropump. This technique also allows for the fluid flow to be actively controlled by adjusting the movement of the intermediate membrane and the cantilever valves due to their fast response and large deflection properties when subjected to an electromagnetic field. To ensure reliability and performance of both the membrane and electromagnets, finite element method was used to perform the stress-strain analysis and optimize the membrane structure and electromagnet configuration. The frequency-dependent flow rates and backpressure are investigated for different frequencies by varying the applied currents from 1A to 1.75A. The current micropump design exhibits a backpressure of 58 mmH(2)O and has a water flow rate that reaches maximum at 1.985 ml/s under a 1.75A current with a resonance frequency of 45 Hz. This proposed micropump while at its initial prototype stage can satisfy the requirements of wide flow rate drug delivery applications. Its controllability and process design are attractive for high volume fabrication and low cost.

  20. Remote manual operator for space station intermodule ventilation valve

    NASA Technical Reports Server (NTRS)

    Guyaux, James R.

    1996-01-01

    The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.

  1. Turbo-generator control with variable valve actuation

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  2. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  3. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  4. Electrical Textile Valves for Paper Microfluidics.

    PubMed

    Ainla, Alar; Hamedi, Mahiar M; Güder, Firat; Whitesides, George M

    2017-10-01

    This paper describes electrically-activated fluidic valves that operate based on electrowetting through textiles. The valves are fabricated from electrically conductive, insulated, hydrophobic textiles, but the concept can be extended to other porous materials. When the valve is closed, the liquid cannot pass through the hydrophobic textile. Upon application of a potential (in the range of 100-1000 V) between the textile and the liquid, the valve opens and the liquid penetrates the textile. These valves actuate in less than 1 s, require low energy (≈27 µJ per actuation), and work with a variety of aqueous solutions, including those with low surface tension and those containing bioanalytes. They are bistable in function, and are, in a sense, the electrofluidic analog of thyristors. They can be integrated into paper microfluidic devices to make circuits that are capable of controlling liquid, including autonomous fluidic timers and fluidic logic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    The design and test results for two types of pulsed gas valves are presented. The valves, a piezo valve and a solenoid actuated valve, must have exceedingly long lifetime to support gas-fed pulsed electric thruster operation for missions of interest. The performance of both valves was tested, with both demonstrating the capability to throttle the gas flow rate while maintaining low leakage levels below 10(exp -3) sccs of He at the beginning of valve lifetime. The piezo valve varies the flow rate by changing the amount that the valve is open, which is a function of applied voltage. This valve demonstrated continuous throttlability from 0-10 mL/s, with opening and closing times of 100 microsecond or less. The solenoid actuated valve flow rate changes as a function of the inlet gas pressure, with demonstrated flow rates in these tests from 2.7-11 mL per second. The valve response time is slower than the piezo valve, opening in 1-2 ms and closing in several ms. The solenoid actuated valve was tested to one million cycles, with the valve performance remaining relatively unchanged throughout the test. Galling of the sliding plunger caused the valve to bind and fail just after one million cycles, but at this point in the test the valve sealing surface leak rate still appeared to be well below the maximum target leak rake of 1×10(exp -3) sccs of He.

  6. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2002-01-01

    Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.

  7. Sensor-integrated polymer actuators for closed-loop drug delivery system

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  8. Electromagnetic Smart Valves for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.

    2004-06-01

    Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.

  9. Passively operated spool valve for drain-down freeze protection of thermosyphon water heaters. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-30

    The work done to extend the existing drain-down valve technology to provide passive drain-down freeze protection for thermosyphon-based solar water heaters is described. The basic design of the existing valve model is that of a spool valve, employing a cylindrical spool which moves axially in a mating cartridge to open and close o-rings at the two operating extremes (drain and operate) to perform the valving function. Three passive actuators to drive the basic valving mechanism were designed, fabricated, and tested. Two piping configurations used to integrate the spool valve with the thermosyphon system are described, as are the passive actuators.more » The three actuator designs are: photovoltaic driven, refrigerant-based bellows, and heat motor cable-drive designs. Costs are compared for the alternative actuator designs, and operating characteristics were examined for the thermosyphon system, including field tests. The market for the valve for thermosyphon systems is then assessed. (LEW)« less

  10. Electrical servo actuator bracket. [fuel control valves on jet engines

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  11. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    PubMed Central

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  12. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    PubMed

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  13. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    NASA Astrophysics Data System (ADS)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  14. Design of pneumatic proportional flow valve type 5/3

    NASA Astrophysics Data System (ADS)

    Laski, P. A.; Pietrala, D. S.; Zwierzchowski, J.; Czarnogorski, K.

    2017-08-01

    In this paper the 5/3-way pneumatic, proportional flow valve was designed and made. Stepper linear actuator was used to move the spool. The valve is controlled by the controlled based on a AVR microcontroller. Virtual model of the valve was created in CAD. The real element was made based on a standard 5/3-way manually actuated valve with hand lever, which was dismounted and replaced by linear stepper motor. All the elements was mounted in a specially made housing. The controller consists of microcontroller Atmega16, integrated circuit L293D, display, two potentiometers, three LEDs and six buttons. Series of research was also conducted. Simulation research were performed using CFD by the Flow Simulation addition to SolidWorks. During the experiments the valve characteristics of flow and pressure was determined.

  15. Design and experimental study of a novel giant magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Dongwei; Huang, Yingjie; Xie, Wenqiang

    2016-12-01

    Giant magnetostrictive actuator has been widely used in precise driving occasions for its excellent performance. However, in driving a switching valve, especially the ball-valve in an electronic controlled injector, the actuator can't exhibit its good performance for limits in output displacement and responding speed. A novel giant magnetostrictive actuator, which can reach its maximum displacement for being exerted with no bias magnetic field, is designed in this paper. Simultaneously, elongating of the giant magetostrictive material is converted to shortening of the actuator's axial dimension with the help of an output rod in "T" type. Furthermore, to save responding time, the driving voltage with high opening voltage while low holding voltage is designed. Responding time and output displacement are studied experimentally with the help of a measuring system. From measured results, designed driving voltage can improve the responding speed of actuator displacement quite effectively. And, giant magnetostrictive actuator can output various steady-state displacements to reach more driving effects.

  16. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    PubMed Central

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234

  17. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.

    PubMed

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  18. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  19. Silicone-Rubber Microvalves Actuated by Paraffin

    NASA Technical Reports Server (NTRS)

    Svelha, Danielle; Feldman, Sabrina; Barsic, David

    2004-01-01

    Microvalves containing silicone-rubber seals actuated by heating and cooling of paraffin have been proposed for development as integral components of microfluidic systems. In comparison with other microvalves actuated by various means (electrostatic, electromagnetic, piezoelectric, pneumatic, and others), the proposed valves (1) would contain simpler structures that could be fabricated at lower cost and (2) could be actuated by simpler (and thus less expensive) control systems. Each valve according to the proposal would include a flow channel bounded on one side by a flat surface and on the other side by a curved surface defined by an arched-cross-section, elastic seal made of silicone rubber [polydimethylsilane (PDMS)]. The seal would be sized and shaped so that the elasticity of the PDMS would hold the channel open except when the seal was pressed down onto the flat surface to close the channel. The principle of actuation would exploit the fact that upon melting or freezing, the volume of a typical paraffin increases or decreases, respectively, by about 15 percent. In a valve according to the proposal, the seal face opposite that of the channel would be in contact with a piston-like plug of paraffin. In the case of a valve designed to be normally open at ambient temperature, one would use a paraffin having a melting temperature above ambient. The seal would be pushed against the flat surface to close the channel by heating the paraffin above its melting temperature. In the case of a valve designed to be normally closed at ambient temperature, one would use a paraffin having a melting temperature below ambient. The seal would be allowed to spring away from the flat surface to open the channel by cooling the paraffin below its melting temperature. The availability of paraffins that have melting temperatures from 70 to +80 C should make it possible to develop a variety of normally closed and normally open valves. The figure depicts examples of prototype normally

  20. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  1. Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.

    2000-08-29

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.

  2. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  3. Innovative Stemless Valve Eliminates Emissions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Big Horn Valve Inc. (BHVI), of Sheridan, Wyoming, won a series of SBIR and Small Business Technology Transfer (STTR) contracts with Kennedy Space Center and Marshall Space Flight Center to explore and develop a revolutionary valve technology. BHVI developed a low-mass, high-efficiency, leak-proof cryogenic valve using composites and exotic metals, and had no stem-actuator, few moving parts, with an overall cylindrical shape. The valve has been installed at a methane coal gas field, and future applications are expected to include in-flight refueling of military aircraft, high-volume gas delivery systems, petroleum refining, and in the nuclear industry.

  4. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  5. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  6. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  7. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  8. 46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...

  9. 46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...

  10. Locking apparatus for gate valves

    DOEpatents

    Fabyan, J.; Williams, C.W.

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing further movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  11. BAKABLE ULTRA-HIGH VACUUM VALVE

    DOEpatents

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  12. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  13. A review of design and modeling of magnetorheological valve

    NASA Astrophysics Data System (ADS)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  14. Gas chromatograph sample-transfer valve

    NASA Technical Reports Server (NTRS)

    Wang, W. S.; Wright, H. W., Jr.

    1971-01-01

    Slide-type gate valve incorporates sampling volume and transfer passageway for guiding a metered quantity of gas from pressurized test cell to gas chromatograph. Gate is moved by pneumatic bellows-type actuator.

  15. Integral isolation valve systems for loss of coolant accident protection

    DOEpatents

    Kanuch, David J.; DiFilipo, Paul P.

    2018-03-20

    A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.

  16. All metal valve structure for gas systems

    DOEpatents

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  17. All-metal valve structure for gas systems

    DOEpatents

    Baker, R.W.; Pawlak, D.A.; Ramey, A.J.

    1982-06-10

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  18. Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket

    DOEpatents

    Christiansen, D.W.; Schively, D.P.

    1982-01-19

    The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  19. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  20. Fabrication of micro metallic valve and pump

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  1. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.

    1998-01-01

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.

  2. Design, fabrication and characterization of an arrayable all-polymer microfluidic valve employing highly magnetic rare-earth composite polymer

    NASA Astrophysics Data System (ADS)

    Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.

    2016-05-01

    We present a new magnetically actuated microfluidic valve that employs a highly magnetic composite polymer (M-CP) containing rare-earth hard-magnetic powder for its actuating element and for its valve seat. The M-CP offers much higher magnetization compared to the soft-magnetic, ferrite-based composite polymers typically used in microfluidic applications. Each valve consists of a permanently magnetized M-CP flap and valve seat mounted on a microfluidic channel system fabricated in poly(dimethylsiloxane) (PDMS). Each valve is actuated under a relatively small external magnetic field of 80 mT provided by a small permanent magnet mounted on a miniature linear actuator. The performance of the valve with different flap thicknesses is characterized. In addition, the effect of the magnetic valve seat on the valve’s performance is also characterized. It is experimentally shown that a valve with a 2.3 mm flap thickness, actuated under an 80 mT magnetic field, is capable of completely blocking liquid flow at a flow rate of 1 ml min-1 for pressures up to 9.65 kPa in microfluidic channels 200 μm wide and 200 μm deep. The valve can also be fabricated into an array for flow switching between multiple microfluidic channels under continuous flow conditions. The performance of arrays of valves for flow routing is demonstrated for flow rates up to 5 ml min-1 with larger microfluidic channels of up to 1 mm wide and 500 μm deep. The design of the valves is compatible with other commonly used polymeric microfluidic components, as well as other components that use the same novel permanently magnetic composite polymer, such as our previously reported cilia-based mixing devices.

  3. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    NASA Astrophysics Data System (ADS)

    Kolari, K.; Havia, T.; Stuns, I.; Hjort, K.

    2014-08-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min-1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems.

  4. Valve for waste collection and storage

    NASA Technical Reports Server (NTRS)

    Thornton, William E., Jr. (Inventor); Whitmore, Henry B. (Inventor)

    1990-01-01

    A method and valve apparatus for collection of fecal matter designed to operate efficiently in a zero gravity environment is presented. The system comprises a waste collection area within a body having a seat opening. Low pressure within the waste collection area directs fecal matter away from the user's buttocks and prevents the escape of undersirable gases. The user actuates a piston covered with an absorbent pad that sweeps through the waste collection area to collect the fecal matter, scrub the waste collection area, press the waste against an end of the waste collection area and retracts, leaving the used pad. Multiple pads are provided on the piston to accommodate multiple uses of the system. Also a valve allows air to be drawn through the body, so the valve will not be plugged with fecal matter. A sheet feeder feeds fresh sheets of absorbent pads to a face of the piston with each actuation.

  5. Note: High temperature pulsed solenoid valve.

    PubMed

    Shen, Wei; Sulkes, Mark

    2010-01-01

    We have developed a high temperature pulsed solenoid valve with reliable long term operation to at least 400 degrees C. As in earlier published designs, a needle extension sealing a heated orifice is lifted via solenoid actuation; the solenoid is thermally isolated from the heated orifice region. In this new implementation, superior sealing and reliability were attained by choosing a solenoid that produces considerably larger lifting forces on the magnetically actuated plunger. It is this property that facilitates easily attainable sealing and reliability, albeit with some tradeoff in attainable gas pulse durations. The cost of the solenoid valve employed is quite low and the necessary machining quite simple. Our ultimate level of sealing was attained by making a simple modification to the polished seal at the needle tip. The same sealing tip modification could easily be applied to one of the earlier high T valve designs, which could improve the attainability and tightness of sealing for these implementations.

  6. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOEpatents

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  7. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    NASA Astrophysics Data System (ADS)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  8. Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals

    NASA Technical Reports Server (NTRS)

    Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)

    1999-01-01

    Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.

  9. Fast acting multiple element valve

    DOEpatents

    Yang, Jefferson Y. S.; Wada, James M.

    1991-01-01

    A plurality of slide valve elements having plural axial-spaced annular parts and an internal slide are inserted into a bulkhead in a fluid conduit from a downstream side of the bulkhead, locked in place by a bayonet coupling and set screw, and project through the bulkhead into the upstream conduit. Pneumatic lines connecting the slide valve element actuator to pilot valves are brought out the throat of the valve element to the downstream side. Pilot valves are radially spaced around the exterior of the valve to permit the pneumatic lines to be made identical, thereby to minimize adverse timing tolerances in operation due to pressure variations. Ring manifolds surround the valve adjacent respective pilot valve arrangements to further reduce adverse timing tolerances due to pressure variations, the manifolds being directly connected to the respective pilot valves. Position sensors are provided the valve element slides to signal the precise time at which a slide reaches or passes through a particular point in its stroke to initiate a calibrated timing function.

  10. Space shuttle main engine definition (phase B). Volume 5: Valves and interconnects. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1971-01-01

    The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.

  11. 29. Basement under central corridor. Shaft on right actuates cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Basement under central corridor. Shaft on right actuates cross over valve. Shaft at left operates main flood valve to admit water into the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  12. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  13. Dynamic design and control of a high-speed pneumatic jet actuator

    NASA Astrophysics Data System (ADS)

    Misyurin, S. Yu; Ivlev, V. I.; Kreinin, G. V.

    2017-12-01

    Mathematical model of an actuator, consisting of a pneumatic (gas) high-speed jet engine, transfer mechanism, and a control device used for switching the ball valve is worked out. The specific attention was paid to the transition (normalization) of the dynamic model into the dimensionless form. Its dynamic simulation criteria are determined, and dynamics study of an actuator was carried out. The simple control algorithm of relay action with a velocity feedback enabling the valve plug to be turned with a smooth nonstop and continuous approach to the final position is demonstrated

  14. Optimization of a pressure control valve for high power automatic transmission considering stability

    NASA Astrophysics Data System (ADS)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  15. Failure Mode Analysis of V-Shaped Pyrotechnically Actuated Valves

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Hosangadi, A.; Chenoweth, James D.; Saulsberry, Regor L.; McDougle, Stephen H.

    2012-01-01

    Current V-shaped stainless steel pyrovalve initiators have rectified many of the deficiencies of the heritage Y-shaped aluminum design. However, a credible failure mode still exists for dual simultaneous initiator (NSI) firings in which low temperatures were detected at the booster cap and less consistent ignition was observed than when a single initiator was fired. In order to asses this issue, a numerical framework has been developed for predicting the flow through pyrotechnically actuated valves. This framework includes a fully coupled solution of the gas-phase equation with a non-equilibrium dispersed phase for solid particles as well as the capability to model conjugate gradient heat transfer to the booster cap. Through a hierarchy of increasingly complex simulations, a hypothesis for the failure mode of the nearly simultaneous dual NSI firings has been proven. The simulations indicate that the failure mode for simultaneous dual NSI firings may be caused by flow interactions between the flame channels. The shock waves from each initiator interact in the booster cavity resulting in a high pressure that prevents the gas and particulate velocity from rising in the booster cap region. This impedes the bulk of the particulate phase from impacting the booster cap and reduces the heat transfer to the booster cap since the particles do not impact it. Heat transfer calculations to the solid metal indicate that gas-phase convective heat transfer may not be adequate by itself and that energy transfer from the particulate phase may be crucial for the booster cap burn through.

  16. Flow Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  17. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.

    1998-06-30

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.

  18. Advanced technology for space shuttle auxiliary propellant valves

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    Valves for the gaseous hydrogen/gaseous oxygen shuttle auxiliary propulsion system are required to feature low leakage over a wide temperature range coupled with high cycle life, long term compatibility and minimum maintenance. In addition, those valves used as thruster shutoff valves must feature fast response characteristics to achieve small, repeatable minimum impulse bits. These valve technology problems are solved by developing unique valve components such as sealing closures, guidance devices, and actuation means and by demonstrating two prototype valve concepts. One of the prototype valves is cycled over one million cycles without exceeding a leakage rate of 27 scc's per hour at 450 psia helium inlet pressure throughout the cycling program.

  19. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots.

    PubMed

    Zatopa, Alex; Walker, Steph; Menguc, Yigit

    2018-06-01

    Soft robots are designed to utilize their compliance and contortionistic abilities to both interact safely with their environment and move through it in ways a rigid robot cannot. To more completely achieve this, the robot should be made of as many soft components as possible. Here we present a completely soft hydraulic control valve consisting of a 3D-printed photopolymer body with electrorheological (ER) fluid as a working fluid and gallium-indium-tin liquid metal alloy as electrodes. This soft 3D-printed ER valve weighs less than 10 g and allows for onboard actuation control, furthering the goal of an entirely soft controllable robot. The soft ER valve pressure-holding capabilities were tested under unstrained conditions, cyclic valve activation, and the strained conditions of bending, twisting, stretching, and indentation. It was found that the max holding pressure of the valve when 5 kV was applied across the electrodes was 264 kPa, and that the holding pressure deviated less than 15% from the unstrained max holding pressure under all strain conditions except for indentation, which had a 60% max pressure increase. In addition, a soft octopus-like robot was designed, 3D printed, and assembled, and a soft ER valve was used to stop the fluid flow, build pressure in the robot, and actuate six tentacle-like soft bending actuators.

