Sample records for vanadium nitrides

  1. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or... in USITC Publication 4345 (August 2012), entitled Ferrovanadium and Nitrided Vanadium from Russia...

  2. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Chen, Zhaohui; Lu, Gang

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings canmore » shed light on other transition metal nitride-based electrochemical energy storage systems.« less

  3. 77 FR 54897 - Ferrovanadium and Nitrided Vanadium from the Russian Federation: Revocation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... nitrided vanadium from the Russian Federation (Russia) would not be likely to lead to continuation or... the antidumping duty order on ferrovanadium and nitrided vanadium from Russia. \\1\\ See Ferrovanadium and Nitrided Vanadium From Russia, 77 FR 51825 (August 27, 2012) (ITC Final). DATES: Effective Date...

  4. 76 FR 78888 - Final Results of Expedited Sunset Review: Ferrovanadium and Nitrided Vanadium From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... Sunset Review: Ferrovanadium and Nitrided Vanadium From Russia AGENCY: Import Administration... and nitrided vanadium from the Russian Federation (Russia), pursuant to section 751(c) of the Tariff... vanadium from Russia, pursuant to section 751(c) of the Act. See Initiation of Five-Year (``Sunset...

  5. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  6. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors.

    PubMed

    Liu, Hong-Hui; Zhang, Hong-Ling; Xu, Hong-Bin; Lou, Tai-Ping; Sui, Zhi-Tong; Zhang, Yi

    2018-03-15

    Vanadium nitride and graphene have been widely used as pseudo-capacitive and electric double-layer capacitor electrode materials for electrochemical capacitors, respectively. However, the poor cycling stability of vanadium nitride and the low capacitance of graphene impeded their practical applications. Herein, we demonstrated an in situ self-sacrificed template method for the synthesis of vanadium nitride/nitrogen-doped graphene (VN/NGr) nanocomposites by the pyrolysis of a mixture of dicyandiamide, glucose, and NH 4 VO 3 . Vanadium nitride nanoparticles of the size in the range of 2 to 7 nm were uniformly embedded into the nitrogen-doped graphene skeleton. Furthermore, the VN/NGr nanocomposites with a high specific surface area and pore volume showed a high specific capacitance of 255 F g -1 at 10 mV s -1 , and an excellent cycling stability (94% capacitance retention after 2000 cycles). The excellent capacitive properties were ascribed to the excellent conductivity of nitrogen-doped graphene, high surface area, high pore volume, and the synergistic effect between vanadium nitride and nitrogen-doped graphene.

  7. 77 FR 6582 - Ferrovanadium and Nitrided Vanadium From Russia; Scheduling of a Full Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-702 (Third Review)] Ferrovanadium and Nitrided Vanadium From Russia; Scheduling of a Full Five-Year Review AGENCY: United States International... Russia would be likely to lead to continuation or recurrence of material injury within a reasonably...

  8. 76 FR 79214 - Ferrovanadium and Nitrided Vanadium From Russia; Determination To Conduct a Full Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-702 (Third Review)] Ferrovanadium and Nitrided Vanadium From Russia; Determination To Conduct a Full Five-Year Review AGENCY: United States... Russia would be likely to lead to continuation or recurrence of material injury within a reasonably...

  9. 76 FR 26243 - Initiation of Anticircumvention Inquiry on Antidumping Duty Order on Ferrovanadium and Nitrided...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... from the Russian Federation (Russia) that is converted into ferrovanadium in the United States are circumventing the antidumping duty order on ferrovanadium and nitrided vanadium (ferrovanadium) from Russia. See... CFR 351.225(c) and (g), to determine whether imports of vanadium pentoxide from Russia that is...

  10. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    PubMed

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  12. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  13. Tribo-electrochemical characterization of hafnium multilayer systems deposited on nitride/vanadium nitride AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Mora, M.; Vera, E.; Aperador, W.

    2016-02-01

    In this work is presented the synergistic behaviour among corrosion/wear (tribocorrosion) of the multilayer coatings hafnium nitride/vanadium nitride [HfN/VN]n. The multilayers were deposited on AISI 4140 steel using the technique of physical vapor deposition PVD magnetron sputtering, the tests were performed using a pin-on-disk tribometer, which has an adapted potentiostat galvanostat with three-electrode electrochemical cell. Tribocorrosive parameters such as: Friction coefficient between the coating and the counter body (100 Cr6 steel ball); Polarization resistance by means of electrochemical impedance spectroscopy technique and corrosion rate by polarization curves were determined. It was observed an increase in the polarization resistance, a decrease in the corrosion rate and a low coefficient of friction in comparison with the substrate, due to an increase on the number of bilayers.

  14. 77 FR 46712 - Ferrovanadium and Nitrided Vanadium From the Russian Federation: Negative Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Determination We determine that the importation of vanadium pentoxide from the Russian Federation (Russia) by...) from Russia, within the meaning of section 781(a) of the Tariff Act of 1930, as amended (the Act). \\1... its negative preliminary determination that Evraz's imports of vanadium pentoxide from Russia that are...

  15. Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes.

    PubMed

    Ran, Fen; Wu, Yage; Jiang, Minghuan; Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2018-03-28

    In this study, a hybrid electrode material for supercapacitors based on hierarchical porous carbon fiber@vanadium nitride nanoparticles is fabricated using the method of phase-separation mediated by the PAA-b-PAN-b-PAA tri-block copolymer. In the phase-separation procedure, the ionic block copolymer self-assembled on the surface of carbon nanofibers, and is used to adsorb NH 4 VO 3 . Thermal treatment at controlled temperatures under an NH 3  : N 2 atmosphere led to the formation of vanadium nitride nanoparticles that are distributed uniformly on the nanofiber surface. By changing the PAN to PAA-b-PAN-b-PAA ratio in the casting solution, a maximum specific capacitance of 240.5 F g -1 is achieved at the current density of 0.5 A g -1 with good rate capability at a capacitance retention of 72.1% at 5.0 A g -1 in an aqueous electrolyte of 6 mol L -1 KOH within the potential range of -1.10 to 0 V (rN/A = 1.5/1.0). Moreover, an asymmetric supercapacitor is assembled by using the hierarchical porous carbon fiber@vanadium nitride as the negative electrode and Ni(OH) 2 as the positive electrode. Remarkably, at the power density of 400 W kg -1 , the supercapacitor device delivers a better energy density of 39.3 W h kg -1 . It also shows excellent electrochemical stability, and thus might be used as a promising energy-storage device.

  16. The Electronic Structure and Field Effects of an Organic-Based Room Temperature Magnetic Semiconductor

    DTIC Science & Technology

    2007-01-01

    used. Other materials used in this study include: microscope slide glass for transistor substrates (Gold Seal), silicon nitride, Si3N4, sputtering...with the top in place. At LBNL the glass tubes were placed in a nitrogen filled glove bag attached to the XAS sample chamber where they were...valences such as vanadium(II) oxide (VO), vanadium(III) oxide (V2O3), vanadium(IV) oxide (VO2), and vanadium(IV) oxide ( V2O5 ). V2O3 in particular is an

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkar, Tushar; Nag, Soumya; Ren, Yang

    Coupled in situ alloying and nitridation of titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and vanadium elemental powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting microstructure includes precipitates of the d-TiN phase with the NaCl structure, equiaxed (or globular) precipitates of a nitrogen enriched hcp a(Ti,N) phase with a c/a ratio more than what is expected for pure hcp Ti, and fine scale plate-shaped precipitates of hcp a-Ti, distributed within a bcc b matrix. During SPS processing, the d-TiN phase appears tomore » form at a temperature of 1400 C, while only hcp a(Ti,N) and a-Ti phases form at lower processing temperatures. Consequently, the highest microhardness is exhibited by the composite processed at 1400 C while those processed at 1300 C or below exhibit lower values. Processing at temperatures below 1300 C, resulted in an incomplete alloying of the blend of titanium and vanadium powders. These d-TiN precipitates act as heterogeneous nucleation sites for the a(Ti,N) precipitates that appear to engulf and exhibit an orientation relationship with the nitride phase at the center. Furthermore, fine scale a-Ti plates are precipitated within the nitride precipitates, presumably resulting from the retrograde solubility of nitrogen in titanium.« less

  18. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    DTIC Science & Technology

    2014-08-15

    AFRL-RX-WP-JA-2014-0177 REACTIVE SPARK PLASMA SINTERING (SPS) OF NITRIDE REINFORCED TITANIUM ALLOY COMPOSITES (POSTPRINT) Jaimie S...titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and...lcomReactive spark plasma sintering (SPS) of nitride reinforced titanium alloy compositeshttp://dx.doi.org/10.1016/j.jallcom.2014.08.049 0925-8388

  19. The role of electronegativity on the extent of nitridation of group 5 metals as revealed by reactions of tantalum cluster cations with ammonia molecules.

    PubMed

    Arakawa, Masashi; Ando, Kota; Fujimoto, Shuhei; Mishra, Saurabh; Patwari, G Naresh; Terasaki, Akira

    2018-05-10

    Reactions of the free tantalum cation, Ta+, and tantalum cluster cations, Tan+ (n = 2-10), with ammonia are presented. The reaction of the monomer cation, Ta+, with two molecules of NH3 leads to the formation of TaN2H2+ along with release of two H2 molecules. The dehydrogenation occurs until the formal oxidation number of the tantalum atom reaches +5. On the other hand, all the tantalum cluster cations, Tan+, react with two molecules of NH3 and form TanN2+ with the release of three H2 molecules. Further exposure to ammonia showed that TanNmH+ and TanNm+ are produced through successive reactions; a pure nitride and three H2 molecules are formed for every other NH3 molecule. The nitridation occurred until the formal oxidation number of the tantalum atoms reaches +5 as in the case of TaN2H2+ in contrast to other group 5 elements, i.e., vanadium and niobium, which have been reported to produce nitrides with lower oxidation states. The present results on small gas-phase metal-nitride clusters show correlation with their bulk properties: tantalum is known to form bulk nitrides in the oxidation states of either +5 (Ta3N5) or +3 (TaN), whereas vanadium and niobium form nitrides in the oxidation state of +3 (VN and NbN). Along with DFT calculations, these findings reveal that nitridation is driven by the electron-donating ability of group 5 elements, i.e., electronegativity of the metal plays a key role in determining the composition of the metal nitrides.

  20. Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, L.; Kim, B. K.; Was, G. S.

    The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less

  1. Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation

    DOE PAGES

    Tan, L.; Kim, B. K.; Was, G. S.

    2017-09-06

    The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less

  2. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.

    2017-02-01

    In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.

  3. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  4. Inducing microstructural changes in Nafion by incorporating graphitic carbon nitride to enhance the vanadium-blocking effect.

    PubMed

    Wu, Chunxiao; Lu, Shanfu; Zhang, Jin; Xiang, Yan

    2018-03-14

    Two-dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets are introduced into a Nafion matrix to prepare a 'vanadium-blocking' recast Nafion membrane for vanadium redox flow battery (VRFB) applications. After 0.2 wt% g-C 3 N 4 nanosheets are incorporated, the vanadium ion permeability of the composite membrane decreases from 3.3 × 10 -7 cm 2 min -1 to 3.8 × 10 -9 cm 2 min -1 , which is a reduction of two orders of magnitude in comparison to the pristine recast Nafion membrane. This satisfactory result contributes to the physical blocking effect as well as the Donnan effect from the 2D morphology and functional amino groups of g-C 3 N 4 nanosheets. Notably, this work reveals that the g-C 3 N 4 nanosheets can help reinforce the vanadium-blocking effect by changing the microstructure of Nafion in addition to the well-known effects mentioned above. The g-C 3 N 4 nanosheets induce shrinkage in the original spherical structure of the ion cluster and generate a new lamellar structure. Correspondingly, the amorphous phase of Nafion is interrupted, and the membrane crystallinity is reduced. The VRFB with an optimized composite membrane achieves a high coulombic efficiency of 97% and an energy efficiency of 83% at a current density of 160 mA cm -2 . Meanwhile, the battery exhibited excellent lifetime stability during a 100 charge-discharge cycling test.

  5. Investigation of the Kinetic Energy Characterization of Advanced Ceramics

    DTIC Science & Technology

    2015-04-01

    of Science, under a US Army International Technology Center contract. These ceramic formulations were compared with standard armor-grade boron ...Experimental Methodology 1 3. Results and Discussion 4 3.1 Aluminum Performance Baseline 4 3.2 Ceramic Inspection 6 3.3 Boron Carbide 6 3.4 Silicon...Carbide 7 3.5 Boron Carbide–Aluminum Nitride 7 3.6 Boron Carbide–Vanadium Diboride 7 3.7 Titanium Nitride–Aluminum Nitride 8 3.8 Comparative

  6. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  7. Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition

    NASA Astrophysics Data System (ADS)

    France, Ryan; Xu, Tao; Chen, Papo; Chandrasekaran, R.; Moustakas, T. D.

    2007-02-01

    The authors report on the formation and evaluation of V-based Ohmic contacts to n-AlGaN films in the entire alloy composition. The films were produced by plasma assisted molecular beam epitaxy and doped n-type with Si. The conductivity of the films was determined to vary from 103to10-2(Ωcm )-1 as the AlN mole fraction increases from 0% to 100%. Ohmic contacts were formed by e-beam evaporation of V(15nm )/Al(80nm)/V(20nm)/Au(100nm). These contacts were rapid thermal annealed in N2 for 30s at various temperatures. The optimum annealing temperature for this contact scheme to n-GaN is about 650°C and increases monotonically to about 1000°C for 95%-100% AlN mole fraction. The specific contact resistivity was found to be about 10-6Ωcm2 for all films up to 70% AlN mole fraction and then increases to 0.1-1Ωcm2 for films from 95%-100% AlN mole fraction. These results were accounted for by hypothesizing that vanadium, upon annealing, interacts with the nitride film and forms vanadium nitride, which is consistent with reports that it is a metal with low work function.

  8. Application of hard coatings to substrates at low temperatures

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1993-01-01

    BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.

  9. Nitriding of titanium and titanium: 8 percent aluminum, 1 percent molybdenum, 1 percent vanadium alloy with an ion-beam source

    NASA Technical Reports Server (NTRS)

    Gill, A.

    1983-01-01

    Titanium and Ti-8Al-1Mo-1V alloy were nitrided with an ion-beam source of nitrogen or argon and nitrogen at a total pressure of 2 x 10 to the minus 4th power to 10 x 10 to the minus 4th power torr. The treated surface was characterized by surface profilometry, X-ray diffractometry, Auger electron spectroscopy and microhardness measurements. The tetragonal Ti2N phase formed in pure titanium and Ti-8Al-1Mo-1V alloy with traces of AlN in the alloy. Two opposite processes competed during the ion-beam-nitriding process: (1) formation of nitrides in the surface layer and (2) sputtering of the nitrided layers by the ion beam. The highest surface hardnesses, about 500 kg/sq mm in titanium and 800 kg/sq mm in Ti-8Al-1Mo-1V, were obtained by ion nitriding with an ion beam of pure nitrogen at 4.2 x 10 to the minus 4th power torr at a beam voltage of 1000 V.

  10. Microstructural and opto-electrical properties of chromium nitride films implanted with vanadium ions

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Traverse, A.; Popović, M.; Lieb, K. P.; Zhang, K.; Bibić, N.

    2012-07-01

    We report on modifications of 280-nm thin polycrystalline CrN layers caused by vanadium ion implantation. The CrN layers were deposited at 150°C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 80-keV V+ ions to fluences of 1×1017 and 2×1017 ions/cm2. Rutherford backscattering spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction were used to characterize changes in the structural properties of the films. Their optical and electrical properties were analyzed by infrared spectroscopy in reflection mode and electrical resistivity measurements. CrN was found to keep its cubic structure under the conditions of vanadium ion implantation used here. The initially partially non-metallic CrN layer displays metallic character under implantation, which may be related to the possible formation of Cr1-x V x N.

  11. 76 FR 54490 - Ferrovanadium and Nitrided Vanadium From Russia; Institution of a Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... and demand conditions or business cycle for the Domestic Like Product that have occurred in the United... Carol McCue Verratti, Deputy Agency Ethics Official, at 202- 205-3088. Limited disclosure of business... business association, or another interested party (including an explanation). If you are a union/worker...

  12. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  13. Concise N-doped Carbon Nanosheets/Vanadium Nitride Nanoparticles Materials via Intercalative Polymerization for Supercapacitors.

    PubMed

    Tan, Yongtao; Liu, Ying; Tang, Zhenghua; Wang, Zhe; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen

    2018-02-13

    N-doped carbon nanosheets/vanadium nitride nanoparticles (N-CNS/VNNPs) are synthesized via a novel method combining surface-initiated in-situ intercalative polymerization and thermal-treatment process in NH 3 /N 2 atmosphere. The pH value of the synthesis system plays a critical role in constructing the structure and enhancing electrochemical performance for N-CNS/VNNPs, which are characterized by SEM, TEM, XRD, and XPS, and measured by electrochemical station, respectively. The results show that N-CNS/VNNPs materials consist of 2D N-doped carbon nanosheets and 0D VN nanoparticles. With the pH value decreasing from 2 to 0, the sizes of both carbon nanosheets and VN nanoparticles decreased to smaller in nanoscale. The maximum specific capacitance of 280 F g -1 at the current density of 1 A g -1 for N-CNS/VNNPs is achieved in three-electrode configuration. The asymmetric energy device of Ni(OH) 2 ||N-CNS/VNNPs offers a specific capacitance of 89.6 F g -1 and retention of 60% at 2.7 A g -1 after 5000 cycles. The maximum energy density of Ni(OH) 2 ||N-CNS/VNNPs asymmetric energy device is as high as 29.5 Wh kg -1 .

  14. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.

    PubMed

    Ma, Lianbo; Yuan, Hao; Zhang, Wenjun; Zhu, Guoyin; Wang, Yanrong; Hu, Yi; Zhao, Peiyang; Chen, Renpeng; Chen, Tao; Liu, Jie; Hu, Zheng; Jin, Zhong

    2017-12-13

    Lithium-sulfur (Li-S) batteries hold great promise for the applications of high energy density storage. However, the performances of Li-S batteries are restricted by the low electrical conductivity of sulfur and shuttle effect of intermediate polysulfides. Moreover, the areal loading weights of sulfur in previous studies are usually low (around 1-3 mg cm -2 ) and thus cannot fulfill the requirement for practical deployment. Herein, we report that porous-shell vanadium nitride nanobubbles (VN-NBs) can serve as an efficient sulfur host in Li-S batteries, exhibiting remarkable electrochemical performances even with ultrahigh areal sulfur loading weights (5.4-6.8 mg cm -2 ). The large inner space of VN-NBs can afford a high sulfur content and accommodate the volume expansion, and the high electrical conductivity of VN-NBs ensures the effective utilization and fast redox kinetics of polysulfides. Moreover, VN-NBs present strong chemical affinity/adsorption with polysulfides and thus can efficiently suppress the shuttle effect via both capillary confinement and chemical binding, and promote the fast conversion of polysulfides. Benefiting from the above merits, the Li-S batteries based on sulfur-filled VN-NBs cathodes with 5.4 mg cm -2 sulfur exhibit impressively high areal/specific capacity (5.81 mAh cm -2 ), superior rate capability (632 mAh g -1 at 5.0 C), and long cycling stability.

  15. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)

    DOE PAGES

    Urbankowski, Patrick; Anasori, Babak; Hantanasirisakul, Kanit; ...

    2017-11-08

    MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti 4N 3 and Ti 2N are the only nitride MXenes reported so far. Here by ammoniation of Mo 2CT x and V 2CT x MXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures ofmore » the resulting Mo 2N and V 2N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo 2N retains the MXene structure and V 2C transforms to a mixed layered structure of trigonal V 2N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo2N and V2N are three and one order of magnitude larger than those of the Mo 2CT x and V 2CT x precursors, respectively. In conclusion, this study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis.« less

  16. Selected fretting-wear-resistant coatings for titanium - 6-percent-aluminum - 4-percent-vanadium alloy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1976-01-01

    A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface.

  17. The effects of composition and thermal path on hot ductility of forging steels

    NASA Astrophysics Data System (ADS)

    Connolly, Brendan M.

    This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.

  18. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  19. Fabrication and design of vanadium oxide microbolometer

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, M.; Al-Khalli, N.; Zia, M. F.; Alduraibi, M.; Ilahi, B.; Awad, E.; Debbar, N.

    2017-02-01

    Vanadium oxide (VxOy) multilayer sandwich structures previously studied by our group were found to yield a sensitive thermometer thin film material suitable for microbolometer applications. In this work, we aim to estimate the performance of a proposed air-bridge microbolometer configuration based on VxOy multilayer sandwich structure thermometer thin films. For this purpose, a microbolometer was fabricated on silicon (Si) substrate covered with a silicon nitride (Si3N4) insulating layer using VxOy thermometer thin film material. The fabricated microbolometer was patterned using electron-beam lithography and liftoff techniques and it was characterized in terms of its voltage repsonsivity (Rv), signal to noise ratio (SNR), noise equivalent power (NEP) and detectivity D*. A model was then developed by the aid of numerical optical/thermal simulations and experimentally measured parameters to estimate the performance of the microbolometer when fabricated in an air-bridge configuration. The estimated D* was found to be 1.55×107 cm.√Hz/ W.

  20. Wide Bandgap Extrinsic Photoconductive Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductivemore » switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.« less

  1. Low Temperature Film Growth of the Oxides of Zinc, Aluminum, and Vanadium (and Related Systems, Oxides of Gold and Germanium, Nitrides of Aluminum and Tungsten) by Reactive Sputter Deposition.

    DTIC Science & Technology

    1988-02-01

    the optical behavior of the material in its preswitched, or A Perkin-Elmer Model 330 UV - Visible -IR double beam ,% spectrophotometer with a specular...S ~ * ." at.* U a * . a. *%~ ~9g 0 ~ --- a.. ’ a * ~ .r~vaa- *a,~ * ~ * ~****.,*a,* *** UV - Visible -IR Optical Behavior of Sputter Deposited Gee x...Films deposited in 0 to 60% Ar were nominally germania. However, transmission in the UV - visible , the strength of the 245nm defect center, the optical

  2. Electrospinning of ceramic nanofibers

    NASA Astrophysics Data System (ADS)

    Eick, Benjamin M.

    Silicon Carbide (SiC) nanofibers of diameters as low as 20 nm are fabricated. The fibers were produced through the electrostatic spinning of the preceramic poly(carbomethylsilane) with pyrolysis to ceramic. A new technique was used where the preceramic was blended with polystyrene (PS) and, subsequent to electrospinning, was exposed to UV to crosslink the PS and prevent fibers flowing during pyrolysis. Electrospun SiC fibers were characterized by FTIR, TGA-DTA, SEM, TEM, XRD, and SAED. Fibers were shown to be polycrystalline and nanograined with alpha-SiC 15R polytype being dominant, where commercial fiber production methods form beta-SiC 3C. Pyrolysis of the bulk polymer blend to SiC produced alpha-SiC 15R as the dominant polytype with larger grains showing that electrospinning nanofibers affects resultant crystallinity. Fibers produced were shown to have a core-shell structure of an oxide scale that was variable by pyrolysis conditions. Metal oxide powders (chromium oxide, cobalt oxide, iron oxide, silicon oxide, tantalum oxide, titanium oxide, tungsten oxide, vanadium oxide, and zirconium oxide), were converted to metal carbide powders and metal nitride powders by the process of carbothermal reduction (CTR). Synthetic pitch was explored as an alternative to graphite which is a common carbon source for CTR. It was shown via characterization with XRD that pitch performs as well and in some cases better than graphite and is therefore a viable alternative in CTR. Conversion of metal oxide powders with pitch led to conversion of sol-gel based metal oxide nanofibers produced by electrospinning. Pitch was soluble in the solutions xv that were electrospun allowing for intimate contact between the sol-gel and the carbon source for CTR. This method became a two step processing method to produce metal carbide and nitride nanofibers: first electrospin sol-gel based metal oxide nanofibers and subsequently pyrolize them in the manner of CTR to transform them. Results indicate that this method was capable of transforming hafnium, niobium, tantalum, titanium, vanadium, and zirconium sol-gel nanofibers to metal carbides and nitrides.

  3. Wrapping Aligned Carbon Nanotube Composite Sheets around Vanadium Nitride Nanowire Arrays for Asymmetric Coaxial Fiber-Shaped Supercapacitors with Ultrahigh Energy Density.

    PubMed

    Zhang, Qichong; Wang, Xiaona; Pan, Zhenghui; Sun, Juan; Zhao, Jingxin; Zhang, Jun; Zhang, Cuixia; Tang, Lei; Luo, Jie; Song, Bin; Zhang, Zengxing; Lu, Weibang; Li, Qingwen; Zhang, Yuegang; Yao, Yagang

    2017-04-12

    The emergence of fiber-shaped supercapacitors (FSSs) has led to a revolution in portable and wearable electronic devices. However, obtaining high energy density FSSs for practical applications is still a key challenge. This article exhibits a facile and effective approach to directly grow well-aligned three-dimensional vanadium nitride (VN) nanowire arrays (NWAs) on carbon nanotube (CNT) fiber with an ultrahigh specific capacitance of 715 mF/cm 2 in a three-electrode system. Benefiting from their intriguing structural features, we successfully fabricated a prototype asymmetric coaxial FSS (ACFSS) with a maximum operating voltage of 1.8 V. From core to shell, this ACFSS consists of a CNT fiber core coated with VN@C NWAs as the negative electrode, Na 2 SO 4 poly(vinyl alcohol) (PVA) as the solid electrolyte, and MnO 2 /conducting polymer/CNT sheets as the positive electrode. The novel coaxial architecture not only fully enables utilization of the effective surface area and decreases the contact resistance between the two electrodes but also, more importantly, provides a short pathway for the ultrafast transport of axial electrons and ions. The electrochemical results show that the optimized ACFSS exhibits a remarkable specific capacitance of 213.5 mF/cm 2 and an exceptional energy density of 96.07 μWh/cm 2 , the highest areal capacitance and areal energy density yet reported in FSSs. Furthermore, the device possesses excellent flexibility in that its capacitance retention reaches 96.8% after bending 5000 times, which further allows it to be woven into flexible electronic clothes with conventional weaving techniques. Therefore, the asymmetric coaxial architectural design allows new opportunities to fabricate high-performance flexible FSSs for future portable and wearable electronic devices.

  4. n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Bian, Jiming; Sun, Hongjun; Liu, Weifeng; Zhang, Yuzhi; Luo, Yingmin

    2016-12-01

    High quality VO2 films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO2 layer thickness on the SMT properties of the as-grown n-VO2/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO2/p-GaN interface were demonstrated before and after SMT of the VO2 over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+. The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements.

  5. VO2 /TiN Plasmonic Thermochromic Smart Coatings for Room-Temperature Applications.

    PubMed

    Hao, Qi; Li, Wan; Xu, Huiyan; Wang, Jiawei; Yin, Yin; Wang, Huaiyu; Ma, Libo; Ma, Fei; Jiang, Xuchuan; Schmidt, Oliver G; Chu, Paul K

    2018-03-01

    Vanadium dioxide/titanium nitride (VO 2 /TiN) smart coatings are prepared by hybridizing thermochromic VO 2 with plasmonic TiN nanoparticles. The VO 2 /TiN coatings can control infrared (IR) radiation dynamically in accordance with the ambient temperature and illumination intensity. It blocks IR light under strong illumination at 28 °C but is IR transparent under weak irradiation conditions or at a low temperature of 20 °C. The VO 2 /TiN coatings exhibit a good integral visible transmittance of up to 51% and excellent IR switching efficiency of 48% at 2000 nm. These unique advantages make VO 2 /TiN promising as smart energy-saving windows. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microstructural and microchemical studies of phase stability in V-O solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Chanchal, E-mail: chanchal@igcar.gov.in

    2017-02-15

    Over the last couple of decades vanadium and V-based alloys have received significant attention as a potential structural material for fusion power applications because of their favourable mechanical properties under irradiation and at elevated temperatures. They are also considered as the advanced options of storage materials for hydrogen and its isotopes. However, the higher affinity of V for O, C and N poses critical challenges in its engineering applications since they lead to degradation of mechanical properties. They can further interact with the matrix to produce metallic oxy-carbo-nitride precipitates. To a certain limit, these precipitates are beneficial and can bemore » exploited to enhance the mechanical behaviour of the alloy through suitable microstructural design. However, this requires a prior knowledge of the interaction between the alloy and the impurity solutes. In the present work vanadium specific experiments have been designed and carried out to bring out the V-interstitial solute interaction by charging oxygen in the near surface region of vanadium. Microstructural and microchemical behaviour of the V-O solid solution has been studied through HRTEM (high resolution transmission electron microscopy) and HAADF (high angle annular dark field) coupled with EELS. Quantitative electron microscopy has been carried out to study structural modification of the alloy in atomic level caused by O charging. - Highlights: •Controlled experiments were carried out in pulsed laser ablation set-up to promote V-O interaction. • As a consequence of O dissolution, V transformed into a bct structure which is otherwise a bcc structure. •In V-O solid solution, dissolved O in the V matrix introduces significant amount of lattice strain. • Present work can be extended for introducing interstitial O in other pure transition metals and their alloys.« less

  7. Wide Bandgap Extrinsic Photoconductive Switches

    NASA Astrophysics Data System (ADS)

    Sullivan, James Stephen

    Wide Bandgap Extrinsic Photoconductive Switches Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6H-SiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators. The successful development of a vanadium compensated, 6H-SiC extrinsic photoconductive switch for use as a closing switch for compact accelerator applications was realized by improvements made to the vanadium, nitrogen and boron impurity densities. The changes made to the impurity densities were based on the physical intuition outlined and simple rate equation models. The final 6H-SiC impurity 'recipe' calls for vanadium, nitrogen and boron densities of 2.5 e17 cm-3, 1.25e17 cm-3 and ≤ 1e16 cm-3, respectively. This recipe was originally developed to maximize the quantum efficiency of the vanadium compensated 6H-SiC, while maintaining a thermally stable semi-insulating material. The rate equation models indicate that, besides increasing the quantum efficiency, the impurity recipe should be expected to also increase the carrier recombination time. Three generations of 6H-SiC materials were tested. The third generation vanadium compensated 6H-SiC has average impurity densities close to the recipe values. Extrinsic photoconductive switches constructed from the third generation vanadium compensated, 6H-SiC, 1 mm thick, 1 cm2, substrates have achieved high power operation at 16 kV with pulsed currents exceeding 1400 Amperes and a minimum on resistance of 1 ohm. The extrinsic photoconductive switch performance of the third generation 6H-SiC material was improved by a factor of up to 50 for excitation at the 532 nm wavelength compared to the initial 6H-SiC material. Switches based on this material have been incorporated into a prototype compact proton medical accelerator being developed by the Compact Particle Acceleration Corporation (CPAC). The vanadium compensated, 6H-SiC, extrinsic photoconductive switch operates differently when excited by 1064, or 532 nm, wavelength light. The 6H-SiC extrinsic photoconductive switch is a unipolar device when excited with 1064 nm light. The carriers are electrons excited from filled vanadium acceptor levels and other electron traps located within 1.17 eV of the conduction band. The switch is bipolar at 532 nm since the carriers consist of holes, as well as electrons. The holes are primarily generated by the excitation of valence band electrons into empty trap/acceptor levels and by two-photon absorption. Carrier generation by two-photon absorption becomes more important at high applied optical intensity at 532 nm and contributes to the supralinear behavior of switch conductance as a function of optical power. The 6H-SiC switch material is trap dominated at low nitrogen to vanadium ratios. The trap dominated vanadium compensated 6H-SiC exhibits low quantum efficiency when excited with 1064 and 532 nm light and has a carrier recombination time of ˜ 150 - 300 ps. The vanadium compensated 6H-SiC transitions to an impurity dominated material as the ratio of nitrogen to vanadium is increased to 0.5. The increased nitrogen doping produces a material with much higher quantum efficiency and carrier recombination time of 0.9 to 1.0 ns. The iron compensated 2H-GaN did not perform well as an extrinsic photoconductive switch. The density of carriers generated at 1064 nm was, low indicating that there were very few electrons trapped in the iron acceptor level located at 0.5 - 0.6 eV below the conduction band. Carrier generation at 532 nm was dominated by two photon absorption resulting in the switch conductance increasing as the square of applied optical intensity. A minimum switch resistance of 0.8 ohms was calculated for the 400 nm thick, 1.2 by 1.2 cm, 2H-GaN switch for an applied optical intensity of 41.25 MW/cm2. An optical intensity of ˜ 70 MW/cm2 at 532 nm would be required to achieve a 0.8 ohm on resistance for a 1 mm thick, 1 cm2, 2H-GaN switch.

  8. Speciation of vanadium in Chinese cabbage (Brassica rapa L.) and soils in response to different levels of vanadium in soils and cabbage growth.

    PubMed

    Tian, Liyan; Yang, Jinyan; Alewell, Christine; Huang, Jen-How

    2014-09-01

    This study highlights the accumulation and speciation of vanadium in Chinese cabbage (Brassica rapa L.) in relation to the speciation of soil vanadium with pot experiments at 122-622mgVkg(-1) by spiking NH4VO3. Cabbage planting decreased the bioavailable and residual vanadium based on sequential extraction, leading to enrichment of oxalate-extractable vanadium in soils. The biomass production increased with increasing concentrations of soil vanadium from 122 to 372mgVkg(-1), probably due to the increasing nitrogen availability and low vanadium availability in our soils with a consequent low vanadium toxicity. Although the concentrations of root vanadium (14.4-24.9mgVkg(-1)) related positively with soil vanadium, the bio-dilution alleviated the increase of leaf vanadium (2.1-2.7mgVkg(-1)). The predominance of vanadium(IV) in leaves (∼60-80% of total vanadium) indicates bio-reduction of vanadium in Chinese cabbage, since the mobile vanadium in oxic soils was usually pentavalent. Approximately 15-20% of the leaf vanadium was associated with recalcitrant leaf tissues. The majority of leaf vanadium was water and ethanol extractable, which is considered mobile and may cause more toxic effects on Chinese cabbage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Vanadium Respiration by Geobacter metallireducens: Novel Strategy for In Situ Removal of Vanadium from Groundwater

    PubMed Central

    Ortiz-Bernad, Irene; Anderson, Robert T.; Vrionis, Helen A.; Lovley, Derek R.

    2004-01-01

    Vanadium can be an important contaminant in groundwaters impacted by mining activities. In order to determine if microorganisms of the Geobacteraceae, the predominant dissimilatory metal reducers in many subsurface environments, were capable of reducing vanadium(V), Geobacter metallireducens was inoculated into a medium in which acetate was the electron donor and vanadium(V) was the sole electron acceptor. Reduction of vanadium(V) resulted in the production of vanadium(IV), which subsequently precipitated. Reduction of vanadium(V) was associated with cell growth with a generation time of 15 h. No vanadium(V) was reduced and no precipitate was formed in heat-killed or abiotic controls. Acetate was the most effective of all the electron donors evaluated. When acetate was injected into the subsurface to enhance the growth and activity of Geobacteraceae in an aquifer contaminated with uranium and vanadium, vanadium was removed from the groundwater even more effectively than uranium. These studies demonstrate that G. metallireducens can grow via vanadium(V) respiration and that stimulating the activity of Geobacteraceae, and hence vanadium(V) reduction, can be an effective strategy for in situ immobilization of vanadium in contaminated subsurface environments. PMID:15128571

  10. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice

    PubMed Central

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal. PMID:26962395

  11. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice.

    PubMed

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal.

  12. Assessment of total and organic vanadium levels and their bioaccumulation in edible sea cucumbers: tissues distribution, inter-species-specific, locational differences and seasonal variations.

    PubMed

    Liu, Yanjun; Zhou, Qingxin; Xu, Jie; Xue, Yong; Liu, Xiaofang; Wang, Jingfeng; Xue, Changhu

    2016-02-01

    The objective of this study is to investigate the levels, inter-species-specific, locational differences and seasonal variations of vanadium in sea cucumbers and to validate further several potential factors controlling the distribution of metals in sea cucumbers. Vanadium levels were evaluated in samples of edible sea cucumbers and were demonstrated exhibit differences in different seasons, species and sampling sites. High vanadium concentrations were measured in the sea cucumbers, and all of the vanadium detected was in an organic form. Mean vanadium concentrations were considerably higher in the blood (sea cucumber) than in the other studied tissues. The highest concentration of vanadium (2.56 μg g(-1)), as well as a higher degree of organic vanadium (85.5 %), was observed in the Holothuria scabra samples compared with all other samples. Vanadium levels in Apostichopus japonicus from Bohai Bay and Yellow Sea have marked seasonal variations. Average values of 1.09 μg g(-1) of total vanadium and 0.79 μg g(-1) of organic vanadium were obtained in various species of sea cucumbers. Significant positive correlations between vanadium in the seawater and V org in the sea cucumber (r = 81.67 %, p = 0.00), as well as between vanadium in the sediment and V org in the sea cucumber (r = 77.98 %, p = 0.00), were observed. Vanadium concentrations depend on the seasons (salinity, temperature), species, sampling sites and seawater environment (seawater, sediment). Given the adverse toxicological effects of inorganic vanadium and positive roles in controlling the development of diabetes in humans, a regular monitoring programme of vanadium content in edible sea cucumbers can be recommended.

