Sample records for vanadium-oxide nanotubes probed

  1. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalyst with enhanced activity to improve the battery performance. Herein, we first synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen-doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivey, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as-prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. Wemore » also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.« less

  2. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  3. Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Fu, Meimei; Ge, Chongyong; Hou, Zhaohui; Cao, Jianguo; He, Binhong; Zeng, Fanyan; Kuang, Yafei

    2013-07-01

    Graphene/vanadium oxide nanotubes (VOx-NTs) composite was successfully synthesized through the hydrothermal process in which acetone as solvent and 1-hexadecylamine (HDA) as structure-directing template were used. Morphology, structure and composition of the as-obtained composite were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen isothermal adsorption/desorption and thermo gravimetric analysis (TGA). The composite with the VOx-NTs amount of 69.0 wt% can deliver a specific capacitance of 210 F/g at a current density of 1 A/g in 1 M Na2SO4 aqueous solution, which is nearly twice as that of pristine graphene (128 F/g) or VOx-NTs (127 F/g), and exhibit a good performance rate. Compared with pure VOx-NTs, the cycle stability of the composite was also greatly improved due to the enhanced conductivity of the electrode and the structure buffer role of graphene.

  4. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-05-01

    Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  5. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    PubMed Central

    Livage, Jacques

    2010-01-01

    A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325

  6. Homology of vanadium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasyutinskii, N.A.

    1987-05-01

    The authors examine the homology of vanadium oxide and note that data on the existence of phases and homogeneity limits in the V-O system are very contradictory. A graphical illustration shows the homologous series of vanadium oxides. The predominant part of the discrete formations in the system V-O is characterized by integral stoichiometry and forms six homologous series. It is found that homologous series of vanadium oxides are not only a basis for systematization of such oxides, but also may serve as a means for predicting the composition of new phases, limits of homogeneity, their structure, and properties.

  7. Glassy carbon/multi walled carbon nanotube/cadmium sulphide photoanode for light energy storage in vanadium photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Peimanifard, Zahra; Rashid-Nadimi, Sahar

    2015-12-01

    The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ toVO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.

  8. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    PubMed

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  9. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers

    NASA Astrophysics Data System (ADS)

    Motola, Martin; Satrapinskyy, Leonid; Čaplovicová, Mária; Roch, Tomáš; Gregor, Maroš; Grančič, Branislav; Greguš, Ján; Čaplovič, Ľubomír; Plesch, Gustav

    2018-03-01

    TiO2 nanotube (TiNT) arrays were grown on silicon substrate via electrochemical anodization of titanium films sputtered by magnetron. To improve the photocatalytic activity of arrays annealed in air (o-TiNT), doping of o-TiNT with vanadium was performed (o-V/TiNT). These non-doped and doped TiNT arrays were also hydrogenated in H2/Ar atmosphere to r-TiNT and r-V/TiNT samples, respectively. Investigation of composition and morphology by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of well-ordered arrays of anatase nanotubes with average diameter and length of 100 nm and 1.3 μm, respectively. In both oxidized and reduced V-doped samples, vanadium is partly dissolved in the structure of anatase and partly deposited in form of oxide on the nanotube surface. Vanadium-doped and reduced samples exhibited higher rates in the photodegradation of organic dyes (compared to non-modified o-TiNT sample) and this is caused by limitation of electron-hole recombination rates and by shift of the energy gap into visible region. The photocatalytic activity was measured under UV, sunlight and visible irradiation, and the corresponding efficiency increased in the order (o-TiNT) < (r-TiNT) < (o-V/TiNT) < (r-V/TiNT). Under visible light, only r-TiNT and r-V/TiNT showed significant photocatalytic activity.