  20. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  1. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  2. Piezoelectric valve

    DOEpatents

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  3. Stemless Ball Valve

    NASA Technical Reports Server (NTRS)

    Burgess, Robert K.; Yakos, David; Walthall, Bryan

    2012-01-01

    This invention utilizes a new method of opening and closing a ball valve. Instead of rotating the ball with a perpendicular stem (as is the case with standard ball valves), the ball is rotated around a fixed axis by two guide pins. This innovation eliminates the leak point that is present in all standard ball valves due to the penetration of an actuation stem through the valve body. The VOST (Venturi Off-Set-Technology) valve has been developed for commercial applications. The standard version of the valve consists of an off-set venturi flow path through the valve. This path is split at the narrowest portion of the venturi, allowing the section upstream from the venturi to be rotated. As this rotation takes place, the venturi becomes restricted as one face rotates with respect to the other, eventually closing off the flow path. A spring-loaded seal made of resilient material is embedded in the upstream face of the valve, making a leak-proof seal between the faces; thus a valve is formed. The spring-loaded lip seal is the only seal that can provide a class six, or bubble-tight, seal against the opposite face of the valve. Tearing action of the seal by high-velocity gas on this early design required relocation of the seal to the downstream face of the valve. In the stemless embodiment of this valve, inner and outer magnetic cartridges are employed to transfer mechanical torque from the outside of the valve to the inside without the use of a stem. This eliminates the leak path caused by the valve stems in standard valves because the stems penetrate through the bodies of these valves.

  4. A Portable Analyzer for Pouch-Actuated, Immunoassay Cassettes

    PubMed Central

    Qiu, Xianbo; Liu, Changchun; Mauk, Michael G.; Hart, Robert W.; Chen, Dafeng; Qiu, Jing; Kientz, Terry; Fiene, Jonathan; Bau, Haim H.

    2011-01-01

    A portable, small footprint, light, general purpose analyzer (processor) to control the flow in immunoassay cassettes and to facilitate the detection of test results is described. The durable analyzer accepts disposable cassettes that contain pouches and reaction chambers for various unit operations such as hydration of dry reagents, stirring, and incubation. The analyzer includes individually controlled, linear actuators to compress the pouches in the cassette, which facilitates the pumping and mixing of sample and reagents, and to close diaphragm-based valves for flow control. The same types of actuators are used to compress pouches and actuate valves. The analyzer also houses a compact OEM scanner/reader to excite fluorescence and detect emission from labels. The analyzer is hydraulically isolated from the cassette, reducing the possibility of cross-contamination. The analyzer facilitates programmable, automated execution of a sequence of operations such as pumping and valving in a timely fashion, reducing the level of expertise required from the operator and the possibility for errors. The analyzer’s design is modular and expandable to accommodate cassettes of various complexities and additional functionalities. In this paper, the utility of the analyzer has been demonstrated with the execution of a simple, consecutive, lateral flow assay of a model biological system and the test results were detected with up converting phosphor labels that are excited at infrared frequencies and emit in the visible spectrum. PMID:22125359

  5. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  6. Control of soft machines using actuators operated by a Braille display.

    PubMed

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  7. Control of Soft Machines using Actuators Operated by a Braille Display

    PubMed Central

    Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.

    2013-01-01

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070

  8. Hydraulic actuator for an electric circuit breaker

    DOEpatents

    Imam, I.

    1983-05-17

    This actuator comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit breaker opening operation. The breaker-opening space and the breaker-closing space are connected by an impeded flow passage. A pilot valve opens to allow the pressurized liquid in the breaker-closing space to flow to a back chamber of a normally closed main valve to cause the main valve to be opened during a circuit breaker opening operation to release the pressurized liquid from the breaker-closing space. An impeded passage affords communication between the back chamber and a sump located on the opposite side of the main valve from the back chamber. The pilot valve and impeded passage allow rapid opening of the main valve with pressurized liquid from the breaker closing side of the piston. 3 figs.

  9. Hydraulic actuator for an electric circuit breaker

    DOEpatents

    Imam, Imdad [Colonie, NY

    1983-01-01

    This actuator comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit breaker opening operation. The breaker-opening space and the breaker-closing space are connected by an impeded flow passage. A pilot valve opens to allow the pressurized liquid in the breaker-closing space to flow to a back chamber of a normally closed main valve to cause the main valve to be opened during a circuit breaker opening operation to release the pressurized liquid from the breaker-closing space. An impeded passage affords communication between the back chamber and a sump located on the opposite side of the main valve from the back chamber. The pilot valve and impeded passage allow rapid opening of the main valve with pressurized liquid from the breaker closing side of the piston.

  10. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  11. 78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0079] Qualification Tests for Safety-Related Actuators in..., ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants.'' This RG is being revised to provide... power plants. This RG is proposed Revision 1 of RG 1.73, ``Qualification Tests of Electric Valve...

  12. Design of a Soft Robot with Multiple Motion Patterns Using Soft Pneumatic Actuators

    NASA Astrophysics Data System (ADS)

    Miao, Yu; Dong, Wei; Du, Zhijiang

    2017-11-01

    Soft robots are made of soft materials and have good flexibility and infinite degrees of freedom in theory. These properties enable soft robots to work in narrow space and adapt to external environment. In this paper, a 2-DOF soft pneumatic actuator is introduced, with two chambers symmetrically distributed on both sides and a jamming cylinder along the axis. Fibers are used to constrain the expansion of the soft actuator. Experiments are carried out to test the performance of the soft actuator, including bending and elongation characteristics. A soft robot is designed and fabricated by connecting four soft pneumatic actuators to a 3D-printed board. The soft robotic system is then established. The pneumatic circuit is built by pumps and solenoid valves. The control system is based on the control board Arduino Mega 2560. Relay modules are used to control valves and pressure sensors are used to measure pressure in the pneumatic circuit. Experiments are conducted to test the performance of the proposed soft robot.

  13. Spool valve cycles at controlled frequency

    NASA Technical Reports Server (NTRS)

    Charlton, K. W.; Van Arnam, D. E.

    1966-01-01

    Spool valve accurately controls the cycle of a pneumatically-actuated system over long periods. Regulation of pressure from the external source, positioning of the adjusting plugs, and magnet selection, together afford wide variation in cyclic timing and speed of closure in either direction.

  14. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.

  15. Pump having pistons and valves made of electroactive actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor)

    1997-01-01

    The present invention provides a pump for inducing a displacement of a fluid from a first medium to a second medium, including a conduit coupled to the first and second media, a transducing material piston defining a pump chamber in the conduit and being transversely displaceable for increasing a volume of the chamber to extract the fluid from the first medium to the chamber and for decreasing the chamber volume to force the fluid from the chamber to the second medium, a first transducing material valve mounted in the conduit between the piston and the first medium and being transversely displaceable from a closed position to an open position to admit the fluid to the chamber, and control means for changing a first field applied to the piston to displace the piston for changing the chamber volume and for changing a second field applied to the first valve to change the position of the first valve.

  16. Math Machines: Using Actuators in Physics Classes

    ERIC Educational Resources Information Center

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators--motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical…

  17. Variable Frequency Diverter Actuation for Flow Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2006-01-01

    The design and development of an actively controlled fluidic actuator for flow control applications is explored. The basic device, with one input and two output channels, takes advantage of the Coanda effect to force a fluid jet to adhere to one of two axi-symmetric surfaces. The resultant flow is bi-stable, producing a constant flow from one output channel, until a disturbance force applied at the control point causes the flow to switch to the alternate output channel. By properly applying active control the output flows can be manipulated to provide a high degree of modulation over a wide and variable range of frequency and duty cycle. In this study the momentary operative force is applied by small, high speed isolation valves of which several different types are examined. The active fluidic diverter actuator is shown to work in several configurations including that in which the operator valves are referenced to atmosphere as well as to a source common with the power stream.

  18. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOEpatents

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  19. Increasing the reliability of solution exchanges by monitoring solenoid valve actuation.

    PubMed

    Auzmendi, Jerónimo Andrés; Moffatt, Luciano

    2010-01-15

    Solenoid valves are a core component of most solution perfusion systems used in neuroscience research. As they open and close, they control the flow of solution through each perfusion line, thereby modulating the timing and sequence of chemical stimulation. The valves feature a ferromagnetic plunger that moves due to the magnetization of the solenoid and returns to its initial position with the aid of a spring. The delays between the time of voltage application or removal and the actual opening or closing of the valve are difficult to predict beforehand and have to be measured experimentally. Here we propose a simple method for monitoring whether and when the solenoid valve opens and closes. The proposed method detects the movement of the plunger as it generates a measurable signal on the solenoid that surrounds it. Using this plunger signal, we detected the opening and closing of diaphragm and pinch solenoid valves with a systematic error of less than 2ms. After this systematic error is subtracted, the trial-to-trial error was below 0.2ms.

  20. Powered glove with electro-pneumatic actuation unit for the disabled

    NASA Astrophysics Data System (ADS)

    Kawakami, Kosuke; Kumano, Shinichi; Moromugi, Shunji; Ishimatsu, Takakazu

    2007-12-01

    Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be used in our daily life. Huge air compressor is needed and solenoid valves emit loud sound for example. These problems are hurdles to commercialize the powered glove. To solve these problems authors have developed a new actuation unit by integrating an electric cylinder and an air cylinder. This actuation unit has advantages of both the electric actuation and the pneumatic actuation. Its advanced grip control ability has demonstrated through several experiments. The experimental results are reported in this paper.

  1. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  2. Energy efficient fluid powered linear actuator with variable area

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-09-13

    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  3. Active combustion flow modulation valve

    DOEpatents

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  4. Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform.

    PubMed

    Torres Delgado, Saraí M; Kinahan, David J; Nirupa Julius, Lourdes Albina; Mallette, Adam; Ardila, David Sáenz; Mishra, Rohit; Miyazaki, Celina M; Korvink, Jan G; Ducrée, Jens; Mager, Dario

    2018-06-30

    In this paper we present a wirelessly powered array of 128 centrifugo-pneumatic valves that can be thermally actuated on demand during spinning. The valves can either be triggered by a predefined protocol, wireless signal transmission via Bluetooth, or in response to a sensor monitoring a parameter like the temperature, or homogeneity of the dispersion. Upon activation of a resistive heater, a low-melting membrane (Parafilm™) is removed to vent an entrapped gas pocket, thus letting the incoming liquid wet an intermediate dissolvable film and thereby open the valve. The proposed system allows up to 12 heaters to be activated in parallel, with a response time below 3 s, potentially resulting in 128 actuated valves in under 30 s. We demonstrate, with three examples of common and standard procedures, how the proposed technology could become a powerful tool for implementing diagnostic assays on Lab-on-a-Disc. First, we implement wireless actuation of 64 valves during rotation in a freely programmable sequence, or upon user input in real time. Then, we show a closed-loop centrifugal flow control sequence for which the state of mixing of reagents, evaluated from stroboscopically recorded images, triggers the opening of the valves. In our last experiment, valving and closed-loop control are used to facilitate centrifugal processing of whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Application of Model-based Prognostics to a Pneumatic Valves Testbed

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George

    2014-01-01

    Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.

  6. Sliding-gate valve

    DOEpatents

    Usnick, George B.; Ward, Gene T.; Blair, Henry O.; Roberts, James W.; Warner, Terry N.

    1979-01-01

    This invention is a novel valve of the slidable-gate type. The valve is designed especially for long-term use with highly abrasive slurries. The sealing surfaces of the gate are shielded by the valve seats when the valve is fully open or closed, and the gate-to-seat clearance is swept with an inflowing purge gas while the gate is in transit. A preferred form of the valve includes an annular valve body containing an annular seat assembly defining a flow channel. The seat assembly comprises a first seat ring which is slidably and sealably mounted in the body, and a second seat ring which is tightly fitted in the body. These rings cooperatively define an annular gap which, together with passages in the valve body, forms a guideway extending normal to the channel. A plate-type gate is mounted for reciprocation in the guideway between positions where a portion of the plate closes the channel and where a circular aperture in the gate is in register with the channel. The valve casing includes opposed chambers which extend outwardly from the body along the axis of the guideway to accommodate the end portions of the gate. The chambers are sealed from atmosphere; when the gate is in transit, purge gas is admitted to the chambers and flows inwardly through the gate-to-seat-ring, clearance, minimizing buildup of process solids therein. A shaft reciprocated by an external actuator extends into one of the sealed chambers through a shaft seal and is coupled to an end of the gate. Means are provided for adjusting the clearance between the first seat ring and the gate while the valve is in service.

  7. Development of an artificial urethral valve using SMA actuators

    NASA Astrophysics Data System (ADS)

    Chonan, S.; Jiang, Z. W.; Tani, J.; Orikasa, S.; Tanahashi, Y.; Takagi, T.; Tanaka, M.; Tanikawa, J.

    1997-08-01

    The development of an artificial urethral valve for the treatment of urinary incontinence which occurs frequently in the aged is described. The prototype urethral valve is assembled in hand-drum form with four thin shape memory alloy (SMA) (nickel - titanium alloy) plates of 0.3 mm thickness. The shape memory effect in two directions is used to replace the urinary canal sphincter muscles and to control the canal opening and closing functions. The characteristic of the SMA is to assume the shape of a circular arc at normal temperatures and a flat shape at higher temperatures. Experiments have been conducted using a canine bladder and urinary canal.

  8. Fast Acting Eddy Current Driven Valve for Massive Gas Injection on ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyttle, Mark S; Baylor, Larry R; Carmichael, Justin R

    2015-01-01

    Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and eddy currents, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the current decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supplymore » have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.« less

  9. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  10. High density 3D printed microfluidic valves, pumps, and multiplexers.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-07

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.

  11. Electromechanical actuation for cryogenic valve control

    NASA Technical Reports Server (NTRS)

    Lister, M. J.; Reichmuth, D. M.

    1993-01-01

    The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

  12. Experimental verification of the flow characteristics of an active controlled microfluidic valve with annular boundary

    NASA Astrophysics Data System (ADS)

    Pan, Chun-Peng; Wang, Dai-Hua

    2014-03-01

    The principle and structural configuration of an active controlled microfluidic valve with annular boundary is presented in this paper. The active controlled flowrate model of the active controlled microfluidic valve with annular boundary is established. The prototypes of the active controlled microfluidic valves with annular boundaries with three different combinations of the inner and outer radii are fabricated and tested on the established experimental setup. The experimental results show that: (1) The active controlled microfluidic valve with annular boundary possesses the on/off switching and the continuous control capability of the fluid with simple structure and easy fabrication processing; (2) When the inner and outer diameters of the annular boundary are 1.5 mm and 3.5 mm, respectively, the maximum flowrate of the valve is 0.14 ml/s when the differential pressure of the inlet and outlet of the valve is 1000 Pa and the voltage applied to circular piezoelectric unimorph actuator is 100 V; (3) The established active controlled flowrate model can accurately predict the controlled flowrate of the active controlled microfluidic valves with the maximum relative error of 6.7%. The results presented in this paper lay the foundation for designing and developing the active controlled microfluidic valves with annular boundary driven by circular piezoelectric unimorph actuators.

  13. Computational prediction and experimental verification of HVA1-like abscisic acid responsive promoters in rice (Oryza sativa).

    PubMed

    Ross, Christian; Shen, Qingxi J

    2006-09-01

    Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.

  14. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  15. Hydrogen gas relief valve

    DOEpatents

    Whittlesey, Curtis C.

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  16. A fuzzy set approach for reliability calculation of valve controlling electric actuators

    NASA Astrophysics Data System (ADS)

    Karmachev, D. P.; Yefremov, A. A.; Luneva, E. E.

    2017-02-01

    The oil and gas equipment and electric actuators in particular frequently perform in various operational modes and under dynamic environmental conditions. These factors affect equipment reliability measures in a vague, uncertain way. To eliminate the ambiguity, reliability model parameters could be defined as fuzzy numbers. We suggest a technique that allows constructing fundamental fuzzy-valued performance reliability measures based on an analysis of electric actuators failure data in accordance with the amount of work, completed before the failure, instead of failure time. Also, this paper provides a computation example of fuzzy-valued reliability and hazard rate functions, assuming Kumaraswamy complementary Weibull geometric distribution as a lifetime (reliability) model for electric actuators.

  17. Fast force actuators for LSST primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Hileman, Edward; Warner, Michael; Wiecha, Oliver

    2010-07-01

    The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.

  18. ESD testing of the 8S actuator (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mchugh, Douglas C

    2010-12-03

    The 8S actuator is a hot-wire initiated explosive component used to drive the W76-1 2X Acorn 1V valve. It is known to be safe from human electrostatic discharge (ESD) pin-to-pin and all pin-to-cup stimuli as well as 1 amp/1 watt safe. However low impedance (furniture) ESD stimuli applied pin-to-pin has not been evaluated. Components were tested and the results analyzed. The 8S actuator has been shown to be immune to human and severe furniture ESD, whether applied pin-to-pin or pin-to-cup.

  19. Thermally-actuated, phase change flow control for microfluidic systems.

    PubMed

    Chen, Zongyuan; Wang, Jing; Qian, Shizhi; Bau, Haim H

    2005-11-01

    An easy to implement, thermally-actuated, noninvasive method for flow control in microfluidic devices is described. This technique takes advantage of the phase change of the working liquid itself-the freezing and melting of a portion of a liquid slug-to noninvasively close and open flow passages (referred to as a phase change valve). The valve was designed for use in a miniature diagnostic system for detecting pathogens in oral fluids at the point of care. The paper describes the modeling, construction, and characteristics of the valve. The experimental results favorably agree with theoretical predictions. In addition, the paper demonstrates the use of the phase change valves for flow control, sample metering and distribution into multiple analysis paths, sealing of a polymerase chain reaction (PCR) chamber, and sample introduction into and withdrawal from a closed loop. The phase change valve is electronically addressable, does not require any moving parts, introduces only minimal dead volume, is leakage and contamination free, and is biocompatible.

  20. High-Force Dielectric Electroactive Polymer (DEAP) membrane actuator

    NASA Astrophysics Data System (ADS)

    Hau, Steffen; York, Alexander; Seelecke, Stefan

    2016-04-01

    Energy efficiency, lightweight and scalability are key features for actuators in applications such as valves, pumps or any portable system. Dielectric electroactive Polymer (DEAP) technology is able to fulfill these requirements1 better than commonly used technology e.g. solenoids, but has limitations concerning force and stroke. However, the circular DEAP membrane actuator shows a potential increase in stroke in the mm range, when combined with an appropriate biasing mechanism2. Although, thus far, their force range is limited to the single-digit Newton range, or less3,4. This work describes how this force limit of DEAP membrane actuators can be pushed to the high double-digit Newton range and beyond. The concept for such an actuator consists of a stack of double-layered DEAPs membrane actuator combined with a biasing mechanism. These two components are combined in a novel way, which allows a compact design by integrating the biasing mechanism into the DEAP membrane actuator stack. Subsequently, the single components are manufactured, tested, and their force-displacement characteristic is documented. Utilizing this data allows assembling them into actuator systems for different applications. Two different actuators are assembled and tested (dimensions: 85x85x30mm3 (LxWxH)). The first one is able to lift 7.5kg. The second one can generate a force of 66N while acting against a spring load.

  1. 49 CFR Appendix A to Part 180 - Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Test for Liquefied Compressed Gases A Appendix A to Part 180 Transportation Other Regulations Relating... Compressed Gases 1. In performing this test, all internal self-closing stop valves must be opened. Each.... 2. On pump-actuated pressure differential internal valves, the three-way toggle valve handle or its...

  2. High-authority smart material integrated electric actuator

    NASA Astrophysics Data System (ADS)

    Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary

    1997-05-01

    For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.

  3. Characterization of small microfluidic valves for studies of mechanical properties of bacteria

    DOE PAGES

    Yang, Da; Greer, Clayton M.; Jones, Branndon P.; ...