  13. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site.

    PubMed

    Yang, Jinyan; Tang, Ya; Yang, Kai; Rouff, Ashaki A; Elzinga, Evert J; Huang, Jen-How

    2014-01-15

    A series of column leaching experiments were performed to understand the leaching behaviour and the potential environmental risk of vanadium in a Panzhihua soil and vanadium titanomagnetite mine tailings. Results from sequential extraction experiments indicated that the mobility of vanadium in both the soil and the mine tailings was low, with <1% of the total vanadium readily mobilised. Column experiments revealed that only <0.1% of vanadium in the soil and mine tailing was leachable. The vanadium concentrations in the soil leachates did not vary considerably, but decreased with the leachate volume in the mine tailing leachates. This suggests that there was a smaller pool of leachable vanadium in the mine tailings compared to that in the soil. Drought and rewetting increased the vanadium concentrations in the soil and mine tailing leachates from 20μgL(-1) to 50-90μgL(-1), indicating the potential for high vanadium release following periods of drought. Experiments with soil columns overlain with 4, 8 and 20% volume mine tailings/volume soil exhibited very similar vanadium leaching behaviour. These results suggest that the transport of vanadium to the subsurface is controlled primarily by the leaching processes occurring in soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. [Oxidative Stress Level of Vanadium-exposed Workers].

    PubMed

    Wei, Teng-da; Li, Shun-pin; Liu, Yun-xing; Tan, Chun-ping; Li, Juan; Zhang, Zu-hui; Lan, Ya-jia; Zhang, Qin

    2015-11-01

    To determine the oxidative stress level in peripheral blood of vanadium-exposed workers, as an indication of population health effect of vanadium on human neurobehavioral system. 86 vanadium-exposed workers and 65 non-exposed workers were recruited by cluster sampling. A questionnaire was administered to collect demographic and occupational exposure information. Serum activity of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS) and malonaldehyde (MDA) contents were detected by kit assay. The differences in oxidative stress level between vanadium-exposed and non-exposed workers were compared. Vanadium-exposed workers had higher levels of MDA contents than the controls. The total superoxide dismutase(T-SOD) activity in vanadium-exposed workers was significantly lower than that in the controls, which was associated with lowered levels of manganese superoxide dismutase (Mn-SOD) activity. No changes in serum levels of cupro-zinc superoxide dismutase (CuZn-SOD) was found in vanadium-exposed workers. No difference in iNOS activity was found between vanadium-exposed workers and controls. Vanadium exposure increases free radical production in serum and reduces antioxidant capacity. But the relationship between vanadium exposure and iNOS damage remains uncertain.

  15. The presence of vanadium in groundwater of southeastern extreme the pampean region Argentina Relationship with other chemical elements.

    PubMed

    Fiorentino, Carmen E; Paoloni, Juan D; Sequeira, Mario E; Arosteguy, Pedro

    2007-08-15

    Changes in the quality of groundwater resources are related to the presence and concentration of contaminants, especially trace elements such as arsenic, boron, fluoride and vanadium. Vanadium is a rare element naturally abundant, generally found in combination with other elements. Vanadium pentoxide is known to have aneugenic effects. Thus, a study was carried out to assess the presence of vanadium in the groundwater of the southeastern pampean region of Argentina, which constitutes the main water supply for the local population. Statistical and correlational analyses were applied to identify possible interrelationships between vanadium and another chemical elements. Vanadium was found in all groundwater samples. The minimum and maximum vanadium concentrations found were 0.05 mg/l and 2.47 mg/l, respectively. Vanadium is significantly correlated with other trace elements such as arsenic, fluoride and boron. The interrelationship between vanadium and the presence of volcanic glass in sediments is not significant as expected.

  16. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  17. Vanadium recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  18. Release kinetics of vanadium from vanadium (III, IV and V) oxides: Effect of pH, temperature and oxide dose.

    PubMed

    Hu, Xingyun; Yue, Yuyan; Peng, Xianjia

    2018-05-01

    Batch experiments were performed to derive the rate laws for the proton-promoted dissolution of the main vanadium (III, IV and V) oxides at pH 3.1-10.0. The release rates of vanadium are closely related to the aqueous pH, and several obvious differences were observed in the release behavior of vanadium from the dissolution of V 2 O 5 and vanadium(III, IV) oxides. In the first 2hr, the release rates of vanadium from V 2 O 3 were r=1.14·([H + ]) 0.269 at pH 3.0-6.0 and r=0.016·([H + ]) -0.048 at pH 6.0-10.0; the release rates from VO 2 were r=0.362·([H + ]) 0.129 at pH 3.0-6.0 and r=0.017·([H + ]) -0.097 at pH 6.0-10.0; and the release rates from V 2 O 5 were r=0.131·([H + ]) -0.104 at pH 3.1-10.0. The release rates of vanadium from the three oxides increased with increasing temperature, and the effect of temperature was different at pH 3.8, pH 6.0 and pH 7.7. The activation energies of vanadium (III, IV and V) oxides (33.4-87.5kJ/mol) were determined at pH 3.8, pH6.0 and pH 7.7, showing that the release of vanadium from dissolution of vanadium oxides follows a surface-controlled reaction mechanism. The release rates of vanadium increased with increasing vanadium oxides dose, albeit not proportionally. This study, as part of a broader study of the release behavior of vanadium, can help to elucidate the pollution problem of vanadium and to clarify the fate of vanadium in the environment. Copyright © 2017. Published by Elsevier B.V.

  19. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  20. THE COLORIMETRIC DETERMINATION OF VANADIUM IN NIOBIUM-VANADIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Articolo, O.J.

    1959-06-26

    A procedure is described for the analysis of vanadium in niobium-- vanadium alloys in the range >0.1% vanadium with an accuracy of better than 3%. The method was applied to the analysis of niobium alloys in which the nominal per cent vanadium varied between 0.3 to 4.6%. The sample is dissolved in a mixture of nitric and hydrofluoric acid and then evaporated to fumes with sulfuric acid. The niobium is hydrolyzed with sulfurous acid and separated from the vanadium by filtration. Hydrogen peroxide is added to the filtrate to form a reddish brown complex with the vanadium. The optical densitymore » of the resulting solution is obtained at 450 m mu on a model B Beckman spectrophotometer. (auth)« less

  1. DNA damage induction in human cells exposed to vanadium oxides in vitro.

    PubMed

    Rodríguez-Mercado, Juan J; Mateos-Nava, Rodrigo A; Altamirano-Lozano, Mario A

    2011-12-01

    Vanadium and vanadium salts cause genotoxicity and elicit variable biological effects depending on several factors. In the present study, we analyzed and compared the DNA damage and repair processes induced by vanadium in three oxidation states. We used human blood leukocytes in vitro and in a single cell gel electrophoresis assay at two pH values. We observed that vanadium(III) trioxide and vanadium(V) pentoxide produced DNA single-strand breaks at all of the concentrations (1, 2, 4, or 8 μg/ml) and treatment times (2, 4, or 6 h) tested. Vanadium(IV) tetraoxide treatment significantly increased DNA damage at all concentrations for 4 or 6 h of treatment but not for 2 h of treatment. The DNA repair kinetics indicated that most of the cells exposed to vanadium III and V for 4 h recovered within the repair incubation time of 90 min; however, those exposed to vanadium(IV) repaired their DNA within 120 min. The data at pH 9 indicated that vanadium(IV) tetraoxide induced DNA double-strand breaks. Our results show that the genotoxic effect of vanadium can be produced by any of its three oxidation states. However, vanadium(IV) induces double-strand breaks, and it is known that these lesions are linked with forming structural chromosomal aberrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effects of dietary vanadium in mallard ducks

    USGS Publications Warehouse

    White, D.H.; Dieter, M.P.

    1978-01-01

    Adult mallard ducks fed 0, 1, 10, or 100 ppm vanadyl sulfate in the diet were sacrificed after 12 wk on treatment; tissues were analyzed for vanadium. No birds died during the study and body weights did not change. Vanadium accumulated to higher concentrations in the bone and liver than in other tissues. Concentrations in bones of hens were five times those in bones of drakes, suggesting an interaction between vanadium and calcium mobilization in laying hens. Vanadium concentrations in most tissues were significantly correlated and increased with treatment level. Lipid metabolism was altered in laying hens fed 100 ppm vanadium. Very little vanadium accumulated in the eggs of laying hens.

  3. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1991-01-01

    Published data relevant to the geochemistry of vanadium were used to evaluate processes and conditions that control vanadium accumulation in carbonaceous rocks. Reduction, adsorption, and complexation of dissolved vanadium favor addition of vanadium to sediments rich in organic carbon. Dissolved vanadate (V(V)) species predominate in oxic seawater and are reduced to vanadyl ion (V(IV)) by organic compounds or H2S. Vanadyl ion readily adsorbs to particle surfaces and is added to the sediment as the particles settle. The large vanadium concentrations of rocks deposited in marine as compared to lacustrine environments are the result of the relatively large amount of vanadium provided by circulating ocean water compared to terrestrial runoff. Vanadium-rich carbonaceous rocks typically have high contents of organically bound sulfur and are stratigraphically associated with phosphate-rich units. A correspondence between vanadium content and organically bound sulfur is consistent with high activities of H2S during sediment deposition. Excess H2S exited the sediment into bottom waters and favored reduction of dissolved V(V) to V(IV) or possibly V(III). The stratigraphic association of vanadiferous and phosphatic rocks reflects temporal and spatial shifts in bottom water chemistry from suboxic (phosphate concentrated) to more reducing (euxinic?) conditions that favor vanadium accumulation. During diagenesis some vanadium-organic complexes migrate with petroleum out of carbonaceous rocks, but significant amounts of vanadium are retained in refractory organic matter or clay minerals. As carbon in the rock evolves toward graphite during metamorphism, vanadium is incorporated into silicate minerals. ?? 1991.

  4. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-06-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  5. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-04-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  6. Effect of tea polyphenols on production performance, egg quality, and hepatic antioxidant status of laying hens in vanadium-containing diets.

    PubMed

    Yuan, Z H; Zhang, K Y; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Wang, J P

    2016-07-01

    This study was conducted to determine the effect of tea polyphenols (TP) on production performance, egg quality, and hepatic-antioxidant status of laying hens in vanadium-containing diets. A total of 300 Lohman laying hens (67 wk old) were used in a 1 plus 3 × 3 experiment design in which hens were given either a diet without vanadium and TP supplementation (control) or diets supplemented with 5, 10, or 15 mg V/kg and TP (0, 600, 1,000 mg/kg) diets for 8 wk, which included 2 phases: a 5-wk accumulation phase and a 3-wk depletion phase. During the accumulation phase, dietary vanadium addition decreased (linear, P < 0.01) albumen height and Haugh unit (HU), and TP supplementation mitigated (linear effect, P < 0.01) this reduction effect induced by vanadium. Eggshell thickness (linear, P < 0.01), redness (linear and quadratic, P < 0.05), and yellowness (linear and quadratic, P < 0.05) were decreased by vanadium and increased by the effect of TP when a vanadium-containing diet was fed. In the depletion phase, the bleaching effect on eggshells induced by vanadium disappeared one wk after vanadium withdrawal. Eggshell thickness, eggshell strength, albumen height, and HU were lower (P < 0.05) in the 15 mg/kg vanadium group compared with the control diet until 2 wk post vanadium challenge, but hens fed 15 mg/kg vanadium and 600 mg/kg TP showed no difference from the control diet only after 1 wk withdrawal. In the liver, the activity of glutathione S-transferases and glutathione peroxidase was increased (linear, P < 0.01) with the TP addition at 5 wk in the accumulation phase in the vanadium-containing diet; the malondialdehyde content increased (linear effect, P = 0.02) with the addition of vanadium. The results indicate that supplementation of 10 and 15 mg/kg vanadium resulted in reduced albumen quality, bleaching effect on eggshell color, and antioxidant stress in the liver. The effect of TP addition can prevent laying hens from the adverse effect of vanadium on egg quality, liver antioxidant stress and shorten the recovery time. © 2016 Poultry Science Association Inc.

  7. Vanadium distribution in rats and DNA cleavage by vanadyl complex: implication for vanadium toxicity and biological effects.

    PubMed Central

    Sakurai, H

    1994-01-01

    Vanadium ion is toxic to animals. However, vanadium is also an agent used for chemoprotection against cancers in animals. To understand both the toxic and beneficial effects we studied vanadium distribution in rats. Accumulation of vanadium in the liver nuclei of rats given low doses of compounds in the +4 or +5 oxidation state was greater than in the liver nuclei of rats given high doses of vanadium compounds or the vanadate (+5 oxidation state) compound. Vanadium was incorporated exclusively in the vanadyl (+4 oxidation state) form. We also investigated the reactions of vanadyl ion and found that incubation of DNA with vanadyl ion and hydrogen peroxide (H2O2) led to intense DNA cleavage. ESR spin trapping demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion and H2O2. Thus, we propose that the mechanism for vanadium-dependent toxicity and antineoplastic action is due to DNA cleavage by hydroxyl radicals generated in living systems. PMID:7843133

  8. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review.

    PubMed

    Kustin, Kenneth

    2015-06-01

    Aqueous solutions of the four highest vanadium oxidation states exhibit four diverse colors, which only hint at the diverse reactions that these ions can undergo. Cationic vanadium ions form complexes with ligands; anionic vanadium ions form complexes with ligands and self-react to form isopolyanions. All vanadium species undergo oxidation-reduction reactions. With a few exceptions, elucidation of the dynamics of these reactions awaited the development of fast reaction techniques before the kinetics of elementary ligation, condensation, reduction, and oxidation of the aqueous vanadium ions could be investigated. As the biological roles played by endogenous and therapeutic vanadium expand, it is appropriate to bring the results of the diverse kinetics studies under one umbrella. To achieve this goal this review presents a systematic examination of elementary aqueous vanadium ion dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Vanadium

    USGS Publications Warehouse

    Kelley, Karen D.; Scott, Clinton T.; Polyak, Désirée E.; Kimball, Bryn E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Vanadium is used primarily in the production of steel alloys; as a catalyst for the chemical industry; in the making of ceramics, glasses, and pigments; and in vanadium redox-flow batteries (VRBs) for large-scale storage of electricity. World vanadium resources in 2012 were estimated to be 63 million metric tons, which include about 14 million metric tons of reserves. The majority of the vanadium produced in 2012 was from China, Russia, and South Africa.Vanadium is extracted from several different types of mineral deposits and from fossil fuels. These deposits include vanadiferous titanomagnetite (VTM) deposits, sandstone-hosted vanadium (with or without uranium) deposits (SSV deposits), and vanadium-rich black shales. VTM deposits are the principal source of vanadium and consist of magmatic accumulations of ilmenite and magnetite containing 0.2 to 1 weight percent vanadium pentoxide (V2O5). SSV deposits are another important source; these deposits have average ore grades that range from 0.1 to greater than 1 weight percent V2O5. The United States has been and is currently the main producer of vanadium from SSV deposits, particularly those on the Colorado Plateau. Vanadium-rich black shales occur in marine successions that were deposited in epeiric (inland) seas and on continental margins. Concentrations in these shales regularly exceed 0.18 weight percent V2O5 and can be as high as 1.7 weight percent V2O5. Small amounts of vanadium have been produced from the Alum Shale in Sweden and from ferrophosphorus slag generated during the reduction of phosphate to elemental phosphorus in ore from shales of the Phosphoria Formation in Idaho and Wyoming. Because vanadium enrichment occurs in beds that are typically only a few meters thick, most of the vanadiferous black shales are not currently economic, although they may become an important resource in the future. Significant amounts of vanadium are recovered as byproducts of petroleum refining, and processing of coal, tar sands, and oil shales may be important future sources.Vanadium occurs in one of four oxidation states in nature: +2, +3, +4, and +5. The V3+ ion has an octahedral radius that is almost identical to that of (Fe3+) and (Al3+) and, therefore, it substitutes in ferromagnesian minerals. During weathering, much of the vanadium may partition into newly formed clay minerals, and it either remains in the +3 valence state or oxidizes to the +4 valence state, both of which are relatively insoluble. If erosion is insignificant but chemical leaching is intense, the residual material may be enriched in vanadium, as are some bauxites and laterites. During the weathering of igneous, residual, or sedimentary rocks, some vanadium oxidizes to the +5 valence state, especially in the intensive oxidizing conditions that are characteristic of arid climates.The average contents of vanadium in the environment are as follows: soils [10 to 500 parts per million (ppm)]; streams and rivers [0.2 to 2.9 parts per billion (ppb)]; and coastal seawater (0.3 to 2.8 ppb). Concentrations of vanadium in soils (548 to 7,160 ppm) collected near vanadium mines in China, the Czech Republic, and South Africa are many times greater than natural concentrations in soils. Additionally, if deposits contain sulfide minerals such as chalcocite, pyrite, and sphalerite, high levels of acidity may be present if sulfide dissolution is not balanced by the presence of acid-neutralizing carbonate minerals. Some of the vanadium-bearing deposit types, particularly some SSV and black-shale deposits, contain appreciable amounts of carbonate minerals, which lowers the acid-generation potential.Vanadium is a micronutrient with a postulated requirement for humans of less than 10 micrograms per day, which can be met through dietary intake. Primary and secondary drinking water regulations for vanadium are not currently in place in the United States. Vanadium toxicity is thought to result from an intake of more than 10 to 20 milligrams per day. Vanadium is essential for some biological processes and organisms. For example, some nitrogen-fixing bacteria require vanadium for producing enzymes necessary to convert nitrogen from the atmosphere into ammonia, which is a more biologically accessible form of nitrogen.

  10. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...

  11. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...

  12. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...

  13. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process

    NASA Astrophysics Data System (ADS)

    Jung, Myungwon; Mishra, Brajendra

    2018-02-01

    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Qingtao; Li, Liyu; Nie, Zimin

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less

  15. Thirty years through vanadium chemistry.

    PubMed

    Costa Pessoa, J

    2015-06-01

    The relevance of vanadium in biological systems is known for many years and vanadium-based catalysts have important industrial applications, however, till the beginning of the 80s research on vanadium chemistry and biochemistry did not receive much attention from the scientific community. The understanding of the broad bioinorganic implications resulting from the similarities between phosphate and vanadate(V) and the discovery of vanadium dependent enzymes gave rise to an enormous increase in interest in the chemistry and biological relevance of vanadium. Thereupon the last 30years corresponded to a period of enormous research effort in these fields, as well as in medicinal applications of vanadium and in the development of catalysts for use in fine-chemical synthesis, some of these inspired by enzymatic active sites. Since the 80s my group in collaboration with others made contributions, described throughout this text, namely in the understanding of the speciation of vanadium compounds in aqueous solution and in biological fluids, and to the transport of vanadium compounds in blood plasma and their uptake by cells. Several new types of vanadium compounds were also synthesized and characterized, with applications either as prospective therapeutic drugs or as homogeneous or heterogenized catalysts for the production of fine chemicals. The developments made are described also considering the international context of the evolution of the knowledge in the chemistry and bioinorganic chemistry of vanadium compounds during the last 30years. This article was compiled based on the Vanadis Award presentation at the 9th International Vanadium Symposium. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. [The vanadium compounds: chemistry, synthesis, insulinomimetic properties].

    PubMed

    Fedorova, E V; Buriakina, A V; Vorob'eva, N M; Baranova, N I

    2014-01-01

    The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.

  17. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lin, Hai; Dong, Ying-bo; Li, Gan-yu

    2018-03-01

    This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial pH value, initial Fe2+ concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield (H2SO4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11wt% greater than the chemical leaching yield. The Community Bureau of Reference (BCR) sequential extraction results revealed that 88.62wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44wt%. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.

  18. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of "Big Pharma" Drug Research? A Critical Review.

    PubMed

    Scior, Thomas; Guevara-Garcia, Jose Antonio; Do, Quoc-Tuan; Bernard, Philippe; Laufer, Stefan

    2016-01-01

    Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as "Big Pharma"? Intriguingly, today's clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium- free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the "pros and cons") about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called "noncomplexed or free" vanadium species (i.e. inorganic oxido-coordinated species) and "biogenic speciation" of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question.

  19. Physiological and anthocyanin biosynthesis genes response induced by vanadium stress in mustard genotypes with distinct photosynthetic activity.

    PubMed

    Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Nawaz, Muhammad Amjad; Ashraf, Muhammad; Rizwan, Muhammad Shahid; Mehmood, Sajid; Aziz, Omar; Rizwan, Muhammad; Virk, Muhammad Safiullah; Shakeel, Qaiser; Ijaz, Raina; Androutsopoulos, Vasilis P; Tsatsakis, Aristides M; Coleman, Michael D

    2018-06-13

    The present study aimed to elucidate the photosynthetic performance, antioxidant enzyme activities, anthocyanin contents, anthocyanin biosynthetic gene expression, and vanadium uptake in mustard genotypes (purple and green) that differ in photosynthetic capacity under vanadium stress. The results indicated that vanadium significantly reduced photosynthetic activity in both genotypes. The activities of the antioxidant enzymes were increased significantly in response to vanadium in both genotypes, although the purple exhibited higher. The anthocyanin contents were also reduced under vanadium stress. The anthocyanin biosynthetic genes were highly expressed in the purple genotype, notably the genes TT8, F3H, and MYBL2 under vanadium stress. The results indicate that induction of TT8, F3H, and MYBL2 genes was associated with upregulation of the biosynthetic genes required for higher anthocyanin biosynthesis in purple compared with the green mustard. The roots accumulated higher vanadium than shoots in both mustard genotypes. The results indicate that the purple mustard had higher vanadium tolerance. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Commercialization of the Chevron FCC vanadium trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.V.; Kuehler, C.W.; Krishna, A.S.

    1995-09-01

    Vanadium, present to varying degrees in FCC feed, deposits on the catalyst virtually quantitatively in the cracking process. In resid operations, vanadium levels on catalyst can reach 10,000 ppm at typical catalyst make-up rates. Once on the catalyst, vanadium destroys the zeolite and restricts access to active sites. This reduces catalyst activity. A vanadium trap is a material that when introduced into the catalyst inventory selectively reacts with migrating vanadium, thus protecting the zeolite and other active components of the catalyst. The trap may be incorporated into the catalyst, or introduced as a separate particle. Only a limited amount ofmore » trap can be incorporated into the catalyst without limiting the amount of zeolite that can be included. Gulf began development of a vanadium trap during the early 1980`s. The work produced a variety of promising materials whose use as vanadium traps was subsequently patented. The work ultimately led to a formulation with a phase very active for trapping vanadium while still quite sulfur tolerant. Based on these results, an extensive pilot plant evaluation was undertaken by Chevron after the Chevron-Gulf merger to better simulate commercial operation. The paper describes pilot plant tests as well as 3 commercial tests of this vanadium trap.« less

  1. Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China.

    PubMed

    Cao, Xuelong; Diao, Muhe; Zhang, Baogang; Liu, Hui; Wang, Song; Yang, Meng

    2017-09-01

    Spatial distribution of vanadium in surface soils from different processing stages of vanadium-bearing titanomagnetite in Panzhihua mining and smelting area (China) as well as responses of microbial communities including bacteria and fungi to vanadium were investigated by fieldwork and laboratory incubation experiment. The vanadium contents in this region ranged from 149.3 to 4793.6 mg kg -1 , exceeding the soil background value of vanadium in China (82 mg kg -1 ) largely. High-throughput DNA sequencing results showed bacterial communities from different manufacturing locations were quite diverse, but Bacteroidetes and Proteobacteria were abundant in all samples. The contents of organic matter, available P, available S and vanadium had great influences on the structures of bacterial communities in soils. Bacterial communities converged to similar structure after long-term (240 d) cultivation with vanadium containing medium, dominating by bacteria which can tolerate or reduce toxicities of heavy metals. Fungal diversities decreased after cultivation, but Ascomycota and Ciliophora were still the most abundant phyla as in the original soil samples. Results in this study emphasize the urgency of investigating vanadium contaminations in soils and provide valuable information on how vanadium contamination influences bacterial and fungal communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Controlled coordination in vanadium(V) dimethylhydrazido compounds.

    PubMed

    Sakuramoto, Takashi; Moriuchi, Toshiyuki; Hirao, Toshikazu

    2016-11-01

    The vanadium(V) dimethylhydrazido compounds were structurally characterized to elucidate the effect of the alkoxide ligands in the coordination environment of vanadium(V) hydrazido center. The single-crystal X-ray structure determination of the vanadium(V) dimethylhydrazido compound with isopropoxide ligands revealed a dimeric structure with the V(1)-N(1) distance of 1.680(5)Å, in which each vanadium atom is coordinated in a distorted trigonal-bipyramidal geometry (τ 5 =0.81) with the hydrazido and bridging isopropoxide ligands in the apical positions. On the contrary, nearly tetrahedral arrangement around the vanadium metal center (τ 4 =0.06) with the V(1)-N(1) distance of 1.660(2)Å was observed in the vanadium(V) dimethylhydrazido compound with tert-butoxide ligands. The introduction of the 2,2',2″-nitrilotriethoxide ligand led to a pseudo-trigonal-bipyramidal geometry (τ 5 =0.92) at the vanadium center with the V(1)-N(1) distance of 1.691(5)Å, wherein vanadium atom is pulled out of the plane formed by the nitrilotriethoxide oxygen atoms in the direction of the hydrazido nitrogen. The coordination from the apical ligand in the vanadium(V) dimethylhydrazido compound was found to result in the longer V(1)-N(1) distance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations.

    PubMed

    Wilk, Aleksandra; Szypulska-Koziarska, Dagmara; Wiszniewska, Barbara

    2017-09-25

    Vanadium is a transition metal that has a unique and beneficial effect on both humans and animals. For many years, studies have suggested that vanadium is an essential trace element. Its biological properties are of interest due to its therapeutic potential, including in the treatment of diabetes mellitus. Vanadium deficiencies can lead to a range of pathologies. However, excessive concentration of this metal can cause irreversible damage to various tissues and organs. Vanadium toxicity mainly manifests in gastrointestinal symptoms, including diarrhea, vomiting, and weight reduction. Vanadium also exhibits hepatotoxic and nephrotoxic properties, including glomerulonephritis and pyelonephritis. Vanadium compounds may also lead to partial degeneration of the seminiferous epithelium of the seminiferous tubules in the testes and can affect male fertility. This paper describes the harmful effects of vanadium on the morphology and physiology of both animal and human tissues, including the digestive system, the urinary tract, and the reproductive system. What is more, the following study includes data concerning the correlation between the above-mentioned metal and its influence on fertility and fetus malformations. Additionally, this research identifies the doses of vanadium which lead to pathological alterations becoming visible within tissues. Moreover, this study includes information about the protective efficacy of some substances in view of the toxicity of vanadium.

  4. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants

    PubMed Central

    Abe, Fujio

    2008-01-01

    It is crucial for the carbon concentration of 9% Cr steel to be reduced to a very low level, so as to promote the formation of MX nitrides rich in vanadium as very fine and thermally stable particles to enable prolonged periods of exposure at elevated temperatures and also to eliminate Cr-rich carbides M23C6. Sub-boundary hardening, which is inversely proportional to the width of laths and blocks, is shown to be the most important strengthening mechanism for creep and is enhanced by the fine dispersion of precipitates along boundaries. The suppression of particle coarsening during creep and the maintenance of a homogeneous distribution of M23C6 carbides near prior austenite grain boundaries, which precipitate during tempering and are less fine, are effective for preventing the long-term degradation of creep strength and for improving long-term creep strength. This can be achieved by the addition of boron. The steels considered in this paper exhibit higher creep strength at 650 °C than existing high-strength steels used for thick section boiler components. PMID:27877920

  5. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  6. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  7. Assessment of Dephosphorization During Vanadium Extraction Process in Converter

    NASA Astrophysics Data System (ADS)

    Chen, Lian; Diao, Jiang; Wang, Guang; Xie, Bing

    2018-06-01

    Dephosphorization during the vanadium extraction process in the converter was studied. The effects of the slag basicity and FeO content on the dephosphorization and the mineral phases in the phosphorus-containing vanadium slag are discussed. The results show that removal of phosphorus from the hot metal during the vanadium extraction process can be achieved by adding lime into the vanadium extraction converter. The highest dephosphorization rate was obtained at slag basicity of 1.93. The phosphorus distribution ratio increased with increasing FeO content up to 16-18% but decreased thereafter. Vanadium was present in the slag only as spinels rather than calcium vanadate. Phosphorus was still present in the form of calcium phosphate eutectic in calcium silicate. The present work proves that the vanadium extraction and dephosphorization processes are nonconflicting reactions.

  8. Synthesis, Characterization, Antioxidant Status, and Toxicity Study of Vanadium-Rutin Complex in Balb/c Mice.

    PubMed

    Roy, Souvik; Majumdar, Sumana; Singh, Amit Kumar; Ghosh, Balaram; Ghosh, Nilanjan; Manna, Subhadip; Chakraborty, Tania; Mallick, Sougato

    2015-08-01

    A new trend was developed for the formation of a complex between vanadium and flavonoid derivatives in order to increase the intestinal absorption and to reduce the toxicity of vanadium compounds. The vanadium-rutin complex was characterized by several spectroscopic techniques like ultraviolet (UV)-visible, Fourier transform infrared (FTIR), NMR, mass spectrometry, and microscopic evaluation by scanning electron microscopy. The mononuclear complex was formed by the interaction between vanadium and rutin with 1:2 metal to ligand stoichiometry. Antioxidant activity of the complex was evaluated by 1,1-diphenyl-2 picrylhydrazyl, ferric-reducing power, and 2,2'-azin-obis 3-ethylbenzothiazoline-6-sulphonic acid methods. It was shown that radical scavenging activity and ferric-reducing potential of free rutin was lower as compared with vanadium-rutin complex. The study was also investigated for oral acute toxicity and 28 days repeated oral subacute toxicity study of vanadium-rutin complex in balb/c mice. The vanadium-rutin complex showed mortality at a dose of 120 mg/kg in the balb/c mice. In 28 days repeated oral toxicity study, vanadium-rutin complex was administered to both sex of balb/c mice at dose levels of 90, 45, and 20 ppm, respectively. In addition, subacute toxicity study of vanadium-rutin complex (at 90 ppm dose level) showed increase levels of white blood cell (WBC), total bilirubin, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), creatinine, and blood urea nitrogen and decrease level of total protein (TP) as compared with control group. Histopathological study of vanadium-rutin showed structural alteration in the liver, kidney, and stomach at 90 ppm dose level. No observed toxic level of vanadium-rutin complex at 20 ppm dose level could be good for further study.

  9. Vanadium exposure-induced striatal learning and memory alterations in rats.

    PubMed

    Sun, Liping; Wang, Keyue; Li, Yan; Fan, Qiyuan; Zheng, Wei; Li, Hong

    2017-09-01

    Occupational and environmental exposure to vanadium has been associated with toxicities in reproductive, respiratory, and cardiovascular systems. The knowledge on whether and how vanadium exposure caused neurobehavioral changes remains incomplete. This study was designed to investigate the changes in learning and memory following drinking water exposure to vanadium, and to conduct the preliminary study on underlying mechanisms. Male Sprague-Dawley rats were exposed to vanadium dissolved in drinking water at the concentration of 0.0, 0.5, 1.0 and 2.0g/L, as the control, low-, medium-, and high- dose groups, respectively, for 12 weeks. The results by the Morris water maze test showed that the time for the testing animal to find the platform in the high exposed group was increased by 82.9% and 49.7%, as compared to animals in control and low-dose groups (p<0.05). There were significantly fewer rats in the medium- and high- dose groups than in the control group who were capable of crossing the platform (p<0.05). Quantitation of vanadium by atomic absorption spectrophotometry revealed a significant dose-dependent accumulation of vanadium in striatum (r=0.931, p<0.01). Histopathological examination further demonstrated a degenerative damage in vanadium-exposed striatum. Interestingly, with the increase of the dose of vanadium, the contents of neurotransmitter ACh, 5-HT and GABA in the striatum increased; however, the levels of Syn1 was significantly reduced in the exposed groups compared with controls (p<0.05). These data suggest that vanadium exposure apparently reduces the animals' learning ability. This could be due partly to vanadium's accumulation in striatum and the ensuing toxicity to striatal structure and synaptic plasticity. Further research is warranted for mechanistic understanding of vanadium-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Enhanced magnetization in VxFe3-xO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pool, V. L.; Kleb, M. T.; Chorney, C. L.; Arenholz, E.; Idzerda, Y. U.

    2015-12-01

    Nanoparticles of VxFe3-xO4 with up to 33% vanadium doping (x=0 to 1) and a 9 nm diameter are investigated in order to determine the site preference of the vanadium and the magnetic behavior of the nanoparticles. The iron and vanadium L23-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD) spectra are used to identify that vanadium initially substitutes into the tetrahedral iron site as V3+ and that the average iron moment is observed to increase with vanadium concentration up to 12.5% (x=.375). When the vanadium incorporation exceeds 12.5%, the XAS and MCD show that the vanadium begins substituting as V2+ in the octahedral coordination. This coincides with a rapid reduction of the average moment to zero by 25% (x=.75). The frequency-dependent alternating-current magnetic susceptibility (ACMS) displays a substantial increase in blocking temperature with vanadium concentration and indicated substantial variation in the strength of inter-particle interactions.

  11. Investigation on the fates of vanadium and nickel during co-gasification of petroleum coke with biomass.

    PubMed

    Li, Jiazhou; Wang, Xiaoyu; Wang, Bing; Zhao, Jiantao; Fang, Yitian

    2018-06-01

    This study investigates the volatilization behaviors and mineral transformation of vanadium and nickel during co-gasification of petroleum coke with biomass. Moreover, the evolution of occurrence modes of vanadium and nickel was also determined by the method of sequential chemical extraction. The results show that the volatilities of vanadium and nickel in petroleum coke have a certain level of growth with an increase in the temperature. With the addition of biomass, their volatilities both show an obvious decrease. Organic matter and stable forms are the dominant chemical forms of vanadium and nickel. After gasification, organic-bound vanadium and nickel decompose completely and convert into other chemical forms. The crystalline phases of vanadium trioxide, coulsonite, nickel sulfide, and elemental nickel are clearly present in petroleum coke and biomass gasification ashes. When the addition of biomass reaches 60 wt%, the diffraction peaks of orthovanadate are found while that of vanadium trioxide disappear. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Comparison of Ultrasound-Assisted and Regular Leaching of Vanadium and Chromium from Roasted High Chromium Vanadium Slag

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Gao, Huiyang; Liu, Yajing; Zheng, Xiaole; Xue, Xiangxin

    2018-02-01

    Ultrasound-assisted leaching (UAL) was used for vanadium and chromium leaching from roasted material obtained by the calcification roasting of high-chromium-vanadium slag. UAL was compared with regular leaching. The effect of the leaching time and temperature, acid concentration, and liquid-solid ratio on the vanadium and chromium leaching behaviors was investigated. The UAL mechanism was determined from particle-size-distribution and microstructure analyses. UAL decreased the reaction time and leaching temperature significantly. Furthermore, 96.67% vanadium and less than 1% chromium were leached at 60°C for 60 min with 20% H2SO4 at a liquid-solid ratio of 8, which was higher than the maximum vanadium leaching rate of 90.89% obtained using regular leaching at 80°C for 120 min. Ultrasonic waves broke and dispersed the solid sample because of ultrasonic cavitation, which increased the contact area of the roasted sample and the leaching medium, the solid-liquid mass transfer, and the vanadium leaching rate.

  13. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.

    PubMed

    Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael; Kausar, Nadeem; Mousa, Asem

    2016-07-07

    The electrolyte is one of the most important components of the vanadium redox flow battery and its properties will affect cell performance and behavior in addition to the overall battery cost. Vanadium exists in several oxidation states with significantly different half-cell potentials that can produce practical cell voltages. It is thus possible to use the same element in both half-cells and thereby eliminate problems of cross-contamination inherent in all other flow battery chemistries. Electrolyte properties vary with supporting electrolyte composition, state-of-charge, and temperature and this will impact on the characteristics, behavior, and performance of the vanadium battery in practical applications. This Review provides a broad overview of the physical properties and characteristics of the vanadium battery electrolyte under different conditions, together with a description of some of the processing methods that have been developed to produce vanadium electrolytes for vanadium redox flow battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spectrophotometric determination of vanadium in rutile and in mafic igneous rocks

    USGS Publications Warehouse

    Marinenko, John; Mei, Leung

    1974-01-01

    Minor and major levels of vanadium in rutile are separated from titanium and iron by sample fusion with sodium carbonate followed by water leach and filtration. The filtrate is then acidified with hydrochloric acid. Silicates are decomposed with a mixture of hydrofluoric and hydrochloric acids, and iron is separated by extraction of its chloride with diethyl ether. Sample vanadium in hydrochloric acid is then quantitatively reduced to vanadium(IV) with sulfurous acid. The remaining sulfur dioxide is expelled by heating. Vanadium (IV) then is reacted with excess of iron(III) at reduced acidity (pH 5) in the presence of 1,10-phenanthroline to yield the orange-red iron(II) 1,10-phenanthroline complex. Iron(II) generated by vanadium(IV) is a measure of total vanadium in the sample. The proposed method is free from elemental interferences because the color development cannot take place without the two redox reactions described above, and these are, under the outlined experimental conditions, quantitative only for vanadium.

  15. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    PubMed

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.

