Sample records for valve condition classification

  1. Fault detection in reciprocating compressor valves under varying load conditions

    NASA Astrophysics Data System (ADS)

    Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias

    2016-03-01

    This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.

  2. Acute Kidney Injury Classification Underestimates Long-Term Mortality After Cardiac Valve Operations.

    PubMed

    Bouma, Hjalmar R; Mungroop, Hubert E; de Geus, A Fred; Huisman, Daniel D; Nijsten, Maarten W N; Mariani, Massimo A; Scheeren, Thomas W L; Burgerhof, Johannes G M; Henning, Robert H; Epema, Anne H

    2018-03-01

    Perioperative acute kidney injury (AKI) is an important predictor of long-term all-cause mortality after coronary artery bypass (CABG). However, the effect of AKI on long-term mortality after cardiac valve operations is hitherto undocumented. Perioperative renal injury and long-term all-cause mortality after valve operations were studied in a prospective cohort of patients undergoing solitary valve operations (n=2,806) or valve operations combined with CABG (n=1,260) with up to 18 years of follow-up. Postoperative serum creatinine increase was classified according to AKI 0-3. Patients undergoing solitary CABG (n=4,938) with cardiopulmonary bypass served as reference. In both valve and valve+CABG operations, postoperative renal injury of AKI stage 1 or higher was progressively associated with an increase in long-term mortality (HR 2.27, p<0.05 for valve; HR 1.65, p<0.05 for valve operations combined with CABG; HR 1.56, p<0.05 for CABG). Notably, the mortality risk increased already substantially at serum creatinine rises of 10-25%, i.e. far below the threshold for AKI stage 1 after valve operations (HR 1.39, p<0.05), but not after valve operations combined with CABG or CABG only. An increase in serum creatinine by more than 10%during the first week following valve operation is associated with an increased risk for long-term mortality following cardiac valve operation. Thus, AKI-classification clearly underestimates long-term mortality risk in patients undergoing valve operations. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions

    PubMed Central

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura

    2016-01-01

    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  4. Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions.

    PubMed

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura

    2015-11-01

    Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.

  5. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    PubMed

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  6. Analysis of the acoustic spectral signature of prosthetic heart valves in patients experiencing atrial fibrillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, D.D.; Jones, H.E.

    1994-05-06

    Prosthetic heart valves have increased the life span of many patients with life threatening heart conditions. These valves have proven extremely reliable adding years to what would have been weeks to a patient`s life. Prosthetic valves, like the heart however, can suffer from this constant work load. A small number of valves have experienced structural fractures of the outlet strut due to fatigue. To study this problem a non-intrusive method to classify valves has been developed. By extracting from an acoustic signal the opening sounds which directly contain information from the outlet strut and then developing features which are suppliedmore » to an adaptive classification scheme (neural network) the condition of the valve can be determined. The opening sound extraction process has proved to be a classification problem itself. Due to the uniqueness of each heart and the occasional irregularity of the acoustic pattern it is often questionable as to the integrity of a given signal (beat), especially one occurring during an irregular beat pattern. A common cause of these irregular patterns is a condition known as atrial fibrillation, a prevalent arrhythmia among patients with prosthetic hear valves. Atrial fibrillation is suspected when the ECG shows no obvious P-waves. The atria do not contract and relax correctly to help contribute to ventricular filling during a normal cardiac cycle. Sometimes this leads to irregular patterns in the acoustic data. This study compares normal beat patterns to irregular patterns of the same heart. By analyzing the spectral content of the beats it can be determined whether or not these irregular patterns can contribute to the classification of a heart valve or if they should be avoided. The results have shown that the opening sounds which occur during irregular beat patterns contain the same spectral information as the opening which occur during a normal beat pattern of the same heart and these beats can be used for classification.« less

  7. Prior oral conditions in patients undergoing heart valve surgery.

    PubMed

    Silvestre, Francisco-Javier; Gil-Raga, Irene; Martinez-Herrera, Mayte; Lauritano, Dorina; Silvestre-Rangil, Javier

    2017-11-01

    Patients scheduled for heart valve surgery should be free of any oral infectious disorders that might pose a risk in the postoperative period. Few studies have been made on the dental conditions of such patients prior to surgery. The present study describes the most frequent prior oral diseases in this population group. A prospective, observational case-control study was designed involving 60 patients (30 with heart valve disease and 30 controls, with a mean age of 71 years in both groups). A dental exploration was carried out, with calculation of the DMFT (decayed, missing and filled teeth) index and recording of the periodontal parameters (plaque index, gingival bleeding index, periodontal pocket depth, and attachment loss). The oral mucosa was also examined, and panoramic X-rays were used to identify possible intrabony lesions. Significant differences in bacterial plaque index were observed between the two groups ( p <0.05), with higher scores in the patients with valve disease. Probing depth and the presence of moderate pockets were also greater in the patients with valve disease than among the controls ( p <0.01). Sixty percent of the patients with valve disease presented periodontitis. Patients scheduled for heart valve surgery should be examined for possible active periodontitis before the operation. Those individuals found to have periodontal disease should receive adequate periodontal treatment before heart surgery. Key words: Valve disease, aortic, mitral, heart surgery, periodontitis.

  8. Prior oral conditions in patients undergoing heart valve surgery

    PubMed Central

    Gil-Raga, Irene; Martinez-Herrera, Mayte; Lauritano, Dorina; Silvestre-Rangil, Javier

    2017-01-01

    Background Patients scheduled for heart valve surgery should be free of any oral infectious disorders that might pose a risk in the postoperative period. Few studies have been made on the dental conditions of such patients prior to surgery. The present study describes the most frequent prior oral diseases in this population group. Material and Methods A prospective, observational case-control study was designed involving 60 patients (30 with heart valve disease and 30 controls, with a mean age of 71 years in both groups). A dental exploration was carried out, with calculation of the DMFT (decayed, missing and filled teeth) index and recording of the periodontal parameters (plaque index, gingival bleeding index, periodontal pocket depth, and attachment loss). The oral mucosa was also examined, and panoramic X-rays were used to identify possible intrabony lesions. Results Significant differences in bacterial plaque index were observed between the two groups (p<0.05), with higher scores in the patients with valve disease. Probing depth and the presence of moderate pockets were also greater in the patients with valve disease than among the controls (p<0.01). Sixty percent of the patients with valve disease presented periodontitis. Conclusions Patients scheduled for heart valve surgery should be examined for possible active periodontitis before the operation. Those individuals found to have periodontal disease should receive adequate periodontal treatment before heart surgery. Key words:Valve disease, aortic, mitral, heart surgery, periodontitis. PMID:29302279

  9. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  10. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  11. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  12. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  13. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  14. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  15. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...

  16. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  17. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.

    1997-01-01

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.

  18. Ecosystem classifications based on summer and winter conditions.

    PubMed

    Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q

    2013-04-01

    Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated

  19. Generalized Rainich conditions, generalized stress-energy conditions, and the Hawking-Ellis classification

    NASA Astrophysics Data System (ADS)

    Martín–Moruno, Prado; Visser, Matt

    2017-11-01

    The (generalized) Rainich conditions are algebraic conditions which are polynomial in the (mixed-component) stress-energy tensor. As such they are logically distinct from the usual classical energy conditions (NEC, WEC, SEC, DEC), and logically distinct from the usual Hawking-Ellis (Segré-Plebański) classification of stress-energy tensors (type I, type II, type III, type IV). There will of course be significant inter-connections between these classification schemes, which we explore in the current article. Overall, we shall argue that it is best to view the (generalized) Rainich conditions as a refinement of the classical energy conditions and the usual Hawking-Ellis classification.

  20. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, R.H.; Chai, J.; Lang, J.H.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signalmore » and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.« less

  1. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  2. Comprehensive 4-stage categorization of bicuspid aortic valve leaflet morphology by cardiac MRI in 386 patients.

    PubMed

    Murphy, I G; Collins, J; Powell, A; Markl, M; McCarthy, P; Malaisrie, S C; Carr, J C; Barker, A J

    2017-08-01

    Bicuspid aortic valve (BAV) disease is heterogeneous and related to valve dysfunction and aortopathy. Appropriate follow up and surveillance of patients with BAV may depend on correct phenotypic categorization. There are multiple classification schemes, however a need exists to comprehensively capture commissure fusion, leaflet asymmetry, and valve orifice orientation. Our aim was to develop a BAV classification scheme for use at MRI to ascertain the frequency of different phenotypes and the consistency of BAV classification. The BAV classification scheme builds on the Sievers surgical BAV classification, adding valve orifice orientation, partial leaflet fusion and leaflet asymmetry. A single observer successfully applied this classification to 386 of 398 Cardiac MRI studies. Repeatability of categorization was ascertained with intraobserver and interobserver kappa scores. Sensitivity and specificity of MRI findings was determined from operative reports, where available. Fusion of the right and left leaflets accounted for over half of all cases. Partial leaflet fusion was seen in 46% of patients. Good interobserver agreement was seen for orientation of the valve opening (κ = 0.90), type (κ = 0.72) and presence of partial fusion (κ = 0.83, p < 0.0001). Retrospective review of operative notes showed sensitivity and specificity for orientation (90, 93%) and for Sievers type (73, 87%). The proposed BAV classification schema was assessed by MRI for its reliability to classify valve morphology in addition to illustrating the wide heterogeneity of leaflet size, orifice orientation, and commissural fusion. The classification may be helpful in further understanding the relationship between valve morphology, flow derangement and aortopathy.

  3. Gender classification under extended operating conditions

    NASA Astrophysics Data System (ADS)

    Rude, Howard N.; Rizki, Mateen

    2014-06-01

    Gender classification is a critical component of a robust image security system. Many techniques exist to perform gender classification using facial features. In contrast, this paper explores gender classification using body features extracted from clothed subjects. Several of the most effective types of features for gender classification identified in literature were implemented and applied to the newly developed Seasonal Weather And Gender (SWAG) dataset. SWAG contains video clips of approximately 2000 samples of human subjects captured over a period of several months. The subjects are wearing casual business attire and outer garments appropriate for the specific weather conditions observed in the Midwest. The results from a series of experiments are presented that compare the classification accuracy of systems that incorporate various types and combinations of features applied to multiple looks at subjects at different image resolutions to determine a baseline performance for gender classification.

  4. The challenge of valve-in-valve procedures in degenerated Mitroflow bioprostheses and the advantage of using the JenaValve transcatheter heart valve.

    PubMed

    Conradi, Lenard; Kloth, Benjamin; Seiffert, Moritz; Schirmer, Johannes; Koschyk, Dietmar; Blankenberg, Stefan; Reichenspurner, Hermann; Diemert, Patrick; Treede, Hendrik

    2014-12-01

    Recently, the feasibility of valve-in-valve procedures using current first-generation transcatheter heart valves (THV) in cases of structural valve degeneration has been reported as an alternative to conventional open repeat valve replacement. By design, certain biological valve xenografts carry a high risk of coronary ostia occlusion due to lateral displacement of leaflets after valve-in-valve procedures. In the present report we aimed to prove feasibility and safety of transapical valve-in-valve implantation of the JenaValve THV in two cases of degenerated Mitroflow bioprostheses. We herein report two cases of successful transapical valve-in-valve procedures using a JenaValve THV implanted in Sorin Mitroflow bioprostheses for structural valve degeneration. Both patients were alive and in good clinical condition at 30 days from the procedure. However, increased transvalvular gradients were noted in both cases. Transcatheter valve-in-valve implantation of a JenaValve THV is a valid alternative for patients with degenerated Mitroflow bioprostheses of sufficient size and in the presence of short distances to the coronary ostia who are too ill for conventional repeat open heart surgery. Increased pressure gradients have to be expected and weighed against the disadvantages of other treatment options when planning such a procedure.

  5. Heart Valve Diseases

    MedlinePlus

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  6. Aerosol penetration through respirator exhalation valves.

    PubMed

    Bellin, P; Hinds, W C

    1990-10-01

    Exhalation valves are a critical component of industrial respirators. They are designed to permit minimal inward leakage of air contaminants during inhalation and provide low resistance during exhalation. Under normal conditions, penetration of aerosol through exhalation valves is minimal. The exhalation valve is, however, a vulnerable component of a respirator and under actual working conditions may become dirty or damaged to the point of causing significant leakage. Aerosol penetration was measured for normal exhalation valves and valves compromised by paint or fine copper wires on the valve seat. Penetration increased with increasing wire diameter. A wire 250 microns in diameter allowed greater than 1% penetration into the mask cavity. Dirt or paint accumulated on the exhalation valve allowed a similar level of penetration. Work rate had little effect on observed penetration. Penetration decreased significantly with increasing aerosol particle size. The amount of material on the valve or valve seat necessary for significant (greater than 0.5%) inward leakage in a half-mask respirator could be readily observed by careful inspection of the exhalation valve and its seat in good lighting conditions.

  7. Fault diagnosis for diesel valve trains based on time frequency images

    NASA Astrophysics Data System (ADS)

    Wang, Chengdong; Zhang, Youyun; Zhong, Zhenyuan

    2008-11-01

    In this paper, the Wigner-Ville distributions (WVD) of vibration acceleration signals which were acquired from the cylinder head in eight different states of valve train were calculated and displayed in grey images; and the probabilistic neural networks (PNN) were directly used to classify the time-frequency images after the images were normalized. By this way, the fault diagnosis of valve train was transferred to the classification of time-frequency images. As there is no need to extract further fault features (such as eigenvalues or symptom parameters) from time-frequency distributions before classification, the fault diagnosis process is highly simplified. The experimental results show that the faults of diesel valve trains can be classified accurately by the proposed methods.

  8. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve

    PubMed Central

    VeDepo, Mitchell C; Detamore, Michael S; Hopkins, Richard A; Converse, Gabriel L

    2017-01-01

    The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells. Many creative strategies have pursued complete biological valve recellularization; however, identifying the optimal recellularization method, including in situ or in vitro recellularization and chemical and/or mechanical conditioning, has proven difficult. Furthermore, while many studies have focused on individual parameters for increasing valve interstitial recellularization, a general understanding of the interacting dynamics is likely necessary to achieve success. Therefore, the purpose of this review is to explore and compare the various processing strategies used for the decellularization and subsequent recellularization of tissue-engineered heart valves. PMID:28890780

  9. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  10. The patient inflating valve in anaesthesia and resuscitation breathing systems.

    PubMed

    Fenton, P M; Bell, G

    2013-03-01

    Patient inflating valves combined with self-inflating bags are known to all anaesthetists as resuscitation devices and are familiar as components of draw-over anaesthesia systems. Their variants are also commonplace in transfer and home ventilators. However, the many variations in structure and function have led to difficulties in their optimal use, definition and classification. After reviewing the relevant literature, we defined a patient inflating valve as a one-way valve that closes an exit port to enable lung inflation, also permitting exhalation and spontaneous breathing, the actions being automatic. We present a new classification based on the mechanism of valve opening/closure; namely elastic recoil of a flexible flap/diaphragm, sliding spindle opened by a spring/magnet or a hollow balloon collapsed by external pressure. The evolution of these valves has been driven by the difficulties documented in critical incidents, which we have used along with information from modern International Organization for Standardization standards to identify 13 ideal properties, the top six of which are non-jamming, automatic, no bypass effect, no rebreathing or air entry at patient end, low resistance, robust and easy to service. The Ambu and the Laerdal valves have remained popular due to their simplicity and reliability. Two new alternatives, the Fenton and Diamedica valves, offer the benefits of location away from the patient while retaining a small functional dead space. They also offer the potential for greater use of hybrid continuous flow/draw-over systems that can operate close to atmospheric pressure. The reliable application of positive end-expiratory pressure/continuous positive airway pressure remains a challenge.

  11. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  12. Water hammer caused by closure of turbine safety spherical valves

    NASA Astrophysics Data System (ADS)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  13. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall be...

  14. Gender classification from video under challenging operating conditions

    NASA Astrophysics Data System (ADS)

    Mendoza-Schrock, Olga; Dong, Guozhu

    2014-06-01

    The literature is abundant with papers on gender classification research. However the majority of such research is based on the assumption that there is enough resolution so that the subject's face can be resolved. Hence the majority of the research is actually in the face recognition and facial feature area. A gap exists for gender classification under challenging operating conditions—different seasonal conditions, different clothing, etc.—and when the subject's face cannot be resolved due to lack of resolution. The Seasonal Weather and Gender (SWAG) Database is a novel database that contains subjects walking through a scene under operating conditions that span a calendar year. This paper exploits a subset of that database—the SWAG One dataset—using data mining techniques, traditional classifiers (ex. Naïve Bayes, Support Vector Machine, etc.) and traditional (canny edge detection, etc.) and non-traditional (height/width ratios, etc.) feature extractors to achieve high correct gender classification rates (greater than 85%). Another novelty includes exploiting frame differentials.

  15. Assessment of Hemodynamic Conditions in the Aorta Following Root Replacement with Composite Valve-Conduit Graft.

    PubMed

    Cheng, Zhuo; Kidher, Emaddin; Jarral, Omar A; O'Regan, Declan P; Wood, Nigel B; Athanasiou, Thanos; Xu, Xiao Yun

    2016-05-01

    This paper presents the analysis of detailed hemodynamics in the aortas of four patients following replacement with a composite bio-prosthetic valve-conduit. Magnetic resonance image-based computational models were set up for each patient with boundary conditions comprising subject-specific three-dimensional inflow velocity profiles at the aortic root and central pressure waveform at the model outlet. Two normal subjects were also included for comparison. The purpose of the study was to investigate the effects of the valve-conduit on flow in the proximal and distal aorta. The results suggested that following the composite valve-conduit implantation, the vortical flow structure and hemodynamic parameters in the aorta were altered, with slightly reduced helical flow index, elevated wall shear stress and higher non-uniformity in wall shear compared to normal aortas. Inter-individual analysis revealed different hemodynamic conditions among the patients depending on the conduit configuration in the ascending aorta, which is a key factor in determining post-operative aortic flow. Introducing a natural curvature in the conduit to create a smooth transition between the conduit and native aorta may help prevent the occurrence of retrograde and recirculating flow in the aortic arch, which is particularly important when a large portion or the entire ascending aorta needs to be replaced.

  16. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  17. The boundary condition at the valve for numerical modelling of transient pipe flow with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Henclik, S.

    2014-08-01

    Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.

  18. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    PubMed

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-11-01

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification.

    PubMed

    G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio

    2018-06-01

    A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was

  20. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification.

    PubMed

    G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio

    2018-06-01

    A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was

  1. Aspirator increases relief valve poppet stroke

    NASA Technical Reports Server (NTRS)

    Biddle, M. E.

    1967-01-01

    Addition of an aspirator to a relief valve increases the valve poppet stroke under dynamic flow conditions. The aspirator allows poppet inlet dynamic forces to overcome relief valve spring force. It reduces the fluid pressure in the skirt cavity by providing a low pressure sense probe.

  2. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  3. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  4. Bicuspid Aortic Valve

    DTIC Science & Technology

    2006-08-01

    severe aortic stenosis . Figure 1F. Oblique axial cine bright blood imaging through the valve plane of the aorta, demonstrates the aortic valve to...the ascending aorta. This moderate to large jet is consistent with moderate to severe aortic stenosis . No diastolic jet to suggest aortic ...conditions. Functional impairment of the aortic valve—namely aortic stenosis and aortic regurgitation—is the most common complication (in up to 68-85% of

  5. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    PubMed

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P <0.001) and an increase in valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P <0.001). No procedural complications were reported. BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  6. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  7. Contamination avoidance devices for poppettype shutoff valves

    NASA Technical Reports Server (NTRS)

    Endicott, D. L.

    1973-01-01

    The determination of the cycle life is reported of the scal closure of a typical poppet-type shutoff valve in an uncontaminated GH2 environment and then compared this component performance with simulated operation with GN2 and LN2 containing controlled amounts of AL2O3 contaminant particles. The original valve design was tested for contamination damage tolerance characteristics under full-flow and cyclic-operating conditions, redesigned to improve the damage tolerance to contaminants, and then retested. The redesigned valve was found to have acceptable tolerance characteristics under all full-flow conditions and cyclic operation with small (25-75 microns) particulate contamination. The tolerance characteristics of the valve under cyclic conditions with large (75-250 microns) particulate contamination was improved but was not found to be completely satisfactory.

  8. Semi-supervised vibration-based classification and condition monitoring of compressors

    NASA Astrophysics Data System (ADS)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  9. Transcatheter Aortic Valve-in-Valve Procedure in Patients with Bioprosthetic Structural Valve Deterioration

    PubMed Central

    Reul, Ross M.; Ramchandani, Mahesh K.; Reardon, Michael J.

    2017-01-01

    Surgical aortic valve replacement is the gold standard procedure to treat patients with severe, symptomatic aortic valve stenosis or insufficiency. Bioprosthetic valves are used for surgical aortic valve replacement with a much greater prevalence than mechanical valves. However, bioprosthetic valves may fail over time because of structural valve deterioration; this often requires intervention due to severe bioprosthetic valve stenosis or regurgitation or a combination of both. In select patients, transcatheter aortic valve replacement is an alternative to surgical aortic valve replacement. Transcatheter valve-in-valve (ViV) replacement is performed by implanting a transcatheter heart valve within a failing bioprosthetic valve. The transcatheter ViV operation is a less invasive procedure compared with reoperative surgical aortic valve replacement, but it has been associated with specific complications and requires extensive preoperative work-up and planning by the heart team. Data from experimental studies and analyses of results from clinical procedures have led to strategies to improve outcomes of these procedures. The type, size, and implant position of the transcatheter valve can be optimized for individual patients with knowledge of detailed dimensions of the surgical valve and radiographic and echocardiographic measurements of the patient's anatomy. Understanding the complexities of the ViV procedure can lead surgeons to make choices during the original surgical valve implantation that can make a future ViV operation more technically feasible years before it is required. PMID:29743998

  10. Mitral valve prolapse and hyperthyroidism: effect of patient selection.

    PubMed

    Zullo, M A; Devereux, R B; Kramer-Fox, R; Lutas, E M; Brown, W T

    1985-11-01

    Patients with mitral valve prolapse and hyperthyroidism have common symptoms; the most outstanding symptom is palpitation. To determine whether or not common symptoms contributed to the reported association of these conditions, we evaluated 220 patients with symptomatic mitral valve prolapse and 216 first-degree relatives in 72 families; 65 relatives with mitral valve prolapse and 151 relatives without mitral valve prolapse, all greater than or equal to 16 years of age. Thirty subjects, aged 49 +/- 13 years (p less than 0.025 vs entire study group), had thyroid disease (23 subjects had definite thyroid disease, seven subjects had probable); 27 of 30 subjects with thyroid disease (90%) were female (p less than 0.005). The age- and sex-adjusted prevalence of hyperthyroidism was significantly higher in probands with mitral valve prolapse than in family members without mitral valve prolapse (3.5% vs 0%, p = 0.03), while an intermediate prevalence of hyperthyroidism (2.2%) was observed in family members with mitral valve prolapse. Thus, the prevalence of hyperthyroidism is increased among symptomatic patients with mitral valve prolapse as compared to family members without mitral valve prolapse, but the prevalence of thyroid conditions is similar among family members with or without this condition. These findings are explained by the effect of common symptoms on clinical detection of both mitral valve prolapse and hyperthyroidism.

  11. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  12. 49 CFR 192.181 - Distribution line valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... line valves. (a) Each high-pressure distribution system must have valves spaced so as to reduce the... pressure, the size of the mains, and the local physical conditions. (b) Each regulator station controlling the flow or pressure of gas in a distribution system must have a valve installed on the inlet piping...

  13. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  14. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  15. BAKABLE ULTRA-HIGH VACUUM VALVE

    DOEpatents

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  16. Vertical pump with free floating check valve

    DOEpatents

    Lindsay, Malcolm

    1980-01-01

    A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

  17. Comparison of outcomes of patients with left ventricular ejection fractions ≤30% versus ≥30% having transcatheter aortic valve implantation (from the German Transcatheter Aortic Valve Interventions Registry).

    PubMed

    Schaefer, Ulrich; Zahn, Ralf; Abdel-Wahab, Mohamed; Gerckens, Ulrich; Linke, Axel; Schneider, Steffen; Eggebrecht, Holger; Sievert, Horst; Figulla, Hans Reiner; Senges, Jochen; Kuck, Karl Heinz

    2015-03-01

    Transcatheter aortic valve implantation (TAVI) is rapidly evolving in Germany. Especially severe reduced left ventricular ejection fraction (LVEF) is known as a prominent risk factor for adverse outcome in open heart surgery. Thus, the data of the prospective multicenter German Transcatheter Aortic Valve Interventions Registry were analyzed for outcomes in patients with severe depressed LVEF. Data of 1,432 patients were consecutively collected after transcatheter aortic valve implantation. Patients were divided into 2 groups (A: LVEF ≤30%, n = 169, age 79.9 ± 6.7 years, logES 34.2 ± 17.8%; B: LVEF >30%, n = 1,263, age 82.0 ± 6.1 years, logES 18.9 ± 12.0%), and procedural success rates, New York Heart Association classification, and quality of life were compared at 30 days and 1 year, respectively. Technical success was achieved in 95.9% (A) and 97.6% (B). Survival and the New York Heart Association classification at 30 days demonstrated an excellent outcome in both groups. There was a significant improvement according to the self-assessment in health condition (0 to 100 scale) with a much larger gain in group A (28 vs 19 patients, p <0.0001). Nevertheless, low cardiac output syndrome (12.3% vs 5.9%, p <0.01) and resuscitation (10.4% vs 5.6%, p <0.05) were more frequently seen in group A, contributing to a higher mortality at 30 days (14.3% vs 7.2%) and 1 year (33.7% vs 18.1%, p <0.001). In conclusion, this real-world registry demonstrated a comparably high success rate for patients with severe reduced LVEF and an early improvement in functional status as demonstrated by substantial benefit, despite a doubled postprocedural mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Influence of leaching conditions for ecotoxicological classification of ash.

    PubMed

    Stiernström, S; Enell, A; Wik, O; Hemström, K; Breitholtz, M

    2014-02-01

    The Waste Framework Directive (WFD; 2008/98/EC) states that classification of hazardous ecotoxicological properties of wastes (i.e. criteria H-14), should be based on the Community legislation on chemicals (i.e. CLP Regulation 1272/2008). However, harmonizing the waste and chemical classification may involve drastic changes related to choice of leaching tests as compared to e.g. the current European standard for ecotoxic characterization of waste (CEN 14735). The primary aim of the present study was therefore to evaluate the influence of leaching conditions, i.e. pH (inherent pH (∼10), and 7), liquid to solid (L/S) ratio (10 and 1000 L/kg) and particle size (<4 mm, <1 mm, and <0.125 mm), for subsequent chemical analysis and ecotoxicity testing in relation to classification of municipal waste incineration bottom ash. The hazard potential, based on either comparisons between element levels in leachate and literature toxicity data or ecotoxicity testing of the leachates, was overall significantly higher at low particle size (<0.125 mm) as compared to particle fractions <1mm and <4mm, at pH 10 as compared to pH 7, and at L/S 10 as compared to L/S 1000. These results show that the choice of leaching conditions is crucial for H-14 classification of ash and must be carefully considered in deciding on future guidance procedures in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Transcatheter aortic valve-in-valve implantation of a CoreValve in a JenaValve prosthesis: a case report.

    PubMed

    Lotfi, Shahram; Becker, Michael; Moza, Ajay; Autschbach, Rüdiger; Marx, Nikolaus; Schröder, Jörg

    2017-09-10

    Transcatheter aortic valve implantation has become an accepted treatment modality for inoperable or high-risk surgical patients with symptomatic severe aortic stenosis. We report the case of a 70-year-old white man who was treated for severe symptomatic aortic regurgitation using transcatheter aortic valve implantation from the apical approach. Because of recurrent cardiac decompensation 4 weeks after implantation he underwent the implantation of a left ventricular assist device system. A year later echocardiography showed a severe transvalvular central insufficiency. Our heart team decided to choose a valve-in-valve approach while reducing the flow rate of left ventricular assist device to minimum and pacing with a frequency of 140 beats/minute. There was an excellent result and our patient is doing well with no relevant insufficiency of the aortic valve at 12-month follow-up. This is the first report about a successful treatment of a stenotic JenaValve using a CoreValve Evolut R; the use of a CoreValve Evolut R prosthesis may be an optimal option for valve-in-valve procedures.

  20. Classification of cryocoolers

    NASA Technical Reports Server (NTRS)

    Walker, G.

    1985-01-01

    A great diversity of methods and mechanisms were devised to effect cryogenic refrigeration. The basic parameters and considerations affecting the selection of a particular system are reviewed. A classification scheme for mechanical cryocoolers is presented. An important distinguishing feature is the incorporation or not of a regenerative heat exchanger, of valves, and of the method for achieving a pressure variation.

  1. Measurements of droplet velocity and size downstream of the moving valves of a four-valve engine with manifold injection, operated under isothermal steady suction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posylkin, M.; Taylor, A.M.K.P.; Whitelaw, J.H.

    The four-valve head of a VTEC engine was mounted on an open cylinder and the valves and fuel injection system operated as in the engine with a rotational speed of 1,200 rpm. Local measurements of droplet characteristics were obtained with a phase-Doppler velocimeter and iso-octane injected over 5 ms intervals, corresponding to 36 crank angle degrees, with manifold depression of 20 mbar. The results show that most of the fuel droplets were located close to the liner and on the side of the cylinder adjacent to the exhaust valves. In the plane of the measurement, 10 mm below TDC, themore » liquid flux diminished as the initiation of injection was advanced before opening of the inlet valves. With injection with the inlet valves closed, there were two waves of droplets, one from each of the two valves and separated by 60 deg CA and both with the Sauter mean diameter of about 120 {micro}m. With injection with the inlet valves open, most of the droplets emerged from the main inlet valve and with Sauter mean diameters of about 50 {micro}m, smaller than those of the unconfined spray.« less

  2. Missed aortic valve endocarditis resulting in complete atrioventricular block and redo mechanical valve replacement.

    PubMed

    Harky, Amer; Garner, Megan; Popa, Miruna; Shipolini, Alex

    2017-08-03

    Infective endocarditis is a rare disease associated with high morbidity and mortality. As a result, early diagnosis and prompt antibiotic treatment with or without surgical intervention is crucial in the management of such condition.We report a case of missed infective endocarditis of the aortic valve. The patient underwent mechanical aortic valve replacement, with the native valve being sent for histopathological examination. On re-admission 16 months later, he presented with syncope, shortness of breathing and complete heart block. On review of the histopathology of native aortic valve, endocarditis was identified which had not been acted on. The patient underwent redo aortic valve replacement for severe aortic regurgitation.We highlight the importance of following up histopathological results as well as the need for multidisciplinary treatment of endocarditis with a combination of surgical and antibiotic therapy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Safety valve

    DOEpatents

    Bergman, Ulf C.

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  4. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    PubMed

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  5. Aortic Valve Regurgitation

    MedlinePlus

    ... the main artery that leads to the body (aorta) doesn't close properly, which causes some blood ... Other diseases. Other rare conditions can enlarge the aorta and aortic valve and lead to regurgitation, including ...

  6. Microfluidic Valves Made From Polymerized Polyethylene Glycol Diacrylate

    PubMed Central

    Rogers, Chad I.; Oxborrow, Joseph B.; Anderson, Ryan R.; Tsai, Long-Fang; Nordin, Gregory P.; Woolley, Adam T.

    2013-01-01

    Pneumatically actuated, non-elastomeric membrane valves fabricated from polymerized polyethylene glycol diacrylate (poly-PEGDA) have been characterized for temporal response, valve closure, and long-term durability. A ~100 ms valve opening time and a ~20 ms closure time offer valve operation as fast as 8 Hz with potential for further improvement. Comparison of circular and rectangular valve geometries indicates that the surface area for membrane interaction in the valve region is important for valve performance. After initial fabrication, the fluid pressure required to open a closed circular valve is ~50 kPa higher than the control pressure holding the valve closed. However, after ~1000 actuations to reconfigure polymer chains and increase elasticity in the membrane, the fluid pressure required to open a valve becomes the same as the control pressure holding the valve closed. After these initial conditioning actuations, poly-PEGDA valves show considerable robustness with no change in effective operation after 115,000 actuations. Such valves constructed from non-adsorptive poly-PEGDA could also find use as pumps, for application in small volume assays interfaced with biosensors or impedance detection, for example. PMID:24357897

  7. Swirling flow in bileaflet mechanical heart valve

    NASA Astrophysics Data System (ADS)

    Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.

    2018-05-01

    Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.

  8. First uses of HAART 300 rings for aortic valve repair in Poland - 4 case studies.

    PubMed

    Juściński, Jacek H; Koprowski, Andrzej; Kołaczkowska, Magdalena; Kowalik, Maciej M; Rogowski, Jan A; Rankin, James S

    2018-03-01

    Aortic valve reconstructions using geometric annuloplasty rings HAART 300/200 open new era in aortic valve surgery. The HAART technology resizes, reshapes, stabilizes and simplifies aortic valve repair. The HAART aortic repair rings are designed to be implanted directly into aortic annulus (under aortic valve leaflets). We present first in Poland 4 cases of aortic valve reconstructions using geometric annuloplasty rings HAART 300. Two patients had type IA aortic insufficiency (due to El-Khoury classification) - they were treated by HAART 300 ring insertion and ascending aorta prosthesis implantation. Third patient, Marfan with type IB aortic insufficiency was repaired by HAART 300 ring implantation followed by remodeling (Yacoub) procedure. Fourth patient with type II aortic insufficiency (due to RCC prolapse) was repaired by HAART 300 implantation and cusp plication. All patients shows good results on 6 months postoperative 3D TTE examinations. Presented technique is reproducible and simplify aortic valve reconstructions.

  9. Valved molecular beam skimmer

    NASA Astrophysics Data System (ADS)

    Marceca, Ernesto; Becker, Jörg A.; Hensel, Friedrich

    1997-08-01

    Under routine source conditions, the optimum nozzle-skimmer distance to achieve maximum molecular beam intensities is within the range of a few millimeters. In cases where double skimming is additionally required, the distance between the skimmers should be kept small in order to sample a sufficiently large solid angle of the beam and hence maintain a good enough intensity. These two facts make it normally difficult to isolate the first from the second expansion chamber using a commercial vacuum gate valve due to the lack of remaining space. This note presents the design of a vacuum-tight valve which allows the aperture of a skimmer to be closed by plugging a needle directly against its internal conical wall. The valve can be driven manually or pneumatically from outside the vacuum chamber. The helium conductance of the valve was measured to be better than 1×10-8 mbar×l×s-1 for a helium partial pressure difference of 1 bar.

  10. Noise generated by flow through large butterfly valves

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1987-01-01

    A large butterfly valve (1.37 m diam) was acoustically tested to measure the noise generated and propagating in both the upstream and downstream directions. The experimental investigation used wall mounted pressure transducers to measure the fluctuating component of the pipe static pressure upstream and downstream of the valve. Microphones upstream of the pipe inlet and located in a plenum were used to measure the noise radiated from the valve in the upstream direction. Comparison of the wall pressure downstream of the valve to a prediction were made. Reasonable agreement was obtained with the valve operating at a choked condition. The noise upstream of the valve is 30 dB less than that measured downstream.

  11. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  12. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  13. Structural safety analysis based on seismic service conditions for butterfly valves in a nuclear power plant.

    PubMed

    Han, Sang-Uk; Ahn, Dae-Gyun; Lee, Myeong-Gon; Lee, Kwon-Hee; Han, Seung-Ho

    2014-01-01

    The structural integrity of valves that are used to control cooling waters in the primary coolant loop that prevents boiling within the reactor in a nuclear power plant must be capable of withstanding earthquakes or other dangerous situations. In this study, numerical analyses using a finite element method, that is, static and dynamic analyses according to the rigid or flexible characteristics of the dynamic properties of a 200A butterfly valve, were performed according to the KEPIC MFA. An experimental vibration test was also carried out in order to verify the results from the modal analysis, in which a validated finite element model was obtained via a model-updating method that considers changes in the in situ experimental data. By using a validated finite element model, the equivalent static load under SSE conditions stipulated by the KEPIC MFA gave a stress of 135 MPa that occurred at the connections of the stem and body. A larger stress of 183 MPa was induced when we used a CQC method with a design response spectrum that uses 2% damping ratio. These values were lower than the allowable strength of the materials used for manufacturing the butterfly valve, and, therefore, its structural safety met the KEPIC MFA requirements.

  14. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    DOE PAGES

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; ...

    2015-10-26

    study evaluated positive valve overlap and negative valve overlap valve events with direct injection. Furthermore, relative to positive valve overlap, the negative valve overlap condition had a wider reactivity stratification, a longer burn duration and higher NO and CO emissions associated with reduced fuel–air mixing.« less

  15. Fault Study of Valve Based on Test Analysis and Comparison

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Yang, Wukui; Liang, Tao; Xu, Yu; Chen, Chao

    2017-10-01

    The valve of a certain type of small engine often has the fault phenomenon of abnormal vibration noise and can’t close under the specified pressure, which may cause the engine automatic stop because of valve incomplete close leading to fuel leakage during test and startup on the bench. By test study compared to imported valve with the same use function and test condition valve, and put forward the thinking of improving valve structure, compared no-improved valve to improved valve by adopting Fluent field simulation software. As a result, improved valve can restore close pressure of valve, restrain abnormal vibration noise phenomenon, and effectively compensate compression value of spring because of steel ball contacting position downward with valve casing.

  16. Surgical treatment of infective endocarditis with aortic and tricuspid valve involvement using cryopreserved aortic and mitral valve allografts.

    PubMed

    Ostrovsky, Yury; Spirydonau, Siarhei; Shchatsinka, Mikalai; Shket, Aliaksandr

    2015-05-01

    Surgical treatment of infective and prosthetic endocarditis using allografts gives good results. Aortic allograft implantation is a common technique, while tricuspid valve replacement with a mitral allograft is very rare. Multiple valve disease in case of infective endocarditis is a surgical challenge as such patients are usually in a grave condition and results of surgical treatment are often unsatisfactory. In this article we describe a clinical case of successful surgical treatment in a patient with active infective endocarditis of aortic and tricuspid valve, complicated by an aortic-right ventricular fistula. The aortic valve and ascending aorta were replaced with a cryopreserved aortic allograft; the tricuspid valve was replaced with a cryopreserved mitral allograft. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  18. Transcatheter Aortic Valve Replacement for Native Aortic Valve Regurgitation

    PubMed Central

    Spina, Roberto; Anthony, Chris; Muller, David WM

    2015-01-01

    Transcatheter aortic valve replacement with either the balloon-expandable Edwards SAPIEN XT valve, or the self-expandable CoreValve prosthesis has become the established therapeutic modality for severe aortic valve stenosis in patients who are not deemed suitable for surgical intervention due to excessively high operative risk. Native aortic valve regurgitation, defined as primary aortic incompetence not associated with aortic stenosis or failed valve replacement, on the other hand, is still considered a relative contraindication for transcatheter aortic valve therapies, because of the absence of annular or leaflet calcification required for secure anchoring of the transcatheter heart valve. In addition, severe aortic regurgitation often coexists with aortic root or ascending aorta dilatation, the treatment of which mandates operative intervention. For these reasons, transcatheter aortic valve replacement has been only sporadically used to treat pure aortic incompetence, typically on a compassionate basis and in surgically inoperable patients. More recently, however, transcatheter aortic valve replacement for native aortic valve regurgitation has been trialled with newer-generation heart valves, with encouraging results, and new ancillary devices have emerged that are designed to stabilize the annulus–root complex. In this paper we review the clinical context, technical characteristics and outcomes associated with transcatheter treatment of native aortic valve regurgitation. PMID:29588674

  19. Quantification of mitral valve regurgitation in dogs with degenerative mitral valve disease by use of the proximal isovelocity surface area method.

    PubMed

    Gouni, Vassiliki; Serres, François J; Pouchelon, Jean-Louis; Tissier, Renaud; Lefebvre, Hervé P; Nicolle, Audrey P; Sampedrano, Carolina Carlos; Chetboul, Valérie

    2007-08-01

    To determine the within-day and between-day variability of regurgitant fraction (RF) assessed by use of the proximal isovelocity surface area (PISA) method in awake dogs with degenerative mitral valve disease (MVD), measure RF in dogs with MVD, and assess the correlation between RF and several clinical and Doppler echocardiographic variables. Prospective study. 6 MVD-affected dogs with no clinical signs and 67 dogs with MVD of differing severity (International Small Animal Cardiac Health Council [ISACHC] classification). The 6 dogs were used to determine the repeatability and reproducibility of the PISA method, and RF was then assessed in 67 dogs of various ISACHC classes. Mitral valve regurgitation was also assessed from the maximum area of regurgitant jet signal-to-left atrium area (ARJ/LAA) ratio determined via color Doppler echocardiographic mapping. Within- and between-day coefficients of variation of RF were 8% and 11%, respectively. Regurgitation fraction was significantly correlated with ISACHC classification and heart murmur grade and was higher in ISACHC class III dogs (mean +/- SD, 72.8 +/- 9.5%) than class II (57.9 +/- 20.1%) or I (40.7 +/- 19.2%) dogs. Regurgitation fraction and left atriumto-aorta ratio, fractional shortening, systolic pulmonary arterial pressure, and ARJ/LAA ratio were significantly correlated. Results suggested that RF is a repeatable and reproducible variable for noninvasive quantitative evaluation of mitral valve regurgitation in awake dogs. Regurgitation fraction also correlated well with disease severity. It appears that this Doppler echocardiographic index may be useful in longitudinal studies of MVD in dogs.

  20. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  1. CrossLink: a novel method for cross-condition classification of cancer subtypes.