    2015-09-02

    Lab-on-a-chip platforms present many new opportunities to study bacterial cells and cellular assemblies. Here, the authors describe a new platform that allows us to apply uniaxial stress to individual bacterial cells while observing the cell and its subcellular assemblies using a high resolution optical microscope. The microfluidic chip consists of arrays of miniature pressure actuated valves. By placing a bacterium under one of such valves and partially closing the valve by externally applied pressure, the cell can be deformed. Although large pressure actuated valves used in integrated fluidic circuits have been extensively studied previously, here the authors downsize those microfluidicmore » valves and use flow channels with rectangular cross-sections to maintain the bacteria in contact with cell culture medium during the experiments. The closure of these valves has not been characterized before. First, these valves are modeled using finite element analysis, and then compared the modeling results with the actual closing profiles of the valves, which is determined from absorption measurements. The measurements and modeling show with good agreement that the deflection of valves is a linear function of externally applied pressure and the deflection scales proportionally to the width of the flow channel. In addition to characterizing the valve, the authors show at a proof-of-principle level that it can be used to deform a bacterial cell at considerable magnitude. They found the largest deformations in 5 μm wide channels where the bacterial width and length increase by 1.6 and 1.25 times, respectively. Narrower and broader channels are less optimal for these studies. Finally, the platform presents a promising approach to probe, in a quantitative and systematic way, the mechanical properties of not only bacterial cells but possibly also yeast and other single-celled organisms.« less

  4. Variable-pulse switching circuit accurately controls solenoid-valve actuations

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1967-01-01

    Solid state circuit generating adjustable square wave pulses of sufficient power operates a 28 volt dc solenoid valve at precise time intervals. This circuit is used for precise time control of fluid flow in combustion experiments.

  5. Microfluidic valve array control system integrating a fluid demultiplexer circuit

    NASA Astrophysics Data System (ADS)

    Kawai, Kentaro; Arima, Kenta; Morita, Mizuho; Shoji, Shuichi

    2015-06-01

    This paper proposes an efficient control method for the large-scale integration of microvalves in microfluidic systems. The proposed method can control 2n individual microvalves with 2n + 2 control lines (where n is an integer). The on-chip valves are closed by applying pressure to a control line, similar to conventional pneumatic microvalves. Another control line closes gate valves between the control line to the on-chip valves and the on-chip valves themselves, to preserve the state of the on-chip valves. The remaining control lines select an activated gate valve. While the addressed gate valve is selected by the other control lines, the corresponding on-chip valve is actuated by applying input pressure to the control line to the on-chip valves. Using this method would substantially reduce the number of world-to-chip connectors and off-chip valve controllers. Experiments conducted using a fabricated 28 microvalve array device, comprising 256 individual on-chip valves controlled with 18 (2   ×   8 + 2) control lines, yielded switching speeds for the selected on-chip valve under 90 ms.

  6. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control

    PubMed Central

    Markov, Dmitry A.; Manuel, Steven; Shor, Leslie M.; Opalenik, Susan R.; Wikswo, John P.; Samson, Philip C.

    2013-01-01

    We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools – a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator / prey relationships among microbes. PMID:19859812

  7. ToF-SIMS Characterization of Biocompatible Silk/Polypyrrole Electromechanical Actuators

    NASA Astrophysics Data System (ADS)

    Bradshaw, Nathan; Severt, Sean; Wang, Zhaoying; Klemke, Carly; Larson, Jesse; Zhu, Zihua; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Materials capable of controlled movements that can also interface with biological environments are highly sought after for biomedical devices such as valves, blood vessel sutures, cochlear implants and controlled drug release devices. Recently we have reported the synthesis of films composed of a conductive interpenetrating network of the biopolymer silk fibroin and poly(pyrrole). These silk-PPy composites function as bilayer electromechanical actuators in a biologically-relevant environment, can be actuated repeatedly, and are able to generate forces comparable with natural muscle (>0.1 MPa), making them an ideal candidate for interfacing with biological tissues. Here, time of flight secondary ion mass spectrometry was used to investigate the migration of ions in the devices during actuation. These findings will be discussed in the context of the actuation mechanism and opportunities for further improvements in device stability and performance.

  8. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, J.C.

    1995-06-27

    A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.

  9. Development of a magneto-rheological fluid based hybrid actuation system

    NASA Astrophysics Data System (ADS)

    John, Shaju

    A hybrid hydraulic actuation system is proposed as an active pitch link for rotorcraft applications. Such an active pitch link can be used to implement Individual Blade Control (IBC) techniques for vibration and noise reduction, in addition to providing primary control for the helicopter. Conventional technologies like electric motors and hydraulic actuators have major disadvantages when it come to applications on a rotating environment. Centralized hydraulic system require the use of mechanically complex hydraulic slip rings and electric motors have high precision mechanical moving parts that make them unattractive in application with high centrifugal load. The high energy density of smart materials can be used to design hydraulic actuators in a compact package. MagnetoRheological (MR) fluids can be used as the working fluid in such a hybrid hydraulic actuation system to implement a valving system with no moving parts. Thus, such an actuation system can be theoretically well-suited for application in a rotating environment. To develop an actuation system based on an active material stack and MR fluidic valves, a fundamental understanding of the hydraulic circuit is essential. In order to address this issue, a theoretical model was developed to understand the effect of pumping chamber geometry on the pressure losses in the pumping chamber. Three dimensional analytical models were developed for steady and unsteady flow and the results were correlated to results obtained from Computation Fluid Dynamic simulation of fluid flow inside the pumping chamber. Fundamental understanding regarding the pressure losses in a pumping chamber are obtained from the modeling process. Vortices that form in the pumping chamber (during intake) and the discharge tube (during discharge) are identified as a major cause of pressure loss in the chamber. The role of vortices during dynamic operation is also captured through a frequency domain model. Extensive experimental studies were

  10. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.

    PubMed

    Wickramatunge, Kanchana Crishan; Leephakpreeda, Thananchai

    2013-11-01

    Pneumatic Artificial Muscle (PAM) actuators yield muscle-like mechanical actuation with high force to weight ratio, soft and flexible structure, and adaptable compliance for rehabilitation and prosthetic appliances to the disabled as well as humanoid robots or machines. The present study is to develop empirical models of the PAM actuators, that is, a PAM coupled with pneumatic control valves, in order to describe their dynamic behaviors for practical control design and usage. Empirical modeling is an efficient approach to computer-based modeling with observations of real behaviors. Different characteristics of dynamic behaviors of each PAM actuator are due not only to the structures of the PAM actuators themselves, but also to the variations of their material properties in manufacturing processes. To overcome the difficulties, the proposed empirical models are experimentally derived from real physical behaviors of the PAM actuators, which are being implemented. In case studies, the simulated results with good agreement to experimental results, show that the proposed methodology can be applied to describe the dynamic behaviors of the real PAM actuators. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Variable reluctance proximity sensors for cryogenic valve position indication

    NASA Technical Reports Server (NTRS)

    Cloyd, R. A.

    1982-01-01

    A test was conducted to determine the performance of a variable reluctance proximity sensor system when installed in a space shuttle external tank vent/relief valve. The sensors were used as position indicators. The valve and sensors were cycled through a series of thermal transients; while the valve was being opened and closed pneumatically, the sensor's performance was being monitored. During these thermal transients, the vent valve was cooled ten times by liquid nitrogen and two times by liquid hydrogen. It was concluded that the sensors were acceptable replacements for the existing mechanical switches. However, the sensors need a mechanical override for the target similar to what is presently used with the mechanical switches. This override could insure contact between sensor and target and eliminate any problems of actuation gap growth caused by thermal gradients.

  12. Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications

    PubMed Central

    Ke, Ming-Tsun; Zhong, Jian-Hao; Lee, Chia-Yen

    2012-01-01

    This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions. PMID:23201986

  13. Preliminary engineering study: Quick opening valve MSFC high Reynolds number wind tunnel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    FluiDyne Engineering Corporation has conducted a preliminary engineering study of a quick-opening valve for the MSFC High Reynolds Number Wind Tunnel under NASA Contract NAS8-35056. The subject valve is intended to replace the Mylar diaphragm system as the flow initiation device for the tunnel. Only valves capable of opening within 0.05 sec. and providing a minimum of 11.4 square feet of flow area were considered. Also, the study focused on valves which combined the quick-opening and tight shutoff features in a single unit. A ring sleeve valve concept was chosen for refinement and pricing. Sealing for tight shutoff, ring sleeve closure release and sleeve actuation were considered. The resulting cost estimate includes the valve and requisite modifications to the facility to accommodate the valve as well as the associated design and development work.

  14. Shape-Memory Wires Switch Rotary Actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron J.

    1992-01-01

    Thermomechanical rotary actuator based on shape-memory property of alloy composed of equal parts of titanium and nickel. If alloy stretched while below transition temperature, it reverts to original length when heated above transition temperature. Two capstans on same shaft wrapped with shape-memory wires. As one wire heated, it contracts and stretches opposite wire. Wires heated in alternation so they switch shaft between two extreme angular positions; "on" and "off" positions of rotary valve.

  15. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-11-15

    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  16. Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots.

    PubMed

    Li, Yunquan; Chen, Yonghua; Ren, Tao; Li, Yingtian; Choi, Shiu Hong

    2018-06-20

    The past decade has witnessed tremendous progress in soft robotics. Unlike most pneumatic-based methods, we present a new approach to soft robot design based on precharged pneumatics (PCP). We propose a PCP soft bending actuator, which is actuated by precharged air pressure and retracted by inextensible tendons. By pulling or releasing the tendons, the air pressure in the soft actuator is modulated, and hence, its bending angle. The tendons serve in a way similar to pressure-regulating valves that are used in typical pneumatic systems. The linear motion of tendons is transduced into complex motion via the prepressurized bent soft actuator. Furthermore, since a PCP actuator does not need any gas supply, complicated pneumatic control systems used in traditional soft robotics are eliminated. This facilitates the development of compact untethered autonomous soft robots for various applications. Both theoretical modeling and experimental validation have been conducted on a sample PCP soft actuator design. A fully untethered autonomous quadrupedal soft robot and a soft gripper have been developed to demonstrate the superiority of the proposed approach over traditional pneumatic-driven soft robots.

  17. Water hammer caused by closure of turbine safety spherical valves

    NASA Astrophysics Data System (ADS)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  18. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  19. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

    PubMed Central

    Rahmanian, Omid D.

    2014-01-01

    A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care. PMID:25972774

  20. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  1. Centrifugo-pneumatic valving utilizing dissolvable films.

    PubMed

    Gorkin, Robert; Nwankire, Charles E; Gaughran, Jennifer; Zhang, Xin; Donohoe, Gerard G; Rook, Martha; O'Kennedy, Richard; Ducrée, Jens

    2012-08-21

    In this article we introduce a novel technology that utilizes specialized water dissolvable thin films for valving in centrifugal microfluidic systems. In previous work (William Meathrel and Cathy Moritz, IVD Technologies, 2007), dissolvable films (DFs) have been assembled in laminar flow devices to form efficient sacrificial valves where DFs simply open by direct contact with liquid. Here, we build on the original DF valving scheme to leverage sophisticated, merely rotationally actuated vapour barriers and flow control for enabling comprehensive assay integration with low-complexity instrumentation on "lab-on-a-disc" platforms. The advanced sacrificial valving function is achieved by creating an inverted gas-liquid stack upstream of the DF during priming of the system. At low rotational speeds, a pocket of trapped air prevents a surface-tension stabilized liquid plug from wetting the DF membrane. However, high-speed rotation disrupts the metastable gas/liquid interface to wet the DF and thus opens the valve. By judicious choice of the radial position and geometry of the valve, the burst frequency can be tuned over a wide range of rotational speeds nearly 10 times greater than those attained by common capillary burst valves based on hydrophobic constrictions. The broad range of reproducible burst frequencies of the DF valves bears the potential for full integration and automation of comprehensive, multi-step biochemical assay protocols. In this report we demonstrate DF valving, discuss the biocompatibility of using the films, and show a potential sequential valving system including the on-demand release of on-board stored liquid reagents, fast centrifugal sedimentation and vigorous mixing; thus providing a viable basis for use in lab-on-a-disc platforms for point-of-care diagnostics and other life science applications.

  2. Associations of beta-endorphin with HVA and MHPG in the plasma of prepubertal boys: effects of familial drug abuse and antisocial personality disorder liability.

    PubMed

    Moss, H B; Yao, J K

    1996-06-01

    It is well-established that the secretion of the opioid neuropeptide beta-endorphin is perturbed by the administration of various drugs of abuse. Several investigators have speculated that variations in beta-endorphin secretory regulation may precede the development of a substance use disorder, and thus be a component of the liability for substance abuse. In order to test this hypothesis, we examined fasting, morning plasma concentrations of beta-endorphin and two catecholamine metabolites in prepubertal boys naive to drugs of abuse and at elevated familial risk for a substance use disorder (SA+), and in controls (SA-). Specifically, the dopaminergic metabolite homovanillic acid (pHVA), and the noradrenergic metabolite, 3-methoxy-4-hydroxy-phenylglycol (pMHPG) were measured. Between-group differences were not found for beta-endorphin, pHVA, or pMHPG. Similarly, such differences did not differentiate sons of fathers with Antisocial Personality Disorder and controls. However, regression analysis revealed that although both pHVA and pMHPG predicted beta-endorphin concentrations to similar degrees, the directions of influence were the opposite. pHVA was found to be positively associated with beta-endorphin while pMHPG was found to be negatively associated with beta-endorphin. No between-group differences in these relationships were found. The results suggest an opponent process in catecholaminergic regulation of beta-endorphin in humans, and are consistent with observations in the central nervous system of animal models.

  3. High-pressure cryogenic valves for the Vulcain rocket motor

    NASA Astrophysics Data System (ADS)

    Garceau, P.; Meyer, F.

    The high-pressure valve developed to control the flow of liquid oxygen or hydrogen into the gas generator of the ESA Vulcain rocket motor is described. The spherical ball-seal design employed provides high reliability over a service lifetime of 5000 on-off actuations at temperatures 20-350 K and pressures up to 200 bar. Leakage is limited to a few cu cm/sec of hydrogen at 20 K. The steps in the development process, from the definition of the valve specifications to the fabrication and testing phase are reviewed, and the final design is shown in drawings, diagrams, and photographs.

  4. Zipping dielectric elastomer actuators: characterization, design and modeling

    NASA Astrophysics Data System (ADS)

    Maffli, L.; Rosset, S.; Shea, H. R.

    2013-10-01

    We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.

  5. Biocompatible silk-conducting polymer composite trilayer actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly V.; Bradshaw, Nathan P.; Severt, Sean Y.; Murphy, Amanda R.; Leger, Janelle M.

    2017-05-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymer actuators are of interest because they operate in aqueous electrolytes at low voltages and can generate stresses similar to natural muscle. Recently, our group has demonstrated a composite material of silk and poly(pyrrole) (PPy) that is mechanically robust, made from biocompatible materials, and bends under an applied voltage when incorporated into a simple bilayer device architecture and actuated using a biologically relevant electrolyte. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. The trilayer architecture allows one side to expand while the other contracts, resulting in improved performance over bilayer devices. Specifically, this configuration shows a larger angle of deflection per volt applied than the analogous bilayer system, while maintaining a consistent current response throughout cycling. In addition, the overall motion of the trilayer devices is more symmetric than that of the bilayer analogs, allowing for fully reversible operation.

  6. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  7. Parallel kinematic mechanisms for distributed actuation of future structures

    NASA Astrophysics Data System (ADS)

    Lai, G.; Plummer, A. R.; Cleaver, D. J.; Zhou, H.

    2016-09-01

    Future machines will require distributed actuation integrated with load-bearing structures, so that they are lighter, move faster, use less energy, and are more adaptable. Good examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic form for current flying conditions, and light but powerful robotic manipulators which can interact safely with human co-workers. A 'tensegrity structure' is a good candidate for this application due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element structure into which actuators could be embedded. This paper presents results of an analysis of an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical method is used to determine the stability of the structure with varying actuator length, showing how four actuators can be used to control movement in three degrees of freedom as well as simultaneously maintaining the structural pre-load. An experimental prototype has been built, in which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are controlled antagonistically, by high speed switching of on-off valves, to achieve control of position and structure pre-load. Experimental and simulation results are presented, and future prospects for the approach are discussed.

  8. Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber

    NASA Astrophysics Data System (ADS)

    Mikułowski, Grzegorz; Wiszowaty, Rafał; Holnicki-Szulc, Jan

    2013-12-01

    This paper describes a pneumatic valve based on a multilayer piezoelectric actuator and Hörbiger plates. The device was designed to operate in an adaptive pneumatic shock absorber. The adaptive pneumatic shock absorber was considered as a piston-cylinder device and the valve was intended to be installed inside the piston. The main objective for the valve application was regulating the gas flow between the cylinder’s chambers in order to maintain the desired value of the reaction force generated by the shock absorber. The paper describes the design constraints and requirements, together with results of analytical modelling of fluid flow verified versus experimentally obtained data. The presented results indicate that the desired performance characteristics of the valve were obtained. The geometrical constraints of the flow ducts were studied and the actuator’s functional features analysed.

  9. Use of Ice-Nucleating Proteins To Improve the Performance of Freeze-Thaw Valves in Microfluidic Devices.

    PubMed

    Gaiteri, Joseph C; Henley, W Hampton; Siegfried, Nathan A; Linz, Thomas H; Ramsey, J Michael

    2017-06-06

    Currently, reliable valving on integrated microfluidic devices fabricated from rigid materials is confined to expensive and complex methods. Freeze-thaw valves (FTVs) can provide a low cost, low complexity valving mechanism, but reliable implementation of them has been greatly hindered by the lack of ice nucleation sites within the valve body's small volume. Work to date has required very low temperatures (on the order of -40 °C or colder) to induce freezing without nucleation sites, making FTVs impractical due to instrument engineering challenges. Here, we report the use of ice-nucleating proteins (INPs) to induce ice formation at relatively warm temperatures in microfluidic devices. Microfluidic channels were filled with buffers containing femtomolar INP concentrations from Pseudomonas syringae. The channels were cooled externally with simple, small-footprint Peltier thermoelectric coolers (TECs), and the times required for channel freezing (valve closure) and thawing (valve opening) were measured. Under optimized conditions in plastic chips, INPs made sub-10 s actuations possible at TEC temperatures as warm as -13 °C. Additionally, INPs were found to have no discernible inhibitory effects in model enzyme-linked immunosorbent assays or polymerase chain reactions, indicating their compatibility with microfluidic systems that incorporate these widely used bioassays. FTVs with INPs provide a much needed reliable valving scheme for rigid plastic devices with low complexity, low cost, and no moving parts on the device or instrument. The reduction in freeze time, accessible actuation temperatures, chemical compatibility, and low complexity make the implementation of compact INP-based FTV arrays practical and attractive for the control of integrated biochemical assays.

  10. Electrowetting (EW)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow.

    PubMed

    Cheng, Ji-Yen; Hsiung, Lo-Chang

    2004-12-01

    Electrowetting (EW)-based techniques have been widely used in manipulating discrete liquid. However, few articles discussed the controlling of continuous fluid flow by using EW-based techniques. In this paper, an EW-based valve combined with plasma-modified Teflon surface, which serves as a microfluidic guidance, in controlling continuous fluid flow has been demonstrated. The plasma-modified Teflon surface is firstly demonstrated for confining continuous fluid flow. The EW-based microfluidic device possesses the functions of a valve and a microchannel without complex moving parts and grooved microchannels. The quantitative characteristics of the EW-based valve are also studied. Propylene carbonate (PC) is firstly demonstrated as the working liquid in the EW-based device because of its applications in parallel oligonucleotide synthesis. It is found that lower valve actuation voltage reduces the deterioration of the valve and improves the valve stability.

  11. Miniature Cryogenic Valves for a Titan Lake Sampling System

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa

    2014-01-01

    The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.