  16. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of “Big Pharma” Drug Research? A Critical Review

    PubMed Central

    Scior, Thomas; Guevara-Garcia, Jose Antonio; Do, Quoc-Tuan; Bernard, Philippe; Laufer, Stefan

    2016-01-01

    Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as “Big Pharma”? Intriguingly, today’s clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium-free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the “pros and cons”) about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called “noncomplexed or free” vanadium species (i.e. inorganic oxido-coordinated species) and “biogenic speciation” of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question. PMID:26997154

  17. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Roznyatovskaya, Nataliya V.; Roznyatovsky, Vitaly A.; Höhne, Carl-Christoph; Fühl, Matthias; Gerber, Tobias; Küttinger, Michael; Noack, Jens; Fischer, Peter; Pinkwart, Karsten; Tübke, Jens

    2017-09-01

    Catholyte in all-vanadium redox-flow battery (VRFB) which consists of vanadium salts dissolved in sulphuric acid is known to be stabilized by phosphoric acid to slow down the thermal aging at temperatures higher than 40 °C. To reveal the role of phosphoric acid, the thermally-induced aggregation is investigated using variable-temperature 51V, 31P, 17O, 1H nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS). The results indicate that the thermal stabilization of vanadium(V) electrolyte is attained by the involvement of monomeric and dimeric vanadium(V) species in the reaction with phosphoric acid which is concurrent to the formation of neutral hydroxo-aqua vanadium(V) precipitation precursor. The dimers are stabilized by counter ions due to association reaction or if such stabilization is not possible, precipitation of vanadium pentoxide is favored. The evolution of particles size distributions at 50 °C in electrolyte samples containing 1.6 M vanadium and 4.0 M total sulphate and the pathways of precipitate formation are discussed. The optimal total phosphate concentration is found to be of 0.15 M. However, the induction time is assumed to be dependent not only on the total phosphate concentrations, but also on the ratio of total vanadium(V) to sulphate concentrations.

  18. The Influence of Vanadium Microalloying on the Production of Thin Slab Casting and Direct Rolled Steel Strip

    NASA Astrophysics Data System (ADS)

    Li, Yu; Milbourn, David

    Vanadium microalloying is highly effective in high strength strip steels produced by thin slab casting and direct rolled process. Because of the high solubility of V(C,N) in austenite, vanadium is likely to remain in solution during casting, equalisation and rolling. Vanadium microalloyed steels have better hot ductility and are less prone to transverse cracking than niobium containing steels. Despite a coarse as-cast austenite grain size before rolling, significant grain refinement can be achieved in vanadium microalloyed steels by repeated recrystallization during rolling, resulting in a fine uniform ferrite microstructure in final strip. Almost all vanadium present in microalloyed steels is available to precipitate in ferrite as very fine particles, contributing to precipitation strengthening. Vanadium microalloyed steels show less sensitivity to rolling process variables and exhibit excellent combination of strength and toughness.

  19. Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution

    PubMed Central

    Heinemann, Günter; Fichtl, Burckhard; Vogt, Wolfgang

    2003-01-01

    Aims Vanadium is currently undergoing clinical trials as an oral drug in patients with noninsulin-dependent diabetes mellitus. Furthermore, vanadium occurs in elevated concentrations in the blood of patients receiving intravenous albumin solutions containing large amounts of the metal ion as an impurity. The present study was performed to examine the pharmacokinetics of vanadium in humans following a single intravenous (i.v.) dose of a commercial albumin solution containing a high amount of vanadium. Methods The study was conducted in five healthy volunteer subjects who received intravenously 90 ml of a commercial 20% albumin infusion solution containing 47.6 µg vanadium as an impurity. Vanadium concentrations in serum and urine were determined by electrothermal atomic absorption spectrometry. Results Vanadium serum concentrations after i.v. administration were measured for 31 days. The data could be fitted by a triexponential function corresponding formally to a three-compartment model. There was an initial rapid decrease in serum concentrations with half-lives of 1.2 and 26 h. This was followed by a long-terminal half-life time of 10 days. The terminal phase accounted for about 80% of the total area under the serum concentration-time curve (AUC). The mean apparent volume of distribution of the central compartment was found to be 10 l. The volume of distribution at steady state was 54 l, and total clearance was 0.15 l h−1. Vanadium was mainly excreted by the kidneys. About 52% of the dose was recovered in the urine after 12 days. Conclusions This study provides data on vanadium pharmacokinetics in healthy humans. PMID:12630973

  20. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    PubMed

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. NREL, American Vanadium Demonstrate First-of-Its-Kind Battery Management

    Science.gov Websites

    System | Energy Systems Integration Facility | NREL American Vanadium NREL, American Vanadium Demonstrate First-of-Its-Kind Battery Management System NREL researchers are collaborating with American Vanadium, an integrated energy storage company, to evaluate and demonstrate the first North American

  2. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the vanadium ore...

  3. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the vanadium ore...

  4. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C are applicable to...

  5. Consolidation and fabrication techniques for vanadium-20 w/o titanium /TV-20/

    NASA Technical Reports Server (NTRS)

    Burt, W. R.; Karasek, F. J.; Kramer, W. C.; Mayfield, R. M.; Mc Gowan, R. D.

    1968-01-01

    Tests of the mechanical properties, fuel compatibility, sodium corrosion and irradiation behavior were made for vanadium and vanadium alloy. Improved methods for consolidation and fabrication of bar, rod, sheet, and high-quality, small diameter, thin-wall tubing of vanadium-20 without titanium are reported.

  6. Mineralogy and geochemistry of vanadium in the Colorado Plateau

    USGS Publications Warehouse

    Weeks, A.D.

    1961-01-01

    The chief domestic source of vanadium is uraniferous sandstone in the Colorado Plateau. Vanadium is 3-, 4-, or 5-valent in nature and, as oxides or combined with other elements, it forms more than 40 minerals in the Plateau ores. These ores have been studied with regard to the relative amounts of vanadium silicates and oxide-vanadates, uranium-vanadium ratios, the progressive oxidation of black low-valent ores to high-valent carnotite-type ores, and theories of origin. ?? 1961.

  7. CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN

    DOEpatents

    Bailes, R.H.; Ellis, D.A.

    1958-08-26

    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  8. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    PubMed

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011

  9. Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal—insulator phase transition properties

    NASA Astrophysics Data System (ADS)

    Liang, Ji-Ran; Wu, Mai-Jun; Hu, Ming; Liu, Jian; Zhu, Nai-Wei; Xia, Xiao-Xu; Chen, Hong-Da

    2014-07-01

    Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal—insulator transition properties of the vanadium dioxide thin films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (1¯11) to (011) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal—insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal—insulator transition.

  10. Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, A.M.; Merritt, K.; Brown, S.A.

    1994-02-01

    The use of titanium and titanium-6% aluminum-4% vanadium alloy for dental and orthopedic implants has increased in the last decade. The implants are presumed to be compatible because oseointegration, bony apposition, and cell attachment are known. However, the cellular association of titanium and vanadium have remained unknown. This study examined the uptake of salts or fretting corrosion products. Titanium was not observed to be toxic to the cells. Vanadium was toxic at levels greater than 10[mu]g/mL. The percentage of cellular association of titanium was shown to be about 10 times that of vanadium. The percentage of cellular association of eithermore » element was greater from fretting corrosion than from the addition of salts. The presence of vanadium did not affect the cellular uptake of titanium. The presence of titanium decreased the cell association of vanadium.« less

  11. Vanadium in landscape components of western Transbaikalia

    NASA Astrophysics Data System (ADS)

    Kashin, V. K.

    2017-10-01

    Vanadium in soil-forming rocks, soils, and vegetation of forest-steppe, steppe, and dry-steppe landscapes of Transbaikalia has been studied. The mean element contents in rocks and soils are equal to its mean natural abundances (clarke values). The content of vanadium in soils is strictly determined by its content in parent materials; its dependence on the vanadium concentration in plants and on the soil pH and humus is less pronounced. With respect to the coefficient of biological uptake by plants, vanadium is assigned to the group of elements of slight accumulation (0.10-0.33) on mineral soils and of moderate accumulation (1.1-1.5) on peat bog soils. The mean vanadium concentration in steppe, meadow, and cultivated vegetation exceeds the norm for animals by 1.7-2.6 times but does not rich toxic levels. Vanadium uptake by plants is most intensive in meadow cenoses and is less intensive in dry-steppe cenoses.

  12. Vanadium-uranium extraction from Wyoming vanadiferoud silicates. Report of investigations/1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, M.; Nichols, I.L.; Huiatt, J.L.

    1983-11-01

    The Bureau of Mines conducted laboratory studies on low-grade vanadiferous silicates from the Pumpkin Buttes and Nine Mile Lake deposits of Wyoming to examine techniques for extracting vanadium and uranium. Recovery from low-grade sources such as these could contribute to future vanadium production and reduce reliance on vanadium imports.

  13. 76 FR 69736 - Draft Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the Integrated Risk Information..., ``Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the Integrated Risk Information... Vanadium Pentoxide: In Support of Summary Information on the Integrated Risk Information System (IRIS)'' is...

  14. Essentiality and toxicity of vanadium supplements in health and pathology.

    PubMed

    Gruzewska, K; Michno, A; Pawelczyk, T; Bielarczyk, H

    2014-10-01

    The biological properties of vanadium complexes have become an object of interest due to their therapeutic potential in several diseases. However, the mechanisms of action of vanadium salts are still poorly understood. Vanadium complexes are cofactors for several enzymes and also exhibit insulin-mimetic properties. Thus, they are involved in the regulation of glucose metabolism, including in patients with diabetes. In addition, vanadium salts may also normalize blood pressure and play a key role in the metabolism of the thyroid and of iron as well as in the regulation of total cholesterol, cholesterol HDL and triglyceride (TG) levels in blood. Moreover, in cases of hypoxia, vanadium compounds may improve cardiomyocytes function. They may also exhibit both carcinogenic and anti-cancer properties. These include dose- and exposure-time-dependent induction and inhibition of the proliferation and survival of cancer cells. On the other hand, the balance between vanadium's therapeutic properties and its side effects has not yet been determined. Therefore, any studies on the potential use of vanadium compounds as supplements to support the treatment of a number of diseases must be strictly monitored for adverse effects.

  15. Electronic structure of lead telluride-based alloys, doped with vanadium

    NASA Astrophysics Data System (ADS)

    Skipetrov, E. P.; Golovanov, A. N.; Slynko, E. I.; Slynko, V. E.

    2013-01-01

    The crystal structure, composition, galvanomagnetic properties in low magnetic fields (4.2 K ≤ T ≤ 300 K, B ≤ 0.07 T), and the Shubnikov-de Haas effect (T = 4.2 K, B ≤ 7 T) are studied in Pb1-x-ySnxVyTe (x = 0, 0.05-0.18) alloys synthesized by the Bridgman technique with variable vanadium impurity concentrations. It is shown that increasing the vanadium content leads to the formation of regions enriched in vanadium and of microscopic inclusions of compounds with compositions close to V3Te4. In Pb1-yVyTe stabilization of the Fermi level by a deep vanadium level, an insulator-metal transition, and a rise in the free electron concentration are observed as the vanadium content is increased. The variation in the free charge carrier concentration with increasing vanadium concentration in Pb1-yVyTe and Pb1-x-ySnxVyTe (x = 0.05-0.18) alloys is compared. Possible models for rearrangement of the electronic structure in Pb1-x-ySnxVyTe alloys with vanadium doping are discussed.

  16. Kinetic model of whole-body vanadium metabolism: studies in sheep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, B.W.; Hansard, S.L. II; Ammerman, C.B.

    1986-08-01

    A compartmental model for vanadium metabolism in sheep has been proposed. The model is consistent with data obtained from sheep fed a control diet (2.6 ppm vanadium) containing 0 or 200 ppm supplemental vanadium. Sheep were administered UYV dioxovanadium either orally or intravenously. Blood feces, and urine radioactivity were monitored for 6 days postdosing. Several new insights regarding vanadium metabolism are suggested and tested against the data using the model. Some of these include 1) significant absorption of UYV occurs from the upper gastrointestinal tract; 2) an in vivo process is necessary in order for UYV dioxovanadium to be convertedmore » into a more biologically reactive species; 3) at steady state the upper and lower gastrointestinal tracts contain at least 10- and 100-fold more mass of vanadium, respectively, than does blood. No statistically significant differences in transport rate constants were found between animals receiving 0 and 200 ppm supplemental dietary vanadium. The availability of a model will enable the refinement of future studies regarding vanadium metabolism in the ruminant.« less

  17. Cottonseed meal, dehydrated grass and ascorbic acid as dietary factors preventing toxicity of vanadium for the chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, L.R.; Lawrence, W.W.

    1971-01-01

    Studies have been conducted which show that the replacement of 5% sucrose in a sucrose-fish meal diet for chicks with degossypolized cottonseed meal prevents the toxicity of 20 ppm added vanadium. The addition of 5% dehydrated grass to the same ration markedly reduced the toxicity symptoms. No such reduction in vanadium toxicity resulted when soybean meal, corn gluten meal, meat meal, fish meal, casein, isolated soybean protein, zein or wheat gluten were added to the ration. No evidence was found that the gossypol remaining in the cottonseed meal was the detoxifying agent. The addition of 0.25 to 0.50% ascorbic acidmore » to the sucrose-fish meal basal ration prevented the toxic symptoms resulting from the addition of 20 ppm vanadium derived from HN/sub 4/VO/sub 3/. The vanadium derived from VOSO/sub 4/ and VOCl/sub 2/ (vanadium valence 4) was as toxic as vanadium derived from HN/sub 4/VO/sub 3/ (V = valence 5). This leads one to question that the action of ascorbic acid in reducing vanadium toxicity is through its property of a reducing agent which might change the vanadium in VH/sub 4/VO/sub 3/ to a lower valence, presumably less toxic.« less

  18. Vanadium bioavailability and toxicity to soil microorganisms and plants.

    PubMed

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-10-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. © 2013 SETAC.

  19. Vanadium exposure-induced striatal learning and memory alterations in rats

    PubMed Central

    Sun, Liping; Wang, Keyue; Li, Yan; Fan, Qiyuan; Zheng, Wei; Li, Hong

    2017-01-01

    Occupational and environmental exposure to vanadium has been associated with toxicities in reproductive, respiratory, and cardiovascular systems. The knowledge on whether and how vanadium exposure caused neurobehavioral changes remains incomplete. This study was designed to investigate the changes in learning and memory following drinking water exposure to vanadium, and to conduct the preliminary study on underlying mechanisms. Male Sprague-Dawley rats were exposed to vanadium dissolved in drinking water at the concentration of 0.0, 0.5, 1.0 and 2.0 g/L, as the control, low-, medium-, and high- dose groups, respectively, for 12 weeks. The results by the Morris water maze test showed that the time for the testing animal to find the platform in the high exposed group was increased by 82.9% and 49.7%, as compared to animals in control and low-dose groups (p <0.05). There were significantly fewer rats in the medium- and high- dose groups than in the control group who were capable of crossing the platform (p <0.05). Quantitation of vanadium by atomic absorption spectrophotometry revealed a significant dose-dependent accumulation of vanadium in striatum (r = 0.931, p <0.01). Histopathological examination further demonstrated a degenerative damage in vanadium-exposed striatum. Interestingly, with the increase of the dose of vanadium, the contents of neurotransmitter ACh, 5-HT and GABA in the striatum increased; however, the levels of Syn1 was significantly reduced in the exposed groups compared with controls (p <0.05). These data suggest that vanadium exposure apparently reduces the animals’ learning ability. This could be due partly to vanadium’s accumulation in striatum and the ensuing toxicity to striatal structure and synaptic plasticity. Further research is warranted for mechanistic understanding of vanadium-induced neurotoxicity. PMID:28625925

  20. Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers

    PubMed Central

    2014-01-01

    Background Some experimental animal studies reported that vanadium had beneficial effects on blood total cholesterol (TC) and triglyceride (TG). However, the relationship between vanadium exposure and lipid, lipoprotein profiles in human subjects remains uncertain. This study aimed to compare the serum lipid and lipoprotein profiles of occupational vanadium exposed and non-exposed workers, and to provide human evidence on serum lipid, lipoprotein profiles and atherogenic indexes changes in relation to vanadium exposure. Methods This cross-sectional study recruited 533 vanadium exposed workers and 241 non-exposed workers from a Steel and Iron Group in Sichuan, China. Demographic characteristics and occupational information were collected through questionnaires. Serum lipid and lipoprotein levels were measured for all participants. The ratios of total cholesterol to high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) to HDL-C and apoB to apoA-I were used as atherogenic indexes. A general linear model was applied to compare outcomes of the two groups while controlling possible confounders and multivariate logistic regression was performed to evaluate the relationship between low HDL-C level, abnormal atherogenic index and vanadium exposure. Results Higher levels of HDL-C and apoA-I could be observed in the vanadium exposed group compared with the control group (P < 0.05). Furthermore, atherogenic indexes (TC/HDL-C, LDL-C/HDL-C, and apoB/apoA-I ratios) were found statistically lower in the vanadium exposed workers (P < 0.05). Changes in HDL-C, TC/HDL-C, and LDL-C/HDL-C were more pronounced in male workers than that in female workers. In male workers, after adjusting for potential confounding variables as age, habits of smoking and drinking, occupational vanadium exposure was still associated with lower HDL-C (OR 0.41; 95% CI, 0.27-0.62) and abnormal atherogenic index (OR 0.38; 95% CI, 0.20-0.70). Conclusion Occupational vanadium exposure appears to be associated with increased HDL-C and apoA-I levels and decreased atherogenic indexes. Among male workers, a significantly negative association existed between low HDL-C level, abnormal atherogenic index and occupational vanadium exposure. This suggests vanadium has beneficial effects on blood levels of HDL-C and apoA-I. PMID:24558984

  1. 40 CFR 421.223 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 27.120 12.097 Chromium 7.219 2.927 Lead...) Vanadium decomposition wet air pollution control. BAT Limitations for the Secondary Molybdenum and Vanadium... per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000 Chromium 0.000 0.000...

  2. 40 CFR 421.223 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 27.120 12.097 Chromium 7.219 2.927 Lead...) Vanadium decomposition wet air pollution control. BAT Limitations for the Secondary Molybdenum and Vanadium... per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000 Chromium 0.000 0.000...

  3. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  4. A well-defined terminal vanadium(III) oxo complex.

    PubMed

    King, Amanda E; Nippe, Michael; Atanasov, Mihail; Chantarojsiri, Teera; Wray, Curtis A; Bill, Eckhard; Neese, Frank; Long, Jeffrey R; Chang, Christopher J

    2014-11-03

    The ubiquity of vanadium oxo complexes in the V+ and IV+ oxidation states has contributed to a comprehensive understanding of their electronic structure and reactivity. However, despite being predicted to be stable by ligand-field theory, the isolation and characterization of a well-defined terminal mononuclear vanadium(III) oxo complex has remained elusive. We present the synthesis and characterization of a unique terminal mononuclear vanadium(III) oxo species supported by the pentadentate polypyridyl ligand 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine (PY5Me2). Exposure of [V(II)(NCCH3)(PY5Me2)](2+) (1) to either dioxygen or selected O-atom-transfer reagents yields [V(IV)(O)(PY5Me2)](2+) (2). The metal-centered one-electron reduction of this vanadium(IV) oxo complex furnishes a stable, diamagnetic [V(III)(O)(PY5Me2)](+) (3) species. The vanadium(III) oxo species is unreactive toward H- and O-atom transfer but readily reacts with protons to form a putative vanadium hydroxo complex. Computational results predict that further one-electron reduction of the vanadium(III) oxo species will result in ligand-based reduction, even though pyridine is generally considered to be a poor π-accepting ligand. These results have implications for future efforts toward low-valent vanadyl chemistry, particularly with regard to the isolation and study of formal vanadium(II) oxo species.

  5. A combined theoretical-experimental study of interactions between vanadium ions and Nafion membrane in all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Intan, Nadia N.; Klyukin, Konstantin; Zimudzi, Tawanda J.; Hickner, Michael A.; Alexandrov, Vitaly

    2018-01-01

    Vanadium redox flow batteries (VRFBs) are a promising solution for large-scale energy storage, but a number of problems still impede the deployment of long-lifetime VRFBs. One important aspect of efficient operation of VRFBs is understanding interactions between vanadium species and the membrane. Herein, we investigate the interactions between all four vanadium cations and Nafion membrane by a combination of infrared (IR) spectroscopy and density-functional-theory (DFT)-based static and molecular dynamics simulations. It is observed that vanadium species primarily lead to changes in the IR spectrum of Nafion in the SO3- spectral region which is attributed to the interaction between vanadium species and the SO3- exchange sites. DFT calculations of vanadium -Nafion complexes in the gas phase show that it is thermodynamically favorable for all vanadium cations to bind to SO3- via a contact pair mechanism. Car-Parrinello molecular dynamics-based metadynamics simulations of cation-Nafion systems in aqueous solution suggest that V2+ and V3+ species coordinate spontaneously to SO3-, which is not the case for VO2+ and VO2+ . The interaction behavior of the uncycled membrane determined in this study is used to explain the experimentally observed changes in the vibrational spectra, and is discussed in light of previous results on device-cycled membranes.

  6. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-min; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao

    2018-02-01

    An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.

  7. Enrichment, Distribution of Vanadium-Containing Protein in Vanadium-Enriched Sea Cucumber Apostichopus japonicus and the Ameliorative Effect on Insulin Resistance.

    PubMed

    Liu, Yanjun; Zhou, Qingxin; Zhao, Yanlei; Wang, Yiming; Wang, Yuming; Wang, Jingfeng; Xu, Jie; Xue, Changhu

    2016-05-01

    Sea cucumbers are a potential source of natural organic vanadium that may improve insulin resistance. In this work, vanadium was accumulated rapidly in blood, body wall, and intestine by sea cucumber Apostichopus japonicus. Furthermore, water-soluble vanadium-containing proteins, the main form of the organic vanadium, were tentatively accumulated and isolated by a bioaccumulation experiment. It was also designed to evaluate the beneficial effect of vanadium-containing proteins (VCPs) from sea cucumber rich in vanadium on the development of hyperglycemia and insulin resistance in C57BL/6J mice fed with a high-fat high-sucrose diet (HFSD). HFSD mice treated with VCPs significantly decreased fasting blood glucose, serum insulin, and HOMA-IR values as compared to HFSD mice, respectively. Serum adiponectin, resistin, TNF-α, and leptin levels in insulin-resistant mice were dramatically reduced by a VCP supplement. These results show an ameliorative effect on insulin resistance by treatment with VCPs. Such compound seems to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes.

  8. Comparison of bioavailable vanadium in alfalfa rhizosphere soil extracted by an improved BCR procedure and EDTA, HCl, and NaNO₃ single extractions in a pot experiment with V-Cd treatments.

    PubMed

    Yang, Jie; Teng, Yanguo; Zuo, Rui; Song, Liuting

    2015-06-01

    The BCR sequential extraction procedure was compared with EDTA, HCl, and NaNO3 single extractions for evaluating vanadium bioavailability in alfalfa rhizosphere soil. The amounts of vanadium extracted by these methods were in the following order: BCR (bioavailable V) > EDTA ≈ HCl > NaNO3. Both correlation analysis and stepwise regression were adopted to illustrate the extractable vanadium between different reagents. The correlation coefficients between extracted vanadium and the vanadium contents in alfalfa roots were R NaNO3 = 0.948, R HCl = 0.902, R EDTA = 0.816, and R bioavailable V = 0.819. The stepwise multiple regression equation of the NaNO3 extraction was the most significant at a 95 % confidence interval. The influence of pH, total organic carbon, and cadmium content of soil to vanadium bioavailability were not definite. In summary, both the BCR sequential extraction and the single extraction methods were valid approaches for predicting vanadium bioavailability in alfalfa rhizosphere soil, especially the single extractions.

  9. Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching

    NASA Astrophysics Data System (ADS)

    Li, Meng; Du, Hao; Zheng, Shili; Wang, Shaona; Zhang, Yang; Liu, Biao; Dreisinger, David Bruce; Zhang, Yi

    2017-10-01

    A clean method featuring non-salt roasting followed by (NH4)2C2O4 leaching to recover vanadium from vanadium slag was proposed. The carcinogenic Cr6+ compounds and exhaust gases were avoided, and the water generated from vanadate precipitation may be recycled and reused in this new leaching process. The leaching residues may be easily used by a blast furnace. Moreover, (NH4)2C2O4 solution was used as a leaching medium to avoid expensive and complicated ammonium controlling operations as a result of the stability of (NH4)2C2O4 at a high temperature. The transformation mechanisms of vanadium- and chromium-bearing phases were systematically investigated by x-ray diffraction analysis and scanning electron microscopy with energy-disperse x-ray spectrometry, respectively. In addition, the effects of oxygen concentration, roasting temperature, and holding time on vanadium recovery were investigated. Finally, the effects of leaching variables on the vanadium leaching rate were also examined.

  10. Theoretical analysis and experiments for the carburization of vanadium-bearing hot metal

    NASA Astrophysics Data System (ADS)

    Ma, Deng; Wu, Wei; Dai, Shifan; Liu, Zhibin

    2018-01-01

    In this study, the feasibility of the carburization of vanadium-bearing hot metal was first investigated by thermodynamic analysis. Next, three carburizers, namely a low-nitrogen carburizer, anthracite, and coke, were used for carburization of 500 g of vanadium-bearing hot metal at 1450 °C, 1500 °C, and 1550 °C, respectively. The carbon increments for the low-nitrogen carburizer, anthracite and coke followed decreasing order in the temperature range from 1450 °C to 1550 °C. Anthracite was the most cost-effective carburizer. Hence, anthracite is used in pilot-scale experiments of the vanadium-bearing hot metal (100 kg and 200 kg). Finally, vanadium extraction experiments of the vanadium-bearing hot metal were carried out in a top-bottom-combined blowing induction furnace. It is proved that the average superheat degree of semi-steel increases from 100 °C to 198 °C by the carburization of vanadium-containing hot metal. Foundation Item: Item Sponsored by National Science Foundation of China (51674092)

  11. Vanadium-Binding Ability of Nucleoside Diphosphate Kinase from the Vanadium-Rich Fan Worm, Pseudopotamilla occelata.

    PubMed

    Yamaguchi, Nobuo; Yoshinaga, Masafumi; Kamino, Kei; Ueki, Tatsuya

    2016-06-01

    Polychaete fan worms and ascidians accumulate high levels of vanadium ions. Several vanadiumbinding proteins, known as vanabins, have been found in ascidians. However, no vanadium-binding factors have been isolated from the fan worm. In the present study, we sought to identify vanadiumbinding proteins in the branchial crown of the fan worm using immobilized metal ion affinity chromatography. A nucleoside diphosphate kinase (NDK) homolog was isolated and determined to be a vanadium-binding protein. Kinase activity of the NDK homologue, PoNDK, was suppressed by the addition of V(IV), but was unaffected by V(V). The effect of V(IV) on PoNDK precedes its activation by Mg(II). This is the first report to describe the relationship between NDK and V(IV). PoNDK is located in the epidermis of the branchial crown, and its distribution is very similar to that of vanadium. These results suggest that PoNDK is associated with vanadium accumulation and metabolism in P. occelata.

  12. Critical V2O5/TeO2 Ratio Inducing Abrupt Property Changes in Vanadium Tellurite Glasses.

    PubMed

    Kjeldsen, Jonas; Rodrigues, Ana C M; Mossin, Susanne; Yue, Yuanzheng

    2014-12-26

    Transition metal containing glasses have unique electrical properties and are therefore often used for electrochemical applications, such as in batteries. Among oxide glasses, vanadium tellurite glasses exhibit the highest electronic conductivity and thus the high potential for applications. In this work, we investigate how the dynamic and physical properties vary with composition in the vanadium tellurite system. The results show that there exists a critical V(2)O(5) concentration of 45 mol %, above which the local structure is subjected to a drastic change with increasing V(2)O(5), leading to abrupt changes in both hardness and liquid fragility. Electronic conductivity does not follow the expected correlation to the valence state of the vanadium as predicted by the Mott-Austin equation but shows a linear correlation to the mean distance between vanadium ions. These findings could contribute to designing optimum vanadium tellurite compositions for electrochemical devices. The work gives insight into the mechanism of electron conduction in the vanadium tellurite systems.

  13. Recycling of Ammonia Wastewater During Vanadium Extraction from Shale

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-03-01

    In the vanadium metallurgical industry, massive amounts of ammonia hydroxide or ammonia salt are added during the precipitation process to obtain V2O5; therefore, wastewater containing a high level of NH4 + is generated, which poses a serious threat to environmental and hydrologic safety. In this article, a novel process was developed to recycle ammonia wastewater based on a combination of ammonia wastewater leaching and crystallization during vanadium extraction from shale. The effects of the NH4 + concentration, temperature, time and liquid-to-solid ratio on the leaching efficiencies of vanadium, aluminum and potassium were investigated, and the results showed that 93.2% of vanadium, 86.3% of aluminum and 96.8% of potassium can be leached from sulfation-roasted shale. Subsequently, 80.6% of NH4 + was separated from the leaching solution via cooling crystallization. Vanadium was recovered via a combined method of solvent extraction, precipitation and calcination. Therefore, ammonia wastewater was successfully recycled during vanadium extraction from shale.

  14. Recent progress on gas tungsten arc welding of vanadium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that themore » atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.« less

  15. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

    NASA Astrophysics Data System (ADS)

    Sourmail, T.; Garcia-Mateo, C.; Caballero, F. G.; Cazottes, S.; Epicier, T.; Danoix, F.; Milbourn, D.

    2017-09-01

    The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

  16. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

  17. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  18. Effect of vanadium on colonic aberrant crypt foci induced in rats by 1,2 Dimethyl hydrazine

    PubMed Central

    Kanna, P Suresh; Mahendrakumar, CB; Chakraborty, T; Hemalatha, P; Banerjee, Pratik; Chatterjee, M

    2003-01-01

    AIM: To investigate the chemo preventive effects of vanadium on rat colorectal carcinogenesis induced by 1,2-dimethylhydrazine (DMH). METHODS: Male Sprague-Dawley Rats were randomly divided into four groups. Rats in Group A received saline vehicle alone for 16 weeks. Rats in Group B were given DMH injection once a week intraperitoneally for 16 weeks; rats in Group C, with the same DMH treatment as in the Group B, but received 0.5-ppm vanadium in the form ammonium monovanadate ad libitum in drinking water. Rats in the Group D received vanadium alone as in the Group C without DMH injection. RESULTS: Aberrant crypt foci (ACF) were formed in animals in DMH-treated groups at the end of week 16. Compared to DMH group, vanadium treated group had less ACF (P < 0.001). At the end of week 32, all rats in DMH group developed large intestinal tumors. Rats treated with vanadium contained significantly few colonic adenomas and carcinomas (P < 0.05) compared to rats administered DMH only. In addition, a significant reduction (P < 0.05) in colon tumor burden (sum of tumor sizes per animal) was also evident in animals of Group C when compared to those in rats of carcinogen control Group B. The results also showed that vanadium significantly lowered PCNA index in ACF (P < 0.005). Furthermore, vanadium supplementation also elevated liver GST and Cyt P-450 activities (P < 0.001 and P < 0.02, respectively). CONCLUSION: Vanadium in the form of ammonium monovanadate supplemented in drinking water ad libitum has been found to be highly effective in reducing tumor incidence and preneoplastic foci on DMH-induced colorectal carcinogenesis. These findings suggest that vanadium administration can suppress colon carcinogenesis in rats. PMID:12717849

  19. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.

    PubMed

    Chen, Desheng; Zhao, Hongxin; Hu, Guoping; Qi, Tao; Yu, Hongdong; Zhang, Guozhi; Wang, Lina; Wang, Weijing

    2015-08-30

    An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite was developed. In this study, a mixed solvent system of di(2-ethylhexyl) phosphate (D2EHPA) and tri-n-butyl phosphate (TBP) diluted with kerosene was used for the selective extraction of vanadium from a hydrochloric acid leaching solution that contained low vanadium concentration with high concentrations of iron and impurities of Ca, Mg, and Al. In the extraction process, the initial solution pH and the phase ratio had considerable functions in the extraction of vanadium from the hydrochloric acid leaching solution. Under optimal extraction conditions (i.e., 30-40°C for 10min, 1:3 phase ratio (O/A), 20% D2EHPA concentration (v/v), and 0-0.8 initial solution pH), 99.4% vanadium and only 4.2% iron were extracted by the three-stage counter-current extraction process. In the stripping process with H2SO4 as the stripping agent and under optimal stripping conditions (i.e., 20% H2SO4 concentration, 5:1 phase ratio (O/A), 20min stripping time, and 40°C stripping temperature), 99.6% vanadium and only 5.4% iron were stripped by the three-stage counter-current stripping process. The stripping solution contained 40.16g/LV2O5,0.691g/L Fe, 0.007g/L TiO2, 0.006g/L SiO2 and 0.247g/L CaO. A V2O5 product with a purity of 99.12% V2O5 and only 0.026% Fe was obtained after the oxidation, precipitation, and calcination processes. The total vanadium recovered from the hydrochloric acid leaching solution was 85.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    PubMed

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-04

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  1. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhicheng; Rao, Linfeng; Abney, Carter W.

    Adsorbents developed for the recovery of uranium from seawater display poor selectivity over other transition metals present in the ocean, with vanadium particularly problematic. To improve selectivity, an indispensable step is the positive identification of metal binding environments following actual seawater deployment. In this work we apply x-ray absorption fine structure (XAFS) spectroscopy to directly investigate the vanadium binding environment on seawater-deployed polyamidoxime adsorbents. Comparison of the x-ray absorption near edge spectra (XANES) reveal marked similarities to recently a reported non-oxido vanadium (V) structure formed upon binding with cyclic imidedioxime, a byproduct of generating amidoxime functionalities. Density functional theory (DFT)more » calculations provided a series of putative vanadium binding environments for both vanadium (IV) and vanadium (V) oxidation states, and with both amidoxime and cyclic imidedioxime. Fits of the extended XAFS (EXAFS) data confirmed vanadium (V) is bound exclusively by the cyclic imidedioxime moiety in a 1:2 metal:ligand fashion, though a modest structural distortion is also observed compared to crystal structure data and computationally optimized geometries which is attributed to morphology effects from the polymer graft chain and the absence of crystal packing interactions. These results demonstrate that improved selectivity for uranium over vanadium can be achieved by suppressing the formation of cyclic imidedioxime during preparation of polyamidoxime adsorbents for seawater uranium recovery.« less

  3. Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability.

    PubMed

    Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat

    2017-04-01

    Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    PubMed

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  5. Effect of vanadium compounds on acid phosphatase activity.

    PubMed

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  6. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  7. Mineral resource of the month: vanadium

    USGS Publications Warehouse

    Magyar, Michael J.

    2007-01-01

    Vanadium, the name of which comes from Vanadis, a goddess in Scandinavian mythology, is one of the most important ferrous metals. Vanadium has many uses, but the metal’s metallurgical applications, such as an alloying element in iron and steel, account for more than 85 percent of U.S. consumption. The dominant nonmetallurgical use of the metal is as a catalyst for the production of maleic anhydride and sulfuric acid, ceramics, vanadium chemicals and electronics.

  8. Hydrophilic Channel Alignment of Perfluoronated Sulfonic-Acid Ionomers for Vanadium Redox Flow Batteries.

    PubMed

    So, Soonyong; Cha, Min Suc; Jo, Sang-Woo; Kim, Tae-Ho; Lee, Jang Yong; Hong, Young Taik

    2018-06-13

    It is known that uniaxially drawn perfluoronated sulfonic-acid ionomers (PFSAs) show diffusion anisotropy because of the aligned water channels along the deformation direction. We apply the uniaxially stretched membranes to vanadium redox flow batteries (VRFBs) to suppress the permeation of active species, vanadium ions through the transverse directions. The aligned water channels render much lower vanadium permeability, resulting in higher Coulombic efficiency (>98%) and longer self-discharge time (>250 h). Similar to vanadium ions, proton conduction through the membranes also decreases as the stretching ratio increases, but the thinned membranes show the enhanced voltage and energy efficiencies over the range of current density, 50-100 mA/cm 2 . Hydrophilic channel alignment of PFSAs is also beneficial for long-term cycling of VRFBs in terms of capacity retention and cell performances. This simple pretreatment of membranes offers an effective and facile way to overcome high vanadium permeability of PFSAs for VRFBs.

  9. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium-hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V-H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  10. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium--hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V--H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  11. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  12. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  13. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    NASA Astrophysics Data System (ADS)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  14. A nested case-control study of prenatal vanadium exposure and low birthweight.