    PubMed

    Ma, Chifeng; Sastry, Konduru S; Flore, Mario; Gehani, Salah; Al-Bozom, Issam; Feng, Yusheng; Serpedin, Erchin; Chouchane, Lotfi; Chen, Yidong; Huang, Yufei

    2016-08-22

    We considered the prediction of cancer classes (e.g. subtypes) using patient gene expression profiles that contain both systematic and condition-specific biases when compared with the training reference dataset. The conventional normalization-based approaches cannot guarantee that the gene signatures in the reference and prediction datasets always have the same distribution for all different conditions as the class-specific gene signatures change with the condition. Therefore, the trained classifier would work well under one condition but not under another. To address the problem of current normalization approaches, we propose a novel algorithm called CrossLink (CL). CL recognizes that there is no universal, condition-independent normalization mapping of signatures. In contrast, it exploits the fact that the signature is unique to its associated class under any condition and thus employs an unsupervised clustering algorithm to discover this unique signature. We assessed the performance of CL for cross-condition predictions of PAM50 subtypes of breast cancer by using a simulated dataset modeled after TCGA BRCA tumor samples with a cross-validation scheme, and datasets with known and unknown PAM50 classification. CL achieved prediction accuracy >73 %, highest among other methods we evaluated. We also applied the algorithm to a set of breast cancer tumors derived from Arabic population to assign a PAM50 classification to each tumor based on their gene expression profiles. A novel algorithm CrossLink for cross-condition prediction of cancer classes was proposed. In all test datasets, CL showed robust and consistent improvement in prediction performance over other state-of-the-art normalization and classification algorithms.

  2. Transcatheter valve underexpansion limits leaflet durability: implications for valve-in-valve procedures

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2016-01-01

    Transcatheter aortic valve (TAV) implantation within a failed bioprosthetic valve is a growing trend for high-risk patients. The non-compliant stent of the previous prosthesis may prevent full expansion of the TAV, which has been shown to distort the leaflet configuration, and has been hypothesized to adversely affect durability. In this study, TAV leaflet fatigue damage under cyclic pressurization in the setting of stent underexpansion by 0 (fully expanded), 1, 2 and 3 mm was simulated using finite element analysis to test this hypothesis. In the 2 and 3 mm underexpanded devices, the TAV leaflets exhibited severe pin-wheeling during valve closure, which increased leaflet stresses dramatically, and resulted in accelerated fatigue damage of the leaflets. The leaflet fatigue damage in the 1 mm underexpanded case was similar to that in the fully expanded case. Clinically a range of 10% to 15% underexpansion is generally considered acceptable; however, it was observed in this study that ≥2 mm (≥9.1%) underexpansion, will significantly impact device durability. Further study is necessary to determine the impact of various deployment conditions, i.e. non-uniform and non-circular deployments and different implantation heights, on differing TAV devices, but it is clear that the normal TAV leaflet configuration must be preserved in order to preserve durability. PMID:27734178

  3. 7 CFR 27.62 - Conditions for review of classification and for incidental Micronaire determination for original...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... may be made at the same time as the request for initial classification. The written application may... 7 Agriculture 2 2011-01-01 2011-01-01 false Conditions for review of classification and for... CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification Reviews and Micronaire Determinations...

  4. 7 CFR 27.62 - Conditions for review of classification and for incidental Micronaire determination for original...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... may be made at the same time as the request for initial classification. The written application may... 7 Agriculture 2 2010-01-01 2010-01-01 false Conditions for review of classification and for... CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification Reviews and Micronaire Determinations...

  5. Fixation and mounting of porcine aortic valves for use in mock circuits.

    PubMed

    Schlöglhofer, Thomas; Aigner, Philipp; Stoiber, Martin; Schima, Heinrich

    2013-10-01

    Investigations of the circulatory system in vitro use mock circuits that require valves to mimic the cardiac situation. Whereas mechanical valves increase water hammer effects due to inherent stiffness and do not allow the use of pressure lines or catheters, bioprosthetic valves are expensive and of limited durability in test fluids. Therefore, we developed a cheap, fast, alternative method to mount valves obtained from the slaughterhouse in mock circuits. Porcine aortic roots were obtained from the abattoir and used either in native condition or after fixation. Fixation was performed at a constant retrograde pressure to ensure closed valve position. Fixation time was 4 h in a 0.5%-glutaraldehyde phosphate buffer. The fixed valves were molded into a modular mock circulation connector using a fast curing silicone. Valve functionality was evaluated in a pulsatile setting (cardiac output = 4.7 l/min, heart rate = 80 beats/min) and compared before and after fixation. Leaflet motion was recorded with a high-speed camera and valve insufficiency was quantified by leakage flow under steady pressure application (80 mmHg). Under physiological conditions the aortic valves showed almost equal leaflet motion in native and fixed conditions. However, the leaflets of the native valves showed lower stiffness and more fluttering during systole than the fixed specimens. Under retrograde pressure, fresh and fixed valves showed small leakage flows of <30 ml/min. The new mounting and fixation procedure is a fast method to fabricate low cost biologic valves for the use in mock circuits.

  6. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside

    PubMed Central

    Saxon, John T; Allen, Keith B; Cohen, David J

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient–prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient–prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions. PMID:29593832

  7. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside.

    PubMed

    Saxon, John T; Allen, Keith B; Cohen, David J; Chhatriwalla, Adnan K

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient-prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient-prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions.

  8. Implementation of transcatheter aortic valve replacement in California: Influence on aortic valve surgery.

    PubMed

    Maximus, Steven; Milliken, Jeffrey C; Danielsen, Beate; Shemin, Richard; Khan, Junaid; Carey, Joseph S

    2018-04-01

    Transcatheter aortic valve replacement (TAVR) procedures were introduced in 2011. Initially, procedures were limited to patients who were not surgical candidates, but subsequently high-risk surgical candidates were considered for TAVR. The influence on aortic valve surgery in California is unknown. The California Office of Statewide Health Planning and Development hospitalized patient discharge database was queried for the years 2009 through 2014. isolated surgical aortic valve and aortic valve/coronary artery bypass graft (SAVR) and TAVR procedures were identified by International Classification of Diseases-9th revision clinical modification procedure codes. Seven TAVR programs were introduced in 2011, 12 in 2012, 3 in 2013, and 6 in 2014. SAVR procedure volumes were compared from the 2 years before institution with SAVR volumes during the year(s) after institution of the TAVR program in these 28 hospitals. Overall, surgical volumes increased during the first, second, and third years after implementation of TAVR procedures. Among 7 hospitals with 4-year programs, surgical volumes increased to a maximum of 15.5% during the third year, then began to decrease. The hospital performing the largest number of TAVR procedures showed a marked decrease in SAVR volume by the fourth year, suggesting a shift of SAVR candidates to TAVR. Among all hospitals with 4-year programs, TAVR exceeded SAVR procedures by the fourth year. In California overall, SAVR increased during 2011 through 2013, due primarily to increasing volume of isolated SAVR procedures. Statewide, isolated SAVR increased from a yearly average of 3111 procedures during 2009-2010 to 3592 (+15.5%) in 2013, then decreased slightly in 2014. SAVR plus coronary artery bypass graft procedures decreased during the same time period. After implementation of TAVR, hospital SAVR volumes increased moderately, then began to decrease by the fourth year, when TAVR volume exceeded SAVR. Surgical candidates may be identified

  9. Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.

    2000-08-29

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.

  10. Control Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Wayne R.

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between amore » first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.« less

  11. Understanding Heart Valve Problems and Causes

    MedlinePlus

    ... and conditions that can cause valve problems: Infective endocarditis Injury Rheumatic fever These conditions can cause one ... Surgery? Recovery Milestones Checklist | Spanish What Is Infective Endocarditis? | Spanish Interactive Treatment Guide Infographic: What Everyone Should ...

  12. Microspheres as resistive elements in a check valve for low pressure and low flow rate conditions.

    PubMed

    Ou, Kevin; Jackson, John; Burt, Helen; Chiao, Mu

    2012-11-07

    In this paper we describe a microsphere-based check valve integrated with a micropump. The check valve uses Ø20 μm polystyrene microspheres to rectify flow in low pressure and low flow rate applications (Re < 1). The microspheres form a porous medium in the check valve increasing fluidic resistance based on the direction of flow. Three check valve designs were fabricated and characterized to study the microspheres' effectiveness as resistive elements. A maximum diodicity (ratio of flow in the forward and reverse direction) of 18 was achieved. The pumping system can deliver a minimum flow volume of 0.25 μL and a maximum flow volume of 1.26 μL under an applied pressure of 0.2 kPa and 1 kPa, respectively. A proof-of-concept study was conducted using a pharmaceutical agent, docetaxel (DTX), as a sample drug showing the microsphere check valve's ability to limit diffusion from the micropump. The proposed check valve and pumping concept shows strong potential for implantable drug delivery applications with low flow rate requirements.

  13. Influence of growth conditions on exchange bias of NiMn-based spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz

    2015-05-07

    As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction onmore » Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.« less

  14. Large-scale classification of traffic signs under real-world conditions

    NASA Astrophysics Data System (ADS)

    Hazelhoff, Lykele; Creusen, Ivo; van de Wouw, Dennis; de With, Peter H. N.

    2012-02-01

    Traffic sign inventories are important to governmental agencies as they facilitate evaluation of traffic sign locations and are beneficial for road and sign maintenance. These inventories can be created (semi-)automatically based on street-level panoramic images. In these images, object detection is employed to detect the signs in each image, followed by a classification stage to retrieve the specific sign type. Classification of traffic signs is a complicated matter, since sign types are very similar with only minor differences within the sign, a high number of different signs is involved and multiple distortions occur, including variations in capturing conditions, occlusions, viewpoints and sign deformations. Therefore, we propose a method for robust classification of traffic signs, based on the Bag of Words approach for generic object classification. We extend the approach with a flexible, modular codebook to model the specific features of each sign type independently, in order to emphasize at the inter-sign differences instead of the parts common for all sign types. Additionally, this allows us to model and label the present false detections. Furthermore, analysis of the classification output provides the unreliable results. This classification system has been extensively tested for three different sign classes, covering 60 different sign types in total. These three data sets contain the sign detection results on street-level panoramic images, extracted from a country-wide database. The introduction of the modular codebook shows a significant improvement for all three sets, where the system is able to classify about 98% of the reliable results correctly.

  15. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  16. Modeling study of the ABS relay valve

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Lin, Min; Guo, Bin; Luo, Zai; Xu, Weidong

    2011-05-01

    The ABS (anti-lock braking system) relay valve is the key component of anti-lock braking system in most commercial vehicles such as trucks, tractor-trailers, etc. In this paper, structure of ABS relay valve and its work theory were analyzed. Then a mathematical model of ABS relay valve, which was investigated by dividing into electronic part, magnetic part, pneumatic part and mechanical part, was set up. The displacement of spools and the response of pressure increasing, holding, releasing of ABS relay valve were simulated and analyzed under conditions of control pressure 500 KPa, braking pressure 600 KPa, atmospheric pressure 100 KPa and air temperature 310 K. Thisarticle provides reliable theory for improving the performance and efficiency of anti-lock braking system of vehicles.

  17. Nuclear valve manufacturer selects stainless forgings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-02-01

    Forged type 316 stainless steel components for nuclear valves are described. Automatic plasma arc welding with powder filler alloys is employed for hardfacing. Seat ring forgings are surfaced four-at-a-time with Stellite No. 156 in a sequential manner to minimize heat input to the individual components. After cladding and machining, seat rings are welded into the valve body using a semiautomatic, hot-wire gas tungsten-arc process. Disc faces and guide slots are surfaced with Stellite No. 6. The valve stem is machined from 17-4PH forged bar stock in the H-1100 condition. The heat treatment is specified to minimize pitting under prolonged exposuremore » to wet packing. A 12 rms (0.3 $mu$m) surface finish minimizes tearing of the packing and subsequent leakage. The link and stem pin are SA 564 Grade 660 (in the H-1100 condition) and ASTM A637 Grade 718 respectively. (JRD)« less

  18. Improving condition severity classification with an efficient active learning based framework

    PubMed Central

    Nissim, Nir; Boland, Mary Regina; Tatonetti, Nicholas P.; Elovici, Yuval; Hripcsak, George; Shahar, Yuval; Moskovitch, Robert

    2017-01-01

    Classification of condition severity can be useful for discriminating among sets of conditions or phenotypes, for example when prioritizing patient care or for other healthcare purposes. Electronic Health Records (EHRs) represent a rich source of labeled information that can be harnessed for severity classification. The labeling of EHRs is expensive and in many cases requires employing professionals with high level of expertise. In this study, we demonstrate the use of Active Learning (AL) techniques to decrease expert labeling efforts. We employ three AL methods and demonstrate their ability to reduce labeling efforts while effectively discriminating condition severity. We incorporate three AL methods into a new framework based on the original CAESAR (Classification Approach for Extracting Severity Automatically from Electronic Health Records) framework to create the Active Learning Enhancement framework (CAESAR-ALE). We applied CAESAR-ALE to a dataset containing 516 conditions of varying severity levels that were manually labeled by seven experts. Our dataset, called the “CAESAR dataset,” was created from the medical records of 1.9 million patients treated at Columbia University Medical Center (CUMC). All three AL methods decreased labelers’ efforts compared to the learning methods applied by the original CAESER framework in which the classifier was trained on the entire set of conditions; depending on the AL strategy used in the current study, the reduction ranged from 48% to 64% that can result in significant savings, both in time and money. As for the PPV (precision) measure, CAESAR-ALE achieved more than 13% absolute improvement in the predictive capabilities of the framework when classifying conditions as severe. These results demonstrate the potential of AL methods to decrease the labeling efforts of medical experts, while increasing accuracy given the same (or even a smaller) number of acquired conditions. We also demonstrated that the methods

  19. Improving condition severity classification with an efficient active learning based framework.

    PubMed

    Nissim, Nir; Boland, Mary Regina; Tatonetti, Nicholas P; Elovici, Yuval; Hripcsak, George; Shahar, Yuval; Moskovitch, Robert

    2016-06-01

    Classification of condition severity can be useful for discriminating among sets of conditions or phenotypes, for example when prioritizing patient care or for other healthcare purposes. Electronic Health Records (EHRs) represent a rich source of labeled information that can be harnessed for severity classification. The labeling of EHRs is expensive and in many cases requires employing professionals with high level of expertise. In this study, we demonstrate the use of Active Learning (AL) techniques to decrease expert labeling efforts. We employ three AL methods and demonstrate their ability to reduce labeling efforts while effectively discriminating condition severity. We incorporate three AL methods into a new framework based on the original CAESAR (Classification Approach for Extracting Severity Automatically from Electronic Health Records) framework to create the Active Learning Enhancement framework (CAESAR-ALE). We applied CAESAR-ALE to a dataset containing 516 conditions of varying severity levels that were manually labeled by seven experts. Our dataset, called the "CAESAR dataset," was created from the medical records of 1.9 million patients treated at Columbia University Medical Center (CUMC). All three AL methods decreased labelers' efforts compared to the learning methods applied by the original CAESER framework in which the classifier was trained on the entire set of conditions; depending on the AL strategy used in the current study, the reduction ranged from 48% to 64% that can result in significant savings, both in time and money. As for the PPV (precision) measure, CAESAR-ALE achieved more than 13% absolute improvement in the predictive capabilities of the framework when classifying conditions as severe. These results demonstrate the potential of AL methods to decrease the labeling efforts of medical experts, while increasing accuracy given the same (or even a smaller) number of acquired conditions. We also demonstrated that the methods included in

  20. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    PubMed

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  1. JenaValve.

    PubMed

    Treede, Hendrik; Rastan, Ardawan; Ferrari, Markus; Ensminger, Stephan; Figulla, Hans-Reiner; Mohr, Friedrich-Wilhelm

    2012-09-01

    The JenaValve is a next-generation TAVI device which consists of a well-proven porcine root valve mounted on a low-profile nitinol stent. Feeler guided positioning and clip fixation on the diseased leaflets allow for anatomically correct implantation of the device without rapid pacing. Safety and efficacy of transapical aortic valve implantation using the JenaValve were evaluated in a multicentre prospective study that showed good short and midterm results. The valve was CE-mark released in Europe in September 2011. A post-market registry ensures on-going and prospective data collection in "real-world" patients. The transfemoral JenaValve delivery system will be evaluated in a first-in-man study in the near future.

  2. Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design.

    PubMed

    Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay

    2006-02-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.

  3. Characterizing Nanoscale Topography of the Aortic Heart Valve Basement Membrane for Tissue Engineering Heart Valve Scaffold Design

    PubMed Central

    BRODY, SARAH; ANILKUMAR, THAPASIMUTHU; LILIENSIEK, SARA; LAST, JULIE A.; MURPHY, CHRISTOPHER J.; PANDIT, ABHAY

    2016-01-01

    A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane. PMID:16548699

  4. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  5. Durability Tests of Ball Valve Prototype with Flowmeter Operation

    NASA Astrophysics Data System (ADS)

    Rogula, J.; Romanik, G.

    2018-02-01

    The results of the investigation of the prototypical ball valve are presented in this article. The innovation of the tested valve is a ball with a built-in measuring orifice. The valve has been subjected to durability tests. Leakage under three temperatures: ambient, -30°C and +100°C was analyzed. Sealing elements of the valve were tested for roughness and deviation of shape before and after the cycles of operation. Ball valve operation means cycles of open/close. It was planned to perform 1000 cycles at each temperature condition accordingly. Tests of the valve were performed under gas pressure equal to 10 MPa. The research was carried out under the Operational Program "Intelligent Development" (POIR 01.01.01-00-0013 / 15 "Development of devices for measurement of media flow on industrial trunk-lines".

  6. Description of a dust particle detection system and measurements of particulate contamination from shock, gate valve, and ion pump under ultrahigh vacuum conditions

    NASA Astrophysics Data System (ADS)

    Dorier, J.-L.; Hilleret, N.

    1998-11-01

    Dust particle contamination is known to be responsible for reduced quality and yield in microelectronic processing. However it may also limit the operation of particle accelerators as a result of beam lifetime reduction or enhanced field emission in radio-frequency accelerating cavities. Intrinsic dust contamination from sources such as valves or ion pumps has not yet been studied due to the inability of commercial particle counters to be able to detect across large cross sections under ultrahigh vacuum (UHV) conditions. This motivated the development of the dust particle detector described here which is able to quantify, in situ, the level of contamination on a representative part of a vacuum vessel. This system operates under UHV conditions and measures flashes of scattered light from free falling dust particles as they cross a thin laser light sheet across a 100 mm diam vacuum vessel. A calibration using microspheres of known diameter has allowed estimation of the particle size from the scattered signal amplitude. Measurements of particulate contamination generated by shocks onto the vessel walls are presented and determination of the height of origin of dust particles from their transit time across the irradiation sheet is discussed. Measurements of dust particle release right to operation of an all-metal gate valve are also presented in the form of time resolved measurements of dust occurrence during the open/close cycles of the valve, as well as histograms of the particle size distribution. A partial self-cleaning effect is witnessed during the first 10 operation cycles following valve installation. The operation of an ion pump has also been investigated and revealed that, in our conditions, particles were released only at pump startup.

  7. High cleanliness globe valve with sine mechanism drive

    NASA Astrophysics Data System (ADS)

    Luo, Hu

    2018-06-01

    This paper gives a new type of quick-opening globe valve for life support pneumatic control system of the safety cabin at underground coal mine. The valve adopts the sine mechanism to transmit the rotating of the handle in the range of 90° to the reciprocating motion of the spool. The mechanism implements the quick-opening function of the valve through controlling the contact and separation between the O-ring and the end face of the valve. Since there is no relative sliding between the sealing interfaces, the valve solute uncontrollable disadvantage wear particles which produced by package ball valve, to ensure high cleanliness in flow path. Traditional transmission mechanism has a reinforcement effect and reduce handle open torque. By the finite element method, the relationship between the contact force and the compression of O-ring is analyzed to provide the boundary condition for the calculation of the rotational torque. Meanwhile the velocity field and pressure field along the flow path are simulated. The caliber size of the valve and the flow resistance coefficient are obtained. There is higher cleanliness, more reliable sealing, smaller handle open torque advantage compared with existing packing ball valve. The above work presents a new technical approach for the design of pneumatic control valve of the safety cabin.

  8. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  9. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  10. Use of signal analysis of heart sounds and murmurs to assess severity of mitral valve regurgitation attributable to myxomatous mitral valve disease in dogs.

    PubMed

    Ljungvall, Ingrid; Ahlstrom, Christer; Höglund, Katja; Hult, Peter; Kvart, Clarence; Borgarelli, Michele; Ask, Per; Häggström, Jens

    2009-05-01

    To investigate use of signal analysis of heart sounds and murmurs in assessing severity of mitral valve regurgitation (mitral regurgitation [MR]) in dogs with myxomatous mitral valve disease (MMVD). 77 client-owned dogs. Cardiac sounds were recorded from dogs evaluated by use of auscultatory and echocardiographic classification systems. Signal analysis techniques were developed to extract 7 sound variables (first frequency peak, murmur energy ratio, murmur duration > 200 Hz, sample entropy and first minimum of the auto mutual information function of the murmurs, and energy ratios of the first heart sound [S1] and second heart sound [S2]). Significant associations were detected between severity of MR and all sound variables, except the energy ratio of S1. An increase in severity of MR resulted in greater contribution of higher frequencies, increased signal irregularity, and decreased energy ratio of S2. The optimal combination of variables for distinguishing dogs with high-intensity murmurs from other dogs was energy ratio of S2 and murmur duration > 200 Hz (sensitivity, 79%; specificity, 71%) by use of the auscultatory classification. By use of the echocardiographic classification, corresponding variables were auto mutual information, first frequency peak, and energy ratio of S2 (sensitivity, 88%; specificity, 82%). Most of the investigated sound variables were significantly associated with severity of MR, which indicated a powerful diagnostic potential for monitoring MMVD. Signal analysis techniques could be valuable for clinicians when performing risk assessment or determining whether special care and more extensive examinations are required.

  11. Understanding Lymphatic Valve Function via Computational Modeling

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    2017-11-01

    The lymphatic system is a crucial part to the circulatory system with many important functions, such as transport of interstitial fluid, fatty acid, and immune cells. Lymphatic vessels' contractile walls and valves allow lymph flow against adverse pressure gradients and prevent back flow. Yet, the effect of lymphatic valves' geometric and mechanical properties to pumping performance and lymphatic dysfunctions like lymphedema is not well understood. Our coupled fluid-solid computational model based on lattice Boltzmann model and lattice spring model investigates the dynamics and effectiveness of lymphatic valves in resistance minimization, backflow prevention, and viscoelastic response under different geometric and mechanical properties, suggesting the range of lymphatic valve parameters with effective pumping performance. Our model also provides more physiologically relevant relations of the valve response under varied conditions to a lumped parameter model of the lymphatic system giving an integrative insight into lymphatic system performance, including its failure due to diseases. NSF CMMI-1635133.

  12. Stemless Ball Valve

    NASA Technical Reports Server (NTRS)

    Burgess, Robert K.; Yakos, David; Walthall, Bryan

    2012-01-01

    This invention utilizes a new method of opening and closing a ball valve. Instead of rotating the ball with a perpendicular stem (as is the case with standard ball valves), the ball is rotated around a fixed axis by two guide pins. This innovation eliminates the leak point that is present in all standard ball valves due to the penetration of an actuation stem through the valve body. The VOST (Venturi Off-Set-Technology) valve has been developed for commercial applications. The standard version of the valve consists of an off-set venturi flow path through the valve. This path is split at the narrowest portion of the venturi, allowing the section upstream from the venturi to be rotated. As this rotation takes place, the venturi becomes restricted as one face rotates with respect to the other, eventually closing off the flow path. A spring-loaded seal made of resilient material is embedded in the upstream face of the valve, making a leak-proof seal between the faces; thus a valve is formed. The spring-loaded lip seal is the only seal that can provide a class six, or bubble-tight, seal against the opposite face of the valve. Tearing action of the seal by high-velocity gas on this early design required relocation of the seal to the downstream face of the valve. In the stemless embodiment of this valve, inner and outer magnetic cartridges are employed to transfer mechanical torque from the outside of the valve to the inside without the use of a stem. This eliminates the leak path caused by the valve stems in standard valves because the stems penetrate through the bodies of these valves.

  13. Special functions of valve organs of blood-sucking female mosquitoes

    NASA Astrophysics Data System (ADS)

    Kim, Boheum; Lee, Sangjoon

    2010-11-01

    Food-feeding insects usually have valve organs to regulate the sucking flow effectively. Female mosquitoes sucking lots of blood instantaneously have a unique valve system between two pumping organs located in their head. The valve system seems to prevent reverse flow and to grind granule particles such as red blood cells. To understand the functional characteristics of this valve organ in detail, the volumetric flow rate passing through the valves and their interaction with the two-pumps need to be investigated. However, it is very difficult to observe the dynamic behaviors of pumping organs and valve system. In this study, the dynamic motions of valve organs of blood-sucking female mosquitoes were observed under in vivo condition using synchrotron X-ray micro imaging technique. X-ray micro computed tomography was also employed to examine the three-dimensional internal structure of the blood pumping system including valve organs.

  14. Tissue engineering of heart valves: in vitro experiences.

    PubMed

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced

  15. Tricuspid valve and percutaneous approach: No longer the forgotten valve!

    PubMed

    Bouleti, Claire; Juliard, Jean-Michel; Himbert, Dominique; Iung, Bernard; Brochet, Eric; Urena, Marina; Dilly, Marie-Pierre; Ou, Phalla; Nataf, Patrick; Vahanian, Alec

    2016-01-01

    Tricuspid valve disease is mainly represented by tricuspid regurgitation (TR), which is a predictor of poor outcome. TR is usually secondary, caused by right ventricle pressure or volume overload, the leading cause being left-sided heart valve diseases. Tricuspid surgery for severe TR is recommended during left valve surgery, and consists of either a valve replacement or, most often, a tricuspid repair with or without prosthetic annuloplasty. When TR persists or worsens after left valvular surgery, redo isolated tricuspid surgery is associated with high mortality. In addition, a sizeable proportion of patients present with tricuspid surgery deterioration over time, and need a reintervention, which is associated with high morbi-mortality rates. In this context, and given the recent major breakthrough in the percutaneous treatment of aortic and mitral valve diseases, the tricuspid valve appears an appealing challenge, although it raises specific issues. The first applications of transcatheter techniques for tricuspid valve disease were valve-in-valve and valve-in-ring implantation for degenerated bioprosthesis or ring annuloplasty. Some concerns remain regarding prosthesis sizing, rapid ventricular pacing and the best approach, but these procedures appear to be safe and effective. More recently, bicuspidization using a transcatheter approach for the treatment of native tricuspid valve has been published, in two patients. Finally, other devices are in preclinical development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Simulations of Instabilities in Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.

    2006-01-01

    CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.

  17. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of

  18. Repair-oriented classification of aortic insufficiency: impact on surgical techniques and clinical outcomes.

    PubMed

    Boodhwani, Munir; de Kerchove, Laurent; Glineur, David; Poncelet, Alain; Rubay, Jean; Astarci, Parla; Verhelst, Robert; Noirhomme, Philippe; El Khoury, Gébrine

    2009-02-01

    Valve repair for aortic insufficiency requires a tailored surgical approach determined by the leaflet and aortic disease. Over the past decade, we have developed a functional classification of AI, which guides repair strategy and can predict outcome. In this study, we analyze our experience with a systematic approach to aortic valve repair. From 1996 to 2007, 264 patients underwent elective aortic valve repair for aortic insufficiency (mean age - 54 +/- 16 years; 79% male). AV was tricuspid in 171 patients bicuspid in 90 and quadricuspid in 3. One hundred fifty three patients had type I dysfunction (aortic dilatation), 134 had type II (cusp prolapse), and 40 had type III (restrictive). Thirty six percent (96/264) of the patients had more than one identified mechanism. In-hospital mortality was 1.1% (3/264). Six patients experienced early repair failure; 3 underwent re-repair. Functional classification predicted the necessary repair techniques in 82-100% of patients, with adjunctive techniques being employed in up to 35% of patients. Mid-term follow up (median [interquartile range]: 47 [29-73] months) revealed a late mortality rate of 4.2% (11/261, 10 cardiac). Five year overall survival was 95 +/- 3%. Ten patients underwent aortic valve reoperation (1 re-repair). Freedoms from recurrent Al (>2+) and from AV reoperation at 5 years was 88 +/- 3% and 92 +/- 4% respectively and patients with type I (82 +/- 9%; 93 +/- 5%) or II (95 +/- 5%; 94 +/- 6%) had better outcomes compared to type III (76 +/- 17%; 84 +/- 13%). Aortic valve repair is an acceptable therapeutic option for patients with aortic insufficiency. This functional classification allows a systematic approach to the repair of Al and can help to predict the surgical techniques required as well as the durability of repair. Restrictive cusp motion (type III), due to fibrosis or calcification, is an important predictor for recurrent Al following AV repair.

  19. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.

  20. Research on digital system design of nuclear power valve

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  1. Superhydrophobicity to minimize thrombogenic risk on mechanical heart valves

    NASA Astrophysics Data System (ADS)

    Bark, David; Vahabi, Hamed; Movafaghi, Sanli; Popat, Ketul; Kota, Arun K.; Dasi, Lakshmi Prasad

    2017-11-01

    A large number of prosthetic heart valves are implanted each year to treat heart valve disease, where half of the surgically replaced valves are mechanical heart valves (MHV)s. MHVs are at high risk for thrombosis and therefore require lifelong antithrombotic therapies, causing an increased bleeding risk that can lead to death. To alleviate this need, we investigate the potential of superhydrophobic surfaces in reducing the thrombotic risk. Particle imaging velocimetry and computational fluid dynamics are used to quantify shear stress in the presence of potential slip on the surface. Coagulation and cell adhesion are quantified by incubating blood under static conditions. We further evaluate a dynamic blood response in polydimethylsiloxane channels under complex shear conditions that mimic the hinge region of bileaflet mechanical heart valves, a region known to exhibit thrombosis. Overall, Shear stress is not reduced on a superhydrophobic bileaflet MHV. However, superhydrophobic surfaces significantly reduce the potential for platelet responses under static and dynamic blood flow conditions, a counterintuitive result when considering that hydrophobic surfaces are prone to protein and cell adhesion. The authors gratefully acknowledge funding from National Institutes of Health (NIH) under Award Number R01HL119824 and F32HL129730. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

  2. Crown-condition classification: a guide to data collection and analysis

    Treesearch

    Michael E. Schomaker; Stanley J. Zarnoch; William A. Bechtold; David J. Latelle; William G. Burkman; Susan M. Cox

    2007-01-01

    The Forest Inventory and Analysis (FIA) Program of the Forest Service, U.S. Department of Agriculture, conducts a national inventory of forests across the United States. A systematic subset of permanent inventory plots in 38 States is currently sampled every year for numerous forest health indicators. One of these indicators, crown-condition classification, is designed...

  3. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  4. Hybrid textile heart valve prosthesis: preliminary in vitro evaluation.

    PubMed

    Vaesken, Antoine; Pidancier, Christian; Chakfe, Nabil; Heim, Frederic

    2016-09-22

    Transcatheter aortic valve implantation (TAVI) is nowadays a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in these devices for over a decade now with over 100,000 implantations. However, material degradations due to crimping for catheter insertion purpose have been reported, and with only 6-year follow-up, no information is available about the long-term durability of biological tissue. Moreover, expensive biological tissue harvesting and chemical treatment procedures tend to promote the development of synthetic valve leaflet materials. Textile polyester (PET) material is characterized by outstanding folding and strength properties combined with proven biocompatibility and could therefore be considered as a candidate to replace biological valve leaflets in TAVI devices. Nevertheless, the material should be preferentially partly elastic in order to limit water hammer effects at valve closing time and prevent exaggerated stress from occurring into the stent and the valve. The purpose of the present work is to study in vitro the mechanical as well as the hydrodynamic behavior of a hybrid elastic textile valve device combining non-deformable PET yarn and elastic polyurethane (PU) yarn. The hybrid valve properties are compared with those of a non-elastic textile valve. Testing results show improved hydrodynamic properties with the elastic construction. However, under fatigue conditions, the interaction between PU and PET yarns tends to limit the valve durability.

  5. Dynamic behavior of prosthetic aortic tissue valves as viewed by high-speed cinematography.

    PubMed

    Rainer, W G; Christopher, R A; Sadler, T R; Hilgenberg, A D

    1979-09-01

    Using a valve testing apparatus of our own design and with a high-speed (600 to 800 frames per second) 16 mm movie camera, films were made of Hancock porcine, Carpentier-Edwards porcine, and Ionescu-Shiley bovine pericardial valves mounted in the aortic position and cycled under physiological conditions at 72 to 100 beats per minute. Fresh and explanted valves were observed using saline or 36.5% glycerol as the pumping solution. When fresh valves were studied using saline solution as the pumpint fluid, the Hancock and Carpentier-Edwards porcine valves showed high-frequency leaflet vibration, which increased in frequency with higher cycling rates. Abnormal leaflet motion was decreased when glycerol was used as the blood analogue. The Ionescu-Shiley bovine pericardial valve did not show abnormal leaflet motion under these conditions. Conclusions drawn from tissue valve testing studies that use excessively high pulsing rates and pressures (accelerated testing) and saline or water as pumping solutions cannot be transposed to predict the fate of tissue valves in a clinical setting.

  6. Mitral Valve Prolapse (For Parents)

    MedlinePlus

    ... develops after some sort of inflammatory condition, like endocarditis (infection of the inner lining of the heart) ... a bacterial infection of the heart valve (infective endocarditis). It very rarely happens during childhood. Many times ...

  7. Through thick and thin: quantitative classification of photometric observing conditions on Paranal

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca; Hanuschik, Reinhard

    2016-07-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer is used to monitor sky conditions over ESO's Paranal observatory. It provides measurements of precipitable water vapour (PWV) at 183 GHz, which are being used in Service Mode for scheduling observations that can take advantage of favourable conditions for infrared (IR) observations. The instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. It is capable of detecting cold and thin, even sub-visual, cirrus clouds. We present a diagnostic diagram that, based on a sophisticated time series analysis of these IR sky brightness data, allows for the automatic and quantitative classification of photometric observing conditions over Paranal. The method is highly sensitive to the presence of even very thin clouds but robust against other causes of sky brightness variations. The diagram has been validated across the complete range of conditions that occur over Paranal and we find that the automated process provides correct classification at the 95% level. We plan to develop our method into an operational tool for routine use in support of ESO Science Operations.

  8. Absence of posterior tricuspid valve leaflet and valve reconstruction

    PubMed Central

    Komoda, Takeshi; Stamm, Christof; Fleck, Eckart; Hetzer, Roland

    2012-01-01

    We report a rare case of the absence of a posterior tricuspid valve leaflet. A male patient, aged 46, suffering from severe tricuspid valve regurgitation (TR) of unknown aetiology and atrial septal aneurysm was referred to our hospital for surgery. On surgical inspection, the posterior tricuspid valve leaflet and its subvalvular apparatus were completely absent and only the valve annulus was seen in the corresponding position. The anterior and septal leaflets were normal. We successfully reconstructed the tricuspid valve as follows: the head of an anterior papillary muscle was approximated to the ventricular septum (Sebening stitch). After the approximation of the centre of the tricuspid annulus of the anterior leaflet to the tricuspid annulus on the opposite side, a sizer of 29 mm in diameter was easily passed through the anterior orifice. The posterior orifice was closed with running sutures (posterior annulorrhaphy after Hetzer). Before these procedures, we attempted to reconstruct the tricuspid valve with a posterior annulorrhaphy alone; however, valve competence was insufficient. A Sebening stitch was necessary to improve the valve competence. Echocardiography showed TR grade 1 at the patient's discharge from hospital and TR grade 1 to 2 at the follow-up, 10 months after the operation. PMID:22419794

  9. Congenital absence of pulmonary valve leaflets.

    PubMed Central

    Buendia, A; Attie, F; Ovseyevitz, J; Zghaib, A; Zamora, C; Zavaleta, D; Vargas-Barron, J; Richheimer, R

    1983-01-01

    Congenital absence of pulmonary valve leaflets is an uncommon condition usually associated with ventricular septal defect and an obstructive pulmonary valve ring. Twenty-one patients with these malformations are described. Twenty had an associated ventricular septal defect with ventriculoarterial concordance, and one also had transposition of the great arteries, ventricular septal defect, and obstructive pulmonary valve ring. The clinical features, cardiac catheterisation findings, and angiocardiographic results are presented. Twelve patients underwent cardiac surgery. Three patients died, one in the early, and the other two in the late postoperative period. The results, according to the surgical technique employed and postoperative cardiac catheterisation findings, showed that patients in whom the bioprostheses were implanted in the pulmonary position had a better late follow-up. Images PMID:6860509

  10. [Percutaneously implantable aortic valve: the JenaValve concept evolution].

    PubMed

    Figulla, Hans R; Ferrari, Markus

    2006-10-01

    Due to the increasing incidence of severe aortic stenosis in old and multimorbid patients, the percutaneous implantation of aortic valve-carrying stents has become an alternative to the surgical replacement of aortic valves. Starting in 1995, the authors developed a self-expanding stent which transferred the necessary forces for anchoring up to the aorta ascendens-a conception taken over from CoreValve. The further improvement of this idea over the past 11 years has led to a self-expanding, relatively short stent-valve system that is reliably positioned in the cusps of the old aortic valve and holds the old valve like a paper clip, thus transferring the holding forces physiologically. As compared to conventional systems, the sophisticated insertion catheter requires further chronic animal tests so as to represent a true alternative to the conventional surgical procedure.

  11. Design and efficacy of a single-use bioreactor for heart valve tissue engineering.

    PubMed

    Converse, Gabriel L; Buse, Eric E; Neill, Kari R; McFall, Christopher R; Lewis, Holley N; VeDepo, Mitchell C; Quinn, Rachael W; Hopkins, Richard A

    2017-02-01

    Heart valve tissue engineering offers the promise of improved treatments for congenital heart disorders; however, widespread clinical availability of a tissue engineered heart valve (TEHV) has been hindered by scientific and regulatory concerns, including the lack of a disposable, bioreactor system for nondestructive valve seeding and mechanical conditioning. Here we report the design for manufacture and the production of full scale, functional prototypes of such a system. To evaluate the efficacy of this bioreactor as a tool for seeding, ovine aortic valves were decellularized and subjected to seeding with human mesenchymal stem cells (hMSC). The effects of pulsatile conditioning using cyclic waveforms tuned to various negative and positive chamber pressures were evaluated, with respect to the seeding of cells on the decellularized leaflet and the infiltration of seeded cells into the interstitium of the leaflet. Infiltration of hMSCs into the aortic valve leaflet was observed following 72 h of conditioning under negative chamber pressure. Additional conditioning under positive pressure improved cellular infiltration, while retaining gene expression within the MSC-valve interstitial cell phenotype lineage. This protocol resulted in a subsurface pilot population of cells, not full tissue recellularization. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 249-259, 2017. © 2015 Wiley Periodicals, Inc.

  12. Outcome of bioprosthetic valve replacement in dogs with tricuspid valve dysplasia.

    PubMed

    Bristow, P; Sargent, J; Luis Fuentes, V; Brockman, D

    2017-04-01

    To describe the short-term and long-term outcome in dogs with tricuspid valve dysplasia undergoing tricuspid valve replacement under cardiopulmonary bypass. Data were collected from the hospital records of all dogs that had undergone tricuspid valve replacement under cardiopulmonary bypass between 2006 and 2012. Dogs were considered candidates for tricuspid valve replacement if they had severe tricuspid valve regurgitation associated with clinical signs of cardiac compromise. Nine dogs of six different breeds were presented. Median age was 13 months (range 7 to 61 months), median weight 26·5 kg (range 9·7 to 59 kg). Eight bovine pericardial valves and one porcine aortic valve were used. One non-fatal intraoperative complication occurred. Complications during hospitalisation occurred in six dogs, four of which were fatal. Of the five dogs discharged, one presented dead due to haemothorax after minor trauma seven days later. The four remaining dogs survived a median of 533 days; all of these dogs received a bovine pericardial valve. Based on our results, tricuspid valve replacement with bovine or porcine prosthetic valves is associated with a high incidence of complications. © 2017 British Small Animal Veterinary Association.

  13. Early Outcomes for Valve-in-valve Transcatheter Aortic Valve Replacement in Degenerative Freestyle Bioprostheses.

    PubMed

    Sang, Stephane Leung Wai; Beute, Tyler; Heiser, John; Berkompas, Duane; Fanning, Justin; Merhi, William

    2017-11-20

    Transcatheter aortic valve replacement (TAVR) is used increasingly to treat bioprosthetic valve failure. A paucity of data exists regarding valve-in-valve (ViV) TAVR in degenerated Freestyle stentless bioprostheses (FSBs). This study sought to evaluate the feasibility and short-term outcomes of ViV TAVR in previously placed FSB. From October 2014 to September 2016, 22 patients at a single institution underwent ViV TAVR with a self-expanding transcatheter valve for a failing FSB. Patient baseline characteristics and clinical outcomes data were collected retrospectively and entered into a dedicated database. The mean patient age was 74 ± 9years, and the mean Society of Thoracic Surgeons' Risk score was 9.0 ± 7.4%. Ten patients presented with acute heart failure requiring urgent intervention. The most common mode of failure of the FSB was regurgitation caused by a flail or malcoapting leaflet. Seventeen (77%) patients had a modified subcoronary implantation, 3 (14%) had a full root replacement, and 2 (9%) had a root inclusion. Device success using a self-expanding transcatheter valve was 95%, all via transfemoral approach. The mean implant depth was 7 ± 3 mm. Thirty-day survival was 100%. No patient had more than mild paravalvular regurgitation at 30days, and the permanent pacemaker rate was 9%. The mean hospital stay after intervention was 5 ± 2days. ViV TAVR using a self-expanding transcatheter valve is safe, feasible, and can be used successfully to treat a failed FSB. Procedural challenges suggest referral to valve centers of excellence. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Quickly Removable Valve

    NASA Technical Reports Server (NTRS)

    Robbins, John S.