  10. Release kinetics of vanadium from vanadium (III, IV and V) oxides: Effect of pH, temperature and oxide dose.

    PubMed

    Hu, Xingyun; Yue, Yuyan; Peng, Xianjia

    2018-05-01

    Batch experiments were performed to derive the rate laws for the proton-promoted dissolution of the main vanadium (III, IV and V) oxides at pH 3.1-10.0. The release rates of vanadium are closely related to the aqueous pH, and several obvious differences were observed in the release behavior of vanadium from the dissolution of V 2 O 5 and vanadium(III, IV) oxides. In the first 2hr, the release rates of vanadium from V 2 O 3 were r=1.14·([H + ]) 0.269 at pH 3.0-6.0 and r=0.016·([H + ]) -0.048 at pH 6.0-10.0; the release rates from VO 2 were r=0.362·([H + ]) 0.129 at pH 3.0-6.0 and r=0.017·([H + ]) -0.097 at pH 6.0-10.0; and the release rates from V 2 O 5 were r=0.131·([H + ]) -0.104 at pH 3.1-10.0. The release rates of vanadium from the three oxides increased with increasing temperature, and the effect of temperature was different at pH 3.8, pH 6.0 and pH 7.7. The activation energies of vanadium (III, IV and V) oxides (33.4-87.5kJ/mol) were determined at pH 3.8, pH6.0 and pH 7.7, showing that the release of vanadium from dissolution of vanadium oxides follows a surface-controlled reaction mechanism. The release rates of vanadium increased with increasing vanadium oxides dose, albeit not proportionally. This study, as part of a broader study of the release behavior of vanadium, can help to elucidate the pollution problem of vanadium and to clarify the fate of vanadium in the environment. Copyright © 2017. Published by Elsevier B.V.

  11. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  12. [Oxidative Stress Level of Vanadium-exposed Workers].

    PubMed

    Wei, Teng-da; Li, Shun-pin; Liu, Yun-xing; Tan, Chun-ping; Li, Juan; Zhang, Zu-hui; Lan, Ya-jia; Zhang, Qin

    2015-11-01

    To determine the oxidative stress level in peripheral blood of vanadium-exposed workers, as an indication of population health effect of vanadium on human neurobehavioral system. 86 vanadium-exposed workers and 65 non-exposed workers were recruited by cluster sampling. A questionnaire was administered to collect demographic and occupational exposure information. Serum activity of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS) and malonaldehyde (MDA) contents were detected by kit assay. The differences in oxidative stress level between vanadium-exposed and non-exposed workers were compared. Vanadium-exposed workers had higher levels of MDA contents than the controls. The total superoxide dismutase(T-SOD) activity in vanadium-exposed workers was significantly lower than that in the controls, which was associated with lowered levels of manganese superoxide dismutase (Mn-SOD) activity. No changes in serum levels of cupro-zinc superoxide dismutase (CuZn-SOD) was found in vanadium-exposed workers. No difference in iNOS activity was found between vanadium-exposed workers and controls. Vanadium exposure increases free radical production in serum and reduces antioxidant capacity. But the relationship between vanadium exposure and iNOS damage remains uncertain.

  13. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  14. Vanadium oxide-carbon nanotube composite electrodes for energy storage by supercritical fluid deposition: experiment design and device performance

    NASA Astrophysics Data System (ADS)

    Do, Quyet H.; Fielitz, Thomas R.; Zeng, Changchun; Arda Vanli, O.; Zhang, Chuck; Zheng, Jim P.

    2013-08-01

    Vanadium pentoxide (V2O5) deposited on porous multiwalled carbon nanotube (MWCNT) buckypaper using supercritical fluid CO2(scCO2) deposition shows excellent performance for electrochemical capacitors. However, the low weight loading of V2O5 is one of the main problems. In this paper, design of experiments and response surface methods were employed to explore strategies for improving the active material loading by increasing the organo-vanadium precursor adsorption. A second-order response surface model was fitted to the designed experiments to predict the loading of the vanadium precursors onto carbon nanotube buckypaper as a function of time, temperature and pressure of CO2, buckypaper functionalization, precursor type, initial precursor mass and stir speed. Operation conditions were identified by employing a model that led to a precursor loading of 19.33%, an increase of 72.28% over the initial screening design. CNTs-V2O5 composite electrodes fabricated from deposited samples using the optimized conditions demonstrated outstanding electrochemical performance (947.1 F g-1 of V2O5 at a high scan rate 100 mV s-1). The model also predicted operation conditions under which light precursor aggregation took place. The V2O5 from aggregated precursor still possessed considerable specific capacitance (311 F g-1 of V2O5 at a scan rate 100 mV s-1), and the significantly higher V2O5 loading (˜81%) contributed to an increase in overall electrode capacitance.

  15. Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm.