    PubMed

    Jiang, Minmin; Li, Yuanyuan; Zhang, Bin; Zhou, Aifen; Zheng, Tongzhang; Qian, Zhengmin; Du, Xiaofu; Zhou, Yanqiu; Pan, Xinyun; Hu, Jie; Wu, Chuansha; Peng, Yang; Liu, Wenyu; Zhang, Chuncao; Xia, Wei; Xu, Shunqing

    2016-09-01

    Is prenatal vanadium exposure associated with adverse birth outcomes? The odds of low birthweight (LBW) are increased 2.23-fold in mothers with a urinary vanadium of ≥2.91 μg/g creatinine compared with that in mothers with a urinary vanadium of ≤1.42 μg/g creatinine. Human exposure to vanadium occurs through intake of food, water and polluted air. Vanadium has been suggested to have fetotoxicity and developmental toxicity in animal studies, and epidemiological studies have reported an association between a decrease in birthweight and vanadium exposure estimated from particulate matter. A nested case-control study involving 816 study participants (204 LBW cases and 612 matched controls) was conducted with data from the prospective Healthy Baby Cohort between 2012 and 2014 in the province of Hubei, China. Vanadium concentrations in 816 maternal urine samples collected before delivery [the median gestational age was 39 weeks (range 27-42 weeks)] were measured by inductively coupled plasma mass spectrometry. Information on the infants' birth outcomes was obtained from medical records. Conditional logistic regression was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs). The median urinary vanadium concentration of the cases was much higher than that of the controls (3.04 μg/g creatinine versus 1.93 μg/g creatinine). The results revealed a significant positive trend between the odds of LBW and level of maternal urinary vanadium [relative to the lowest tertile; adjusted OR = 1.69 (95% CI: 0.92, 3.10) for the medium tertile; adjusted OR = 2.23 (95% CI: 1.23, 4.05) for the highest tertile; P-trend = 0.02]. Additionally, the association was not modified by maternal age (P for heterogeneity = 0.70) or infant gender (P for heterogeneity = 0.21). The maternal urine sample was collected before labor, and the maternal urinary vanadium levels measured at one point in time may not accurately reflect the vanadium burden during the entire pregnancy. The results of this study can enrich the biological monitoring data on urinary vanadium in pregnant women; and may be evidence that vanadium may affect fetal development. This work was supported by the National Natural Science Foundation of China (21437002, 81372959 and 81402649), the R&D Special Fund for Public Welfare Industry (Environment) (201309048) and the Fundamental Research Funds for the Central Universities, HUST (2016YXZD043). The authors have no conflicts of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Brain Metal Distribution and Neuro-Inflammatory Profiles after Chronic Vanadium Administration and Withdrawal in Mice

    PubMed Central

    Folarin, Oluwabusayo R.; Snyder, Amanda M.; Peters, Douglas G.; Olopade, Funmilayo; Connor, James R.; Olopade, James O.

    2017-01-01

    Vanadium is a potentially toxic environmental pollutant and induces oxidative damage in biological systems including the central nervous system (CNS). Its deposition in brain tissue may be involved in the pathogenesis of certain neurological disorders which after prolonged exposure can culminate into more severe pathology. Most studies on vanadium neurotoxicity have been done after acute exposure but in reality some populations are exposed for a lifetime. This work was designed to ascertain neurodegenerative consequences of chronic vanadium administration and to investigate the progressive changes in the brain after withdrawal from vanadium treatment. A total of 85 male BALB/c mice were used for the experiment and divided into three major groups of vanadium treated (intraperitoneally (i.p.) injected with 3 mg/kg body weight of sodium metavanadate and sacrificed every 3 months till 18 months); matched controls; and animals that were exposed to vanadium for 3 months and thereafter the metal was withdrawn. Brain tissues were obtained after animal sacrifice. Sagittal cut sections of paraffin embedded tissue (5 μm) were analyzed by the Laser ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS) to show the absorption and distribution of vanadium metal. Also, Haematoxylin and Eosin (H&E) staining of brain sections, and immunohistochemistry for Microglia (Iba-1), Astrocytes (GFAP), Neurons (Neu-N) and Neu-N + 4′,6-diamidine-2′-pheynylindole dihydrochloride (Dapi) Immunofluorescent labeling were observed for morphological and morphometric parameters. The LA–ICP–MS results showed progressive increase in vanadium uptake with time in different brain regions with prediction for regions like the olfactory bulb, brain stem and cerebellum. The withdrawal brains still show presence of vanadium metal in the brain slightly more than the controls. There were morphological alterations (of the layering profile, nuclear shrinkage) in the prefrontal cortex, cellular degeneration (loss of dendritic arborization) and cell death in the Hippocampal CA1 pyramidal cells and Purkinje cells of the cerebellum, including astrocytic and microglial activation in vanadium exposed brains which were all attenuated in the withdrawal group. With exposure into old age, the evident neuropathology was microgliosis, while progressive astrogliosis became more attenuated. We have shown that chronic administration of vanadium over a lifetime in mice resulted in metal accumulation which showed regional variabilities with time. The metal profile and pathological effects were not completely eliminated from the brain even after a long time withdrawal from vanadium metal. PMID:28790895

  16. Vanadium release in whole blood, serum and urine of patients implanted with a titanium alloy hip prosthesis.

    PubMed

    Catalani, S; Stea, S; Beraudi, A; Gilberti, M E; Bordini, B; Toni, A; Apostoli, P

    2013-08-01

    Vanadium (V) is a minor constituent of the Titanium-Aluminum-Vanadium (TiAlV) alloy currently used in cementless hip prostheses. Present study aimed at verifying the correlation of vanadium levels among different matrices and assessing reference levels of the ion in a population of patients wearing a well-functioning hip prosthesis. Vanadium was measured using Inductive Coupled Plasma Mass Spectrometry (ICP-MS) in whole blood, serum and urine of 129 patients implanted with a TiAlV-alloy hip prosthesis. The values in the serum were above the upper limit of the reference values in 42% of patients (29% in urine and 13% in whole blood). A good correlation among matrices was observed (p < 0.001). The cohort of patients (N = 32) complaining of pain or in which a loosening or damage to the prosthesis was assessed showed a significantly higher excretion of vanadium in urine as compared with the remaining asymptomatic patients (p = 0.001). The 95th percentile distribution of vanadium in the cohort of patients with a well-functioning prosthesis was 0.3 μg/L in whole blood, 0.5 μg/L in serum and 2.8 μg/L in urine, higher that in the unexposed population, especially for urine. The presence of a prosthesis, even though well-functioning, may cause a possible release of vanadium into the blood and a significant urinary excretion. The reference values of vanadium of the asymptomatic patients with titanium alloy hip prostheses supplied information regarding the background exposure level of the ions and their lower and upper limits.

  17. Blending Non-Group-3 Transition Metal and Rare-Earth Metal into a C80 Fullerene Cage with D5h Symmetry.

    PubMed

    Wei, Tao; Jin, Fei; Guan, Runnan; Huang, Jing; Chen, Muqing; Li, Qunxiang; Yang, Shangfeng

    2018-02-11

    Rare-earth metals have been mostly entrapped into fullerene cages to form endohedral clusterfullerenes, whereas non-Group-3 transition metals that can form clusterfullerenes are limited to titanium (Ti) and vanadium (V), and both are exclusively entrapped within an I h -C 80 cage. Non-Group-3 transition-metal-containing endohedral fullerenes based on a C 80 cage with D 5h symmetry, V x Sc 3-x N@D 5h -C 80 (x=1, 2), have now been synthesized, which exhibit two variable cluster compositions. The molecular structure of VSc 2 N@D 5h -C 80 was unambiguously determined by X-ray crystallography. According to a comparative study with the reported Ti- and V-containing clusterfullerenes based on a I h -C 80 cage and the analogous D 5h -C 80 -based metal nitride clusterfullerenes containing rare-earth metals only, the decisive role of the non-Group-3 transition metal on the formation of the corresponding D 5h -C 80 -based clusterfullerenes is unraveled. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. UV-vis-DR study of VO x/SiO 2 catalysts prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Ghorbel, A.

    2008-12-01

    Vanadia-silica catalysts with different vanadium loadings were prepared by sol-gel process. UV-vis diffuse-reflectance spectroscopy was used to elucidate the effect of drying mode (i.e., xerogel vs. aerogel), vanadium loading and calcination on the molecular structure of supported vanadium species. The results indicate that for vanadium loading ranging from 2.8 to 11.2 wt.%, the band-gap energies of all catalysts varying from 2.28 to 2.68 eV which demonstrate that vanadium oxides are predominantly in octahedral structure with the presence of tetrahedral species. The discrimination of different surface VO x species has been based on their characteristic Ligand to Metal Charge Transfer (LMCT) O → V(V) and d-d transition. It was found that the LMCT band position of V dbnd O bond is not affected by calcination either in xerogels or in aerogels but the position and the shape of bands relative to bridging V sbnd O sbnd V bonds are affected by vanadium loading, calcination and drying mode. For the same V/Si ratio, band-gap energy of xerogel is lower than that of aerogel which indicate that vanadium species are more dispersed in aerogels than in xerogels. Drying and calcination led to rearrangement, dehydration, cleavage and crystallization of vanadium species which explain the presence of some amount of crystalline V 2O 5 in calcined samples.

  19. Inverse association of plasma vanadium levels with newly diagnosed type 2 diabetes in a Chinese population.

    PubMed

    Wang, Xia; Sun, Taoping; Liu, Jun; Shan, Zhilei; Jin, Yilin; Chen, Sijing; Bao, Wei; Hu, Frank B; Liu, Liegang

    2014-08-15

    Vanadium compounds have been proposed to have beneficial effects on the pathogenesis and complications of type 2 diabetes. Our objective was to evaluate the association between plasma vanadium levels and type 2 diabetes. We performed a case-control study involving 1,598 Chinese subjects with or without newly diagnosed type 2 diabetes (December 2004-December 2007). Cases and controls were frequency-matched by age and sex. Plasma vanadium concentrations were measured and compared between groups. Analyses showed that plasma vanadium concentrations were significantly lower in cases with newly diagnosed type 2 diabetes than in controls (P = 0.001). Mean plasma vanadium levels in participants with and without diabetes were 1.0 μg/L and 1.2 μg/L, respectively. Participants in the highest quartile of plasma vanadium concentration had a notably lower risk of newly diagnosed type 2 diabetes (odds ratio = 0.26, 95% confidence interval: 0.19, 0.35; P < 0.001), compared with persons in the lowest quartile. The trend remained significant after adjustment for known risk factors and in further stratification analyses. Our results suggested that plasma vanadium concentrations were inversely associated with newly diagnosed type 2 diabetes in this Chinese population. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-05-01

    The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V2O5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V2O5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V2O5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/VxOx composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V2O5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing aid, such as the two cysteine-constrained peptides on the phage surface, and has potential for use in nanotechnology applications.

  1. Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis.

    PubMed

    Renirie, Rokus; Charnock, John M; Garner, C David; Wever, Ron

    2010-06-01

    Vanadium K-edge X-ray Absorption Spectra have been recorded for the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis at pH 6.0. The Extended X-ray Absorption Fine Structure (EXAFS) regions provide a refinement of previously reported crystallographic data; one short V=O bond (1.54A) is present in both forms. For the native enzyme, the vanadium is coordinated to two other oxygen atoms at 1.69A, another oxygen atom at 1.93A and the nitrogen of an imidazole group at 2.02A. In the peroxo-form, the vanadium is coordinated to two other oxygen atoms at 1.67A, another oxygen atom at 1.88A and the nitrogen of an imidazole group at 1.93A. When combined with the available crystallographic and kinetic data, a likely interpretation of the EXAFS distances is a side-on bound peroxide involving V-O bonds of 1.67 and 1.88A; thus, the latter oxygen would be 'activated' for transfer. The shorter V-N bond observed in the peroxo-form is in line with the previously reported stronger binding of the cofactor in this form of the enzyme. Reduction of the enzyme with dithionite has a clear influence on the spectrum, showing a change from vanadium(V) to vanadium(IV).

  2. Iron diminishes the in vitro biological effect of vanadium.

    EPA Science Inventory

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  3. 40 CFR 421.223 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Vanadium decomposition wet air pollution control. BAT Limitations for the Secondary Molybdenum and Vanadium... per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000 Chromium 0.000 0.000...

  4. 40 CFR 421.223 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Vanadium decomposition wet air pollution control. BAT Limitations for the Secondary Molybdenum and Vanadium... per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000 Chromium 0.000 0.000...

  5. 40 CFR 421.223 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Vanadium decomposition wet air pollution control. BAT Limitations for the Secondary Molybdenum and Vanadium... per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000 Chromium 0.000 0.000...

  6. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Zhou, Mi; Gao, Hui-yang; Liu, Jia-yi; Xue, Xiang-xin

    2018-05-01

    Calcification roasting-acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 ( n(CaO)/ n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation-calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/ n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630°C for n(CaO)/ n(V2O5) ratios of 0.5 and 5, respectively.

  7. Facile synthesis of hierarchical porous VOx@carbon composites for supercapacitors.

    PubMed

    Zhao, Chunxia; Cao, Jinqiao; Yang, Yunxia; Chen, Wen; Li, Junshen

    2014-08-01

    Hierarchical or micro-nano structured porous VOx@carbon composites were synthesized by a one-step method using phenolic resin as the carbon precursor and ammonium metavanadate as the source of vanadium oxides. The effects of the vanadium source loading on the microstructure and electrochemical properties of the composites were investigated. X-ray diffraction results showed that as the vanadium oxides source loading increased, vanadium oxides in the composites changed oxidation states from V2O3 to mixed states of V2O3 and VO2. Electrochemical test results indicated that the micro-nano porous structure of the composites could facilitate the ion diffusion in the rich porous structure and then promote the electrochemical reaction. More importantly, we found that vanadium oxides greatly enhanced the electrochemical performance of the materials, due to the faradic capacitance generated from vanadium oxide nanoparticles. A maximum specific capacitance of 171 F/g was obtained from VOx@carbon composite with vanadium loading of ∼44 wt%. Further increasing the VOx loading over this fraction was not beneficial. Our results suggested that hierarchical porous VOx@carbon composites were promising candidates for supercapacitor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Allergic reaction to vanadium causes a diffuse eczematous eruption and titanium alloy orthopedic implant failure.

    PubMed

    Engelhart, Sally; Segal, Robert J

    2017-04-01

    Allergy as a cause of adverse outcomes in patients with implanted orthopedic hardware is controversial. Allergy to titanium-based implants has not been well researched, as titanium is traditionally thought to be inert. We highlight the case of a patient who developed systemic dermatitis and implant failure after surgical placement of a titanium alloy (Ti6Al4V) plate in the left foot. The hardware was removed and the eruption cleared in the following weeks. The plate and screws were submitted for metal analysis. The elemental composition of both the plate and screws included 3 major elements-titanium, aluminum, and vanadium-as well as trace elements. Metal analysis revealed that the plate and screws had different microstructures, and electrochemical studies demonstrated that galvanic corrosion could have occurred between the plate and screws due to their different microstructures, contributing to the release of vanadium in vivo. The patient was patch tested with several metals including components of the implant and had a positive patch test reaction only to vanadium trichloride. These findings support a diagnosis of vanadium allergy and suggests that clinicians should consider including vanadium when patch testing patients with a suspected allergic reaction to vanadium-containing implants.

  9. Effect of Vanadyl Rosiglitazone, a New Insulin-Mimetic Vanadium Complexes, on Glucose Homeostasis of Diabetic Mice.

    PubMed

    Jiang, Pingzhe; Dong, Zhen; Ma, Baicheng; Ni, Zaizhong; Duan, Huikun; Li, Xiaodan; Wang, Bin; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Li, Minggang

    2016-11-01

    Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.

  10. Effects of Vanadium-Containing Compounds on Membrane Lipids and on Microdomains Used in Receptor-Mediated Signaling

    PubMed Central

    Roess, Deborah A.; Smith, Steven M. L.; Winter, Peter; Zhou, Jun; Dou, Ping; Baruah, Bharat; Trujillo, Alejandro M.; Levinger, Nancy E.; Yang, Xioda; Barisas, B. George; Crans, Debbie C.

    2011-01-01

    There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of vanadium compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving vanadium complexes such as [VO2dipic]− (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V10O286−, V10), BMOV (bis(maltolato)oxovanadium(IV)) and [VO(saltris)]2 (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between vanadium-containing compounds and model lipid systems, an evaluation of the effects of vanadium compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of vanadium-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms. PMID:18729092

  11. Tackling capacity fading in vanadium flow batteries with amphoteric membranes

    NASA Astrophysics Data System (ADS)

    Oldenburg, Fabio J.; Schmidt, Thomas J.; Gubler, Lorenz

    2017-11-01

    Capacity fading and poor electrolyte utilization caused by electrolyte imbalance effects are major drawbacks for the commercialization of vanadium flow batteries (VFB). The influence of membrane type (cationic, anionic, amphoteric) on these effects is studied by determining the excess and net flux of each vanadium ion in an operating VFB assembled with a cation exchange membrane (CEM), Nafion® NR212, an anion exchange membrane (AEM), Fumatech FAP-450, and an amphoteric ion exchange membrane (AIEM) synthesized in-house. It is shown that the net vanadium flux, accompanied by water transport, is directed towards the positive side for the CEM and towards the negative side for the AEM. The content of cation and anion exchange groups in the AIEM is adjusted via radiation grafting to balance the vanadium flux between the two electrolyte sides. With the AIEM the net vanadium flux is significantly reduced and capacity fading due to electrolyte imbalances can be largely eliminated. The membrane's influence on electrolyte imbalance effects is characterized and quantified in one single charge-discharge cycle by analyzing the content of the four different vanadium species in the two electrolytes. The experimental data recorded herewith conclusively explains the electrolyte composition after 80 cycles.

  12. VANADIUM CHEMISTRY ESSENTIALS FOR TREATMENT STUDIES

    EPA Science Inventory

    The importance of vanadium occurrence and treatment in drinking water has been elevated by its inclusion in the Contaminant Candidate List. Though it is still too early to know the nature of new regulatory requirements for vanadium, if indeed it becomes regulated, a substantial u...

  13. Spectrophotometric determination of vanadium and its application to gas-turbine fuel-oils.

    PubMed

    Banerjee, S; Sinha, B P; Dutta, R K

    1975-08-01

    A very sensitive spectrophotometric method for the determination of vanadium in furnace oils is described. The intense indigo-blue colour developed by the reaction of vanadium with tannin and thioglycollic acid is measured at a wavelength of 600 nm at pH 4 and obeys Beer's law between 0.5 and 5 ppm vanadium. The method is applicable to gas-turbine fuel-oil and special navy fuel-oils. The common mineral constituents usually present in such oils do not interfere.

  14. ON THE SEPARATION OF VANADIUM, MOLYBDENUM AND TUNGSTEN BY MEANS OF PAPER CHROMATOGRAPHY. PART I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzou, S.; Liang, S.

    1959-02-01

    Molybdenum, tangsten, and vanadium are separated by chromatography as per-acids, and then detected with tannin solution. Of the seven solvents tested, n-butanolhydrogen peroxide-nitric acid mixtures offer the best separations. With the addition of dioxane, the R/sub F/ values of these elements increase, while vanadium and tungsten spots overlap. The formation of per-acids avoids the retainment of tungsten on the original spot and the tailings of vanadium and molybdenum spots. (B.O.G.)

  15. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, Frederick; Carlson, O. Norman

    1986-09-09

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  16. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, F.; Carlson, O.N.

    1984-05-16

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  17. Vanadium inhibits DNA-protein cross-links and ameliorates surface level changes of aberrant crypt foci during 1,2-dimethylhydrazine induced rat colon carcinogenesis.

    PubMed

    Kanna, P Suresh; Saralaya, M G; Samanta, K; Chatterjee, M

    2005-01-01

    The trace mineral vanadium inhibits cancer development in a variety of experimental animal models. The present study was to gain insight into a putative anticancer effect of vanadium in a rat model of colon carcinogenesis. The in vivo study was intended to clarify the effect of vanadium on DNA-protein cross-links (DPC), surface level changes of aberrant crypt foci (ACF) and biotransformation status during 1,2-dimethylhydrazine (1,2-DMH) induced preneoplastic rat colon carcinogenesis. The comet assay showed statistically higher mean base values of DNA-protein mass (p<0.01) and mean frequencies of tailed cells (p<0.001) in the carcinogen-induced group after treatment with proteinase K. Treatment with vanadium in the form of ammonium monovanadate supplemented ad libitum in drinking water for the entire experimental period caused a significant (p<0.02) reduction (40%) in DNA-protein cross-links in colon cells. Further, the biotransformation status of vanadium was ascertained measuring the drug metabolising enzymes, glutathione S-transferase (GST) and cytochrome P-450 (Cyt P-450). Significantly, there was an increase in glutathione S-transferase and cytochrome P-450 levels (p<0.01 and p<0.02, respectively) in rats supplemented with vanadium as compared to their carcinogen controls. As an endpoint marker, we also evaluated the effect of vanadium on surface level changes of aberrant crypt foci induced by 1,2-DMH by scanning electron microscopy. Animals induced with 1,2-DMH and supplemented with vanadium showed a marked improvement in colonic architecture with less number of aberrant crypt foci in contrast to the animals induced with 1,2-DMH alone, thereby exhibiting its anti-carcinogenicity by modulating the markers studied herein.

  18. Vanadium Induces Dopaminergic Neurotoxicity Via Protein Kinase C-Delta Dependent Oxidative Signaling Mechanisms: Relevance to Etiopathogenesis of Parkinson's Disease

    PubMed Central

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, R. S.; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration. PMID:19646462

  19. The role of vanadium in biology.

    PubMed

    Rehder, Dieter

    2015-05-01

    Vanadium is special in at least two respects: on the one hand, the tetrahedral anion vanadate(v) is similar to the phosphate anion; vanadate can thus interact with various physiological substrates that are otherwise functionalized by phosphate. On the other hand, the transition metal vanadium can easily expand its sphere beyond tetrahedral coordination, and switch between the oxidation states +v, +iv and +iii in a physiological environment. The similarity between vanadate and phosphate may account for the antidiabetic potential of vanadium compounds with carrier ligands such as maltolate and picolinate, and also for vanadium's mediation in cardiovascular and neuronal defects. Other potential medicinal applications of more complex vanadium coordination compounds, for example in the treatment of parasitic tropical diseases, may also be rooted in the specific properties of the ligand sphere. The ease of the change in the oxidation state of vanadium is employed by prokarya (bacteria and cyanobacteria) as well as by eukarya (algae and fungi) in respiratory and enzymatic functions. Macroalgae (seaweeds), fungi, lichens and Streptomyces bacteria have available haloperoxidases, and hence enzymes that enable the 2-electron oxidation of halide X(-) with peroxide, catalyzed by a Lewis-acidic V(V) center. The X(+) species thus formed can be employed to oxidatively halogenate organic substrates, a fact with implications also for the chemical processes in the atmosphere. Vanadium-dependent nitrogenases in bacteria (Azotobacter) and cyanobacteria (Anabaena) convert N2 + H(+) to NH4(+) + H2, but are also receptive for alternative substrates such as CO and C2H2. Among the enigmas to be solved with respect to the utilization of vanadium in nature is the accumulation of V(III) by some sea squirts and fan worms, as well as the purport of the nonoxido V(IV) compound amavadin in the fly agaric.

  20. Geochemical controls on vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  1. Geochemical controls of vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  2. Synthesis and characterization of polymeric V2O5/AlO(OH) with nanopores on alumina support.

    PubMed

    Ahmad, A L; Abd Shukor, S R; Leo, C P

    2006-12-01

    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.

  3. Microbial vanadium (V) reduction in groundwater with different soils from vanadium ore mining areas.

    PubMed

    Hao, Liting; Zhang, Baogang; Feng, Chuanping; Zhang, Zhenya; Lei, Zhongfang; Shimizu, Kazuya; Cao, Xuelong; Liu, Hui; Liu, Huipeng

    2018-07-01

    This work investigated the potential of vanadium (V) (V(V)) bioreduction by using soils sampled from four main kinds of vanadium ore mining areas, i.e. vanadium titanomagnetite, stone coal, petroleum associated minerals and uvanite as inocula. During a typical operation cycle of 60 h, the soils from vanadium titanomagnetite area and petroleum associated minerals area exhibited higher V(V) removal efficiencies, about 92.0 ± 2.0% and 91.0 ± 1.9% in comparison to 87.1 ± 1.9% and 69.0 ± 1.1% for the soils from uvanite and stone coal areas, respectively. Results from high-throughput 16 S rRNA gene pyrosequencing analysis reflect the accumulation of Bryobacter and Acidobacteriaceae with capabilities of V(V) reduction, accompanied with other functional species. This study is helpful to search new functional species for V(V) reduction and to develop in situ bioremediations of V(V) polluted groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Methods of forming boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less

  5. Photocatalytic Activity of Vanadium-Substituted ETS-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash,M.; Rykov, S.; Lobo, R.

    2007-01-01

    Various amounts of vanadium have been isomorphously substituted for titanium in ETS-10, creating samples with V/(V+Ti) ratios of 0.13, 0.33, 0.43, and 1.00 and characterized experimentally using Raman, near-edge X-ray absorption fine structure (NEXAFS), X-ray powder diffraction, N{sub 2} adsorption, scanning electron microscopy (SEM), UV/vis spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Raman spectra reveal a disordered chain structure that contains different V-O bonds along with the presence of a V-O-Ti peak. The UV/vis spectra of the vanadium samples have three new absorption features in the visible region at 450, 594, and 850 nm, suggesting both V{sup 4+}more » and V{sup 5+} are present in the samples. NEXAFS results confirm the presence of both V{sup 5+} and V{sup 4+} in the vanadium samples, with a fraction of V{sup 4+} within the range of 0.2-0.4. The addition of vanadium lowers the band gap energy of ETS-10 from 4.32 eV to a minimum of 3.58 eV for the 0.43ETVS-10 sample. Studies of the photocatalytic polymerization of ethylene show that the 594 nm transition has no photocatalytic activity. The visible transition around 450 nm in the vanadium-incorporated samples is photocatalytically active, and the lower-concentration vanadium samples have higher photocatalytic activity than that of ETS-10 and AM-6, the all-vanadium analogue of ETS-10.« less

  6. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.

  7. Protective effect of alpha glucosyl hesperidin (G-hesperidin) on chronic vanadium induced testicular toxicity and sperm nuclear DNA damage in male Sprague Dawley rats.

    PubMed

    Vijaya Bharathi, B; Jaya Prakash, G; Krishna, K M; Ravi Krishna, C H; Sivanarayana, T; Madan, K; Rama Raju, G A; Annapurna, A

    2015-06-01

    The study was conducted to evaluate the vanadium-induced testicular toxicity and its effect on sperm parameters, sperm nuclear DNA damage and histological alterations in Sprague Dawley rats and to assess the protective effect of G-hesperidin against this damage. Treatment of rats with vanadium at a dose of 1 mg kg bw(-1) for 90 days resulted in significant reduction in serum testosterone levels, sperm count and motility. Further, a parallel increase in abnormal sperm morphology and adverse histopathological changes in testis was also associated with vanadium administration when compared to normal control. Moreover, sperm chromatin dispersion assay revealed that vanadium induces sperm nuclear DNA fragmentation. A marked increase in testicular malondialdehyde levels and decreased activity of antioxidant enzymes such as superoxide dismutase and catalase indicates vanadium-induced oxidative stress. Co-administration of G-hesperidin at a dose of 25 and 50 mg kg bw(-1) significantly attenuated the sperm parameters and histological changes by restoring the antioxidant levels in rat testis. These results suggested that vanadium exposure caused reduced bioavailability of androgens to the tissue and increased free radical formation, thereby causing structural and functional changes in spermatozoa. G-hesperidin exhibited antioxidant effect by protecting the rat testis against vanadium-induced oxidative damage, further ensures antioxidant potential of bioflavonoids. © 2014 Blackwell Verlag GmbH.

  8. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model.

    PubMed

    Espinosa-Zurutuza, Maribel; González-Villalva, Adriana; Albarrán-Alonso, Juan Carlos; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; López-Valdéz, Nelly; Fortoul, Teresa I

    Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.

  9. Quantitative LIBS analysis of vanadium in samples of hexagonal mesoporous silica catalysts.

    PubMed

    Pouzar, Miloslav; Kratochvíl, Tomás; Capek, Libor; Smoláková, Lucie; Cernohorský, Tomás; Krejcová, Anna; Hromádko, Ludek

    2011-02-15

    The method for the analysis of vanadium in hexagonal mesoporous silica (V-HMS) catalysts using Laser Induced Breakdown Spectrometry (LIBS) was suggested. Commercially available LIBS spectrometer was calibrated with the aid of authentic V-HMS samples previously analyzed by ICP OES after microwave digestion. Deposition of the sample on the surface of adhesive tape was adopted as a sample preparation method. Strong matrix effect connected with the catalyst preparation technique (1st vanadium added in the process of HMS synthesis, 2nd already synthesised silica matrix was impregnated by vanadium) was observed. The concentration range of V in the set of nine calibration standards was 1.3-4.5% (w/w). Limit of detection was 0.13% (w/w) and it was calculated as a triple standard deviation from five replicated determinations of vanadium in the real sample with a very low vanadium concentration. Comparable results of LIBS and ED XRF were obtained if the same set of standards was used for calibration of both methods and vanadium was measured in the same type of real samples. LIBS calibration constructed using V-HMS-impregnated samples failed for measuring of V-HMS-synthesized samples. LIBS measurements seem to be strongly influenced with different chemical forms of vanadium in impregnated and synthesised samples. The combination of LIBS and ED XRF is able to provide new information about measured samples (in our case for example about procedure of catalyst preparation). Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  11. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...

  12. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...

  13. 40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...

  14. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  15. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the...

  16. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  17. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  18. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery

    NASA Astrophysics Data System (ADS)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther

    2016-02-01

    In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.

  19. Vanadium As a Potential Membrane Material for Carbon Capture: Effects of Minor Flue Gas Species.

    PubMed

    Yuan, Mengyao; Liguori, Simona; Lee, Kyoungjin; Van Campen, Douglas G; Toney, Michael F; Wilcox, Jennifer

    2017-10-03

    Vanadium and its surface oxides were studied as a potential nitrogen-selective membrane material for indirect carbon capture from coal or natural gas power plants. The effects of minor flue gas components (SO 2 , NO, NO 2 , H 2 O, and O 2 ) on vanadium at 500-600 °C were investigated by thermochemical exposure in combination with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ X-ray diffraction (XRD). The results showed that SO 2 , NO, and NO 2 are unlikely to have adsorbed on the surface vanadium oxides at 600 °C after exposure for up to 10 h, although NO and NO 2 may have exhibited oxidizing effects (e.g., exposure to 250 ppmv NO/N 2 resulted in an 2.4 times increase in surface V 2 O 5 compared to exposure to just N 2 ). We hypothesize that decomposition of surface vanadium oxides and diffusion of surface oxygen into the metal bulk are both important mechanisms affecting the composition and morphology of the vanadium membrane. The results and hypothesis suggest that the carbon capture performance of the vanadium membrane can potentially be strengthened by material and process improvements such as alloying, operating temperature reduction, and flue gas treatment.

  20. Current status and associated human health risk of vanadium in soil in China.

    PubMed

    Yang, Jie; Teng, Yanguo; Wu, Jin; Chen, Haiyang; Wang, Guoqiang; Song, Liuting; Yue, Weifeng; Zuo, Rui; Zhai, Yuanzheng

    2017-03-01

    A detailed assessment of vanadium contamination characteristics in China was conducted based on the first national soil pollution survey. The map overlay analysis was used to evaluate the contamination level of vanadium and the non-carcinogenic risk assessment model was calculated to quantify the vanadium exposure risks to human health. The results showed that, due to the drastically increased mining and smelting activities, 26.49% of soils were contaminated by vanadium scattered in southwest of China. According to Canadian soil quality guidelines, about 8.6% of the national soil pollution survey samples were polluted, and pose high non-carcinogenic risks to the public, especially to children living in the vicinity of heavily polluted mining areas. We propose the area near the boundary of Yunnan, Guizhou, Guangxi, and Sichuan provinces as priority control areas due to their higher geochemical background or higher health risks posed to the public. Finally, recommendations for management are proposed, including minimization of contaminant inputs, establishing stringent monitoring program, using phytoremediation, and strengthening the enforcement of relevant laws. Therefore, this study provides a comprehensive assessment of soil vanadium contamination in China, and the results will provide valuable information for China's soil vanadium management and risk avoidance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Kinetics and Equilibrium Study of Vanadium Dissolution from Vanadium Oxides and Phosphates in Battery Electrolytes: Possible Impacts on ICD Battery Performance.

    PubMed

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2013-06-01

    Silver vanadium oxide (Ag 2 V 4 O 11 , SVO) has enjoyed widespread commercial success over the past 30 years as a cathode material for implantable cardiac defibrillator (ICD) batteries. Recently, silver vanadium phosphorous oxide (Ag 2 VO 2 PO 4 , SVPO) has been studied as possibly combining the desirable thermal stability aspects of LiFePO 4 with the electrical conductivity of SVO. Further, due to the noted insoluble nature of most phosphate salts, a lower material solubility of SVPO relative to SVO is anticipated. Thus, the first vanadium dissolution studies of SVPO in battery electrolyte solutions are described herein. The equilibrium solubility of SVPO was ~5 times less than SVO, with a rate constant of dissolution ~3.5 times less than that of SVO. The vanadium dissolution in SVO and SVPO can be adequately described with a diffusion layer model, as supported by the Noyes-Whitney equation. Cells prepared with vanadium-treated anodes displayed higher AC impedance and DC resistance relative to control anodes. These data support the premise that SVPO cells are likely to exhibit reduced cathode solubility and thus less affected by increased cell resistance due to cathode solubility compared to SVO based cells.

  2. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  3. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  4. Transformation and precipitation in vanadium treated steels

    NASA Astrophysics Data System (ADS)

    Vassiliou, Andreas D.

    A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature tempering and at higher tempering temperature introduced secondary hardening. The intensity of secondary hardening increased with increasing vanadium, whereas austenitising temperature had little or no effect. The softening after the secondary hardening was faster after austenitising at the higher temperature and when recrystallisation occurred at the highest tempering temperatures, the hardness was lower due to coarse recrystallised ferrite.Isothermal transformation studies showed that vanadium additions raised the Ar3 temperature and accelerated ferrite nucleation, whilst the growth of ferrite was delayed due to the formation of V(CN) interphase and general precipitation pinning, of the transformation front. Increasing nitrogen content in the V-steel increased the incubation period for ferrite nucleation and increasingly reduced the ferrite growth by increasing V(CN) precipitation pinning of the transformation front.Transformation during continuous cooling was examined in relation to the effect of vanadium, carbon and nitrogen together with the effect of austenitising temperature. Increasing austenitising temperature increased the austenite grain size, and it then became apparent that increasing vanadium, carbon and nitrogen increased the hardenability and raised the hardness level of the jominy curve for the non-martensitic products. (Abstract shortened by ProQuest.).

  5. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  6. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  7. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  8. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  9. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  10. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  11. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  12. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    PubMed

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  13. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage.

    PubMed

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; Neuefeind, Joerg; Xu, Wenqian; Teng, Xiaowei

    2017-05-23

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because the large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate of 5 mV s -1 , corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full cells after 5,000 cycles at 10 C). The promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.

  14. Reduction of Vanadium Oxide (VOx) under High Vacuum Conditions as Investigated by X-Ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chourasia, A.

    2015-03-01

    Vanadium oxide thin films were formed by depositing thin films of vanadium on quartz substrates and oxidizing them in an atmosphere of oxygen. The deposition was done by the e-beam technique. The oxide films were annealed at different temperatures for different times under high vacuum conditions. The technique of x-ray photoelectron spectroscopy has been employed to study the changes in the oxidation states of vanadium and oxygen in such films. The spectral features in the vanadium 2p, oxygen 1s, and the x-ray excited Auger regions were investigated. The Auger parameter has been utilized to study the changes. The complete oxidation of elemental vanadium to V2O5 was observed to occur at 700°C. At any other temperature, a mixture of oxides consisting of V2O5 and VO2 was observed in the films. Annealing of the films resulted in the gradual loss of oxygen followed by reduction in the oxidation state from +5 to 0. The reduction was observed to depend upon the annealing temperature and the annealing time. Organized Research, TAMU-Commerce.

  15. Effect of substrate temperature on thermochromic vanadium dioxide thin films sputtered from vanadium target

    NASA Astrophysics Data System (ADS)

    Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.

    2018-05-01

    Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.

  16. Nuclear microscope analysis of blood cells from the tropical ascidian Phallusia philippinensis

    NASA Astrophysics Data System (ADS)

    Hogarth, A. N.; Thong, P. S. P.; Lane, D. J. W.; Watt, F.

    1997-07-01

    The present study examines the concentrations of vanadium, bromine and sulphur contained within cryofixed/freeze dried blood cells of the ascidian Phallusia philippinensis (Millar, 1975). Elemental profiles of seven cell types were obtained using the National University of Singapore nuclear microscope. Morula cells were found to contain the following mean values; 0.8% vanadium, 3.5% bromine and 6.1% sulphur. Signet ring cells contained 0.5% vanadium, 2.4% bromine and 1.5% sulphur. Compartment cells had 0.1% vanadium, 2.1% bromine and 2.4% sulphur. Other less abundant cell types such as lymphocytes, macrogranular amoebocytes, carotenoid pigment cells and granular amoebocytes were also analysed and found to contain 0.4%, 0.7%, 0.2% and 1.0% vanadium, 2.0%, 1.6%, 0.6% and 1.2% bromine and 1.3%, 1.5%, 0.3% and 4.3% sulphur respectively. Sulphur occurred in high levels in all cell types, which could indicate its involvement in the vanadium concentration process, while bromine, incorporated into complexes, may be utilised for anti-fouling rather than as a deterrent to predators.