  12. Modification and performance evaluation of a mono-valve engine

    NASA Astrophysics Data System (ADS)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  13. Hierarchical design of an electro-hydraulic actuator based on robust LPV methods

    NASA Astrophysics Data System (ADS)

    Németh, Balázs; Varga, Balázs; Gáspár, Péter

    2015-08-01

    The paper proposes a hierarchical control design of an electro-hydraulic actuator, which is used to improve the roll stability of vehicles. The purpose of the control system is to generate a reference torque, which is required by the vehicle dynamic control. The control-oriented model of the actuator is formulated in two subsystems. The high-level hydromotor is described in a linear form, while the low-level spool valve is a polynomial system. These subsystems require different control strategies. At the high level, a linear parameter-varying control is used to guarantee performance specifications. At the low level, a control Lyapunov-function-based algorithm, which creates discrete control input values of the valve, is proposed. The interaction between the two subsystems is guaranteed by the spool displacement, which is control input at the high level and must be tracked at the low-level control. The spool displacement has physical constraints, which must also be incorporated into the control design. The robust design of the high-level control incorporates the imprecision of the low-level control as an uncertainty of the system.

  14. Design and Development of a Miniaturized Double Latching Solenoid Valve for the Sample Analysis at Mars Instrument Suite

    NASA Technical Reports Server (NTRS)

    Smith, James T.

    2008-01-01

    The development of the in-house Miniaturized Double Latching Solenoid Valve, or Microvalve, for the Gas Processing System (GPS) of the Sample Analysis at Mars (SAM) instrument suite is described. The Microvalve is a double latching solenoid valve that actuates a pintle shaft axially to hermetically seal an orifice. The key requirements and the design innovations implemented to meet them are described.

  15. Miniaturized Single-Shot Valve and its Application to the ExoMars Pasteur Payload

    NASA Technical Reports Server (NTRS)

    Muller, Pierre; Henkel, Hartmut; Klinkner, Sabine

    2010-01-01

    Hermetically sealing a gas tank and opening it into tubing under telecommand control is a function required in various space instruments. There are a number of space valves that are power saving, withstand vibration, and do not contaminate the gas. But none of them combines these features with low mass and the ability to withstand temperatures of 130 C during the sterilization process mandatory for planetary missions. In this paper, a novel miniature valve is presented, which is particularly adapted to space applications. It is electrically actuated, utilizing a bimetallic snap-disc that pierces a metallic membrane by a needle pin, thereby opening the valve. The design of this single-shot valve is such that it allows it to withstand a temperature of 130 C and a pressure of 50 bars. The valve is also lightweight (6.62 g) and it requires only 9 W to operate.

  16. AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves.

    PubMed

    Brask, Anders; Snakenborg, Detlef; Kutter, Jörg P; Bruus, Henrik

    2006-02-01

    We present the design, test and theoretical analysis of a novel micropump. The purpose is to make a pump with large flow rate (approximately 10 microL min-1) and high pressure capacity (approximately 1 bar) powered by a low voltage DeltaV<30 V. The pump is operated in AC mode with an electroosmotic actuator in connection with a full wave rectifying valve system. Individual valves are based on a flexible membrane with a slit. Bubble-free palladium electrodes are implemented in order to increase the range of applications and reduce maintenance.

  17. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  18. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersectionmore » geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.« less

  19. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    PubMed Central

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-01-01

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed. PMID:21520147

  20. Magnetic-adhesive based valves for microfluidic devices used in low-resource settings.

    PubMed

    Harper, Jason C; Andrews, Jenna M; Ben, Candice; Hunt, Andrew C; Murton, Jaclyn K; Carson, Bryan D; Bachand, George D; Lovchik, Julie A; Arndt, William D; Finley, Melissa R; Edwards, Thayne L

    2016-10-18

    Since the introduction of micro total analytical systems (μTASs), significant advances have been made toward development of lab-on-a-chip platforms capable of performing complex biological assays that can revolutionize public health, among other applications. However, use of these platforms in low-resource environments (e.g. developing countries) has yet to be realized as the majority of technologies used to control microfluidic flow rely on off-device hardware with non-negligible size, cost, power requirements and skill/training to operate. In this paper we describe a magnetic-adhesive based valve that is simple to construct and operate, and can be used to control fluid flow and store reagents within a microfluidic device. The design consists of a port connecting two chambers on different planes in the device that is closed by a neodymium disk magnet seated on a thin ring of adhesive. Bringing an external magnet into contact with the outer surface of the device unseats and displaces the valve magnet from the adhesive ring, exposing the port. Using this configuration, we demonstrate on-device reagent storage and on-demand transport and reaction of contents between chambers. This design requires no power or external instrumentation to operate, is extremely low cost ($0.20 materials cost per valve), can be used by individuals with no technical training, and requires only a hand-held magnet to actuate. Additionally, valve actuation does not compromise the integrity of the completely sealed microfluidic device, increasing safety for the operator when toxic or harmful substances are contained within. This valve concept has the potential to simplify design of μTASs, facilitating development of lab-on-a-chip systems that may be practical for use in point-of-care and low-resource settings.

  1. Pressure tracking control of vehicle ABS using piezo valve modulator

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  2. A solar energy powered autonomous wireless actuator node for irrigation systems.

    PubMed

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  3. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall be...

  4. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    PubMed

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  5. Fluid-dynamic design optimization of hydraulic proportional directional valves

    NASA Astrophysics Data System (ADS)

    Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo

    2014-10-01

    This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.

  6. Numerical simulation of axisymmetric valve operation for different outer cone angle

    NASA Astrophysics Data System (ADS)

    Smyk, Emil

    One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet) the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve's nozzle) by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.

  7. Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics.

    PubMed

    Zhang, Xinjie; Zhu, Zhixian; Ni, Zhonghua; Xiang, Nan; Yi, Hong

    2017-06-01

    This work presents the fabrication of a microfluidic autoregulatory valve which is composed of several layers of thin polymer films (i.e., polyvinyl chloride (PVC), polyethylene terephthalate (PET) double-sided tape, and polydimethylsiloxane (PDMS)). Briefly, pulsed UV laser is employed to cut the microstructures of through grooves or holes in the thermoplastic polymer films, and then the polymer-film valves are precisely assembled through laminating the PDMS membranes to the thermoplastic polymer films through the roll-lamination method. The effective bonding between the PVC film and the PDMS membrane is realized using the planar seal method, and the valve is sandwiched and compressed by a home-made housing to achieve the good seal effect. Then, the flow performances of the prototype valve are examined, and constant flow autoregulation is realized under the static or dynamic test pressures. The long-term response of the valve is also studied and minimum flow-rate decrements are found over a long actuation time. The fabrication method proposed in this work is successful for the low-cost and fast prototyping of the polymer-film valve. We believe our method will also be broadly applicable for fabrication of other low-cost and disposable polymer-film microfluidic devices.

  8. Self-actuating and locking control for nuclear reactor

    DOEpatents

    Chung, Dong K.

    1982-01-01

    A self-actuating, self-locking flow cutoff valve particularly suited for use in a nuclear reactor of the type which utilizes a plurality of fluid support neutron absorber elements to provide for the safe shutdown of the reactor. The valve comprises a substantially vertical elongated housing and an aperture plate located in the housing for the flow of fluid therethrough, a substantially vertical elongated nozzle member located in the housing and affixed to the housing with an opening in the bottom for receiving fluid and apertures adjacent a top end for discharging fluid. The nozzle further includes two sealing means, one located above and the other below the apertures. Also located in the housing and having walls surrounding the nozzle is a flow cutoff sleeve having a fluid opening adjacent an upper end of the sleeve, the sleeve being moveable between an upper open position wherein the nozzle apertures are substantially unobstructed and a closed position wherein the sleeve and nozzle sealing surfaces are mated such that the flow of fluid through the apertures is obstructed. It is a particular feature of the present invention that the valve further includes a means for utilizing any increase in fluid pressure to maintain the cutoff sleeve in a closed position. It is another feature of the invention that there is provided a means for automatically closing the valve whenever the flow of fluid drops below a predetermined level.

  9. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    PubMed

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-11-01

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  11. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    PubMed Central

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node (“wEcoValve mote”) based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The “wEcoValve mote” firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW. PMID:22346580

  12. Micro Linear Pump with Electromagnetic Actuator

    NASA Astrophysics Data System (ADS)

    Suzumori, Koichi; Furusawa, Hiroaki; Kanda, Takefumi; Yamada, Yoshiaki; Nagata, Takashi

    In recent years, research and development of the micro-fluid systems have been activated in the field of chemical technology and biotechnology. Micro-fluid systems are realized by micromachine technology and MEMS technology. Micro pump is an essential element for miniaturization of chemical analysis reaction systems. The aim of this research is development of a micro linear pump which will be built into micro-fluid systems. This pump aims to take a sample of very-small-quantity of liquids. Taking a sample of very-small-quantity of liquids reduce the amount used and waste fluid of a reagent. Full length and diameter of this pump are 32.5mm and 6mm respectively. The features of this pump are (1) the pump is built with actuator, (2) the gap of 7μm between piston and cylinder is achieved through fine machining process, and (3) micro check-valves of 2mm diameter made of stainless-steel film are fabricated and integrated. In this paper, the structure and the characteristics of this pump were shown. And the characteristics after improvement of micro check-valves were shown.

  13. Piezo-Hydraulic Actuation for Driving High Frequency Miniature Split-Stirling Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Garaway, I.; Grossman, G.

    2008-03-01

    In recent years piezoelectric actuation has been identified as a promising means of driving miniature Stirling devices. It supports miniaturization, has a high power to volume ratio, can operate at almost any frequency, good electrical to mechanical efficiencies, and potentially has a very long operating life. The major drawback of piezoelectric actuation, however, is the very small displacements that this physical phenomenon produces. This study shows that by employing valve-less hydraulic amplification an oscillating pressure wave can be created that is sufficiently large to drive a high frequency miniature pulse tube cryocooler (as high as 500 Hz in our experiments and perhaps higher). Beyond the direct benefits derived from using piezoelectric actuation, there are further benefits derived from using the piezo-hydraulic arrangement with membranes. Due to the incompressibility of the hydraulic fluid, the actuator may be separated from the main body of the cryocooler by relatively large distances with almost no detrimental effects, and the complete lack of rubbing parts in the power conversion processes makes this type of cryocooler extremely robust. The design and experimental device, coined the "Piezo-Hydraulic Membrane Oscillator", are presented along with some test results.

  14. A wireless sequentially actuated microvalve system

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ki; Yoon, Yong-Kyu; Jeon, Hye-Seon; Seo, Soonmin; Park, Jung-Hwan

    2013-04-01

    A wireless microvalve system was fabricated based on induction heating for flow control in microfluidics by sequential valve opening. In this approach, we used paraffin wax as a flow plug, which can be changed from solid to liquid with adjacent heating elements operated by induction heating. Programmable opening of valves was devised by using different thermal responses of metal discs to a magnetic field. Copper and nickel discs with a diameter of 2.5 mm and various thicknesses (50, 100 and 200 µm) were prepared as heating elements by a laser cutting method, and they were integrated in the microfluidic channel as part of the microvalve. A calorimetric test was used to measure the thermal properties of the discs in terms of kinds of metal and disc thickness. Sequential openings of the microvalves were performed using the difference in the thermal response of 100 µm thick copper disc and 50 µm thick nickel disc for short-interval openings and 200 µm thick copper disc and 100-µm-thick nickel disc for long-interval openings. The thermal effect on fluid samples as a result of induction heating of the discs was studied by investigating lysozyme denaturation. More heat was generated in heating elements made of copper than in those made of nickel, implying differences in the thermal response of heating elements made of copper and nickel. Also, the thickness of the heating elements affected the thermal response in the elements. Valve openings for short intervals of 1-5 s and long intervals of 15-23 s were achieved by using two sets of heating elements. There was no significant change in lysozyme activity by increasing the temperature of the heating discs. This study demonstrates that a wireless sequentially actuated microvalve system can provide programmed valve opening, portability, ease of fabrication and operation, disposability, and low cost.

  15. Integrated sensing and actuation of dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng

    2017-04-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.

  16. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    PubMed

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-07

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.

  17. Feasibility of controlling speed-dependent low-frequency brake vibration amplification by modulating actuation pressure

    NASA Astrophysics Data System (ADS)

    Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.

  18. Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation.

    PubMed

    Nwankire, Charles E; Chan, Di-Sien S; Gaughran, Jennifer; Burger, Robert; Gorkin, Robert; Ducrée, Jens

    2013-08-26

    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction of metered plasma, the controlled release of sample and reagents (enzymes, co-factors and fluorescent labels), and incubation and detection steps. Flow control is implemented by a rotationally actuated dissolvable film (DF) valving scheme. In the valves, the burst pressure is primarily determined by the radial position, geometry and volume of the valve chamber and its inlet channel and can thus be individually tuned over an extraordinarily wide range of equivalent spin rates between 1,000 RPM and 5,500 RPM. Furthermore, the vapour barrier properties of the DF valves are investigated in this paper in order to further show the potential for commercially relevant on-board storage of liquid reagents during shelf-life of bioanalytical, ready-to-use discs.

  19. Fluidic Automation of Nitrate and Nitrite Bioassays in Whole Blood by Dissolvable-Film Based Centrifugo-Pneumatic Actuation

    PubMed Central

    Nwankire, Charles E.; Chan, Di-Sien S.; Gaughran, Jennifer; Burger, Robert; Gorkin, Robert; Ducrée, Jens

    2013-01-01

    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction of metered plasma, the controlled release of sample and reagents (enzymes, co-factors and fluorescent labels), and incubation and detection steps. Flow control is implemented by a rotationally actuated dissolvable film (DF) valving scheme. In the valves, the burst pressure is primarily determined by the radial position, geometry and volume of the valve chamber and its inlet channel and can thus be individually tuned over an extraordinarily wide range of equivalent spin rates between 1,000 RPM and 5,500 RPM. Furthermore, the vapour barrier properties of the DF valves are investigated in this paper in order to further show the potential for commercially relevant on-board storage of liquid reagents during shelf-life of bioanalytical, ready-to-use discs. PMID:24064595

  20. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure.

    PubMed

    Inthavong, Kiao; Fung, Man Chiu; Yang, William; Tu, Jiyuan

    2015-02-01

    To evaluate the deposition efficiency of spray droplets in a nasal cavity produced from a spray device, it is important to determine droplet size distribution, velocity, and its dispersion during atomization. Due to the limiting geometric dimensions of the nasal cavity airway, the spray plume cannot develop to its full size inside the nasal vestibule to penetrate the nasal valve region for effective drug deposition. Particle/droplet image analysis was used to determine local mean droplet sizes at eight regions within the spray plume under different actuation pressures that represent typical hand operation from pediatric to adult patients. The results showed that higher actuation pressure produces smaller droplets in the atomization. Stronger actuation pressure typical of adult users produces a longer period of the fully atomized spray stage, despite a shorter overall spray duration. This produces finer droplets when compared with the data obtained by weaker actuation pressure, typical of pediatric users. The experimental technique presented is able to capture a more complete representation of the droplet size distribution and the atomization process during an actuation. The measured droplet size distribution produced can be related to the empirically defined deposition efficiency curve of the nasal cavity, allowing a prediction of the likely deposition.

  1. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    PubMed

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  2. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.

    PubMed

    Willis, Peter A; Hunt, Brian D; White, Victor E; Lee, Michael C; Ikeda, Michael; Bae, Sam; Pelletier, Michael J; Grunthaner, Frank J

    2007-11-01

    Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.

  3. 40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pressure. 3. Valves (intake and exhaust). a. Head diameter dimension. b. Valve lifter or actuator type and... diameter dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve... dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve opening...

  4. 40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure. 3. Valves (intake and exhaust). a. Head diameter dimension. b. Valve lifter or actuator type and... diameter dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve... dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve opening...

  5. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    PubMed

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P <0.001) and an increase in valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P <0.001). No procedural complications were reported. BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  6. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    It is advantageous for gas-fed pulsed electric thrusters to employ pulsed valves so propellant is only flowing to the device during operation. The propellant utilization of the thruster will be maximized when all the gas injected into the thruster is acted upon by the fields produced by the electrical pulse. Gas that is injected too early will diffuse away from the thruster before the electrical pulse can act to accelerate the propellant. Gas that is injected too late will miss being accelerated by the already-completed electrical pulse. As a consequence, the valve must open quickly and close equally quickly, only remaining open for a short duration. In addition, the valve must have only a small amount of volume between the sealing body and the thruster so the front and back ends of the pulse are as coincident as possible with the valve cycling, with very little latent propellant remaining in the feed lines after the valve is closed. For a real mission of interest, a pulsed thruster can be expected to pulse at least 10(exp 10) - 10(exp 11) times, setting the range for the number of times a valve must open and close. The valves described in this paper have been fabricated and tested for operation in an inductive pulsed plasma thruster (IPPT) for in-space propulsion. In general, an IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged, producing a high-current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed, it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. The valve characteristics needed for the IPPT application require a fast-acting valve capable of a minimum of 10(exp 10) valve actuation cycles. Since

  7. Activation of Actuating Hydrogels with WS2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation.

    PubMed

    Zong, Lu; Li, Xiankai; Han, Xiangsheng; Lv, Lili; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-09-20

    Macroscopic soft actuation is intrinsic to living organisms in nature, including slow deformation (e.g., contraction, bending, twisting, and curling) of plants motivated by microscopic swelling and shrinking of cells, and rapid motion of animals (e.g., deformation of jellyfish) motivated by cooperative nanoscale movement of motor proteins. These actuation behaviors, with an exceptional combination of tunable speed and programmable deformation direction, inspire us to design artificial soft actuators for broad applications in artificial muscles, nanofabrication, chemical valves, microlenses, soft robotics, etc. However, so far artificial soft actuators have been typically produced on the basis of poly(N-isopropylacrylamide) (PNiPAM), whose deformation is motived by volumetric shrinkage and swelling in analogue to plant cells, and exhibits sluggish actuation kinetics. In this study, alginate-exfoliated WS 2 nanosheets were incorporated into ice-template-polymerized PNiPAM hydrogels with the cellular microstructures which mimic plant cells, yet the prompt steerable actuation of animals. Because of the nanosheet-reinforced pore walls formed in situ in freezing polymerization and reasonable hierarchical water channels, this cellular hybrid hydrogel achieves super deformation speed (on the order of magnitude of 10° s), controllable deformation direction, and high near-infrared light responsiveness, offering an unprecedented platform of artificial muscles for various soft robotics and devices (e.g., rotator, microvalve, aquatic swimmer, and water-lifting filter).

  8. Transcatheter Aortic Valve-in-Valve Procedure in Patients with Bioprosthetic Structural Valve Deterioration

    PubMed Central

    Reul, Ross M.; Ramchandani, Mahesh K.; Reardon, Michael J.

    2017-01-01

    Surgical aortic valve replacement is the gold standard procedure to treat patients with severe, symptomatic aortic valve stenosis or insufficiency. Bioprosthetic valves are used for surgical aortic valve replacement with a much greater prevalence than mechanical valves. However, bioprosthetic valves may fail over time because of structural valve deterioration; this often requires intervention due to severe bioprosthetic valve stenosis or regurgitation or a combination of both. In select patients, transcatheter aortic valve replacement is an alternative to surgical aortic valve replacement. Transcatheter valve-in-valve (ViV) replacement is performed by implanting a transcatheter heart valve within a failing bioprosthetic valve. The transcatheter ViV operation is a less invasive procedure compared with reoperative surgical aortic valve replacement, but it has been associated with specific complications and requires extensive preoperative work-up and planning by the heart team. Data from experimental studies and analyses of results from clinical procedures have led to strategies to improve outcomes of these procedures. The type, size, and implant position of the transcatheter valve can be optimized for individual patients with knowledge of detailed dimensions of the surgical valve and radiographic and echocardiographic measurements of the patient's anatomy. Understanding the complexities of the ViV procedure can lead surgeons to make choices during the original surgical valve implantation that can make a future ViV operation more technically feasible years before it is required. PMID:29743998

  9. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  10. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    NASA Astrophysics Data System (ADS)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response

  11. Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2016-04-01

    As offshore oil and gas exploration moves further offshore and into deeper waters to reach hydrocarbon reserves, it is becoming essential for the industry to develop more reliable and efficient hydraulic accumulators to supply pressured hydraulic fluid for various control and actuation operations, such as closing rams of blowout preventers and controlling subsea valves on the seafloor. By utilizing the shape memory effect property of nitinol, which is a type of shape memory alloy (SMA), an innovative SMA actuated hydraulic accumulator prototype has been developed and successfully tested at Smart Materials and Structure Laboratory at the University of Houston. Absence of gas in the developed SMA accumulator prototype makes it immune to hydrostatic head loss caused by water depth and thus reduces the number of accumulators required in deep water operations. Experiments with a feedback control have demonstrated that the proposed SMA actuated accumulator can provide precisely regulated pressurized fluids. Furthermore the potential use of ultracapacitors along with an embedded system to control the electric power supplied to SMA allows this accumulator to be an autonomous device for deployment. The developed SMA accumulator will make deepwater oil extraction systems more compact and cost effective.