    1988-01-01

    Unit removed with minimal disturbance. Valve inlet and outlet ports adjacent to each other on same side of valve body. Ports inserted into special manifold on fluid line. Valve body attached to manifold by four bolts or, alternatively, by toggle clamps. Electromechanical actuator moves in direction parallel to fluid line to open and close valve. When necessary to clean valve, removed simply by opening bolts or toggle clamps. No need to move or separate ports of fluid line. Valve useful where disturbance of fluid line detrimental or where fast maintenance essential - in oil and chemical industries, automotive vehicles, aircraft, and powerplants.

  15. Ball valve extractor

    DOEpatents

    Herndon, Charles; Brown, Roger A.

    2002-01-01

    An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.

  16. Bellows sealed plug valve

    DOEpatents

    Dukas, Jr., Stephen J.

    1990-01-01

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  17. Check valve installation in pilot operated relief valve prevents reverse pressurization

    NASA Technical Reports Server (NTRS)

    Oswalt, L.

    1966-01-01

    Two check valves prevent reverse flow through pilot-operated relief valves of differential area piston design. Title valves control pressure flow to ensure that the piston dome pressure is always at least as great as the main relief valve discharge pressure.

  18. Conditional long-term survival following minimally invasive robotic mitral valve repair: a health services perspective.

    PubMed

    Efird, Jimmy T; Griffin, William F; Gudimella, Preeti; O'Neal, Wesley T; Davies, Stephen W; Crane, Patricia B; Anderson, Ethan J; Kindell, Linda C; Landrine, Hope; O'Neal, Jason B; Alwair, Hazaim; Kypson, Alan P; Nifong, Wiley L; Chitwood, W Randolph

    2015-09-01

    Conditional survival is defined as the probability of surviving an additional number of years beyond that already survived. The aim of this study was to compute conditional survival in patients who received a robotically assisted, minimally invasive mitral valve repair procedure (RMVP). Patients who received RMVP with annuloplasty band from May 2000 through April 2011 were included. A 5- and 10-year conditional survival model was computed using a multivariable product-limit method. Non-smoking men (≤65 years) who presented in sinus rhythm had a 96% probability of surviving at least 10 years if they survived their first year following surgery. In contrast, recent female smokers (>65 years) with preoperative atrial fibrillation only had an 11% probability of surviving beyond 10 years if alive after one year post-surgery. In the context of an increasingly managed healthcare environment, conditional survival provides useful information for patients needing to make important treatment decisions, physicians seeking to select patients most likely to benefit long-term following RMVP, and hospital administrators needing to comparatively assess the life-course economic value of high-tech surgical procedures.

  19. Failure and life cycle evaluation of watering valves.

    PubMed

    Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D

    2011-09-01

    Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves' internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a 'drying out' period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure.

  20. Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images

    NASA Astrophysics Data System (ADS)

    Jong, Rudiyanto P.; Osman, Kahar; Adib, M. Azrul Hisham M.

    2012-06-01

    Mitral valve prolapse without proper monitoring might lead to a severe mitral valve failure which eventually leads to a sudden death. Additional information on the mitral valve leaflet condition against the backflow volume would be an added advantage to the medical practitioner for their decision on the patients' treatment. A study on two dimensional echocardiography images has been conducted and the correlations between the backflow volume of the mitral regurgitation and mitral valve leaflet Young modulus have been obtained. Echocardiogram images were analyzed on the aspect of backflow volume percentage and mitral valve leaflet dimensions on different rates of backflow volume. Young modulus values for the mitral valve leaflet were obtained by using the principle of elastic deflection and deformation on the mitral valve leaflet. The results show that the backflow volume increased with the decrease of the mitral valve leaflet Young modulus which also indicate the condition of the mitral valve leaflet approaching failure at high backflow volumes. Mitral valve leaflet Young modulus values obtained in this study agreed with the healthy mitral valve leaflet Young modulus from the literature. This is an initial overview of the trend on the prediction of the behaviour between the fluid and the structure of the blood and the mitral valve which is extendable to a larger system of prediction on the mitral valve leaflet condition based on the available echocardiogram images.

  1. Globe stability during simulated vitrectomy with valved and non-valved trocar cannulas

    PubMed Central

    Abulon, Dina Joy; Charles, Martin; Charles, Daniel E

    2015-01-01

    Purpose To compare the effects of valved and non-valved cannulas on intraocular pressure (IOP), fluid leakage, and vitreous incarceration during simulated vitrectomy. Methods Three-port pars plana incisions were generated in six rubber eyes using 23-, 25-, and 27-gauge valved and non-valved trocar cannulas. The models were filled with air and IOP was measured. Similar procedures were followed for 36 acrylic eyes filled with saline solution. Vitreous incarceration was analyzed in eleven rabbit and twelve porcine cadaver eyes. Results In the air-filled model, IOP loss was 89%–94% when two non-valved cannulas were unoccupied versus 1%–5% when two valved cannulas were unoccupied. In the fluid-filled model, with non-valved cannulas, IOP dropped while fluid leaked from the open ports. With two open ports, the IOP dropped to 20%–30% of set infusion pressure, regardless of infusion pressure and IOP compensation. The IOP was maintained in valved cannulas when one or two ports were left open, regardless of IOP compensation settings. There was no or minimal fluid leakage through open ports at any infusion pressure. Direct microscopic analysis of rabbit eyes showed that vitreous incarceration was significantly greater with 23-gauge non-valved than valved cannulas (P<0.005), and endoscopy of porcine eyes showed that vitreous incarceration was significantly greater with 23-gauge (P<0.05) and 27-gauge (P<0.05) non-valved cannulas. External observation of rabbit eyes showed vitreous prolapse through non-valved, but not valved, cannulas. Conclusion Valved cannulas surpassed non-valved cannulas in maintaining IOP, preventing fluid leakage, and reducing vitreous incarceration during simulated vitrectomy. PMID:26445520

  2. Microfluidic sieve valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  3. Sequential transcatheter aortic valve implantation due to valve dislodgement - a Portico valve implanted over a CoreValve bioprosthesis.

    PubMed

    Campante Teles, Rui; Costa, Cátia; Almeida, Manuel; Brito, João; Sondergaard, Lars; Neves, José P; Abecasis, João; M Gabriel, Henrique

    2017-03-01

    Transcatheter aortic valve implantation (TAVI) has become an important treatment in high surgical risk patients with severe aortic stenosis (AS), whose complications need to be managed promptly. The authors report the case of an 86-year-old woman presenting with severe symptomatic AS, rejected for surgery due to advanced age and comorbidities. The patient underwent a first TAVI, with implantation of a Medtronic CoreValve ® , which became dislodged and migrated to the ascending aorta. Due to the previous balloon valvuloplasty, the patient's AS became moderate, and her symptoms improved. After several months, she required another intervention, performed with a St. Jude Portico ® repositionable self-expanding transcatheter aortic valve. There was a good clinical response that was maintained at one-year follow-up. The use of a self-expanding transcatheter bioprosthesis with repositioning features is a solution in cases of valve dislocation to avoid suboptimal positioning of a second implant, especially when the two valves have to be positioned overlapping or partially overlapping each other. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Note: An improved solenoid driver valve for miniature shock tubes.

    PubMed

    Lynch, P T

    2016-05-01

    A solenoid driver valve has been built to improve the operating performance of diaphragmless shock tubes, which are used for high pressure, high temperature chemical kinetics, and fluid mechanics studies. For shock tube driver application, the most important characteristics are those of sealing, strength, and quality of the generated shock waves and repeatability of opening characteristics and therefore subsequent post-shock conditions. The main features of the new driver valve are a face o-ring sealing design of the valve, the large internal volume, and through inserts near the solenoid core: adjustable opening characteristics of the valve.

  5. Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve

    NASA Astrophysics Data System (ADS)

    Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu

    2017-12-01

    Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.

  6. Problem: Heart Valve Stenosis

    MedlinePlus

    ... valve . Learn about the different types of stenosis: Aortic stenosis Tricuspid stenosis Pulmonary stenosis Mitral stenosis Outlook for ... Disease "Innocent" Heart Murmur Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - ...

  7. Mitral valve prolapse and Marfan syndrome.

    PubMed

    Thacoor, Amitabh

    2017-07-01

    Marfan syndrome is a multisystemic genetic condition affecting connective tissue. It carries a reduced life expectancy, largely dependent on cardiovascular complications. More common cardiac manifestations such as aortic dissection and aortic valve incompetence have been widely documented in the literature. Mitral valve prolapse (MVP), however, has remained poorly documented. This article aims at exploring the existing literature on the pathophysiology and diagnosis of MVP in patients with Marfan syndrome, defining its current management and outlining the future developments surrounding it. © 2017 Wiley Periodicals, Inc.

  8. Vacuum breaker valve assembly

    DOEpatents

    Thompson, J.L.; Upton, H.A.

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening. 1 fig.

  9. Vacuum breaker valve assembly

    DOEpatents

    Thompson, Jeffrey L.; Upton, Hubert Allen

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.

  10. Combined effects of hydrazine exposure and endurance testing on solenoid-actuated valve performance

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1974-01-01

    Results are presented from a test program which was conducted to assess the capability of various solenoid-actuated valve design concepts to provide performance characteristics commensurate with long-duration (ten-year) missions to explore the outer planets. The valves were installed in a hydrazine flow test setup and periodically cycled during a nine-month test period under test conditions comparable to anticipated mission operating conditions. In situ valve performance was periodically determined, and leakage was continuously monitored.

  11. Anterior urethral valves without diverticulae: a report of two cases and a review of the literature.

    PubMed

    Singh, Dig Vijay; Taneja, Rajesh

    2014-05-01

    Two unusual cases of anterior urethral valves (AUV) without diverticulae are presented. The first case is a male child born with prenatal diagnosis of bilateral hydronephrosis. On cystoscopy, iris-like diaphragm valves were encountered about 3 mm distal to the skeletal sphincter. In the second case, an 18-month-old male child was investigated for recurrent febrile urinary tract infections and obstructed urinary symptoms. Cystoscopy confirmed the presence of slit-like valves 5 mm distal to the skeletal sphincter. Fulguration of the AUVs was performed in both cases. It may be worthwhile to review all cases of anterior urethral obstruction collectively and re-categorize them appropriately to include the unusual AUVs without diverticulum in that classification. © 2013 Japanese Teratology Society.

  12. Zero-leak valve

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F., Jr.

    1980-01-01

    Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.

  13. Redo aortic valve surgery versus transcatheter valve-in-valve implantation for failing surgical bioprosthetic valves: consecutive patients in a single-center setting

    PubMed Central

    Wottke, Michael; Deutsch, Marcus-André; Krane, Markus; Piazza, Nicolo; Lange, Ruediger; Bleiziffer, Sabine

    2015-01-01

    Background Due to a considerable rise in bioprosthetic as opposed to mechanical valve implantations, an increase of patients presenting with failing bioprosthetic surgical valves in need of a reoperation is to be expected. Redo surgery may pose a high-risk procedure. Transcatheter aortic valve-in-valve implantation is an innovative, less-invasive treatment alternative for these patients. However, a comprehensive evaluation of the outcome of consecutive patients after a valve-in-valve TAVI [transcatheter aortic valve-in-surgical aortic valve (TAV-in-SAV)] as compared to a standard reoperation [surgical aortic valve redo-operation (SAV-in-SAV)] has not yet been performed. The goal of this study was to compare postoperative outcomes after TAV-in-SAV and SAV-in-SAV in a single center setting. Methods All SAV-in-SAV and TAV-in-SAV patients from January 2001 to October 2014 were retrospectively reviewed. Patients with previous mechanical or transcatheter valves, active endocarditis and concomitant cardiac procedures were excluded. Patient characteristics, preoperative data, post-procedural complications, and 30-day mortality were collected from a designated database. Mean values ± SD were calculated for all continuous variables. Counts and percentages were calculated for categorical variables. The Chi-square and Fisher exact tests were used to compare categorical variables. Continuous variables were compared using the t-test for independent samples. A 2-sided P value <0.05 was considered statistically significant. Results A total of 102 patients fulfilled the inclusion criteria, 50 patients (49%) underwent a transcatheter valve-in-valve procedure, while 52 patients (51%) underwent redo-surgery. Patients in the TAV-in-SAV group were significantly older, had a higher mean logistic EuroSCORE and exhibited a lower mean left ventricular ejection fraction than patients in the SAV-in-SAV group (78.1±6.7 vs. 66.2±13.1, P<0.001; 27.4±18.7 vs. 14.4±10, P<0.001; and 49.8±13

  14. Flow Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  15. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  16. Very long-term results (more than 20 years) of valve repair with carpentier's techniques in nonrheumatic mitral valve insufficiency.

    PubMed

    Braunberger, E; Deloche, A; Berrebi, A; Abdallah, F; Celestin, J A; Meimoun, P; Chatellier, G; Chauvaud, S; Fabiani, J N; Carpentier, A

    2001-09-18

    Mitral valve repair is considered the gold standard in surgery of degenerative mitral valve insufficiency (MVI), but the long-term results (>20 years) are unknown. We reviewed the first 162 consecutive patients who underwent mitral valve repair between 1970 and 1984 for MVI due to nonrheumatic disease. The cause of MVI was degenerative in 146 patients (90%) and bacterial endocarditis in 16 patients (10%). MVI was isolated or, in 18 cases, associated with tricuspid insufficiency. The mean age of the 162 patients (104 men and 58 women) was 56+/-10 years (age range 22 to 77 years). New York Heart Association functional class was I, II, III, and IV in 2%, 39%, 52%, and 7% of patients, respectively. The mean cardiothoracic ratio was 0.58+/-0.07 (0.4 to 0.8), and 72 (45%) patients had atrial fibrillation. Valve analysis showed that the main mechanism of MVI was type II Carpentier's functional classification in 152 patients. The leaflet prolapse involved the posterior leaflet in 93 patients, the anterior leaflet in 28 patients, and both leaflets in 31 patients. Surgical technique included a Carpentier's ring annuloplasty in all cases, a valve resection in 126 patients, and shortening or transposition of chordae in 49 patients. During the first postoperative month, there were 3 deaths (1.9%) and 3 reoperations (2 valve replacements and 1 repeat repair [1.9%]). Six patients were lost to follow-up. The remaining 151 patients with mitral valve repair were followed during a median of 17 years (range 1 to 29 years; 2273 patient-years). The 20-year Kaplan-Meier survival rate was 48% (95% CI 40% to 57%), which is similar to the survival rate for a normal population with the same age structure. The 20-year rates were 19.3% (95% CI 11% to 27%) for cardiac death and 26% (95% CI 17% to 35%) for cardiac morbidity/mortality (including death from a cardiac cause, stroke, and reoperation). During the 20 years of follow-up, 7 patients were underwent surgery at 3, 7, 7, 8, 8, 10, or 12

  17. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  18. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    PubMed

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  19. Aortic valve repair leads to a low incidence of valve-related complications.

    PubMed

    Aicher, Diana; Fries, Roland; Rodionycheva, Svetlana; Schmidt, Kathrin; Langer, Frank; Schäfers, Hans-Joachim

    2010-01-01

    Aortic valve replacement for aortic regurgitation (AR) has been established as a standard treatment but implies prosthesis-related complications. Aortic valve repair is an alternative approach, but its mid- to long-term results still need to be defined. Over a 12-year period, 640 patients underwent aortic valve repair for regurgitation of a unicuspid (n=21), bicuspid (n=205), tricuspid (n=411) or quadricuspid (n=3) aortic valve. The mechanism of regurgitation involved prolapse (n=469) or retraction (n=20) of the cusps, and dilatation of the root (n=323) or combined pathologies. Treatment consisted of cusp repair (n=529), root repair (n=323) or a combination of both (n=208). The patients were followed clinically and echocardiographically; follow-up was complete in 98.5% (cumulative follow-up: 3035 patient years). Hospital mortality was 3.4% in the total patient cohort and 0.8% for isolated aortic valve repair. The incidences of thrombo-embolism (0.2% per patient per year) and endocarditis (0.16%per patient per year) were low. Freedom from re-operation at 5 and 10 years was 88% and 81% in bicuspid and 97% and 93% in tricuspid aortic valves (p=0.0013). At re-operation, 13 out of 36 valves could be re-repaired. Freedom from valve replacement was 95% and 90% in bicuspid and 97% and 94% in tricuspid aortic valves (p=0.36). Freedom from all valve-related complications at 10 years was 88%. Reconstructive surgery of the aortic valve is feasible with low mortality in many individuals with aortic regurgitation. Freedom from valve-related complications after valve repair seems superior compared to available data on standard aortic valve replacement. Copyright 2009 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  20. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    NASA Astrophysics Data System (ADS)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  1. Valve

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A positive acting valve suitable for operation in a corrosive environment is provided. The valve includes a hollow valve body defining an open-ended bore for receiving two, axially aligned, spaced-apart, cylindrical inserts. One insert, designated the seat insert, terminates inside the valve body in an annular face which lies within plane normal to the axis of the two inserts. An elastomeric O-ring seal is disposed in a groove extending about the annular face. The other insert, designated the wedge insert, terminates inside the valve body in at least two surfaces oppositely inclined with respect to each other and with respect to a plane normal to the axis of the two inserts. An elongated reciprocable gate, movable between the two inserts along a path normal to the axis of the two inserts, has a first flat face portion disposed adjacent and parallel to the annular face of the seat insert. The gate has a second face portion opposite to the first face portion provided with at least two oppositely inclined surfaces for mating with respective inclined surfaces of the wedge insert. An opening is provided through the gate which registers with a flow passage through the two inserts when the valve is open. Interaction of the respective inclined surfaces of the gate and wedge insert act to force the first flat face portion of the gate against the O-ring seal in the seat insert at the limits of gate displacement where it reaches its respective fully open and fully closed positions.

  2. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots.

    PubMed

    Zatopa, Alex; Walker, Steph; Menguc, Yigit

    2018-06-01

    Soft robots are designed to utilize their compliance and contortionistic abilities to both interact safely with their environment and move through it in ways a rigid robot cannot. To more completely achieve this, the robot should be made of as many soft components as possible. Here we present a completely soft hydraulic control valve consisting of a 3D-printed photopolymer body with electrorheological (ER) fluid as a working fluid and gallium-indium-tin liquid metal alloy as electrodes. This soft 3D-printed ER valve weighs less than 10 g and allows for onboard actuation control, furthering the goal of an entirely soft controllable robot. The soft ER valve pressure-holding capabilities were tested under unstrained conditions, cyclic valve activation, and the strained conditions of bending, twisting, stretching, and indentation. It was found that the max holding pressure of the valve when 5 kV was applied across the electrodes was 264 kPa, and that the holding pressure deviated less than 15% from the unstrained max holding pressure under all strain conditions except for indentation, which had a 60% max pressure increase. In addition, a soft octopus-like robot was designed, 3D printed, and assembled, and a soft ER valve was used to stop the fluid flow, build pressure in the robot, and actuate six tentacle-like soft bending actuators.

  3. Multi-port valve assembly

    DOEpatents

    Guggenheim, S. Frederic

    1986-01-01

    A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.

  4. Valve in valve transcatheter aortic valve implantation (ViV-TAVI) versus redo-Surgical aortic valve replacement (redo-SAVR): A systematic review and meta-analysis.

    PubMed

    Nalluri, Nikhil; Atti, Varunsiri; Munir, Abdullah B; Karam, Boutros; Patel, Nileshkumar J; Kumar, Varun; Vemula, Praveen; Edla, Sushruth; Asti, Deepak; Paturu, Amrutha; Gayam, Sriramya; Spagnola, Jonathan; Barsoum, Emad; Maniatis, Gregory A; Tamburrino, Frank; Kandov, Ruben; Lafferty, James; Kliger, Chad

    2018-05-20

    Bioprosthetic (BP) valves have been increasingly used for aortic valve replacement over the last decade. Due to their limited durability, patients presenting with failed BP valves are rising. Valve in Valve - Transcatheter Aortic Valve Implantation (ViV-TAVI) emerged as an alternative to the gold standard redo-Surgical Aortic Valve Replacement (redo-SAVR). However, the utility of ViV-TAVI is poorly understood. A systematic electronic search of the scientific literature was done in PubMed, EMBASE, SCOPUS, Google Scholar, and ClinicalTrials.gov. Only studies which compared the safety and efficacy of ViV-TAVI and redo-SAVR head to head in failed BP valves were included. Six observational studies were eligible and included 594 patients, of whom 255 underwent ViV- TAVI and 339 underwent redo-SAVR. There was no significant difference between ViV-TAVI and redo- SAVR for procedural, 30 day and 1 year mortality rates. ViV-TAVI was associated with lower risk of permanent pacemaker implantation (PPI) (OR: 0.43, CI: 0.21-0.89; P = 0.02) and a trend toward increased risk of paravalvular leak (PVL) (OR: 5.45, CI: 0.94-31.58; P = 0.06). There was no significant difference for stroke, major bleeding, vascular complications and postprocedural aortic valvular gradients more than 20 mm-hg. Our results reiterate the safety and feasibility of ViV-TAVI for failed aortic BP valves in patients deemed to be at high risk for surgery. VIV-TAVI was associated with lower risk of permanent pacemaker implantation with a trend toward increased risk of paravalvular leak. © 2018, Wiley Periodicals, Inc.

  5. Naïve and Robust: Class-Conditional Independence in Human Classification Learning

    ERIC Educational Resources Information Center

    Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D.

    2018-01-01

    Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference…

  6. Magnetically operated check valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor); Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  7. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  8. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    PubMed

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  9. Automatic shutoff valve

    NASA Technical Reports Server (NTRS)

    Hawkins, S. F.; Overbey, C. W.

    1980-01-01

    Cellulose-sponge disk absorbs incoming water and expands with enough force to shut valve. When water recedes, valve opens by squeezing sponge dry to its original size. This direct mechanical action is considered more reliable than solenoid valve.

  10. Transcatheter aortic valve-in-valve treatment of degenerative stentless supra-annular Freedom Solo valves: A single centre experience.

    PubMed

    Cockburn, James; Dooley, Maureen; Parker, Jessica; Hill, Andrew; Hutchinson, Nevil; de Belder, Adam; Trivedi, Uday; Hildick-Smith, David

    2017-02-15

    Redo surgery for degenerative bioprosthetic aortic valves is associated with significant morbidity and mortality. Report results of valve-in-valve therapy (ViV-TAVI) in failed supra-annular stentless Freedom Solo (FS) bioprostheses, which are the highest risk for coronary occlusion. Six patients with FS valves (mean age 78.5 years, 50% males). Five had valvular restenosis (peak gradient 87.2 mm Hg, valve area 0.63 cm 2 ), one had severe regurgitation (AR). Median time to failure was 7 years. Patients were high risk (mean STS/Logistic EuroScore 10.6 15.8, respectively). FS valves ranged from 21 to 25 mm. Successful ViV-TAVI was achieved in 4/6 patients (67%). Of the unsuccessful cases, (patient 1 and 2 of series) patient 1 underwent BAV with simultaneous aortography which revealed left main stem occlusion. The procedure was stopped and the patient went forward for repeat surgery. Patient 2 underwent successful ViV-TAVI with a 26-mm CoreValve with a guide catheter in the left main, but on removal coronary obstruction occurred, necessitating valve snaring into the aorta. Among the successful cases, (patients 3, 4, 5, 6) the TAVIs used were CoreValve Evolut R 23 mm (n = 3), and Lotus 23 mm (n = 1). In the successful cases the peak gradient fell from 83.0 to 38.3 mm Hg. No patient was left with >1+ AR. One patient had a stroke on Day 2, with full neurological recovery. Two patients underwent semi-elective pacing for LBBB and PR >280 ms. ViV-TAVI in stentless Freedom Solo valves is high risk. The risk of coronary occlusion is high. The smallest possible prosthesis (1:1 sizing) should be used, and strategies to protect the coronary vessels must be considered. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Overflow control valve

    DOEpatents

    Hundal, Rolv; Kessinger, Boyd A.; Parlak, Edward A.

    1984-07-24

    An overflow control valve for use in a liquid sodium coolant pump tank which valve can be extended to create a seal with the pump tank wall or retracted to break the seal thereby accommodating valve removal. An actuating shaft which controls valve disc position also has cams which bear on roller surfaces to force retraction of a sliding cylinder against spring tension to retract the cylinder from sealing contact with the pump tank.

  12. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  13. Internal Acoustics of a Pintle Valve with Supercritical Helium Flow

    NASA Technical Reports Server (NTRS)

    Fishbach, Sean R.; Davis, R. Benjamin

    2010-01-01

    Large amplitude flow unsteadiness is a common phenomenon within the high flow rate ducts and valves associated with propulsion systems. Boundary layer noise, shear layers and vortex shedding are a few of the many sources of flow oscillations. The presence of lightly damped acoustic modes can organize and amplify these sources of flow perturbation, causing undesirable loading of internal parts. The present study investigates the self-induced acoustic environment within a pintle valve subject to high Reynolds Number flow of helium gas. Experiments were conducted to measure the internal pressure oscillations of the Ares I Launch Abort System (LAS) Attitude Control Motor (ACM) valve. The AGM consists of a solid propellant gas generator with eight pintle valves attached to the aft end. The pintle valve is designed to deliver variable upstream conditions to an attache( converging diverging nozzle. In order to investigate the full range of operating conditions 28 separate tests were conducted with varying pintle position and upstream pressure. Helium gas was utilized in order to closely mimic the speed of sound of the gas generator exhaust, minimizing required scaling during data analysis. The recordec pressure measurements were interrogated to multiple ends. The development of root mean square (RMS) value! versus Reynolds Number and Pintle position are important to creating bounding unsteady load curves for valve internal parts. Spectral analysis was also performed, helping to identify power spectral densities (PSD) of acoustic natural frequencies and boundary layer noise. An interesting and unexpected result was the identification of an acoustic mode within the valve which does not respond until the valve was over 60% open. Further, the response amplitude around this mode can be as large or larger than those associated with lower frequency modes.

  14. Mesofluidic two stage digital valve

    DOEpatents

    Jansen, John F; Love, Lonnie J; Lind, Randall F; Richardson, Bradley S

    2013-12-31

    A mesofluidic scale digital valve system includes a first mesofluidic scale valve having a valve body including a bore, wherein the valve body is configured to cooperate with a solenoid disposed substantially adjacent to the valve body to translate a poppet carried within the bore. The mesofluidic scale digital valve system also includes a second mesofluidic scale valve disposed substantially perpendicular to the first mesofluidic scale valve. The mesofluidic scale digital valve system further includes a control element in communication with the solenoid, wherein the control element is configured to maintain the solenoid in an energized state for a fixed period of time to provide a desired flow rate through an orifice of the second mesofluidic valve.

  15. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  16. Slow opening valve. [valve design for shuttle portable oxygen system

    NASA Technical Reports Server (NTRS)

    Drapeau, D. F. (Inventor)

    1984-01-01

    A valve control is described having a valve body with an actuator stem and a rotating handle connected to the actuator stem by a differential drive mechanism which, during uniform movement of the handle in one direction, initially opens the valve at a relatively slow rate and, thereafter, complete the valve movement at a substantially faster rate. A series of stop rings are received about the body in frictional abutting relationship and serially rotated by the handle to uniformly resist handle movement independently of the extent of handle movement.

  17. Lightweight Motorized Valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Vandewalle, J.

    1986-01-01

    Redesigned actuator assembly weighs 50 percent less. Isolator valve operated by ac motor instead of usual dc solenoid. Valve weighs only 3 lb (1.4 kg). New valve functions with either two-phase or three-phase power. Developed for isolating fluids in propellant tanks, manifolds, and interconnecting lines of Space Shuttle reaction control and orbital maneuvering subsystems, valve suited to applications in which leakage must be kept to minimum at high pressure differences - in petroleum and chemical processing.

  18. Causes of death and associated conditions (Codac): a utilitarian approach to the classification of perinatal deaths.

    PubMed

    Frøen, J Frederik; Pinar, Halit; Flenady, Vicki; Bahrin, Safiah; Charles, Adrian; Chauke, Lawrence; Day, Katie; Duke, Charles W; Facchinetti, Fabio; Fretts, Ruth C; Gardener, Glenn; Gilshenan, Kristen; Gordijn, Sanne J; Gordon, Adrienne; Guyon, Grace; Harrison, Catherine; Koshy, Rachel; Pattinson, Robert C; Petersson, Karin; Russell, Laurie; Saastad, Eli; Smith, Gordon C S; Torabi, Rozbeh

    2009-06-10

    A carefully classified dataset of perinatal mortality will retain the most significant information on the causes of death. Such information is needed for health care policy development, surveillance and international comparisons, clinical services and research. For comparability purposes, we propose a classification system that could serve all these needs, and be applicable in both developing and developed countries. It is developed to adhere to basic concepts of underlying cause in the International Classification of Diseases (ICD), although gaps in ICD prevent classification of perinatal deaths solely on existing ICD codes.We tested the Causes of Death and Associated Conditions (Codac) classification for perinatal deaths in seven populations, including two developing country settings. We identified areas of potential improvements in the ability to retain existing information, ease of use and inter-rater agreement. After revisions to address these issues we propose Version II of Codac with detailed coding instructions.The ten main categories of Codac consist of three key contributors to global perinatal mortality (intrapartum events, infections and congenital anomalies), two crucial aspects of perinatal mortality (unknown causes of death and termination of pregnancy), a clear distinction of conditions relevant only to the neonatal period and the remaining conditions are arranged in the four anatomical compartments (fetal, cord, placental and maternal).For more detail there are 94 subcategories, further specified in 577 categories in the full version. Codac is designed to accommodate both the main cause of death as well as two associated conditions. We suggest reporting not only the main cause of death, but also the associated relevant conditions so that scenarios of combined conditions and events are captured.The appropriately applied Codac system promises to better manage information on causes of perinatal deaths, the conditions associated with them, and the most

  19. Cracking a tricuspid perimount bioprosthesis to optimize a second transcatheter sapien valve-in-valve placement.

    PubMed

    Brown, Stephen C; Cools, Bjorn; Gewillig, Marc

    2016-09-01

    Bioprosthetic valves degenerate over time. Transcatheter valve-in-valve procedures have become an attractive alternative to surgery. However, every valve increasingly diminishes the diameter of the valvar orifice. We report a 12-year-old female who had a previous transcatheter tricuspid valve-in-valve procedure; cracking the ring of a Carpentier Edwards Perimount valve by means of an ultrahigh pressure balloon allowed implantation of a further larger percutaneous valve. The advantage of this novel approach permits enlarging the inner valve diameter and may facilitate future interventions and prolong time to surgery. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification

    PubMed Central

    Naeini, Mahdi Pakdaman; Batal, Iyad; Liu, Zitao; Hong, CharmGil; Hauskrecht, Milos

    2015-01-01

    This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods. PMID:25927015

  1. Pediatric Tubular Pulmonary Heart Valve from Decellularized Engineered Tissue Tubes

    PubMed Central

    Reimer, Jay M.; Syedain, Zeeshan H.; Haynie, Bee H.T.; Tranquillo, Robert T.

    2015-01-01

    Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous matrix, which was subsequently decellularized. Previously, these engineered tubes became extensively recellularized following implantation into the sheep femoral artery. Thus, a tubular valve made from these tubes may be amenable to recellularization and, ideally, somatic growth. The suture line pattern generated three equi-spaced “leaflets” in the inner tube, which collapsed inward when exposed to back pressure, per tubular valve design. Valve testing was performed in a pulse duplicator system equipped with a secondary flow loop to allow for root distention. All tissue-engineered valves exhibited full leaflet opening and closing, minimal regurgitation (< 5%), and low systolic pressure gradients (< 2.5 mmHg) under pulmonary conditions. Valve performance was maintained under various trans-root pressure gradients and no tissue damage was evident after 2 million cycles of fatigue testing. PMID:26036175

  2. Failure and Life Cycle Evaluation of Watering Valves

    PubMed Central

    Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D

    2011-01-01

    Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves’ internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a ‘drying out’ period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure. PMID:22330720

  3. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves.

    PubMed

    Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling

    2016-12-12

    In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.

  4. Perivalvular pannus and valve thrombosis: two concurrent mechanisms of mechanical valve prosthesis dysfunction.

    PubMed

    Arnáiz-García, María Elena; González-Santos, Jose María; Bueno-Codoñer, María E; López-Rodríguez, Javier; Dalmau-Sorlí, María José; Arévalo-Abascal, Adolfo; Arribas-Jiménez, Antonio; Diego-Nieto, Alejandro; Rodríguez-Collado, Javier; Rodríguez-López, Jose María

    2015-02-01

    A 78-year-old woman was admitted to our institution with progressive dyspnea. She had previously been diagnosed with rheumatic heart disease and had undergone cardiac surgery for mechanical mitral valve replacement ten years previously. Transesophageal echocardiography revealed blockage of the mechanical prosthesis and the patient was scheduled for surgery, in which a thrombus was removed from the left atrial appendage. A partial thrombosis of the mechanical prosthesis and circumferential pannus overgrowth were concomitantly detected. Prosthetic heart valve blockage is a rare but life-threatening complication, the main causes of which are thrombosis and pannus formation. The two conditions are different but both are usually misdiagnosed. Two concurrent mechanisms of prosthesis blockage were found in this patient. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  5. Transfemoral aortic valve implantation in severe aortic stenosis patients with prior mitral valve prosthesis

    PubMed Central

    Sarı, Cenk; Baştuğ, Serdal; Kasapkara, Hacı Ahmet; Durmaz, Tahir; Keleş, Telat; Akçay, Murat; Aslan, Abdullah Nabi; Bayram, Nihal Akar; Bozkurt, Engin

    2015-01-01

    Introduction Transcatheter aortic valve implantation for severe symptomatic aortic stenosis in patients with a previous mitral valve prosthesis is technically challenging, and pre-procedural comprehensive assessment of these patients before transcatheter aortic valve implantation is vital for an uncomplicated and successful procedure. Aim We want to share our experience with transcatheter aortic valve implantation in patients with a preexisting functional mitral valve prosthesis and describe a series of important technical and pre-procedural details. Material and methods At our center, 135 patients with symptomatic severe aortic stenosis were treated with transcatheter aortic valve implantation. Six of them with a preexisting mitral valve prosthesis received an Edwards SAPIEN XT valve through the transfemoral route. Results Transcatheter aortic valve implantation was performed successfully in all 6 patients without any deformation of the cobalt-chromium/steel stents of the aortic valve bioprosthesis. Also no distortion or malfunction in the mitral valve prosthesis was observed after the procedure. There were no complications during the hospitalization period. Post-procedural echocardiography revealed no or mild aortic paravalvular regurgitation and normal valve function in all the patients. In addition, serial echocardiographic examination demonstrated that both the stability and function of the aortic and mitral prosthetic valves were normal without any deterioration in the gradients and the degree of the regurgitation at long-term follow-ups. Conclusions Our experience confirms that transcatheter aortic valve implantation is technically feasible in patients with previous mitral valve replacement but comprehensive evaluation of patients by multimodal imaging techniques such as transesophageal echocardiography and multislice computed tomography is mandatory for a successful and safe procedure. PMID:26677380

  6. Kangaroo versus porcine aortic valve tissue--valve geometry morphology, tensile strength and calcification potential.

    PubMed

    Neethling, W M; Papadimitriou, J M; Swarts, E; Hodge, A J

    2000-06-01

    Valve related factors and patient related factors are responsible for calcification of valvular bioprostheses. Recent studies showed different donor and recipient species have different influences on the total calcification rate of bioprostheses. This study was performed to evaluate and compare Kangaroo aortic valve leaflets with porcine aortic valve leaflets. Experimental design. Prospective study. Setting. Cardio-thoracic experimental research of a university department. Glutaraldehyde-fixed Kangaroo and porcine valve leaflets were evaluated in vitro according to valve geometry (internal diameter and leaflet thickness), morphology (light and electron microscopy) and tensile strength. In vivo evaluation consisted of implantation in a rat model for 8 weeks, Von Kossa stain for calcium and atomic absorption spectrophotometry for total extractable calcium content. Kangaroo valves indicated a smaller internal valve diameter as well as a thinner valve leaflet (p<0.01, ANOVA) at corresponding body weight, less proteoglycan spicules in the fibrosa, increased elasticity (p<0.05) and low calcification potential (p<0.01, confidence interval 95%). Kangaroo aortic valve leaflets have different valvular qualities compared to porcine valve tissue. Kangaroo valve leaflets are significantly superior to porcine valve leaflets as far as calcification is concerned. These results are encouraging and suggest further in vivo evaluation in a larger animal model before clinical application can be considered.

  7. What Is Heart Valve Surgery?

    MedlinePlus

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  8. What Is Heart Valve Disease?

    MedlinePlus

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  9. Valve repair in aortic regurgitation without root dilatation--aortic valve repair.

    PubMed

    Lausberg, H F; Aicher, D; Kissinger, A; Langer, F; Fries, R; Schäfers, H-J

    2006-02-01

    Aortic valve repair was established in the context of aortic root remodeling. Variable results have been reported for isolated valve repair. We analyzed our experience with isolated valve repair and compared the results with those of aortic root remodeling. Between October 1995 and August 2003, isolated repair of the aortic valve was performed in 83 patients (REP), remodeling of the aortic valve in 175 patients (REMO). The demographics of the two groups were comparable (REP: mean age 54.4 +/- 20.7 yrs, male-female ratio 2.1 : 1; REMO: mean age 60.8 +/- 13.6 yrs, male-female ratio 2.4 : 1; p = ns). In both groups the number of bicuspid valves was comparable (REP: 41 %, REMO: 32 %; p = ns). All patients were followed by echocardiography for a cumulative follow-up of 8204 patient months (mean 32 +/- 23 months). Overall in-hospital mortality was 2.4 % in REP and 4.6 % in REMO ( p = 0.62). Systolic gradients were comparable in both groups (REP: 5.8 +/- 2.2, REMO: 6.5 +/- 3.1 mm Hg, p = 0.09). The mean degree of aortic regurgitation 12 months postoperatively was 0.8 +/- 0.7 after REP and 0.7 +/- 0.7 after REMO ( p = 0.29). Freedom from significant regurgitation (> or = II degrees ) after 5 years was 86 % in REP and 89 % in REMO ( p = 0.17). Freedom from re-operation after 5 years was 94.4 % in REP and 98.2 % in REMO ( p = 0.33). Aortic regurgitation without concomitant root dilatation can be treated effectively by aortic valve repair. The functional results are equivalent to those obtained with valve-preserving root replacement. Aortic valve repair appears to be an alternative to valve replacement in aortic regurgitation.

  10. Particle Image Velocimetry studies of bicuspid aortic valve hemodynamics

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Yoganathan, Ajit P.

    2010-11-01

    Bicuspid aortic valves (BAVs) are a congenital anomaly of the aortic valve with two fused leaflets, affecting about 1-2% of the population. BAV patients have much higher incidence of valve calcification & aortic dilatation, which may be related to altered mechanical forces from BAV hemodynamics. This study aims to characterize BAV hemodynamics using Particle Image Velocimetry(PIV). BAV models are constructed from normal explanted porcine aortic valves by suturing two leaflets together. The valves are mounted in an acrylic chamber with two sinuses & tested in a pulsatile flow loop at physiological conditions. 2D PIV is performed to obtain flow fields in three planes downstream of the valve. The stenosed BAV causes an eccentric jet, resulting in a very strong vortex in the normal sinus. The bicuspid sinus vortex appears much weaker, but more unstable. Unsteady oscillatory shear stresses are also observed, which have been associated with adverse biological response; characterization of the hemodynamics of BAVs will provide the first step to understanding these processes better. Results from multiple BAV models of varying levels of stenosis will be presented & higher stenosis corresponded to stronger jets & increased aortic wall shear stresses.

  11. Face-Sealing Butterfly Valve

    NASA Technical Reports Server (NTRS)

    Tervo, John N.

    1992-01-01

    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.

  12. Transapical JenaValve in a patient with mechanical mitral valve prosthesis.

    PubMed

    O' Sullivan, Katie E; Casserly, Ivan; Hurley, John

    2015-04-01

    We report the first case of transcatheter aortic valve replacement implantation using JenaValve™ in a patient with mechanical mitral valve prosthesis. We believe that the design features of this valve may be particularly suited for use in this setting. © 2014 Wiley Periodicals, Inc.

  13. Modeling the Mitral Valve

    NASA Astrophysics Data System (ADS)

    Kaiser, Alexander

    2016-11-01

    The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.

  14. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1993-03-01

    A magnetically operated check valve is disclosed having, in one aspect, a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  15. Fast acting check valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1979-01-01

    A check valve which closes more rapidly to prevent wearing of the valve seat and of the valve member that seals thereagainst, including a solenoid or other actuator that aids the normal spring to quickly close the valve at approximately the time when downpath fluid flow would stop, the actuator then being deenergized. The control circuit that operates the actuator can include a pair of pressure sensors sensing pressure both upstream and downstream from the valve seat. Where the valve is utilized to control flow to or from a piston pump, energization of the actuator can be controlled by sensing when the pump piston reaches its extreme of travel.

  16. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  17. Double-orifice mitral valve associated with bicuspid aortic valve.

    PubMed

    Khani, Mohammad; Rohani, Atoosheh

    2017-06-01

    Double-orifice mitral valve is a rare congenital anomaly that usually does not cause a significant hemodynamic effect. Double-orifice mitral valve and a bicuspid aortic valve were detected in a 54-year-old lady who presented with dyspnea on exertion for one year. This is a rare association. Three-dimensional echocardiography is helpful to determine the type of malformation. The patient had no significant mitral regurgitation or stenosis, but demonstrated moderate aortic stenosis. She is undergoing periodic monitoring.