  17. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approachmore » reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.« less

  18. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    DOE PAGES

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; ...

    2017-05-23

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate ofmore » 5 mV s -1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full-cells after 5,000 cycles at 10 C). Finally, the promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.« less

  19. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate ofmore » 5 mV s -1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full-cells after 5,000 cycles at 10 C). Finally, the promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.« less

  20. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination

    PubMed Central

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2014-01-01

    A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 μM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water. PMID:24569772

  1. A-15 Superconducting composite wires and a method for making

    DOEpatents

    Suenaga, Masaki; Klamut, Carl J.; Luhman, Thomas S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  2. Wrapping process for fabrication of A-15 superconducting composite wires

    DOEpatents

    Suenaga, M.; Klamut, C.J.; Luhman, T.S.

    1980-08-15

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  3. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is limited and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical working experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, it is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium alloy option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  4. [Interaction Between Occupational Vanadium Exposure and hsp70-hom on Neurobehavioral Function].

    PubMed

    Zhang, Qin; Liu, Yun-xing; Cui, Li; Li, Shun-pin; Gao, Wei; Hu, Gao-lin; Zhang, Zu-hui; Lan, Ya-jia

    2016-01-01

    In determine the effect of heat shock protein 70-hom gene (hsp70-hom) polymorphism on the neurobehavioral function of workers exposed to vanadium. Workers from the vanadium products and chemical industry were recruited by cluster sampling. Demographic data and exposure information were collected using a questionnaire. Neurobehavioral function was assessed by Neurobehavioral Core Test Battery. The hsp70-hom genotype was detected by restricted fragment length polymorphism-polymerase chain reaction (RFLP-PCR). A neurobehavioral index (NBI) was formulated through principal component analysis. Workers with a T/C genotype had worse performance in average reaction time, visual retention, digital span (backward), Santa Ana aiming (non-habitual hand), pursuit aiming (right points, total points), digit symbol and NBI score than others (P < 0.05). The relative risk of abnormal NBI score of the workers with a T/C genotype was 1.748 fold of those with a T/T genotype. The relative risk of abnormal.NBI score of the workers exposed to vanadium was 3.048 fold of controls (P < 0.05). But after adjustment with age and education, only vanadium exposure appeared with a significant effect on NBI score. When gene polymorphism and vanadium exposure coexisted, the effect of vanadium on neurobehavioral function was attenuated, but the influence of T/C genotype increased Codds ratio (OR = 4.577, P < 0.05). After adjustment with age and education, the OR of T/C genotype further increased to 7.777 (P < 0.05). Vanadium exposure and T/C genotype had.a bio-interaction effect on NBI score Crelative excess risk due to interaction (RERI) = 4.12, attributable proportion (AP) = 0.7, synergy index (S) = 6.45]. After adjustment with age and education, the RERI became 2.49 and the AP became 0.75, but no coefficient of interaction was produced. Priorities of occupational protection should be given to vanadium-exposed workers with a hsp70-hom T/C genotype and low education level.

  5. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    PubMed

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  6. Homology of vanadium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasyutinskii, N.A.

    1987-05-01

    The authors examine the homology of vanadium oxide and note that data on the existence of phases and homogeneity limits in the V-O system are very contradictory. A graphical illustration shows the homologous series of vanadium oxides. The predominant part of the discrete formations in the system V-O is characterized by integral stoichiometry and forms six homologous series. It is found that homologous series of vanadium oxides are not only a basis for systematization of such oxides, but also may serve as a means for predicting the composition of new phases, limits of homogeneity, their structure, and properties.

  7. Lithium vanadium oxides (Li1+xV3O8) as cathode materials in lithium-ion batteries for soldier portable power systems

    NASA Astrophysics Data System (ADS)

    Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.

  8. Cytotoxic effect of vanadium and oil-fired fly ash on hamster tracheal epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiff, L.J.; Graham, J.A.

    1984-08-01

    Hamster tracheal organ cultures were used to study the in vitro effects of vanadium and oil-fired fly ash on mucociliary respiratory epithelium. Two vanadium compounds, VOSO/sub 4/ and V/sub 2/O/sub 5/, and fly ash from an oil-fueled power plant were dissolved or suspended in culture medium over a range of concentrations and epithelia were exposed for 1 hr/day, for 9 consecutive days. At intervals during this period, alterations in cilia-beating frequency, cytology, and histology were documented by light microscopy. Explants treated with VOSO/sub 4/ either decreased ciliary activity or produced ciliostasis depending upon the concentration and length of exposure. Earlymore » morphological alterations consisted of vacuolization of both nuclei and cytoplasm. After multiple exposures, cytology of VOSO/sub 4/-treated respiratory mucosa was markedly affected. Similar changes were observed in cultures exposed to V/sub 2/O/sub 5/; however, the cytotoxicity appeared earlier and was more pronounced. Fly ash-treated explants produced similar biological effects when compared to both vanadium compounds. Thus, the data indicate that the extent of vanadium toxicity depends, at least in part, on the vanadium content of the compound tested, and that exposure to this metal and vanadium-rich fly ash can inhibit normal mucociliary function, a vital clearance mechanism in the respiratory tract.« less

  9. [Determination of Fe, Ti and V in vanadium and titanium magnetite by ICP-OES and microwave-assisted digestion].

    PubMed

    Zhu, Xia-ping; Yin, Ji-xian; Chen, Wei-dong; Hu, Zi-Wen; Liang, Qing-xun; Chen, Tie-yao

    2010-08-01

    The method of determination of iron, titanium and vanadium in indissolvable vanadium and titanium magnetite has been established by inductively coupled plasma atomic emission spectroscopy through adding the complexant A and using microwave-assisted digestion. The optimal conditions are confirmed by orthogonal experiment: 0.1 g vanadium and titanium magnetite, 0.04 g complexant A, 12 mL concentrated HC1, 10 min digestion time, and 385 W microwave power. The newly-established method has been applied to digest vanadium and titanium magnetite of Panzhihua Iron and Steel Institute (GBW07226). The iron, titanium and vanadium were detected by ICP-OES, and both comparative error (Er%) and comparative standard deviation (RSD%) met the demand of analytical chemistry, and the complexant A can significantly accelerate the dissolution of vanadium and titanium magnetite through the complexation with the dissolved metal ions, and making the surface of sample and hydrochloric acid medium to update constantly. The determination of the main and trace elements of digestion solution at the same time was achieved by ICP-OES. The method has the advantages of less use of reagents, economy, rapidness, and being friendly to environment, and it meets the requirement for rapid and volume determination. So the method has the value of practical application for the entry-exit inspection and quarantine department of the state and other relevant inspection units.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, G.N.; Coyle, C.L.; Hales, B.J.

    Evidence for the existence of a vanadium-containing nitrogenase has existed for more than half a century, but progress in understanding this enzyme has only come recently. In 1980, Bishop and co-workers proposed that an alternative nitrogen-fixing enzyme exists in Azotobacter vinelandii and subsequently proposed that vanadium was involved. In 1986, Robson et al. demonstrated clearly that the alternate nitrogenase from Azotobacter chroococcum, Acl*, contained vanadium instead of molybdenum. Hales et al. have shown the vanadium is also found in the Azotobacter vinelandii alternative component I, Avl'. The molybdenum and vanadium nitrogenase proteins are similar in many respects. Like the molybdenummore » enzyme, both Acl* and Avl' exhibit an EPR spectrum characteristic of a species with an S = 3/2 ground state; Avl' also contains the so-called P-clusters. Additionally Acl* has recently been shown to possess an N-methylformamide soluble cofactor, FeVco, analogous to the well-known iron-molybdenum cofactor FeMoco. Arber et al. have reported X-ray absorption spectra for the Acl* enzyme and interpreted the EXAFS as evidence for a V-Fe-S cluster. The local vanadium structure is proposed to resemble a recently synthesized cubane-like VFe/sub 3/S/sub 4/ cluster, and analogies are drawn with the EXAFS-derived structure reported for the molybdenum nitrogenases. The authors report herein an X-ray absorption spectroscopic study of A. vinelandii vanadium nitrogenase, Avl', which supports and extends the work of Arber et al.« less

  11. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    USGS Publications Warehouse

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  12. Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries.

    PubMed

    Kim, Ki Jae; Park, Min-Sik; Kim, Jae-Hun; Hwang, Uk; Lee, Nam Jin; Jeong, Goojin; Kim, Young-Jun

    2012-06-04

    A new approach for enhancing the electrochemical performance of carbon felt electrodes by employing non-precious metal oxides is designed. The outstanding electro-catalytic activity and mechanical stability of Mn(3)O(4) are advantageous in facilitating the redox reaction of vanadium ions, leading to efficient operation of a vanadium redox flow battery.

  13. 40 CFR 421.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... technical grade molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 40.778 18.145 Chromium... vanadium plus pure grade molybdenum produced Arsenic 121.720 54.162 Chromium 25.625 10.483 Lead 24.460 11... times. (c) Vanadium decomposition wet air pollution control. BPT Limitations for the Secondary...

  14. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  15. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharlamov, Alexey; Bondarenko, Marina, E-mail: mebondarenko@ukr.net; Kharlamova, Ganna

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists ofmore » weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.« less

  16. Vanadium(III)-l-cysteine enhances the sensitivity of murine breast adenocarcinoma cells to cyclophosphamide by promoting apoptosis and blocking angiogenesis.

    PubMed

    Basu, Abhishek; Bhattacharjee, Arin; Baral, Rathindranath; Biswas, Jaydip; Samanta, Amalesh; Bhattacharya, Sudin

    2017-05-01

    Various epidemiological and preclinical studies have already established the cancer chemopreventive potential of vanadium-based compounds. In addition to its preventive efficacy, studies have also indicated the abilities of vanadium-based compounds to induce cell death selectively toward malignant cells. Therefore, the objective of the present investigation is to improve the therapeutic efficacy and toxicity profile of an alkylating agent, cyclophosphamide, by the concurrent use of an organovanadium complex, vanadium(III)-l-cysteine. In this study, vanadium(III)-l-cysteine (1 mg/kg body weight, per os) was administered alone as well as in combination with cyclophosphamide (25 mg/kg body weight, intraperitoneal) in concomitant and pretreatment schedule in mice bearing breast adenocarcinoma cells. The results showed that the combination treatment significantly decreased the tumor burden and enhanced survivability of tumor-bearing mice through generation of reactive oxygen species in tumor cells. These ultimately led to DNA damage, depolarization of mitochondrial membrane potential, and apoptosis in tumor cells. Further insight into the molecular pathway disclosed that the combination treatment caused upregulation of p53 and Bax and suppression of Bcl-2 followed by the activation of caspase cascade and poly (ADP-ribose) polymerase cleavage. Administration of vanadium(III)-l-cysteine also resulted in significant attenuation of peritoneal vasculature and sprouting of the blood vessels by decreasing the levels of vascular endothelial growth factor A and matrix metalloproteinase 9 in the ascites fluid of tumor-bearing mice. Furthermore, vanadium(III)-l-cysteine significantly attenuated cyclophosphamide-induced hematopoietic, hepatic, and genetic damages and provided additional survival advantages. Hence, this study suggested that vanadium(III)-l-cysteine may offer potential therapeutic benefit in combination with cyclophosphamide by augmenting anticancer efficacy and diminishing toxicity to the host.

  17. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.

    PubMed

    Sha, Xuelong; Ma, Wei; Meng, Fanqing; Wang, Ren; Fuping, Tian; Wei, Linsen

    2016-12-01

      In this study, we explored an effective and low-cost catalyst and its adsorption capacity and catalytic capacity for Methyl Orange Fenton oxidation degradation were investigated. The catalyst was directly prepared by reuse of magnetic iron oxide (Fe3O4) after saturated adsorption of vanadium (V) from waste SCR (Selective Catalytic Reduction) catalyst. The obtained catalyst was characterized by FTIR, XPS and the results showed that vanadium (V) adsorption process of Fe3O4 nanoparticles was non-redox reaction. The effects of pH, adsorption kinetics and equilibrium isotherms of adsorption were assessed. Adsorption of vanadium (V) ions by Fe3O4 nanoparticles could be well described by the Sips isotherm model which controlled by the mixed surface reaction and diffusion (MSRDC) adsorption kinetic model. The results show that vanadium (V) was mainly adsorbed on external surface of the Fe3O4 nanoparticles. The separation-recovering tungsten (VI) and vanadium (V) from waste SCR catalyst alkaline solution through pH adjustment was also investigated in this study. The results obtained from the experiments indicated that tungsten (VI) was selectively adsorbed from vanadium (V)/tungsten (VI) mixed solution in certain acidic condition by Fe3O4 nanoparticle to realize their recovery. Tungsten (V) with some impurity can be obtained by releasing from adsorbent, which can be confirmed by ICP-AES. The Methyl Orange degradation catalytic performance illustrated that the catalyst could improve Fenton reaction effectively at pH = 3.0 compare to Fe3O4 nanoparticles alone. Therefore, Fe3O4 nanoparticle adsorbed vanadium (V) has a potential to be employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the decoloration efficiency of Methyl Orange.

  18. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    PubMed

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural study of VO {sub x} doped aluminium fluoride and aluminium oxide catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    The structural properties of vanadium doped aluminium oxyfluorides and aluminium oxides, prepared by a modified sol-gel synthesis route, were thoroughly investigated. The influence of the preparation technique and the calcination temperature on the coordination of vanadium, aluminium and fluorine was analysed by different spectroscopic methods such as Raman, MAS NMR and ESR spectroscopy. In all samples calcined at low temperatures (350 deg. C), vanadium coexists in two oxidation states V{sup IV} and V{sup V}, with V{sup IV} as dominating species in the vanadium doped aluminium oxyfluorides. In the fluoride containing solids aluminium as well as vanadium are coordinated by fluorinemore » and oxygen. Thermal annealing of 800 deg. C leads to an extensive reorganisation of the original matrices and to the oxidation of V{sup IV} to V{sup V} in both systems. - Graphical abstract: Structure model for VO {sub x} doped aluminium oxide.« less

  20. TEM investigation of ductile iron alloyed with vanadium.

    PubMed

    Dymek, S; Blicharski, M; Morgiel, J; Fraś, E

    2010-03-01

    This article presents results of the processing and microstructure evolution of ductile cast iron, modified by an addition of vanadium. The ductile iron was austenitized closed to the solidus (1095 degrees C) for 100 h, cooled down to 640 degrees C and held on at this temperature for 16 h. The heat treatment led to the dissolution of primary vanadium-rich carbides and their subsequent re-precipitation in a more dispersed form. The result of mechanical tests indicated that addition of vanadium and an appropriate heat treatment makes age hardening of ductile iron feasible. The precipitation processes as well as the effect of Si content on the alloy microstructure were examined by scanning and transmission electron microscopy. It was shown that adjacent to uniformly spread out vanadium-rich carbides with an average size of 50 nm, a dispersoid composed of extremely small approximately 1 nm precipitates was also revealed.

  1. Insight into the adsorption mechanisms of vanadium(V) on a high-efficiency biosorbent (Ti-doped chitosan bead).

    PubMed

    Liu, Xin; Zhang, Lingfan

    2015-08-01

    In this present study, a new chitosan bead modified with titanium ions (TiCB) was prepared and employed for the adsorption of vanadium ions from aqueous solutions. Batch adsorption experiments were performed to research the effect of various factors, including pH, temperature, contact time and initial concentration of vanadium(V) ions. The adsorption of vanadium was followed by the pseudo second-order kinetic and the Langmuir isotherm model, with a remarkable maximum adsorption capacity of 210 mg/g. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the nature of adsorption was feasible, spontaneous (ΔG°<0) and endothermic (ΔH°>0) process. FTIR, EDS, EMI and XPS studies suggested that the mechanisms of adsorption were possibly attributed to electrostatic attraction, ligand-exchange and redox reaction between TiCB and vanadium ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Vanadium removal from LD converter slag using bacteria and fungi.

    PubMed

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arber, J.M.; de Boer, E.; Garner, C.D.

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure datamore » confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavingsmore » in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)« less

  5. PECVD silicon-rich nitride and low stress nitride films mechanical characterization using membrane point load deflection

    NASA Astrophysics Data System (ADS)

    Bagolini, Alvise; Picciotto, Antonino; Crivellari, Michele; Conci, Paolo; Bellutti, Pierluigi

    2016-02-01

    An analysis of the mechanical properties of plasma enhanced chemical vapor (PECVD) silicon nitrides is presented, using micro fabricated silicon nitride membranes under point load deflection. The membranes are made of PECVD silicon-rich nitride and low stress nitride films. The mechanical performance of the bended membranes is examined both with analytical models and finite element simulation in order to extract the elastic modulus and residual stress values. The elastic modulus of low stress silicon nitride is calculated using stress free analytical models, while for silicon-rich silicon nitride and annealed low stress silicon nitride it is estimated with a pre-stressed model of point-load deflection. The effect of annealing both in nitrogen and hydrogen atmosphere is evaluated in terms of residual stress, refractive index and thickness variation. It is demonstrated that a hydrogen rich annealing atmosphere induces very little change in low stress silicon nitride. Nitrogen annealing effects are measured and shown to be much higher in silicon-rich nitride than in low stress silicon nitride. An estimate of PECVD silicon-rich nitride elastic modulus is obtained in the range between 240-320 GPa for deposited samples and 390 GPa for samples annealed in nitrogen atmosphere. PECVD low stress silicon nitride elastic modulus is estimated to be 88 GPa as deposited and 320 GPa after nitrogen annealing.

  6. Vanadium Microalloyed High Strength Martensitic Steel Sheet for Hot-Dip Coating

    NASA Astrophysics Data System (ADS)

    Hutchinson, Bevis; Komenda, Jacek; Martin, David

    Cold rolled steels with various vanadium and nitrogen levels have been treated to simulate the application of galvanizing and galvannealing to hardened martensitic microstructures. Strength levels were raised 100-150MPa by alloying with vanadium, which mitigates the effect of tempering. This opens the way for new ultra-high strength steels with corrosion resistant coatings produced by hot dip galvanising.

  7. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  8. Synthesis of nanostructured vanadium powder by high-energy ball milling: X-ray diffraction and high-resolution electron microscopy characterization

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran

    2016-10-01

    Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.

  9. Vanadium doped tin dioxide as a novel sulfur dioxide sensor.

    PubMed

    Das, S; Chakraborty, S; Parkash, O; Kumar, D; Bandyopadhyay, S; Samudrala, S K; Sen, A; Maiti, H S

    2008-04-15

    Considering the short-term exposure limit of SO2 to be 5 ppm, we first time report that semiconductor sensors based on vanadium doped SnO2 can be used for SO2 leak detection because of their good sensitivity towards SO2 at concentrations down to 5 ppm. Such sensors are quite selective in presence of other gases like carbon monoxide, methane and butane. The high sensitivity of vanadium doped tin dioxide towards SO2 may be understood by considering the oxidation of sulfur dioxide to sulfur trioxide on SnO2 surface through redox cycles of vanadium-sulfur-oxygen adsorbed species.

  10. Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute.

    PubMed

    Yan, Ligen; Li, Dan; Li, Shuaiqiang; Xu, Zhi; Dong, Junhang; Jing, Wenheng; Xing, Weihong

    2016-12-28

    Vanadium redox flow batteries with nanoporous membranes (VRFBNM) have been demonstrated to be good energy storage devices. Yet the capacity decay due to permeation of vanadium and water makes their commercialization very difficult. Inspired by the forward osmosis (FO) mechanism, the VRFBNM battery capacity decrease was alleviated by adding a soluble draw solute (e.g., 2-methylimidazole) into the catholyte, which can counterbalance the osmotic pressure between the positive and negative half-cell. No change of the electrolyte volume has been observed after VRFBNM being operated for 55 h, revealing that the permeation of water and vanadium ions was effectively limited. Consequently, the Coulombic efficiency (CE) of nanoporous TiO 2 vanadium redox flow battery (VRFB) was enhanced from 93.5% to 95.3%, meanwhile, its capacity decay was significantly suppressed from 60.7% to 27.5% upon the addition of soluble draw solute. Moreover, the energy capacity of the VRFBNM was noticeably improved from 297.0 to 406.4 mAh remarkably. These results indicate balancing the osmotic pressure via the addition of draw solute can restrict pressure-dependent vanadium permeation and it can be established as a promising method for up-scaling VRFBNM application.

  11. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  12. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    PubMed

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  13. Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature

    NASA Astrophysics Data System (ADS)

    de Castro, Marcelo S. B.; Ferreira, Carlos L.; de Avillez, Roberto R.

    2013-09-01

    Vanadium oxide thin films were grown by RF magnetron sputtering from a V2O5 target at room temperature, an alternative route of production of vanadium oxide thin films for infrared detector applications. The films were deposited on glass substrates, in an argon-oxygen atmosphere with an oxygen partial pressure from nominal 0% to 20% of the total pressure. X-ray diffraction (XRD) and X-ray photon spectroscopy (XPS) analyses showed that the films were a mixture of several vanadium oxides (V2O5, VO2, V5O9 and V2O3), which resulted in different colors, from yellow to black, depending on composition. The electrical resistivity varied from 1 mΩ cm to more than 500 Ω cm and the thermal coefficient of resistance (TCR), varied from -0.02 to -2.51% K-1. Computational thermodynamics was used to simulate the phase diagram of the vanadium-oxygen system. Even if plasma processes are far from equilibrium, this diagram provides the range of oxygen pressures that lead to the growth of different vanadium oxide phases. These conditions were used in the present work.

  14. Effect of vanadium doping on structural and magnetic properties of defective nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Almalowi, M. I.

    2018-04-01

    Nano-nickel ferrites defected by vanadium doping (NiV x Fe2-1.67 x O4, 0 ≤ x ≤ 0.25) were prepared using a simple sol gel method. Rietveld analysis revealed a nonmonotonic change in lattice parameter, oxygen parameter and magnetization upon doping with vanadium. Cation distributions suggested from either Rietveld analysis or from experimental magnetic moments were in a good agreement. For low doping values ( x = 0.05), vanadium was residing mainly in octahedral sites, while for samples with vanadium content ( x ≥ 0.1) a significant part of vanadium ions resided at tetrahedral sites; a result which has been confirmed by the analysis of Fourier-transform infrared (FTIR) spectrums obtained for the samples. The transmission electron microscope (TEM) image showed fine spherical particles with size of ˜ 11 nm. All samples showed a superparamagnetic nature with a nonmonotonic change of either magnetization ( M S) or coercivity (H C) with the content of nonmagnetic V5+. The cation occupancies indicated presence of an enormous number of vacancies through doping with high valence cation V5+, making present samples potential electrodes for Li- or Na-ion batteries.

  15. Visible light driven photocatalyst of vanadium (V3+) doped TiO2 synthesized using sonochemical method

    NASA Astrophysics Data System (ADS)

    Aini, N.; Ningsih, R.; Maulina, D.; Lami’, F. F.; Chasanah, S. N.

    2018-03-01

    TiO2 has been widely investigated due to its superior photocatalytic activity under ultraviolet irradiation among the photocatalyst materials. In this research, vanadium (V3+) was doped into TiO2 to enhance its light response under visible irradiation for wider application. Vanadium was introduced into TiO2 lattice at various concentration respectively 0.3, 0.5, 0.7 and 0.9% using simple and fast sonochemical method. X-Ray Diffraction data show that vanadium doped TiO2 crystallized in anatase phase with I41amd space group. X-Ray Diffraction pattern shifted to lower value of 2θ due to vanadium dopant. It indicated that V3+ was incorporated into anatase lattice. UV-Vis Diffuse Reflectance Spectra was revealed that the doped TiO2 has lowered reflectance and enhanced absorption coefficient in visible region than undoped TiO2 and commercial anatase TiO2. Band gap energy for undoped and doped TiO2 were respectively 3.22, 3.05, 2.93, 3.03 and 2.40 eV. Therefore vanadium doped TiO2 had potential to be applied under visible light.

  16. Comparative erythropoietic effects of three vanadium compounds.

    PubMed

    Hogan, G R

    2000-07-10

    The biotoxic effects of vanadium are variable depending upon a number of factors including the oxidation state of the test compound. This study reports the effects of three vanadium compounds on peripheral erythrocytes. On day 0 female ICR mice received a single injection of vanadium chloride (V-III), vanadyl sulfate (V-IV), or sodium orthovandate (V-V). At scheduled intervals post-injection, the number of circulating erythrocytes [red blood cells per millimeter cubed (RBC/mm3)], reticulocyte percentages, and radioiron uptake percentages were determined and compared to mice receiving saline only. Data show that all three test substances promoted a significant lowering of RBC/mm3 beginning on day 1 for V-IV and V-V and on day 2 for V-III through day 4. The reticulocyte percentages increase followed the same time course as that of the peripheral RBC decrease. Peak reticulocytosis was noted on days 2 and 4 for all three vanadium-treated groups; for V-IV and V-V the increase continued to day 6. Radioiron data showed an erythropoietic stimulation by a significant increase in uptake percentages on days 4-6 after vanadium injections compared to saline-treated controls.

  17. Vanadium(IV/V) complexes of Triapine and related thiosemicarbazones: Synthesis, solution equilibrium and bioactivity.

    PubMed

    Kowol, Christian R; Nagy, Nóra V; Jakusch, Tamás; Roller, Alexander; Heffeter, Petra; Keppler, Bernhard K; Enyedy, Éva A

    2015-11-01

    The stoichiometry and thermodynamic stability of vanadium(IV/V) complexes of Triapine and two related α(N)-heterocyclic thiosemicarbazones (TSCs) with potential antitumor activity have been determined by pH-potentiometry, EPR and (51)V NMR spectroscopy in 30% (w/w) dimethyl sulfoxide/water solvent mixtures. In all cases, mono-ligand complexes in different protonation states were identified. Dimethylation of the terminal amino group resulted in the formation of vanadium(IV/V) complexes with considerably higher stability. Three of the most stable complexes were also synthesized in solid state and comprehensively characterized. The biological evaluation of the synthesized vanadium complexes in comparison to the metal-free ligands in different human cancer cell lines revealed only minimal influence of the metal ion. Thus, in addition the coordination ability of salicylaldehyde thiosemicarbazone (STSC) to vanadium(IV/V) ions was investigated. The exchange of the pyridine nitrogen of the α(N)-heterocyclic TSCs to a phenolate oxygen in STSC significantly increased the stability of the complexes in solution. Finally, this also resulted in increased cytotoxicity activity of a vanadium(V) complex of STSC compared to the metal-free ligand. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Determination of mercury and vanadium concentration in Johnius belangerii (C) fish in Musa estuary in Persian Gulf.

    PubMed

    Fard, Neamat Jaafarzadeh Haghighi; Ravanbakhsh, Maryam; Ramezani, Zahra; Ahmadi, Mehdi; Angali, Kambiz Ahmadi; Javid, Ahmad Zare

    2015-08-15

    The main aim of this study was to determine the concentrations of mercury and vanadium in Johnius belangerii (C) fish in the Musa estuary. A total of 67 fishes were caught from the Musa estuary during five intervals of 15days in the summer of 2013. After biometric measurements were conducted, the concentrations of mercury and vanadium were measured in the muscle tissue of fish using a direct method analyzer (DMA) and a graphite furnace atomic absorption spectrophotometer, respectively. The mean concentration of mercury and vanadium in the muscle tissue of fish was 3.154±1.981 and 2.921±0.873mg/kg w.w, respectively. The generalized linear model (GLM) analysis showed a significantly positive relationship among mercury concentration, length, and weight (P=0.000). In addition, there was a significantly negative relationship between vanadium concentration and fish length (P=0.000). A reverse association was found between concentrations of mercury and vanadium. Mercury concentration exceeded the allowable standards of the Environmental Protection Agency (EPA), the World Health Organization (WHO), and the Food and Drug Administration (FDA) in J. belangerii (C). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nickel and vanadium in air particulates at Dhahran (Saudi Arabia) during and after the Kuwait oil fires

    NASA Astrophysics Data System (ADS)

    Sadiq, M.; Mian, A. A.

    Air particulates, both the total suspended (TSP) and inhalable (PM 10, smaller than 10 microns in size), were collected during and after the Kuwait oil fires (from March 1991 to July 1992) using Hi-Vol samplers. These samples were wet-digested at 120°C in an aqua regia and perchloric acids mixture for 3 h. Air particulate samples collected in 1982 at the same location were prepared similarly. Concentrations of nickel and vanadium were determined in the aliquot samples using an inductively coupled argon plasma analyser (ICAP). The monthly mean concentrations of nickel and vanadium, on volume basis, increased rapidly from March to June and decreased sharply during July-August in 1991. The minimum mean concentrations of these elements were found in the particulate samples collected in December 1991 which gradually increased through May 1992. Like 1991, nickel and vanadium concentrations in the air particulates spiked in June and decreased again in July 1992. This distribution pattern of nickel and vanadium concentrations was similar to that of the predominant wind from the north (Kuwait). In general, concentrations of these elements were higher in the air particulates collected during April-July 1991 as compared with those collected in 1992 during the same period. The TSPs contained higher concentrations of nickel and vanadium than those found in the PM 10 samples. However, this trend was reversed when concentrations of nickel and vanadium, on were expressed on particulate weight basis. The monthly mean concentrations of nickel and vanadium, on weight basis, decreased gradually through 1991 and increased slightly from March to July 1992. Concentrations of these elements were significantly higher in the air particulate samples collected in 1991 than those samples collected during 1982 at the same location. The data of this study suggest a contribution of the Kuwait oil fires in elevating nickel and vanadium concentrations in the air particulates at Dhahran during April-July 1991. Concentrations of these elements were largely below their proposed limits in the ambient air (for nickel-50 μg m -3, air; for vanadium—1 μg m -3 air). It is, therefore, anticipated that concentrations of nickel and vanadium in the air particulate samples were not a health concern during Kuwait oil fires at Dhahran, Saudi Arabia.

  20. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  1. Structural stability and electronic properties of an octagonal allotrope of two dimensional boron nitride.

    PubMed

    Takahashi, Lauren; Takahashi, Keisuke

    2017-03-27

    An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.

  2. Atomic site preferences and structural evolution in vanadium-doped ZrSiO4 from multinuclear solid-state NMR

    NASA Astrophysics Data System (ADS)

    Dajda, N.; Dixon, J. M.; Smith, M. E.; Carthey, N.; Bishop, P. T.

    2003-01-01

    Solid state NMR spectra of 29Si are reported from pure and vanadium-doped zircon (V-ZrSiO4) samples. The vanadium concentration is varied up to ˜1-mol % V4+ by using both conventional-firing and sol-gel routes, and 51V NMR data are also recorded. 17O NMR of 17O isotopically enriched samples shows that the initial gel is completely amorphous with the whole range of possible M-O-M' linkages detected, and that this structure evolves into a fully ordered ZrSiO4 structure with calcination. Static 91Zr NMR data is reported from a pure zircon sample. The NMR data are used to quantify the amount of vanadium entering the zircon structure, and to elucidate its site preference within the lattice. Two contact shifted peaks with very different T1 relaxation from the main zircon peak but attributable to the zircon lattice are observed in the 29Si NMR spectra for all samples. These spectra are consistent with vanadium substitution on both the tetrahedral and dodecahedral sites, with a slight preference for the silicon site. The data show that the relative occupation of these two sites is almost independent of the preparation method and vanadium concentration. At a higher vanadium concentration a third additional peak is observed which may indicate another substitution site. Variable temperature NMR and susceptibility measurements indicate the hyperfine nature of the interactions influencing silicon from V4+ ions in the different sites.

  3. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    PubMed

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Mukund, S; Adams, M W

    1996-01-01

    Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals. PMID:8550411

  5. In vitro and ex vivo vanadium antitumor activity in (TGF-β)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients.

    PubMed

    Petanidis, Savvas; Kioseoglou, Efrosini; Domvri, Kalliopi; Zarogoulidis, Paul; Carthy, Jon M; Anestakis, Doxakis; Moustakas, Aristidis; Salifoglou, Athanasios

    2016-05-01

    Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Deterioration Seen in Myelin Related Morphophysiology in Vanadium Exposed Rats is Partially Protected by Concurrent Iron Deficiency.

    PubMed

    Usende, Ifukibot Levi; Leitner, Dominque F; Neely, Elizabeth; Connor, James R; Olopade, James O

    2016-08-30

    Oligodendrocyte development and myelination occurs vigorously during the early post natal period which coincides with the period of peak mobilization of iron. Oligodendrocyte progenitor cells (OPCs) are easily disturbed by any agent that affects iron homeostasis and its assimilation into these cells. Environmental exposure to vanadium, a transition metal can disrupt this iron homeostasis. We investigated the interaction of iron deficiency and vanadium exposure on the myelination infrastructure and its related neurobehavioural phenotypes, and neurocellular profiles in developing rat brains. Control group (C) dams were fed normal diet while Group 2 (V) dams were fed normal diet and pups were injected with 3mg/kg body weight of sodium metavanadate daily from postnatal day (PND) 1-21. Group 3 (I+V) dams were fed iron deficient diet after delivery and pups injected with 3mg/kg body weight sodium metavanadate from PND1-21. Body and brain weights deteriorated in I+V relative to C and V while neurobehavioral deficit occurred more in V. Whereas immunohistochemical staining shows more astrogliosis and microgliosis indicative of neuroinflammation in I+V, more intense OPCs depletion and hypomyelination were seen in the V, and this was partially protected in I+V. In in vitro studies, vanadium induced glial cells toxicity was partially protected only at the LD 50 dose with the iron chelator, desferroxamine. The data indicate that vanadium promotes myelin damage and iron deficiency in combination with vanadium partially protects this neurotoxicological effects of vanadium.

  7. [Effect of vanadium exposure on neurobehavioral function in workers].

    PubMed

    Zhu, C W; Liu, Y X; Huang, C J; Gao, W; Hu, G L; Li, J; Zhang, Q; Lan, Y J

    2016-02-20

    To establish the comprehensive indicators for neurobehavioral function test, and to investigate the possible adverse effect of long-time vanadium exposure on neurobehavioral function and its features in workers. From July to November, 2012, The Neurobehavioral Core Test Battery(NCTB) recommended by WHO was used to conduct tests for 128 workers in vanadium exposure group and 128 workers in control group. The t-test and analysis of covariance were used to compare the differences in each indicator in NCTB between different populations, and the principal component analysis was used to establish the comprehensive neurobehavioral index(NBI) and investigate the effect of vanadium on workers' neurobehavioral function. The vanadium exposure group had significantly lower visual retention score(6.9±1.9), digit span(order) score(8.9±2.9), lifting and turning dexterity(the non-handed hand) score (14.1±3.6), pursuit aiming test(the number of correct dots) score(65.7±24.8), and digit symbol score (31.1±15.0) than the control group (8.2±1.3, 9.4±2.7, 15.5±3.0, 76.5±23.8, and 33.7±9.5)(all P<0.05). The vanadium exposure group also had a significantly lower NBI than the control group(-0.167±0.602 vs 0.168±0.564, P<0.05). Long-term vanadium exposure can influence the workers' neurobehavioral function, with the manifestations of decreased hearing and visual memory, movement velocity, accuracy, and coordination.

  8. Lactational Vitamin E Protects Against the Histotoxic Effects of Systemically Administered Vanadium in Neonatal Rats.

    PubMed

    Olaolorun, F A; Obasa, A A; Balogun, H A; Aina, O O; Olopade, J O

    2014-12-29

    The work investigated the protective role of lactational vitamin E administration on vanadium-induced histotoxicity. Three groups of Wistar rats, with each group comprising of two dams and their pups, were used in this study. Group I pups were administered intraperitoneal injection of sterile water at volumes corresponding to the dose rate of the vanadium (sodium metavanadate) treated group from postnatal day (PND) 1-14 while those in Group II were administered intraperitoneal injection of 3mg/kg vanadium from PND 1-14. Group III pups were administered intraperitoneal injection of 3mg/kg vanadium while the dam received oral vitamin E (500 mg) concurrently every 72 hours. The results showed that group II pups exhibited histopathological changes which included seminiferous tubule disruption of the testes characterised by vacuolar degeneration and coagulative necrosis of spermatogonia and Sertoli cells with reduction in mitosis, and areas of interstitial thickening with fibroblast proliferation. In addition, the lungs showed disruption of the bronchiolar wall and denudation of the bronchiolar respiratory epithelium while the liver showed hydropic degeneration and coagulative necrosis of the centrilobular hepatocytes. These histotoxic changes were ameliorated in the vanadium + vitamin E group. We conclude that lactational vitamin E protects against the histotoxic effects of vanadium and could be a consideration for supplementation in the occupationally and environmentally exposed neonates. However, caution should be taken in vitamin E supplementation because there is still equivocal evidence surrounding its benefits as a supplement at the moment.

  9. Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan

    2012-04-01

    The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultravioletmore » visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.« less

  10. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  11. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  12. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  13. Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Fan, Hongyuan; Zeng, Dezhi; Peng, Qian; Shen, Baoluo

    2012-08-01

    Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α'), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.

  14. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  15. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats.