  12. Independent Orbiter Assessment (IOA): Analysis of the ascent thrust vector control actuator subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.

  13. Self-contained hybrid electro-hydraulic actuators using magnetostrictive and electrostrictive materials

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban

    Hybrid electro-hydraulic actuators using smart materials along with flow rectification have been widely reported in recent years. The basic operation of these actuators involves high frequency bidirectional operation of an active material that is converted into unidirectional fluid motion by a set of valves. While theoretically attractive, practical constraints limit the efficacy of the solid-fluid hybrid actuation approach. In particular, inertial loads, fluid viscosity and compressibility combine with loss mechanisms inherent in the active material to limit the effective bandwidth of the driving actuator and the total output power. A hybrid actuator was developed by using magnetostrictive TerFeNOL-D as the active driving element and hydraulic oil as the working fluid. Tests, both with and without an external load, were carried out to measure the unidirectional performance of the actuator at different pumping frequencies and operating conditions. The maximum no-load output velocity was 84 mm/s with a 51 mm long rod and 88 mm/s with a 102 mm long rod, both noted around 325 Hz pumping frequency, while the blocked force was close to 89 N. Dynamic tests were performed to analyze the axial vibration characteristics of the Terfenol-D rods and frequency responses of the magnetic circuits. A second prototype actuator employing the same actuation principle was then designed by using the electrostrictive material PMN-32%PT as the driving element. Tests were conducted to measure the actuator performance for varying electrical input conditions and fluid bias pressures. The peak output velocity obtained was 330 mm/s while the blocked force was 63 N. The maximum volume flow rate obtained with the PMN-based actuator was more than double that obtained from the Terfenol-D--based actuator. Theoretical modeling of the dynamics of the coupled structural-hydraulic system is extremely complex and several models have been proposed earlier. At high pumping frequencies, the fluid inertia

  14. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  15. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  16. Force measurements of a magnetic micro actuator proposed for a microvalve array

    NASA Astrophysics Data System (ADS)

    Chang, Pauline J.; Chang, Frank W.; Yuen, Michelle C.; Otillar, Robert; Horsley, David A.

    2014-03-01

    Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO2 matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13-80 nN, and radial forces were 11-60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction.

  17. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    PubMed

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  18. Transcatheter aortic valve-in-valve implantation of a CoreValve in a JenaValve prosthesis: a case report.

    PubMed

    Lotfi, Shahram; Becker, Michael; Moza, Ajay; Autschbach, Rüdiger; Marx, Nikolaus; Schröder, Jörg

    2017-09-10

    Transcatheter aortic valve implantation has become an accepted treatment modality for inoperable or high-risk surgical patients with symptomatic severe aortic stenosis. We report the case of a 70-year-old white man who was treated for severe symptomatic aortic regurgitation using transcatheter aortic valve implantation from the apical approach. Because of recurrent cardiac decompensation 4 weeks after implantation he underwent the implantation of a left ventricular assist device system. A year later echocardiography showed a severe transvalvular central insufficiency. Our heart team decided to choose a valve-in-valve approach while reducing the flow rate of left ventricular assist device to minimum and pacing with a frequency of 140 beats/minute. There was an excellent result and our patient is doing well with no relevant insufficiency of the aortic valve at 12-month follow-up. This is the first report about a successful treatment of a stenotic JenaValve using a CoreValve Evolut R; the use of a CoreValve Evolut R prosthesis may be an optimal option for valve-in-valve procedures.

  19. The challenge of valve-in-valve procedures in degenerated Mitroflow bioprostheses and the advantage of using the JenaValve transcatheter heart valve.

    PubMed

    Conradi, Lenard; Kloth, Benjamin; Seiffert, Moritz; Schirmer, Johannes; Koschyk, Dietmar; Blankenberg, Stefan; Reichenspurner, Hermann; Diemert, Patrick; Treede, Hendrik

    2014-12-01

    Recently, the feasibility of valve-in-valve procedures using current first-generation transcatheter heart valves (THV) in cases of structural valve degeneration has been reported as an alternative to conventional open repeat valve replacement. By design, certain biological valve xenografts carry a high risk of coronary ostia occlusion due to lateral displacement of leaflets after valve-in-valve procedures. In the present report we aimed to prove feasibility and safety of transapical valve-in-valve implantation of the JenaValve THV in two cases of degenerated Mitroflow bioprostheses. We herein report two cases of successful transapical valve-in-valve procedures using a JenaValve THV implanted in Sorin Mitroflow bioprostheses for structural valve degeneration. Both patients were alive and in good clinical condition at 30 days from the procedure. However, increased transvalvular gradients were noted in both cases. Transcatheter valve-in-valve implantation of a JenaValve THV is a valid alternative for patients with degenerated Mitroflow bioprostheses of sufficient size and in the presence of short distances to the coronary ostia who are too ill for conventional repeat open heart surgery. Increased pressure gradients have to be expected and weighed against the disadvantages of other treatment options when planning such a procedure.

  20. Mm-size bistable zipping dielectric elastomer actuators for integrated microfluidics

    NASA Astrophysics Data System (ADS)

    Maffli, Luc; Rosset, Samuel; Shea, Herbert R.

    2013-04-01

    We report on a new structure of Dielectric Elastomer Actuators (DEAs) called zipping DEAs, which have a set of unique characteristics that are a good match for the requirements of electrically-powered integrated microfluidic pumping and/or valving units as well as Braille displays. The zipping DEAs operate by pulling electrostatically an elastomer membrane in contact with the rigid sidewalls of a sloped chamber. In this work, we report on fully functional mm-size zipping DEAs that demonstrate a complete sealing of the chamber sidewalls and a tunable bistable behavior, and compare the measurements with an analytical model. Compared to our first generation of devices, we are able vary the sidewall angle and benefit therefore from more flexibility to study the requirements to make fully functional actuators. In particular, we show that with Nusil CF19 as membrane material (1.2 MPa Young's modulus), it is possible to zip completely 2.3 mm diameter chambers with 15° and 21° sidewalls angle equibiaxially prestretched to λ0=1.12 and 15° chambers with λ0=1.27.

  1. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  2. Innovative safety valve selection techniques and data.

    PubMed

    Miller, Curt; Bredemyer, Lindsey

    2007-04-11

    The new valve data resources and modeling tools that are available today are instrumental in verifying that that safety levels are being met in both current installations and project designs. If the new ISA 84 functional safety practices are followed closely, good industry validated data used, and a user's maintenance integrity program strictly enforced, plants should feel confident that their design has been quantitatively reinforced. After 2 years of exhaustive reliability studies, there are now techniques and data available to support this safety system component deficiency. Everyone who has gone through the process of safety integrity level (SIL) verification (i.e. reliability math) will appreciate the progress made in this area. The benefits of these advancements are improved safety with lower lifecycle costs such as lower capital investment and/or longer testing intervals. This discussion will start with a review of the different valve, actuator, and solenoid/positioner combinations that can be used and their associated application restraints. Failure rate reliability studies (i.e. FMEDA) and data associated with the final combinations will then discussed. Finally, the impact of the selections on each safety system's SIL verification will be reviewed.

  3. Spool-type control valve assembly with reduced spool stroke for hydraulic belt-and-pulley type continuously variable transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, H.; Akashi, T.; Takada, M.

    1987-03-31

    This patent describes a hydraulic control system for controlling a speed ratio of a hydraulically-operated continuously variable transmission of belt-and-pulley type having a variable-diameter pulley and a hydraulic cylinder for changing an effective diameter of the variable diameter-pulley of the transmission. The hydraulic control system includes a speed-ratio control valve assembly for controlling the supply and discharge of a pressurized fluid to and from the hydraulic cylinder to thereby change the speed ratio of the transmission. The speed-ratio control valve assembly comprises: a shift-direction switching valve unit disposed in fluid supply and discharge conduits communicating with the hydraulic cylinder, formore » controlling a direction in which the speed ratio of the transmission is varied; a shift-speed control valve unit of spool-valve type connected to the shift-direction switching valve unit. The shift-speed control valve unit is selectively placed in a first state in which the fluid supply and discharge flows to and from the hydraulic cylinder through the conduits are permitted, or in a second state in which the fluid supply flow is restricted while the fluid discharge flow is inhibited; an actuator means for placing the shift speed control valve unit alternately in the first and second states to control a rate of variation in the speed ratio of the transmission in the direction established by the shift-direction switching valve unit.« less

  4. Safety valve

    DOEpatents

    Bergman, Ulf C.

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  5. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  6. An inkjet-printed electrowetting valve for paper-fluidic sensors.

    PubMed

    Koo, Charmaine K W; He, Fei; Nugen, Sam R

    2013-09-07

    Paper-fluidic devices have become an emerging trend for micro total analysis systems (microTAS) in the bioengineering field due to their ability to maintain the rapid, sensitive and specific attributes of microfluidic devices. Subsequently, paper-fluidic devices are also more portable, have a lower production cost and are easier to use. However, one of the obstacles in developing paper fluidic devices is the limited ability to control the rate of fluid flow during an assay. In our project, we use electrowetting on dielectrics where a dielectric, which is normally hydrophobic, is polarized and becomes hydrophilic. We have fabricated paper-fluidic devices by inkjet printing and spraying conductive hydrophobic electrodes/valves in conjunction with conductive hydrophilic electrodes which are able to stop the fluid front of phosphate buffered saline (PBS). The hydrophobic valves were then actuated by an applied potential which altered the fluorinated monolayer on the electrode. As the applied potential between the electrodes was increased, the amount of time for the fluid front to pass the valve decreased because the monolayer was altered faster. However, we did not observe significant differences in time as we increased the distance between the electrodes. The valves were also incorporated in a lateral flow assay where the device was used to detect Saccharomyces cerevisiae rRNA sequences. With the ability to control the fluid flow in a paper-fluidic device, more complex and intricate assays can be developed, which not only can be applied in the biomedical, food and environmental fields, but also can be used in low resource settings for the detection of diseases.

  7. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  8. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    PubMed

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  9. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  10. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  11. Single molecule actuation and detection on a lab-on-a-chip magnetoresistive platform

    NASA Astrophysics Data System (ADS)

    Chaves, R. C.; Bensimon, D.; Freitas, P. P.

    2011-03-01

    On-chip magnetic tweezers based on current loops were integrated with magnetoresistive sensors. Magnetic forces up to 1.0±0.3pN are produced to actuate on DNA anchored to the surface of a flow cell and labeled with micrometer-sized magnetic beads. The levitation of the beads stretches the immobilized DNA. The relative position of the magnetic beads is monitored using spin-valve sensors. A bead vertical displacement resolution of 60nm is derived for DNA molecular motor activity in a tweezer steady current regime.

  12. Soft Robotic Actuators

    NASA Astrophysics Data System (ADS)

    Godfrey, Juleon Taylor

    In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.

  13. Best-estimate coupled RELAP/CONTAIN analysis of inadvertent BWR ADS valve opening transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Muftuoglu, A.K.

    1993-01-01

    Noncondensible gases may become dissolved in boiling water reactor (BWR) water-level instrumentation during normal operations. Any dissolved noncondensible gases inside these water columns may come out of solution during rapid depressurization events and displace water from the reference leg piping, resulting in a false high level. Significant errors in water-level indication are not expected to occur until the reactor pressure vessel (RPV) pressure has dropped below [approximately]450 psig. These water level errors may cause a delay or failure in emergency core cooling system (ECCS) actuation. The RPV water level is monitored using the pressure of a water column having amore » varying height (reactor water level) that is compared to the pressure of a water column maintained at a constant height (reference level). The reference legs have small-diameter pipes with varying lengths that provide a constant head of water and are located outside the drywell. The amount of noncondensible gases dissolved in each reference leg is very dependent on the amount of leakage from the reference leg and its geometry and interaction of the reactor coolant system with the containment, i.e., torus or suppression pool, and reactor building. If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response. In the postulated inadvertent opening of all seven automatic depressurization system (ADS) valves, the ECCS signal on high drywell pressure would be circumvented because the ADS valves discharge directly into the suppression pool. A best-estimate analysis of such an inadvertent opening of all ADS valves would have to consider the thermal-hydraulic coupling between the pool, drywell, reactor building, and RPV.« less

  14. Fluid-driven reciprocating apparatus and valving for controlling same

    DOEpatents

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  15. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  16. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  17. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  18. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  19. Development of PZT Actuated Valveless Micropump.

    PubMed

    Munas, Fathima Rehana; Melroy, Gehan; Abeynayake, Chamitha Bhagya; Chathuranga, Hiniduma Liyanage; Amarasinghe, Ranjith; Kumarage, Pubudu; Dau, Van Thanh; Dao, Dzung Viet

    2018-04-24

    A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

  20. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  1. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  2. Spherically Actuated Motor

    NASA Technical Reports Server (NTRS)

    Peeples, Steven

    2015-01-01

    A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.

  3. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  4. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  5. Transcatheter Aortic Valve Replacement for Native Aortic Valve Regurgitation

    PubMed Central

    Spina, Roberto; Anthony, Chris; Muller, David WM

    2015-01-01

    Transcatheter aortic valve replacement with either the balloon-expandable Edwards SAPIEN XT valve, or the self-expandable CoreValve prosthesis has become the established therapeutic modality for severe aortic valve stenosis in patients who are not deemed suitable for surgical intervention due to excessively high operative risk. Native aortic valve regurgitation, defined as primary aortic incompetence not associated with aortic stenosis or failed valve replacement, on the other hand, is still considered a relative contraindication for transcatheter aortic valve therapies, because of the absence of annular or leaflet calcification required for secure anchoring of the transcatheter heart valve. In addition, severe aortic regurgitation often coexists with aortic root or ascending aorta dilatation, the treatment of which mandates operative intervention. For these reasons, transcatheter aortic valve replacement has been only sporadically used to treat pure aortic incompetence, typically on a compassionate basis and in surgically inoperable patients. More recently, however, transcatheter aortic valve replacement for native aortic valve regurgitation has been trialled with newer-generation heart valves, with encouraging results, and new ancillary devices have emerged that are designed to stabilize the annulus–root complex. In this paper we review the clinical context, technical characteristics and outcomes associated with transcatheter treatment of native aortic valve regurgitation. PMID:29588674

  6. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.

    PubMed

    Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram

    2016-01-27

    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.

  7. Soft, Rotating Pneumatic Actuator.

    PubMed

    Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M

    2017-09-01

    This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).

  8. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  9. Soft buckling actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dian; Whitesides, George M.

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predeterminedmore » direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.« less

  10. Silicon micromachined pumps employing piezoelectric membrane actuation for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Koch, Michael

    Microsystems technology is a rapidly expanding area that comprises electronics, mechanics and optics. In this field, physical/chemical sensing, fluid handling and optical communication are emerging as potential markets. Microfluidic systems like an implantable insulin pump, a drug delivery system and a total chemical analysis system are currently being developed by academia and industry around the world. This project contributes to the area of microfluidics in that a novel thick-film-on-silicon membrane actuator has been developed to allow inexpensive mass production of micropumps. To date piezoelectric plates have been surface mounted onto a silicon membrane. This single chip fabrication method can now be replaced by screen printing thick piezoelectric layers onto 4 inch silicon substrates. Two different pump types have been developed. These are membrane pumps with either cantilever valves or diffuser/nozzle valves. Pump rates between 100 and 200 μl min-1 and backpressures up to 4 kPa have been achieved with these pumps. Along with the technology of micropumps, simulators have been developed. A novel coupled FEM-CFD solver was realised by a computer controlled coupling of two commercially available packages (ANSYS and CFX-Flow3D). The results of this simulator were in good agreement with measurements on micromachined cantilever valves. CFX- Flow3D was also used to successfully model the behaviour of the diffuser/nozzle valve. Finally, the pump has been simulated using a continuity equation. A behavioural dynamic extension of the cantilever valve was necessary to achieve better prediction of the pump rates for higher frequencies. As well, a common process has been developed for microfluidic devices like micromixers, particle counters and sorters as well as flow sensors. The micromixer has been tested already and achieves mixing for input pressures between 2 and 7 kPa. This agrees with simulations of the diffusive mixing with CFX-Flow3D. Together with the micropump

  11. Microfluidic cell disruption system employing a magnetically actuated diaphragm.

    PubMed

    Huh, Yun Suk; Choi, Jong Hyun; Huh, Kyoung Ae Kim; Kim, Kyoung Ae; Park, Tae Jung; Hong, Yeon Ki; Kim, Do Hyun; Hong, Won Hi; Lee, Sang Yup

    2007-12-01

    A microfluidic cell lysis chip equipped with a micromixer and SPE unit was developed and used for quantitative analysis of intracellular proteins. This miniaturized sample preparation system can be employed for any purpose where cell disruption is needed to obtain intracellular constituents for the subsequent analysis. This system comprises a magnetically actuated micromixer to disrupt cells, a hydrophobic valve to manipulate the cell lysate, and a packed porous polymerized monolith chamber for SPE and filtering debris from the cell lysate. Using recombinant Escherichia coli expressing intracellular enhanced green fluorescent protein (EGFP) and lipase as model bacteria, we optimized the cell disruption condition with respect to the lysis buffer composition, mixing time, and the frequency of the diaphragm in the micromixer, which was magnetically actuated by an external magnetic stirrer in the micromixer chamber. The lysed sample prepared under the optimal condition was purified by the packed SPE in the microfluidic chip. At a frequency of 1.96 Hz, the final cell lysis efficiency and relative fluorescence intensity of EGFP after the cell disruption process were greater than 90 and 94%, respectively. Thus, this microfluidic cell disruption chip can be used for the efficient lysis of cells for further analysis of intracellular contents in many applications.

  12. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.

    PubMed

    Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G

    2002-06-01

    A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.

  13. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside

    PubMed Central

    Saxon, John T; Allen, Keith B; Cohen, David J

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient–prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient–prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions. PMID:29593832

  14. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside.

    PubMed

    Saxon, John T; Allen, Keith B; Cohen, David J; Chhatriwalla, Adnan K

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient-prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient-prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions.

  15. Simulation model of an electrohydraulic-actuated double-clutch transmission vehicle: modelling and system design

    NASA Astrophysics Data System (ADS)

    Schoeftner, J.; Ebner, W.