  18. Valve-sparing aortic root replacement in bicuspid aortic valves: a reasonable option?

    PubMed

    Aicher, Diana; Langer, Frank; Kissinger, Anke; Lausberg, Henning; Fries, Roland; Schäfers, Hans-Joachim

    2004-11-01

    Aortic dilatation occurs in many patients with bicuspid aortic valves. We have added root replacement using the remodeling technique originally designed for tricuspid aortic valves to bicuspid aortic valve repair for treatment of the dilated root. We compared the results of remodeling in bicuspid aortic valves with those in tricuspid aortic valves. From October 1995 through January 2004, 60 patients underwent root remodeling for bicuspid aortic valves (group A), and 130 patients underwent root remodeling for tricuspid aortic valves (group B). Correction of cusp prolapse was more often performed in group A (group A, 50/60; group B, 47/130; P < .0001). Transthoracic echocardiography was performed at 1 week, 6 and 12 months, and every year thereafter. Cumulative follow-up was 527 patient-years (mean, 2.9 +/- 2 years). No patient died in group A. Hospital mortality in group B was 5% (5/100; 95% confidence interval,1.6%-11.3%) after elective operations and 10% (3/30; 95% confidence interval, 2.1%-26.5%) after emergency operations. Mean systolic gradients were identical at 1 year (group A, 4.8 +/- 2.1 mm Hg; group B, 4.0 +/- 2 mm Hg) and 5 years (group A, 4.5 +/- 2.3 mm Hg; group B, 3.9 +/- 2.2 mm Hg). Freedom from aortic regurgitation of grade 2 or higher at 5 years was 96% in group A and 83% in group B ( P = .07), and freedom from reoperation at 5 years was 98% in group A and 98% in group B ( P = .73). Valve-sparing aortic replacement with root remodeling can be applied to aortic dilatation and a regurgitant bicuspid aortic valve. Hemodynamic function and valve stability of a repaired bicuspid aortic valve are comparable with those seen in cases of tricuspid anatomy.

  19. Remote actuated valve implant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  20. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.

    PubMed

    Willis, Peter A; Hunt, Brian D; White, Victor E; Lee, Michael C; Ikeda, Michael; Bae, Sam; Pelletier, Michael J; Grunthaner, Frank J

    2007-11-01

    Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.

  1. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  2. Acquired discrete subaortic stenosis late after mitral valve replacement.

    PubMed

    Mohan, Jagdish C; Shukla, Madhu; Mohan, Vishwas; Sethi, Arvind

    2016-09-01

    Although acquired left ventricular outflow obstruction has been reported in a variety of conditions, there are scant reports of its occurrence following mitral valve replacement (MVR). This study describes two female patients, who developed severe discrete subaortic stenosis, five years following MVR. In both cases, the mitral valve was replaced by a porcine Carpentier-Edwards 27-mm bioprosthesis with preservation of mitral valve leaflets. The risk of very late left ventricular outflow tract obstruction after bio-prosthetic MVR with preservation of subvalvular apparatus needs to be kept in mind in symptomatic patients. Copyright © 2016 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  3. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  4. On discharge from poppet valves: effects of pressure and system dynamics

    NASA Astrophysics Data System (ADS)

    Winroth, P. M.; Ford, C. L.; Alfredsson, P. H.

    2018-02-01

    Simplified flow models are commonly used to design and optimize internal combustion engine systems. The exhaust valves and ports are modelled as straight pipe flows with a corresponding discharge coefficient. The discharge coefficient is usually determined from steady-flow experiments at low pressure ratios and at fixed valve lifts. The inherent assumptions are that the flow through the valve is insensitive to the pressure ratio and may be considered as quasi-steady. The present study challenges these two assumptions through experiments at varying pressure ratios and by comparing measurements of the discharge coefficient obtained under steady and dynamic conditions. Steady flow experiments were performed in a flow bench, whereas the dynamic measurements were performed on a pressurized, 2 l, fixed volume cylinder with one or two moving valves. In the latter experiments an initial pressure (in the range 300-500 kPa) was established whereafter the valve(s) was opened with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process since no piston was simulated. The results show that the process is neither pressure-ratio independent nor quasi-steady. A measure of the "steadiness" has been defined, relating the relative change in the open flow area of the valve to the relative change of flow conditions in the cylinder, a measure that indicates if the process can be regarded as quasi-steady or not.

  5. VALVE

    DOEpatents

    Arkelyan, A.M.; Rickard, C.L.

    1962-04-17

    A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)

  6. Dynamic modeling and simulation of an integral bipropellant propulsion double-valve combined test system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng

    2017-04-01

    For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.

  7. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  8. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  9. A 3D velocimetry study of the flow through prosthetic heart valves

    NASA Astrophysics Data System (ADS)

    Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.

    2006-11-01

    Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.

  10. The effect of X-ray beam distortion on the Edwards Sapien XT(™) trans-catheter aortic valve replacement prosthesis.

    PubMed

    Crowhurst, James A; Poon, Karl K; Murdoch, Dale; Incani, Alexander; Raffel, Owen C; Liddicoat, Annelise; Walters, Darren

    2015-12-01

    Profiling the Aortic root perpendicular to the fluoroscopic image plane will achieve a more successful implant position for trans-catheter aortic valve replacement (TAVR). This study aimed to investigate whether the divergent nature of the X-ray beam from the C-arm altered the appearance of the TAVR device. Under bench-top testing, a 23, 26 and 29 mm Edwards Sapien XT valve was positioned coaxially at the bottom of a fluoroscopic image utilising 22 and 32 cm fields of view (FOV). The table was then moved so that the valve was positioned at the top of the image. The valve's appearance was scored using a previously published three tier classification tool (excellent, satisfactory and poor) and quantified with measurements. The number of degrees of C-arm rotation that were required to bring the valve back to a coaxial appearance was recorded. When using the 32 cm FOV, the valve's appearance changes from excellent to satisfactory. When a 22 cm FOV was used, the change is less marked. More C-arm rotation is required to bring the appearance back to coaxial with the 32 cm FOV. Not maintaining the valve in the centre of the image can distort the valves appearance. This has the potential to affect the final implantation depth.

  11. Valve assembly for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeman, R.J.; Shea, S.F.

    1989-09-05

    This patent describes an improvement in a valve assembly for an internal combustion engine of the type including a valve having a valve stem, a valve guideway for mounting this valve for reciprocal strokes between opened and seated position, and spring means for biasing the valve into the seated position. The improvement comprising a valve spool of greater cross-sectional diameter as compared to the valve stem, and a valve spool guideway within which the valve spool is movable during the strokes of the valve, an upper surface of the valve spool and a portion of the spool guideway collectively establishingmore » a damper chamber which varies in volume during the valve strokes. a feed passage for introducing oil into the damper chamber, and a bleed passage for discharging oil from the damper chamber. The bleed passages each laterally opening into the valve spool guideway.« less

  12. Transcatheter Aortic Valve Implantation: Experience with the CoreValve Device.

    PubMed

    Asgar, Anita W; Bonan, Raoul

    2012-01-01

    The field of transcatheter aortic valve implantation has been rapidly evolving. The Medtronic CoreValve first emerged on the landscape in 2004 with initial first human studies, and it is currently being studied in the Pivotal US trial. This article details the current experience with the self-expanding aortic valve with a focus on clinical results and ongoing challenges. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Multiple-port valve

    DOEpatents

    Doody, Thomas J.

    1978-08-22

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable wih one or more of a plurality of secondary conduits fitted into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits.

  14. Sliding-gate valve

    DOEpatents

    Usnick, George B.; Ward, Gene T.; Blair, Henry O.; Roberts, James W.; Warner, Terry N.

    1979-01-01

    This invention is a novel valve of the slidable-gate type. The valve is designed especially for long-term use with highly abrasive slurries. The sealing surfaces of the gate are shielded by the valve seats when the valve is fully open or closed, and the gate-to-seat clearance is swept with an inflowing purge gas while the gate is in transit. A preferred form of the valve includes an annular valve body containing an annular seat assembly defining a flow channel. The seat assembly comprises a first seat ring which is slidably and sealably mounted in the body, and a second seat ring which is tightly fitted in the body. These rings cooperatively define an annular gap which, together with passages in the valve body, forms a guideway extending normal to the channel. A plate-type gate is mounted for reciprocation in the guideway between positions where a portion of the plate closes the channel and where a circular aperture in the gate is in register with the channel. The valve casing includes opposed chambers which extend outwardly from the body along the axis of the guideway to accommodate the end portions of the gate. The chambers are sealed from atmosphere; when the gate is in transit, purge gas is admitted to the chambers and flows inwardly through the gate-to-seat-ring, clearance, minimizing buildup of process solids therein. A shaft reciprocated by an external actuator extends into one of the sealed chambers through a shaft seal and is coupled to an end of the gate. Means are provided for adjusting the clearance between the first seat ring and the gate while the valve is in service.

  15. Clinical efficacy of transcatheter aortic valve replacement for severe aortic stenosis in high-risk patients: the PREVAIL JAPAN trial.

    PubMed

    Sawa, Yoshiki; Takayama, Morimasa; Mitsudo, Kazuaki; Nanto, Shinsuke; Takanashi, Shuichiro; Komiya, Tatsuhiko; Kuratani, Toru; Tobaru, Tetsuya; Goto, Tsuyoshi

    2015-01-01

    Transcatheter aortic valve replacement (TAVR) is suggested to be less invasive and/or equally effective in comparison to conventional aortic valve replacement for high-risk symptomatic aortic stenosis patients. We herein report the initial results of a pivotal clinical trial of TAVR in Japan (the PREVAIL JAPAN). Sixty-four aortic stenosis patients (mean age 84.3 ± 6.1 years) not suitable for surgery were enrolled at three centers in Japan, with a primary composite endpoint of the 6-month post-procedure improvements in the aortic valve area and New York Heart Association (NYHA) functional classification. A transfemoral approach was used in 37 patients and a transapical approach was used in 27. The device success rate was 91.9 %. After 30 days and 6 months, the rates of mortality from any cause were 8.1 and 11.3 %, respectively. At 6 months, symptomatic stroke was found in 3.1 % of the patients, and silent infarction in 7.8 %. The aortic valve area and mean pressure gradient were significantly improved over time with both approaches (p < 0.001). At 6 months, the NYHA functional classification based on a conventional physician's assessment was improved in 87.9 % of the patients. We found results that were equivalent to those in other major TAVR trials, such as an acceptable 30-day survival (91.9 %), suggesting that balloon-expandable TAVR is effective for small Japanese AS patients classified as high-risk or inoperable.

  16. Solenoid Valve With Self-Compensation

    NASA Technical Reports Server (NTRS)

    Woeller, Fritz H.; Matsumoto, Yutaka

    1987-01-01

    New solenoid-operated miniature shutoff valve provides self-compensation of differential pressure forces that cause jamming or insufficient valve closure as in single-seal valves. Dual-seal valve is bidirectional. Valve simultaneously seals both inlet and outlet tubes by pressing single disk of silicone rubber against ends of both.

  17. TexMi: Development of Tissue-Engineered Textile-Reinforced Mitral Valve Prosthesis

    PubMed Central

    Moreira, Ricardo; Gesche, Valentine N.; Hurtado-Aguilar, Luis G.; Schmitz-Rode, Thomas; Frese, Julia

    2014-01-01

    Mitral valve regurgitation together with aortic stenosis is the most common valvular heart disease in Europe and North America. Mechanical and biological prostheses available for mitral valve replacement have significant limitations such as the need of a long-term anticoagulation therapy and failure by calcifications. Both types are unable to remodel, self-repair, and adapt to the changing hemodynamic conditions. Moreover, they are mostly designed for the aortic position and do not reproduce the native annular-ventricular continuity, resulting in suboptimal hemodynamics, limited durability, and gradually decreasing ventricular pumping efficiency. A tissue-engineered heart valve specifically designed for the mitral position has the potential to overcome the limitations of the commercially available substitutes. For this purpose, we developed the TexMi, a living textile-reinforced mitral valve, which recapitulates the key elements of the native one: annulus, asymmetric leaflets (anterior and posterior), and chordae tendineae to maintain the native annular-ventricular continuity. The tissue-engineered valve is based on a composite scaffold consisting of the fibrin gel as a cell carrier and a textile tubular structure with the twofold task of defining the gross three-dimensional (3D) geometry of the valve and conferring mechanical stability. The TexMi valves were molded with ovine umbilical vein cells and stimulated under dynamic conditions for 21 days in a custom-made bioreactor. Histological and immunohistological stainings showed remarkable tissue development with abundant aligned collagen fibers and elastin deposition. No cell-mediated tissue contraction occurred. This study presents the proof-of-principle for the realization of a tissue-engineered mitral valve with a simple and reliable injection molding process readily adaptable to the patient's anatomy and pathological situation by producing a patient-specific rapid prototyped mold. PMID:24665896

  18. Shelf-life of bioprosthetic heart valves: a structural and mechanical study.

    PubMed

    Julien, M; Létouneau, D R; Marois, Y; Cardou, A; King, M W; Guidoin, R; Chachra, D; Lee, J M

    1997-04-01

    This study was undertaken to evaluate the influence of storage conditions on the shelf-life of porcine bioprosthetic valves. Fifty-five unimplanted porcine bioprostheses have been evaluated. The valves were stored in 0.5% buffered glutaraldehyde solution for different periods of time (7, 23 and 32 months). Twenty-eight valves were refrigerated while the remaining valves were stored at room temperature. The pH of the glutaraldehyde solution at room temperature decreased with time of storage, while that kept in the refrigerator remained stable over the course of the study. Macroscopic observations showed that the valve tissues kept at room temperature, especially for the periods of 23 and 32 months, became darker and more yellow in colour, whereas the refrigerated specimens exhibited no such changes in appearance. Scanning electron microscopy analysis revealed no noticeable differences on the surfaces of the leaflets stored under different conditions. Mechanical tests, including stress-strain response, stress relaxation and fracture behaviour, were carried out. Analysis of variance showed that the storage temperature, but not the length of storage, had a significant effect on some mechanical properties. The stress relaxation at 1000 s (P = 0.05), the ultimate tensile strength (P = 0.01) and the strain at fracture (P = 0.04) were all higher after storage at room temperature compared to the results after refrigeration. No statistically significant changes in the denaturation temperature of the collagen were observed between the different storage conditions. In conclusion, the storage temperature appears to have some influence on the bioprosthetic tissue. The bioprostheses stored under ambient conditions experience changes which may influence their longterm in vivo performance.

  19. Valve repair for traumatic tricuspid regurgitation.

    PubMed

    Maisano, F; Lorusso, R; Sandrelli, L; Torracca, L; Coletti, G; La Canna, G; Alfieri, O

    1996-01-01

    The review of six cases of valve repair for traumatic tricuspid regurgitation in our institution and 74 in the literature in order to assess effective methods of treating this lesion. Tricuspid valve regurgitation is a rare complication of blunt chest trauma. Optimal treatment for this condition is still controversial ranging from long-term medical therapy to early surgical correction. We followed the cases of six consecutive patients with post-traumatic tricuspid incompetence who were successfully treated with reparative techniques. All patients were male and their ages ranged from 18 years to 42 years. Valve regurgitation was always secondary to blunt chest trauma due to motor vehicle accident. The mechanism of valve insufficiency was invariably anterior leaflet prolapse due to chordal or papillary muscle rupture associated with annular dilatation. Surgical procedures included Carpentier ring implant (5 patients), Bex posterior annuloplasty (1 patient), implant of artificial chordae (4 patients), papillary muscle reinsertion (2 patients), commissuroplasty (1 patient) and "artificial double orifice" technique (1 patient). Tricuspid insufficiency improved in all patients after the correction. No complications were recorded and all patients were asymptomatic at the follow-up. Since post-traumatic tricuspid regurgitation is effectively correctable with reparative techniques, early operation is recommended to relieve symptoms and to prevent right ventricular dysfunction.

  20. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MISKA, C.R.

    1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  1. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN KATWIJK, C.

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  2. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN KATWIJK, C.

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  3. Study of multiple cycles valves

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    A discussion is presented regarding valves which can be cycled repeatedly and are available from industry for application in the inlet system for the Pioneer Venus Probe mass spectrometer. Both solenoid type and latching type valves are considered. The study is divided into two principal areas: (1) preparation of a valve specification reflecting the requirements of the inlet system cyclic valves for the Pioneer Venus Probe mass spectrometer and the submittal of this specification to potential valve suppliers for their response and proposal; (2) preparation of a design layout of an optimum cyclic valve meeting all of the valve specification requirements.

  4. Results of endocardial radiofrequency ablation of atrial fibrillation during mitral valve surgery.

    PubMed

    Demirkilic, U; Bolcal, C; Gunay, C; Doganci, S; Temizkan, V; Kuralay, E; Tatar, H

    2006-08-01

    The aim of the study is to evaluate the efficacy of thermocontrolled endocardial radiofrequency (RF) ablation for the patients with mitral valve disorder and associated chronic atrial fibrillation during mitral valve replacement operation. Between February 2002 and January 2004, 43 patients with mitral valve disease and associated chronic atrial fibrillation underwent mitral valve replacement and thermocontrolled endocardial RF ablation with Cobra RF system flexible probe at Gulhane Military Academy of Medicine, Department of Cardiovascular Surgery. Eighteen of the patients (41.8%) were males, while the remaining 25 (58.2%) were females. The average age of the patients was 44+/-14.21 (18-66) years. Functional capacity of the patients was class II in 15 (34. 9%), class III in 24 (55.8%), class IV in 4 (9.3%) according to the NYHA classification. At the preoperative period all of the patients were evaluated routinely by twelve-lead ECG, chest film and transthoracic echocardiography (TTE). For the patients over 40 years of age, we performed additional coronary angiography to delineate any coronary lesions. The patients were evaluated at months 1, 3, 6 and annually by twelve-lead ECG, TTE and holter monitoring after discharge. There were not any complications related to the performed technique. No operative and hospital mortality were recorded. At the follow-up period for 35 of 43 patients (81.4%) sinus rhythm was restored. The mean follow-up time was 24.3+/-11.2 (12-35) months. Endocardial RF ablation especially during mitral valve surgery is a simple technique to be performed. Early and midterm results of the cohort are satisfying.

  5. Mitral valve replacement with the Hancock stabilized glutaraldehyde valve. Clinical and laboratory evaluation.

    PubMed

    Buch, W S; Pipkin, R D; Hancock, W D; Fogarty, T J

    1975-11-01

    From March 1971 through April 1975, one hundred twenty patients underwent mitral valve replacement with a Hancock "stabilized glutaraldehyde process" porcine aortic xenograft. A simultaneous canine experimental series was also carried out. In the clinical series, the early mortality was 8.3%. Actuarial analyses of all patients predicts survival at two years of 81.0% and at four years of 70.0%. The predicted survival for patients without coronary disease or prior prosthetic valve replacement is 87.5% at two years and 77.5% at four years. There were four thromboembolic episodes, a rate of 2.4% per patient-year. None were fatal. No valve failure were noted. Histologic examination and shrink temperature analysis of recovered valves show excellent tissue preservation at 40 months. The data indicate that the Hancock valve is durable, enjoys a low incidence of thromboembolism, and may be the valve of choice for mitral valve replacement.

  6. Anterior mitral valve aneurysm: a rare sequelae of aortic valve endocarditis.

    PubMed

    Janardhanan, Rajesh; Kamal, Muhammad Umar; Riaz, Irbaz Bin; Smith, M Cristy

    2016-03-01

    SummaryIn intravenous drug abusers, infective endocarditis usually involves right-sided valves, with Staphylococcus aureus being the most common etiologic agent. We present a patient who is an intravenous drug abuser with left-sided (aortic valve) endocarditis caused by Enterococcus faecalis who subsequently developed an anterior mitral valve aneurysm, which is an exceedingly rare complication. A systematic literature search was conducted which identified only five reported cases in the literature of mitral valve aneurysmal rupture in the setting of E. faecalis endocarditis. Real-time 3D-transesophageal echocardiography was critical in making an accurate diagnosis leading to timely intervention. Early recognition of a mitral valve aneurysm (MVA) is important because it may rupture and produce catastrophic mitral regurgitation (MR) in an already seriously ill patient requiring emergency surgery, or it may be overlooked at the time of aortic valve replacement (AVR).Real-time 3D-transesophageal echocardiography (RT-3DTEE) is much more advanced and accurate than transthoracic echocardiography for the diagnosis and management of MVA. © 2016 The authors.

  7. Transcatheter Mitral Valve Replacement for Native and Failed Bioprosthetic Mitral Valves

    PubMed Central

    Sarkar, Kunal; Reardon, Michael J.; Little, Stephen H.; Barker, Colin M.; Kleiman, Neal S.

    2017-01-01

    Transcatheter mitral valve replacement (TMVR) is a novel approach for treatment of severe mitral regurgitation. A number of TMVR devices are currently undergoing feasibility trials using both transseptal and transapical routes for device delivery. Overall experience worldwide is limited to fewer than 200 cases. At present, the 30-day mortality exceeds 30% and is attributable to both patient- and device-related factors. TMVR has been successfully used to treat patients with degenerative mitral stenosis (DMS) as well as failed mitral bioprosthesis and mitral repair using transcatheter mitral valve-in-valve (TMViV)/valve-in-ring (ViR) repair. These patients are currently treated with devices designed for transcatheter aortic valve replacement. Multicenter registries have been initiated to collect outcomes data on patients currently undergoing TMViV/ViR and TMVR for DMS and have confirmed the feasibility of TMVR in these patients. However, the high periprocedural and 30-day event rates underscore the need for further improvements in device design and multicenter randomized studies to delineate the role of these technologies in patients with mitral valve disease. PMID:29743999

  8. Fast acting multiple element valve

    DOEpatents

    Yang, Jefferson Y. S.; Wada, James M.

    1991-01-01

    A plurality of slide valve elements having plural axial-spaced annular parts and an internal slide are inserted into a bulkhead in a fluid conduit from a downstream side of the bulkhead, locked in place by a bayonet coupling and set screw, and project through the bulkhead into the upstream conduit. Pneumatic lines connecting the slide valve element actuator to pilot valves are brought out the throat of the valve element to the downstream side. Pilot valves are radially spaced around the exterior of the valve to permit the pneumatic lines to be made identical, thereby to minimize adverse timing tolerances in operation due to pressure variations. Ring manifolds surround the valve adjacent respective pilot valve arrangements to further reduce adverse timing tolerances due to pressure variations, the manifolds being directly connected to the respective pilot valves. Position sensors are provided the valve element slides to signal the precise time at which a slide reaches or passes through a particular point in its stroke to initiate a calibrated timing function.

  9. Conical Seat Shut-Off Valve

    NASA Technical Reports Server (NTRS)

    Farner, Bruce

    2013-01-01

    A moveable valve for controlling flow of a pressurized working fluid was designed. This valve consists of a hollow, moveable floating piston pressed against a stationary solid seat, and can use the working fluid to seal the valve. This open/closed, novel valve is able to use metal-to-metal seats, without requiring seat sliding action; therefore there are no associated damaging effects. During use, existing standard high-pressure ball valve seats tend to become damaged during rotation of the ball. Additionally, forces acting on the ball and stem create large amounts of friction. The combination of these effects can lead to system failure. In an attempt to reduce damaging effects and seat failures, soft seats in the ball valve have been eliminated; however, the sliding action of the ball across the highly loaded seat still tends to scratch the seat, causing failure. Also, in order to operate, ball valves require the use of large actuators. Positioning the metal-to-metal seats requires more loading, which tends to increase the size of the required actuator, and can also lead to other failures in other areas such as the stem and bearing mechanisms, thus increasing cost and maintenance. This novel non-sliding seat surface valve allows metal-to-metal seats without the damaging effects that can lead to failure, and enables large seating forces without damaging the valve. Additionally, this valve design, even when used with large, high-pressure applications, does not require large conventional valve actuators and the valve stem itself is eliminated. Actuation is achieved with the use of a small, simple solenoid valve. This design also eliminates the need for many seals used with existing ball valve and globe valve designs, which commonly cause failure, too. This, coupled with the elimination of the valve stem and conventional valve actuator, improves valve reliability and seat life. Other mechanical liftoff seats have been designed; however, they have only resulted in

  10. Fast-acting valve and uses thereof

    DOEpatents

    Meyer, J.A.

    1980-05-16

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  11. Fast-acting valve and uses thereof

    DOEpatents

    Meyer, James A.

    1982-01-01

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  12. Fast image-based mitral valve simulation from individualized geometry.

    PubMed

    Villard, Pierre-Frederic; Hammer, Peter E; Perrin, Douglas P; Del Nido, Pedro J; Howe, Robert D

    2018-04-01

    Common surgical procedures on the mitral valve of the heart include modifications to the chordae tendineae. Such interventions are used when there is extensive leaflet prolapse caused by chordae rupture or elongation. Understanding the role of individual chordae tendineae before operating could be helpful to predict whether the mitral valve will be competent at peak systole. Biomechanical modelling and simulation can achieve this goal. We present a method to semi-automatically build a computational model of a mitral valve from micro CT (computed tomography) scans: after manually picking chordae fiducial points, the leaflets are segmented and the boundary conditions as well as the loading conditions are automatically defined. Fast finite element method (FEM) simulation is carried out using Simulation Open Framework Architecture (SOFA) to reproduce leaflet closure at peak systole. We develop three metrics to evaluate simulation results: (i) point-to-surface error with the ground truth reference extracted from the CT image, (ii) coaptation surface area of the leaflets and (iii) an indication of whether the simulated closed leaflets leak. We validate our method on three explanted porcine hearts and show that our model predicts the closed valve surface with point-to-surface error of approximately 1 mm, a reasonable coaptation surface area, and absence of any leak at peak systole (maximum closed pressure). We also evaluate the sensitivity of our model to changes in various parameters (tissue elasticity, mesh accuracy, and the transformation matrix used for CT scan registration). We also measure the influence of the positions of the chordae tendineae on simulation results and show that marginal chordae have a greater influence on the final shape than intermediate chordae. The mitral valve simulation can help the surgeon understand valve behaviour and anticipate the outcome of a procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.

    1943-01-01

    A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  14. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis.

    PubMed

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in the clinical features of patients

  15. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis

    PubMed Central

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Objective Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Methods Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. Results A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). Conclusion The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in

  16. Modulation of the tissue reninangiotensin-aldosterone system in dogs with chronic mild regurgitation through the mitral valve.

    PubMed

    Fujii, Yoko; Orito, Kensuke; Muto, Makoto; Wakao, Yoshito

    2007-10-01

    To investigate whether the tissue and plasma renin-angiotensin-aldosterone system (RAAS) is activated in dogs with mild regurgitation through the mitral valve and determine the contribution of chymase and angiotensin-converting enzyme (ACE) to the activation of the RAAS and potential production of angiotensin II during the chronic stage of mild mitral valve regurgitation. 5 Beagles with experimentally induced mild mitral valve regurgitation and 6 clinically normal (control) Beagles. Tissue ACE and chymase-like activities and plasma RAAS were measured and the RAAS evaluated approximately 1,000 days after experimental induction of mitral valve regurgitation in the 5 dogs. Dogs with experimentally induced mitral valve regurgitation did not have clinical signs of the condition, although echocardiography revealed substantial eccentric hyper- trophy. On the basis of these findings, dogs with mitral valve regurgitation were classified as International Small Animal Cardiac Health Council class Ib. Plasma activity of renin and plasma concentrations of angiotensin I, angiotensin II, and aldosterone were not significantly different between dogs with mitral valve regurgitation and clinically normal dogs. Tissue ACE activity was significantly increased and chymase-like activity significantly decreased in dogs with mitral valve regurgitation, compared with values in clinically normal dogs. The tissue RAAS was modulated without changes in the plasma RAAS in dogs with mild mitral valve regurgitation during the chronic stage of the condition. An ACE-dependent pathway may be a major route for production of angiotensin II during this stage of the condition.

  17. Causes of death and associated conditions (Codac) – a utilitarian approach to the classification of perinatal deaths

    PubMed Central

    Frøen, J Frederik; Pinar, Halit; Flenady, Vicki; Bahrin, Safiah; Charles, Adrian; Chauke, Lawrence; Day, Katie; Duke, Charles W; Facchinetti, Fabio; Fretts, Ruth C; Gardener, Glenn; Gilshenan, Kristen; Gordijn, Sanne J; Gordon, Adrienne; Guyon, Grace; Harrison, Catherine; Koshy, Rachel; Pattinson, Robert C; Petersson, Karin; Russell, Laurie; Saastad, Eli; Smith, Gordon CS; Torabi, Rozbeh

    2009-01-01

    A carefully classified dataset of perinatal mortality will retain the most significant information on the causes of death. Such information is needed for health care policy development, surveillance and international comparisons, clinical services and research. For comparability purposes, we propose a classification system that could serve all these needs, and be applicable in both developing and developed countries. It is developed to adhere to basic concepts of underlying cause in the International Classification of Diseases (ICD), although gaps in ICD prevent classification of perinatal deaths solely on existing ICD codes. We tested the Causes of Death and Associated Conditions (Codac) classification for perinatal deaths in seven populations, including two developing country settings. We identified areas of potential improvements in the ability to retain existing information, ease of use and inter-rater agreement. After revisions to address these issues we propose Version II of Codac with detailed coding instructions. The ten main categories of Codac consist of three key contributors to global perinatal mortality (intrapartum events, infections and congenital anomalies), two crucial aspects of perinatal mortality (unknown causes of death and termination of pregnancy), a clear distinction of conditions relevant only to the neonatal period and the remaining conditions are arranged in the four anatomical compartments (fetal, cord, placental and maternal). For more detail there are 94 subcategories, further specified in 577 categories in the full version. Codac is designed to accommodate both the main cause of death as well as two associated conditions. We suggest reporting not only the main cause of death, but also the associated relevant conditions so that scenarios of combined conditions and events are captured. The appropriately applied Codac system promises to better manage information on causes of perinatal deaths, the conditions associated with them, and the

  18. Heart valve surgery - series (image)

    MedlinePlus

    ... heart valves are either natural (biologic) or artificial (mechanical). Natural valves are from human donors (cadavers), modified ... artificial valves will require anticoagulation. The advantage of mechanical valves is that they last longer-thus, the ...

  19. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method

    PubMed Central

    Jiang, Zhinong; Wang, Zijia; Zhang, Jinjie

    2017-01-01

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable. PMID:29244722

  20. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method.

    PubMed

    Jiang, Zhinong; Mao, Zhiwei; Wang, Zijia; Zhang, Jinjie

    2017-12-15

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable.

  1. Valve Repair or Replacement

    MedlinePlus

    ... called anticoagulants) for the rest of their lives. Biological valves are made from animal tissue (called a ... for valve replacement (called an autograft). Patients with biological valves usually do not need to take blood- ...

  2. Fluid mechanics of heart valves.

    PubMed

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  3. 3D velocity field characterization of prosthetic heart valve with two different valve testers by means of stereo-PIV.

    PubMed

    D'Avenio, Giuseppe; Grigioni, Mauro; Daniele, Carla; Morbiducci, Umberto; Hamilton, Kathrin

    2015-01-01

    Prosthetic heart valves can be associated to mechanical loading of blood, potentially linked to complications (hemolysis and thrombogenicity) which can be clinically relevant. In order to test such devices in pulsatile mode, pulse duplicators (PDs) have been designed and built according to different concepts. This study was carried out to compare anemometric measurements made on the same prosthetic device, with two widely used PDs. The valve (a 27-mm bileaflet valve) was mounted in the aortic section of the PD. The Sheffield University PD and the RWTH Aachen PD were selected as physical models of the circulation. These two PDs differ mainly in the vertical vs horizontal realization, and in the ventricular section, which in the RWTH PD allows for storage of potential energy in the elastic walls of the ventricle. A glassblown aorta, realized according to the geometric data of the same anatomical district in healthy individuals, was positioned downstream of the valve, obtaining 1:1 geometric similarity conditions. A NaI-glycerol-water solution of suitable kinematic viscosity and, at the same time, the proper refractive index, was selected. The flow field downstream of the valve was measured by means of the stereo-PIV (Particle Image Velocimetry) technique, capable of providing the complete 3D velocity field as well as the entire Reynolds stress tensor. The measurements were carried out at the plane intersecting the valve axis. A three-jet profile was clearly found in the plane crossing the leaflets, with both PDs. The extent of the typical recirculation zone in the Valsalva sinus was much larger in the RWTH PD, on account of the different duration of the swirling motion in the ventricular chamber, caused by the elasticity of the ventricle and its geometry. The comparison of the hemodynamical behaviour of the same bileaflet valve tested in two PDs demonstrated the role of the mock loop in affecting the valve performance.

  4. How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes

    PubMed Central

    MacGrogan, Donal; Luxán, Guillermo; Driessen-Mol, Anita; Bouten, Carlijn; Baaijens, Frank; de la Pompa, José Luis

    2014-01-01

    Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial–mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function. PMID:25368013

  5. Optimization and simplification of the Allergic and Hypersensitivity conditions classification for the ICD-11.

    PubMed

    Tanno, L K; Calderon, M A; Demoly, P

    2016-05-01

    Since 2013, an international collaboration of Allergy Academies, including first the World Allergy Organization (WAO), the American Academy of Allergy Asthma and Immunology (AAAAI), and the European Academy of Allergy and Clinical Immunology (EAACI), and then the American College of Allergy, Asthma and Immunology (ACAAI), the Latin American Society of Allergy, Asthma and Immunology (SLAAI), and the Asia Pacific Association of Allergy, Asthma and Clinical Immunology (APAAACI), has spent tremendous efforts to have a better and updated classification of allergic and hypersensitivity conditions in the forthcoming International Classification of Diseases (ICD)-11 version by providing evidences and promoting actions for the need for changes. The latest action was the implementation of a classification proposal of hypersensitivity/allergic diseases built by crowdsourcing the Allergy Academy leaderships. Following bilateral discussions with the representatives of the ICD-11 revision, a face-to-face meeting was held at the United Nations Office in Geneva and a simplification process of the hypersensitivity/allergic disorders classification was carried out to better fit the ICD structure. We are here presenting the end result of what we consider to be a model of good collaboration between the World Health Organization and a specialty. We strongly believe that the outcomes of all past and future actions will impact positively the recognition of the allergy specialty as well as the quality improvement of healthcare system for allergic and hypersensitivity conditions worldwide. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Identification of critical zones in the flow through prosthetic heart valves

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Ledesma, R.; Zenit, R.; Pulos, G.

    2008-11-01

    The hemodynamic properties of prosthetic heart valves can cause blood damage and platelet activation due to the non- physiological flow patterns. Blood recirculation and elevated shear stresses are believed to be responsible for these complications. The objective of this study is to identify and quantify the conditions for which recirculation and high stress zones appear. We have performed a comparative study between a mechanical monoleaflet and biological valve. In order to generate the flow conditions to test the prosthesis, we have built a hydraulic circuit which reproduces the human systemic circulation, on the basis of the Windkessel model. This model is based on an electrical analogy which consists of an arterial resistance and compliance. Using PIV 3D- Stereo measurements, taken downstream from the prosthetic heart valves, we have reconstructed the full phase-averaged tridimensional velocity field. Preliminary results show that critical zones are more prominent in mechanical prosthesis, indicating that valves made with bio-materials are less likely to produce blood trauma. This is in accordance with what is generally found in the literature.

  7. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  8. Prognostic Implications of Raphe in Bicuspid Aortic Valve Anatomy.

    PubMed

    Kong, William K F; Delgado, Victoria; Poh, Kian Keong; Regeer, Madelien V; Ng, Arnold C T; McCormack, Louise; Yeo, Tiong Cheng; Shanks, Miriam; Parent, Sarah; Enache, Roxana; Popescu, Bogdan A; Liang, Michael; Yip, James W; Ma, Lawrence C W; Kamperidis, Vasileios; van Rosendael, Philippe J; van der Velde, Enno T; Ajmone Marsan, Nina; Bax, Jeroen J

    2017-03-01

    Little is known about the association between bicuspid aortic valve (BAV) morphologic findings and the degree of valvular dysfunction, presence of aortopathy, and complications, including aortic valve surgery, aortic dissection, and all-cause mortality. To investigate the association between BAV morphologic findings (raphe vs nonraphe) and the degree of valve dysfunction, presence of aortopathy, and prognosis (including need for aortic valve surgery, aortic dissection, and all-cause mortality). In this large international multicenter registry of patients with BAV treated at tertiary referral centers, 2118 patients with BAV were evaluated. Patients referred for echocardiography from June 1, 1991, through November 31, 2015, were included in the study. Clinical and echocardiographic data were analyzed retrospectively. The morphologic BAV findings were categorized according to the Sievers and Schmidtke classification. Aortic valve function was divided into normal, regurgitation, or stenosis. Patterns of BAV aortopathy included the following: type 1, dilation of the ascending aorta and aortic root; type 2, isolated dilation of the ascending aorta; and type 3, isolated dilation of the sinus of Valsalva and/or sinotubular junction. Association between the presence and location of raphe and the risk of significant (moderate and severe) aortic valve dysfunction and aortic dilation and/or dissection. Of the 2118 patients (mean [SD] age, 47 [18] years; 1525 [72.0%] male), 1881 (88.8%) had BAV with fusion raphe, whereas 237 (11.2%) had BAV without raphe. Bicuspid aortic valves with raphe had a significantly higher prevalence of valve dysfunction, with a significantly higher frequency of aortic regurgitation (622 [33.1%] vs 57 [24.1%], P < .001) and aortic stenosis (728 [38.7%] vs 51 [21.5%], P < .001). Furthermore, aortic valve replacement event rates were significantly higher among patients with BAV with raphe (364 [19.9%] at 1 year, 393 [21.4%] at 2 years, and 447

  9. Locking apparatus for gate valves

    DOEpatents

    Fabyan, J.; Williams, C.W.

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing further movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  10. Long life valve design concepts

    NASA Technical Reports Server (NTRS)

    Jones, J. R.; Hall, A. H., Jr.

    1975-01-01

    Valve concept evaluation, final candidate selection, design, manufacture, and demonstration testing of a pneumatically actuated 10-inch hybrid poppet butterfly shutoff valve are presented. Conclusions and recommendations regarding those valve characteristics and features which would serve to guide in the formulation of future valve procurements are discussed. The pertinent design goals were temperature range of plus 200 to minus 423 F, valve inlet pressure 35 psia, actuation pressure 750 psia, main seal leakage 3 x 0.00001 sccs at 35 psia valve inlet pressure, and a storage and operating life of 10 years. The valve was designed to be compatible with RP-1, propane, LH2, LO2, He, and N2.

  11. The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.

    PubMed

    Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria

    2016-01-01

    A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of <1. 0m2, and 1.5 mm for a BSA of >1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no

  12. Compact valve actuation mechanism

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A valve actuation device. The device may include a free floating valve bridge movably supported within a cavity in the engine housing. The bridge may be provided with a cavity and an orifice arrangement for pumping gases entrained with lubricating fluid toward the piston stems as the bridge reciprocates back and forth. The device may also include a rocker arm that has a U-shaped cross-sectional shape for receiving at least a portion of the valve bridge, valve stem valve spring and spring retainer therein. The rocker arm may be provided with lubrication passages for directing lubrication to the point wherein it is pivotally affixed to the engine housing.

  13. FLUID MECHANICS OF ARTIFICIAL HEART VALVES

    PubMed Central

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-01-01

    SUMMARY 1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird’s-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10–15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage. PMID:19220329

  14. Fluid mechanics of artificial heart valves.

    PubMed

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-02-01

    1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird's-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10-15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage.

  15. Improved mitral valve coaptation and reduced mitral valve annular size after percutaneous mitral valve repair (PMVR) using the MitraClip system.

    PubMed

    Patzelt, Johannes; Zhang, Yingying; Magunia, Harry; Ulrich, Miriam; Jorbenadze, Rezo; Droppa, Michal; Zhang, Wenzhong; Lausberg, Henning; Walker, Tobias; Rosenberger, Peter; Seizer, Peter; Gawaz, Meinrad; Langer, Harald F

    2017-08-01

    Improved mitral valve leaflet coaptation with consecutive reduction of mitral regurgitation (MR) is a central goal of percutaneous mitral valve repair (PMVR) with the MitraClip® system. As influences of PMVR on mitral valve geometry have been suggested before, we examined the effect of the procedure on mitral annular size in relation to procedural outcome. Geometry of the mitral valve annulus was evaluated in 183 patients undergoing PMVR using echocardiography before and after the procedure and at follow-up. Mitral valve annular anterior-posterior (ap) diameter decreased from 34.0 ± 4.3 to 31.3 ± 4.9 mm (P < 0.001), and medio-lateral (ml) diameter from 33.2 ± 4.8 to 32.4 ± 4.9 mm (P < 0.001). Accordingly, we observed an increase in MV leaflet coaptation after PMVR. The reduction of mitral valve ap diameter showed a significant inverse correlation with residual MR. Importantly, the reduction of mitral valve ap diameter persisted at follow-up (31.3 ± 4.9 mm post PMVR, 28.4 ± 5.3 mm at follow-up). This study demonstrates mechanical approximation of both mitral valve annulus edges with improved mitral valve annular coaptation by PMVR using the MitraClip® system, which correlates with residual MR in patients with MR. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  16. Valve technology: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A technical compilation on the types, applications and modifications to certain valves is presented. Data cover the following: (1) valves that feature automatic response to stimuli (thermal, electrical, fluid pressure, etc.), (2) modified valves changed by redesign of components to increase initial design effectiveness or give the item versatility beyond its basic design capability, and (3) special purpose valves with limited application as presented, but lending themselves to other uses with minor changes.