    PubMed

    El Karib, Abbas O; Al-Ani, Bahjat; Al-Hashem, Fahaid; Dallak, Mohammad; Bin-Jaliah, Ismaeel; El-Gamal, Basiouny; Bashir, Salah O; Eid, Refaat A; Haidara, Mohamed A

    2016-07-01

    Diabetic complications such as cardiovascular disease and osteoarthritis (OA) are among the common public health problems. The effect of insulin on OA secondary to diabetes has not been investigated before in animal models. Therefore, we sought to determine whether insulin and the insulin-mimicking agent, vanadium can protect from developing OA in diabetic rats. Type 1 diabetes mellitus (T1DM) was induced in Sprague-Dawley rats and treated with insulin and/or vanadium. Tissues harvested from the articular cartilage of the knee joint were examined by scanning electron microscopy, and blood samples were assayed for oxidative stress and inflammatory biomarkers. Eight weeks following the induction of diabetes, a profound damage to the knee joint compared to the control non-diabetic group was observed. Treatment of diabetic rats with insulin and/or vanadium differentially protected from diabetes-induced cartilage damage and deteriorated fibrils of collagen fibers. The relative biological potencies were insulin + vanadium > insulin > vanadium. Furthermore, there was about 2- to 5-fold increase in TNF-α (from 31.02 ± 1.92 to 60.5 ± 1.18 pg/ml, p < 0.0001) and IL-6 (from 64.67 ± 8.16 to 338.0 ± 38.9 pg/ml, p < 0.0001) cytokines and free radicals measured as TBARS (from 3.21 ± 0.37 to 11.48 ± 1.5 µM, p < 0.0001) in the diabetic group, which was significantly reduced with insulin and or vanadium. Meanwhile, SOD decreased (from 17.79 ± 8.9 to 8.250.29, p < 0.0001) and was increased with insulin and vanadium. The relative potencies of the treating agents on inflammatory and oxidative stress biomarkers were insulin + vanadium > insulin > vanadium. The present study demonstrates that co-administration of insulin and vanadium to T1DM rats protect against diabetes-induced OA possibly by lowering biomarkers of inflammation and oxidative stress.

  16. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    NASA Astrophysics Data System (ADS)

    Qi, F.; Leng, Y. X.; Huang, N.; Bai, B.; Zhang, P. Ch.

    2007-04-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film.

  17. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  18. Effects of H sub 2 S addition on the performance of fresh vs. used CoMo catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankel, L.A.

    1991-01-01

    When a Co/Mo catalyst is used for processing vanadium-containing heavy oils, vanadium deposits on the catalyst. As the amount of vanadium on the CoMo catalyst increases, the catalytic effects of CoMo decline and the presence of vanadium starts to influence the hydroprocessing products. Model feeds have been used to explore the changes in the catalytic activity of CoMo, aged CoMo, and VS{sub x} on alumina. Desulfurization, denitrogenation, deoxygenation, aromatics hydrogenation, and metals removal were monitored. This paper reports that, upon the addition of hydrogen sulfide to hydrogen, improvements in the catalysts for aromatics hydrogenation, denitrogenation and metals removal were observed.

  19. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries

    DOE PAGES

    Liu, Qi; Li, Zhe-Fei; Liu, Yadong; ...

    2015-01-20

    The long-standing issues of low intrinsic electronic conductivity, slow lithium-ion diffusion and irreversible phase transitions on deep discharge prevent the high specific capacity/energy (443 mAh g -1 and 1,550 Wh kg -1) vanadium pentoxide from being used as the cathode material in practical battery applications. Here we develop a method to incorporate graphene sheets into vanadium pentoxide nanoribbons via the sol–gel process. The resulting graphene-modified nanostructured vanadium pentoxide hybrids contain only 2 wt. % graphene, yet exhibits extraordinary electrochemical performance: a specific capacity of 438 mAh g -1, approaching the theoretical value (443 mAh g -1), a long cyclability andmore » significantly enhanced rate capability. Such performance is the result of the combined effects of the graphene on structural stability, electronic conduction, vanadium redox reaction and lithium-ion diffusion supported by various experimental studies. Finally, this method provides a new avenue to create nanostructured metal oxide/graphene materials for advanced battery applications.« less

  20. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  1. A Contemporary Treatment Approach to Both Diabetes and Depression by Cordyceps sinensis, Rich in Vanadium

    PubMed Central

    Guo, Jian-You; Han, Chun-Chao

    2010-01-01

    Diabetes mellitus is accompanied by hormonal and neurochemical changes that can be associated with anxiety and depression. Both diabetes and depression negatively interact, in that depression leads to poor metabolic control and hyperglycemia exacerbates depression. We hypothesize one novel vanadium complex of vanadium-enriched Cordyceps sinensis (VECS), which is beneficial in preventing depression in diabetes, and influences the long-term course of glycemic control. Vanadium compounds have the ability to imitate the action of insulin, and this mimicry may have further favorable effects on the level of treatment satisfaction and mood. C. sinensis has an antidepressant-like activity, and attenuates the diabetes-induced increase in blood glucose concentrations. We suggest that the VECS may be a potential strategy for contemporary treatment of depression and diabetes through the co-effect of C. sinensis and vanadium. The validity of the hypothesis can most simply be tested by examining blood glucose levels, and swimming and climbing behavior in streptozotocin-induced hyperglycemic rats. PMID:19948751

  2. Effect of diet composition on vanadium toxicity for the chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, L.R.

    1966-01-01

    Studies to determine the effect of diet composition on the toxicity of 20 ppm added vanadium for the young chick have shown: growth depression of 25-30% with a corn-soybean meal ration but only 3-7% with a corn-herring fish meal diet. Growth depression of 35-40% with a semi-purified sucrose-soybean meal diet and approximately 50% with a diet of sucrose and herring fish meal. Adding graded levels of corn to the sucrose-fish meal ration and fish meal to the corn-soybean meal ration reduced vanadium toxicity. The corn fractions, ash, oil, starch, zein and gluten did not reduce vanadium toxicity. Removing the addedmore » magnesium (300 ppm) and potassium (2000 ppm) from the sucrose-fish meal ration did not affect growth rate or mortality. However removal of these materials from the basal ration increased growth depression due to added vanadium from 43-56% and increased mortality from 10-80%. 4 references, 9 tables.« less

  3. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    NASA Astrophysics Data System (ADS)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  4. Fabrication of vanadium dioxide polycrystalline films with higher temperature coefficient of resistance

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Yuan, Ningyi; Jiang, Meiping; Kun, Li

    2011-08-01

    Vanadium Dioxide Polycrystalline Films with High Temperature Coefficient of Resistance(TCR) were fabricated by modified Ion Beam Enhanced Deposition(IBED) method. The TCR of the Un-doping VO2 was about -4%/K at room temperature after appropriate thermal annealing. The XRD results clearly showed that IBED polycrystalline VO2 films had a single [002] orientation of VO2(M). The TCR of 5at.%W and 7at.% Ta doped Vanadium Dioxide Polycrystalline Films were high up to -18%/K and -12%/K at room temperature, respectively. Using 7at.% Ta and 2at.% Ti co-doping, the TCR of the co-doped vanadium oxide film was -7%/K and without hysteresis during temperature increasing and decresing from 0-80°C. It should indicate that the W-doped vanadium dioxide films colud be used for high sensing IR detect and the Ta/Ti co-doped film without hysteresis is suitable for infrarid imaging application.

  5. Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam

    PubMed Central

    Li, Zejun; Wu, Jiajing; Hu, Zhenpeng; Lin, Yue; Chen, Qi; Guo, Yuqiao; Liu, Yuhua; Zhao, Yingcheng; Peng, Jing; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2017-01-01

    In correlated systems, intermediate states usually appear transiently across phase transitions even at the femtosecond scale. It therefore remains an open question how to determine these intermediate states—a critical issue for understanding the origin of their correlated behaviour. Here we report a surface coordination route to successfully stabilize and directly image an intermediate state in the metal-insulator transition of vanadium dioxide. As a prototype metal-insulator transition material, we capture an unusual metal-like monoclinic phase at room temperature that has long been predicted. Coordinate bonding of L-ascorbic acid molecules with vanadium dioxide nanobeams induces charge-carrier density reorganization and stabilizes metallic monoclinic vanadium dioxide, unravelling orbital-selective Mott correlation for gap opening of the vanadium dioxide metal–insulator transition. Our study contributes to completing phase-evolution pathways in the metal-insulator transition process, and we anticipate that coordination chemistry may be a powerful tool for engineering properties of low-dimensional correlated solids. PMID:28613281

  6. Thymic cytoarchitecture changes in mice exposed to vanadium.

    PubMed

    Ustarroz-Cano, Martha; Garcia-Pelaez, Isabel; Cervantes-Yepez, Silvana; Lopez-Valdez, Nelly; Fortoul, Teresa I

    2017-12-01

    The thymus is a vital immune system organ wherein selection of T-lymphocytes occurs in a process regulated by dendritic and epithelial thymic cells. Previously, we have reported that in a mouse model of vanadium inhalation, a decrease in CD11c dendritic cells was observed. In the present study, we report on a thymic cortex-medulla distribution distortion in these hosts due to apparent effects of the inhaled vanadium on cytokeratin-5 (K5 + ) epithelial cells in the same mouse model - after 1, 2, and 4 weeks of exposure - by immunohistochemistry. These cells - together with dendritic cells - eliminate autoreactive T-cell clones and regulate the production of regulatory T-cells in situ. Because both cell types are involved in the negative selection of autoreactive clones, a potential for an increase in development of autoimmune conditions could be a possible consequence among individuals who might be exposed often to vanadium in air pollution, including dwellers of highly polluted cities with elevated levels of particulate matter onto which vanadium is often adsorbed.

  7. Properties of vanadium-loaded iron sorbent after alkali regeneration.

    PubMed

    Khalid, Muhammad Kamran; Leiviskä, Tiina; Tanskanen, Juha

    2017-11-01

    The aim of this research was to investigate the regeneration and reuse of a commercial granular iron sorbent (mainly goethite) when used in vanadium removal. A regeneration rate of 3 M NaOH was the highest (85%) achieved, followed by 2 M NaOH (79%) and 1 M NaOH (68%). The breakthrough curves show that the regenerated material can be reused. The BET (Brunauer-Emmett-Teller) surface area increased by 35-38% and the total pore volume increased by 123-130% as a consequence of NaOH treatment. The results indicated that sodium hydroxide could be used for the regeneration of iron sorbent although the regeneration was incomplete. This may be explained by the fact that vanadium diffusion into pores is a significant sorption mechanism in addition to complex formation with surface functional groups. As a consequence, vanadium desorbability from pores is not as effective as the regeneration of surface sites. X-ray photoelectron spectroscopy analyses confirmed a very low vanadium content on the surface of the NaOH-treated iron sorbent.

  8. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-03-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  9. Effect of Mechanical Activation Treatment on the Recovery of Vanadium from Converter Slag

    NASA Astrophysics Data System (ADS)

    Xiang, Junyi; Huang, Qingyun; Lv, Xuewei; Bai, Chenguang

    2017-10-01

    The high roasting temperature and low leaching efficiency of vanadium from vanadium-bearing converter slag are regarded as the main factors significantly influencing the application of calcification roasting-acid leaching processes in the cleaner production of vanadium. In this study, a mechanical activation treatment was performed to enhance the extraction of vanadium from converter slag. The enhancement effects obtained from mechanical activation were comprehensively evaluated through indices such as the roasting temperature and leaching efficiency. The effects of mechanical activation time, roasting temperature, leaching temperature, solid to liquid ratio, particle size, and acid concentration on the leaching efficiency were investigated. Microstructure morphology and elemental analyses of the raw materials and leaching residue were also investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results demonstrated that the mechanical activation significantly decreased the optimum roasting temperature from 1173 K to 1073 K (900 °C to 800 °C) and increased the leaching efficiency from 86.0 to 90.9 pct.

  10. Nanocrystalline ordered vanadium carbide: Superlattice and nanostructure

    NASA Astrophysics Data System (ADS)

    Kurlov, A. S.; Gusev, A. I.; Gerasimov, E. Yu.; Bobrikov, I. A.; Balagurov, A. M.; Rempel, A. A.

    2016-02-01

    The crystal structure, micro- and nanostructure of coarse- and nanocrystalline powders of ordered vanadium carbide V8C7 have been examined by X-ray and neutron diffraction and electron microscopy methods. The synthesized coarse-crystalline powder of ordered vanadium carbide has flower-like morphology. It was established that the real ordered phase has the composition V8C7-δ (δ ≅ 0.03) deviating from perfect stoichiometric composition V8C7. The vanadium atoms forming the octahedral environment □V6 of vacant sites in V8C7-δ are displaced towards the vacancy □. The presence of carbon onion-like structures was found in the vanadium carbide powders with a small content of free (uncombined) carbon. The nanopowders of V8C7-δ carbide with average particle size of 20-30 nm produced by high-energy milling of coarse-crystalline powder retain the crystal structure of the initial powder, but differ in the lattice deformation distortion anisotropy.

  11. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

    NASA Astrophysics Data System (ADS)

    Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang

    2012-08-01

    Marine biofouling--the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls--is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen (1O2) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

  12. Correlation between molten vanadium salts and the structural degradation of HK-type steel superheater tubes

    NASA Astrophysics Data System (ADS)

    de Carvalho Nunes, Frederico; de Almeida, Luiz Henrique; Ribeiro, André Freitas

    2006-12-01

    HK steels are among the most used heat-resistant cast stainless steels, being corrosion-resistant and showing good mechanical properties at high service temperatures. These steels are widely used in reformer furnaces and as superheater tubes. During service, combustion gases leaving the burners come in contact with these tubes, resulting in corrosive attack and a large weight loss occurs due to the presence of vanadium, which forms low melting point salts, removing the protective oxide layer. In this work the external surface of a tube with dramatic wall thickness reduction was analyzed using light microscopy, scanning electron microscopy, and transmission electron microscopy. The identification of the phases was achieved by energy dispersive spectroscopy (EDS) analyses. The results showed oxides arising from the external surface. In this oxidized region vanadium compounds inside chromium carbide particles were also observed, due to inward vanadium diffusion during corrosion attack. A chemical reaction was proposed to explain the presence of vanadium in the metal microstructure.

  13. Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission

    DTIC Science & Technology

    2013-04-01

    structures; v) developed CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vi) also engaged in a partnership with...CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vii. exploring approaches to enhance spontaneous emission in...size and bandwidth, we are exploring phase-change materials and, in particular, vanadium dioxide. VO2 undergoes an insulator-to-metal phase transition

  14. Imaging of Vanadium in Microfossils: A New Potential Biosignature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.

    Being able to distinguish unambiguously the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from non-biological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This too, is important for the search for life on Mars; either by in situ analyses via rovers, or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biologicalmore » origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature, that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagensis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. Here, we propose that taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenecity of putative microfossil-like structures.« less

  15. A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture

    NASA Astrophysics Data System (ADS)

    Leung, P. K.; Mohamed, M. R.; Shah, A. A.; Xu, Q.; Conde-Duran, M. B.

    2015-01-01

    This paper presents the performance of a vanadium-cerium redox flow battery using conventional and zero-gap serpentine architectures. Mixed-acid solutions based on methanesulfonate-sulfate anions (molar ratio 3:1) are used to enhance the solubilities of the vanadium (>2.0 mol dm-3) and cerium species (>0.8 mol dm-3), thus achieving an energy density (c.a. 28 Wh dm-3) comparable to that of conventional all-vanadium redox flow batteries (20-30 Wh dm-3). Electrochemical studies, including cyclic voltammetry and galvanostatic cycling, show that both vanadium and cerium active species are suitable for energy storage applications in these electrolytes. To take advantage of the high open-circuit voltage (1.78 V), improved mass transport and reduced internal resistance are facilitated by the use of zero-gap flow field architecture, which yields a power density output of the battery of up to 370 mW cm-2 at a state-of-charge of 50%. In a charge-discharge cycle at 200 mA cm-2, the vanadium-cerium redox flow battery with the zero-gap architecture is observed to discharge at a cell voltage of c.a. 1.35 V with a coulombic efficiency of up to 78%.

  16. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  17. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    NASA Astrophysics Data System (ADS)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  18. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.

    PubMed

    Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak

    2018-05-07

    The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

  19. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  20. Imaging of Vanadium in Microfossils: A New Potential Biosignature

    DOE PAGES

    Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.; ...

    2017-11-01

    Being able to distinguish unambiguously the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from non-biological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This too, is important for the search for life on Mars; either by in situ analyses via rovers, or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biologicalmore » origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature, that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagensis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. Here, we propose that taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenecity of putative microfossil-like structures.« less

  1. Molecular geometry of vanadium dichloride and vanadium trichloride: a gas-phase electron diffraction and computational study.

    PubMed

    Varga, Zoltán; Vest, Brian; Schwerdtfeger, Peter; Hargittai, Magdolna

    2010-03-15

    The molecular geometries of VCl2 and VCl3 have been determined by computations and gas-phase electron diffraction (ED). The ED study is a reinvestigation of the previously published analysis for VCl2. The structure of the vanadium dichloride dimer has also been calculated. According to our joint ED and computational study, the evaporation of a solid sample of VCl2 resulted in about 66% vanadium trichloride and 34% vanadium dichloride in the vapor. Vanadium dichloride is unambiguously linear in its 4Sigma(g)+ ground electronic state. For VCl3, all computations yielded a Jahn-Teller-distorted ground-state structure of C(2v) symmetry. However, it lies merely less than 3 kJ/mol lower than the 3E'' state (D(3h) symmetry). Due to the dynamic nature of the Jahn-Teller effect in this case, rigorous distinction cannot be made between the planar models of either D(3h) symmetry or C(2v) symmetry for the equilibrium structure of VCl3. Furthermore, the presence of several low-lying excited electronic states of VCl3 is expected in the high-temperature vapor. To our knowledge, this is the first experimental and computational study of the VCl3 molecule.

  2. Imaging of Vanadium in Microfossils: A New Potential Biosignature

    NASA Astrophysics Data System (ADS)

    Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.; Lai, Barry; Vogt, Stefan; Breuer, Pierre; Steemans, Philippe; Lay, Peter A.

    2017-11-01

    The inability to unambiguously distinguish the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from nonbiological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This, too, is important for the search for life on Mars by in situ analyses via rovers or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biological origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagenesis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. We propose that, taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenicity of putative microfossil-like structures.

  3. Understanding the Reduction Kinetics of Aqueous Vanadium(V) and Transformation Products Using Rotating Ring-Disk Electrodes.

    PubMed

    Chen, Gongde; Liu, Haizhou

    2017-10-17

    Vanadium(V) is an emerging contaminant in the most recent Environmental Protection Agency's candidate contaminant list (CCL4). The redox chemistry of vanadium controls its occurrence in the aquatic environment, but the impact of vanadium(V) speciation on the redox properties remains largely unknown. This study utilized the rotating ring-disk electrode technique to examine the reduction kinetics of four pH- and concentration-dependent vanadium(V) species in the presence and the absence of phosphate. Results showed that the reduction of VO 2 + , H x V 4 O 12+x (4+x)- (V 4 ), and HVO 4 2- proceeded via a one-electron transfer, while that of Na x H y V 10 O 28 (6-x-y)- (V 10 ) underwent a two-electron transfer. Koutecky-Levich and Tafel analyses showed that the intrinsic reduction rate constants followed the order of V 10 > VO 2 + > V 4 > HVO 4 2- . Ring-electrode collection efficiency indicated that the reduction product of V 10 was stable, while those of VO 2 + , HVO 4 2- , and V 4 had short half-lives that ranged from milliseconds to seconds. With molar ratios of phosphate to vanadium(V) varying from 0 to 1, phosphate accelerated the reduction kinetics of V 10 and V 4 and enhanced the stability of the reduction products of VO 2 + , V 4 , and HVO 4 2- . This study suggests that phosphate complexation could enhance the reductive removal of vanadium(V) and inhibit the reoxidation of its reduction product in water treatment.

  4. Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins.

    PubMed

    Gomes, Helena I; Jones, Ashley; Rogerson, Mike; Greenway, Gillian M; Lisbona, Diego Fernandez; Burke, Ian T; Mayes, William M

    2017-02-01

    Leachable vanadium (V) from steel production residues poses a potential environmental hazard due to its mobility and toxicity under the highly alkaline pH conditions that characterise these leachates. This work aims to test the efficiency of anion exchange resins for vanadium removal and recovery from steel slag leachates at a representative average pH of 11.5. Kinetic studies were performed to understand the vanadium sorption process. The sorption kinetics were consistent with a pseudo-first order kinetic model. The isotherm data cannot differentiate between the Langmuir and Freundlich models. The maximum adsorption capacity (Langmuir value q max ) was 27 mg V g -1 resin. In column anion exchange, breakthrough was only 14% of the influent concentration after passing 90 L of steel slag leachate with 2 mg L -1 V through the column. When eluting the column 57-72% of vanadium was recovered from the resin with 2 M NaOH. Trials on the reuse of the anion exchange resin showed it could be reused 20 times without loss of efficacy, and on average 69% of V was recovered during regeneration. The results document for the first time the use of anion exchange resins to remove vanadium from steel slag leachate. As an environmental contaminant, removal of V from leachates may be an obligation for long-term management requirements of steel slag repositories. Vanadium removal coupled with the recovery can potentially be used to offset long-term legacy treatment costs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. A comparative assessment of the acute inhalation toxicity of vanadium compounds.

    PubMed

    Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A

    2016-11-01

    Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.

  6. Nitride stabilized core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  7. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang

    2011-06-01

    Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 °C and 550 °C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.

  8. Surface improvement and biocompatibility of TiAl 24Nb 10 intermetallic alloy using rf plasma nitriding

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, A. M.; Maitz, M. F.; Kassem, M. A.; El-Hossary, F. M.; Prokert, F.; Reuther, H.; Pham, M. T.; Richter, E.

    2007-09-01

    The present work describes the surface improvement and biocompatibility of TiAl 24Nb 10 intermetallic alloy using rf plasma nitriding. The nitriding process was carried out at different plasma power from 400 W to 650 W where the other plasma conditions were fixed. Grazing incidence X-ray diffractometry (GIXRD), Auger electron spectroscopy (AES), tribometer and a nanohardness tester were employed to characterize the nitrided layer. Further potentiodynamic polarization method was used to describe the corrosion behavior of the un-nitrided and nitrided alloy. It has been found that the Vickers hardness (HV) and corrosion resistance values of the nitrided layers increase with increasing plasma power while the wear rates of the nitrided layers reduce by two orders of magnitude as compared to those of the un-nitrided layer. This improvement in surface properties of the intermetallic alloy is due to formation of a thin modified layer which is composed of titanium nitride in the alloy surface. Moreover, all modified layers were tested for their sustainability as a biocompatible material. Concerning the application area of biocompatibility, the present treated alloy show good surface properties especially for the nitrided alloy at low plasma power of 400 W.

  9. Nitride alloy layer formation of duplex stainless steel using nitriding process

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  10. Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field 51 V Magic-Angle Spinning NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaegers, Nicholas R.; Wan, Chuan; Hu, Mary Y.

    Supported V2O5/SiO2 catalysts were studied using solid state 51V MAS NMR at a sample spinning rate of 36 kHz and at a magnetic field of 19.975 T for a better understanding of the coordination of the vanadium oxide as a function of environmental conditions . Structural transformations of the supported vanadium oxide species between the catalyst in the dehydrated state and hydrated state under an ambient environment were revisited to examine the degree of oligomerization and the effect of water. The experimental results indicate the existence of a single dehydrated surface vanadium oxide species that resonates at -675 ppm andmore » two vanadium oxide species under ambient conditions that resonate at -566 and -610 ppm, respectively. No detectable structural difference was found as a function of vanadium oxide loading on SiO2 (3% V2O5/SiO2 and 8% V2O5/SiO2). Quantum chemistry simulations of the 51V NMR chemical shifts on predicted surface structures were used as an aide in understanding potential surface vanadium oxide species on the silica support. The results suggest the formation of isolated surface VO4 units for the dehydrated catalysts with the possibility of dimer and cyclic trimer presence. The absence of bridging V-O-V vibrations (~200-300 cm-1) in the Raman spectra [Gao et al. J. Phys. Chem. B 1998, 102, 10842-10852], however, indicates that the isolated surface VO4 sites are the dominant dehydrated surface vanadia species on silica. Upon exposure to water, hydrolysis of the bridging V-O-Si bonds is most likely responsible for the decreased electron shielding experienced by vanadium. No indicators for the presence of hydrated decavanadate clusters or hydrated vanadia gels previously proposed in the literature were detected in this study.« less

  11. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats

    PubMed Central

    Pirmoradi, Leila; Noorafshan, Ali; Safaee, Akbar; Dehghani, Gholam Abbas

    2016-01-01

    Background: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Results: Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.190.08 vs. 0.970.27 ng/dL, P<0.002). The respective high BG (53249 vs. 14446 mg/dL, P<0.0001) and reduced plasma insulin (0.260.15 vs. 0.540.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.90.2 vs. 3.030.6 mm3, P<0.003) and TBCN (0.990.1 vs. 3.20.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.90.8 and 4.071.0 mm3, P<0.003) and TBCN (1.50.3 and 3.80.6 x 106, P<0.03). Conclusion: Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers. PMID:26459400

  12. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOEpatents

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-03-02

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  13. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  14. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  15. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  16. Performance Characterization and Optimization of Microgrid-Based Energy Generation and Storage Technologies

    DTIC Science & Technology

    2012-01-01

    A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery ,” in Proc. 2008 IEEE International Conference on Sustainable...p. 81. [11] K.W. Knehr and E.C. Kumbur, "Open circuit voltage of vanadium redox flow batteries : Discrepancy between models and experiments...Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery ,” in Proc. 2008 IEEE International Conference on Sustainable

  17. Exploratory Phase Transition-Based Switches Using Functional Oxides

    DTIC Science & Technology

    2011-02-02

    TECHNICAL REPORT Abstract Vanadium dioxide ( VO2 ) undergoes a sharp metal-insulator transition (MIT) in the vicinity of room temperature and there is...18 The mechanisms governing metal-insulator transition (MIT) in vanadium dioxide ( VO2 ) is an intensively explored subject in condensed matter...textured vanadium dioxide films were grown on single crystal Al2O3 (0001) substrates by RF-sputtering from a VO2 target (99.5%, AJA International Inc

  18. Temperature Dependence of Uranium and Vanadium Adsorption on Amidoxime-Based Adsorbents in Natural Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Li-Jung; Gill, Gary A.; Tsouris, Costas

    The apparent enthalpy and entropy of the complexation of uranium (VI) and vanadium (V) with amidoxime ligands grafted onto polyethylene fiber was determined using time series measurements of adsorption capacities in natural seawater at three different temperatures. The complexation of uranium was highly endothermic, while the complexation of vanadium showed minimal temperature sensitivity. Amidoxime-based polymeric adsorbents exhibit significantly increased uranium adsorption capacities and selectivity in warmer waters.

  19. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes.

    PubMed

    Sun, Xiang; Zhou, Changgong; Xie, Ming; Hu, Tao; Sun, Hongtao; Xin, Guoqing; Wang, Gongkai; George, Steven M; Lian, Jie

    2014-09-21

    Uniform amorphous vanadium oxide films were coated on graphene via atomic layer deposition and the nano-composite displays an exceptional capacity of ~900 mA h g(-1) at 200 mAg(-1) with an excellent capacity retention at 1 A g(-1) after 200 cycles. The capacity contribution (1161 mA h g(-1)) from vanadium oxide only almost reaches its theoretical value.

  20. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets.

    PubMed

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-24

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  1. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  2. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  3. Blueish green photoluminescence from nitrided GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Shimaoka, Goro; Udagawa, Takashi

    1999-04-01

    Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.

  4. Precipitation Modeling in Nitriding in Fe-M Binary System

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Miyamoto, Goro; Furuhara, Tadashi

    2016-10-01

    Precipitation of fine alloy nitrides near the specimen surface results in significant surface hardening in nitriding of alloyed steels. In this study, a simulation model of alloy nitride precipitation during nitriding is developed for Fe-M binary system based upon the Kampmann-Wagner numerical model in order to predict variations in the distribution of precipitates with depth. The model can predict the number density, average radius, and volume fraction of alloy nitrides as a function of depth from the surface and nitriding time. By a comparison with the experimental observation in a nitrided Fe-Cr alloy, it was found that the model can predict successfully the observed particle distribution from the surface into depth when appropriate solubility of CrN, interfacial energy between CrN and α, and nitrogen flux at the surface are selected.

  5. Feasibility study of silicon nitride protection of plastic encapsulated semiconductors

    NASA Technical Reports Server (NTRS)

    Peters, J. W.; Hall, T. C.; Erickson, J. J.; Gebhart, F. L.

    1979-01-01

    The application of low temperature silicon nitride protective layers on wire bonded integrated circuits mounted on lead frame assemblies is reported. An evaluation of the mechanical and electrical compatibility of both plasma nitride and photochemical silicon nitride (photonitride) passivations (parallel evaluations) of integrated circuits which were then encapsulated in plastic is described. Photonitride passivation is compatible with all wire bonded lead frame assemblies, with or without initial chip passivation. Plasma nitride passivation of lead frame assemblies is possible only if the chip is passivated before lead frame assembly. The survival rate after the environmental test sequence of devices with a coating of plasma nitride on the chip and a coating of either plasma nitride or photonitride over the assembled device is significantly greater than that of devices assembled with no nitride protective coating over either chip or lead frame.

  6. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O

    NASA Astrophysics Data System (ADS)

    Kharlamov, Alexey; Bondarenko, Marina; Kharlamova, Ganna; Fomenko, Veniamin

    2016-09-01

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C3N4. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets.

  7. Crystalline boron nitride aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less

  8. Discontinuous Inter-Granular Separations (DIGS) in the Gas Nitride Layer of ISS Race Rings

    NASA Technical Reports Server (NTRS)

    Figert, John; Dasgupta, Rajib; Martinez, James

    2010-01-01

    The starboard solar alpha rotary joint (SARJ) race ring on the International space station (ISS) failed due to severe spalling of the outer diameter, 45 degree (outer canted) nitrided surface. Subsequent analysis at NASA-KSC revealed that almost all of the debris generated due to the failure was nitrided 15-5 stainless steel. Subsequent analysis of the nitride control coupons (NCC) at NASA-JSC revealed the presence of discontinuous inter-granular separations (DIGS) in the gas nitride layer. These DIGS were present in the inter-granular networking located in the top 2 mils of the nitride layer. The manufacturer's specification requires the maximum white structure to be 0.0003 inches and intergranular networking below the allowable white structure depth to be cause for rejection; a requirement that the NCCs did not meet. Subsequent testing and analysis revealed that lower DIGS content significantly lowered the probability of nitride spalling in simulated, dry condition runs. One batch of nitride samples with DIGS content similar to the port SARJ (did not fail on orbit) which exhibited almost no nitride spalling after being run on one test rig. Another batch of nitride samples with DIGS content levels similar to the starboard SARJ exhibited significant nitride spalling on the same test rig with the same load under dry conditions. Although DIGS were not the root cause of starboard race ring failure, testing indicates that increased DIGS reduced the robustness of the gas nitride layer under dry operating conditions.

  9. Effects of the Process Parameters on the Microstructure and Properties of Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Zeng, Dezhi; Yan, Jing; Fan, Hongyuan

    2013-04-01

    The effects of process parameters on the microstructure, microhardness, and dry-sliding wear behavior of plasma nitrided 17-4PH stainless steel were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and wear testing. The results show that a wear-resistant nitrided layer was formed on the surface of direct current plasma nitrided 17-4PH martensitic stainless steel. The microstructure and thickness of the nitrided layer is dependent on the treatment temperature rather than process pressure. XRD indicated that a single α N phase was formed during nitriding at 623 K (350 °C). When the temperature increased, the α N phase disappeared and CrN transformed in the nitrided layer. The hardness measurement demonstrated that the hardness of the stainless substrate steel increased from 320 HV0.1 in the untreated condition increasing to about 1275HV0.1 after nitriding 623 K (350 °C)/600 pa/4 hours. The extremely high values of the microhardness achieved by the great misfit-induced stress fields associated with the plenty of dislocation group and stacking fault. Dry-sliding wear resistance was improved by DC plasma nitriding. The best wear-resistance performance of a nitrided sample was obtained after nitriding at 673 K (350 °C), when the single α N-phase was produced and there were no CrN precipitates in the nitrided layer.

  10. Growth control of the oxidation state in vanadium oxide thin films

    DOE PAGES

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; ...

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.« less

  11. Evaluating electrically insulating films deposited on V-4% Cr-4% Ti by reactive CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.H.; Cho, W.D.

    1997-04-01

    Previous CaO coatings on V-4%Cr-4%Ti exhibited high-ohmic insulator behavior even though a small amount of vanadium from the alloy was incorporated in the coating. However, when the vanadium concentration in the coatings is > 15 wt%, the coating becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. To explore this situation, CaO and Ca-V-O coatings were produced on vanadium alloys by chemical vapor deposition (CVD) and by a metallic-vapor process to investigate the electrical resistance of the coatings. Initially, the vanadium alloy specimens were either charged with oxygenmore » in argon that contained trace levels of oxygen, or oxidized for 1.5-3 h in a 1% CO-CO{sub 2} gas mixture or in air to form vanadium oxide at 625-650{degrees}C. Most of the specimens were exposed to calcium vapor at 800-850{degrees}C. Initial and final weights were obtained to monitor each step, and surveillance samples were removed for examination by optical and scanning electron microscopy and electron-energy-dispersive and X-ray diffraction analysis; the electrical resistivity was also measured. The authors found that Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film was > 0.9, and semiconductor or conductor behavior for R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, the authors conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.« less

  12. Growth control of the oxidation state in vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V2 + 3 O 3 , V + 4 O 2 , and V2 + 5 O 5 . A well pronounced MIT was only observed in VO2 films grown in a very narrow range of oxygen partial pressure P(O2). The films grown either in lower (<10 mTorr) or higher P(O2) (>25 mTorr) result in V2O3 and V2O5 phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO2 thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  13. Stopped-in-loop flow analysis system for successive determination of trace vanadium and iron in drinking water using their catalytic reactions.

    PubMed

    Ayala Quezada, Alejandro; Ohara, Keisuke; Ratanawimarnwong, Nuanlaor; Nacapricha, Duangjai; Murakami, Hiroya; Teshima, Norio; Sakai, Tadao

    2015-11-01

    An automated stopped-in-loop flow analysis (SILFA) system is proposed for the successive catalytic determination of vanadium and iron. The determination of vanadium was based on the p-anisidine oxidation by potassium bromate in the presence of Tiron as an activator to form a reddish dye, which has an absorption maximum at 510 nm. The selectivity of the vanadium determination was greatly improved by adding diphosphate as a masking agent of iron. For the iron determination, an iron-catalyzed oxidative reaction of p-anisidine by hydrogen peroxide with 1,10-phenanthroline as an activator to produce a reddish dye (510 nm) was employed. The SILFA system consisted of two peristaltic pumps, two six-port injection valves, a four-port selection valve, a heater device, a spectrophotometric detector and a data acquisition device. One six-port injection valve was used for the isolation of a mixed solution of standard/sample and reagent to promote each catalytic reaction, and another six-port injection valve was used for switching the reagent for vanadium or iron to achieve selective determination of each analyte. The above mentioned four-port selection valve was used to select standard solutions or sample. These three valves and the two peristaltic pumps were controlled by a built-in programmable logic controller in a touchscreen controller. The obtained results showed that the proposed SILFA monitoring system constituted an effective approach for the selective determination of vanadium and iron. The limits of detection, 0.052 and 0.55 µg L(-1), were obtained for vanadium and iron, respectively. The proposed system was successfully applied to drinking water samples without any preconcentration procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High-Fat Diet Increased Renal and Hepatic Oxidative Stress Induced by Vanadium of Wistar Rat.

    PubMed

    Wang, J P; Cui, R Y; Zhang, K Y; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W

    2016-04-01

    The study was conducted to assess the effect of vanadium (V) in high-fat diet on the liver and kidney of rats in a 5-week trial. Seventy-two female Wistar rats (BW = 95 ± 5 g) were randomly allotted into eight groups. Groups I, II, III, and IV obtained low-fat diet containing 0, 3, 15, and 30 mg/kg V, and V, VI, VII, and VIII groups received the respective vanadium doses with high-fat diet, respectively. There were lesions in the liver and kidney of V, VI, VII, and VIII groups, granular degeneration and vacuolar degeneration were observed in the renal tubular and glomerulus epithelial cells, and hepatocytes showed granular degeneration and vacuolar degeneration. Supplemented high-fat diet with vanadium was shown to decrease (P < 0.05) activities of superoxide dismutase, total antioxidant capacity, glutathione-S transferase, and NAD(P)H/quinone oxidoreductase 1 (NQO1) and increase malondialdehyde content in the liver and kidney. The relative expression of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and NQO1 mRNA was downregulated by V addition and high-fat diet, and the effect of V was more pronounced in high-fat diet (interaction, P < 0.05), with VIII group having the lowest mRNA expression of Nrf-2 and NQO1 in the liver and kidney. In conclusion, it suggested that dietary vanadium ranging from 15 to 30 mg/kg could lead to oxidative damage and vanadium accumulation in the liver and kidney, which caused renal and hepatic toxicity. The high-fat diet enhanced vanadium-induced hepatic and renal damage, and the mechanism was related to the modulation of the hepatic and renal mRNA expression of Nrf-2 and NQO1.

  15. Does the relief of glucose toxicity act as a mediator in proliferative actions of vanadium on pancreatic islet beta cells in streptozocin diabetic rats?