    2017-12-01

    Automated and manual transmissions are the main link between engine and powertrain. The technical term when the transmission provides the desired torque during all possible driving conditions is denoted as powertrain matching. Recent developments in the last years show that double-clutch-transmissions (DCTs) are a reasonable compromise in terms of production costs, shifting quality, drivability and fuel efficiency. They have several advantages compared to other automatic transmissions (AT). Most DCTs nowadays consist of a hydraulic actuation control unit, which controls the clutches of the gearbox in order to induce a desired drivetrain torque into the driveline. The main functions of hydraulic systems are manifold: they initiate gear shifts, they provide sufficient oil for lubrication and they control the shift quality by suitably providing a desired oil flow or pressure for the clutch actuation. In this paper, a mathematical model of a passenger car equipped with a DCT is presented. The objective of this contribution is to get an increased understanding for the dynamics of the hydraulic circuit and its coupling to the vehicle drivetrain. The simulation model consists of a hydraulic and a mechanical domain: the hydraulic actuation circuit is described by nonlinear differential equations and includes the dynamics of the line pressure and the proportional valve, as well as the influence of the pressure reducing valve, pipe resistances and accumulator dynamics. The drivetrain with its gear ratios, moments of inertia, torsional stiffness of the rotating shafts and a simple longitudinal vehicle model represent the mechanical domain. The link between hydraulic and mechanical domain is given by the clutch, which combines hydraulic equations and Newton's laws. The presented mathematical model may not only be used as a simulation model for developing the transmission control software, it may also serve as a virtual layout for the design process phase. At the end of this

  16. 76 FR 13534 - Airworthiness Directives; The Boeing Company Model 767-200, -300, -300F, and -400ER Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... certain motor operated valve actuators for the fuel tanks are installed, and related investigative and... additional inspections to determine if certain motor operated valve actuators for the fuel tanks are... requires an inspection to determine if certain motor operated valve (MOV) actuators for the fuel tanks are...

  17. Temperature change rate actuated bubble mixing for homogeneous rehydration of dry pre-stored reagents in centrifugal microfluidics.

    PubMed

    Hin, S; Paust, N; Keller, M; Rombach, M; Strohmeier, O; Zengerle, R; Mitsakakis, K

    2018-01-16

    In centrifugal microfluidics, dead volumes in valves downstream of mixing chambers can hardly be avoided. These dead volumes are excluded from mixing processes and hence cause a concentration gradient. Here we present a new bubble mixing concept which avoids such dead volumes. The mixing concept employs heating to create a temperature change rate (TCR) induced overpressure in the air volume downstream of mixing chambers. The main feature is an air vent with a high fluidic resistance, representing a low pass filter with respect to pressure changes. Fast temperature increase causes rapid pressure increase in downstream structures pushing the liquid from downstream channels into the mixing chamber. As air further penetrates into the mixing chamber, bubbles form, ascend due to buoyancy and mix the liquid. Slow temperature/pressure changes equilibrate through the high fluidic resistance air vent enabling sequential heating/cooling cycles to repeat the mixing process. After mixing, a complete transfer of the reaction volume into the downstream fluidic structure is possible by a rapid cooling step triggering TCR actuated valving. The new mixing concept is applied to rehydrate reagents for loop-mediated isothermal amplification (LAMP). After mixing, the reaction mix is aliquoted into several reaction chambers for geometric multiplexing. As a measure for mixing efficiency, the mean coefficient of variation (C[combining macron]V[combining macron], n = 4 LabDisks) of the time to positivity (t p ) of the LAMP reactions (n = 11 replicates per LabDisk) is taken. The C[combining macron]V[combining macron] of the t p is reduced from 18.5% (when using standard shake mode mixing) to 3.3% (when applying TCR actuated bubble mixing). The bubble mixer has been implemented in a monolithic fashion without the need for any additional actuation besides rotation and temperature control, which are needed anyhow for the assay workflow.

  18. Math Machines: Using Actuators in Physics Classes

    NASA Astrophysics Data System (ADS)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  19. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  20. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  1. Control Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Wayne R.

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between amore » first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.« less

  2. A novel microfluidic valve controlledby induced charge electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2016-07-01

    In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.

  3. 75 FR 10696 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0070 and 0100 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... form on actuators P/N 9409122 installed on fuel crossfeed valves and fuel fire shut-off valves. Tests... fuel crossfeed valves and fuel fire shut-off valves. Tests revealed that the ice can prevent the... Tests for Fuel Crossfeed Valves and Fuel Fire Shut-Off Valves (g) For airplanes with an actuator having...

  4. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  5. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  6. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    PubMed Central

    Velescu, C.; Popa, N. C.

    2015-01-01

    We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids' motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i) velocity and pressure distributions, (ii) average velocity, (iii) volume flow rate of the liquid, (iv) pressures difference, and (v) radial clearance. PMID:26167532

  7. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve.

    PubMed

    Velescu, C; Popa, N C

    2015-01-01

    We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids' motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i) velocity and pressure distributions, (ii) average velocity, (iii) volume flow rate of the liquid, (iv) pressures difference, and (v) radial clearance.

  8. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  9. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    PubMed

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  10. JenaValve.

    PubMed

    Treede, Hendrik; Rastan, Ardawan; Ferrari, Markus; Ensminger, Stephan; Figulla, Hans-Reiner; Mohr, Friedrich-Wilhelm

    2012-09-01

    The JenaValve is a next-generation TAVI device which consists of a well-proven porcine root valve mounted on a low-profile nitinol stent. Feeler guided positioning and clip fixation on the diseased leaflets allow for anatomically correct implantation of the device without rapid pacing. Safety and efficacy of transapical aortic valve implantation using the JenaValve were evaluated in a multicentre prospective study that showed good short and midterm results. The valve was CE-mark released in Europe in September 2011. A post-market registry ensures on-going and prospective data collection in "real-world" patients. The transfemoral JenaValve delivery system will be evaluated in a first-in-man study in the near future.

  11. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  12. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  13. Self-Latching Piezocomposite Actuator

    NASA Technical Reports Server (NTRS)

    Wilkie, William K. (Inventor); Lynch, Christopher S. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  14. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  15. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  16. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  17. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    PubMed

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  18. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  19. Tricuspid valve and percutaneous approach: No longer the forgotten valve!

    PubMed

    Bouleti, Claire; Juliard, Jean-Michel; Himbert, Dominique; Iung, Bernard; Brochet, Eric; Urena, Marina; Dilly, Marie-Pierre; Ou, Phalla; Nataf, Patrick; Vahanian, Alec

    2016-01-01

    Tricuspid valve disease is mainly represented by tricuspid regurgitation (TR), which is a predictor of poor outcome. TR is usually secondary, caused by right ventricle pressure or volume overload, the leading cause being left-sided heart valve diseases. Tricuspid surgery for severe TR is recommended during left valve surgery, and consists of either a valve replacement or, most often, a tricuspid repair with or without prosthetic annuloplasty. When TR persists or worsens after left valvular surgery, redo isolated tricuspid surgery is associated with high mortality. In addition, a sizeable proportion of patients present with tricuspid surgery deterioration over time, and need a reintervention, which is associated with high morbi-mortality rates. In this context, and given the recent major breakthrough in the percutaneous treatment of aortic and mitral valve diseases, the tricuspid valve appears an appealing challenge, although it raises specific issues. The first applications of transcatheter techniques for tricuspid valve disease were valve-in-valve and valve-in-ring implantation for degenerated bioprosthesis or ring annuloplasty. Some concerns remain regarding prosthesis sizing, rapid ventricular pacing and the best approach, but these procedures appear to be safe and effective. More recently, bicuspidization using a transcatheter approach for the treatment of native tricuspid valve has been published, in two patients. Finally, other devices are in preclinical development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  1. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of

  2. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  3. Digital Actuator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken Thomas; Ted Quinn; Jerry Mauck

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs duemore » to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  4. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  5. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  6. Dynamic actuation of a novel laser-processed NiTi linear actuator

    NASA Astrophysics Data System (ADS)

    Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I.

    2012-09-01

    A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys.

  7. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  8. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    NASA Technical Reports Server (NTRS)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  9. 46 CFR 153.296 - Emergency shutdown stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shutdown station must contain a single remote actuator for all quick closing shutoff valves required by... on the tankship. (f) Any remote emergency actuator, such as that for a quick closing shut-off valve... remote emergency actuators. The emergency action must occur whether one or several actuators are operated...

  10. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  11. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2008-08-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.

  12. Flexure-based nanomagnetic actuators

    NASA Astrophysics Data System (ADS)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  13. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; Edwards, Kevin Dean; Foster, Matthew

    2013-01-01

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant whilemore » phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that

  14. Absence of posterior tricuspid valve leaflet and valve reconstruction

    PubMed Central

    Komoda, Takeshi; Stamm, Christof; Fleck, Eckart; Hetzer, Roland

    2012-01-01

    We report a rare case of the absence of a posterior tricuspid valve leaflet. A male patient, aged 46, suffering from severe tricuspid valve regurgitation (TR) of unknown aetiology and atrial septal aneurysm was referred to our hospital for surgery. On surgical inspection, the posterior tricuspid valve leaflet and its subvalvular apparatus were completely absent and only the valve annulus was seen in the corresponding position. The anterior and septal leaflets were normal. We successfully reconstructed the tricuspid valve as follows: the head of an anterior papillary muscle was approximated to the ventricular septum (Sebening stitch). After the approximation of the centre of the tricuspid annulus of the anterior leaflet to the tricuspid annulus on the opposite side, a sizer of 29 mm in diameter was easily passed through the anterior orifice. The posterior orifice was closed with running sutures (posterior annulorrhaphy after Hetzer). Before these procedures, we attempted to reconstruct the tricuspid valve with a posterior annulorrhaphy alone; however, valve competence was insufficient. A Sebening stitch was necessary to improve the valve competence. Echocardiography showed TR grade 1 at the patient's discharge from hospital and TR grade 1 to 2 at the follow-up, 10 months after the operation. PMID:22419794

  15. [Percutaneously implantable aortic valve: the JenaValve concept evolution].

    PubMed

    Figulla, Hans R; Ferrari, Markus

    2006-10-01

    Due to the increasing incidence of severe aortic stenosis in old and multimorbid patients, the percutaneous implantation of aortic valve-carrying stents has become an alternative to the surgical replacement of aortic valves. Starting in 1995, the authors developed a self-expanding stent which transferred the necessary forces for anchoring up to the aorta ascendens-a conception taken over from CoreValve. The further improvement of this idea over the past 11 years has led to a self-expanding, relatively short stent-valve system that is reliably positioned in the cusps of the old aortic valve and holds the old valve like a paper clip, thus transferring the holding forces physiologically. As compared to conventional systems, the sophisticated insertion catheter requires further chronic animal tests so as to represent a true alternative to the conventional surgical procedure.

  16. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  17. Outcome of bioprosthetic valve replacement in dogs with tricuspid valve dysplasia.

    PubMed

    Bristow, P; Sargent, J; Luis Fuentes, V; Brockman, D

    2017-04-01

    To describe the short-term and long-term outcome in dogs with tricuspid valve dysplasia undergoing tricuspid valve replacement under cardiopulmonary bypass. Data were collected from the hospital records of all dogs that had undergone tricuspid valve replacement under cardiopulmonary bypass between 2006 and 2012. Dogs were considered candidates for tricuspid valve replacement if they had severe tricuspid valve regurgitation associated with clinical signs of cardiac compromise. Nine dogs of six different breeds were presented. Median age was 13 months (range 7 to 61 months), median weight 26·5 kg (range 9·7 to 59 kg). Eight bovine pericardial valves and one porcine aortic valve were used. One non-fatal intraoperative complication occurred. Complications during hospitalisation occurred in six dogs, four of which were fatal. Of the five dogs discharged, one presented dead due to haemothorax after minor trauma seven days later. The four remaining dogs survived a median of 533 days; all of these dogs received a bovine pericardial valve. Based on our results, tricuspid valve replacement with bovine or porcine prosthetic valves is associated with a high incidence of complications. © 2017 British Small Animal Veterinary Association.

  18. Early Outcomes for Valve-in-valve Transcatheter Aortic Valve Replacement in Degenerative Freestyle Bioprostheses.

    PubMed

    Sang, Stephane Leung Wai; Beute, Tyler; Heiser, John; Berkompas, Duane; Fanning, Justin; Merhi, William

    2017-11-20

    Transcatheter aortic valve replacement (TAVR) is used increasingly to treat bioprosthetic valve failure. A paucity of data exists regarding valve-in-valve (ViV) TAVR in degenerated Freestyle stentless bioprostheses (FSBs). This study sought to evaluate the feasibility and short-term outcomes of ViV TAVR in previously placed FSB. From October 2014 to September 2016, 22 patients at a single institution underwent ViV TAVR with a self-expanding transcatheter valve for a failing FSB. Patient baseline characteristics and clinical outcomes data were collected retrospectively and entered into a dedicated database. The mean patient age was 74 ± 9years, and the mean Society of Thoracic Surgeons' Risk score was 9.0 ± 7.4%. Ten patients presented with acute heart failure requiring urgent intervention. The most common mode of failure of the FSB was regurgitation caused by a flail or malcoapting leaflet. Seventeen (77%) patients had a modified subcoronary implantation, 3 (14%) had a full root replacement, and 2 (9%) had a root inclusion. Device success using a self-expanding transcatheter valve was 95%, all via transfemoral approach. The mean implant depth was 7 ± 3 mm. Thirty-day survival was 100%. No patient had more than mild paravalvular regurgitation at 30days, and the permanent pacemaker rate was 9%. The mean hospital stay after intervention was 5 ± 2days. ViV TAVR using a self-expanding transcatheter valve is safe, feasible, and can be used successfully to treat a failed FSB. Procedural challenges suggest referral to valve centers of excellence. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ball valve extractor

    DOEpatents

    Herndon, Charles; Brown, Roger A.

    2002-01-01

    An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.

  20. Check valve installation in pilot operated relief valve prevents reverse pressurization

    NASA Technical Reports Server (NTRS)

    Oswalt, L.

    1966-01-01

    Two check valves prevent reverse flow through pilot-operated relief valves of differential area piston design. Title valves control pressure flow to ensure that the piston dome pressure is always at least as great as the main relief valve discharge pressure.

  1. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  2. Integrated hydraulic cooler and return rail in camless cylinder head

    DOEpatents

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  3. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    NASA Astrophysics Data System (ADS)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  4. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  5. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  6. Globe stability during simulated vitrectomy with valved and non-valved trocar cannulas

    PubMed Central

    Abulon, Dina Joy; Charles, Martin; Charles, Daniel E

    2015-01-01

    Purpose To compare the effects of valved and non-valved cannulas on intraocular pressure (IOP), fluid leakage, and vitreous incarceration during simulated vitrectomy. Methods Three-port pars plana incisions were generated in six rubber eyes using 23-, 25-, and 27-gauge valved and non-valved trocar cannulas. The models were filled with air and IOP was measured. Similar procedures were followed for 36 acrylic eyes filled with saline solution. Vitreous incarceration was analyzed in eleven rabbit and twelve porcine cadaver eyes. Results In the air-filled model, IOP loss was 89%–94% when two non-valved cannulas were unoccupied versus 1%–5% when two valved cannulas were unoccupied. In the fluid-filled model, with non-valved cannulas, IOP dropped while fluid leaked from the open ports. With two open ports, the IOP dropped to 20%–30% of set infusion pressure, regardless of infusion pressure and IOP compensation. The IOP was maintained in valved cannulas when one or two ports were left open, regardless of IOP compensation settings. There was no or minimal fluid leakage through open ports at any infusion pressure. Direct microscopic analysis of rabbit eyes showed that vitreous incarceration was significantly greater with 23-gauge non-valved than valved cannulas (P<0.005), and endoscopy of porcine eyes showed that vitreous incarceration was significantly greater with 23-gauge (P<0.05) and 27-gauge (P<0.05) non-valved cannulas. External observation of rabbit eyes showed vitreous prolapse through non-valved, but not valved, cannulas. Conclusion Valved cannulas surpassed non-valved cannulas in maintaining IOP, preventing fluid leakage, and reducing vitreous incarceration during simulated vitrectomy. PMID:26445520

  7. Microfluidic sieve valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  8. Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins.

    PubMed

    den Dulk, Remco C; Schmidt, Kristiane A; Sabatté, Gwénola; Liébana, Susana; Prins, Menno W J

    2013-01-07

    We describe the magneto-capillary valve (MCV) technology, a flexible approach for integrated biological sample preparation within the concept of stationary microfluidics. Rather than moving liquids in a microfluidic device, discrete units of liquid are present at fixed positions in the device and magnetic particles are actuated between the fluids. The MCV concept is characterized by the use of two planar surfaces at a capillary mutual distance, with specific features to confine the fluids by capillary forces, and the use of a gas or a phase-change material separating the stationary aqueous liquids. We have studied the physics of magneto-capillary valving by quantifying the magnetic force as a function of time and position, which reveals the balance of magnetic, capillary and frictional forces in the system. By purification experiments with a fluorescent tracer we have measured the amount of co-transported liquid, which is a key parameter for efficient purification. To demonstrate the versatility of the technology, several MCV device architectures were tested in a series of biological assays, showing the purification and enrichment of nucleic acids and proteins. Target recovery comparable to non-miniaturized commercial kits was observed for the extraction of DNA from human cells in buffer, using a device architecture with patterned air valves. Experiments using an enrichment module and patterned air valves demonstrate a 40-fold effective enrichment of DNA in buffer. DNA was also successfully purified from blood plasma using paraffin phase-change valves. Finally, the enrichment of a protein biomarker (prostate-specific antigen) using geometrical air valves resulted in a 7-fold increase of detection signal. The MCV technology is versatile, offers extensive freedom for the design of fully integrated systems, and is expected to be manufacturable in a cost-effective way. We conclude that the MCV technology can become an important enabling technology for point

  9. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.

  10. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  11. Sequential transcatheter aortic valve implantation due to valve dislodgement - a Portico valve implanted over a CoreValve bioprosthesis.

    PubMed

    Campante Teles, Rui; Costa, Cátia; Almeida, Manuel; Brito, João; Sondergaard, Lars; Neves, José P; Abecasis, João; M Gabriel, Henrique

    2017-03-01

    Transcatheter aortic valve implantation (TAVI) has become an important treatment in high surgical risk patients with severe aortic stenosis (AS), whose complications need to be managed promptly. The authors report the case of an 86-year-old woman presenting with severe symptomatic AS, rejected for surgery due to advanced age and comorbidities. The patient underwent a first TAVI, with implantation of a Medtronic CoreValve ® , which became dislodged and migrated to the ascending aorta. Due to the previous balloon valvuloplasty, the patient's AS became moderate, and her symptoms improved. After several months, she required another intervention, performed with a St. Jude Portico ® repositionable self-expanding transcatheter aortic valve. There was a good clinical response that was maintained at one-year follow-up. The use of a self-expanding transcatheter bioprosthesis with repositioning features is a solution in cases of valve dislocation to avoid suboptimal positioning of a second implant, especially when the two valves have to be positioned overlapping or partially overlapping each other. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Problem: Heart Valve Stenosis

    MedlinePlus

    ... valve . Learn about the different types of stenosis: Aortic stenosis Tricuspid stenosis Pulmonary stenosis Mitral stenosis Outlook for ... Disease "Innocent" Heart Murmur Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - ...

  13. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.

    PubMed

    Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M

    2014-09-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.

  14. Vacuum breaker valve assembly

    DOEpatents

    Thompson, J.L.; Upton, H.A.

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening. 1 fig.

  15. Vacuum breaker valve assembly

    DOEpatents

    Thompson, Jeffrey L.; Upton, Hubert Allen

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.