  17. The Melody® valve and Ensemble® delivery system for transcatheter pulmonary valve replacement

    PubMed Central

    McElhinney, Doff B; Hennesen, Jill T

    2013-01-01

    The Melody® transcatheter pulmonary valve (TPV) is a percutaneous valve system designed for the treatment of obstruction and/or regurgitation of prosthetic conduits placed between the right ventricle and pulmonary arteries in patients with congenital heart disease. In 2000, Melody TPV became the first transcatheter valve implanted in a human; in 2006 it became the first transcatheter valve commercially available anywhere in the world; and in 2010 it was launched as the first commercially available transcatheter valve in the United States. In this review, we present the clinical background against which the Melody valve was developed and implemented, introduce the rationale for and challenges of transcatheter valve technology for this population, outline the history and technical details of its development and use, and summarize currently available data concerning the performance of the device. PMID:23834411

  18. The US Forest Service Watershed Condition Classification: Status and Path Forward

    NASA Astrophysics Data System (ADS)

    Levinson, D. H.; Carlson, C. P.; Eberle, M. B.

    2017-12-01

    The US Forest Service Watershed Condition Classification (WCC) was developed as a tool to characterize the condition or health of watersheds on National Forests and Grasslands and assist the Agency in prioritizing actions to restore or maintain the condition of specified watersheds. After a number of years of exploring alternative approaches to assessing the health or condition of watersheds, the WCC and the associated Watershed Condition Framework were developed in response to concerns raised by the US Office of Management and Budget that the Forest Service was not able to demonstrate success in restoring watersheds on a national scale. The WCC was initially applied in 2011 to the roughly 15,000 HUC12 watersheds with an area of Forest Service management of 5% or greater. This initial watershed classification found that 52% (or 7,882) were Functioning Properly (Class 1), 45% (or 6,751) were Functioning at Risk (Class 2), and 3% (or 431) had Impaired Function (Class 3). The basic model used in the WCC was intended to provide a reconnaissance-level evaluation of watershed condition through the use of a systematic, flexible means of classifying and comparing watersheds based on a core set of national watershed condition indicators. The WCC consists of 12 indicators in four major process categories: (1) aquatic physical, (2) aquatic biological, (3) terrestrial physical, and (4) terrestrial biological. Each of the indicators is informed by one or more attributes. The attributes fall into three primary categories: numeric, descriptive, and map-derived, each of which is to be interpreted by an interdisciplinary team at the unit level. The descriptive and map-derived attributes are considered to be semi-quantitative or based on professional judgement of the team. The original description of the attributes anticipated that many of them would be improved as better data and information become available. With the advances in geographic information systems and remote sensing

  19. Some Exact Conditional Tests of Independence for R X C Cross-Classification Tables

    ERIC Educational Resources Information Center

    Agresti, Alan; Wackerly, Dennis

    1977-01-01

    Exact conditional tests of independence in cross-classification tables are formulated based on chi square and other statistics with stronger operational interpretations, such as some nominal and ordinal measures of association. Guidelines for table dimensions and sample sizes for which the tests are economically implemented on a computer are…

  20. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    NASA Technical Reports Server (NTRS)

    Sanders, J C; Wilsted, H D; Mulcahy, B A

    1943-01-01

    Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear-spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  1. Comparison of acute elastic recoil between the SAPIEN-XT and SAPIEN valves in transfemoral-transcatheter aortic valve replacement.

    PubMed

    Garg, Aatish; Parashar, Akhil; Agarwal, Shikhar; Aksoy, Olcay; Hammadah, Muhammad; Poddar, Kanhaiya Lal; Puri, Rishi; Svensson, Lars G; Krishnaswamy, Amar; Tuzcu, E Murat; Kapadia, Samir R

    2015-02-15

    The SAPIEN-XT is a newer generation balloon-expandable valve created of cobalt chromium frame, as opposed to the stainless steel frame used in the older generation SAPIEN valve. We sought to determine if there was difference in acute recoil between the two valves. All patients who underwent transfemoral-transcatheter aortic valve replacement using the SAPIEN-XT valve at the Cleveland Clinic were included. Recoil was measured using biplane cine-angiographic image analysis of valve deployment. Acute recoil was defined as [(valve diameter at maximal balloon inflation) - (valve diameter after deflation)]/valve diameter at maximal balloon inflation (reported as percentage). Patients undergoing SAPIEN valve implantation were used as the comparison group. Among the 23 mm valves, the mean (standard deviation-SD) acute recoil was 2.77% (1.14) for the SAPIEN valve as compared to 3.75% (1.52) for the SAPIEN XT valve (P = 0.04). Among the 26 mm valves, the mean (SD) acute recoil was 2.85% (1.4) for the SAPIEN valve as compared to 4.32% (1.63) for the SAPIEN XT valve (P = 0.01). Multivariable linear regression analysis demonstrated significantly greater adjusted recoil in the SAPIEN XT valves as compared to the SAPIEN valves by 1.43% [(95% CI: 0.69-2.17), P < 0.001]. However, the residual peak gradient was less for SAPIEN XT compared to SAPIEN valves [18.86 mm Hg versus 23.53 mm Hg (P = 0.01)]. Additionally, no difference in paravalvular leak was noted between the two valve types (P = 0.78). The SAPIEN XT valves had significantly greater acute recoil after deployment compared to the SAPIEN valves. Implications of this difference in acute recoil on valve performance need to be investigated in future studies. © 2014 Wiley Periodicals, Inc.

  2. Technical pitfalls and tips for the valve-in-valve procedure

    PubMed Central

    2017-01-01

    Transcatheter aortic valve implantation (TAVI) has emerged as a viable treatment modality for patients with severe aortic valve stenosis and multiple co-morbidities. More recent indications include the use of transcatheter heart valves (THV) to treat degenerated bioprosthetic surgical heart valves (SHV), which are failing due to stenosis or regurgitation. Valve-in-valve (VIV) procedures in the aortic position have been performed with a variety of THV devices, although the balloon-expandable SAPIEN valve platform (Edwards Lifesciences Ltd, Irvine, CA, USA) and self-expandable CoreValve platform (Medtronic Inc., MN, USA) have been used in majority of the patients. VIV treatment is appealing as it is less invasive than conventional surgery but optimal patient selection is vital to avoid complications such as malposition, residual high gradients and coronary obstruction. To minimize the risk of complications, thorough procedural planning is critical. The first step is identification of the degenerated SHV, including its model, size, fluoroscopic appearance. Although label size and stent internal diameter (ID) are provided by the manufacturer, it is important to note the true ID. The true ID is the ID of a SHV after the leaflets are mounted and helps determine the optimal size of THV. The second step is to determine the type and size of the THV. Although this is determined in the majority of the cases by user preference, in certain situations one THV may be more suitable than another. As the procedure is performed under fluoroscopy, the third step is to become familiarized with the fluoroscopic appearance of both the SHV and THV. This helps to determine the landmarks for optimal positioning, which in turn determines the gradients and fixation. The fourth step is to assess the risk of coronary obstruction. This is performed with either aortic root angiography or ECG-gated computerised tomography (CT). Finally, the route of approach must be carefully planned. Once these

  3. Valve stem and packing assembly

    DOEpatents

    Wordin, John J.

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  4. Valve stem and packing assembly

    DOEpatents

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  5. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  6. Leaving Moderate Tricuspid Valve Regurgitation Alone at the Time of Pulmonary Valve Replacement: A Worthwhile Approach.

    PubMed

    Kogon, Brian; Mori, Makoto; Alsoufi, Bahaaldin; Kanter, Kirk; Oster, Matt

    2015-06-01

    Pulmonary valve disruption in patients with tetralogy of Fallot and congenital pulmonary stenosis often results in pulmonary insufficiency, right ventricular dilation, and tricuspid valve regurgitation. Management of functional tricuspid regurgitation at the time of subsequent pulmonary valve replacement remains controversial. Our aims were to (1) analyze tricuspid valve function after pulmonary valve replacement through midterm follow-up and (2) determine the benefits, if any, of concomitant tricuspid annuloplasty. Thirty-five patients with tetralogy of Fallot or congenital pulmonary stenosis were analyzed. All patients had been palliated in childhood by disrupting the pulmonary valve, and all patients had at least moderate tricuspid valve regurgitation at the time of subsequent pulmonary valve replacement. Preoperative and serial postoperative echocardiograms were analyzed. Pulmonary and tricuspid regurgitation, along with right ventricular dilation and dysfunction were scored as 0 (none), 1 (mild), 2 (moderate), and 3 (severe). Right ventricular volume and area were also calculated. Comparisons were made between patients who underwent pulmonary valve replacement alone and those who underwent concomitant tricuspid valve annuloplasty. At 1 month after pulmonary valve replacement, there were significant reductions in pulmonary valve regurgitation (mean 3 vs 0.39, p < 0.0001), tricuspid valve regurgitation (mean 2.33 vs 1.3, p < 0.0001), and in right ventricular dilation, volume, and area. There was no difference in the degree of tricuspid regurgitation 1 month postoperatively between patients who underwent concomitant tricuspid annuloplasty and those who underwent pulmonary valve replacement alone (mean 1.31 vs 1.29, p = 0.81). However, at latest follow-up (mean 7.0 ± 2.8 years), the degree of tricuspid regurgitation was significantly higher in the concomitant annuloplasty group (mean 1.87 vs 1.12, p = 0.005). In patients with at least moderate tricuspid valve

  7. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  8. Refuge alternatives relief valve testing and design with updated test stand.

    PubMed

    Lutz, T J; Bissert, P T; Homce, G T; Yonkey, J A

    2018-03-01

    Underground refuge alternatives require an air source to supply breathable air to the occupants. This requires pressure relief valves to prevent unsafe pressures from building up within the refuge alternative. The U.S. Mine Safety and Health Administration (MSHA) mandates that pressure relief valves prevent pressure from exceeding 1.25 kPa (0.18 psi), or as specified by the manufacturer, above mine atmospheric pressure when a fan or compressor is used for the air supply. The U.S. National Institute for Occupational Safety and Health (NIOSH) tested a variety of pressure relief valves using an instrumented test fixture consisting of data acquisition equipment, a centrifugal blower, ductwork and various sensors to determine if the subject pressure relief valves meet the MSHA requirement. Relief pressures and flow characteristics, including opening pressure and flow rate, were measured for five different pressure relief valves under a variety of conditions. The subject pressure relief valves included two off-the-shelf modified check valves, two check valves used in MSHA-approved built-in-place refuge alternatives, and a commercially available valve that was designed for a steel refuge alternative and is currently being used in some built-in-place refuge alternatives. The test results showed relief pressures ranging from 0.20 to 1.53 kPa (0.03 to 0.22 psi) and flow rates up to 19.3 m 3 /min (683 scfm). As tested, some of the pressure relief valves did not meet the 1.25 kPa (0.18 psi) relief specification.

  9. Refuge alternatives relief valve testing and design with updated test stand

    PubMed Central

    Lutz, T.J.; Bissert, P.T.; Homce, G.T.; Yonkey, J.A.

    2018-01-01

    Underground refuge alternatives require an air source to supply breathable air to the occupants. This requires pressure relief valves to prevent unsafe pressures from building up within the refuge alternative. The U.S. Mine Safety and Health Administration (MSHA) mandates that pressure relief valves prevent pressure from exceeding 1.25 kPa (0.18 psi), or as specified by the manufacturer, above mine atmospheric pressure when a fan or compressor is used for the air supply. The U.S. National Institute for Occupational Safety and Health (NIOSH) tested a variety of pressure relief valves using an instrumented test fixture consisting of data acquisition equipment, a centrifugal blower, ductwork and various sensors to determine if the subject pressure relief valves meet the MSHA requirement. Relief pressures and flow characteristics, including opening pressure and flow rate, were measured for five different pressure relief valves under a variety of conditions. The subject pressure relief valves included two off-the-shelf modified check valves, two check valves used in MSHA-approved built-in-place refuge alternatives, and a commercially available valve that was designed for a steel refuge alternative and is currently being used in some built-in-place refuge alternatives. The test results showed relief pressures ranging from 0.20 to 1.53 kPa (0.03 to 0.22 psi) and flow rates up to 19.3 m3/min (683 scfm). As tested, some of the pressure relief valves did not meet the 1.25 kPa (0.18 psi) relief specification. PMID:29563650

  10. Slide valve apparatus for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B.A.; McMahan, T.O.

    This patent describes an internal combustion engine including a combustion cylinder having an opening at one end thereof, a piston mounted within the cylinder for coaxial reciprocable movement, a driven crankshaft, and a connecting rod connecting the crankshaft to the cylinder for linear reciprocable movement of the piston in response to the rotary movement of the crankshaft, a valve apparatus comprising: (a) a valve chamber extending longitudinally across and in fluid communication with the opening in the cylinder, (b) an intake valve plate having a longitudinal axis mounted within the valve chamber for slidable, reciprocable, longitudinal movement, (c) an exhaustmore » valve plate having a longitudinal axis mounted within the valve chamber alongside the intake valve plate for slidable, reciprocable, longitudinal movement and parallel to the longitudinal axis of the intake valve plate, (d) each of the valve plates having a plurality of longitudinally spaced valve ports therein, the valve ports comprising movable intake valve ports in the intake valve plate and movable exhaust valve ports in the exhaust valve plate, (e) the valve chamber comprising a planar wall on the opposite side of the valve plates from the cylinder opening and having a plurality of fixed valve ports therethrough. The fixed valve ports being equal in number and substantially equal in size and spacing as the movable intake and exhaust valve ports, whereby the movable intake valve ports are adapted to register with their corresponding fixed valve ports when the intake valve plate is in its intake operative position for opening fluid communication between the cylinder and the corresponding fixed valve ports.« less

  11. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.

    PubMed

    Duan, B; Kapetanovic, E; Hockaday, L A; Butcher, J T

    2014-05-01

    Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Effects of bileaflet mechanical heart valve orientation on coronary flow

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2015-11-01

    The aortic sinus is approximately tri-radially symmetric, but bileaflet mechanical heart valves (BMHVs), which are commonly used to replace diseased aortic valves, are bilaterally symmetric. This mismatch in symmetry suggests that the orientation in which a BMHV is implanted within the aortic sinus affects the flow characteristics downstream of it. This study examines the effect of BMHV orientation on the flow in the coronary arteries, which originate in the aortic sinus and supply the heart tissue with blood. Planar particle image velocimetry measurements were made past a BMHV mounted at the inlet of an anatomical aorta model under physiological flow conditions. The complex interactions between the valve jets, the sinus vortex and the flow in the right coronary artery were elucidated for three valve orientations. The coronary flow rate was directly affected by the size, orientation, and time evolution of the vortex in the sinus, all of which were sensitive to the valve's orientation. The total flow through the artery was highest when the valve was oriented with its axis of symmetry intersecting the artery's opening. The findings of this research may assist surgeons in choosing the best orientation for BMHV implantation. The bileaflet valve was donated by St. Jude Medical. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.

  13. Lock For Valve Stem

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Guirguis, Kamal S.

    1991-01-01

    Simple, cheap device locks valve stem so its setting cannot be changed by unauthorized people. Device covers valve stem; cover locked in place with standard padlock. Valve lock made of PVC pipe and packing band. Shears, drill or punch, and forming rod only tools needed.

  14. Patient-specific simulation of guidewire deformation during transcatheter aortic valve implantation.

    PubMed

    Vy, Phuoc; Auffret, Vincent; Castro, Miguel; Badel, Pierre; Rochette, Michel; Haigron, Pascal; Avril, Stéphane

    2018-06-01

    Transcatheter aortic valve implantation is a recent mini-invasive procedure to implant an aortic valve prosthesis. Prosthesis positioning in transcatheter aortic valve implantation appears as an important aspect for the success of the intervention. Accordingly, we developed a patient-specific finite element framework to predict the insertion of the stiff guidewire, used to position the aortic valve. We simulated the guidewire insertion for 2 patients based on their pre-operative CT scans. The model was designed to primarily predict the position and the angle of the guidewires in the aortic valve, and the results were successfully compared with intraoperative images. The present paper describes extensively the numerical model, which was solved by using the ANSYS software with an implicit resolution scheme, as well as the stabilization techniques which were used to overcome numerical instabilities. We performed sensitivity analysis on the properties of the guidewire (curvature angle, curvature radius, and stiffness) and the conditions of insertion (insertion force and orientation). We also explored the influence of the model parameters. The accuracy of the model was quantitatively evaluated as the distance and the angle difference between the simulated guidewires and the intraoperative ones. A good agreement was obtained between the model predictions and intraoperative views available for 2 patient cases. In conclusion, we showed that the shape of the guidewire in the aortic valve was mainly determined by the geometry of the patient's aorta and by the conditions of insertion (insertion force and orientation). Copyright © 2018 John Wiley & Sons, Ltd.

  15. Wavelet Packet Entropy for Heart Murmurs Classification

    PubMed Central

    Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Ranga, Sri

    2012-01-01

    Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification. PMID:23227043

  16. Design and development of a large diameter high pressure fast acting propulsion valve and valve actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  17. Design and Development of a Large Diameter, High Pressure, Fast Acting Propulsion Valve and Valve Actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  18. Ceramic valve development for heavy-duty low heat rejection diesel engines

    NASA Technical Reports Server (NTRS)

    Weber, K. E.; Micu, C. J.

    1989-01-01

    Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.

  19. Björk-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures.

    PubMed

    van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M

    2004-03-01

    To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004

  20. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  1. Pregnancy-induced remodeling of heart valves.

    PubMed

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-11-01

    Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves. Copyright © 2015 the American Physiological Society.

  2. Self-compensating solenoid valve

    NASA Technical Reports Server (NTRS)

    Woeller, Fritz H. (Inventor); Matsumoto, Yutaka (Inventor)

    1987-01-01

    A solenoid valve is described in which both an inlet and an outlet of the valve are sealed when the valve is closed. This double seal compensates for leakage at either the inlet or the outlet by making the other seal more effective in response to the leakage and allows the reversal of the flow direction by simply switching the inlet and outlet connections. The solenoid valve has a valve chamber within the valve body. Inlet and outlet tubes extend through a plate into the chamber. A movable core in the chamber extends into the solenoid coil. The distal end of the core has a silicone rubber plug. Other than when the solenoid is energized, the compressed spring biases the core downward so that the surface of the plug is in sealing engagement with the ends of the tubes. A leak at either end increases the pressure in the chamber, resulting in increased sealing force of the plug.

  3. Concomitant Transapical Transcatheter Valve Implantations: Edwards Sapien Valve for Severe Mitral Regurgitation in a Patient with Failing Mitral Bioprostheses and JenaValve for the Treatment of Pure Aortic Regurgitation.

    PubMed

    Aydin, Unal; Gul, Mehmet; Aslan, Serkan; Akkaya, Emre; Yildirim, Aydin

    2015-04-28

    Transcatheter valve implantation is a novel interventional technique, which was developed as an  alternative therapy for surgical aortic valve replacement in inoperable patients with severe aortic stenosis. Despite limited experience in using transcatheter valve implantation for mitral and aortic regurgitation, transapical transcatheter aortic valve implantation and valve-in-valve implantation for degenerated mitral valve bioprosthesis can be performed in high-risk patients who are not candidates for conventional replacement surgery. In this case, we present the simultaneous transcatheter valve implantation via transapical approach for both degenerated bioprosthetic mitral valve with severe regurgitation and pure severe aortic regurgitation.

  4. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement.

    PubMed

    Khalique, Omar K; Hahn, Rebecca T; Gada, Hemal; Nazif, Tamim M; Vahl, Torsten P; George, Isaac; Kalesan, Bindu; Forster, Molly; Williams, Mathew B; Leon, Martin B; Einstein, Andrew J; Pulerwitz, Todd C; Pearson, Gregory D N; Kodali, Susheel K

    2014-08-01

    This study sought to determine the impact of quantity and location of aortic valve calcification (AVC) on paravalvular regurgitation (PVR) and rates of post-dilation (PD) immediately after transcatheter aortic valve replacement (TAVR). The impact of AVC in different locations within the aortic valve complex is incompletely understood. This study analyzed 150 patients with severe, symptomatic aortic stenosis who underwent TAVR. Total AVC volume scores were calculated from contrast-enhanced multidetector row computed tomography imaging. AVC was divided by leaflet sector and region (Leaflet, Annulus, left ventricular outflow tract [LVOT]), and a combination of LVOT and Annulus (AnnulusLVOT). Asymmetry was assessed. Receiver-operating characteristic analysis was performed with greater than or equal to mild PVR and PD as classification variables. Logistic regression was performed. Quantity of and asymmetry of AVC for all regions of the aortic valve complex predicted greater than or equal to mild PVR by receiver-operating characteristic analysis (area under the curve = 0.635 to 0.689), except Leaflet asymmetry. Receiver-operating characteristic analysis for PD was significant for quantity and asymmetry of AVC in all regions, with higher area under the curve values than for PVR (area under the curve = 0.648 to 0.741). On multivariable analysis, Leaflet and AnnulusLVOT calcification were independent predictors of both PVR and PD regardless of multidetector row computed tomography area cover index. Quantity and asymmetry of AVC in all regions of the aortic valve complex predict greater than or equal to mild PVR and performance of PD, with the exception of Leaflet asymmetry. Quantity of AnnulusLVOT and Leaflet calcification independently predict PVR and PD when taking into account multidetector row computed tomography area cover index. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Bidirectional piston valve

    DOEpatents

    Fischer, Harry C.

    1977-01-01

    This invention is a reversing valve having an inlet, an outlet, and an inlet-outlet port. The valve is designed to respond to the introduction of relatively high-pressure fluid at its inlet or, alternatively, of lower-pressure fluid at its inlet-outlet port. The valve includes an axially slidable assembly which is spring-biased to a position where it isolates the inlet and connects the inlet-outlet port to the outlet. The admission of high-pressure fluid to the inlet displaces the slidable assembly to a position where the outlet is isolated and the inlet is connected to the inlet-outlet port. The valve is designed to minimize pressure drops and leakage. It is of a reliable and comparatively simple design.

  6. Subject-Adaptive Real-Time Sleep Stage Classification Based on Conditional Random Field

    PubMed Central

    Luo, Gang; Min, Wanli

    2007-01-01

    Sleep staging is the pattern recognition task of classifying sleep recordings into sleep stages. This task is one of the most important steps in sleep analysis. It is crucial for the diagnosis and treatment of various sleep disorders, and also relates closely to brain-machine interfaces. We report an automatic, online sleep stager using electroencephalogram (EEG) signal based on a recently-developed statistical pattern recognition method, conditional random field, and novel potential functions that have explicit physical meanings. Using sleep recordings from human subjects, we show that the average classification accuracy of our sleep stager almost approaches the theoretical limit and is about 8% higher than that of existing systems. Moreover, for a new subject snew with limited training data Dnew, we perform subject adaptation to improve classification accuracy. Our idea is to use the knowledge learned from old subjects to obtain from Dnew a regulated estimate of CRF’s parameters. Using sleep recordings from human subjects, we show that even without any Dnew, our sleep stager can achieve an average classification accuracy of 70% on snew. This accuracy increases with the size of Dnew and eventually becomes close to the theoretical limit. PMID:18693884

  7. Anterior urethral valve associated with posterior urethral valves.

    PubMed

    Kajbafzadeh, A M; Jangouk, P; Ahmadi Yazdi, C

    2005-12-01

    The association of anterior urethral valve (AUV) with posterior urethral valve (PUV) is rare. A 7-month-old infant was presented at a district hospital with episodes of acute pyelonephritis. He was treated medically and a voiding cystourethrogram (VCUG) confirmed bilateral vesico-urethral reflux. The presence of concomitant AUV and PUV was not recognized. He underwent several surgical procedures, which failed. He had reflux recurrence following two antireflux procedures. He had urinary retention after each operation, which was managed by vesicostomy and perineal urethrostomy. At the age of 3.5 years, he was referred to our paediatric urology clinic. Noticing the AUV and PUV in the past VCUG, the valves were fulgurated. Urodynamic study before and 3 months after valve ablation showed a high voiding pressure. VCUG 6 months following ablation showed no reflux, but several uroflowmetric studies showed a staccato and interrupted pattern. Empirical treatment with an alpha-blocker was started. One year after treatment, a repeat VCUG showed no reflux. Uroflowmetry and urodynamic studies returned to normal. The perineal urethrostomy was closed. The child was asymptomatic after 9 months of follow up.

  8. Antiphospholipid antibody-associated non-infective mitral valve endocarditis successfully treated with medical therapy.

    PubMed

    Contractor, Tahmeed; Bell, Adrian; Khasnis, Atul; Silverberg, Bruce J; Martinez, Matthew W

    2013-01-01

    Non-bacterial endocarditis lesions associated with antiphospholipid antibodies (aPLs) in the absence of other criteria for antiphospholipid syndrome or systemic lupus erythematosus is termed an aPL-associated cardiac valve disease. Evidence regarding the management of this condition is sparse. A rare case is described of a 20-year-old female who presented with an incidental finding of 'vegetations on a heart valve'. Echocardiography revealed mitral valve leaflet thickening and echodensities with moderate mitral regurgitation. She had an elevated partial thromboplastin time that did not correct with a mixing study, and elevated levels of antiocardiolipin antibodies. Hence, a diagnosis of aPL-associated cardiac valve disease was made, and the patient commenced on warfarin, hydroxychloroquine, and a short course of oral prednisone. At one year after diagnosis the patient remained symptom-free, and follow up echocardiography revealed resolution of the vegetations with minimal mitral regurgitation. Further evidence is needed to guide the therapy of this rare condition.

  9. Transcatheter aortic valve implantation in patients with bicuspid aortic valve stenosis.

    PubMed

    Wijesinghe, Namal; Ye, Jian; Rodés-Cabau, Josep; Cheung, Anson; Velianou, James L; Natarajan, Madhu K; Dumont, Eric; Nietlispach, Fabian; Gurvitch, Ronen; Wood, David A; Tay, Edgar; Webb, John G

    2010-11-01

    We evaluated transcatheter aortic valve implantation (TAVI) in high-risk patients with bicuspid aortic valve (BAV) stenosis. TAVI shows promise in the treatment of severe stenosis of triscupid aortic valves, especially in high-risk patients. However, BAV stenosis has been considered a contraindication to TAVI. Eleven patients (age 52 to 90 years) with symptomatic severe BAV stenosis underwent TAVI at 3 Canadian tertiary hospitals between May 2006 and April 2010. All patients were considered high risk for surgical aortic valve replacement. Edwards-SAPIEN transcatheter heart valves (Edwards Lifesciences, Inc., Irvine, California) were used. Transfemoral or transapical access was selected, depending on the adequacy of femoral access. Access was transfemoral in 7 patients and transapical in 4 patients. There were no intraprocedural complications. Significant symptomatic and hemodynamic improvement was observed in 10 of 11 patients. Baseline aortic valve area of 0.65 ± 0.17 cm(2) and mean transaortic pressure gradient of 41 ± 22.4 mm Hg were improved to 1.45 ± 0.3 cm(2) and 13.4 ± 5.7 mm Hg, respectively. Two patients had moderate perivalvular leaks. At the 30-day follow-up there were 2 deaths due to multisystem failure in 2 transapical patients. In 1 patient an undersized, suboptimally positioned, unstable valve required late conversion to open surgery. TAVI in selected high-risk patients with severe BAV stenosis can be successfully performed with acceptable clinical outcomes but will require further evaluation. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Systolic Anterior Motion of the Mitral Valve after Mitral Valve Repair

    PubMed Central

    Sternik, Leonid; Zehr, Kenton J.

    2005-01-01

    Factors predisposing patients to systolic anterior motion of the mitral valve (SAM) with left ventricular outflow tract (LVOT) obstruction after mitral valve repair are the presence of a myxomatous mitral valve with redundant leaflets, a nondilated hyperdynamic left ventricle, and a short distance between the mitral valve coaptation point and the ventricular septum after repair. From December 1999 through March 2000, we used our surgical method in 6 patients with severely myxomatous regurgitant mitral valves who were at risk of developing SAM. Leaflets were markedly redundant in all 6. Left ventricular function was hyperdynamic in 4 patients and normal in 2. Triangular or quadrangular resection of the midportion of the posterior leaflet and posterior band annuloplasty were performed. To prevent SAM and LVOT obstruction, extra, posteriorly directed, mid-posterior-leaflet secondary chordae tendineae, which would otherwise have been resected, were transferred to the underside of the middle of the mid-anterior leaflet with a small piece of associated valve as an anchoring pledget. This kept the redundant anterior leaflet edge, which extended below the coaptation point, away from the LVOT. No post-repair SAM or LVOT obstruction was observed on intraoperative or discharge echocardiography. All patients had no or trivial residual mitral regurgitation. We conclude that extra chordae tendineae, when available, can be used in mitral valve repair to tether the redundant anterior leaflet and thus prevent it from flipping into the LVOT. This will theoretically prevent SAM and LVOT obstruction in patients with risk factors for SAM. PMID:15902821

  11. Advances in percutaneous interventional therapies: the tricuspid valve.

    PubMed

    Jabbour, Richard J; Giannini, Francesco; Tanaka, Akihito; Mangieri, Antonio; Mikhail, Ghada W; Latib, Azeem; Colombo, Antonio

    2017-05-01

    Tricuspid regurgitation (TR) is a prevalent valve condition, with an estimated 1.6 million people in the USA living with moderate or greater severity. Functional TR, which predominantly develops due to left-sided heart disease, is the predominant condition affecting the tricuspid valve in the Western world and severe TR is associated with substantial morbidity and mortality. In part, due to a prolonged latency period with insidious symptoms, patients are often referred for surgery at advanced stages, with associated increased or prohibitive surgical risk. In addition, surgical treatment can result in high rates of recurrence. Therefore, there is an unmet need for percutaneous therapies that may provide a relatively low-risk treatment option. There are several devices with early human feasibility data available that will be reviewed in this article.

  12. Valve-sparing aortic root replacement in patients with Marfan syndrome enrolled in the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions.

    PubMed

    Song, Howard K; Preiss, Liliana R; Maslen, Cheryl L; Kroner, Barbara; Devereux, Richard B; Roman, Mary J; Holmes, Kathryn W; Tolunay, H Eser; Desvigne-Nickens, Patrice; Asch, Federico M; Milewski, Rita K; Bavaria, Joseph; LeMaire, Scott A

    2014-05-01

    The long-term outcomes of aortic valve-sparing (AVS) root replacement in Marfan syndrome (MFS) patients remain uncertain. The study aim was to determine the utilization and outcomes of AVS root replacement in MFS patients enrolled in the Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). At the time of this analysis, 788 patients with MFS were enrolled in the GenTAC Registry, of whom 288 had undergone aortic root replacement. Patients who had undergone AVS procedures were compared to those who had undergone aortic valve replacement (AVR). AVS root replacement was performed in 43.5% of MFS patients, and the frequency of AVS was increased over the past five years. AVS patients were younger at the time of surgery (31.0 versus 36.3 years, p = 0.006) and more likely to have had elective rather than emergency surgery compared to AVR patients, in whom aortic valve dysfunction and aortic dissection was the more likely primary indication for surgery. After a mean follow up of 6.2 +/- 3.6 years, none of the 87 AVS patients had required reoperation; in contrast, after a mean follow up of 10.5 +/- 7.6 years, 11.5% of AVR patients required aortic root reoperation. Aortic valve function has been durable, with 95.8% of AVS patients having aortic insufficiency that was graded as mild or less. AVS root replacement is performed commonly among the MFS population, and the durability of the aortic repair and aortic valve function have been excellent to date. These results justify a continued use of the procedure in an elective setting. The GenTAC Registry will be a useful resource to assess the long-term durability of AVS root replacement in the future.

  13. Fast closing valve

    DOEpatents

    Hanson, Clark L.

    1984-01-10

    A valve is provided for protecting the high vacuum of a particle accelera in the event of air leakage, wherein the valve provides an axially symmetrical passage to avoid disturbance of the partical beam during normal operation, and yet enables very rapid and tight closure of the beam-carrying pipe in the event of air leakage. The valve includes a ball member (30) which can rotate between a first position wherein a bore (32) in the member is aligned with the beam pipe, and a second position out of line with the pipe. A seal member (38) is flexibly sealed to the pipe, and has a seal end which can move tightly against the ball member after the bore has rotated out of line with the pipe, to thereby assure that the seal member does not retard rapid rotation of the ball valve member. The ball valve member can be rapidly rotated by a conductive arm (40) fixed to it and which is rotated by the discharge of a capacitor bank through coils (44, 45) located adjacent to the arm.

  14. In vitro evaluation of valve hemodynamics in the pediatric pulmonary outflow tract

    NASA Astrophysics Data System (ADS)

    Schiavone, Nicole; Elkins, Chris; McElhinney, Doff; Eaton, John; Marsden, Alison

    2016-11-01

    Tetraology of Fallot (ToF) is a congenital heart disease that affects 1 in every 2500 newborns each year and requires surgical repair of the right ventricular outflow tract (RVOT) and subsequent placement of an artificial pulmonary valve. While a wide variety of artificial valves are available, essentially all of them become subject to degradation and dysfunction during the patient's lifetime, which leads to additional interventions. However, there is little understanding about the mechanical function of replacement pulmonary valves and no quantitative placement guidelines to ensure maximum failure-free lifetime. This work aims to experimentally assess the biomechanics of pulmonary valves in realistic RVOT geometries using magnetic resonance velocimetry (MRV), which can measure 3D, three-component phase-averaged velocity fields. The RVOT geometries are constructed using 3D printing, allowing for variation in crucial geometric parameters such as the radius of curvature of the main pulmonary artery (MPA) and the dilation of the artery downstream of the valve. A St. Jude Medical Epic valve is secured inside the RVOT geometry and can be interchanged, allowing for variation of the ratio between valve diameter and MPA diameter. This work will discuss the use of MRV to capture the flow structure in the RVOT and evaluate pulmonary valve performance under different conditions.

  15. Downhole surge valve for earth boring apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.W.

    1990-05-29

    This patent describes a boring tool assembly having an underground percussion mole boring tool powered by a working fluid, the tool being driven through the earth by a rigid drill string pushed by a drilling frame, and a downhole valve assembly fixed between the downhole end of the drill string and the too, the improved downhole valve assembly. It comprises: a valve spool having an open first end, a closed second end and a peripheral sidewall, an axial bore extending partly through the valve spool from the open first end; a radial passage adjacent the closed second and of themore » valve spool, the radial passage extending radially from the valve spool axial bore through the valve spool peripheral sidewall; an axial groove in the peripheral sidewall of the valve spool; a valve body having a first end, a second end and a peripheral sidewall, an axial bore extending through the valve body, the valve spool extending through the valve body axial bore so that the second end of the valve body is adjacent the closed second end of the valve spool, the valve spool being axially moveable within the valve body axial bore; an axial slot; a free-floating key element; a valve housing; and seal means.« less

  16. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  17. Early Outcomes of Sutureless Aortic Valves.

    PubMed

    Hanedan, Muhammet Onur; Mataracı, İlker; Yürük, Mehmet Ali; Özer, Tanıl; Sayar, Ufuk; Arslan, Ali Kemal; Ziyrek, Uğur; Yücel, Murat

    2016-06-01

    In elderly high-risk surgical patients, sutureless aortic valve replacement (AVR) should be an alternative to standard AVR. The potential advantages of sutureless aortic prostheses include reducing cross-clamping and cardiopulmonary bypass (CPB) time and facilitating minimally invasive surgery and complex cardiac interventions, while maintaining satisfactory hemodynamic outcomes and low rates of paravalvular leakage. The current study reports our single-center experience regarding the early outcomes of sutureless aortic valve implantation. Between October 2012 and June 2015, 65 patients scheduled for surgical valve replacement with symptomatic aortic valve disease and New York Heart Association function of class II or higher were included to this study. Perceval S (Sorin Biomedica Cardio Srl, Sallugia, Italy) and Edwards Intuity (Edwards Lifesciences, Irvine, CA, USA) valves were used. The mean age of the patients was 71.15±8.60 years. Forty-four patients (67.7%) were female. The average preoperative left ventricular ejection fraction was 56.9±9.93. The CPB time was 96.51±41.27 minutes and the cross-clamping time was 60.85±27.08 minutes. The intubation time was 8.95±4.19 hours, and the intensive care unit and hospital stays were 2.89±1.42 days and 7.86±1.42 days, respectively. The mean quantity of drainage from chest tubes was 407.69±149.28 mL. The hospital mortality rate was 3.1%. A total of five patients (7.69%) died during follow-up. The mean follow-up time was 687.24±24.76 days. The one-year survival rate was over 90%. In the last few years, several models of valvular sutureless bioprostheses have been developed. The present study evaluating the single-center early outcomes of sutureless aortic valve implantation presents the results of an innovative surgical technique, finding that it resulted in appropriate hemodynamic conditions with acceptable ischemic time.

  18. Early Outcomes of Sutureless Aortic Valves

    PubMed Central

    Hanedan, Muhammet Onur; Mataracı, İlker; Yürük, Mehmet Ali; Özer, Tanıl; Sayar, Ufuk; Arslan, Ali Kemal; Ziyrek, Uğur; Yücel, Murat

    2016-01-01

    Background In elderly high-risk surgical patients, sutureless aortic valve replacement (AVR) should be an alternative to standard AVR. The potential advantages of sutureless aortic prostheses include reducing cross-clamping and cardiopulmonary bypass (CPB) time and facilitating minimally invasive surgery and complex cardiac interventions, while maintaining satisfactory hemodynamic outcomes and low rates of paravalvular leakage. The current study reports our single-center experience regarding the early outcomes of sutureless aortic valve implantation. Methods Between October 2012 and June 2015, 65 patients scheduled for surgical valve replacement with symptomatic aortic valve disease and New York Heart Association function of class II or higher were included to this study. Perceval S (Sorin Biomedica Cardio Srl, Sallugia, Italy) and Edwards Intuity (Edwards Lifesciences, Irvine, CA, USA) valves were used. Results The mean age of the patients was 71.15±8.60 years. Forty-four patients (67.7%) were female. The average preoperative left ventricular ejection fraction was 56.9±9.93. The CPB time was 96.51±41.27 minutes and the cross-clamping time was 60.85±27.08 minutes. The intubation time was 8.95±4.19 hours, and the intensive care unit and hospital stays were 2.89±1.42 days and 7.86±1.42 days, respectively. The mean quantity of drainage from chest tubes was 407.69±149.28 mL. The hospital mortality rate was 3.1%. A total of five patients (7.69%) died during follow-up. The mean follow-up time was 687.24±24.76 days. The one-year survival rate was over 90%. Conclusion In the last few years, several models of valvular sutureless bioprostheses have been developed. The present study evaluating the single-center early outcomes of sutureless aortic valve implantation presents the results of an innovative surgical technique, finding that it resulted in appropriate hemodynamic conditions with acceptable ischemic time. PMID:27298793

  19. Validation of the Valve Academic Research Consortium Bleeding Definition in Patients With Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation.

    PubMed

    Stortecky, Stefan; Stefanini, Giulio G; Pilgrim, Thomas; Heg, Dik; Praz, Fabien; Luterbacher, Fabienne; Piccolo, Raffaele; Khattab, Ahmed A; Räber, Lorenz; Langhammer, Bettina; Huber, Christoph; Meier, Bernhard; Jüni, Peter; Wenaweser, Peter; Windecker, Stephan

    2015-09-25

    The Valve Academic Research Consortium (VARC) has proposed a standardized definition of bleeding in patients undergoing transcatheter aortic valve interventions (TAVI). The VARC bleeding definition has not been validated or compared to other established bleeding definitions so far. Thus, we aimed to investigate the impact of bleeding and compare the predictivity of VARC bleeding events with established bleeding definitions. Between August 2007 and April 2012, 489 consecutive patients with severe aortic stenosis were included into the Bern-TAVI-Registry. Every bleeding complication was adjudicated according to the definitions of VARC, BARC, TIMI, and GUSTO. Periprocedural blood loss was added to the definition of VARC, providing a modified VARC definition. A total of 152 bleeding events were observed during the index hospitalization. Bleeding severity according to VARC was associated with a gradual increase in mortality, which was comparable to the BARC, TIMI, GUSTO, and the modified VARC classifications. The predictive precision of a multivariable model for mortality at 30 days was significantly improved by adding the most serious bleeding of VARC (area under the curve [AUC], 0.773; 95% confidence interval [CI], 0.706 to 0.839), BARC (AUC, 0.776; 95% CI, 0.694 to 0.857), TIMI (AUC, 0.768; 95% CI, 0.692 to 0.844), and GUSTO (AUC, 0.791; 95% CI, 0.714 to 0.869), with the modified VARC definition resulting in the best predictivity (AUC, 0.814; 95% CI, 0.759 to 0.870). The VARC bleeding definition offers a severity stratification that is associated with a gradual increase in mortality and prognostic information comparable to established bleeding definitions. Adding the information of periprocedural blood loss to VARC may increase the sensitivity and the predictive power of this classification. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Update of transcatheter valve treatment

    PubMed Central

    Liu, Xian-bao; Wang, Jian-an

    2013-01-01

    Transcatheter valve implantation or repair has been a very promising approach for the treatment of valvular heart diseases since transcatheter aortic valve implantation (TAVI) was successfully performed in 2002. Great achievements have been made in this field (especially TAVI and transcatheter mitral valve repair—MitraClip system) in recent years. Evidence from clinical trials or registry studies has proved that transcatheter valve treatment for valvular heart diseases is safe and effective in surgical high-risk or inoperable patients. As the evidence accumulates, transcatheter valve treatment might be an alterative surgery for younger patients with surgically low or intermediate risk valvular heart diseases in the near future. In this paper, the updates on transcatheter valve treatment are reviewed. PMID:23897785

  1. Pressure control valve. [inflating flexible bladders

    NASA Technical Reports Server (NTRS)

    Lambson, K. H. (Inventor)

    1980-01-01

    A control valve is provided which is adapted to be connected between a pressure source, such as a vacuum pump, and a pressure vessel so as to control the pressure in the vessel. The valve comprises a housing having a longitudinal bore which is connected between the pump and vessel, and a transversely movable valve body which controls the air flow through an air inlet in the housing. The valve body includes cylindrical and conical shaped portions which cooperate with reciprocally shaped portions of the housing to provide flow control. A filter in the air inlet removes foreign matter from the air. The bottom end of the valve body is screwed into the valve housing control knob formed integrally with the valve body and controls translation of the valve body, and the opening and closing of the valve.