    PubMed

    Diggikar, Rahul S; Patil, Rajendra H; Kale, Sheetal B; Thombre, Dipalee K; Gade, Wasudeo N; Kulkarni, Milind V; Kale, Bharat B

    2013-09-01

    Reoccurrence of infectious diseases and ability of pathogens to resist antibacterial action has raised enormous challenges which may possibly be confronted by nanotechnology routes. In the present study, uniformly embedded silver nanoparticles in orthorhombic nanotubes of lithium vanadium oxide (LiV2O5/Ag) were explored as an impeder of bacterial growth and biofilm. The LiV2O5/Ag nanocomposites have impeded growth of Gram-positive Bacillus subtilis NCIM 2063 and Gram-negative Escherichia coli NCIM 2931 at 60 to 120 μg/mL. It also impeded the biofilm in Pseudomonas aeruginosa NCIM 2948 at 12.5 to 25 μg/mL. Impedance in the growth and biofilm occurs primarily by direct action of the nanocomposites on the cell surfaces of test organisms as revealed by surface perturbation in scanning electron microscopy. As the metabolic growth and biofilm formation phenomena of pathogens play a central role in progression of pathogenesis, LiV2O5/Ag nanocomposite-based approach is likely to curb the menace of reoccurrence of infectious diseases. Thus, LiV2O5/Ag nanocomposites can be viewed as a promising candidate in biofabrication of biomedical materials.

  16. Growth control of the oxidation state in vanadium oxide thin films

    DOE PAGES

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; ...

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.« less

  17. Growth control of the oxidation state in vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V2 + 3 O 3 , V + 4 O 2 , and V2 + 5 O 5 . A well pronounced MIT was only observed in VO2 films grown in a very narrow range of oxygen partial pressure P(O2). The films grown either in lower (<10 mTorr) or higher P(O2) (>25 mTorr) result in V2O3 and V2O5 phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO2 thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  18. Growth control of the oxidation state in vanadium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Shinbuhm; Meyer, Tricia L.; Lee, Ho Nyung, E-mail: hnlee@ornl.gov

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V{sub 2}{sup +3}O{sub 3}, V{sup +4}O{sub 2}, and V{sub 2}{sup +5}O{sub 5}. A well pronounced MIT was only observed in VO{sub 2} films grown in a very narrow range of oxygen partial pressure P(O{sub 2}). The films grown either in lower (<10 mTorr) or higher P(O{sub 2}) (>25 mTorr) result in V{sub 2}O{sub 3} and V{sub 2}O{sub 5} phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO{sub 2} thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.« less

  19. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  20. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  1. Positron lifetime in vanadium oxide bronzes

    NASA Astrophysics Data System (ADS)

    Dryzek, J.; Dryzek, E.

    2003-09-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes MxV2O5. The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (

  2. The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V2O4 coated nanotubes in gas sensing.

    PubMed

    Willinger, Marc-Georg; Neri, Giovanni; Bonavita, Anna; Micali, Giuseppe; Rauwel, Erwan; Herntrich, Tobias; Pinna, Nicola

    2009-05-21

    A new atomic layer deposition (ALD) process was applied for the uniform coating of carbon nanotubes with a number of transition-metal oxide thin films (vanadium, titanium, and hafnium oxide). The presented approach is adapted from non-aqueous sol-gel chemistry and utilizes metal alkoxides and carboxylic acids as precursors. It allows the coating of the inner and outer surface of the tubes with a highly conformal film of controllable thickness and hence, the production of high surface area hybrid materials. The morphology and the chemical composition as well as the high purity of the films are evidenced through a combination of electron microscopic and electron-energy-loss spectrometric techniques. Furthermore, in order to highlight a possible application of the obtained hybrids, the electrical and sensing properties of resistive gas sensors based on hybrid vanadium oxide-coated carbon nanotubes (V2O4-CNTs) are reported and the effect of thermal treatment on the gas sensing properties is studied.

  3. Optimization of Designs for Nanotube-based Scanning Probes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.

  4. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dremov, Vyacheslav, E-mail: dremov@issp.ac.ru; Fedorov, Pavel; Grebenko, Artem

    2015-05-15

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulationmore » regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.« less

  5. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  6. Towards of Vanadium Pentoxide Nanotubes and Thiols using Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavayen, V.; Gonzalez, G.; Cardenas, G.; Sotomayor Torres, C. M.

    2005-09-01

    The template-directed synthesis is a promising route to realise 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes. In this work we report the interchange of long alkyl amines with alkyl thiols, this reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method. The diameter of the gold clusters was 9 Å with a stability of about 85 days. SEM, TEM, EDAX and electron diffraction was the techniques used for the characterization of the reactions.

  7. Novel hybrid materials based on the vanadium oxide nanobelts

    NASA Astrophysics Data System (ADS)

    Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.