  16. Redo aortic valve surgery versus transcatheter valve-in-valve implantation for failing surgical bioprosthetic valves: consecutive patients in a single-center setting

    PubMed Central

    Wottke, Michael; Deutsch, Marcus-André; Krane, Markus; Piazza, Nicolo; Lange, Ruediger; Bleiziffer, Sabine

    2015-01-01

    Background Due to a considerable rise in bioprosthetic as opposed to mechanical valve implantations, an increase of patients presenting with failing bioprosthetic surgical valves in need of a reoperation is to be expected. Redo surgery may pose a high-risk procedure. Transcatheter aortic valve-in-valve implantation is an innovative, less-invasive treatment alternative for these patients. However, a comprehensive evaluation of the outcome of consecutive patients after a valve-in-valve TAVI [transcatheter aortic valve-in-surgical aortic valve (TAV-in-SAV)] as compared to a standard reoperation [surgical aortic valve redo-operation (SAV-in-SAV)] has not yet been performed. The goal of this study was to compare postoperative outcomes after TAV-in-SAV and SAV-in-SAV in a single center setting. Methods All SAV-in-SAV and TAV-in-SAV patients from January 2001 to October 2014 were retrospectively reviewed. Patients with previous mechanical or transcatheter valves, active endocarditis and concomitant cardiac procedures were excluded. Patient characteristics, preoperative data, post-procedural complications, and 30-day mortality were collected from a designated database. Mean values ± SD were calculated for all continuous variables. Counts and percentages were calculated for categorical variables. The Chi-square and Fisher exact tests were used to compare categorical variables. Continuous variables were compared using the t-test for independent samples. A 2-sided P value <0.05 was considered statistically significant. Results A total of 102 patients fulfilled the inclusion criteria, 50 patients (49%) underwent a transcatheter valve-in-valve procedure, while 52 patients (51%) underwent redo-surgery. Patients in the TAV-in-SAV group were significantly older, had a higher mean logistic EuroSCORE and exhibited a lower mean left ventricular ejection fraction than patients in the SAV-in-SAV group (78.1±6.7 vs. 66.2±13.1, P<0.001; 27.4±18.7 vs. 14.4±10, P<0.001; and 49.8±13

  17. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaskar, Vickey B; Szybist, James P; Splitter, Derek A

    In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences aremore » investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.« less

  19. Microhydraulic Electrowetting Actuators

    DTIC Science & Technology

    2015-06-26

    inkjet  printers4, and microrobots5 tend to use other  forms of actuation.   The alternatives can be widely divided  into  resistive and capacitive...actuators, based on  the primary  impedance mode.   Some examples of  resistive actuators are  thermal  inkjet  printers, electro‐osmotic pumps6, and shape

  20. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  1. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  2. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  3. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve

    PubMed Central

    VeDepo, Mitchell C; Detamore, Michael S; Hopkins, Richard A; Converse, Gabriel L

    2017-01-01

    The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells. Many creative strategies have pursued complete biological valve recellularization; however, identifying the optimal recellularization method, including in situ or in vitro recellularization and chemical and/or mechanical conditioning, has proven difficult. Furthermore, while many studies have focused on individual parameters for increasing valve interstitial recellularization, a general understanding of the interacting dynamics is likely necessary to achieve success. Therefore, the purpose of this review is to explore and compare the various processing strategies used for the decellularization and subsequent recellularization of tissue-engineered heart valves. PMID:28890780

  4. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    PubMed

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  5. Lifetime of dielectric elastomer stack actuators

    NASA Astrophysics Data System (ADS)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2011-04-01

    Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.

  6. Aortic valve repair leads to a low incidence of valve-related complications.

    PubMed

    Aicher, Diana; Fries, Roland; Rodionycheva, Svetlana; Schmidt, Kathrin; Langer, Frank; Schäfers, Hans-Joachim

    2010-01-01

    Aortic valve replacement for aortic regurgitation (AR) has been established as a standard treatment but implies prosthesis-related complications. Aortic valve repair is an alternative approach, but its mid- to long-term results still need to be defined. Over a 12-year period, 640 patients underwent aortic valve repair for regurgitation of a unicuspid (n=21), bicuspid (n=205), tricuspid (n=411) or quadricuspid (n=3) aortic valve. The mechanism of regurgitation involved prolapse (n=469) or retraction (n=20) of the cusps, and dilatation of the root (n=323) or combined pathologies. Treatment consisted of cusp repair (n=529), root repair (n=323) or a combination of both (n=208). The patients were followed clinically and echocardiographically; follow-up was complete in 98.5% (cumulative follow-up: 3035 patient years). Hospital mortality was 3.4% in the total patient cohort and 0.8% for isolated aortic valve repair. The incidences of thrombo-embolism (0.2% per patient per year) and endocarditis (0.16%per patient per year) were low. Freedom from re-operation at 5 and 10 years was 88% and 81% in bicuspid and 97% and 93% in tricuspid aortic valves (p=0.0013). At re-operation, 13 out of 36 valves could be re-repaired. Freedom from valve replacement was 95% and 90% in bicuspid and 97% and 94% in tricuspid aortic valves (p=0.36). Freedom from all valve-related complications at 10 years was 88%. Reconstructive surgery of the aortic valve is feasible with low mortality in many individuals with aortic regurgitation. Freedom from valve-related complications after valve repair seems superior compared to available data on standard aortic valve replacement. Copyright 2009 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  7. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  8. Valve

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A positive acting valve suitable for operation in a corrosive environment is provided. The valve includes a hollow valve body defining an open-ended bore for receiving two, axially aligned, spaced-apart, cylindrical inserts. One insert, designated the seat insert, terminates inside the valve body in an annular face which lies within plane normal to the axis of the two inserts. An elastomeric O-ring seal is disposed in a groove extending about the annular face. The other insert, designated the wedge insert, terminates inside the valve body in at least two surfaces oppositely inclined with respect to each other and with respect to a plane normal to the axis of the two inserts. An elongated reciprocable gate, movable between the two inserts along a path normal to the axis of the two inserts, has a first flat face portion disposed adjacent and parallel to the annular face of the seat insert. The gate has a second face portion opposite to the first face portion provided with at least two oppositely inclined surfaces for mating with respective inclined surfaces of the wedge insert. An opening is provided through the gate which registers with a flow passage through the two inserts when the valve is open. Interaction of the respective inclined surfaces of the gate and wedge insert act to force the first flat face portion of the gate against the O-ring seal in the seat insert at the limits of gate displacement where it reaches its respective fully open and fully closed positions.

  9. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  10. Recent developments on SMA actuators: predicting the actuation fatigue life for variable loading schemes

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Lagoudas, Dimitris C.

    2017-04-01

    Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.

  11. Multi-port valve assembly

    DOEpatents

    Guggenheim, S. Frederic

    1986-01-01

    A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.

  12. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-06-22

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  13. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  14. Valve in valve transcatheter aortic valve implantation (ViV-TAVI) versus redo-Surgical aortic valve replacement (redo-SAVR): A systematic review and meta-analysis.

    PubMed

    Nalluri, Nikhil; Atti, Varunsiri; Munir, Abdullah B; Karam, Boutros; Patel, Nileshkumar J; Kumar, Varun; Vemula, Praveen; Edla, Sushruth; Asti, Deepak; Paturu, Amrutha; Gayam, Sriramya; Spagnola, Jonathan; Barsoum, Emad; Maniatis, Gregory A; Tamburrino, Frank; Kandov, Ruben; Lafferty, James; Kliger, Chad

    2018-05-20

    Bioprosthetic (BP) valves have been increasingly used for aortic valve replacement over the last decade. Due to their limited durability, patients presenting with failed BP valves are rising. Valve in Valve - Transcatheter Aortic Valve Implantation (ViV-TAVI) emerged as an alternative to the gold standard redo-Surgical Aortic Valve Replacement (redo-SAVR). However, the utility of ViV-TAVI is poorly understood. A systematic electronic search of the scientific literature was done in PubMed, EMBASE, SCOPUS, Google Scholar, and ClinicalTrials.gov. Only studies which compared the safety and efficacy of ViV-TAVI and redo-SAVR head to head in failed BP valves were included. Six observational studies were eligible and included 594 patients, of whom 255 underwent ViV- TAVI and 339 underwent redo-SAVR. There was no significant difference between ViV-TAVI and redo- SAVR for procedural, 30 day and 1 year mortality rates. ViV-TAVI was associated with lower risk of permanent pacemaker implantation (PPI) (OR: 0.43, CI: 0.21-0.89; P = 0.02) and a trend toward increased risk of paravalvular leak (PVL) (OR: 5.45, CI: 0.94-31.58; P = 0.06). There was no significant difference for stroke, major bleeding, vascular complications and postprocedural aortic valvular gradients more than 20 mm-hg. Our results reiterate the safety and feasibility of ViV-TAVI for failed aortic BP valves in patients deemed to be at high risk for surgery. VIV-TAVI was associated with lower risk of permanent pacemaker implantation with a trend toward increased risk of paravalvular leak. © 2018, Wiley Periodicals, Inc.

  15. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  16. Magnetically operated check valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor); Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  17. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  18. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  19. 78 FR 56182 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... if certain motor-operated shutoff valve actuators for the fuel tanks are installed, and related...-operated shutoff valve actuators for the fuel tanks are installed, and related investigative and corrective... the different unsafe condition is applicable to all actuator locations required by AD 2008-06-03. We...

  20. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    PubMed

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  1. Automatic shutoff valve

    NASA Technical Reports Server (NTRS)

    Hawkins, S. F.; Overbey, C. W.

    1980-01-01

    Cellulose-sponge disk absorbs incoming water and expands with enough force to shut valve. When water recedes, valve opens by squeezing sponge dry to its original size. This direct mechanical action is considered more reliable than solenoid valve.

  2. Transcatheter aortic valve-in-valve treatment of degenerative stentless supra-annular Freedom Solo valves: A single centre experience.

    PubMed

    Cockburn, James; Dooley, Maureen; Parker, Jessica; Hill, Andrew; Hutchinson, Nevil; de Belder, Adam; Trivedi, Uday; Hildick-Smith, David

    2017-02-15

    Redo surgery for degenerative bioprosthetic aortic valves is associated with significant morbidity and mortality. Report results of valve-in-valve therapy (ViV-TAVI) in failed supra-annular stentless Freedom Solo (FS) bioprostheses, which are the highest risk for coronary occlusion. Six patients with FS valves (mean age 78.5 years, 50% males). Five had valvular restenosis (peak gradient 87.2 mm Hg, valve area 0.63 cm 2 ), one had severe regurgitation (AR). Median time to failure was 7 years. Patients were high risk (mean STS/Logistic EuroScore 10.6 15.8, respectively). FS valves ranged from 21 to 25 mm. Successful ViV-TAVI was achieved in 4/6 patients (67%). Of the unsuccessful cases, (patient 1 and 2 of series) patient 1 underwent BAV with simultaneous aortography which revealed left main stem occlusion. The procedure was stopped and the patient went forward for repeat surgery. Patient 2 underwent successful ViV-TAVI with a 26-mm CoreValve with a guide catheter in the left main, but on removal coronary obstruction occurred, necessitating valve snaring into the aorta. Among the successful cases, (patients 3, 4, 5, 6) the TAVIs used were CoreValve Evolut R 23 mm (n = 3), and Lotus 23 mm (n = 1). In the successful cases the peak gradient fell from 83.0 to 38.3 mm Hg. No patient was left with >1+ AR. One patient had a stroke on Day 2, with full neurological recovery. Two patients underwent semi-elective pacing for LBBB and PR >280 ms. ViV-TAVI in stentless Freedom Solo valves is high risk. The risk of coronary occlusion is high. The smallest possible prosthesis (1:1 sizing) should be used, and strategies to protect the coronary vessels must be considered. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Design of membrane actuators based on ferromagnetic shape memory alloy composite for the synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo

    2004-07-01

    A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.

  4. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  5. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  6. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  7. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  8. Mesofluidic two stage digital valve

    DOEpatents

    Jansen, John F; Love, Lonnie J; Lind, Randall F; Richardson, Bradley S

    2013-12-31

    A mesofluidic scale digital valve system includes a first mesofluidic scale valve having a valve body including a bore, wherein the valve body is configured to cooperate with a solenoid disposed substantially adjacent to the valve body to translate a poppet carried within the bore. The mesofluidic scale digital valve system also includes a second mesofluidic scale valve disposed substantially perpendicular to the first mesofluidic scale valve. The mesofluidic scale digital valve system further includes a control element in communication with the solenoid, wherein the control element is configured to maintain the solenoid in an energized state for a fixed period of time to provide a desired flow rate through an orifice of the second mesofluidic valve.

  9. Modeling and Synthesis Methods for Retrofit Design of Submarine Actuation Systems. Energy Storage for Electric Actuators

    DTIC Science & Technology

    2011-12-15

    for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage, simulation-based design

  10. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  11. Bending-induced folding, an actuation mechanism for plant reconfiguration.

    NASA Astrophysics Data System (ADS)

    Terwagne, Denis; Segers, JéRéMy; trioS. lab-Soft Structures; Surfaces Lab Team

    Inspired by the sophisticated mechanism of the opening and closing of the ice seed plant valves (Aizoaceae), we present a simple model experiment of this mechanism based on an origami folding. By imposing a curvature to one of the plate connected to a fold designed along a curved path, we actuate its opening and closing. The imposed curvature induces inner mechanical constraints that give us a precise control of the deflection angle, which ultimately leads the fold to close completely. In this talk, we will present an analysis and characterization of this mechanism as a function of the geometrical and mechanical parameters of the system. From these insights, we will show how to build origami pliers with tunable mechanical properties. Possible out comings that might arise in various fields, ranging from deployable engineered structure to soft robotics and medical devices, are discussed. DT and JS thank the Belgian national science foundation F.R.S-FNRS for funding.

  12. Cracking a tricuspid perimount bioprosthesis to optimize a second transcatheter sapien valve-in-valve placement.

    PubMed

    Brown, Stephen C; Cools, Bjorn; Gewillig, Marc

    2016-09-01

    Bioprosthetic valves degenerate over time. Transcatheter valve-in-valve procedures have become an attractive alternative to surgery. However, every valve increasingly diminishes the diameter of the valvar orifice. We report a 12-year-old female who had a previous transcatheter tricuspid valve-in-valve procedure; cracking the ring of a Carpentier Edwards Perimount valve by means of an ultrahigh pressure balloon allowed implantation of a further larger percutaneous valve. The advantage of this novel approach permits enlarging the inner valve diameter and may facilitate future interventions and prolong time to surgery. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Heart Valve Diseases

    MedlinePlus

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  14. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  15. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  16. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  17. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  18. Multi-depth valved microfluidics for biofilm segmentation

    NASA Astrophysics Data System (ADS)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  19. Transfemoral aortic valve implantation in severe aortic stenosis patients with prior mitral valve prosthesis

    PubMed Central

    Sarı, Cenk; Baştuğ, Serdal; Kasapkara, Hacı Ahmet; Durmaz, Tahir; Keleş, Telat; Akçay, Murat; Aslan, Abdullah Nabi; Bayram, Nihal Akar; Bozkurt, Engin

    2015-01-01

    Introduction Transcatheter aortic valve implantation for severe symptomatic aortic stenosis in patients with a previous mitral valve prosthesis is technically challenging, and pre-procedural comprehensive assessment of these patients before transcatheter aortic valve implantation is vital for an uncomplicated and successful procedure. Aim We want to share our experience with transcatheter aortic valve implantation in patients with a preexisting functional mitral valve prosthesis and describe a series of important technical and pre-procedural details. Material and methods At our center, 135 patients with symptomatic severe aortic stenosis were treated with transcatheter aortic valve implantation. Six of them with a preexisting mitral valve prosthesis received an Edwards SAPIEN XT valve through the transfemoral route. Results Transcatheter aortic valve implantation was performed successfully in all 6 patients without any deformation of the cobalt-chromium/steel stents of the aortic valve bioprosthesis. Also no distortion or malfunction in the mitral valve prosthesis was observed after the procedure. There were no complications during the hospitalization period. Post-procedural echocardiography revealed no or mild aortic paravalvular regurgitation and normal valve function in all the patients. In addition, serial echocardiographic examination demonstrated that both the stability and function of the aortic and mitral prosthetic valves were normal without any deterioration in the gradients and the degree of the regurgitation at long-term follow-ups. Conclusions Our experience confirms that transcatheter aortic valve implantation is technically feasible in patients with previous mitral valve replacement but comprehensive evaluation of patients by multimodal imaging techniques such as transesophageal echocardiography and multislice computed tomography is mandatory for a successful and safe procedure. PMID:26677380

  20. Kangaroo versus porcine aortic valve tissue--valve geometry morphology, tensile strength and calcification potential.

    PubMed

    Neethling, W M; Papadimitriou, J M; Swarts, E; Hodge, A J

    2000-06-01

    Valve related factors and patient related factors are responsible for calcification of valvular bioprostheses. Recent studies showed different donor and recipient species have different influences on the total calcification rate of bioprostheses. This study was performed to evaluate and compare Kangaroo aortic valve leaflets with porcine aortic valve leaflets. Experimental design. Prospective study. Setting. Cardio-thoracic experimental research of a university department. Glutaraldehyde-fixed Kangaroo and porcine valve leaflets were evaluated in vitro according to valve geometry (internal diameter and leaflet thickness), morphology (light and electron microscopy) and tensile strength. In vivo evaluation consisted of implantation in a rat model for 8 weeks, Von Kossa stain for calcium and atomic absorption spectrophotometry for total extractable calcium content. Kangaroo valves indicated a smaller internal valve diameter as well as a thinner valve leaflet (p<0.01, ANOVA) at corresponding body weight, less proteoglycan spicules in the fibrosa, increased elasticity (p<0.05) and low calcification potential (p<0.01, confidence interval 95%). Kangaroo aortic valve leaflets have different valvular qualities compared to porcine valve tissue. Kangaroo valve leaflets are significantly superior to porcine valve leaflets as far as calcification is concerned. These results are encouraging and suggest further in vivo evaluation in a larger animal model before clinical application can be considered.

  1. What Is Heart Valve Surgery?

    MedlinePlus

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  2. What Is Heart Valve Disease?

    MedlinePlus

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  3. Optimizing the Delivery of Inhaled Medication for Respiratory Patients: The Role of Valved Holding Chambers.

    PubMed

    McIvor, R Andrew; Devlin, Hollie M; Kaplan, Alan

    2018-01-01

    Valved holding chambers (VHCs) have been used with pressurized metered-dose inhalers since the early 1980s. They have been shown to increase fine particle delivery to the lungs, decrease oropharyngeal deposition, and reduce side effects such as throat irritation, dysphonia, and oral candidiasis that are common with use of pressurized metered-dose inhalers (pMDIs) alone. VHCs act as aerosol reservoirs, allowing the user to actuate the pMDI device and then inhale the medication in a two-step process that helps users overcome challenges in coordinating pMDI actuation with inhalation. The design of VHC devices can have an impact on performance. Features such as antistatic properties, effective face-to-facemask seal feedback whistles indicating correct inhalation speed, and inhalation indicators all help improve function and performance, and have been demonstrated to improve asthma control, reduce the rate of exacerbations, and improve quality of life. Not all VHCs are the same, and they are not interchangeable. Each pairing of a pMDI device plus VHC should be considered as a unique delivery system.

  4. Optimizing the Delivery of Inhaled Medication for Respiratory Patients: The Role of Valved Holding Chambers

    PubMed Central

    Devlin, Hollie M.