  2. The German Aortic Valve Registry (GARY): a nationwide registry for patients undergoing invasive therapy for severe aortic valve stenosis.

    PubMed

    Beckmann, A; Hamm, C; Figulla, H R; Cremer, J; Kuck, K H; Lange, R; Zahn, R; Sack, S; Schuler, G C; Walther, T; Beyersdorf, F; Böhm, M; Heusch, G; Funkat, A K; Meinertz, T; Neumann, T; Papoutsis, K; Schneider, S; Welz, A; Mohr, F W

    2012-07-01

    aortic valve procedures in Germany joined the registry. By now, 91 sites which perform TAVI in Germany participate and more than 15,000 datasets are already in the registry.Conclusion The implementation of new or innovative medical therapies needs supervision under the conditions of a well-structured scientific project. Up to now relevant data for implementation of TAVI and long-term results are missing. In contrast to randomized controlled trials, GARY is a prospective, controlled, 5-year observational multicenter registry, and a real world investigation with only one exclusion criterion, the absence of patients' written consent. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. "Bail out" procedures for malpositioning of aortic valve prosthesis (CoreValve).

    PubMed

    Vavouranakis, Manolis; Vrachatis, Dimitrios A; Toutouzas, Konstantinos P; Chrysohoou, Christina; Stefanadis, Christodoulos

    2010-11-05

    Two techniques for correcting malpositioning occurring during percutaneous aortic valve replacement (PAVR) with the CoreValve ReValving™ System are described in this article. The "Removing and Reinserting Technique" was used in 2 patients, in whom the prosthesis was positioned too high. The "Snare Technique" was used in 1 patient, in whom the prosthesis was implanted too low. In all patients the aortic valve prosthesis was successfully re-implanted. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  5. Mitral Valve Prolapse

    MedlinePlus

    ... valve syndrome . What happens during MVP? Watch an animation of mitral valve prolapse When the heart pumps ( ... our brochures Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  6. Heart valve surgery

    MedlinePlus

    ... with an artificial valve (this is called the Ross Procedure). This procedure may be useful for people ... valve that does not close all the way will allow blood to leak backwards. This is called ...

  7. Intraluminal valves: development, function and disease

    PubMed Central

    Geng, Xin; Cha, Boksik; Mahamud, Md. Riaj

    2017-01-01

    ABSTRACT The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities. PMID:29125824

  8. Variable Valve Actuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation ismore » a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  9. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  10. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  11. PAIR Comparison between Two Within-Group Conditions of Resting-State fMRI Improves Classification Accuracy

    PubMed Central

    Zhou, Zhen; Wang, Jian-Bao; Zang, Yu-Feng; Pan, Gang

    2018-01-01

    Classification approaches have been increasingly applied to differentiate patients and normal controls using resting-state functional magnetic resonance imaging data (RS-fMRI). Although most previous classification studies have reported promising accuracy within individual datasets, achieving high levels of accuracy with multiple datasets remains challenging for two main reasons: high dimensionality, and high variability across subjects. We used two independent RS-fMRI datasets (n = 31, 46, respectively) both with eyes closed (EC) and eyes open (EO) conditions. For each dataset, we first reduced the number of features to a small number of brain regions with paired t-tests, using the amplitude of low frequency fluctuation (ALFF) as a metric. Second, we employed a new method for feature extraction, named the PAIR method, examining EC and EO as paired conditions rather than independent conditions. Specifically, for each dataset, we obtained EC minus EO (EC—EO) maps of ALFF from half of subjects (n = 15 for dataset-1, n = 23 for dataset-2) and obtained EO—EC maps from the other half (n = 16 for dataset-1, n = 23 for dataset-2). A support vector machine (SVM) method was used for classification of EC RS-fMRI mapping and EO mapping. The mean classification accuracy of the PAIR method was 91.40% for dataset-1, and 92.75% for dataset-2 in the conventional frequency band of 0.01–0.08 Hz. For cross-dataset validation, we applied the classifier from dataset-1 directly to dataset-2, and vice versa. The mean accuracy of cross-dataset validation was 94.93% for dataset-1 to dataset-2 and 90.32% for dataset-2 to dataset-1 in the 0.01–0.08 Hz range. For the UNPAIR method, classification accuracy was substantially lower (mean 69.89% for dataset-1 and 82.97% for dataset-2), and was much lower for cross-dataset validation (64.69% for dataset-1 to dataset-2 and 64.98% for dataset-2 to dataset-1) in the 0.01–0.08 Hz range. In conclusion, for within-group design studies (e

  12. All metal valve structure for gas systems

    DOEpatents

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  13. All-metal valve structure for gas systems

    DOEpatents

    Baker, R.W.; Pawlak, D.A.; Ramey, A.J.

    1982-06-10

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  14. Microblower assisted barometric valve

    DOEpatents

    Rossabi, Joseph; Hyde, Warren K.; Riha, Brian D.; Jackson, Dennis G.; Sappington, Frank

    2005-12-06

    A gas exchange apparatus is provided which provides for both passive fluid flow and blower associated fluid flow through a barometric valve. A battery powered blower is provided which allows for operation of the barometric valve during times when the barometric valve would otherwise be closed, and provides for enhanced volume of gas exchange.

  15. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  16. Spool-Valve Pressure-Difference Regulator

    NASA Technical Reports Server (NTRS)

    Grasso, A. P.

    1983-01-01

    Valves maintain preset pressure difference between gas flows. Two spool valves connected by shaft move back and forth in response to changes in pressure in oxygen and hydrogen chambers. Spool-valve assembly acts to restore pressures to preset difference. By eliminating diaphragms, pressure exerted directly on external end of spool valve; however, forces and therefore sensitivity of assembly are reduced.

  17. Azygos vein aneurysm resection concomitant with heart valve repair via right thoracotomy.

    PubMed

    Suzuki, Yota; Kaji, Masahiro; Hirose, Shigemichi; Ohtsubo, Satoshi

    2016-12-01

    Azygos vein aneurysm is very rare and is usually found incidentally because of its clinical silence. We report a case of recurrent pleural effusion caused by an azygos vein aneurysm in a patient with moderate mitral valve regurgitation (MR) and tricuspid valve regurgitation (TR). Since valve disease is considered a significant precipitating factor for both dyspnoea and pleural effusion, we decided to study the aetiologies of these conditions concomitantly. Azygos vein aneurysm resection in combination with tricuspid and mitral valve repair using cardiopulmonary bypass was performed successfully through a right anterior thoracotomy. The postoperative course was uneventful, and the patient reported improved exercise capacity. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. Valve-in-valve using an Edwards Sapien XT into a JenaValve in a patient with a low originating left coronary artery and a heavily calcified aorta.

    PubMed

    Fujita, Buntaro; Scholtz, Smita; Ensminger, Stephan

    2016-04-01

    Coronary obstruction during transcatheter aortic valve implantation is a potentially life-threatening complication. Most of the widely used transcatheter heart valves require a certain distance between the basal aortic annular plane and the origins of the coronary arteries. We report the case of a successful valve-in-valve procedure with an Edwards SAPIEN XT valve into a JenaValve as a bail-out procedure in a patient with a low originating left coronary artery and a heavily calcified aorta. © 2015 Wiley Periodicals, Inc.

  19. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.

    PubMed

    He, Z; Xi, B; Zhu, K; Hwang, N H

    2001-09-01

    The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.

  20. Flail tricuspid valve secondary to blunt chest trauma

    PubMed Central

    Srinivas, Sunil Kumar; Patil, Shivanand; Ramalingam, Rangaraj; Bhairappa, Shivakumar

    2012-01-01

    A 78-year-old man admitted with complaints of breathlessness of 1 year and typical chest pain of 2 months duration. He had a blunt chest trauma 7 years back. Transthoracic echocardiography revealed severe tricuspid regurgitation due to a flail anterior leaflet of the tricuspid valve. It also revealed global left ventricular dysfunction. Flail tricuspid valve causing severe regurgitation is usually due to mechanical trauma. Since it is well tolerated for years, the diagnosis may be delayed or missed entirely. Echocardiography has allowed easier diagnosis of this condition resulting in earlier and, hence, more effective treatment. PMID:22922931

  1. Analysis of pressure losses in the diffuser of a control valve

    NASA Astrophysics Data System (ADS)

    Turecký, Petr; Mrózek, Lukáš; Tajč, Ladislav; Kolovratník, Michal

    The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.

  2. Application of several variable-valve-timing concepts to an LHR engine

    NASA Technical Reports Server (NTRS)

    Morel, T.; Keribar, R.; Sawlivala, M.; Hakim, N.

    1987-01-01

    The paper discusses advantages provided by electronically controlled hydraulically activated valves (ECVs) when applied to low heat rejection (LHR) engines. The ECV concept provides additional engine control flexibility by allowing for a variable valve timing as a function of speed and load, or for a given transient condition. The results of a study carried out to assess the benefits that this flexibility can offer to an LHR engine indicated that, when judged on the benefits to BSFC, volumetric efficiency, and peak firing pressure, ECVs would provide only modest benefits in comparison to conventional valve profiles. It is noted, however, that once installed on the engine, the ECVs would permit a whole range of certain more sophisticated variable valve timing strategies not otherwise possible, such as high compression cranking, engine braking, cylinder cutouts, and volumetric efficiency timing with engine speed.

  3. Bioprinting a cardiac valve.

    PubMed

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis.

    PubMed

    MacGrogan, Donal; D'Amato, Gaetano; Travisano, Stanislao; Martinez-Poveda, Beatriz; Luxán, Guillermo; Del Monte-Nieto, Gonzalo; Papoutsi, Tania; Sbroggio, Mauro; Bou, Vanesa; Gomez-Del Arco, Pablo; Gómez, Manuel Jose; Zhou, Bin; Redondo, Juan Miguel; Jiménez-Borreguero, Luis J; de la Pompa, José Luis

    2016-05-13

    The Notch signaling pathway is crucial for primitive cardiac valve formation by epithelial-mesenchymal transition, and NOTCH1 mutations cause bicuspid aortic valve; however, the temporal requirement for the various Notch ligands and receptors during valve ontogeny is poorly understood. The aim of this study is to determine the functional specificity of Notch in valve development. Using cardiac-specific conditional targeted mutant mice, we find that endothelial/endocardial deletion of Mib1-Dll4-Notch1 signaling, possibly favored by Manic-Fringe, is specifically required for cardiac epithelial-mesenchymal transition. Mice lacking endocardial Jag1, Notch1, or RBPJ displayed enlarged valve cusps, bicuspid aortic valve, and septal defects, indicating that endocardial Jag1 to Notch1 signaling is required for post-epithelial-mesenchymal transition valvulogenesis. Valve dysmorphology was associated with increased mesenchyme proliferation, indicating that Jag1-Notch1 signaling restricts mesenchyme cell proliferation non-cell autonomously. Gene profiling revealed upregulated Bmp signaling in Jag1-mutant valves, providing a molecular basis for the hyperproliferative phenotype. Significantly, the negative regulator of mesenchyme proliferation, Hbegf, was markedly reduced in Jag1-mutant valves. Hbegf expression in embryonic endocardial cells could be readily activated through a RBPJ-binding site, identifying Hbegf as an endocardial Notch target. Accordingly, addition of soluble heparin-binding EGF-like growth factor to Jag1-mutant outflow tract explant cultures rescued the hyperproliferative phenotype. During cardiac valve formation, Dll4-Notch1 signaling leads to epithelial-mesenchymal transition and cushion formation. Jag1-Notch1 signaling subsequently restrains Bmp-mediated valve mesenchyme proliferation by sustaining Hbegf-EGF receptor signaling. Our studies identify a mechanism of signaling cross talk during valve morphogenesis involved in the origin of congenital heart

  5. Low energy high pressure miniature screw valve

    DOEpatents

    Fischer, Gary J [Sandia Park, NM; Spletzer, Barry L [Albuquerque, NM

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  6. Mitral valve surgery - minimally invasive

    MedlinePlus

    ... flow. Your valve has developed an infection (infectious endocarditis). You have severe mitral valve prolapse that is ... function. Damage to your heart valve from infection (endocarditis). A minimally invasive procedure has many benefits. There ...

  7. 49 CFR 195.116 - Valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PIPELINE Design Requirements § 195.116 Valves. Each valve installed in a pipeline system must comply with the following: (a) The valve must be of a sound engineering design. (b) Materials subject to the...

  8. Solenoid valve performance characteristics studied

    NASA Technical Reports Server (NTRS)

    Abe, J. T.; Blackburn, S.

    1970-01-01

    Current and voltage waveforms of a solenoid coil are recorded as the valve opens and closes. Analysis of the waveforms with respect to time and the phase of the valve cycle accurately describes valve performance.

  9. 100. INTERIOR OF SKID 9A: VENT VALVE AND RELIEF VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. INTERIOR OF SKID 9A: VENT VALVE AND RELIEF VALVE FOR RAPID-LOAD LIQUID OXYGEN TANK - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. [Status of aortic valve reconstruction and Ross operation in aortic valve diseases].

    PubMed

    Sievers, Hans H

    2002-08-01

    At first glance the aortic valve is a relative simple valve mechanism connecting the left ventricle and the ascending aorta. Detailed analysis of the different components of the aortic valve including the leaflets and sinuses revealed a complex motion of each part leading to a perfect durable valve mechanism at rest and during exercise. Theoretically, the reconstruction or imitation of these structures in patients with aortic valve disease should lead to optimal results. Prerequisite is the exact knowledge of the important functional characteristics of the aortic valve. The dynamic behavior of the aortic root closely harmonizing with the leaflets not only warrants stress minimizing and valve durability, but also optimizes coronary flow, left ventricular function and aortic impedance. The newly discovered contractile capacity of the leaflets and the root components are important for tuning the dynamics. Isolated reconstruction of the aortic valve such as decalcification, commissurotomy, plication of ring or leaflets of a tricuspid aortic valve and cusp extension are seldom indicated in contrast to the reconstruction of the bicuspid insufficient valve. Proper indication and skilled techniques lead to excellent hemodynamic and clinical intermediate-term result up to 7 years after reconstruction. Latest follow-up revealed a mean aortic insufficiency of 0.7, maximal pressure gradient of 11.4 +/- 8.5 mm Hg with zero hospital or late mortality, reoperation or thromboembolic events in 22 patients. The reconstructive techniques for aortic root aneurysm and/or type A dissection according to David or Yacoub have become routine procedures in the last 10 years. The hemodynamic and clinical results are excellent with low reoperation rate and very low risk of thromboembolism. Generally, a maximal diameter of the root of 5 cm is indicative for performing the operation. In patients with Marfan's syndrome the reconstruction should be advanced even with smaller diameters especially

  11. Options for Heart Valve Replacement

    MedlinePlus

    ... which may include human or animal donor tissue) Ross Procedure — “Borrowing” your healthy valve and moving it ... Considerations for Surgery Medications Valve Repair Valve Replacement - Ross Procedure - Newer Surgery Options - What is TAVR? - Types ...

  12. Damage-Free Relief-Valve Disassembly

    NASA Technical Reports Server (NTRS)

    Haselmaier, H.

    1986-01-01

    Tool safely disassembles relief valves without damage to sensitive parts. Relief-valve disassembly tool used to extract valve nozzle from its housing. Holding device on tool grops nozzle. When user strikes hammer against impact disk, holding device pulls nozzle from press fit. Previously, nozzle dislodged by striking spindle above it, but practice often damaged retaining screw. New tool removes nozzle directly. With minor modifications, tool adapted to valves from different manufacturers.

  13. Transcatheter mitral valve repair in osteogenesis imperfecta associated mitral valve regurgitation.

    PubMed

    van der Kley, Frank; Delgado, Victoria; Ajmone Marsan, Nina; Schalij, Martin J

    2014-08-01

    Osteogenesis imperfecta is associated with increased prevalence of significant mitral valve regurgitation. Surgical mitral valve repair and replacement are feasible but are associated with increased risk of bleeding and dehiscence of implanted valves may occur more frequently. The present case report describes the outcomes of transcatheter mitral valve repair in a patient with osteogenesis imperfecta. A 60 year-old patient with osteogenesis imperfecta and associated symptomatic moderate to severe mitral regurgitation underwent transthoracic echocardiography which showed a nondilated left ventricle with preserved systolic function and moderate to severe mitral regurgitation. On transoesophageal echocardiography the regurgitant jet originated between the anterolateral scallops of the anterior and posterior leaflets (A1-P1). Considering the comorbidities associated with osteogenesis imperfecta the patient was accepted for transcatheter mitral valve repair using the Mitraclip device (Abbott vascular, Menlo, CA). Under fluoroscopy and 3D transoesophageal echocardiography guidance, a Mitraclip device was implanted between the anterolateral and central scallops with significant reduction of mitral regurgitation. The postoperative evolution was uneventful. At one month follow-up, transthoracic echocardiography showed a stable position of the Mitraclip device with no mitral regurgitation. Transcatheter mitral valve repair is feasible and safe in patients with osteogenesis imperfecta and associated symptomatic significant mitral regurgitation. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  14. Aortic valve replacement for papillary fibroelastoma.

    PubMed

    Arikan, Ali Ahmet; Omay, Oğuz; Aydın, Fatih; Kanko, Muhip; Gür, Sibel; Derviş, Emir; Yılmaz, Cansu Eda; Müezzinoğlu, Bahar

    2017-06-01

    Surgery is indicated for symptomatic patients with papillary fibroelastomas (PFE) on the aortic valve. The valve is commonly spared during tumor excision. Rarely, aortic valve replacement (AVR) is needed. We present a case requiring AVR for an aortic valve PFE and review the literature to determine the risk factors for failure of aortic valve-sparing techniques in patients with PFE. © 2017 Wiley Periodicals, Inc.

  15. Experimental Investigation of a Multi-Cycle Single-Tube Pulse Detonation Rocket Engine with a Coaxial Rotary Valve

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh

    We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.

  16. 46 CFR 56.20-9 - Valve construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) motion of the handwheel or operating lever as seen by one facing the end of the valve stem. Each gate, globe, and angle valve must generally be of the rising-stem type, preferably with the stem threads... nonrising-stem valve will be acceptable. Each nonrising-stem valve, lever-operated valve, or other valve...

  17. 46 CFR 56.20-9 - Valve construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) motion of the handwheel or operating lever as seen by one facing the end of the valve stem. Each gate, globe, and angle valve must generally be of the rising-stem type, preferably with the stem threads... nonrising-stem valve will be acceptable. Each nonrising-stem valve, lever-operated valve, or other valve...

  18. 46 CFR 56.20-9 - Valve construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) motion of the handwheel or operating lever as seen by one facing the end of the valve stem. Each gate, globe, and angle valve must generally be of the rising-stem type, preferably with the stem threads... nonrising-stem valve will be acceptable. Each nonrising-stem valve, lever-operated valve, or other valve...

  19. 46 CFR 56.20-9 - Valve construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) motion of the handwheel or operating lever as seen by one facing the end of the valve stem. Each gate, globe, and angle valve must generally be of the rising-stem type, preferably with the stem threads... nonrising-stem valve will be acceptable. Each nonrising-stem valve, lever-operated valve, or other valve...

  20. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    NASA Astrophysics Data System (ADS)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  1. Valve malfunction detection apparatus

    NASA Astrophysics Data System (ADS)

    Burley, Richard K.

    1993-07-01

    A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.

  2. Valve malfunction detection apparatus

    NASA Technical Reports Server (NTRS)

    Burley, Richard K. (Inventor)

    1993-01-01

    A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.

  3. Electro-Mechanical Coaxial Valve

    NASA Technical Reports Server (NTRS)

    Patterson, Paul R (Inventor)

    2004-01-01

    Coaxial valves usually contain only one moving part. It has not been easy, then, to provide for electric motor actuation. Many actuators being proposed involve designs which lead to bulky packages. The key facing those improving coaxial valves is the provision of suitable linear actuation. The valve herein indudes a valve housing with a flow channel there-through. Arranged in the flow channel is a closing body. In alignment with the closing body is a ball screw actuator which includes a ball nut and a cylindrical screw. The ball nut sounds a threaded portion of the cylindrical screw. The cylindrical screw is provided with a passageway there-through through which fluid flows. The cylindrical screw is disposed in the flow channel to become a control tube adapted to move toward and away from the valve seat. To rotate the ball nut an actuating drive is employed driven by a stepper motor.

  4. Valve for controlling solids flow

    DOEpatents

    Feldman, David K.

    1980-01-01

    A fluidized solids control valve is disclosed that is particularly well adapted for use with a flow of coal or char that includes both large particles and fines. The particles may or may not be fluidized at various times during the operation. The valve includes a tubular body that terminates in a valve seat covered by a normally closed closure plate. The valve body at the seat and the closure plate is provided with aligned longitudinal slots that receive a pivotally supported key plate. The key plate is positionable by an operator in inserted, intermediate and retracted positions respecting the longitudinal slot in the valve body. The key plate normally closes the slot within the closure plate but is shaped and aligned obliquely to the longitudinal slot within the valve body to provide progressively increasing slot openings between the inserted and retracted positions. Transfer members are provided between the operator, key plate and closure plate to move the closure plate into an open position only when the key plate is retracted from the longitudinal slot within the valve body.

  5. Optothermally actuated capillary burst valve

    NASA Astrophysics Data System (ADS)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  6. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  7. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions.

    PubMed

    Cheung, Daniel Y; Duan, Bin; Butcher, Jonathan T

    2015-01-01

    Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.

  8. Current Progress in Tissue Engineering of Heart Valves: Multiscale Problems, Multiscale Solutions

    PubMed Central

    Cheung, Daniel Y; Duan, Bin; Butcher, Jonathan T.

    2016-01-01

    Introduction Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. Areas covered This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally-derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. Expert opinion While much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells. PMID:26027436

  9. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic-driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic-based valve.

  10. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James A.

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic based valve.

  11. Semi-active compressor valve

    DOEpatents

    Brun, Klaus; Gernentz, Ryan S.

    2010-07-27

    A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

  12. Tricuspid regurgitation after successful mitral valve surgery

    PubMed Central

    Katsi, Vasiliki; Raftopoulos, Leonidas; Aggeli, Constantina; Vlasseros, Ioannis; Felekos, Ioannis; Tousoulis, Dimitrios; Stefanadis, Christodoulos; Kallikazaros, Ioannis

    2012-01-01

    The tricuspid valve (TV) is inseparably connected with the mitral valve (MV) in terms of function. Any pathophysiological condition concerning the MV is potentially a threat for the normal function of the TV as well. One of the most challenging cases is functional tricuspid regurgitation (TR) after surgical MV correction. In the past, TR was considered to progressively revert with time after left-sided valve restoration. Nevertheless, more recent studies showed that TR could develop and evolve postoperatively over time, as well as being closely associated with a poorer prognosis in terms of morbidity and mortality. Pressure and volume overload are usually the underlying pathophysiological mechanisms; structural alterations, like tricuspid annulus dilatation, increased leaflet tethering and right ventricular remodelling are almost always present when regurgitation develops. The most important risk factors associated with a higher probability of late TR development involve the elderly, female gender, larger left atrial size, atrial fibrillation, right chamber dilatation, higher pulmonary artery systolic pressures, longer times from the onset of MV disease to surgery, history of rheumatic heart disease, ischaemic heart disease and prosthetic valve malfunction. The time of TR manifestation can be up to 10 years or more after an MV surgery. Echocardiography, including the novel 3D Echo techniques, is crucial in the early diagnosis and prognosis of future TV disease development. Appropriate surgical technique and timing still need to be clarified. PMID:22457188

  13. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement

    PubMed Central

    Gunning, Paul S.; Saikrishnan, Neelakantan; Yoganathan, Ajit P.; McNamara, Laoise M.

    2015-01-01

    Transcatheter aortic valve replacements (TAVRs) are a percutaneous alternative to surgical aortic valve replacements and are used to treat patients with aortic valve stenosis. This minimally invasive procedure relies on expansion of the TAVR stent to radially displace calcified aortic valve leaflets against the aortic root wall. However, these calcium deposits can impede the expansion of the device causing distortion of the valve stent and pericardial tissue leaflets. The objective of this study was to elucidate the impact of eccentric TAVR stent distortion on the dynamic deformation of the tissue leaflets of the prosthesis in vitro. Dual-camera stereophotogrammetry was used to measure the regional variation in strain in a leaflet of a TAVR deployed in nominal circular and eccentric (eccentricity index = 28%) orifices, representative of deployed TAVRs in vivo. It was observed that (i) eccentric stent distortion caused incorrect coaptation of the leaflets at peak diastole resulting in a ‘peel-back’ leaflet geometry that was not present in the circular valve and (ii) adverse bending of the leaflet, arising in the eccentric valve at peak diastole, caused significantly higher commissure strains compared with the circular valve in both normotensive and hypertensive pressure conditions (normotension: eccentric = 13.76 ± 2.04% versus circular = 11.77 ± 1.61%, p = 0.0014, hypertension: eccentric = 15.07 ± 1.13% versus circular = 13.56 ± 0.87%, p = 0.0042). This study reveals that eccentric distortion of a TAVR stent can have a considerable impact on dynamic leaflet deformation, inducing deleterious bending of the leaflet and increasing commissures strains, which might expedite leaflet structural failure compared to leaflets in a circular deployed valve. PMID:26674192

  14. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continuemore » to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and

  15. Mitral valve-sparing procedures and prosthetic heart valve failure: A case report

    PubMed Central

    Khan, Nasir A; Butany, Jagdish; Leong, Shaun W; Rao, Vivek; Cusimano, Robert J; Ross, Heather J

    2009-01-01

    Prosthetic heart valve dysfunction due to thrombus or pannus formation can be a life-threatening complication. The present report describes a 47-year-old woman who developed valvular cardiomyopathy after chorda-sparing mitral valve replacement, and subsequently underwent heart transplantation for progressive heart failure. The explanted mitral valve prosthesis showed significant thrombus and pannus leading to reduced leaflet mobility and valvular stenosis. The present report illustrates the role of the subvalvular apparatus and pannus in prosthesis dysfunction. PMID:19279993

  16. Liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. [design techniques and practices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development of and operational programs for effective use in design are presented for liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. A review of the total design problem is presented, and design elements are identified which are involved in successful design. Current technology pertaining to these elements is also described. Design criteria are presented which state what rule or standard must be imposed on each essential design element to assure successful design. These criteria serve as a checklist of rules for a project manager to use in guiding a design or in assessing its adequacy. Recommended practices are included which state how to satisfy each of the criteria.

  17. Textile for heart valve prostheses: fabric long-term durability testing.

    PubMed

    Heim, Frederic; Durand, Bernard; Chakfe, Nabil

    2010-01-01

    The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.

  18. Design of a Cyclic Pressure Bioreactor for the Ex Vivo Study of Aortic Heart Valves

    PubMed Central

    Schipke, Kimberly J.; Filip To, S. D.; Warnock, James N.

    2011-01-01

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage1-3. Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease4. The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve5. Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves6-9. Pulsatile bioreactors have also been developed to study a range of tissues including cartilage10, bone11 and bladder12. The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the

  19. Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.

    PubMed

    Schipke, Kimberly J; To, S D Filip; Warnock, James N

    2011-08-23

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage(1-3). Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease(4). The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve(5). Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves(6-9). Pulsatile bioreactors have also been developed to study a range of tissues including cartilage(10), bone(11) and bladder(12). The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed

  20. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  1. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.

    PubMed

    Wong, Sui-To; Wen, Eleanor; Fong, Dawson

    2013-08-01

    Malfunction of a Codman Hakim programmable valve due to jamming of its programmable component may necessitate shunt revision. The authors report a method for programming jammed Codman Hakim programmable valves by using a Strata II magnet and additional neodymium magnets. The programming method was derived after studying a jammed valve in the laboratory that was explanted from an 10-year-old boy with a history of fourth ventricle ependymoma. Programming the explanted valve with a Codman programmer failed, but rotating a Strata II magnet above the valve resulted in rotation of the spiral cam in the valve. It was found that the Strata II magnet could be used to program the jammed valve by rotating the magnet 90° or multiples of 90° above the valve. The strength of the magnetic field of the Strata II magnet was able to be increased by putting neodymium magnets on it. The programming method was then successfully used in a patient with a jammed Codman Hakim programmable valve. After successful programming using this method, clinical and radiological follow-up of the patient was advised.

  2. Functional Changes of Diaphragm Type Shunt Valves Induced by Pressure Pulsation

    NASA Astrophysics Data System (ADS)

    Lee, Chong-Sun; Suh, Chang-Min; Ra, Young-Shin

    Shunt valves used to treat patients with hydrocephalus were tested to investigate influence of pressure pulsation on their flow control characteristics. Our focus was on flow dynamic and functional changes of the small and thin diaphragms in the valves that serve as the main flow control mechanism and are made from silicone elastomer. Firstly, pressure-flow control curves were compared under pulsed and steady flow (without pulsation) conditions. Secondly, functional changes of the valves were tested after a long-term continuous pulsation with a peristaltic pump. Thirdly, flushing procedures selectively conducted by neurosurgeons were simulated with a fingertip pressed on the dome of the valves. As 20cc/hr of flow rate was adjusted at a constant pressure, application of 40mmH2O of pressure pulse increased flow rate through shunt valves more than 60%. As a 90cm length silicone catheter was connected to the valve outlet, increase in the flow rate was substantially reduced to 17.5%. Pressure-flow control characteristics of some valves showed significant changes after twenty-eight days of pressure pulsation at 1.0 Hz under 50.0cc/hr of flow rate. Flushing simulation resulted in temporary decrease in the pressure level. It took three hours to fully recover the normal pressure-flow control characteristics after the flushing. Our results suggest that shunt valves with a thin elastic diaphragm as the main flow control mechanism are sensitive to intracranial pressure pulsation or pressure spikes enough to change their pressure-flow control characteristics.

  3. Pannus Formation Leads to Valve Malfunction in the Tricuspid Position 19 Years after Triple Valve Replacement.

    PubMed

    Alskaf, Ebraham; McConkey, Hannah; Laskar, Nabila; Kardos, Attila

    2016-06-20

    The Medtronic ATS Open Pivot mechanical valve has been successfully used in heart valve surgery for more than two decades. We present the case of a patient who, 19 years following a tricuspid valve replacement with an ATS prosthesis as part of a triple valve operation following infective endocarditis, developed severe tricuspid regurgitation due to pannus formation.

  4. Recurrent pannus formation causing prosthetic aortic valve dysfunction: is excision without valve re-replacement applicable?

    PubMed

    Darwazah, Ahmad K

    2012-06-29

    Prosthetic valve dysfunction at aortic position is commonly caused by pannus formation. The exact etiology is not known. It arises from ventricular aspect of the prosthesis encroaching its leaflets causing stenosis or it may remain localized causing left ventricular outflow tract obstruction without affecting valve function.The difference in location entails different approaches in management. Such a pathology requires surgical excision of the pannus with or without valve re-replacement.A recurrent pannus was observed in a female patient who needed repeated surgical intervention to excise a localized pannus without re-replacement of a well functioning prosthetic valve.Management of our case presents several questions, whether recurrence of pannus is caused by sparing the prosthetic valve, is it simply an exaggeration of an inflammatory healing process in certain individuals or is it ideal to re-replace the valve despite a well preserved function.

  5. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  6. A new one-step procedure for pulmonary valve implantation of the melody valve: Simultaneous prestenting and valve implantation.

    PubMed

    Boudjemline, Younes

    2018-01-01

    To describe a new modification, the one-step procedure, that allows interventionists to pre-stent and implant a Melody valve simultaneously. Percutaneous pulmonary valve implantation (PPVI) is the standard of care for managing patients with dysfunctional right ventricular outflow tract, and the approach is standardized. Patients undergoing PPVI using the one-step procedure were identified in our database. Procedural data and radiation exposure were compared to those in a matched group of patients who underwent PPVI using the conventional two-step procedure. Between January 2016 and January 2017, PPVI was performed in 27 patients (median age/range, 19.1/10-55 years) using the one-step procedure involving manual crimping of one to three bare metal stents over the Melody valve. The stent and Melody valve were delivered successfully using the Ensemble delivery system. No complications occurred. All patients had excellent hemodynamic results (median/range post-PPVI right ventricular to pulmonary artery gradient, 9/0-20 mmHg). Valve function was excellent. Median procedural and fluoroscopic times were 56 and 10.2 min, respectively, which significantly differed from those of the two-step procedure group. Similarly, the dose area product (DAP), and radiation time were statistically lower in the one-step group than in the two-step group (P < 0.001 for all variables). After a median follow-up of 8 months (range, 3-14.7), no patient underwent reintervention, and no device dysfunction was observed. The one-step procedure is a safe modification that allows interventionists to prestent and implants the Melody valve simultaneously. It significantly reduces procedural and fluoroscopic times, and radiation exposure. © 2017 Wiley Periodicals, Inc.

  7. Axial computed tomography evaluation of the internal nasal valve correlates with clinical valve narrowing and patient complaint.

    PubMed

    Moche, Jason A; Cohen, Justin C; Pearlman, Steven J

    2013-07-01

    The objective of this work was to explore the utility of axial computed tomography (CT) imaging to objectively define a narrow internal nasal valve, and compare those findings with clinical examination and patient complaint. Retrospective review from a single facial plastic surgery center. We reviewed 40 consecutive patients evaluated for either sinusitis or nasal airway obstruction for which a CT scan was obtained at a single radiology institution. Thirty-six complete office records were examined for the presence of clinical internal valve narrowing and complaints of nasal obstruction. In total, 72 internal nasal valves were analyzed using axial plane CT and measurements were compared to clinical findings and presence of airway obstruction. Measured valve areas for clinically normal internal nasal valves averaged 0.47 cm(2) vs 0.28 cm(2) for clinically narrow valves, a decrease of 40.4%. In unobstructed nasal airways the valve area averaged 0.51 cm(2) vs 0.38 cm(2) in obstructed airways, a difference of 25.5%. A radiographically measured valve area of <0.30 cm(2) suggests clinical narrowing with a sensitivity of 71.4%, specificity of 88.9%, positive predictive value of 62.5%, and negative predictive value of 92.3%. Using standard axial CT imaging we describe an objective method of radiographically evaluating the nasal valve, demonstrating strong correlation with physical examination and patient complaint. Additionally, radiographic valve areas can be used to screen for clinically narrow nasal valves with good sensitivity and specificity, providing a novel straightforward method for nasal valve assessment. © 2012 ARS-AAOA, LLC.

  8. Mechanical valve replacement in congenital heart disease.

    PubMed

    Fiane, A E; Lindberg, H L; Saatvedt, K; Svennevig, J L

    1996-05-01

    Mechanical valves are the prosthesis of choice in valve replacement in children. However, the problem of somatic growth leading to patient-valve mismatch remains present, and the appropriate anticoagulation regimen remains controversial. We present our experience of valve replacement in a young population over 20 years. Between 1972 and 1992, 48 patients (34 males and 14 females), mean age 11.2 years (range 0.4-27.4 years), underwent mechanical valve replacement at our institution. Aortic valve replacement was performed in 28 patients (58.3%), mitral valve replacement in 13 (27.1%), tricuspid valve replacement in six (12.5%) and pulmonary valve replacement in one patient (2.1%). The prostheses used were: St. Jude Medical (n = 2), Björk-Shiley (n = 14), Medtronic Hall (n = 16), Duromedics (n = 2) and CarboMedics (n = 14). Early mortality was 14.3%, 10.7% for aortic valve replacement and 30.8% for mitral valve replacement. Mean follow up for all patients was 8.3 years (range 0-22 years), with a total of 398 patient-years. Seven patients died during the follow up (17.1%). Survival after 10 years, including operative mortality, was 81% for aortic valve replacement, 33% for mitral valve replacement, 83% for tricuspid valve replacement and 100% for pulmonary valve replacement. All patients were anticoagulated with warfarin. In eight patients (16.7%) an antiplatelet drug (aspirin or dipyridamole) was added. Major events included paravalvular leak in six patients (1.5%/pty), valve thrombosis in five (mitral position in two, tricuspid in three) (1.3%/pty) and endocarditis in one patient (0.3%/pty). Minor thromboembolic events occurred in three patients (0.8%/pty) and minor hemorrhagic events in three (0.8%/pty). No patients developed hemolytic anemia and there was no case of structural failure. In our experience, mechanical prostheses in congenital heart disease were associated with significant morbidity and mortality, however long term survival after aortic valve

  9. Prosthetic Aortic Valve Fixation Study: 48 Replacement Valves Analyzed Using Digital Pressure Mapping.

    PubMed

    Lee, Candice Y; Wong, Joshua K; Ross, Ronald E; Liu, David C; Khabbaz, Kamal R; Martellaro, Angelo J; Gorea, Heather R; Sauer, Jude S; Knight, Peter A

    Prostheses attachment is critical in aortic valve replacement surgery, yet reliable prosthetic security remains a challenge. Accurate techniques to analyze prosthetic fixation pressures may enable the use of fewer sutures while reducing the risk of paravalvular leaks (PVL). Customized digital thin film pressure transducers were sutured between aortic annulus models and 21-mm bioprosthetic valves with 15 × 4-mm, 12 × 4-mm, or 9 × 6-mm-wide pledgeted mattress sutures. Simulating open and minimally invasive access, 4 surgeons, blinded to data acquisition, each secured 12 valves using manual knot-tying (hand-tied [HT] or knot-pusher [KP]) or automated titanium fasteners (TFs). Real-time pressure measurements and times were recorded. Two-dimensional (2D) and 3D pressure maps were generated for all valves. Pressures less than 80 mm Hg were considered at risk for PVL. Pressures under each knot (intrasuture) fell less than 80 mm Hg for 12 of 144 manual knots (5/144 HT, 7/144 KP) versus 0 of 288 TF (P < 0.001). Pressures outside adjacent sutures (extrasuture) were less than 80 mm Hg in 10 of 60 HT, zero of 60 KP, and zero of 120 TF sites for 15 × 4-mm valves; 17 of 48 HT, 25 of 48 KP, and 12 of 96 TF for 12 × 4-mm valves; and 15 of 36 HT, 17 of 36 KP, and 9 and 72 TF for 9 × 6-mm valves; P < 0.001 all manual versus TF. Annular areas with pressures less than 80 mm Hg ranged from 0% of the sewing-ring area (all open TF) to 31% (12 × 4 mm, KP). The average time per manual knot, 46 seconds (HT, 31 seconds; KP, 61 seconds), was greater than TF, 14 seconds (P < 0.005). Reduced operative times and PVL risk would fortify the advantages of surgical aortic valve replacement. This research encourages continued exploration of technical factors in optimizing prosthetic valve security.

  10. FLUID PRESSURE AND CAM OPERATED VACUUM VALVE

    DOEpatents

    Batzer, T.H.

    1963-11-26

    An ultra-high vacuum valve that is bakable, reusable, and capable of being quickly opened and closed is described. A translationally movable valve gate having an annular ridge is adapted to contact an annular soft metal gasket disposed at the valve seat such that the soft metal gasket extends beyond the annular ridge on all sides. The valve gate is closed, by first laterally aligning the valve gate with the valve seat and then bringing the valve gate and valve seat into seating contact by the translational movement of a ramp-like wedging means that engages similar ramp-like stractures at the base of the valve gate to force the valve gate into essentially pressureless contact with the annular soft metal gasket. This gasket is then pressurized from beneath by a fluid thereby effecting a vacuura tight seal between the gasket and the ridge. (AEC)

  11. Flow metering valve

    DOEpatents

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  12. Flow metering valve

    DOEpatents

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  13. Aortic valve orifice equation independent of valvular flow intervals: application to aortic valve area computation in aortic stenosis and comparison with the Gorlin formula.

    PubMed

    Seitz, W; Oppenheimer, L; McIlroy, M; Nelson, D; Operschall, J

    1986-12-01

    An orifice equation is derived relating the effective aortic valve area, A, the average aortic valve pressure gradient, dP, the stroke volume, SV, and the heart frequency, FH, through considerations of momentum conservation across the aortic valve. This leads to a formula consistent with Newton's second law of motion. The form of the new equation is A = (7.5 X 10(-5)) SV FH2/Pd, where A, VS, FH and Pd are expressed in cm2, ml, s-1 and mmHg, respectively. Aortic valve areas computed with the new orifice equation are found to correlate with those computed by the Gorlin formula in conditions of resting haemodynamic states at a level of r = 0.86, SE = 0.25 cm2, N = 120. The results suggest that the new formula may be considered as an independent orifice equation having a similar domain of validity as the Gorlin formula. The new equation offers the possibility of deriving additional useful haemodynamic relationships through combination with established cardiological formulas and applying it in a noninvasive Doppler ultrasonic or echocardiographic context.

  14. How Heart Valves Evolve to Adapt to an Extreme-Pressure System: Morphologic and Biomechanical Properties of Giraffe Heart Valves.