    2016-04-01

    Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  8. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-05-01

    The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V2O5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V2O5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V2O5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/VxOx composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V2O5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing aid, such as the two cysteine-constrained peptides on the phage surface, and has potential for use in nanotechnology applications.

  9. Oxidation State Discrimination in the Atomic Layer Deposition of Vanadium Oxides

    DOE PAGES

    Weimer, Matthew S.; Kim, In Soo; Guo, Peijun; ...

    2017-06-02

    We describe the use of a vanadium 3+ precursor for atomic layer deposition (ALD) of thin films that span the common oxidation states of vanadium oxides. Self-limiting surface synthesis of V 2O 3, VO 2, and V 2O 5 are realized via four distinct reaction mechanisms accessed via judicious choice of oxygen ALD partners. In situ quartz crystal microbalance and quadrupole mass spectrometry were used to study the reaction mechanism of the vanadium precursor with O 3, H 2O 2, H 2O/O 2, and H 2O 2/H 2. A clear distinction between non-oxidative protic ligand exchange and metal oxidation ismore » demonstrated through sequential surface reactions with different non-metal precursors. This synergistic effect, provides greater control of the resultant metal species in the film, as well as reactive surface species during growth. In an extension of this approach, we introduce oxidation state control through reducing equivalents of H 2 gas. When H 2 is dosed after H 2O 2 during growth, amorphous films of VO 2 are deposited that are readily crystallized with a low temperature anneal. These VO 2 films show a temperature dependent Raman spectroscopy response in the expected range and consistent with the well-known phase-change behavior of VO 2.« less

  10. Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavayen, V.; O'Dwyer, C.; Cardenas, G.

    2007-04-12

    Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of {approx}0.9nm and a stability of {approx}85 days. V{sub 2}O{sub 5} nanotubes (VOx-NTs) with lengths of {approx}2{mu}m and internal hollow diameters of 20-100nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of {approx}4x10{sup -3}mol dm{sup -3}. The interchangemore » reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane.« less

  11. SELECTIVE OXIDATION OF ALCOHOLS OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various alcohols is studied in liquid phase under nitrogen atmosphere over vanadium phosphorus oxide catalyst in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method are found to be suitable for the selective oxidation of a variet...

  12. Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability.

    PubMed

    Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat

    2017-04-01

    Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rate Dependency of Silver Vanadium Phosphorous Oxide Reduction

    NASA Astrophysics Data System (ADS)

    Cheng, Po-Jen

    2011-12-01

    The silver vanadium phosphorus oxide (Ag2VO2PO 4) is a high-capacity and good-compatibility material for the cathode in the battery. Due to their innovative properties, they are used as cathode in lithium batteries. Therefore, when the lithium batteries begin to discharge, the anodes of the cell perform an electrochemical oxidation and release electrons. In the mean time, the cathodes in the cells perform the electrochemical reduction and catch the electrons. For reduction of Ag2VO2PO 4, two silver ions (Ag+) catch two electrons to form silver particles, and the vanadium ions (V5+) catch two electrons to form V3+. It means that four electrons will be released by lithium anode. We call this four electrons discharge as 100% discharge. In my most of the projects, the Ag2VO2PO4 material is tested by differential scanning calorimetry (DSC) to check purity. My study is based on the discharge of batteries, and I focus on the morphology and the intensity of silver particles on the cathode after discharge. Depending on different adjustment of factors, such as discharge time, discharge rate, storage time, storage temperature, I try to investigate the silver intensity, conductivity as a function of DOD (Depth of Discharge). The silver particles could be examined by optical microscope, and scanning electron microscope (SEM). Moreover, I do some x-ray diffraction analysis to quantify the silver particles after discharge. Also, I perform magnetic susceptibility measurement to check the mechanism of the reduction of vanadium ions. Under the research on silver ions and vanadium ions, I will know a big frame of reduction process on silver vanadium phosphorous oxide and the time effect on this cathode material.