    PubMed

    Pirmoradi, Leila; Mohammadi, Mohammad Taghi; Safaei, Akbar; Mesbah, Fakhardin; Dehghani, Gholam Abbas

    2014-07-01

    Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Rats were divided into five groups of normal and diabetic. Diabetes was induced with streptozocin (40 mg/kg, i.v.). Normal rats used water (CN) or vanadium (1 mg/ml VOSO4, VTN). Diabetic rats used water (CD), water plus daily neutral protamine Hagedorn insulin injection (80 U/kg, ITD) or vanadium (VTD). Blood samples were taken for blood glucose (BG, mg/dL) and insulin (ng/dL) measurements. After two months, the pancreata of sacrificed rats were prepared for islet staining. Pre-treated normal BG was 88 ± 2, and diabetic BG was 395 ± 9. The final BG in CD, VTD, and ITD was 509 ± 22, 138 ± 14, and 141 ± 14, respectively. Insulin in VTN (0.75 ± 0.01) and VTD (0.78 ± 0.01) was similar, higher than CD (0.51 ± 0.07) but lower than CN (2.51 ± 0.02). VTN islets compared to CN had larger size and denser central core insulin immunoreactivity with plentiful BC. CD and ITD islets were atrophied and had scattered insulin immunoreactivity spots and low BC mass. VTD islets were almost similar to CN. Besides insulin-like activity, vanadium protected pancreatic islet BC, and the relief of glucose toxicity happening with vanadium had a little role in this action.

  16. Effect of Vanadium and Tea Polyphenols on Intestinal Morphology, Microflora and Short-Chain Fatty Acid Profile of Laying Hens.

    PubMed

    Yuan, Z H; Wang, J P; Zhang, K Y; Ding, X M; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W

    2016-12-01

    Vanadium (V) is a trace element which can induce dysfunction of gastro-intestine and egg quality deterioration of laying hens. This study was conducted to determine the effect of tea polyphenols (TP) on intestinal morphology, microflora, and short-chain fatty acid (SCFA) profile of laying hens fed vanadium containing diets. A total of 120 Lohman laying hens (67-week-old) were randomly divided into 4 groups with 6 replicates and 5 birds each for a 35-day feeding trial. The dietary treatments were as follows: (1) control (CON), fed a basal diet; (2) vanadium treatment (V10), CON +10 mg V/kg; (3) TP treatment 1 (TP1): V10 + 600 mg TP/kg; (4) TP treatment 2 (TP2): V10 + 1000 mg TP/kg. Fed 10 mg V/kg diets to laying hens did not affect the cecum flora diversity index (H), degree of homogeneity (EH), and richness (S), but hens fed TP2 diet decreased the H, EH, and S (P < 0.05). The cecum butyrate acid concentration was lower in V10 treatment and higher in TP2 treatment (P < 0.05). Addition of 10 mg/kg V resulted in an increased (P < 0.01) duodenal cell apoptosis rate, and 1000 mg/kg TP supplementation overcame (P < 0.01) this reduction effect induced by vanadium. The results indicated that supplementation of 10 mg/kg vanadium increased duodenal cell apoptosis and reduced cecum butyrate acid content. Addition of 1000 mg/kg TP increased the SCFA production to affect cecum flora ecology and protected the duodenal cell from excess apoptosis caused by vanadium.

  17. Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems.

    PubMed

    Leiviskä, Tiina; Khalid, Muhammad Kamran; Sarpola, Arja; Tanskanen, Juha

    2017-04-01

    This study investigated the removal of vanadium from real industrial wastewater by using six iron materials: commercial iron sorbent (CFH-12), commercial mineral sorbent (AQM), blast furnace sludge (BFS), steel converter sludge (SCS), ferrochrome slag (FeCr) and slag from a steel foundry (OKTO). Batch tests revealed that CFH-12 (ferric oxyhydroxide) removed vanadium most efficiently, which was explained by its high iron content and the amorphous form of the iron, and that the sorption followed the Langmuir isotherm. With a dosage of 10 g/l and an initial vanadium concentration of 58.2 mg/l, 91-94% removal rates for vanadium were achieved in the studied pH range (3-9). Other sorbents showed significantly lower efficiency than CFH-12, with the exception of BFS at acidic pH (93%). Based on the batch test results, CFH-12 was selected for a pilot study made on site. The pilot study demonstrated the feasibility of CFH-12 to remove vanadium at high temperature (80 °C) from concentrated industrial wastewater with fluctuating water quality (vanadium concentration varied from 51 to 83 mg/l, pH about 9 (at 25 °C)). Leaching of impurities (mainly S, Ca, Mg and K) into the effluent occurred during the first day, but subsequently good quality effluent was produced (e.g. <0.1 mg/l V). During the pilot study, the amorphous iron material of CFH-12 was crystallized into a hematite-like phase (Fe 1.67 H 0.99 O 3 ), and goethite (FeO(OH)) with a higher average pore diameter, probably due to the hot process conditions to which CFH-12 was exposed for over five days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Does the Relief of Glucose Toxicity Act As a Mediator in Proliferative Actions of Vanadium on Pancreatic Islet Beta Cells in Streptozocin Diabetic Rats?

    PubMed Central

    Pirmoradi, Leila; Mohammadi, Mohammad Taghi; Safaei, Akbar; Mesbah, Fakhardin; Dehghani, Gholam Abbas

    2014-01-01

    Background: Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Methods: Rats were divided into five groups of normal and diabetic. Diabetes was induced with streptozocin (40 mg/kg, i.v.). Normal rats used water (CN) or vanadium (1 mg/ml VOSO4, VTN). Diabetic rats used water (CD), water plus daily neutral protamine Hagedorn insulin injection (80 U/kg, ITD) or vanadium (VTD). Blood samples were taken for blood glucose (BG, mg/dL) and insulin (ng/dL) measurements. After two months, the pancreata of sacrificed rats were prepared for islet staining. Results: Pre-treated normal BG was 88 ± 2, and diabetic BG was 395 ± 9. The final BG in CD, VTD, and ITD was 509 ± 22, 138 ± 14, and 141 ± 14, respectively. Insulin in VTN (0.75 ± 0.01) and VTD (0.78 ± 0.01) was similar, higher than CD (0.51 ± 0.07) but lower than CN (2.51 ± 0.02). VTN islets compared to CN had larger size and denser central core insulin immunoreactivity with plentiful BC. CD and ITD islets were atrophied and had scattered insulin immunoreactivity spots and low BC mass. VTD islets were almost similar to CN. Conclusion: Besides insulin-like activity, vanadium protected pancreatic islet BC, and the relief of glucose toxicity happening with vanadium had a little role in this action. PMID:24842144

  19. Growth control of the oxidation state in vanadium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Shinbuhm; Meyer, Tricia L.; Lee, Ho Nyung, E-mail: hnlee@ornl.gov

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V{sub 2}{sup +3}O{sub 3}, V{sup +4}O{sub 2}, and V{sub 2}{sup +5}O{sub 5}. A well pronounced MIT was only observed in VO{sub 2} films grown in a very narrow range of oxygen partial pressure P(O{sub 2}). The films grown either in lower (<10 mTorr) or higher P(O{sub 2}) (>25 mTorr) result in V{sub 2}O{sub 3} and V{sub 2}O{sub 5} phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO{sub 2} thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.« less

  20. An Ultrastable Heterobimetallic Uranium(IV)/Vanadium(III) Solid Compound Protected by a Redox-Active Phosphite Ligand: Crystal Structure, Oxidative Dissolution, and First-Principles Simulation.

    PubMed

    Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-05

    The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.

  1. Positron lifetime in vanadium oxide bronzes

    NASA Astrophysics Data System (ADS)

    Dryzek, J.; Dryzek, E.

    2003-09-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes MxV2O5. The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (

  2. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  3. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  4. Anion-conductive membranes with ultralow vanadium permeability and excellent performance in vanadium flow batteries.

    PubMed

    Mai, Zhensheng; Zhang, Huamin; Zhang, Hongzhang; Xu, Wanxing; Wei, Wenping; Na, Hui; Li, Xianfeng

    2013-02-01

    Anion exchange membranes prepared from quaternized poly(tetramethyl diphenyl ether sulfone) (QAPES) were first investigated in the context of vanadium flow battery (VFB) applications. The membranes showed an impressive suppression effect on vanadium ions. The recorded vanadium permeability was 0.02×10(-7)-0.09×10(-7) cm(2) min(-1), which was two orders of magnitude lower than that of Nafion 115. The self-discharge duration of a VFB single cell with a QAPES membrane is four times longer than that of Nafion 115. The morphological difference in hydrophilic domains between QAPES and Nafion was confirmed by TEM. After soaking the membranes in VO(2)(+) solution, adsorbed vanadium ions can barely be found in QAPES, whereas the hydrophilic domains of Nafion were stained. In the ex situ chemical stability test, QAPES showed a high tolerance to VO(2)(+) and remained intact after immersion in VO(2)(+) solution for over 250 h. The performance of a VFB single cell assembled with QAPES membranes is equal to or even better than that of Nafion 115 and remains stable in a long-term cycle test. These results indicate that QAPES membranes can be an ideal option in the fabrication of high-performance VFBs with low electric capacity loss. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Butanol Dehydration over V₂O₅-TiO₂/MCM-41 Catalysts Prepared via Liquid Phase Atomic Layer Deposition.

    PubMed

    Choi, Hyeonhee; Bae, Jung-Hyun; Kim, Do Heui; Park, Young-Kwon; Jeon, Jong-Ki

    2013-04-29

    MCM-41 was used as a support and, by using atomic layer deposition (ALD) in the liquid phase, a catalyst was prepared by consecutively loading titanium oxide and vanadium oxide to the support. This research analyzes the effect of the loading amount of vanadium oxide on the acidic characteristics and catalytic performance in the dehydration of butanol. The physical and chemical characteristics of the TiO₂-V₂O₅/MCM-41 catalysts were analyzed using XRF, BET, NH₃-TPD, XRD, Py-IR, and XPS. The dehydration reaction of butanol was performed in a fixed bed reactor. For the samples with vanadium oxide loaded to TiO₂/MCM-41 sample using the liquid phase ALD method, it was possible to increase the loading amount until the amount of vanadium oxide reached 12.1 wt %. It was confirmed that the structural properties of the mesoporous silica were retained well after titanium oxide and vanadium loading. The NH₃-TPD and Py-IR results indicated that weak acid sites were produced over the TiO₂/MCM-41 samples, which is attributed to the generation of Lewis acid sites. The highest activity of the V₂O₅(12.1)-TiO₂/MCM-41 catalyst in 2-butanol dehydration is ascribed to it having the highest number of Lewis acid sites, as well as the highest vanadium dispersion.

  6. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  7. Modeling the Gas Nitriding Process of Low Alloy Steels

    NASA Astrophysics Data System (ADS)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  8. Effects of the Treating Time on Microstructure and Erosion Corrosion Behavior of Salt-Bath-Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji

    2013-08-01

    The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.

  9. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    PubMed

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  10. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3-Li2O-ZnO-V2O5 Glasses.

    PubMed

    Arya, S K; Danewalia, S S; Arora, Manju; Singh, K

    2016-12-01

    In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.

  11. Thermally Stable Solution Processed Vanadium Oxide as a Hole Extraction Layer in Organic Solar Cells

    PubMed Central

    Alsulami, Abdullah; Griffin, Jonathan; Alqurashi, Rania; Yi, Hunan; Iraqi, Ahmed; Lidzey, David; Buckley, Alastair

    2016-01-01

    Low-temperature solution-processable vanadium oxide (V2Ox) thin films have been employed as hole extraction layers (HELs) in polymer bulk heterojunction solar cells. V2Ox films were fabricated in air by spin-coating vanadium(V) oxytriisopropoxide (s-V2Ox) at room temperature without the need for further thermal annealing. The deposited vanadium(V) oxytriisopropoxide film undergoes hydrolysis in air, converting to V2Ox with optical and electronic properties comparable to vacuum-deposited V2O5. When s-V2Ox thin films were annealed in air at temperatures of 100 °C and 200 °C, OPV devices showed similar results with good thermal stability and better light transparency. Annealing at 300 °C and 400 °C resulted in a power conversion efficiency (PCE) of 5% with a decrement approximately 15% lower than that of unannealed films; this is due to the relative decrease in the shunt resistance (Rsh) and an increase in the series resistance (Rs) related to changes in the oxidation state of vanadium. PMID:28773356

  12. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Jamie; Jones, Amanda; Zawodzinski, Thomas A

    2013-01-01

    The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration changemore » on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.« less

  13. Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

    PubMed Central

    Klemm, Matthias; Horn, Siegfried; Woydt, Mathias

    2011-01-01

    Summary Magnéli-type vanadium oxides form the homologous series VnO2 n -1 and exhibit a temperature-induced, reversible metal–insulator first order phase transition (MIT). We studied the change of the adhesion force across the transition temperature between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that crossing the transition temperatures leads to a distinct change of the adhesion force. Low adhesion corresponds consistently to the metallic state. Accordingly, the ability to modify the electronic structure of the vanadium Magnéli phases while maintaining composition, stoichiometry and crystallographic integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired. PMID:21977416

  14. Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition

    PubMed Central

    2012-01-01

    Doping an impure element with a larger atomic volume into crystalline structure of buck crystals is normally blocked because the rigid crystalline structure could not tolerate a larger distortion. However, this difficulty may be weakened for nanocrystalline structures. Diamonds, as well as many semiconductors, have a difficulty in effective doping. Theoretical calculations carried out by DFT indicate that vanadium (V) is a dopant element for the n-type diamond semiconductor, and their several donor state levels are distributed between the conduction band and middle bandgap position in the V-doped band structure of diamond. Experimental investigation of doping vanadium into nanocrystalline diamond films (NDFs) was first attempted by hot filament chemical vapor deposition technique. Acetone/H2 gas mixtures and vanadium oxytripropoxide (VO(OCH2CH2CH3)3) solutions of acetone with V and C elemental ratios of 1:5,000, 1:2,000, and 1:1,000 were used as carbon and vanadium sources, respectively. The resistivity of the V-doped NDFs decreased two orders with the increasing V/C ratios. PMID:22873631

  15. Amphoteric Ion-Exchange Membranes with Significantly Improved Vanadium Barrier Properties for All-Vanadium Redox Flow Batteries.

    PubMed

    Nibel, Olga; Rojek, Tomasz; Schmidt, Thomas J; Gubler, Lorenz

    2017-07-10

    All-vanadium redox flow batteries (VRBs) have attracted considerable interest as promising energy-storage devices that can allow the efficient utilization of renewable energy sources. The membrane, which separates the porous electrodes in a redox flow cell, is one of the key components in VRBs. High rates of crossover of vanadium ions and water through the membrane impair the efficiency and capacity of a VRB. Thus, membranes with low permeation rate of vanadium species and water are required, also characterized by low resistance and stability in the VRB environment. Here, we present a new design concept for amphoteric ion-exchange membranes, based on radiation-induced grafting of vinylpyridine into an ethylene tetrafluoroethylene base film and a two-step functionalization to introduce cationic and anionic exchange sites, respectively. During long-term cycling, redox flow cells containing these membranes showed higher efficiency, less pronounced electrolyte imbalance, and significantly reduced capacity decay compared to the cells with the benchmark material Nafion 117. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. IRIS Toxicological Review of Vanadium Pentoxide ...

    EPA Pesticide Factsheets

    On September 30, 2011, the draft Toxicological Review of Vanadium Pentoxide and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. In the new IRIS process (May 2009), introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency science consultation draft of the IRIS Toxicological Review of Vanadium Pentoxide and the charge to external peer reviewers are posted on this site. EPA is reassessing its IRIS toxicological review of vanadium pentoxide (CASRN 1314-62-1). This vanadium pentoxide reassessment consists of an oral reference dose (RfD), an inhalation reference concentration (RfC), an inhalation unit risk (IUR) and a cancer weight of evidence descriptor. This is the first assessment developing an RfC or IUR for this compound. This assessment is intended to provide human health data to support agency regulatory decisions.

  17. Catalytic determination of vanadium in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1964-01-01

    A rapid, accurate, and sensitive spectrophotometric method for the quantitative determination of trace amounts of vanadium in water is based on the catalytic effect of vanadium on the rate of oxidation of gallic acid by persulfate in acid solution. Under given conditions of concentrations of reactants, temperature, and reaction time, the extent of oxidation of gallic acid is proportional to the concentration of vanadium present. Vanadium is determined by measuring the absorbance of the sample at 415 m?? and comparison with standard solutions treated in an identical manner. Concentrations in the range of from 0.1 to 8.0 ??g. per liter may be determined with a standard deviation of 0.2 or less. By reducing the reaction time, the method may be extended to cover the range from 1 to 100 ??g. with a standard deviation of 0.8 or less. Several substances interfere, including chloride above 100 p.p.m., and bromide and iodide in much lower concentrations. Interference from the halides is eliminated or minimized by the addition of mercuric nitrate solution. Most other substances do not interfere at the concentration levels at which they commonly occur in natural waters.

  18. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  19. [Determination of vanadium concentration in foods produced on the Eastern Coast of Lake Maracaibo].

    PubMed

    Tudares, C M; Villalobos, H D

    1998-04-01

    In the northeastern coast of Lake Maracaibo it has been reported some years ago a high incidence of congenital malformations of the Central Nervous Systems (Neural Tube Defects Type). This epidemiological problem is present in other countries too (Ireland and New Zealand) and has been associated with oil activities. In fact, some experimental works inform about the vanadium compounds cellular toxic effects mainly in the Central Nervous System of mammals. The main goal of this work is to measure the vanadium content in foods produced in the northeastern coast of Lake Maracaibo. Lagunillas, Valmore Rodriguez, and Baralt were the districts selected for the work. The digestion of the samples achieved by the methodology reported by Myron et al., with Graphite Furnace Atomic Absorption. The amounts of vanadium in the different foods analized were higher than the controls in the bibliographic reports. At this moment, there is not definitive proofs that vanadium compounds are the etiological agents of the Neural Tube Defects, but, these compounds are presents in foods produced in the northeastern coast of Lake Maracaibo.

  20. Electrical and Infrared Optical Properties of Vanadium Oxide Semiconducting Thin-Film Thermometers

    NASA Astrophysics Data System (ADS)

    Zia, Muhammad Fakhar; Abdel-Rahman, Mohamed; Alduraibi, Mohammad; Ilahi, Bouraoui; Awad, Ehab; Majzoub, Sohaib

    2017-10-01

    A synthesis method has been developed for preparation of vanadium oxide thermometer thin film for microbolometer application. The structure presented is a 95-nm thin film prepared by sputter-depositing nine alternating multilayer thin films of vanadium pentoxide (V2O5) with thickness of 15 nm and vanadium with thickness of 5 nm followed by postdeposition annealing at 300°C in nitrogen (N2) and oxygen (O2) atmospheres. The resulting vanadium oxide (V x O y ) thermometer thin films exhibited temperature coefficient of resistance (TCR) of -3.55%/°C with room-temperature resistivity of 2.68 Ω cm for structures annealed in N2 atmosphere, and TCR of -3.06%/°C with room-temperature resistivity of 0.84 Ω cm for structures annealed in O2 atmosphere. Furthermore, optical measurements of N2- and O2-annealed samples were performed by Fourier-transform infrared ellipsometry to determine their dispersion curves, refractive index ( n), and extinction coefficient ( k) at wavelength from 7000 nm to 14,000 nm. The results indicate the possibility of applying the developed materials in thermometers for microbolometers.

  1. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  2. The Syntheses and Structure of the First Vanadium(IV) and Vanadium(V) Binary Azides, V(N3)4, [V(N3)6]2- and [V(N3)6]- (Preprint)

    DTIC Science & Technology

    2009-11-17

    V(N3)3(N3S2)] 2- , [22] have been reported, and no binary vanadium(V) compounds had been known except for VF5, VF6 - and V2O5 . By analogy with...valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line. [31] All reaction vessels were passivated with ClF3...successful synthesis of the [V(N3)6] - anion, the only binary vanadium(V) compound known besides VF5, VF6 - and V2O5 . N1’ N8 N9 N1 N2 N3 V N4 N5 N6 N2

  3. Amphiphilic block copolymer membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena

    2013-11-01

    An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.

  4. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  5. Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia hermannii and Enterobacter cloacae

    PubMed Central

    Hernández, Alicia; Mellado, Rafael P.; Martínez, José L.

    1998-01-01

    Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae. PMID:9797283

  6. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes.

    PubMed

    Li, Zhao; Chen, Min; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-02-01

    This work describes the mechanochemical transformations of molybdenum and vanadium sulfides into corresponding molybdate and vanadate, to serve as a new environment-friendly approach for processing hazardous spent hydrodesulphurization (HDS) catalysts solid waste to achieve an easy recovery of not only molybdenum and vanadium but also nickel and cobalt. Co-grinding the molybdenum and vanadium sulfides with oxidants and sodium carbonate stimulates solid-state reactions without any heating aid to form metal molybdates and vanadates. The reactions proceed with an increase in grinding time and were enhanced by using more sodium carbonate and stronger oxidant. The necessary conditions for the successful transformation can be explained on the basis of thermodynamic analyses, namely a negative change in Gibbs free energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Complex formation of vanadium(V) with resorcylalhydrazides of carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudarev, V.I.; Dolgorev, V.A.; Volkov, A.N.

    1986-08-01

    In this work, a previous investigation of hydrazine derivatives as analytical reagents for vanadium(V) was continued. The authors studied arylalhydrazones -- derivatives of resorcylalhydrazides of anisic (RHASA), anthranilic (RHANA), and benzoic (RHBA) acids. The reagents presented differ from those studied previously by the presence of a second hydroxy group in the para-position of the benzene ring -the resorcinol fragment -- and substituents in the benzoin fragment. Such changes made it possible to increase the solubility of the reagents in aqueous medium and to estimate the change in the main spectrophotometric parameters of the analytical reaction. A rapid method was developedmore » for the determination of vanadium in steels with the resorcylalhydrazide of anthranilic acid. The minimum determinable vanadium content is 0.18 micrograms/ml.« less

  8. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  9. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  10. 40 CFR 437.47 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0... 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662 Zinc 2.87 0....000739 Nickel 3.95 1.45 Silver 0.120 0.0351 Tin 0.409 0.120 Titanium 0.0947 0.0618 Vanadium 0.218 0.0662...

  11. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  12. 3. INTERIOR, SOUTHEAST VIEW. Vanadium Corporation of America (VCA) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR, SOUTHEAST VIEW. - Vanadium Corporation of America (VCA) Naturita Mill, Grinding Rod Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. 40 CFR 421.220 - Applicability: Description of the secondary molybdenum and vanadium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING... to discharges resulting from the production of molybdenum or vanadium by secondary molybdenum and...

  14. New ramsdellites LiTi 2-yV yO 4 (0≤ y≤1): Synthesis, structure, magnetic properties and electrochemical performances as electrode materials for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kuhn, Alois; Martín, María; García-Alvarado, Flaviano

    2010-01-01

    The new ramsdellite series LiTi 2-yV yO 4 (0≤ y≤1) has been prepared by conventional solid state chemistry techniques and was characterized by X-ray powder diffraction and electron diffraction. To our knowledge, this is the first report on ramsdellites containing vanadium. The magnetic behaviour of these ramsdellites is strongly influenced by its vanadium content. In this sense, LiTi 2O 4 ( y=0) exhibits metallic-like temperature independent paramagnetism, but d electrons tend to localize with increasing V content. LiTiVO 4, though also paramagnetic, follows then the Curie-Weiss law. The crossover from delocalized to localized electrons is observed between compositions y=0.6 and 0.8. For y≥0.8 the magnetic results evidence an isovalent substitution mechanism of trivalent Ti by V. The electrochemical lithium intercalation and deintercalation chemistry of LiTi 2-yV yO 4 is grouped into two different operating voltage regions. Reversible lithium deintercalation of vanadium-substituted ramsdellite titanates LiTi 2-yV yO 4 in the high voltage range 2-3 V vs. Li occurs in two main steps, one at about 2 V and the other at about 3 V. The 3 V process capacity increases with the vanadium content, while the 2 V capacity decreases at the same time. The vanadium to titanium substitution rate in LiTi 2O 4 was found to be beneficial to the specific energy in as much as a 50% increase (1 V) of the working voltage is observed. On the other hand, reversible lithium intercalation in vanadium-substituted ramsdellite titanates LiTi 2-yV yO 4 in the low voltage range 1-2 V vs. Li occurs in one main single step, in which the capacity is not affected by the vanadium content, although vanadium-doping produces an improved capacity retention with an excellent cycling behaviour observed for y≤0.6.

  15. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats.

    PubMed

    Pirmoradi, Leila; Noorafshan, Ali; Safaee, Akbar; Dehghani, Gholam Abbas

    2016-01-01

    Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.19±0.08 vs. 0.97±0.27 ng/dL, P<0.002). The respective high BG (532±49 vs. 144±46 mg/dL, P<0.0001) and reduced plasma insulin (0.26±0.15 vs. 0.54±0.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.9±0.2 vs. 3.03±0.6 mm3, P<0.003) and TBCN (0.99±0.1 vs. 3.2±0.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.9±0.8 and 4.07±1.0 mm3, P<0.003) and TBCN (1.5±0.3 and 3.8±0.6 x 106, P<0.03). Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers.

  16. Synthesis and Study of Metallonitride Complexes and Polymers

    DTIC Science & Technology

    1992-03-02

    heterobimetallic nitride-bridged complexes, examples of homobimetallic nitride-bridged complexes, and new linear chain metallonitride polymers. We...the Nitride Bridge. Synthesis and Reactivity of Early-Late Heterobimetallic Nitride-Bridged Complexes," C. M. Jones, D. M.-T. Chan, J. C. Calabrese

  17. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  18. 1. VIEW TO EAST, FRONT AND SIDE. Vanadium Corporation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO EAST, FRONT AND SIDE. - Vanadium Corporation of America (VCA) Naturita Mill, Mechanic Shed, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  19. 2. VIEW TO WEST, REAR AND SIDE. Vanadium Corporation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW TO WEST, REAR AND SIDE. - Vanadium Corporation of America (VCA) Naturita Mill, Mechanic Shed, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  20. 1. VIEW TO EAST, FRONT AND SIDE. Vanadium Corporation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO EAST, FRONT AND SIDE. - Vanadium Corporation of America (VCA) Naturita Mill, Grinding Rod Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  1. 40 CFR 421.226 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...] [Reserved] Ammonia (as N) 24114.000 10600.000 (c) Vanadium decomposition wet air pollution control. PSNS for... day Maximum for monthly average mg/kg (pounds per million pounds) vanadium produced by decomposition...

  2. 40 CFR 421.226 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...] [Reserved] Ammonia (as N) 24114.000 10600.000 (c) Vanadium decomposition wet air pollution control. PSNS for... day Maximum for monthly average mg/kg (pounds per million pounds) vanadium produced by decomposition...

  3. 40 CFR 421.226 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...] [Reserved] Ammonia (as N) 24114.000 10600.000 (c) Vanadium decomposition wet air pollution control. PSNS for... day Maximum for monthly average mg/kg (pounds per million pounds) vanadium produced by decomposition...

  4. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    PubMed Central

    Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin

    2016-01-01

    Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication. PMID:28773996

  5. Plasma assisted synthesis of vanadium pentoxide nanoplates

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Sharma, Rabindar Kumar; Kumar, Prabhat; Reddy, G. B.

    2015-08-01

    In this work, we report the growth of α-V2O5 (orthorhombic) nanoplates on glass substrate using plasma assisted sublimation process (PASP) and Nickel as catalyst. 100 nm thick film of Ni is deposited over glass substrate by thermal evaporation process. Vanadium oxide nanoplates have been deposited treating vanadium metal foil under high vacuum conditions with oxygen plasma. Vanadium foil is kept at fixed temperature growth of nanoplates of V2O5 to take place. Samples grown have been studied using XPS, XRD and HRTEM to confirm the growth of α-phase of V2O5, which revealed pure single crystal of α- V2O5 in orthorhombic crystallographic plane. Surface morphological studies using SEM and TEM show nanostructured thin film in form of plates. Uniform, vertically aligned randomly oriented nanoplates of V2O5 have been deposited.

  6. Insulating phases of vanadium dioxide are Mott-Hubbard insulators

    DOE PAGES

    Huffman, T. J.; Hendriks, C.; Walter, E. J.; ...

    2017-02-15

    Here, we present comprehensive broadband optical spectroscopy data on two insulating phases of vanadium dioxide (VO 2): monoclinic M 2 and triclinic. The main result of our work is that the energy gap and the electronic structure are essentially unaltered by the first-order structural phase transition between the M 2 and triclinic phases. Moreover, the optical interband features in the M 2 and triclinic phases are remarkably similar to those observed in the well-studied monoclinic M 1 insulating phase of VO 2. As the energy gap is insensitive to the different lattice structures of the three insulating phases, we rulemore » out vanadium-vanadium pairing (the Peierls component) as the dominant contributor to the opening of the gap. Rather, the energy gap arises primarily from intra-atomic Coulomb correlations.« less

  7. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement

    PubMed Central

    Espinosa, Nieves; Dam, Henrik Friis; Tanenbaum, David M.; Andreasen, Jens W.; Jørgensen, Mikkel; Krebs, Frederik C.

    2011-01-01

    The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V2O5·(H2O)n/Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker. PMID:28879984

  8. Characterization of Sulfonated Diels-Alder Poly(phenylene) Membranes for Electrolyte Separators in Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhijiang; Lawton, Jamie S.; Sun, Che-Nan

    2014-09-03

    Here, sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes were synthesized and characterized as potential electrolyte separators for vanadium redox flow batteries. The SDAPP membranes studied had ion exchange capacities of 1.4, 1.8 and 2.3 meq/g. Transmission electron microscopy imaging shows that the ionic domains in SDAPP are roughly 0.5 nm in dimension, while Nafion has a hydrophilic phase width of around 5 nm. The sulfuric acid uptake by SDAPP was higher than that for Nafion, but the materials had similar water uptake from solutions of various sulfuric acid concentrations. In equilibration with sulfuric acid concentrations ranging from 0–17.4 mol·kg -1, SDAPP withmore » a IEC of 2.3 meq/g had the highest conductivity, ranging from 0.21 to 0.05 S·cm -1, while SDAPP with a IEC of 1.8 had conductivity close to Nafion 117, ranging from 0.11 to 0.02 S·cm -1. With varying sulfuric acid concentration and temperature, vanadium permeability in SDAPP is positively correlated to the membrane's IEC. The vanadium permeability of SDAPP 2.3 is similar to that of Nafion, but permeability values for SDAPP 1.8 and SDAPP 1.4 are substantially lower. The vanadium permeation decreases with increasing electrolyte sulfuric acid concentration. Lastly, vanadium diffusion activation energy is about 20 kJ·mol -1 in both SDAPP and Nafion.« less

  9. Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Kokalj, David; Stangier, Dominic; Paulus, Michael; Sternemann, Christian; Tolan, Metin

    2018-01-01

    Friction minimization is an important topic which is pursued in research and industry. In addition to the use of lubricants, friction-reducing oxide phases can be utilized which occur during. These oxides are called Magnéli phases and especially vanadium oxides exhibit good friction reducing properties. Thereby, the lubrication effect can be traced back to oxygen deficiencies. AlCrN thin films are being used as coatings for tools which have to withstand high temperatures. A further improvement of AlCrN thin films concerning their friction properties is possible by incorporation of vanadium. This study analyzes the temperature dependent oxidation behavior of magnetron sputtered AlCrVN thin films with different vanadium contents up to 13.5 at.-% by means of X-ray diffraction and X-ray absorption near-edge spectroscopy. Up to 400 °C the coatings show no oxidation. A higher temperature of 700 °C leads to an oxidation and formation of Magnéli phases of the coatings with vanadium contents above 10.7 at.-%. Friction coefficients, measured by ball-on-disk test are correlated with the oxide formation in order to figure out the effect of vanadium oxides. At 700 °C a decrease of the friction coefficient with increasing vanadium content can be observed, due to the formation of VO2, V2O3 and the Magnéli phase V4O7.

  10. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement.

    PubMed

    Espinosa, Nieves; Dam, Henrik Friis; Tanenbaum, David M; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-11

    The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V₂O₅·(H₂O) n /Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker.

  11. Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering

    NASA Astrophysics Data System (ADS)

    Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping

    2018-02-01

    The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.

  12. Structural, electronic, mechanical and magnetic properties of rare earth nitrides REN (RE= Pm, Eu and Yb)

    NASA Astrophysics Data System (ADS)

    Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-07-01

    The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.

  13. RF sputtered silicon and hafnium nitrides as applied to 440C steel

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1984-01-01

    Silicon nitride and hafnium nitride coatings were deposited on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. The coatings and the interface between the coating and substrate were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. Oxide was found at all interfaces with an interface width of at least 600 A for the oxidized substrates and at least 300 A for the unoxidized substrates. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C. Coatings of both nitrides deposited at 8 mtorr were found to have increased adhesion to both oxidized and unoxidized 440C over those deposited at 20 mtorr.

  14. Method to synthesize bulk iron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, Todd; Lavernia, Enrique J.; Zheng, Baolong

    Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600°C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure sparkmore » discharge sintering.« less

  15. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  16. A Thermodynamic Model to Estimate the Formation of Complex Nitrides of Al x Mg(1- x)N in Silicon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Yan; Zhang, Lifeng; Li, Ming; Sridhar, Seetharaman

    2018-06-01

    A complex nitride of Al x Mg(1- x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10-7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.

  17. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  18. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    PubMed Central

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  19. Vanadium based materials as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  20. Stability of rhombohedral phases in vanadium at high-pressure and high-temperature: first-principles investigations

    NASA Astrophysics Data System (ADS)

    Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.

    2016-09-01

    The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium.

  1. Geochemistry of vanadium (V) in Chinese coals.

    PubMed

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  2. Design, Synthesis and Pharmacological Evaluation of Novel Vanadium-Containing Complexes as Antidiabetic Agents

    PubMed Central

    Fedorova, Elena V.; Buryakina, Anna V.; Zakharov, Alexey V.; Filimonov, Dmitry A.; Lagunin, Alexey A.; Poroikov, Vladimir V.

    2014-01-01

    Based on the data about structure and antidiabetic activity of twenty seven vanadium and zinc coordination complexes collected from literature we developed QSAR models using the GUSAR program. These QSAR models were applied to 10 novel vanadium coordination complexes designed in silico in order to predict their hypoglycemic action. The five most promising substances with predicted potent hypoglycemic action were selected for chemical synthesis and pharmacological evaluation. The selected coordination vanadium complexes were synthesized and tested in vitro and in vivo for their hypoglycemic activities and acute rat toxicity. Estimation of acute rat toxicity of these five vanadium complexes was performed using a freely available web-resource (http://way2drug.com/GUSAR/acutoxpredict.html). It has shown that the selected compounds belong to the class of moderate toxic pharmaceutical agents, according to the scale of Hodge and Sterner. Comparison with the predicted data has demonstrated a reasonable correspondence between the experimental and predicted values of hypoglycemic activity and toxicity. Bis{tert-butyl[amino(imino)methyl]carbamato}oxovanadium (IV) and sodium(2,2′-Bipyridyl)oxo-diperoxovanadate(V) octahydrate were identified as the most potent hypoglycemic agents among the synthesized compounds. PMID:25057899

  3. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOEpatents

    Fish, Richard H.

    1986-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  4. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOEpatents

    Fish, R.H.

    1987-04-21

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  5. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOEpatents

    Fish, Richard H.

    1987-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  6. Blistering behavior and deuterium retention in tungsten vanadium alloys exposed to deuterium plasma in the linear plasma device STEP

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Cheng, Long; Yuan, Yue; Qin, Shao-Yang; Arshad, Kameel; Guo, Wang-Guo; Wang, Zheng; Zhou, Zhang-Jian; Lu, Guang-Hong

    2018-03-01

    The behavior of tungsten-vanadium (W-V) alloys fabricated by powder metallurgy as a plasma facing material has been studied. W-V alloys with different vanadium concentrations (5 and 10 wt %) manufactured by hot pressing (HP) were exposed to deuterium plasma (flux ∼4.6 × 1021 m-2s-1, fluence ∼5.6 × 1025 m-2, ion energy ∼60 eV, target temperature ∼450 K) in the linear plasma device STEP at Beihang University. Three typical grains are observed on HP sintered W-V alloys and exhibit a significant effect on its performance under deuterium plasma irradiation. Surface blistering only occurs at W-enriched grains and is significantly mitigated in W-V alloys, especially in W-10 V, blistering is completely suppressed. On the other hand, deuterium retention dramatically increases in the W-V alloys due to vanadium addition. The deuterium retention in W-5 wt. % V is about 6.2 times more than that in rolled pure W, and this factor further increases to 6.9 when the V concentration rises to 10 wt %. We ascribe these phenomena to the changes of microstructures and components caused by vanadium addition.

  7. Real-time monitoring of capacity loss for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2018-06-01

    The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.

  8. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2017-10-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient ( k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient ( k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  9. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  10. 4. DETAIL OF GEARWELL AND GENERATOR, WEST VIEW. Vanadium ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF GEARWELL AND GENERATOR, WEST VIEW. - Vanadium Corporation of America (VCA) Naturita Mill, Grinding Rod Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  11. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  12. Investigation of nitrogen transport in active screen plasma nitriding processes - Uphill diffusion effect

    NASA Astrophysics Data System (ADS)

    Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.