    PubMed

    Amstrup Funder, Jonas; Christian Danielsen, Carl; Baandrup, Ulrik; Martin Bibby, Bo; Carl Andelius, Ted; Toft Brøndum, Emil; Wang, Tobias; Michael Hasenkam, J

    2017-01-01

    Heart valves which exist naturally in an extreme-pressure system must have evolved in a way to resist the stresses of high pressure. Giraffes are interesting as they naturally have a blood pressure twice that of humans. Thus, knowledge regarding giraffe heart valves may aid in developing techniques to design improved pressure-resistant biological heart valves. Heart valves from 12 giraffes and 10 calves were explanted and subjected to either biomechanical or morphological examinations. Strips from the heart valves were subjected to cyclic loading tests, followed by failure tests. Thickness measurements and analyses of elastin and collagen content were also made. Valve specimens were stained with hematoxylin and eosin, elastic van Gieson stain, Masson's trichrome and Fraser-Lendrum stain, as well as immunohistochemical reactions for morphological examinations. The aortic valve was shown to be 70% (95% CI 42-103%) stronger in the giraffe than in its bovine counterpart (p <0.001). No significant difference was found between mitral or pulmonary valves. After normalization for collagen, no significant differences were found in strength between species. The giraffe aortic valve was found to be significantly stiffer than the bovine aortic valve (p <0.001), with no significant difference between mitral and pulmonary valves. On a dry weight basis, the aortic (10.9%), pulmonary (4.3%), and mitral valves (9.6%) of giraffes contained significantly more collagen than those of calves. The elastin contents of the pulmonary valves (2.5%) and aortic valves (1.5%) were also higher in giraffes. The greater strength of the giraffe aortic valve is most likely due to a compact collagen construction. Both, collagen and elastin contents were higher in giraffes than in calves, which would make giraffe valves more resistant to the high-pressure forces. However, collagen also stiffens and thickens the valves. The mitral leaflets showed similar (but mostly insignificant) trends in strength

  15. Cavitation guide for control valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines sixmore » cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.« less

  16. Recurrent pannus formation causing prosthetic aortic valve dysfunction: Is excision without valve re-replacement applicable?

    PubMed Central

    2012-01-01

    Prosthetic valve dysfunction at aortic position is commonly caused by pannus formation. The exact etiology is not known. It arises from ventricular aspect of the prosthesis encroaching its leaflets causing stenosis or it may remain localized causing left ventricular outflow tract obstruction without affecting valve function. The difference in location entails different approaches in management. Such a pathology requires surgical excision of the pannus with or without valve re-replacement. A recurrent pannus was observed in a female patient who needed repeated surgical intervention to excise a localized pannus without re-replacement of a well functioning prosthetic valve. Management of our case presents several questions, whether recurrence of pannus is caused by sparing the prosthetic valve, is it simply an exaggeration of an inflammatory healing process in certain individuals or is it ideal to re-replace the valve despite a well preserved function. PMID:22747790

  17. Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease.

    PubMed

    Hulin, Alexia; Moore, Vicky; James, Jeanne M; Yutzey, Katherine E

    2017-01-01

    Myxomatous valve disease (MVD) is the most common aetiology of primary mitral regurgitation. Recent studies suggest that defects in heart valve development can lead to heart valve disease in adults. Wnt/β-catenin signalling is active during heart valve development and has been reported in human MVD. The consequences of increased Wnt/β-catenin signalling due to Axin2 deficiency in postnatal valve remodelling and pathogenesis of MVD were determined. To investigate the role of Wnt/β-catenin signalling, we analysed heart valves from mice deficient in Axin2 (KO), a negative regulator of Wnt/β-catenin signalling. Axin2 KO mice display enlarged mitral and aortic valves (AoV) after birth with increased Wnt/β-catenin signalling and cell proliferation, whereas Sox9 expression and collagen deposition are decreased. At 2 months in Axin2 KO mice, the valve extracellular matrix (ECM) is stratified but distal AoV leaflets remain thickened and develop aortic insufficiency. Progressive myxomatous degeneration is apparent at 4 months with extensive ECM remodelling and focal aggrecan-rich areas, along with increased BMP signalling. Infiltration of inflammatory cells is also observed in Axin2 KO AoV prior to ECM remodelling. Overall, these features are consistent with the progression of human MVD. Finally, Axin2 expression is decreased and Wnt/β-catenin signalling is increased in myxomatous mitral valves in a murine model of Marfan syndrome, supporting the importance of Wnt/β-catenin signalling in the development of MVD. Altogether, these data indicate that Axin2 limits Wnt/β-catenin signalling after birth and allows proper heart valve maturation. Moreover, dysregulation of Wnt/β-catenin signalling resulting from loss of Axin2 leads to progressive MVD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  18. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  19. 14 CFR 125.137 - Oil valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Oil valves. 125.137 Section 125.137....137 Oil valves. (a) Each oil valve must— (1) Comply with § 125.155; (2) Have positive stops or... the valve. (b) The closing of an oil shutoff means must not prevent feathering the propeller, unless...

  20. 14 CFR 125.137 - Oil valves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Oil valves. 125.137 Section 125.137....137 Oil valves. (a) Each oil valve must— (1) Comply with § 125.155; (2) Have positive stops or... the valve. (b) The closing of an oil shutoff means must not prevent feathering the propeller, unless...

  1. 14 CFR 125.137 - Oil valves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Oil valves. 125.137 Section 125.137....137 Oil valves. (a) Each oil valve must— (1) Comply with § 125.155; (2) Have positive stops or... the valve. (b) The closing of an oil shutoff means must not prevent feathering the propeller, unless...

  2. 14 CFR 125.137 - Oil valves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Oil valves. 125.137 Section 125.137....137 Oil valves. (a) Each oil valve must— (1) Comply with § 125.155; (2) Have positive stops or... the valve. (b) The closing of an oil shutoff means must not prevent feathering the propeller, unless...

  3. 14 CFR 125.137 - Oil valves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Oil valves. 125.137 Section 125.137....137 Oil valves. (a) Each oil valve must— (1) Comply with § 125.155; (2) Have positive stops or... the valve. (b) The closing of an oil shutoff means must not prevent feathering the propeller, unless...

  4. Double-reed exhaust valve engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Charles L.

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  5. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  6. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  7. Triple valve surgery: a 25-year experience.

    PubMed

    Yilmaz, Mustafa; Ozkan, Murat; Böke, Erkmen

    2004-09-01

    Surgical treatment of rheumatic valvular disease still constitutes a significant number of cardiac operations in developing countries. Despite improvements in myocardial protection and cardiopulmonary bypass techniques, triple valve operations (aortic, mitral and tricuspid valves) are still challenging because of longer duration of cardiopulmonary bypass and higher degree of myocardial decompensation. This study was instituted in order to assess results of triple valve surgery. Between 1977 and 2002, 34 patients underwent triple valve surgery in our clinic by the same surgeon (EB). Eleven patients underwent triple valve replacement (32.4%) and 23 underwent tricuspid valve annuloplasty with aortic and mitral valve replacements (67.6%). There was no significant difference between the two groups of patients who underwent triple valve replacement and aortic and mitral valve replacement with tricuspid valve annuloplasty. There were 4 hospital deaths (11.8%) occurring within 30 days. The duration of follow-up for 30 survivors ranged from 6 to 202 months (mean 97 months). The actuarial survival rates were 85%, 72%, and 48% at 5, 10, and 15 years respectively. Actuarial freedom from reoperation rates at 5, 10, and 15 years was 86.3%, 71.9%, and 51.2%, respectively. Freedom from cerebral thromboembolism and anticoagulation-related hemorrhage rates, expressed in actuarial terms was 75.9% and 62.9% at 5 and 10 years. Major cerebral complications occurred in 10 of the 30 patients. We prefer replacing, if repairing is not possible, the tricuspid valve, with a bileaflet mechanical prosthesis in a patient with valve replacement of the left heart who will be anticoagulated in order to avoid unfavorable properties of bioprosthesis like degeneration and of old generation mechanical prosthesis like thrombosis and poor hemodynamic function. In recent years, results of triple valve surgery either with tricuspid valve conservation or valve replacement in suitable cases have become

  8. Transcatheter Pulmonary Valve Replacement by Hybrid Approach Using a Novel Polymeric Prosthetic Heart Valve: Proof of Concept in Sheep

    PubMed Central

    Xu, Tong-yi; Zhang, Zhi-gang; Li, Xin; Han, Lin; Xu, Zhi-yun

    2014-01-01

    Background Since 2000, transcatheter pulmonary valve replacement has steadily advanced. However, the available prosthetic valves are restricted to bioprosthesis which have defects like poor durability. Polymeric heart valve is thought as a promising alternative to bioprosthesis. In this study, we introduced a novel polymeric transcatheter pulmonary valve and evaluated its feasibility and safety in sheep by a hybrid approach. Methods We designed a novel polymeric trileaflet transcatheter pulmonary valve with a balloon-expandable stent, and the valve leaflets were made of 0.1-mm expanded polytetrafluoroethylene (ePTFE) coated with phosphorylcholine. We chose glutaraldehyde-treated bovine pericardium valves as control. Pulmonary valve stents were implanted in situ by a hybrid transapical approach in 10 healthy sheep (8 for polymeric valve and 2 for bovine pericardium valve), weighing an average of 22.5±2.0 kg. Angiography and cardiac catheter examination were performed after implantation to assess immediate valvular functionality. After 4-week follow-up, angiography, echocardiography, computed tomography, and cardiac catheter examination were used to assess early valvular function. One randomly selected sheep with polymeric valve was euthanized and the explanted valved stent was analyzed macroscopically and microscopically. Findings Implantation was successful in 9 sheep. Angiography at implantation showed all 9 prosthetic valves demonstrated orthotopic position and normal functionality. All 9 sheep survived at 4-week follow-up. Four-week follow-up revealed no evidence of valve stent dislocation or deformation and normal valvular and cardiac functionality. The cardiac catheter examination showed the peak-peak transvalvular pressure gradient of the polymeric valves was 11.9±5.0 mmHg, while that of two bovine pericardium valves were 11 and 17 mmHg. Gross morphology demonstrated good opening and closure characteristics. No thrombus or calcification was seen

  9. Tricuspid regurgitation and right ventricular function after mitral valve surgery with or without concomitant tricuspid valve procedure

    PubMed Central

    Desai, Ravi R.; Vargas Abello, Lina Maria; Klein, Allan L.; Marwick, Thomas H.; Krasuski, Richard A.; Ye, Ying; Nowicki, Edward R.; Rajeswaran, Jeevanantham; Blackstone, Eugene H.; Pettersson, Gösta B.

    2014-01-01

    Objectives To study the effect of mitral valve repair with or without concomitant tricuspid valve repair on functional tricuspid regurgitation and right ventricular function. Methods From 2001 to 2007, 1833 patients with degenerative mitral valve disease, a structurally normal tricuspid valve, and no coronary artery disease underwent mitral valve repair, and 67 underwent concomitant tricuspid valve repair. Right ventricular function (myocardial performance index and tricuspid annular plane systolic excursion) was measured before and after surgery using transthoracic echocardiography for randomly selected patients with tricuspid regurgitation grade 0, 1+, and 2+(100 patients for each grade) and 93 with grade 3+/4+, 393 patients in total. Results In patients with mild (<3+) preoperative tricuspid regurgitation, mitral valve repair alone was associated with reduced tricuspid regurgitation and mild worsening of right ventricular function. Tricuspid regurgitation of 2+or greater developed in fewer than 20%, and right ventricular function had improved, but not to preoperative levels, at 3 years. In patients with severe (3+/4+) preoperative tricuspid regurgitation, mitral valve repair alone reduced tricuspid regurgitation and improved right ventricular function; however, tricuspid regurgitation of 2+ or greater returned and right ventricular function worsened toward preoperative levels within 3 years. Concomitant tricuspid valve repair effectively eliminated severe tricuspid regurgitation and improved right ventricular function. Also, over time, tricuspid regurgitation did not return and right ventricular function continued to improve to levels comparable to that of patients with lower grades of preoperative tricuspid regurgitation. Conclusions In patients with mitral valve disease and severe tricuspid regurgitation, mitral valve repair alone was associated with improved tricuspid regurgitation and right ventricular function. However, the improvements were incomplete and

  10. Non-Dimensional Formulation of Ventricular Work-Load Severity Under Concomitant Heart Valve Disease

    NASA Astrophysics Data System (ADS)

    Dong, Melody; Simon-Walker, Rachael; Dasi, Lakshmi

    2012-11-01

    Current guidelines on assessing the severity of heart valve disease rely on dimensional disease specific measures and are thus unable to capture severity under a concomitant heart valve disease scenario. Experiments were conducted to measure ventricular work-load in an in-house in-vitro left heart simulator. In-house tri-leaflet heart valves were built and parameterized to model concomitant heart valve disease. Measured ventricular power varied non-linearly with cardiac output and mean aortic pressure. Significant data collapse could be achieved by the non-dimensionalization of ventricular power with cardiac output, fluid density, and a length scale. The dimensionless power, Circulation Energy Dissipation Index (CEDI), indicates that concomitant conditions require a significant increase in the amount of work needed to sustain cardiac function. It predicts severity without the need to quantify individual disease severities. This indicates the need for new fluid-dynamics similitude based clinical guidelines to assist patients with multiple heart valve diseases. Funded by the American Heart Association.

  11. [Transcatheter aortic valve replacement].

    PubMed

    Sawa, Yoshiki

    2014-07-01

    While transcatheter aortic valve replacement( TAVR) has spread rapidly all over the world for highrisk patients with severe aortic stenosis (AS), SAPIEN XT was approved in Japan in October 2013. Since that, approximately 400 TAVR cases were performed in Japan. In our institute, we have performed 164 cases since first case in Japan in 2009 and have achieved satisfactory early results(30-day mortality:1.2%). At the same time, however, simultaneously various TAVR-related complications including a paravalvular leak, stroke, vascular complications, and coronary obstruction were observed. A reduction in the incidence and severity of these complications had led technical improvements in various new devices(2nd generation TAVR device such as the SAPIEN 3, ACURATE, and JenaValve) and in implantation techniques including repositioning/recapturing features, paravalvular sealing technologies, and prevention of coronary obstruction. Furthermore, there is also increasing experience with special indications for TAVR such as pure aortic valve insufficiency or valve-in-valve techniques. Currently, an increasing number of publications of midterm results demonstrate good prosthetic valve function and durability, with good quality of life and low morbidity after TAVR. There are also some randomized trials such as PARTNER 2 or SURTAVI to investigate potential benefits of TAVR for intermediate-risk patients. These improvements in the TAVR devices promises the expansion of TAVR towards the treatment of lower-risk patients in the near future.

  12. Improved solenoid valve design

    NASA Technical Reports Server (NTRS)

    Evans, J.

    1969-01-01

    Modified solenoid valve reduces valve seat loading by eliminating off-center operation of the armature, reducing the poppet size and spring-cushioning its impact, and reducing armature impact with a poppet guide stop.

  13. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  14. Latching Solenoid-Operated Ball Valve

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron

    1994-01-01

    Proposed solenoid-operated ball valve latches in open or closed position until energized to change position. Electrical energy consumed only during opening or closing motion. Valve ball contains central channel through which fluid could flow. Made of highly magnetically permeable steel. When appropriate coil(s) energized by brief pulse (or pulses) of electrical current at appropriate polarity, ball rotates clockwise until permanent magnets come to rest against hard stops in housing, and inlet and outlet ports aligned with central channel so fluid flows through valve. Magnets adhere to stops by magnetic attraction, latching valve in open position. To close valve, appropriate coil(s) energized by pulse (or pulses) of appropriate polarity to generate magnetic forces rotating ball counterclockwise until magnets make contact with hard stops, and inlet and outlet ports sealed.

  15. A Parylene MEMS Electrothermal Valve

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Holschneider, Daniel P.; Maarek, Jean-Michel I.; Meng, Ellis

    2011-01-01

    The first microelectromechanical-system normally closed electrothermal valve constructed using Parylene C is described, which enables both low power (in milliwatts) and rapid operation (in milliseconds). This low-power valve is well suited for applications in wirelessly controlled implantable drug-delivery systems. The simple design was analyzed using both theory and modeling and then characterized in benchtop experiments. Operation in air (constant current) and water (current ramping) was demonstrated. Valve-opening powers of 22 mW in air and 33 mW in water were obtained. Following integration of the valve with catheters, our valve was applied in a wirelessly operated microbolus infusion pump, and the in vivo functionality for the appropriateness of use of this pump for future brain mapping applications in small animals was demonstrated. PMID:21350679

  16. The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1931-01-01

    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.

  17. Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk

    2016-11-01

    The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.

  18. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation.

    PubMed

    Bouvrée, Karine; Brunet, Isabelle; Del Toro, Raquel; Gordon, Emma; Prahst, Claudia; Cristofaro, Brunella; Mathivet, Thomas; Xu, Yunling; Soueid, Jihane; Fortuna, Vitor; Miura, Nayoki; Aigrot, Marie-Stéphane; Maden, Charlotte H; Ruhrberg, Christiana; Thomas, Jean Léon; Eichmann, Anne

    2012-08-03

    The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.

  19. Malate valves: Old shuttles with new perspectives.

    PubMed

    Selinski, Jennifer; Scheibe, Renate

    2018-06-22

    Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyze the reversible interconversion of malate and oxaloacetate and their transport. Depending on the coenzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes: Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids, respectively. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the "light malate valve" plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP + /NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ("dark malate valve") is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, the knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria, and peroxisomes have been characterized, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange focusing on the various metabolic functions of these valves. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Effectiveness of rivaroxaban for thromboprophylaxis of prosthetic heart valves in a porcine heterotopic valve model.

    PubMed

    Greiten, Lawrence E; McKellar, Stephen H; Rysavy, Joseph; Schaff, Hartzell V

    2014-05-01

    Warfarin is used to reduce the risk of stroke and thromboembolic complications in patients with mechanical heart valves. Yet, despite frequent blood testing, its poor pharmacokinetic and pharmacodynamic profiles often result in variable therapeutic levels. Rivaroxaban is a direct competitive factor Xa inhibitor that is taken orally. It inhibits the active site of factor Xa without the need for the cofactor antithrombin, and thus, its mechanism of action is differentiated from that of the fractionated heparins and indirect factor Xa inhibitors. No in vivo data exist regarding the effectiveness of rivaroxaban in preventing thromboembolic complications of mechanical heart valves. We tested the hypothesis that rivaroxaban is as effective as enoxaparin for thromboprophylaxis of mechanical valves that use a previously described heterotopic aortic valve porcine model. A modified bileaflet mechanical valved conduit that bypassed the native, ligated descending thoracic aorta was implanted into 30 swine. Postoperatively, the animals were randomly assigned to groups receiving no anticoagulation (n = 10), enoxaparin at 2 mg/kg subcutaneously twice daily (n = 10) or rivaroxaban at 2 mg/kg orally twice daily (n = 10). The amount of valve thrombus was measured on post-implantation day 30 as the primary end point. Quantitative evaluation of radiolabelled platelet deposition on the valve prostheses was done and embolic and haemorrhagic events were measured as secondary end points. Animals with no anticoagulation had a thrombus mean of 759.9 mg compared with 716.8 mg with enoxaparin treatment and 209.6 mg with rivaroxaban treatment (P = 0.05 for enoxaparin vs rivaroxaban). Similarly, the mean number of platelets deposited on the valve prosthesis was lower in the rivaroxaban group (6.13 × 10(9)) than in the enoxaparin group (3.03 × 10(10)) (P = 0.03). In this study, rivaroxaban was more effective than enoxaparin for short-term thromboprophylaxis of mechanical valve prosthetics in

  1. Heart Valve Biomechanics and Underlying Mechanobiology

    PubMed Central

    Ayoub, Salma; Ferrari, Giovanni; Gorman, Robert C.; Gorman, Joseph H.; Schoen, Frederick J.; Sacks, Michael S.

    2017-01-01

    Heart valves control unidirectional blood flow within the heart during the cardiac cycle. They have a remarkable ability to withstand the demanding mechanical environment of the heart, achieving lifetime durability by processes involving the ongoing remodeling of the extracellular matrix. The focus of this review is on heart valve functional physiology, with insights into the link between disease-induced alterations in valve geometry, tissue stress, and the subsequent cell mechanobiological responses and tissue remodeling. We begin with an overview of the fundamentals of heart valve physiology and the characteristics and functions of valve interstitial cells (VICs). We then provide an overview of current experimental and computational approaches that connect VIC mechanobiological response to organ- and tissue-level deformations and improve our understanding of the underlying functional physiology of heart valves. We conclude with a summary of future trends and offer an outlook for the future of heart valve mechanobiology, specifically, multiscale modeling approaches, and the potential directions and possible challenges of research development. PMID:27783858

  2. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  3. Problem: Heart Valve Regurgitation

    MedlinePlus

    ... should be completely closed For example: Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  4. Problem: Mitral Valve Regurgitation

    MedlinePlus

    ... each time the left ventricle contracts. Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  5. Mitral valve surgery - open

    MedlinePlus

    ... place. There are two types of mitral valves: Mechanical, made of man-made (synthetic) materials, such as ... Mechanical heart valves last a lifetime. However, blood clots may develop on them. This can cause them ...

  6. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    PubMed

    Scotten, Lawrence N; Siegel, Rolland

    2015-08-01

    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring

  7. Are anticoagulant independent mechanical valves within reach—fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models

    PubMed Central

    Siegel, Rolland

    2015-01-01

    Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration

  8. Torque-actuated valves for microfluidics.

    PubMed

    Weibel, Douglas B; Kruithof, Maarten; Potenta, Scott; Sia, Samuel K; Lee, Andrew; Whitesides, George M

    2005-08-01

    This paper describes torque-actuated valves for controlling the flow of fluids in microfluidic channels. The valves consist of small machine screws (> or =500 microm) embedded in a layer of polyurethane cast above microfluidic channels fabricated in poly(dimethylsiloxane) (PDMS). The polyurethane is cured photochemically with the screws in place; on curing, it bonds to the surrounding layer of PDMS and forms a stiff layer that retains an impression of the threads of the screws. The valves were separated from the ceiling of microfluidic channels by a layer of PDMS and were integrated into channels using a simple procedure compatible with soft lithography and rapid prototyping. Turning the screws actuated the valves by collapsing the PDMS layer between the valve and channel, controlling the flow of fluids in the underlying channels. These valves have the useful characteristic that they do not require power to retain their setting (on/off). They also allow settings between "on" and "off" and can be integrated into portable, disposable microfluidic devices for carrying out sandwich immunoassays.

  9. Proof-of-Concept Evaluation of the SailValve Self-Expanding Deep Venous Valve System in a Porcine Model.

    PubMed

    Boersma, Doeke; Vink, Aryan; Moll, Frans L; de Borst, Gert J

    2017-06-01

    To evaluate the SailValve, a new self-expanding deep venous valve concept based on a single polytetrafluoroethylene cusp floating up and down in the bloodstream like a sail, acting as a flow regulator and allowing minimal reflux to reduce thrombogenicity. Both iliac veins of 5 pigs were implanted with SailValve devices; the first animal was an acute pilot experiment to show the feasibility of accurately positioning the SailValve via a femoral access. The other 4 animals were followed for 2 weeks (n=2) or 4 weeks (n=2) under a chronic implantation protocol. Patency and valve function were evaluated directly in all animals using ascending and descending phlebography after device placement and at termination in the chronic implant animals. For reasons of clinical relevance, a regimen of clopidogrel and calcium carbasalate was administered. Histological analysis was performed according to a predefined protocol by an independent pathologist. Deployment was technically feasible in all 10 iliac veins, and all were patent directly after placement. No perioperative or postoperative complications occurred. Ascending phlebograms in the follow-up animals confirmed the patency of all valves after 2 or 4 weeks. Descending phlebograms showed full function in 5 of 8 valves. Limited reflux was seen in 1 valve (4-week group), and the function in the remaining 2 valves (2-week group) was insufficient because of malpositioning. No macroscopic thrombosis was noted on histology. Histology in the follow-up groups revealed a progressive inflammatory reaction to the valves. This animal study shows the potential of the SailValve concept with sufficient valve function after adequate positioning and no (thrombogenic) occlusions after short-term follow-up. Future research is essential to optimize valve material and long-term patency.

  10. Valve-spring Surge

    NASA Technical Reports Server (NTRS)

    Marti, Willy

    1937-01-01

    Test equipment is described that includes a system of three quartz indicators whereby three different pressures could be synchronized and simultaneously recorded on a single oscillogram. This equipment was used to test the reliction of waves at ends of valve spring, the dynamical stress of the valve spring for a single lift of the valve, and measurement of the curve of the cam tested. Other tests included simultaneous recording of the stress at both ends of the spring, spring oscillation during a single lift as a function of speed, computation of amplitude of oscillation for a single lift by harmonic analysis, effect of cam profile, the setting up of resonance, and forced spring oscillation with damping.

  11. Mitral valve disease—morphology and mechanisms

    PubMed Central

    Levine, Robert A.; Hagége, Albert A.; Judge, Daniel P.; Padala, Muralidhar; Dal-Bianco, Jacob P.; Aikawa, Elena; Beaudoin, Jonathan; Bischoff, Joyce; Bouatia-Naji, Nabila; Bruneval, Patrick; Butcher, Jonathan T.; Carpentier, Alain; Chaput, Miguel; Chester, Adrian H.; Clusel, Catherine; Delling, Francesca N.; Dietz, Harry C.; Dina, Christian; Durst, Ronen; Fernandez-Friera, Leticia; Handschumacher, Mark D.; Jensen, Morten O.; Jeunemaitre, Xavier P.; Le Marec, Hervé; Le Tourneau, Thierry; Markwald, Roger R.; Mérot, Jean; Messas, Emmanuel; Milan, David P.; Neri, Tui; Norris, Russell A.; Peal, David; Perrocheau, Maelle; Probst, Vincent; Pucéat, Michael; Rosenthal, Nadia; Solis, Jorge; Schott, Jean-Jacques; Schwammenthal, Ehud; Slaugenhaupt, Susan A.; Song, Jae-Kwan; Yacoub, Magdi H.

    2016-01-01

    Mitral valve disease is a frequent cause of heart failure and death. Emerging evidence indicates that the mitral valve is not a passive structure, but—even in adult life—remains dynamic and accessible for treatment. This concept motivates efforts to reduce the clinical progression of mitral valve disease through early detection and modification of underlying mechanisms. Discoveries of genetic mutations causing mitral valve elongation and prolapse have revealed that growth factor signalling and cell migration pathways are regulated by structural molecules in ways that can be modified to limit progression from developmental defects to valve degeneration with clinical complications. Mitral valve enlargement can determine left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, and might be stimulated by potentially modifiable biological valvular–ventricular interactions. Mitral valve plasticity also allows adaptive growth in response to ventricular remodelling. However, adverse cellular and mechanobiological processes create relative leaflet deficiency in the ischaemic setting, leading to mitral regurgitation with increased heart failure and mortality. Our approach, which bridges clinicians and basic scientists, enables the correlation of observed disease with cellular and molecular mechanisms, leading to the discovery of new opportunities for improving the natural history of mitral valve disease. PMID:26483167

  12. THERMALLY OPERATED VAPOR VALVE

    DOEpatents

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  13. Quantification and comparison of the mechanical properties of four human cardiac valves.

    PubMed

    Pham, Thuy; Sulejmani, Fatiesa; Shin, Erica; Wang, Di; Sun, Wei

    2017-05-01

    Although having the same ability to permit unidirectional flow within the heart, the four main valves-the mitral valve (MV), aortic (AV), tricuspid (TV) and pulmonary (PV) valves-experience different loading conditions; thus, they exhibit different structural integrity from one another. Most research on heart valve mechanics have been conducted mainly on MV and AV or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same aged patient population whose death was unrelated to cardiovascular disease. A total of 114 valve leaflet samples were excised from 12 human cadavers whose death was unrelated to cardiovascular disease (70.1±3.7years old). Tissue mechanical and structural properties were characterized by planar biaxial mechanical testing and histological methods. The experimental data were then fitted with a Fung-type constitutive model. The four valves differed substantially in thickness, degree of anisotropy, and stiffness. The leaflets of the left heart (the AV leaflets and the anterior mitral leaflets, AML) were significantly stiffer and less compliant than their counterparts in the right heart. TV leaflets were the most extensible and isotropic, while AML and AV leaflets were the least extensible and the most anisotropic. Age plays a significant role in the reduction of leaflet stiffness and extensibility with nearly straightened collagen fibers observed in the leaflet samples from elderly groups (65years and older). Results from 114 human leaflet samples not only provided a baseline quantification of the mechanical properties of aged human cardiac valves, but also offered a better understanding of the age-dependent differences among the four valves. It is hoped that the experimental data collected and the associated constitutive models in this study can facilitate future studies of valve diseases, treatments and the development of interventional devices. Most research on heart valve

  14. 46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...

  15. 46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...

  16. 46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...

  17. 46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...

  18. 46 CFR 52.01-120 - Safety valves and safety relief valves (modifies PG-67 through PG-73).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Safety valves and safety relief valves (modifies PG-67 through PG-73). 52.01-120 Section 52.01-120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-120 Safety valves and safety relief valves (modifies PG-67 through PG-73). (a)...

  19. Use of a Valved-Conduit for Exclusion of the Infected Portion in the Prosthetic Pulmonary Valve Endocarditis

    PubMed Central

    Jung, Joonho; Lee, Cheol Joo; Lim, Sang-Hyun; Choi, Ho; Park, Soo-Jin

    2013-01-01

    A 51-year-old male was admitted to the hospital with complaints of fever and hemoptysis. After evaluation of the fever focus, he was diagnosed with pulmonary valve infective endocarditis. Thus pulmonary valve replacement and antibiotics therapy were performed and discharged. He was brought to the emergency unit presenting with a high fever (>39℃) and general weakness 6 months after the initial operation. The echocardiography revealed prosthetic pulmonary valve endocarditis. Therefore, redo-pulmonary valve replacement using valved conduit was performed in the Rastelli fashion because of the risk of pulmonary arterial wall injury and recurrent endocarditis from the remnant inflammatory tissue. We report here on the successful surgical treatment of prosthetic pulmonary valve endocarditis with an alternative surgical method. PMID:23772409

  20. Aortic valve function after bicuspidization of the unicuspid aortic valve.

    PubMed

    Aicher, Diana; Bewarder, Moritz; Kindermann, Michael; Abdul-Khalique, Hashim; Schäfers, Hans-Joachim

    2013-05-01

    Unicuspid aortic valve (UAV) anatomy leads to dysfunction of the valve in young individuals. We introduced a reconstructive technique of bicuspidizing the UAV. Initially we copied the typical asymmetry of a normal bicuspid aortic valve (BAV) (I), later we created a symmetric BAV (II). This study compared the hemodynamic function of the two designs of a bicuspidized UAV. Aortic valve function was studied at rest and during exercise in 28 patients after repair of UAV (group I, n = 8; group II, n = 20). There were no differences among the groups I and II with respect to gender, age, body size, or weight. All patients were in New York Heart Association class I. Six healthy adults served as control individuals. All patients were studied with transthoracic echocardiography between 4 and 65 months postoperatively. Systolic gradients were assessed by continuous wave Doppler while patients were at rest and exercising on a bicycle ergometer. Aortic regurgitation was grade I or less in all patients. Resting gradients were significantly elevated in group I compared with group II and control individuals (group I, peak 33.8 ± 7.8 mm Hg; mean 19.1 ± 5.4 mm Hg; group II, peak 15.8 ± 5.4, mean 8.2 ± 2.8 mm Hg; control individuals, peak 6.0 ± 1.6, mean 3.2 ± 0.8 mm Hg; p < 0.001). At 100 W peak gradients were highest in group I (group I, 62.7 ± 16.7 mm Hg; group II, 28.1 ± 7.6 mm Hg; control individuals, 15.4 ± 4.6 mm Hg; p < 0.001). Converting a UAV into a symmetric bicuspid design results in adequate valve competence. A symmetric repair design leads to improved systolic aortic valve function at rest and during exercise. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Dual-latching solenoid-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron J. (Inventor); Yang, Jeff (Inventor)

    1994-01-01

    A tube-type shutoff valve is electrically positioned to its open or closed position by a concentric electromagnetic solenoid. The valve is dual latching in that the armature of the solenoid maintains the sliding tube of the valve in an open or closed position by means of permanent magnets which are effective when current is not supplied to the solenoid. The valve may also be actuated manually.

  2. Pannus-related prosthetic valve dysfunction. Case report

    PubMed Central

    MOLDOVAN, MARIA-SÎNZIANA; BEDELEANU, DANIELA; KOVACS, EMESE; CIUMĂRNEAN, LORENA; MOLNAR, ADRIAN

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction. PMID:27004041

  3. Pannus-related prosthetic valve dysfunction. Case report.

    PubMed

    Moldovan, Maria-Sînziana; Bedeleanu, Daniela; Kovacs, Emese; Ciumărnean, Lorena; Molnar, Adrian

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction.

  4. TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.

    PubMed

    Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V

    2017-08-01

    Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.

  5. Valve assembly having remotely replaceable bearings

    DOEpatents

    Johnson, Evan R.; Tanner, David E.

    1980-01-01

    A valve assembly having remotely replaceable bearings is disclosed wherein a valve disc is supported within a flow duct for rotation about a pair of axially aligned bearings, one of which is carried by a spindle received within a diametral bore in the valve disc, and the other of which is carried by a bearing support block releasably mounted on the duct circumferentially of an annular collar on the valve disc coaxial with its diametrical bore. The spindle and bearing support block are adapted for remote removal to facilitate servicing or replacement of the valve disc support bearings.

  6. Coronary flow reserve is impaired in patients with aortic valve calcification.

    PubMed

    Bozbas, Huseyin; Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Sade, Elif; Eroglu, Serpil; Atar, Ilyas; Altin, Cihan; Demirtas, Saadet; Ozin, Bulent; Muderrisoglu, Haldun

    2008-04-01

    Calcific aortic valve disease is an active and progressive condition. Data indicate that aortic valve calcification (AVC) is associated with endothelial dysfunction and accepted as a manifestation of atherosclerosis. Coronary flow reserve (CFR) determined by transthoracic echocardiography has been introduced as a reliable indicator for coronary microvascular function. In this study we aimed to evaluate CFR in patients with AVC. Eighty patients, aged more than 60 years, without coronary heart disease or diabetes mellitus were included: 40 had AVC without significant stenosis (peak gradient across the valve <25 mm Hg) and 40 had normal aortic valves (controls). Using transthoracic Doppler echocardiography, we measured coronary diastolic peak flow velocities (PFV) at baseline and after dipyridamole infusion. CFR was calculated as the ratio of hyperemic to baseline diastolic PFV and was compared between groups. Mean ages for patients with AVC and controls were 68.9+/-6.2 and 67.6+/-5.9 years (P=.3). There were no significant differences regarding clinical characteristics, laboratory findings, ejection fraction, or peak aortic valve gradients. Mean diastolic PFV at baseline and during hyperemia were 28.4+/-4.2 and 59.2+/-7.8 cm/s for AVC and 27.7+/-3.9 and 68.5+/-10.5 cm/s for controls. Compared with controls, patients with AVC had significantly lower CFR values (2.12+/-0.41 versus 2.51+/-0.51; P<.0001). CFR is impaired in patients with AVC before valve stenosis develops, suggesting that microvascular-endothelial dysfunction is present during the early stages of the calcific aortic valve disease.

  7. Incidence, Timing, and Predictors of Valve Hemodynamic Deterioration After Transcatheter Aortic Valve Replacement: Multicenter Registry.

    PubMed

    Del Trigo, Maria; Muñoz-Garcia, Antonio J; Wijeysundera, Harindra C; Nombela-Franco, Luis; Cheema, Asim N; Gutierrez, Enrique; Serra, Vicenç; Kefer, Joelle; Amat-Santos, Ignacio J; Benitez, Luis M; Mewa, Jumana; Jiménez-Quevedo, Pilar; Alnasser, Sami; Garcia Del Blanco, Bruno; Dager, Antonio; Abdul-Jawad Altisent, Omar; Puri, Rishi; Campelo-Parada, Francisco; Dahou, Abdellaziz; Paradis, Jean-Michel; Dumont, Eric; Pibarot, Philippe; Rodés-Cabau, Josep

    2016-02-16

    Scarce data exist on the incidence of and factors associated with valve hemodynamic deterioration (VHD) after transcatheter aortic valve replacement (TAVR). This study sought to determine the incidence, timing, and predictors of VHD in a large cohort of patients undergoing TAVR. This multicenter registry included 1,521 patients (48% male; 80 ± 7 years of age) who underwent TAVR. Mean echocardiographic follow-up was 20 ± 13 months (minimum: 6 months). Echocardiographic examinations were performed at discharge, at 6 to 12 months, and yearly thereafter. Annualized changes in mean gradient (mm Hg/year) were calculated by dividing the difference between the mean gradient at last follow-up and the gradient at discharge by the time between examinations. VHD was defined as a ≥10 mm Hg increase in transprosthetic mean gradient during follow-up compared with discharge assessment. The overall mean annualized rate of transprosthetic gradient progression during follow-up was 0.30 ± 4.99 mm Hg/year. A total of 68 patients met criteria of VHD (incidence: 4.5% during follow-up). The absence of anticoagulation therapy at hospital discharge (p = 0.002), a valve-in-valve (TAVR in a surgical valve) procedure (p = 0.032), the use of a 23-mm valve (p = 0.016), and a greater body mass index (p = 0.001) were independent predictors of VHD. There was a mild but significant increase in transvalvular gradients over time after TAVR. The lack of anticoagulation therapy, a valve-in-valve procedure, a greater body mass index, and the use of a 23-mm transcatheter valve were associated with higher rates of VHD post-TAVR. Further prospective studies are required to determine whether a specific antithrombotic therapy post-TAVR may reduce the risk of VHD. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Numerical simulation and experimental study of heat-fluid-solid coupling of double flapper-nozzle servo valve

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zhou, Songlin; Lu, Xianghui; Gao, Dianrong

    2015-09-01

    The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120°C and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution rules of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80°C, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80°C. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo

  9. Innovative Stemless Valve Eliminates Emissions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Big Horn Valve Inc. (BHVI), of Sheridan, Wyoming, won a series of SBIR and Small Business Technology Transfer (STTR) contracts with Kennedy Space Center and Marshall Space Flight Center to explore and develop a revolutionary valve technology. BHVI developed a low-mass, high-efficiency, leak-proof cryogenic valve using composites and exotic metals, and had no stem-actuator, few moving parts, with an overall cylindrical shape. The valve has been installed at a methane coal gas field, and future applications are expected to include in-flight refueling of military aircraft, high-volume gas delivery systems, petroleum refining, and in the nuclear industry.

  10. Fluid check valve has fail-safe feature

    NASA Technical Reports Server (NTRS)

    Gaul, L. C.

    1965-01-01

    Check valve ensures unidirectional fluid flow and, in case of failure, vents the downstream fluid to the atmosphere and gives a positive indication of malfunction. This dual valve consists of a master check valve and a fail-safe valve.

  11. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    PubMed

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  12. 46 CFR 108.444 - Lockout valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... dioxide to discharge in the event of equipment failure during maintenance. (c) The lockout valve design or... extinguishing system, when the valve must be locked in the closed position. (f) Lockout valves added to existing...

  13. Transapical Mitral Valve Implantation for Native Mitral Valve Stenosis Using a Balloon-Expandable Prosthesis.

    PubMed

    Kiefer, Philipp; Noack, Thilo; Seeburger, Joerg; Hoyer, Alexandro; Linke, Axel; Mangner, Norman; Lehmkuhl, Lukas; Mohr, Friedrich Wilhelm; Holzhey, David

    2017-12-01

    Transcatheter mitral valve implantation (TMVI) is still in its infancy and is mainly limited to valve-in-valve or valve-in-ring implantations. We present the early experience with TMVI for severe calcified native MV stenosis. Between January 2014 and June 2015, 6 of 11 patients screened (mean age, 77.4 ± 6.3 years; 66% men) with severe native mitral valve (MV) stenosis (mean gradient [Pmean], 11.1 ± 2.1 mm Hg; mean effective orifice area [EOA], 0.9 ± 0.12 cm 2 ) underwent transcatheter MV replacement at our institution as a bailout procedure. Conventional surgical procedures were denied in all patients because of severe annular calcification and extensive comorbidities (mean logistic EuroScore, 31.4% ± 8.3%). The Edwards SAPIEN 3 (29 mm) (Edwards Lifesciences, Irvine, CA) was used in all cases. Procedural access was transapical in 5 cases and concomitant to aortic valve replacement through the left atrium through a sternotomy in 1 case. Initial implantation was successful in 100% of the cases. Because of early migration, 1 patient needed a valve-in-valve procedure. Postoperative echocardiography showed no residual mitral regurgitation in 4 cases (66%) and mild regurgitation in 2 cases (34%). Mean gradients were reduced to 4.2 ± 0.6 mm Hg (mean EOA, 2.8 ± 0.4 cm 2) . No patient had a stroke during hospitalization, and 30-day mortality was seen in 1 patient (17%) resulting from pneumonia. TMV implantation using the SAPIEN 3 aortic prosthesis in patients with heavy annular calcification is feasible and represents a reasonable bailout option for inoperable patients. However, several limitations need to be considered in this special patient population. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. [Tricuspid valve insufficiency: what should be done?].

    PubMed

    von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G

    1998-12-01

    Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.

  15. Strut fracture of Björk-Shiley convexo-concave valve in Japan--risk of small valve size--.

    PubMed

    Watarida, S; Shiraishi, S; Nishi, T; Imura, M; Yamamoto, Y; Hirokawa, R; Fujita, M

    2001-08-01

    The Björk-Shiley convexo-concave (BSCC) prosthetic valve was introduced in 1979. Between 1979 and 1986, approximately 86,000 BSCC valves were implanted. By December 31, 1994, 564 complete strut fractures had been reported to the manufacture. We experienced a case of an outlet strut fracture and investigated the risk of BSCC prosthetic valve fractures in Japan. To investigate the risk factor of a strut fracture in Japan, we investigated published cases of strut fractures. Between 1979 and 1986, 2021 BSCC valves were implanted in Japan. By January 31, 2000, 11 complete strut fractures of 60-degree BSCC valves including our case had occurred. The patients were eight males and three females. The average age at valve replacement was 42.4+/-8.1 years, and nine of eleven (81.8%) were patients < 50 years-old. The average age of the patients when the BSCC valve fractured was 47.7+/-6.4 years, and eight of eleven (72.7%) were patients <= 50 years old. All patients were implanted in the mitral position. The sizes of the BSCC valve were 27 mm (n=5) (45.5%), 29 mm (n=3) (27.2%), and 31 mm (n=3) (27.2%). Four patients died and seven patients survived. Although only 11 BSCC valve struts fractured and statistical analysis could not be performed, our findings suggest that the high risk group for a strut fracture in Japan is young male patients with a mitral valve, >= 27 mm in size with BSCC models manufactured before March 1982. When following-up patients with BSCC models manufactured before March 1982, the possibility of a strut fracture in all BSCC valve sizes should be kept in mind.