    2018-01-01

    Valved holding chambers (VHCs) have been used with pressurized metered-dose inhalers since the early 1980s. They have been shown to increase fine particle delivery to the lungs, decrease oropharyngeal deposition, and reduce side effects such as throat irritation, dysphonia, and oral candidiasis that are common with use of pressurized metered-dose inhalers (pMDIs) alone. VHCs act as aerosol reservoirs, allowing the user to actuate the pMDI device and then inhale the medication in a two-step process that helps users overcome challenges in coordinating pMDI actuation with inhalation. The design of VHC devices can have an impact on performance. Features such as antistatic properties, effective face-to-facemask seal feedback whistles indicating correct inhalation speed, and inhalation indicators all help improve function and performance, and have been demonstrated to improve asthma control, reduce the rate of exacerbations, and improve quality of life. Not all VHCs are the same, and they are not interchangeable. Each pairing of a pMDI device plus VHC should be considered as a unique delivery system. PMID:29849831

  5. Valve repair in aortic regurgitation without root dilatation--aortic valve repair.

    PubMed

    Lausberg, H F; Aicher, D; Kissinger, A; Langer, F; Fries, R; Schäfers, H-J

    2006-02-01

    Aortic valve repair was established in the context of aortic root remodeling. Variable results have been reported for isolated valve repair. We analyzed our experience with isolated valve repair and compared the results with those of aortic root remodeling. Between October 1995 and August 2003, isolated repair of the aortic valve was performed in 83 patients (REP), remodeling of the aortic valve in 175 patients (REMO). The demographics of the two groups were comparable (REP: mean age 54.4 +/- 20.7 yrs, male-female ratio 2.1 : 1; REMO: mean age 60.8 +/- 13.6 yrs, male-female ratio 2.4 : 1; p = ns). In both groups the number of bicuspid valves was comparable (REP: 41 %, REMO: 32 %; p = ns). All patients were followed by echocardiography for a cumulative follow-up of 8204 patient months (mean 32 +/- 23 months). Overall in-hospital mortality was 2.4 % in REP and 4.6 % in REMO ( p = 0.62). Systolic gradients were comparable in both groups (REP: 5.8 +/- 2.2, REMO: 6.5 +/- 3.1 mm Hg, p = 0.09). The mean degree of aortic regurgitation 12 months postoperatively was 0.8 +/- 0.7 after REP and 0.7 +/- 0.7 after REMO ( p = 0.29). Freedom from significant regurgitation (> or = II degrees ) after 5 years was 86 % in REP and 89 % in REMO ( p = 0.17). Freedom from re-operation after 5 years was 94.4 % in REP and 98.2 % in REMO ( p = 0.33). Aortic regurgitation without concomitant root dilatation can be treated effectively by aortic valve repair. The functional results are equivalent to those obtained with valve-preserving root replacement. Aortic valve repair appears to be an alternative to valve replacement in aortic regurgitation.

  6. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  7. 77 FR 47329 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... inspection to determine if certain motor operated valve actuators for the fuel tanks are installed, and.... That AD requires an inspection to determine if certain motor operated valve actuators for the fuel...

  8. Face-Sealing Butterfly Valve

    NASA Technical Reports Server (NTRS)

    Tervo, John N.

    1992-01-01

    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.

  9. Transapical JenaValve in a patient with mechanical mitral valve prosthesis.

    PubMed

    O' Sullivan, Katie E; Casserly, Ivan; Hurley, John

    2015-04-01

    We report the first case of transcatheter aortic valve replacement implantation using JenaValve™ in a patient with mechanical mitral valve prosthesis. We believe that the design features of this valve may be particularly suited for use in this setting. © 2014 Wiley Periodicals, Inc.

  10. Explosive actuated valves

    DOEpatents

    Cobb, Jr., Lawrence L.

    1983-01-01

    1. A device of the character described comprising the combination of a generally tubular housing having an end portion forming a chamber to receive the sensitive portion of an explosive squib, a plunger within said housing having an end portion exposed to said chamber, squib retaining means for engaging said housing and a said squib to releasably maintain the squib in close proximity to said plunger end portion including a retaining ring of fusible material spaced outwardly from and encircling at least part of a said squib and part of its sensitive portion for reception of heat from an external source prior to appreciable reception thereof by the sensitive portion of the squib, an annular compression spring bearing at one end against said housing for urging at least a portion of the squib retaining means and a said squib away from said housing and from said plunger end portion upon subjection of the fusible material to heat sufficient to melt at least a portion thereof, and guide means for said spring to maintain even expansion thereof as a said squib is being urged away from said housing.

  11. Modeling the Mitral Valve

    NASA Astrophysics Data System (ADS)

    Kaiser, Alexander

    2016-11-01

    The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.

  12. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1993-03-01

    A magnetically operated check valve is disclosed having, in one aspect, a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  13. Analysis of the sweeped actuator line method

    DOE PAGES

    Nathan, Jörn; Masson, Christian; Dufresne, Louis; ...

    2015-10-16

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  14. Analysis of the sweeped actuator line method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, Jörn; Masson, Christian; Dufresne, Louis

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  15. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  16. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  17. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    NASA Astrophysics Data System (ADS)

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  18. Double-orifice mitral valve associated with bicuspid aortic valve.

    PubMed

    Khani, Mohammad; Rohani, Atoosheh

    2017-06-01

    Double-orifice mitral valve is a rare congenital anomaly that usually does not cause a significant hemodynamic effect. Double-orifice mitral valve and a bicuspid aortic valve were detected in a 54-year-old lady who presented with dyspnea on exertion for one year. This is a rare association. Three-dimensional echocardiography is helpful to determine the type of malformation. The patient had no significant mitral regurgitation or stenosis, but demonstrated moderate aortic stenosis. She is undergoing periodic monitoring.

  19. Valve-sparing aortic root replacement in bicuspid aortic valves: a reasonable option?

    PubMed

    Aicher, Diana; Langer, Frank; Kissinger, Anke; Lausberg, Henning; Fries, Roland; Schäfers, Hans-Joachim

    2004-11-01

    Aortic dilatation occurs in many patients with bicuspid aortic valves. We have added root replacement using the remodeling technique originally designed for tricuspid aortic valves to bicuspid aortic valve repair for treatment of the dilated root. We compared the results of remodeling in bicuspid aortic valves with those in tricuspid aortic valves. From October 1995 through January 2004, 60 patients underwent root remodeling for bicuspid aortic valves (group A), and 130 patients underwent root remodeling for tricuspid aortic valves (group B). Correction of cusp prolapse was more often performed in group A (group A, 50/60; group B, 47/130; P < .0001). Transthoracic echocardiography was performed at 1 week, 6 and 12 months, and every year thereafter. Cumulative follow-up was 527 patient-years (mean, 2.9 +/- 2 years). No patient died in group A. Hospital mortality in group B was 5% (5/100; 95% confidence interval,1.6%-11.3%) after elective operations and 10% (3/30; 95% confidence interval, 2.1%-26.5%) after emergency operations. Mean systolic gradients were identical at 1 year (group A, 4.8 +/- 2.1 mm Hg; group B, 4.0 +/- 2 mm Hg) and 5 years (group A, 4.5 +/- 2.3 mm Hg; group B, 3.9 +/- 2.2 mm Hg). Freedom from aortic regurgitation of grade 2 or higher at 5 years was 96% in group A and 83% in group B ( P = .07), and freedom from reoperation at 5 years was 98% in group A and 98% in group B ( P = .73). Valve-sparing aortic replacement with root remodeling can be applied to aortic dilatation and a regurgitant bicuspid aortic valve. Hemodynamic function and valve stability of a repaired bicuspid aortic valve are comparable with those seen in cases of tricuspid anatomy.

  20. Piezoelectric actuators for active optics

    NASA Astrophysics Data System (ADS)

    Le Letty, R.; Barillot, F.; Fabbro, H.; Guay, Ph.; Cadiergues, L.

    2017-11-01

    Piezoelectric actuators find their first applications in active space optics. The purpose of this paper is to describe the state of the art and some applications. Piezo actuators display attractive features for space applications, such as precise positioning, unlubricated, non magnetic and compact features, and low power consumption. However, piezo mechanisms cannot be considered separately from their driving and control electronic. Piezo actuators, such as Amplified Piezo Actuators or Parallel Pre-stressed Actuators, initially designed under CNES contracts, shall find their first space flight applications in optics on the PHARAO Laser bench: • fine pointing of the laser beams, • laser cavity tuning. Breadboard mechanisms based on piezo actuators have also been tested for refocusing purposes. Other applications includes the improvement of the CCD resolution through an oversampling technique, such as in the SOHO/LASCO instrument, fast optical shutter operation, optical filter in combination with a Fabry - Perot interferometer, such as in future LIDAR for earth observation. The first applications shall be described and an overview of the future potential applications shall be given.

  1. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  2. VALVE

    DOEpatents

    Arkelyan, A.M.; Rickard, C.L.

    1962-04-17

    A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)

  3. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  4. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  5. 3D printed soft parallel actuator

    NASA Astrophysics Data System (ADS)

    Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif

    2018-04-01

    This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.

  6. Valve assembly for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeman, R.J.; Shea, S.F.

    1989-09-05

    This patent describes an improvement in a valve assembly for an internal combustion engine of the type including a valve having a valve stem, a valve guideway for mounting this valve for reciprocal strokes between opened and seated position, and spring means for biasing the valve into the seated position. The improvement comprising a valve spool of greater cross-sectional diameter as compared to the valve stem, and a valve spool guideway within which the valve spool is movable during the strokes of the valve, an upper surface of the valve spool and a portion of the spool guideway collectively establishingmore » a damper chamber which varies in volume during the valve strokes. a feed passage for introducing oil into the damper chamber, and a bleed passage for discharging oil from the damper chamber. The bleed passages each laterally opening into the valve spool guideway.« less

  7. Transcatheter Aortic Valve Implantation: Experience with the CoreValve Device.

    PubMed

    Asgar, Anita W; Bonan, Raoul

    2012-01-01

    The field of transcatheter aortic valve implantation has been rapidly evolving. The Medtronic CoreValve first emerged on the landscape in 2004 with initial first human studies, and it is currently being studied in the Pivotal US trial. This article details the current experience with the self-expanding aortic valve with a focus on clinical results and ongoing challenges. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Multiple-port valve

    DOEpatents

    Doody, Thomas J.

    1978-08-22

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable wih one or more of a plurality of secondary conduits fitted into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits.

  9. Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains

    NASA Astrophysics Data System (ADS)

    Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.

    2018-07-01

    There are two major categories of dielectric elastomer actuators (DEAs), which differ from the way in which the actuation is exploited: stack DEAs, using the thickness compression, and membrane DEAs, which exploit the expansion in area. In this work we focus on a specific type of membrane DEAs, i.e., silicone-based strip-in-plane (SIP) DEAs with screen printed electrodes. The performance of such actuators strongly depends on their geometry and on the adopted mechanical biasing system. Typically, the biasing is based on elastomer pre-stretch or on dead loads, which results in relatively low actuation strain. Biasing systems characterized by a negative rate spring have proven to significantly increase the performance of circular out-of-plane DEAs. However, this kind of biasing has never been systematically applied to silicone SIP DEAs. In this work, the biasing design based on negative rate springs is extended to strip DEAs as well, allowing to improve speed, strain, and force of the resulting actuator. At first, the DEAs are characterized under electrical and mechanical loading. Afterwards, two actuator systems are studied and compared in terms of actuation strain, force output, and actuation speed. In a first design stage, the DEA is coupled with a linear spring. Subsequently, the membrane is loaded with a combination of linear and nonlinear spring (working in a negative stiffness region). The resulting stroke output of the second systems is more than 9 times higher in comparison to the first one. An actuation strain of up to 45% (11.2 millimeter) and a force output of 0.38 Newton are measured. A maximum speed of 0.29 m s‑1 is achieved, which is about 60 times faster than the one typically measured for similar systems based on VHB.

  10. Stimuli-Responsive Polymers for Actuation.

    PubMed

    Zhang, Qiang Matthew; Serpe, Michael J

    2017-06-02

    A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    PubMed

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  12. Solenoid Valve With Self-Compensation

    NASA Technical Reports Server (NTRS)

    Woeller, Fritz H.; Matsumoto, Yutaka

    1987-01-01

    New solenoid-operated miniature shutoff valve provides self-compensation of differential pressure forces that cause jamming or insufficient valve closure as in single-seal valves. Dual-seal valve is bidirectional. Valve simultaneously seals both inlet and outlet tubes by pressing single disk of silicone rubber against ends of both.

  13. Nanostructured carbon materials based electrothermal air pump actuators

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid

  14. Plasma actuators for bluff body flow control

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  15. Micro-mechanics of ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo

    2015-04-01

    Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.

  16. Study of multiple cycles valves

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    A discussion is presented regarding valves which can be cycled repeatedly and are available from industry for application in the inlet system for the Pioneer Venus Probe mass spectrometer. Both solenoid type and latching type valves are considered. The study is divided into two principal areas: (1) preparation of a valve specification reflecting the requirements of the inlet system cyclic valves for the Pioneer Venus Probe mass spectrometer and the submittal of this specification to potential valve suppliers for their response and proposal; (2) preparation of a design layout of an optimum cyclic valve meeting all of the valve specification requirements.

  17. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  18. Digital hydraulic drive for microfluidics and miniaturized cell culture devices based on shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Han; Wu, Xuanye; Kuan, Da-Han; Zimmermann, Stefan; Zengerle, Roland; Koltay, Peter

    2018-08-01

    In order to culture and analyze individual living cells, microfluidic cultivation and manipulation of cells become an increasingly important topic. Such microfluidic systems allow for exploring the phenotypic differences between thousands of genetically identical cells or pharmacological tests in parallel, which is impossible to achieve by traditional macroscopic cell culture methods. Therefore, plenty of microfluidic systems and devices have been developed for cell biological studies like cell culture, cell sorting, and cell lysis in the past. However, these microfluidic systems are still limited by the external pressure sources which most of the time are large in size and have to be connected by fluidic tubing leading to complex and delicate systems. In order to provide a miniaturized, more robust actuation system a novel, compact and low power consumption digital hydraulic drive (DHD) has been developed that is intended for use in portable and automated microfluidic systems for various applications. The DHD considered in this work consists of a shape memory alloy (SMA) actuator and a pneumatic cylinder. The switching time of the digital modes (pressure ON versus OFF) can be adjusted from 1 s to min. Thus, the DHDs might have many applications for driving microfluidic devices. In this work, different implementations of DHDs are presented and their performance is characterized by experiments. In particular, it will be shown that DHDs can be used for microfluidic large-scale integration (mLSI) valve control (256 valves in parallel) as well as potentially for droplet-based microfluidic systems. As further application example, high-throughput mixing of cell cultures (96 wells in parallel) is demonstrated employing the DHD to drive a so-called ‘functional lid’ (FL), to enable a miniaturized micro bioreactor in a regular 96-well micro well plate.

  19. Mitral valve replacement with the Hancock stabilized glutaraldehyde valve. Clinical and laboratory evaluation.

    PubMed

    Buch, W S; Pipkin, R D; Hancock, W D; Fogarty, T J

    1975-11-01

    From March 1971 through April 1975, one hundred twenty patients underwent mitral valve replacement with a Hancock "stabilized glutaraldehyde process" porcine aortic xenograft. A simultaneous canine experimental series was also carried out. In the clinical series, the early mortality was 8.3%. Actuarial analyses of all patients predicts survival at two years of 81.0% and at four years of 70.0%. The predicted survival for patients without coronary disease or prior prosthetic valve replacement is 87.5% at two years and 77.5% at four years. There were four thromboembolic episodes, a rate of 2.4% per patient-year. None were fatal. No valve failure were noted. Histologic examination and shrink temperature analysis of recovered valves show excellent tissue preservation at 40 months. The data indicate that the Hancock valve is durable, enjoys a low incidence of thromboembolism, and may be the valve of choice for mitral valve replacement.

  20. Robotic Arm Actuated by Electroactie Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Xue, T.; Shaninpoor, M.; Simpson, J. O.; Smith, J.

    1998-01-01

    Actuators are used for many planetary and space applications. To meet the NASA goal to reduce the actuators size, mass, cost and power consumption, electroactie polymers (EAP) are being developed to induce large bending and longitudinal actuation strains.

  1. Anterior mitral valve aneurysm: a rare sequelae of aortic valve endocarditis.

    PubMed

    Janardhanan, Rajesh; Kamal, Muhammad Umar; Riaz, Irbaz Bin; Smith, M Cristy

    2016-03-01

    SummaryIn intravenous drug abusers, infective endocarditis usually involves right-sided valves, with Staphylococcus aureus being the most common etiologic agent. We present a patient who is an intravenous drug abuser with left-sided (aortic valve) endocarditis caused by Enterococcus faecalis who subsequently developed an anterior mitral valve aneurysm, which is an exceedingly rare complication. A systematic literature search was conducted which identified only five reported cases in the literature of mitral valve aneurysmal rupture in the setting of E. faecalis endocarditis. Real-time 3D-transesophageal echocardiography was critical in making an accurate diagnosis leading to timely intervention. Early recognition of a mitral valve aneurysm (MVA) is important because it may rupture and produce catastrophic mitral regurgitation (MR) in an already seriously ill patient requiring emergency surgery, or it may be overlooked at the time of aortic valve replacement (AVR).Real-time 3D-transesophageal echocardiography (RT-3DTEE) is much more advanced and accurate than transthoracic echocardiography for the diagnosis and management of MVA. © 2016 The authors.

  2. Transcatheter Mitral Valve Replacement for Native and Failed Bioprosthetic Mitral Valves

    PubMed Central

    Sarkar, Kunal; Reardon, Michael J.; Little, Stephen H.; Barker, Colin M.; Kleiman, Neal S.

    2017-01-01

    Transcatheter mitral valve replacement (TMVR) is a novel approach for treatment of severe mitral regurgitation. A number of TMVR devices are currently undergoing feasibility trials using both transseptal and transapical routes for device delivery. Overall experience worldwide is limited to fewer than 200 cases. At present, the 30-day mortality exceeds 30% and is attributable to both patient- and device-related factors. TMVR has been successfully used to treat patients with degenerative mitral stenosis (DMS) as well as failed mitral bioprosthesis and mitral repair using transcatheter mitral valve-in-valve (TMViV)/valve-in-ring (ViR) repair. These patients are currently treated with devices designed for transcatheter aortic valve replacement. Multicenter registries have been initiated to collect outcomes data on patients currently undergoing TMViV/ViR and TMVR for DMS and have confirmed the feasibility of TMVR in these patients. However, the high periprocedural and 30-day event rates underscore the need for further improvements in device design and multicenter randomized studies to delineate the role of these technologies in patients with mitral valve disease. PMID:29743999

  3. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  4. High-displacement spiral piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  5. Fast-acting valve and uses thereof

    DOEpatents

    Meyer, J.A.

    1980-05-16

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  6. Fast-acting valve and uses thereof

    DOEpatents

    Meyer, James A.

    1982-01-01

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  7. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis.

    PubMed

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in the clinical features of patients

  8. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis

    PubMed Central

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Objective Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Methods Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. Results A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). Conclusion The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in

  9. Heart valve surgery - series (image)

    MedlinePlus

    ... heart valves are either natural (biologic) or artificial (mechanical). Natural valves are from human donors (cadavers), modified ... artificial valves will require anticoagulation. The advantage of mechanical valves is that they last longer-thus, the ...

  10. Valve Repair or Replacement

    MedlinePlus

    ... called anticoagulants) for the rest of their lives. Biological valves are made from animal tissue (called a ... for valve replacement (called an autograft). Patients with biological valves usually do not need to take blood- ...

  11. Fluid mechanics of heart valves.

    PubMed

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  12. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  13. How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes

    PubMed Central

    MacGrogan, Donal; Luxán, Guillermo; Driessen-Mol, Anita; Bouten, Carlijn; Baaijens, Frank; de la Pompa, José Luis

    2014-01-01

    Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial–mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function. PMID:25368013

  14. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will

  15. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  16. Internal combustion engine and method for control

    DOEpatents

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  17. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  18. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  19. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  20. The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.

    PubMed

    Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria

    2016-01-01

    A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of <1. 0m2, and 1.5 mm for a BSA of >1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no