    2018-07-01

    The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.

  13. RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS

    DOEpatents

    Wilson, H.F.

    1958-07-01

    An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.

  14. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    PubMed

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  15. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.

  16. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  17. Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP OES.

    PubMed

    Dos Anjos, Shirlei L; Alves, Jeferson C; Rocha Soares, Sarah A; Araujo, Rennan G O; de Oliveira, Olivia M C; Queiroz, Antonio F S; Ferreira, Sergio L C

    2018-02-01

    This work presents the optimization of a sample preparation procedure using microwave-assisted digestion for the determination of nickel and vanadium in crude oil employing inductively coupled plasma optical emission spectrometry (ICP OES). The optimization step was performed utilizing a two-level full factorial design involving the following factors: concentrated nitric acid and hydrogen peroxide volumes, and microwave-assisted digestion temperature. Nickel and vanadium concentrations were used as responses. Additionally, a multiple response based on the normalization of the concentrations by the highest values was built to establish a compromise condition between the two analytes. A Doehlert matrix optimized the instrumental conditions of the ICP OE spectrometer. In this design, the plasma robustness was used as chemometric response. The experiments were performed using a digested oil sample solution doped with magnesium(II) ions, as well as a standard magnesium solution. The optimized method allows for the determination of nickel and vanadium with quantification limits of 0.79 and 0.20μgg -1 , respectively, for a digested sample mass of 0.1g. The precision (expressed as relative standard deviations) was determined using five replicates of two oil samples and the results obtained were 1.63% and 3.67% for nickel and 0.42% and 4.64% for vanadium. Bismuth and yttrium were also tested as internal standards, and the results demonstrate that yttrium allows for a better precision for the method. The accuracy was confirmed by the analysis of the certified reference material trace element in fuel oil (CRM NIST 1634c). The proposed method was applied for the determination of nickel and vanadium in five crude oil samples from Brazilian Basins. The metal concentrations found varied from 7.30 to 33.21μgg -1 for nickel and from 0.63 to 19.42μgg -1 for vanadium. Copyright © 2017. Published by Elsevier B.V.

  18. Interactions of Penicillium griseofulvum with inorganic and organic substrates: vanadium, lead and hexachlorocyclohexane

    NASA Astrophysics Data System (ADS)

    Ceci, Andrea; Pierro, Lucia; Riccardi, Carmela; Maggi, Oriana; Pinzari, Flavia; Gadd, Geoffrey Michael; Petrangeli Papini, Marco; Persiani, Anna Maria

    2015-04-01

    Soil is an essential and non-renewable resource for human beings and ecosystems. In recent years, anthropogenic activities mainly related to hydrocarbon fuel combustion, mining and industrial activities have increased the levels of vanadium in the environment, raising concern over its spread. Vanadium may be essential for some bacteria and fungi, but can have toxic effects at high concentrations. The pesticide lindane or γ-hexachlorocyclohexane (γ-HCH) and another two isomers of hexachlorocyclohexane (HCH), α-HCH, and β-HCH, were included as persistent organic pollutants in the Stockholm Convention in 2008, and their worldwide spread and toxic effects on organisms are severe environmental problems. Fungi play important roles in soil and can survive in high concentrations of toxic elements and pesticides by possessing mechanisms for the degradation, utilization and transformation of organic and inorganic substrates. The transformation of potentially toxic elements (PTEs), and degradation of chlorinated pesticides and other persistent organic pollutants may provide environmentally-friendly and economical approaches for environmental management and restoration. In this work, we have investigated the tolerance of a soil fungal species, Penicillum griseofulvum, to different hexachlorocyclohexane (HCH) isomers, α-HCH, β-HCH, δ-HCH and γ-HCH or lindane, and two PTEs, vanadium and lead in relation to growth responses and biotransformation. P. griseofulvum was isolated from soils with high levels of PTEs (including vanadium and lead), and HCH residues. P. griseofulvum was able to tolerate vanadium concentrations up to 5 mM, combinations of 2.5 mM vanadium and lead compounds, and was able to grow in the presence of a 4 mg L-1 mixture of α-HCH, β-HCH, δ-HCH and γ-HCH, and degrade these substrates. Tolerance mechanisms may explain the occurrence of fungi in polluted habitats: their roles in the biotransformation of metals and persistent organic pollutants may provide opportunities for bioremediation. (287 words)

  19. BN Bonded BN fiber article and method of manufacture

    DOEpatents

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  20. Vanadium pentoxide

    Integrated Risk Information System (IRIS)

    Vanadium pentoxide ; CASRN 1314 - 62 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  1. Method to remove uranium/vanadium contamination from groundwater

    DOEpatents

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  2. [An in vitro study on toxic effect of vanadium-titanium-magnetite dust on alveolar macrophage in rabbits].

    PubMed

    Song, Y; Chen, Q; Guan, Y

    1998-11-01

    To study the toxic effect of vanadium-titanium-magnetite (VTM) dust on alveolar macrophage (AM) and its hazardous extent. Survival rates, morphology and function of AM were compared in rabbits exposed to dust of VTM, vanadium oxide, titanium dioxide and silica in various doses and length of time with in vitro cell culture and putamen membrane cover glass transmission electron microscopy, and changes in activities of lactic dehydrogenase (LDH) and acid phosphatase (ACP) in cell culture were measured. Exposure to all the four kinds of dust could lead to decrease in survival rate of AM, increase in activities of LDH and ACP in the cell culture, and changes in their morphology and function to the extent dependent on the nature of dust. Toxic effect of exposure to VTM dust was lower than that to vanadium oxide and silica, but higher than that to titanium dioxide, which had slight toxic effect.

  3. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-04-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  4. Reactions of sulfur dioxide with neutral vanadium oxide clusters in the gas phase. I. Density functional theory study.

    PubMed

    Jakubikova, Elena; Bernstein, Elliot R

    2007-12-27

    Thermodynamics of reactions of vanadium oxide clusters with SO2 are studied at the BPW91/LANL2DZ level of theory. BPW91/LANL2DZ is insufficient to properly describe relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute reliable enthalpy changes for reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Stable intermediate structures of VOy (y = 1 - 4) clusters with SO2 are also obtained at the BPW91/TZVP level of theory. Some possible mechanisms for SO3 formation and catalyst regeneration for condensed-phase systems are suggested. These results are in agreement with, and complement, gas-phase experimental studies of neutral vanadium oxide clusters.

  5. A vanadium alloy for the application in a liquid metal blanket of a fusion reactor

    NASA Astrophysics Data System (ADS)

    Borgstedt, H. U.; Grundmann, M.; Konys, J.; Perić, Z.

    1988-07-01

    The vanadium alloy V3Ti1Si has been corrosion tested in liquid lithium and the eutectic alloy Pb-17Li at 550°C. This alloy has a comparable corrosion resistance to the alloy V15Cr5Ti in lithium. In this molten metal it is superior to stainless steel AISI 316. In the Pb-17Li melt it is even superior to martensitic steels. The alloy has only a weak tendency to be dissolved. It is sensitive to an exchange of non-metallic elements, which causes the formation of a hardened surface layer. These chemical effects are influenced by the mass and surface ratios of the vanadium alloy to the molten metals and other structural materials. These ratios are unfavorable in the two test loops. The effects might be less pronounced in a vanadium alloy/liquid metal fusion reactor blanket.

  6. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. ON THE RELATIVE STABILITY OF ALUMINUM, TITANIUM, VANADIUM, IRON, AND COPPER TARTRATE COMPLEXES IN ALKALI MEDIA (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatnitskii, I.V.; Kostyshina, A.P.

    1959-06-01

    The stability of aluminum, copper, iron, titunium, and vanadium tartrate complexes was determined using bond magnitudes as criteria (the ratio between the concentrations of complexed and free ions at a certain standard acid condition). A method is suggested for determining the ratio of the bonds combining the complexes of two metals. The partition constaats of aluminum, copper, iron(III), and vanadium hydroxyquinolinates between the aqueous solution and chloroform were 2.6 x 10/sup -33/, 7.3 x 10/sup -23/, 1.5 x 10/sup -37/, and 4.2 x 10/sup -23/, respectively. The relative stability of copper and iron turtrate complexes in alkali solution (pH 13)more » and aluminum, iron(III), titunium, and vanadium(IV) tartrate complexes in ammonium solution (pH 9.5) was determined. (R.V.J.)« less

  8. Novel hybrid materials based on the vanadium oxide nanobelts

    NASA Astrophysics Data System (ADS)

    Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.

    2016-04-01

    Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  9. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis

    NASA Astrophysics Data System (ADS)

    Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji

    2018-06-01

    Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menges, F.; Spieser, M.; Riel, H.

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-basedmore » scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.« less

  11. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-06-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  12. Self-repairing vanadium-zirconium composite conversion coating for aluminum alloys

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wu, Xiaosong; Jia, Yuyu; Liu, Yali

    2013-09-01

    In this paper, new self-repairing vanadium-zirconium composite conversion coating was prepared and investigated by Electrochemical impedance spectra (EIS), Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. EIS results showed that V-Zr conversion coating with hydrogen peroxide modified (VZO) revealed an increasing corrosion resistance in corrosive media which meant a certain self-repairing effect. SEM comparison photos also disclosed that VZO treated with scratches was gradually ameliorated from the initial cracked configuration to fewer cracks and more fillers through an immersion of 3.5% NaCl solution. XPS results demonstrated that the content of vanadium on VZO increased and zirconium declined when immersed in the corrosive solution. This explained further that the self-repairing ability could be related to vanadium. From the above results, we inferred possible structures of VZO and proposed that self-repairing effect was achieved through a hydrolysis condensation polymerization process of vanadate in the localized corrosion area.

  13. Alloy Effects on the Gas Nitriding Process

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  14. Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.

    PubMed

    Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri

    2011-09-05

    The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Liquid flow cells having graphene on nitride for microscopy

    DOEpatents

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  16. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  17. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  18. Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.

    PubMed

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-10-21

    Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides.

  19. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory.

    PubMed

    McLean, Ben; Eveleens, Clothilde A; Mitchell, Izaac; Webber, Grant B; Page, Alister J

    2017-10-11

    Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.

  20. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    PubMed

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  1. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  2. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, Leon

    1995-01-01

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  3. Endohedral clusterfullerenes--playing with cluster and cage sizes.

    PubMed

    Dunsch, Lothar; Yang, Shangfeng

    2007-06-28

    The family of endohedral fullerenes was significantly enlarged within the past six years by the clusterfullerenes containing structures like the M(2)C(2) carbides and the M(3)N nitrides. While the carbide clusters are generated under the standard arc burning conditions according to the stabilisation energy the nitride clusterfullerene type is formed by varying the composition of the cooling gas atmosphere in the arc burning process. The special situation in nitride clusterfullerene synthesis is described in detail and the optimum conditions for the production of nitride clusterfullerenes as the main product in fullerene synthesis are discussed. A review of new nitride clusterfullerenes reported recently is given summarizing the structures, properties and the stability of metal nitride clusterfullerenes. It is shown that all cages with even carbon atoms of C(68) and beyond are available as endohedral nitride clusterstructures. Furthermore the nitride clusterfullerenes are that class of endohedral fullerenes forming the largest number of non-IPR structures. Finally the prospects of this evolving field are briefly discussed taking the superior stability of these endohedral clusterfullerenes into account.

  4. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  5. Use of anionic surfactants for selective polishing of silicon dioxide over silicon nitride films using colloidal silica-based slurries

    NASA Astrophysics Data System (ADS)

    Penta, Naresh K.; Amanapu, H. P.; Peethala, B. C.; Babu, S. V.

    2013-10-01

    Four different anionic surfactants, sodium dodecyl sulfate, dodecyl benzene sulfonic acid (DBSA), dodecyl phosphate and Sodium lauroyl sarcosine, selected from the sulfate, phosphate, and carboxylic family, were investigated as additives in silica dispersions for selective polishing of silicon dioxide over silicon nitride films. We found that all these anionic surfactants suppress the nitride removal rates (RR) for pH ≤4 while more or less maintaining the oxide RRs, resulting in high oxide-to-nitride RR selectivity. The RR data obtained as a function of pH were explained based on pH dependent distributions of surfactant species, change in the zeta potentials of oxide and nitride surfaces, and thermogravimetric data. It appears that the negatively charged surfactant species preferentially adsorb on the positively charged nitride surface below IEP through its electrostatic interactions and form a bilayer adsorption, resulting in the suppression of nitride RRs. In contrast to the surfactants, K2SO4 interacts only weakly with the nitride surface and hence cannot suppress its RR.

  6. Assessment of the microstructure and torsional fatigue performance of an induction hardened vanadium microalloyed medium-carbon steel

    NASA Astrophysics Data System (ADS)

    Rothleutner, Lee M.

    Vanadium microalloying of medium-carbon bar steels is a common practice in industry for a number of hot rolled as well as forged and controlled-cooled components. However, use of vanadium microalloyed steels has expanded into applications beyond their originally designed controlled-cooled processing scheme. Applications such as transmission shafts often require additional heat-treatments such as quench and tempering and/or induction hardening to meet packaging or performance requirements. As a result, there is uncertainty regarding the influence of vanadium on the properties of heat-treated components, specifically the effect of rapid heat-treating such as induction hardening. In the current study, the microstructural evolution and torsional fatigue behavior of induction hardened 1045 and 10V45 (0.08 wt pct V) steels were examined. Torsional fatigue specimens specifically designed for this research were machined from the as-received, hot rolled bars and induction hardened using both scanning (96 kHz/72 kW) and single-shot (31 kHz/128 kW) methods. Four conditions were evaluated, three scan hardened to 25, 32, and 44 pct nominal effective case depths and one single-shot hardened to 44 pct. Torsional fatigue tests were conducted at a stress ratio of 0.1 and shear stress amplitudes of 550, 600, and 650 MPa. Physical simulations using the thermal profiles from select induction hardened conditions were conducted in the GleebleRTM 3500 to augment microstructural analysis of torsional fatigue specimens. Thermal profiles were calculated by a collaborating private company using electro-thermal finite element analysis. Residual stresses were evaluated for all conditions using a strain gage hole drilling technique. The results showed that vanadium microalloying has an influence on the microstructure in the highest hardness region of the induction-hardened case as well as the total case region. Vanadium microalloyed conditions consistently exhibited a greater amount of non-martensitic transformation products in the induction-hardened case. In the total case region, vanadium reduced the total case depth by inhibiting austenite formation at low austenitizing temperatures; however, the non-martensitic constituents in the case microstructure and the reduced total case depth of the vanadium microalloyed steel did not translate directly to a degradation of torsional fatigue properties. In general, vanadium microalloying was not found to affect torsional fatigue performance significantly with one exception. In the 25 pct effective case depth condition, the 10V45 steel had a ~75 pct increase in fatigue life at all shear stress amplitudes when compared to the 1045 steel. The improved fatigue performance is likely a result of the significantly higher case hardness this condition exhibited compared to all other conditions. The direct influence of vanadium on the improved fatigue life of the 25 pct effective case depth condition is confounded with the slightly higher carbon content of the 10V45 steel. In addition, the 10V45 conditions showed a consistently higher case hardness than the in 1045 conditions. The increased hardness of the 10V45 steel did not increase the compressive residual stresses at the surface. Induction hardening parameters were more closely related to changes in residual stress than vanadium microalloying additions. Torsional fatigue data from the current study as well as from literature were used to develop an empirical multiple linear regression model that accounts for case depth as well as carbon content when predicting torsional fatigue life of induction hardened medium-carbon steels.

  7. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs.

    PubMed

    Doucette, Kaitlin A; Hassell, Kelly N; Crans, Debbie C

    2016-12-01

    Improving efficacy and lowering resistance to metal-based drugs can be addressed by consideration of the coordination complex speciation and key reactions important to vanadium antidiabetic drugs or platinum anticancer drugs under biological conditions. The methods of analyses vary depending on the specific metal ion chemistry. The vanadium compounds interconvert readily, whereas the reactions of the platinum compounds are much slower and thus much easier to study. However, the vanadium species are readily differentiated due to vanadium complexes differing in color. For both vanadium and platinum systems, understanding the processes as the compounds, Lipoplatin and Satraplatin, enter cells is needed to better combat the disease; there are many cellular metabolites, which may affect processing and thus the efficacy of the drugs. Examples of two formulations of platinum compounds illustrate how changing the chemistry of the platinum will result in less toxic and better tolerated drugs. The consequence of the much lower toxicity of the drug, can be readily realized because cisplatin administration requires hospital stay whereas Lipoplatin can be done in an outpatient manner. Similarly, the properties of Satraplatin allow for development of an oral drug. These forms of platinum demonstrate that the direct consequence of more selective speciation is lower side effects and cheaper administration of the anticancer agent. Therefore we urge that as the community goes forward in development of new drugs, control of speciation chemistry will be considered as one of the key strategies in the future development of anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Vanadium Exposure-Induced Neurobehavioral Alterations among Chinese Workers

    PubMed Central

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2014-01-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the Simple Reaction Time, Digit Span, Benton Visual Retention and Pursuit Aiming were also poorer among exposed workers as compared to unexposed control workers(p<0.05). Some of these poor performances in tests were also significantly related to workers’ exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium. PMID:23500660

  9. Homogeneous and heterogeneous micro-structuring of austenitic stainless steels by the low temperature plasma nitriding

    NASA Astrophysics Data System (ADS)

    Aizawa, T.; Yoshihara, S.-I.

    2018-06-01

    The austenitic stainless steels have been widely utilized as a structural component and member as well as a die and mold substrate for stamping. AISI316 dies and molds require for the surface treatment to accommodate the sufficient hardness and wear resistance to them. In addition, the candidate treatment methods must be free from toxicity, energy consumption and inefficiency. The low temperature plasma nitriding process has become one of the most promising methods to make solid-solution hardening by the nitrogen super-saturation. In the present paper, the high density RF/DC plasma nitriding process was applied to form the uniform nitrided layer in the AISI316 matrix and to describe the essential mechanism of inner nitriding in this low temperature nitriding process. In case of the nitrided AISI316 at 673 K for 14.4ks, the nitrided layer thickness became 60 μm with the surface hardness of 1700 HV and the surface nitrogen content of 7 mass %. This inner nitriding process is governed by the synergetic interrelation among the nitrogen super-saturation, the lattice expansion, the phase transformation, the plastic straining, the microstructure refinement and the acceleration of nitrogen diffusion. As far as this interrelation is sustained during the nitriding process, the original austenitic microstructure is homogeneously nitrided to have fine grains with the average size of 0.1 μm and the high crystallographic misorientation angles and to have two phase (γ + α’) structures with the plateau of nitrogen content by 5 mass%. Once this interrelation does not work anymore, the homogeneous microstructure changed itself to the heterogeneous one. The plastic straining took place in the selected coarse grains; they were partially refined into subgrains. This plastic localization accompanied the localized phase transformation.

  10. Vanadium Nitrogenase Reduces CO*

    PubMed Central

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W.

    2011-01-01

    Vanadium nitrogenase not only reduces dinitrogen to ammonia but also reduces carbon monoxide to ethylene, ethane, and propane. The parallelism between the two reactions suggests a potential link in mechanism and evolution between the carbon and nitrogen cycles on Earth. PMID:20689010

  11. 40 CFR 421.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... times. (c) Vanadium decomposition wet air pollution control. BPT Limitations for the Secondary... average mg/kg (pounds per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000...

  12. 40 CFR 421.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... times. (c) Vanadium decomposition wet air pollution control. BPT Limitations for the Secondary... average mg/kg (pounds per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000...

  13. 40 CFR 421.222 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... times. (c) Vanadium decomposition wet air pollution control. BPT Limitations for the Secondary... average mg/kg (pounds per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000...

  14. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  15. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  16. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  17. Silicon nitride ceramic having high fatigue life and high toughness

    DOEpatents

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  18. Features of the phase composition and morphology of the particles of sialon synthesized from silicon and aluminum nitrides

    NASA Astrophysics Data System (ADS)

    Ivicheva, S. N.; Lysenkov, A. S.; Ovsyannikov, N. A.; Titov, D. D.; Kargin, Yu F.

    2018-04-01

    The phase composition and morphological features of sialons were studied under the same conditions of firing (duration, temperature) using different initial components, silicon nitride, aluminum nitride, and a mixture of silicon nitrides and aluminum with the application of nitrides of the corresponding oxide (aluminum or silicon) sol-gel method. The effect of the initial reagents composition on the phase composition of the final product and the morphological features of the sialon powders obtained in a single firing step in a nitrogen atmosphere is shown.

  19. Experimental observation of boron nitride chains.

    PubMed

    Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V

    2014-12-23

    We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.

  20. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  1. Rolling-element fatigue life of silicon nitride balls: Preliminary test results

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.

  2. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  3. Friction and transfer behavior of pyrolytic boron nitride in contact with various metals

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted with pyrolytic boron nitride in sliding contact with itself and various metals. Auger emission spectroscopy was used to monitor transfer of pyrolytic boron nitride to metals and metals to pyrolytic boron nitride. Results indicate that the friction coefficient for pyrolytic boron nitride in contact with metals can be related to the chemical activity of the metals and more particularly to the d valence bond character of the metal. Transfer was found to occur to all metals except silver and gold and the amount of transfer was less in the presence than in the absence of metal oxide. Friction was less for pyrolytic boron nitride in contact with a metal in air than in vacuum.

  4. Safety Assessment of Boron Nitride as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.

  5. COATED CARBON ELEMENT FOR USE IN NUCLEAR REACTORS AND THE PROCESS OF MAKING THE ELEMENT

    DOEpatents

    Pyle, R.J.; Allen, G.L.

    1963-01-15

    S>This patent relates to a carbide-nitride-carbide coating for carbon bodies that are to be subjected to a high temperature nuclear reactor atmosphere, and a method of applying the same. This coating is a highly efficient diffusion barrier and protects the C body from corrosion and erosion by the reactor atmosphere. Preferably, the innermost coating is Zr carbide, the middle coatlng is Zr nitride, and the outermost coating is a mixture of Zr and Nb carbide. The nitride coating acts as a diffusion barrier, while the innermost carbide bonds the nitride to the C body and prevents deleterious reaction between the nitride and C body. The outermost carbide coating protects the nitride coating from the reactor atmosphere. (AEC)

  6. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  7. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  8. Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.

    2009-12-01

    Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.

  9. Adhesive Bonding Experiments for Titanium 6 Aluminum 4 Vanadium (Ti6Al4V). Part I. Anodization Treatments.

    DTIC Science & Technology

    1979-12-01

    Identification of Surface Treat- 4 ments of Ti 6-4 II Effect of Increasing Oxide Porosity on H20 Contact Angle on Titanium 6 Aluminum 4 Vanadium 26 viii SECTIONI...and a high SIMS yield. The lithium does not appear in the oxide formed on titanium by this mixture. Similarly porosity may be induced by anodization at...Porous Oxide (B). 25 TABLE II EFFECT OF INCREASING OXIDE POROSITY ON H2 0 CONTACT ANGLE ON TITANIUM 6 ALUMINUM 4 VANADIUM - I H 2 0Sample Electrolyte

  10. Vanadium(IV)-stimulated hydrolysis of 2,3-diphosphoglycerate.

    PubMed

    Stankiewicz, P J

    1989-05-01

    Vanadium(IV) stimulates the hydrolysis of 2,3-diphosphoglycerate at 23 degrees C. The pH optimum is 5.0. Reactions were analyzed by enzymatic and phosphate release assays. The products of 2,3-diphosphoglycerate hydrolysis are inorganic phosphate and 3-phosphoglycerate. The reaction is inhibited by high concentrations of 2,3-diphosphoglycerate and an equation has been formulated that describes the kinetic constants for this reaction at pH 7. The possible relevance of the reaction to the therapeutic lowering by vanadium(IV) of red cell 2,3-diphosphoglycerate in sickle-cell disease is discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Haowei; Gray, A. X.; Granitzka, P.

    Vanadium dioxide is of broad interest as a spin-1/2 electron system that realizes a metal-insulator transition near room temperature, due to a combination of strongly correlated and itinerant electron physics. Here, resonant inelastic x-ray scattering is used to measure the excitation spectrum of charge and spin degrees of freedom at the vanadium L edge under different polarization and temperature conditions, revealing excitations that differ greatly from those seen in optical measurements. Furthermore, these spectra encode the evolution of short-range energetics across the metal-insulator transition, including the low-temperature appearance of a strong candidate for the singlet-triplet excitation of a vanadium dimer.

  12. URANIUM LEACHING AND RECOVERY PROCESS

    DOEpatents

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  13. Polymer-pyrolysis assisted synthesis of vanadium trioxide and carbon nanocomposites as high performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dong, Yucheng; Ma, Ruguang; Hu, Mingjun; Cheng, Hua; Lee, Jong-Min; Li, Yang Yang; Zapien, Juan Antonio

    2014-09-01

    We present a simple polymer-pyrolysis assisted method to prepare vanadium trioxide and carbon nanocomposites as an advanced anode material for lithium-ion batteries. The as-prepared material deliver a superior battery performance with highly retained capacity of ∼780 mAh g-1 over 100 cycles at a current density of 200 mA g-1, showing excellent cyclic stability, and good rate capability. The improved electrochemical performance of vanadium trioxide and carbon nanocomposites electrode makes it promising as a suitable anode material for practical battery applications.

  14. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  15. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Nguyen, Tam D.; Whitehead, Adam; Scherer, Günther G.; Wai, Nyunt; Oo, Moe O.; Bhattarai, Arjun; Chandra, Ghimire P.; Xu, Zhichuan J.

    2016-12-01

    Despite many desirable properties, the vanadium redox flow battery is limited, in the maximum operation temperature that can be continuously endured, before precipitation begins in the positive electrolyte. Many additives have been proposed to improve the thermal stability of the charged positive electrolyte. However, we have found that the apparent stability, revealed in laboratory testing, is often simply an artifact of the test method and arises from the oxidation of the additive, with corresponding partial reduction of V(V) to V(IV). This does not improve the stability of the electrolyte in an operating system. Here, we examined the oxidation of some typical organic additives with carboxyl, alcohol, and multi-functional groups, in sulfuric acid solutions containing V(V). The UV-vis measurements and titration results showed that many compounds reduced the state-of-charge (SOC) of vanadium electrolyte, for example, by 27.8, 88.5, and 81.9% with the addition of 1%wt of EDTA disodium salt, pyrogallol, and ascorbic acid, respectively. The cell cycling also indicated the effect of organic additives on the cell performance, with significant reduction in the usable charge capacity. In addition, a standard screening method for thermally stable additives was introduced, to quickly screen suitable additives for the positive vanadium electrolyte.

  16. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer

    NASA Astrophysics Data System (ADS)

    Badrinarayanan, Rajagopalan; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria

    2014-12-01

    As with all redox flow batteries, the Vanadium Redox flow Battery (VRB) can suffer from capacity loss as the vanadium ions diffuse at different rates leading to a build-up on one half-cell and dilution on the other. In this paper an extended dynamic model of the vanadium ion transfer is developed including the effect of temperature and bulk electrolyte transfer. The model is used to simulate capacity decay for a range of different ion exchange membranes that are being used in the VRB. The simulations show that Selemion CMV and Nafion 115 membranes have similar behavior where the impact of temperature on capacity loss is highest within the first 100 cycles. The results for Selemion AMV membrane however are seen to be very different where the capacity loss at different temperatures observed to increase linearly with increasing charging/discharging cycles. The model is made more comprehensive by including the effect of bulk electrolyte transfer. A volume change of 19% is observed in each half-cell for Nafion 115 membrane based on the simulation parameters. The effect of this change in volume directly affects concentration, and the characteristics are analyzed for each vanadium species as well as the overall concentration in the half-cells.

  17. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  18. Stability of rhombohedral phases in vanadium at high-pressure and high-temperature: first-principles investigations

    PubMed Central

    Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.

    2016-01-01

    The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium. PMID:27581551

  19. High temperature (1200 C) ceramic-to-metal seal development

    NASA Technical Reports Server (NTRS)

    Mckisson, R. L.; Ervin, G., Jr.

    1972-01-01

    Two phases have been completed, of a program whose ultimate objective is the development of an alkali metal resistant, thermal shock resistant, leak-tight, and neutron radiation resistant ceramic-to-metal seal capable of operation at 1200 C for three to five years. The first phase involved the screening of platinum-base, vanadium-base and vanadium-niobium base brazes for the joining of Cb-1Zr or T-111 alloys to high purity alumina. The second phase involved studies of the performance of sealed capsule samples during 5000-hour aging tests at 800, 1000, and 1200 C in high vacuum. Sealed capsules which were made using pure vanadium braze, and were brazed at 1850 C for one minute, survived 64 thermal cycles to 1200 C at the heating/cooling rate of 100 C/minute. Vanadium braze samples survived 5000-hour aging tests at 800, 1000, and 1200 C. One thermally cycled sample survived a subsequent 5000-hour aging period at 1000 C, but another, at 1200 C, did not survive. It was concluded that a pure vanadium braze used to bond high purity alumina to Cb-1Zr alloy is the best of the systems studied, but that additional studies must be performed to establish its service temperature limitations for the desired three to five years' service.

  20. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOEpatents

    Fish, R.H.

    1985-05-17

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  1. Hydrothermal synthesis, crystal structure, and magnetic properties of a new inorganic vanadium(III) phosphate with a chain structure.

    PubMed

    Ferdov, Stanislav; Reis, Mario S; Lin, Zhi; Ferreira, Rute A Sá

    2008-11-03

    A new vanadium(III) phosphate, Na3V(OH)(HPO4)(PO4), has been synthesized by using mild hydrothermal conditions under autogeneous pressure. This material represents a very rare example of sodium vanadium(III) phosphate with a chain structure. The crystal structure has been determined by refinement of powder X-ray diffraction data, starting from the atomic coordinates of an isotypic compound, Na3Al(OH)(HPO4)(PO4), which was obtained under high temperature and high pressure. The phase crystallizes in monoclinic space group C2/m (No. 12) with lattice parameters a = 15.423(9) A, b = 7.280(0) A, c = 7.070(9) A, beta = 96.79(7) degrees, V = 788.3(9) A(3), and Z = 4. The structure consists of one-dimensional chains composed of corner-sharing VO5(OH) octahedra running along the b direction. They are decorated by isolated PO4 and HPO4 tetrahedra sharing two of their corners with the ones of the vanadium octahedra. The interconnection between the chains is assured by three crystallographically distinct Na(+) cations. Magnetic investigation confirms the 3+ oxidation state of the vanadium ions and reveals an antiferromagnetic arrangement between those ions through the chain.

  2. Titanium-nitride-oxide-coated coronary stents: insights from the available evidence.

    PubMed

    Karjalainen, Pasi P; Nammas, Wail

    2017-06-01

    Coating of stent surface with a biocompatible material is suggested to improve stent safety profile. A proprietary process was developed to coat titanium-nitride-oxide on the stent surface, based on plasma technology that uses the nano-synthesis of gas and metal. Preclinical in vitro and in vivo investigation confirmed blood compatibility of titanium (nitride-) oxide films. Titanium-nitride-oxide-coated stents demonstrated a better angiographic outcome, compared with bare-metal stents at mid-term follow-up; however, they failed to achieve non-inferiority for angiographic outcome versus second-generation drug-eluting stents. Observational studies showed adequate clinical outcome at mid-term follow-up. Non-randomized studies showed an outcome of titanium-nitride-oxide-coated stents comparable to - or better than - first-generation drug-eluting stents at long-term follow-up. Two randomized controlled trials demonstrated comparable efficacy outcome, and a better safety outcome of titanium-nitride-oxide-coated stents versus drug-eluting stents at long-term follow-up. Evaluation by optical coherence tomography at mid-term follow-up revealed better neointimal strut coverage associated with titanium-nitride-oxide-coated stents versus drug-eluting stents; yet, neointimal hyperplasia thickness was greater. Key messages Stents coated with titanium-nitride-oxide demonstrated biocompatibility in preclinical studies: they inhibit platelet and fibrin deposition, and reduce neointimal growth. In observational and non-randomized studies, titanium-nitride-oxide-coated stents were associated with adequate safety and efficacy outcome. In randomized trials of patients with acute coronary syndrome, titanium-nitride-oxide-coated stents were associated with a better safety outcome, compared with drug-eluting stents; efficacy outcome was comparable.

  3. Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    PubMed Central

    Osiceanu, Petre; Gloriant, Thierry

    2015-01-01

    The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology. PMID:26583096

  4. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application

    NASA Astrophysics Data System (ADS)

    Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.

    2018-01-01

    Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.

  5. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  6. Physical fundamentals of criterial estimation of nitriding technology for parts of friction units

    NASA Astrophysics Data System (ADS)

    Kuksenova, L. I.; Gerasimov, S. A.; Lapteva, V. G.; Alekseeva, M. S.

    2013-03-01

    Characteristics of the structure and properties of surface layers of nitrided structural steels and alloys, which affect the level of surface fracture under friction, are studied. A generalized structural parameter for optimizing the nitriding process and a rapid method for estimating the quality of the surface layer of nitrided parts of friction units are developed.

  7. Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenhao; Holder, Aaron; Orvañanos, Bernardo

    Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically formore » nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.« less

  8. Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides

    DOE PAGES

    Sun, Wenhao; Holder, Aaron; Orvañanos, Bernardo; ...

    2017-07-17

    Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically formore » nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.« less

  9. Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.

    PubMed

    Nithya, Jeghan Shrine Maria; Pandurangan, Arumugam

    2012-05-01

    Synthesis of boron nitride nanotubes at reduced temperature is important for industrial manufactures. In this study boron nitride nanotubes were synthesized by thermal evaporation method using B/Fe2O3/MoO3 and B/Ni2O3/MoO3 mixtures separately with ammonia as the nitrogen source. The growth of boron nitride nanotubes occurred at 1100 degrees C, which was relatively lower than other metal oxides assisted growth processes requiring higher than 1200 degrees C. MoO3 promoted formation of B2O2 and aided boron nitride nanotubes growth at a reduced temperature. The boron nitride nanotubes with bamboo shaped, nested cone structured and straight tubes like forms were evident from the high resolution transmission electron microscopy. Metallic Fe and Ni, formed during the process, were the catalysts for the growth of boron nitride nanotubes. Their formation was established by X-ray diffraction. FT Raman showed a peak due to B-N vibration of BNNTs close to 1370 cm(-1). Hence MoO3 assisted growth of boron nitride nanotubes is advantageous, as it significantly reduced the synthesis temperature.

  10. Early stages of plasma induced nitridation of Si (111) surface and study of interfacial band alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in

    2016-02-07

    We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less

  11. Nitridation of porous GaAs by an ECR ammonia plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  12. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  13. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  14. Spherical boron nitride particles and method for preparing them

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2003-11-25

    Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.

  15. Validity of "sputtering and re-condensation" model in active screen cage plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Khan, A. W.; Jan, F.; Abrar, M.; Khalid, M.; Zakaullah, M.

    2013-05-01

    The validity of "sputtering and re-condensation" model in active screen plasma nitriding for nitrogen mass transfer mechanism is investigated. The dominant species including NH, Fe-I, N2+, N-I and N2 along with Hα and Hβ lines are observed in the optical emission spectroscopy (OES) analysis. Active screen cage and dc plasma nitriding of AISI 316 stainless steel as function of treatment time is also investigated. The structure and phases composition of the nitrided layer is studied by X-ray diffraction (XRD). Surface morphology is studied by scanning electron microscopy (SEM) and hardness profile is obtained by Vicker's microhardness tester. Increasing trend in microhardness is observed in both cases but the increase in active screen plasma nitriding is about 3 times greater than that achieved by dc plasma nitriding. On the basis of metallurgical and OES observations the use of "sputtering and re-condensation" model in active screen plasma nitriding is tested.

  16. Nitride microlens arrays for blue and ultraviolet wavelength applications

    NASA Astrophysics Data System (ADS)

    Oder, T. N.; Shakya, J.; Lin, J. Y.; Jiang, H. X.

    2003-05-01

    Nitride microlens arrays with sizes as small as 10 μm in diameter have been fabricated on GaN and AlN epilayers using the method of photoresist reflow and inductively coupled plasma dry etching. The focal lengths of the microlenses varied from 7-30 μm as determined by theoretical fitting as well as by the near-field scanning optical microscopy measurement. Scanning electron and atomic force microscopies were used to obtain the surface profile of the microlenses which were found to match very well with hemispherical fitting and a surface roughness value around 1 nm was obtained. Nitride microlens arrays would be naturally chosen for green/blue to deep ultraviolet wavelength applications. In addition, nitride microlenses offer the possibility of integrating nitride-based microsize photonic devices as well as of coupling light into, out of, and between arrays of III-nitride emitters for other applications, such as spatially resolved fluorescence spectroscopy studies of biological and medical systems and optical links, thereby further expanding the applications of III nitrides.

  17. VANADYL SULFATE INHIBITS NO PRODUCTION VIA THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    Exposure to excessive vanadium (V) occurs in some occupations and with consumption of some dietary regimens for weight reduction and body-building. Because vanadium is vasoactive, individuals exposed to excessive V may develop adverse vascular effects. We showed previously that v...

  18. Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics

    PubMed Central

    Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco

    2017-01-01

    The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040

  19. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  20. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

Top