  16. Tricuspid regurgitation and right ventricular function after mitral valve surgery with or without concomitant tricuspid valve procedure.

    PubMed

    Desai, Ravi R; Vargas Abello, Lina Maria; Klein, Allan L; Marwick, Thomas H; Krasuski, Richard A; Ye, Ying; Nowicki, Edward R; Rajeswaran, Jeevanantham; Blackstone, Eugene H; Pettersson, Gösta B

    2013-11-01

    To study the effect of mitral valve repair with or without concomitant tricuspid valve repair on functional tricuspid regurgitation and right ventricular function. From 2001 to 2007, 1833 patients with degenerative mitral valve disease, a structurally normal tricuspid valve, and no coronary artery disease underwent mitral valve repair, and 67 underwent concomitant tricuspid valve repair. Right ventricular function (myocardial performance index and tricuspid annular plane systolic excursion) was measured before and after surgery using transthoracic echocardiography for randomly selected patients with tricuspid regurgitation grade 0, 1+, and 2+ (100 patients for each grade) and 93 with grade 3+/4+, 393 patients in total. In patients with mild (<3+) preoperative tricuspid regurgitation, mitral valve repair alone was associated with reduced tricuspid regurgitation and mild worsening of right ventricular function. Tricuspid regurgitation of 2+ or greater developed in fewer than 20%, and right ventricular function had improved, but not to preoperative levels, at 3 years. In patients with severe (3+/4+) preoperative tricuspid regurgitation, mitral valve repair alone reduced tricuspid regurgitation and improved right ventricular function; however, tricuspid regurgitation of 2+ or greater returned and right ventricular function worsened toward preoperative levels within 3 years. Concomitant tricuspid valve repair effectively eliminated severe tricuspid regurgitation and improved right ventricular function. Also, over time, tricuspid regurgitation did not return and right ventricular function continued to improve to levels comparable to that of patients with lower grades of preoperative tricuspid regurgitation. In patients with mitral valve disease and severe tricuspid regurgitation, mitral valve repair alone was associated with improved tricuspid regurgitation and right ventricular function. However, the improvements were incomplete and temporary. In contrast, concomitant

  17. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification.

    PubMed

    Doostparast Torshizi, Abolfazl; Petzold, Linda R

    2018-01-01

    Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Tomographic PIV behind a prosthetic heart valve

    NASA Astrophysics Data System (ADS)

    Hasler, D.; Landolt, A.; Obrist, D.

    2016-05-01

    The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry. Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase-averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.

  19. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  20. Lightweight Valve Closes Duct Quickly

    NASA Technical Reports Server (NTRS)

    Fournier, Walter L.; Burgy, N. Frank

    1991-01-01

    Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.

  1. Energy conservation with automatic flow control valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, D.

    Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.

  2. Cardiac valve orifice equation independent of valvular flow intervals: application to mitral valve area computation in mitral stenosis and comparison with the Gorlin formula and direct anatomical measurements.

    PubMed

    Seitz, W; Marino, P; Zanolla, L; Buonanno, C; McIlroy, M; Spiel, M

    1984-11-01

    An orifice equation is developed which relates the effective mitral valve area (A), the average mitral valve pressure gradient (dP), the cardiac output (Q) and the heart frequency (f) through considerations of momentum conservation across the mitral valve. The form of the new equation is A = (4.75 X 10(-5)Qf/dP, where A, Q, and dP are expressed in cm2, ml X min-1 and mmHg respectively. Mitral valve areas computed with the new orifice formula are found to correlate with those computed by the Gorlin formula in conditions of equilibrium associated with the resting state at a level of r = 0.95, SE = 0.15 cm2, with autopsy measurements at a level of r = 0.85, SE = 0.18 cm2 and with direct anatomical measurements of excised valves at a level of r = 0.78, SE = 0.41 cm2. The results suggest that the new formula may be considered as an independent orifice equation enjoying a similar domain of validity as the Gorlin formula. The new equation offers the possibility of deriving additional useful haemodynamic relationships when used in combination with established cardiological formulas.

  3. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  4. Simple, Internally Adjustable Valve

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1990-01-01

    Valve containing simple in-line, adjustable, flow-control orifice made from ordinary plumbing fitting and two allen setscrews. Construction of valve requires only simple drilling, tapping, and grinding. Orifice installed in existing fitting, avoiding changes in rest of plumbing.

  5. Echocardiographic Assessment of Heart Valve Prostheses

    PubMed Central

    Sordelli, Chiara; Severino, Sergio; Ascione, Luigi; Coppolino, Pasquale; Caso, Pio

    2014-01-01

    Patients submitted to valve replacement with mechanical or biological prosthesis, may present symptoms related either to valvular malfunction or ventricular dysfunction from other causes. Because a clinical examination is not sufficient to evaluate a prosthetic valve, several diagnostic methods have been proposed to assess the functional status of a prosthetic valve. This review provides an overview of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. Compared to native valves, echocardiographic evaluation of prosthetic valves is certainly more complex, both for the examination and the interpretation. Echocardiography also allows discriminating between intra- and/or peri-prosthetic regurgitation, present in the majority of mechanical valves. Transthoracic echocardiography (TTE) requires different angles of the probe with unconventional views. Transesophageal echocardiography (TEE) is the method of choice in presence of technical difficulties. Three-dimensional (3D)-TEE seems to be superior to 2D-TEE, especially in the assessment of paravalvular leak regurgitation (PVL) that it provides improved localization and analysis of the PVL size and shape. PMID:28465917

  6. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  7. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  8. Shape Memory Actuated Normally Open Permanent Isolation Valve

    NASA Technical Reports Server (NTRS)

    Ramspacher, Daniel J. (Inventor); Bacha, Caitlin E. (Inventor)

    2017-01-01

    A valve assembly for an in-space propulsion system includes an inlet tube, an outlet tube, a valve body coupling the inlet tube to the outlet tube and defining a propellant flow path, a valve stem assembly disposed within the valve body, an actuator body coupled to the valve body, the valve stem assembly extending from an interior of the valve body to an interior of the actuator body, and an actuator assembly disposed within the actuator body and coupled to the valve stem assembly, the actuator assembly including a shape memory actuator member that when heated to a transition temperature is configured to enable the valve stem assembly to engage the outlet tube and seal the propellant flow path.

  9. Valve system incorporating single failure protection logic

    DOEpatents

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  10. Programmable valve shunts: are they really better?

    PubMed

    Kataria, Rashim; Kumar, Vimal; Mehta, Veer Singh

    2012-01-01

    Programmable valve shunts allows selection of opening pressure of shunt valve. In the presented article, a unique complication pertaining to programmable shunts has been discussed. A 5-year-old boy who had tectal plate low grade glioma with obstructive hydrocephalus was managed with Codman programmable ventriculoperitoneal shunt. There was a spontaneous change in the opening pressure of the shunt valve leading to shunt malfunction. Routinely used household appliances produce a magnetic field strong enough to cause change in the setting of shunt valve pressure and may lead to valve malfunction. Other causes of programmable valve malfunction also discussed.

  11. Intermediate results of isolated mitral valve replacement with a Biocor porcine valve.

    PubMed

    Rizzoli, Giulio; Bottio, Tomaso; Vida, Vladimiro; Nesseris, Georgios; Caprili, Luca; Thiene, Gaetano; Gerosa, Gino

    2005-02-01

    We analyzed the intermediate experience, survival, and prosthetic complications of patients who received the Biocor valve, a new-generation porcine valve, in the mitral position. At the University of Padua, between May 1992 and January 2004, 154 consecutive patients (102 female and 52 male patients; mean age, 72.3 +/- 6 years; age range, 37-86 years) received 158 mitral Biocor prostheses (Biocor Industria e Pesguisa Ltda, Belo Horizonte, Brazil). Thirty-five percent of the patients had previous mitral operations, 24% had coronary artery bypass grafting, and 34.6% had other procedures. Median preoperative New York Heart Association class was III. Echocardiography was performed in 75% of the long-term survivors. Follow-up included 609.4 patient-years and was 100% complete, with a median time of 4 patient-years (range, 0.02-11.3 years). At 8 years, 20 (14%) of 142 operative survivors were still at risk. Early mortality was 13.6%. According to univariate analysis, New York Heart Association class III to IV, ejection fraction of less than 40%, urgency, male sex, and coronary artery bypass grafting were significant perioperative risk factors. Eight- and 10-year actuarial survival was 51.1% +/- 5.6% (40 deaths). Eight-year actuarial freedom from valve-related death, thromboembolism, anticoagulant-related hemorrhage, endocarditis, paravalvular leak, and valve-related complications were 85.2% +/- 5%, 85.7% +/- 4.4%, 92.6% +/- 3.7%, 94.1% +/- 3%, 91.8% +/- 3%, and 70.2% +/- 5.7%, respectively. Freedom from structural valve deterioration was 100%. Actual freedom from reoperation was 93.2% +/- 2.2%. By Doppler echocardiography, the peak and mean transprosthetic gradients were 15 +/- 5 mm Hg and 6.3 +/- 3 mm Hg, respectively (mean follow-up, 4.2 +/- 2.7 years). At intermediate follow-up, the Biocor prosthesis in the mitral position showed excellent results in terms of valve durability when compared with other second-generation tissue valves.

  12. Bistable flow occurrence in the 2D model of a steam turbine valve

    NASA Astrophysics Data System (ADS)

    Pavel, Procházka; Václav, Uruba

    2017-09-01

    The internal flow inside a steam turbine valve was investigated experimentally using PIV measurement. The valve model was proposed to be two-dimensional. The model was connected to the blow-down wind tunnel. The flow conditions were set by the different position of the valve plug. Several angles of the diffuser by diverse radii were investigated concerning flow separation and flow dynamics. It was found that the flow takes one of two possible bistable modes. The first regime is characterized by a massive flow separation just at the beginning of the diffuser section on the one side. The second regime is axisymmetric and the flow separation is not detected at all.

  13. Kelly mud saver valve sub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddoch, J.A.

    1986-12-02

    A mud saver valve is described for preventing drilling mud from escaping from a kelly when a drill string is broken below the kelly, the valve comprising: a tubular valve body having first and second ends, the first end being provided with means for attachment in fluid communicating relationship with the kelly, the second end being provided with means for attachment to the drill string; an annular seat fixed in the interior of the valve body adjacent its first end; a tubular closure member within the valve body. The closure member is provided with a selectively closed seating end formore » seating in valve closing engagement with the annular seat, an open non-seating end in fluid communicating relationship with the drill string, and an annular expansion in the outer diameter of the closure member adjacent the seating end; a top and bottom spacer ring disposed in sliding relationship around the tubular closure member intermediate the annular expansion and the non-seating end of the closure member. The spacer ring and annular expansion cooperatively define an annular chamber around the closure member; and a helical spring disposed around the closure member towards the annular seat.« less

  14. All in the family: matrimonial mitral valve clicks.

    PubMed

    Desser, K B; Bokhari, S I; Benchimol, A; Romney, D

    1981-05-01

    Mitral valve clicks with or without late systolic murmurs were detected in genetically unrelated marital partners of 5 families. The first family represented 2 successive nonconsanguineous marital unions with 3 generations of mitral valve clicks. The second family included 1 natural and 2 adopted children with clinical and echographic evidence of mitral valve prolapse. The third family was comprised of asymptomatic parents, both with nonejection clicks and mitral valve prolapse, whose daughter presented 3 years previously with syncope, palpitations, and combined mitral and tricuspid valve prolapse. The fourth family had 3 members with auscultatory and ultrasonic manifestations of billowing mitral valve, whereas the fourth member had "silent mitral valve prolapse." The fifth family represented a mother with auscultatory and echographic evidence of mitral valve prolapse; her 14-year-old daughter had both mitral and tricuspid valve prolapse, whereas the son had a bicuspid aortic valve. Both children were products of a prior marriage, and her husband has symptomatic mitral valve prolapse. We conclude that matrimonial mitral valve prolapse probably reflects the purported (6--10%) prevalence of this disorder in the general population. The consequences of such marital union on progeny is currently unclear and warrants future investigation.

  15. A new beating-heart mitral and aortic valve assessment model with implications for valve intervention training.

    PubMed

    Bouma, Wobbe; Jainandunsing, Jayant S; Khamooshian, Arash; van der Harst, Pim; Mariani, Massimo A; Natour, Ehsan

    2017-02-01

    A thorough understanding of mitral and aortic valve motion dynamics is essential in mastering the skills necessary for performing successful valve intervention (open or transcatheter repair or replacement). We describe a reproducible and versatile beating-heart mitral and aortic valve assessment and valve intervention training model in human cadavers. The model is constructed by bilateral ligation of the pulmonary veins, ligation of the supra-aortic arteries, creating a shunt between the descending thoracic aorta and the left atrial appendage with a vascular prosthesis, anastomizing a vascular prosthesis to the apex and positioning an intra-aortic balloon pump (IABP) in the vascular prosthesis, cross-clamping the descending thoracic aorta, and finally placing a fluid line in the shunt prosthesis. The left ventricle is filled with saline to the desired pressure through the fluid line, and the IABP is switched on and set to a desired frequency (usually 60-80 bpm). Prerepair valve dynamic motion can be studied under direct endoscopic visualization. After assessment, the IABP is switched off, and valve intervention training can be performed using standard techniques. This high-fidelity simulation model has known limitations, but provides a realistic environment with an actual beating (human) heart, which is of incremental value. The model provides a unique opportunity to fill a beating heart with saline and to study prerepair mitral and aortic valve dynamic motion under direct endoscopic visualization. The entire set-up provides a versatile beating-heart mitral and aortic valve assessment model, which may have important implications for future valve intervention training. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Cells for tissue engineering of cardiac valves.

    PubMed

    Jana, Soumen; Tranquillo, Robert T; Lerman, Amir

    2016-10-01

    Heart valve tissue engineering is a promising alternative to prostheses for the replacement of diseased or damaged heart valves, because tissue-engineered valves have the ability to remodel, regenerate and grow. To engineer heart valves, cells are harvested, seeded onto or into a three-dimensional (3D) matrix platform to generate a tissue-engineered construct in vitro, and then implanted into a patient's body. Successful engineering of heart valves requires a thorough understanding of the different types of cells that can be used to obtain the essential phenotypes that are expressed in native heart valves. This article reviews different cell types that have been used in heart valve engineering, cell sources for harvesting, phenotypic expression in constructs and suitability in heart valve tissue engineering. Natural and synthetic biomaterials that have been applied as scaffold systems or cell-delivery platforms are discussed with each cell type. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. High-risk Trans-Catheter Aortic Valve Replacement in a Failed Freestyle Valve with Low Coronary Height: A Case Report.

    PubMed

    Karimi, Ashkan; Pourafshar, Negiin; Dibu, George; Beaver, Thomas M; Bavry, Anthony A

    2017-06-01

    A 55-year-old male with a history of two prior cardiac surgeries presented with decompensated heart failure due to severe bioprosthetic aortic valve insufficiency. A third operation was viewed prohibitively high risk and valve-in-valve trans-catheter aortic valve replacement was considered. There were however several high-risk features and technically challenging aspects including low coronary ostia height, poor visualization of the aortic sinuses, and difficulty in identification of the coplanar view due to severe aortic insufficiency, and a highly mobile aortic valve mass. After meticulous peri-procedural planning, trans-catheter aortic valve replacement was carried out with a SAPIEN 3 balloon-expandable valve without any complication. Strategies undertaken to navigate the technically challenging aspects of the case are discussed.

  18. [Tricuspid valve regurgitation : Indications and operative techniques].

    PubMed

    Lange, R; Piazza, N; Günther, T

    2017-11-01

    Functional tricuspid valve (TV) regurgitation secondary to left heart disease (e.g. mitral insufficiency and stenosis) is observed in 75% of the patients with TV regurgitation and is thus the most common etiology; therefore, the majority of patients who require TV surgery, undergo concomitant mitral and/or aortic valve surgery. Uncorrected moderate and severe TV regurgitation may persist or even worsen after mitral valve surgery, leading to progressive heart failure and death. Patients with moderate to severe TV regurgitation show a 3-year survival rate of 40%. Surgery is indicated in patients with severe TV regurgitation undergoing left-sided valve surgery and in patients with severe isolated primary regurgitation without severe right ventricular (RV) dysfunction. For patients requiring mitral valve surgery, tricuspid valve annuloplasty should be considered even in the absence of significant regurgitation, when severe annular dilatation (≥40 mm or >21 mm/m 2 ) is present. Functional TV regurgitation is primarily treated with valve reconstruction which carries a lower perioperative risk than valve replacement. Valve replacement is rarely required. Tricuspid valve repair with ring annuloplasty is associated with better survival and a lower reoperation rate than suture annuloplasty. Long-term results are not available. The severity of the heart insufficiency and comorbidities (e.g. renal failure and liver dysfunction) are the essential determinants of operative mortality and long-term survival. Tricuspid valve reoperations are rarely necessary and associated with a considerable mortality.

  19. Selective classification for improved robustness of myoelectric control under nonideal conditions.

    PubMed

    Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S

    2011-06-01

    Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.

  20. Streamline coal slurry letdown valve

    DOEpatents

    Platt, Robert J.; Shadbolt, Edward A.

    1983-01-01

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  1. High pressure air compressor valve fault diagnosis using feedforward neural networks

    NASA Astrophysics Data System (ADS)

    James Li, C.; Yu, Xueli

    1995-09-01

    Feedforward neural networks (FNNs) are developed and implemented to classify a four-stage high pressure air compressor into one of the following conditions: baseline, suction or exhaust valve faults. These FNNs are used for the compressor's automatic condition monitoring and fault diagnosis. Measurements of 39 variables are obtained under different baseline conditions and third-stage suction and exhaust valve faults. These variables include pressures and temperatures at all stages, voltage between phase aand phase b, voltage between phase band phase c, total three-phase real power, cooling water flow rate, etc. To reduce the number of variables, the amount of their discriminatory information is quantified by scattering matrices to identify statistical significant ones. Measurements of the selected variables are then used by a fully automatic structural and weight learning algorithm to construct three-layer FNNs to classify the compressor's condition. This learning algorithm requires neither guesses of initial weight values nor number of neurons in the hidden layer of an FNN. It takes an incremental approach in which a hidden neuron is trained by exemplars and then augmented to the existing network. These exemplars are then made orthogonal to the newly identified hidden neuron. They are subsequently used for the training of the next hidden neuron. The betterment continues until a desired accuracy is reached. After the neural networks are established, novel measurements from various conditions that haven't been previously seen by the FNNs are then used to evaluate their ability in fault diagnosis. The trained neural networks provide very accurate diagnosis for suction and discharge valve defects.

  2. Semaphorin3A, Neuropilin-1, and PlexinA1 Are Required for Lymphatic Valve Formation

    PubMed Central

    Bouvrée, Karine; Brunet, Isabelle; del Toro, Raquel; Gordon, Emma; Prahst, Claudia; Cristofaro, Brunella; Mathivet, Thomas; Xu, Yunling; Soueid, Jihane; Fortuna, Vitor; Miura, Nayoki; Aigrot, Marie-Stéphane; Maden, Charlotte H.; Ruhrberg, Christiana; Thomas, Jean Léon; Eichmann, Anne

    2013-01-01

    Rationale The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. Objective We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. Methods and Results We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a−/− mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a−/− mice. Conclusions Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation. PMID:22723296

  3. [Pannus Formation Six-years after Aortic and Mitral Valve Replacement with Tissue Valves;Report of a Case].

    PubMed

    Nakamura, Makoto; Muraoka, Arata; Aizawa, Kei; Akutsu, Hirohiko; Kurumisawa, Soki; Misawa, Yoshio

    2015-07-01

    A 77-year-old man presented with exertional dyspnea. He had undergone aortic and mitral valve replacement with tissue valves 6-years earlier. The patient's hemoglobin level was 9.8 g/dl and serum aspartate aminotransferase (70 mU/ml) and lactate dehydrogenase (1,112 mU/ml) were elevated. Echocardiography revealed stenosis of the prosthetic valve in the aortic position with peak flow velocity of 3.8 m/second and massive mitral regurgitation. The patient underwent repeat valve replacement. Pannus formation around both implanted valves was observed. The aortic valve orifice was narrowed by the pannus, and one cusp of the prosthesis in the mitral position was fixed and caused the regurgitation, but they were free from cusp laceration or calcification. The patient's postoperative course was uneventful, and he continues to do well 14 months after surgery.

  4. Aortic valve surgery - open

    MedlinePlus

    ... and into a large blood vessel called the aorta. The aortic valve separates the heart and aorta. The aortic valve opens so blood can flow ... to be able to see your heart and aorta. You may need to be connected to a ...

  5. Prosthetic aortic valve endocarditis complicated with annular abscess, sub-aortic obstruction and valve dehiscence.

    PubMed

    Hassoulas, Joannis; Patrianakos, Alexandros P; Parthenakis, Fragiskos I; Vardas, Panos E

    2009-01-01

    We present a 76-year-old woman with infective endocarditis of a prosthetic aortic valve. The course of her illness started with an ischaemic stroke and she was admitted with prolonged fever and an episode of loss of consciousness. Echocardiography revealed acute aortic regurgitation and dehiscence of the prosthetic valve with excessive "rocking motion", aortic abscesses and left ventricular outflow obstruction caused by a semilunar shelf of tissue probably due to endocarditis vegetations. She underwent an urgent surgical procedure that confirmed the echocardiographic findings. Our case report reinforces the value of early diagnosis in the presence of a high clinical suspicion of prosthetic valve endocarditis. An extended workup, including transoesophageal echocardiography, in such a patient with a mechanical valve is mandatory.

  6. Dual-Latching, Solenoid-Actuated Tube Valve

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron J.

    1993-01-01

    Tube-type shutoff valve electrically positioned to open or closed state by concentric solenoid. Solenoid dual latching: it holds position until changed electrically or manually. In tube valve, central tube slides axially, closing off flow when held against seat and allowing flow when backed away from seat. Simple to balance pressure on seal between seat and sharp edge of tube. With pressure-balanced seal, only small force needed to hold valve in position, regardless of pressure acting on valve.

  7. Centrifugo-pneumatic valving utilizing dissolvable films.

    PubMed

    Gorkin, Robert; Nwankire, Charles E; Gaughran, Jennifer; Zhang, Xin; Donohoe, Gerard G; Rook, Martha; O'Kennedy, Richard; Ducrée, Jens

    2012-08-21

    In this article we introduce a novel technology that utilizes specialized water dissolvable thin films for valving in centrifugal microfluidic systems. In previous work (William Meathrel and Cathy Moritz, IVD Technologies, 2007), dissolvable films (DFs) have been assembled in laminar flow devices to form efficient sacrificial valves where DFs simply open by direct contact with liquid. Here, we build on the original DF valving scheme to leverage sophisticated, merely rotationally actuated vapour barriers and flow control for enabling comprehensive assay integration with low-complexity instrumentation on "lab-on-a-disc" platforms. The advanced sacrificial valving function is achieved by creating an inverted gas-liquid stack upstream of the DF during priming of the system. At low rotational speeds, a pocket of trapped air prevents a surface-tension stabilized liquid plug from wetting the DF membrane. However, high-speed rotation disrupts the metastable gas/liquid interface to wet the DF and thus opens the valve. By judicious choice of the radial position and geometry of the valve, the burst frequency can be tuned over a wide range of rotational speeds nearly 10 times greater than those attained by common capillary burst valves based on hydrophobic constrictions. The broad range of reproducible burst frequencies of the DF valves bears the potential for full integration and automation of comprehensive, multi-step biochemical assay protocols. In this report we demonstrate DF valving, discuss the biocompatibility of using the films, and show a potential sequential valving system including the on-demand release of on-board stored liquid reagents, fast centrifugal sedimentation and vigorous mixing; thus providing a viable basis for use in lab-on-a-disc platforms for point-of-care diagnostics and other life science applications.

  8. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  9. The importance of valve alignment in determining the pressure/flow characteristics of differential pressure shunt valves with anti-gravity devices.

    PubMed

    Francel, P C; Stevens, F A; Tompkins, P; Pollay, M

    2001-02-01

    The proper functioning of shunt valves in vivo is dependent on many factors, including the valve itself, the anti-siphon device or ASD (if included), patency of inlet and outlet tubing, and location of the valve. One important, but sometimes overlooked, consideration in valve function is the valve location relative to the tip of the ventricular inlet catheter. As with any pressure measurement, the zero or reference position is an important concept. In the case of shunt valves, the position of the proximal inlet catheter tip is fixed and therefore serves as the reference point for all pressure measurements. This study was conducted to document the importance of this relationship for the pressure/flow characteristics of the shunt valve. We bench-tested differential pressure valves (with integral anti-gravity devices; AGDs) from three manufacturers. Valves were connected to an "infinite" reservoir, and the starting head pressure for each was determined from product inserts. The inlet catheter tip was fixed at this position, and the valve body was moved in relation to the inlet catheter tip. Outflow rates were determined gravimetrically for positions varying between 4 cm above and 8 cm below the inlet catheter tip. All differential pressure valves utilized in this study that contained AGDs showed significant increases in outflow rate as the valve body was moved incrementally below the level of the inlet catheter tip. To allow functioning as a zero-hydrostatic pressure differential pressure valve, the AGD and the inlet catheter tip should be aligned at the same horizontal level.

  10. Valve actuator for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T.

    1987-06-16

    A valve actuating mechanism is described for an overhead valve and overhead cam type internal combustion engine in which the camshaft is positioned above and between the valve and a cam follower seat member in a cylinder head of the engine. The cam follower seat member is threadedly mounted in the cylinder head and has a semi-spherical recess facing upwardly. A cam follower has an adjustable bolt threadedly received in one end of the cam follower. The adjustable bolt has a spherical fulcrum engaging the semispherical recess of the seat member. The cam follower also has a downwardly facing meansmore » on the other end for engaging the valve and an upwardly facing slipper face for sliding engagement with a cam on the camshaft. The cam is adapted to rotate across the slipper face in the direction of the valve. The slipper face has a surface shape for engaging the cam at the start of valve-lifting movement of the cam follower at a point through which a line tangent to the slipper face is substantially parallel to a line through contact points between the cam follower. The seat member and valve for minimizing the lateral forces are imposed on the cam follower by the cam at the start of the valve-lifting movement.« less

  11. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  12. [Ahmed valve in glaucoma surgery].

    PubMed

    Bikbov, M M; Khusnitdinov, I I

    This is a review on Ahmed valve application in glaucoma surgery. It contains, in particular, data on the Ahmed valve efficiency, results of experimental and histological studies of filtering bleb encapsulation, examines the use of antimetabolites and anti-VEGF agents, and discusses implantation techniques. The current appraisal of antimetabolites delivery systems integrated into the Ahmed valve is presented. Various complications encountered in practice and preventive measures are also covered.

  13. Streamline coal slurry letdown valve

    DOEpatents

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  14. Bacillus Classification Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry-Effects of Culture Conditions.

    PubMed

    Shu, Lin-Jie; Yang, Yu-Liang

    2017-11-14

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a reliable and rapid technique applied widely in the identification and classification of microbes. MALDI-TOF MS has been used to identify many endospore-forming Bacillus species; however, endospores affect the identification accuracy when using MALDI-TOF MS because they change the protein composition of samples. Since culture conditions directly influence endospore formation and Bacillus growth, in this study we clarified how culture conditions influence the classification of Bacillus species by using MALDI-TOF MS. We analyzed members of the Bacillus subtilis group and Bacillus cereus group using different incubation periods, temperatures and media. Incubation period was found to affect mass spectra due to endospores which were observed mixing with vegetative cells after 24 hours. Culture temperature also resulted in different mass spectra profiles depending on the temperature best suited growth and sporulation. Conversely, the four common media for Bacillus incubation, Luria-Bertani agar, nutrient agar, plate count agar and brain-heart infusion agar did not result in any significant differences in mass spectra profiles. Profiles in the range m/z 1000-3000 were found to provide additional data to the standard ribosomal peptide/protein region m/z 3000-15000 profiles to enable easier differentiation of some highly similar species and the identification of new strains under fresh culture conditions. In summary, control of culture conditions is vital for Bacillus identification and classification by MALDI-TOF MS.

  15. Project W-314 acceptance test report HNF-4643 for HNF-4642 241-AN-A valve pit manifold valves and position indication for project W-314

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAMMERS, J.S.

    1999-09-22

    The purpose of the test was to verify that the AN Tank Farm Manifold Valves can be manually manipulated to the required operating position and that the electrical and visual indications accurately reflect that position. Physical locking devices were also verified to function. The Acceptance Test Procedure HNF-4642, 241-AN-A Valve Pit Manifold Valves and Position Indication was conducted between 23 June and 10 August 1999 at the 200E AN Tank Farm. The test has no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed, this had an impact on the procedure and testmore » results, ECN 653752 was written to correct the mismatch between the procedure and actual field conditions. P&ID H-14-100941 was changed via ECN-W-314-4C-120. All components, identified in the procedure, were not found to be labeled and identified as written in the procedure, temporary tags were used for operational identification. A retest of valve ANA-WT-V 318 was required because it was removed from its installed position and modified after testing was completed.« less

  16. Percutaneous Pulmonary Valve Placement

    PubMed Central

    Prieto, Lourdes R.

    2015-01-01

    Patients with congenital heart disease and pulmonary valve disease need multiple procedures over their lifetimes to replace their pulmonary valves. Chronic pulmonary stenosis, regurgitation, or both have untoward effects on ventricular function and on the clinical status of these patients. To date, all right ventricle–pulmonary artery conduits have had relatively short lifespans. Percutaneous pulmonary valve implantation, although relatively new, will probably reduce the number of operative procedures that these patients will have to undergo over a lifetime. Refinement and further development of this procedure holds promise for the extension of this technology to other patient populations. PMID:26175629

  17. A thin film nitinol heart valve.

    PubMed

    Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P

    2005-11-01

    In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.

  18. Electromagnetic Smart Valves for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.

    2004-06-01

    Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.

  19. Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves.

    PubMed

    Scanlan, Adam B; Nguyen, Alex V; Ilina, Anna; Lasso, Andras; Cripe, Linnea; Jegatheeswaran, Anusha; Silvestro, Elizabeth; McGowan, Francis X; Mascio, Christopher E; Fuller, Stephanie; Spray, Thomas L; Cohen, Meryl S; Fichtinger, Gabor; Jolley, Matthew A

    2018-03-01

    Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.

  20. Prosthetic Aortic Valves: Challenges and Solutions

    PubMed Central

    Musumeci, Lucia; Jacques, Nicolas; Hego, Alexandre; Nchimi, Alain; Lancellotti, Patrizio; Oury, Cécile

    2018-01-01

    Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting millions of people worldwide. Severe AVD is treated in most cases with prosthetic aortic valve replacement, which involves the substitution of the native aortic valve with a prosthetic one. In this review we will discuss the different types of prosthetic aortic valves available for implantation and the challenges faced by patients, medical doctors, researchers and manufacturers, as well as the approaches that are taken to overcome them. PMID:29868612

  1. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  2. Bicuspid aortic valves: diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT.

    PubMed

    Murphy, David J; McEvoy, Sinead H; Iyengar, Sri; Feuchtner, Gudrun; Cury, Ricardo C; Roobottom, Carl; Baumueller, Stephan; Alkadhi, Hatem; Dodd, Jonathan D

    2014-08-01

    To assess the diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT for bicuspid aortic valves. The standard axial chest CT scans of 20 patients with known bicuspid aortic valves were blindly, randomly analyzed for (i) the appearance of the valve cusps, (ii) the largest aortic sinus area, (iii) the longest aortic cusp length, (iv) the thickest aortic valve cusp and (v) valve calcification. A second blinded reader independently analyzed the appearance of the valve cusps. Forty-two age- and sex-matched patients with known tricuspid aortic valves were used as controls. Retrospectively ECG-gated cardiac CT multiphase reconstructions of the aortic valve were used as the gold-standard. Fourteen (21%) scans were scored as unevaluable (7 bicuspid, 7 tricuspid). Of the remainder, there were 13 evaluable bicuspid valves, ten of which showed an aortic valve line sign, while the remaining three showed a normal Mercedes-Benz appearance owing to fused valve cusps. The 35 evaluable tricuspid aortic valves all showed a normal Mercedes-Benz appearance (P=0.001). Kappa analysis=0.62 indicating good interobserver agreement for the aortic valve cusp appearance. Aortic sinus areas, aortic cusp lengths and aortic cusp thicknesses of ≥ 3.8 cm(2), 3.2 cm and 1.6mm respectively on standard axial chest CT best distinguished bicuspid from tricuspid aortic valves (P<0.0001 for all). Of evaluable scans, the sensitivity, specificity, positive and negative predictive values of standard axial chest CT in diagnosing bicuspid aortic valves was 77% (CI 0.54-1.0), 100%, 100% and 70% respectively. The aortic valve is evaluable in approximately 80% of standard chest 64-slice CT scans. Bicuspid aortic valves may be diagnosed on evaluable scans with good diagnostic accuracy. An aortic valve line sign, enlarged aortic sinuses and elongated, thickened valve cusps are specific CT features. Copyright © 2014 Elsevier Ireland Ltd. All rights

  3. Design criteria monograph for valve components

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph treats valve design technology problems as they were solved in successful development of flightweight operational valves for liquid rocket systems. General practices for cleaning and contamination prevention are summarized. Balance of information is arranged by topic, since detail design requirements apply to most types of valves.

  4. Indication for percutaneous aortic valve implantation

    PubMed Central

    Akin, Ibrahim; Kische, Stephan; Rehders, Tim C.; Nienaber, Christoph A.; Rauchhaus, Mathias; Schneider, Henrik; Liebold, Andreas

    2010-01-01

    The incidence of valvular aortic stenosis has increased over the past decades due to improved life expectancy. Surgical aortic valve replacement is currently the only treatment option for severe symptomatic aortic stenosis that has been shown to improve survival. However, up to one third of patients who require lifesaving surgical aortic valve replacement are denied surgery due to high comorbidities resulting in a higher operative mortality rate. In the past such patients could only be treated with medical therapy or percutaneous aortic valvuloplasty, neither of which has been shown to improve mortality. With advances in interventional cardiology, transcatheter methods have been developed for aortic valve replacement with the goal of offering a therapeutic solution for patients who are unfit for surgical therapy. Currently there are two catheter-based treatment systems in clinical application (the Edwards SAPIEN aortic valve and the CoreValve ReValving System), utilizing either a balloon-expandable or a self-expanding stent platform, respectively. PMID:22371763

  5. MEMS Micro-Valve for Space Applications

    NASA Technical Reports Server (NTRS)

    Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.

    1998-01-01

    We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.

  6. Transapical Transcatheter Aortic Valve Implantation Using the JenaValve: A One-Year Follow-up.

    PubMed

    Reuthebuch, Oliver; Koechlin, Luca; Kaufmann, Beat A; Kessel-Schaefer, Arnheid; Gahl, Brigitta; Eckstein, Friedrich S

    2015-09-01

    Since the first transcatheter aortic valve implantation (TAVI) in 2002, TAVI technique has gained an increasing popularity especially in high-risk patients. In this study, we present the first echocardiographic midterm outcome with the second-generation transapical JenaValve TAVI system (JenaValve Technology GmbH, Munich, Germany) in patients with aortic stenosis (AS). Between November 2011 and November 2012, a total of 28 patients received transapical TAVI using the JenaValve. Primary endpoint was a combined efficacy endpoint after 1 year, which included all-cause mortality after more than 30 days, failure of current therapy for AS requiring hospitalization for symptoms of valve-related cardiac decompensation or prosthetic heart valve dysfunction. Moreover, we analyzed secondary endpoints after 3 and 12 months including cardiovascular mortality; major stroke; and life-threatening, disabling, or major bleeding. Mean echocardiographic follow-up was 471.35 ± 102.72 days. Mean age was 80.43 ± 6.03 years and EuroSCORE II was 8.80 ± 7.21%. Successful implantation was accomplished in 100% (n = 28). Median transvalvular aortic mean pressure gradient was 44.5 mm Hg (interquartile range [IQR]: 34.5; 55.5) preoperatively, 12 mm Hg (IQR: 9; 16) postoperatively, and 11 mm Hg (IQR: 8; 16) after 1 year. After 12 months, no paravalvular leakage was seen in 52.38% of the patients and grade 1 paravalvular leakage was seen in 47.62% of the patients. There was no grade 2 or 3 leakage detected. Stroke, valve thrombosis or dislocation, myocardial infarction, or bleeding was also not observed. However, criteria for the combined efficacy endpoint after 1 year were met in five patients (17.86%). Thirty-day mortality was 14.29% (n = 4) and all-cause mortality after 1 year was 21.43% (n = 6). The JenaValve transapical TAVI system is a safe and feasible procedure with low peri- and postoperative complications and convincing midterm performance of the

  7. Valve leakage inspection, testing, and maintenance process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, J.A.; Reinwald, J.W.

    1989-01-01

    Atomic Energy of Canada Limited-Research Company (AECL-RC), Chalk River, has more than 50 person-years dedicated toward the leak-free valve. In the early 1970s, the Chalk River Nuclear Laboratories (CRNL) developed valve stem live-loading and recently completed the packing tests for the Electric Power Research Institute (EPRI)-funded Valve Packing Improvement Study. Current safety concerns with asbestos-based valve packings and the difficulty in removing newer graphite packings prompted CRNL to investigate methods to improve valve repacking procedures. The present practice of valve packing replacement is very labor-intensive, requiring use of hand tools such as corkscrew devices and special packing picks. Use ofmore » water jets to cut or fragment the packing for withdrawal from the stuffing box does improve the process, but removal of the lantern or junk rings is still difficult. To address these problems, AECL-RC has developed a unique valve maintenance process designed to reduce person-rem exposures, the risk of scoring the stem or stuffing box, and maintenance costs and to improve the engineering quality of valve repair.« less

  8. High precision high flow range control valve

    DOEpatents

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  9. High precision high flow range control valve

    DOEpatents

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  10. Classification of yeast cells from image features to evaluate pathogen conditions

    NASA Astrophysics Data System (ADS)

    van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.

    2007-01-01

    Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.

  11. 49 CFR 229.109 - Safety valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Safety valves. 229.109 Section 229.109..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.109 Safety valves. Every steam generator shall be equipped with at least two safety valves that have a...

  12. 49 CFR 229.109 - Safety valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Safety valves. 229.109 Section 229.109..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.109 Safety valves. Every steam generator shall be equipped with at least two safety valves that have a...

  13. Valve for fuel pin loading system

    DOEpatents

    Christiansen, David W.

    1985-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  14. Fluid–Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toma, Milan; Jensen, Morten Ø.; Einstein, Daniel R.

    2015-07-17

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in-vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves weremore » mounted in an in vitro setup, and structural data for the mitral valve was acquired with *CT. Experimental data from the in-vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed lea et dynamics, and force vectors from the in-vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements are important in validating and adjusting material parameters in computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.« less

  15. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.

    PubMed

    Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S

    2016-04-01

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  16. Valve and dash-pot assembly

    DOEpatents

    Chang, Shih-Chih

    1986-01-01

    A dash-pot valve comprising a cylinder submerged in the fluid of a housing and having a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with tangentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.

  17. Sequenced drive for rotary valves

    DOEpatents

    Mittell, Larry C.

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  18. Statins for aortic valve stenosis.

    PubMed

    Thiago, Luciana; Tsuji, Selma Rumiko; Nyong, Jonathan; Puga, Maria Eduarda Dos Santos; Góis, Aécio Flávio Teixeira de; Macedo, Cristiane Rufino; Valente, Orsine; Atallah, Álvaro Nagib

    2016-01-01

    Aortic valve stenosis is the most common type of valvular heart disease in the USA and Europe. Aortic valve stenosis is considered similar to atherosclerotic disease. Some studies have evaluated statins for aortic valve stenosis. To evaluate the effectiveness and safety of statins in aortic valve stenosis. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS - IBECS, Web of Science and CINAHL Plus. These databases were searched from their inception to 24 November 2015. We also searched trials in registers for ongoing trials. We used no language restrictions.Selection criteria: Randomized controlled clinical trials (RCTs) comparing statins alone or in association with other systemic drugs to reduce cholesterol levels versus placebo or usual care. Data collection and analysis: Primary outcomes were severity of aortic valve stenosis (evaluated by echocardiographic criteria: mean pressure gradient, valve area and aortic jet velocity), freedom from valve replacement and death from cardiovascular cause. Secondary outcomes were hospitalization for any reason, overall mortality, adverse events and patient quality of life.Two review authors independently selected trials for inclusion, extracted data and assessed the risk of bias. The GRADE methodology was employed to assess the quality of result findings and the GRADE profiler (GRADEPRO) was used to import data from Review Manager 5.3 to create a 'Summary of findings' table. We included four RCTs with 2360 participants comparing statins (1185 participants) with placebo (1175 participants). We found low-quality evidence for our primary outcome of severity of aortic valve stenosis, evaluated by mean pressure gradient (mean difference (MD) -0.54, 95% confidence interval (CI) -1.88 to 0.80; participants = 1935; studies = 2), valve area (MD -0.07, 95% CI -0.28 to 0.14; participants = 127; studies = 2), and aortic jet velocity (MD -0.06, 95% CI -0.26 to 0

  19. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  20. 14 CFR 125.133 - Fuel valves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel valves. 125.133 Section 125.133 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....133 Fuel valves. Each fuel valve must— (a) Comply with § 125.155; (b) Have positive stops or suitable...