  14. DNA damage induction in human cells exposed to vanadium oxides in vitro.

    PubMed

    Rodríguez-Mercado, Juan J; Mateos-Nava, Rodrigo A; Altamirano-Lozano, Mario A

    2011-12-01

    Vanadium and vanadium salts cause genotoxicity and elicit variable biological effects depending on several factors. In the present study, we analyzed and compared the DNA damage and repair processes induced by vanadium in three oxidation states. We used human blood leukocytes in vitro and in a single cell gel electrophoresis assay at two pH values. We observed that vanadium(III) trioxide and vanadium(V) pentoxide produced DNA single-strand breaks at all of the concentrations (1, 2, 4, or 8 μg/ml) and treatment times (2, 4, or 6 h) tested. Vanadium(IV) tetraoxide treatment significantly increased DNA damage at all concentrations for 4 or 6 h of treatment but not for 2 h of treatment. The DNA repair kinetics indicated that most of the cells exposed to vanadium III and V for 4 h recovered within the repair incubation time of 90 min; however, those exposed to vanadium(IV) repaired their DNA within 120 min. The data at pH 9 indicated that vanadium(IV) tetraoxide induced DNA double-strand breaks. Our results show that the genotoxic effect of vanadium can be produced by any of its three oxidation states. However, vanadium(IV) induces double-strand breaks, and it is known that these lesions are linked with forming structural chromosomal aberrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  16. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.

  17. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    NASA Astrophysics Data System (ADS)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  18. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  19. Reduction of Vanadium Oxide (VOx) under High Vacuum Conditions as Investigated by X-Ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chourasia, A.

    2015-03-01

    Vanadium oxide thin films were formed by depositing thin films of vanadium on quartz substrates and oxidizing them in an atmosphere of oxygen. The deposition was done by the e-beam technique. The oxide films were annealed at different temperatures for different times under high vacuum conditions. The technique of x-ray photoelectron spectroscopy has been employed to study the changes in the oxidation states of vanadium and oxygen in such films. The spectral features in the vanadium 2p, oxygen 1s, and the x-ray excited Auger regions were investigated. The Auger parameter has been utilized to study the changes. The complete oxidation of elemental vanadium to V2O5 was observed to occur at 700°C. At any other temperature, a mixture of oxides consisting of V2O5 and VO2 was observed in the films. Annealing of the films resulted in the gradual loss of oxygen followed by reduction in the oxidation state from +5 to 0. The reduction was observed to depend upon the annealing temperature and the annealing time. Organized Research, TAMU-Commerce.

  20. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  1. Pro-Oxidant Biological Effects of Inorganic Component of Petroleum: Vanadium and Oxidative Stress

    DTIC Science & Technology

    1996-08-01

    independent existence. Pro-Oxidant Chemicals and Free Radicals Involved in Oxidative Stress Pro-Oxidant Chemicals Chemical and Metabolic Generation... metabolic reactions may generate primary free radicals (Fig. 1). Then, in an avalanche-type process, secondary free radicals and reactive oxygen species...vanadium absorption, distribution, metabolism , and disposition, and no pharmacokinetic model is available describing comparative kinetics and toxicity

  2. Fabrication of photocatalytically active vanadium oxide nanostructures via plasma route

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yoshida, Tomoko; Ohno, Noriyasu; Ichino, Yusuke; Yoshida, Naoaki

    2018-05-01

    Plasma irradiation was used to create nanostructured vanadium oxide with potential commercial and industrial applications. Morphology changes were induced at the nano- and micro-meter scale, accompanied by the growth of helium nanobubbles. Micrometer-sized pillars, cube-shaped nanostructures, and fuzzy fiberform nanostructures were grown on the surface; the necessary conditions in terms of the incident ion energy and the surface temperature for those morphology changes were revealed. Hydrogen production experiments using a photocatalytic reaction with aqueous methanol solution were conducted on the fabricated samples. Enhanced H2 production was confirmed with the plasma irradiated nanostructured sample that had been oxidized in air atmosphere. Photocatalytically inactive vanadium oxide exhibited a high photocatalytic activity after nanostructurization of the surface by helium plasma irradiation.

  3. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    PubMed

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.

  4. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage.

    PubMed

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; Neuefeind, Joerg; Xu, Wenqian; Teng, Xiaowei

    2017-05-23

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because the large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate of 5 mV s -1 , corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full cells after 5,000 cycles at 10 C). The promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.

  5. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    DOE PAGES

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; ...

    2017-05-23

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate ofmore » 5 mV s -1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full-cells after 5,000 cycles at 10 C). Finally, the promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.« less

  6. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate ofmore » 5 mV s -1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full-cells after 5,000 cycles at 10 C). Finally, the promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.« less

  7. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  8. Carbon nanotube mechanics in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Strus, Mark Christopher

    Carbon nanotubes (CNTs) possess unique electrical, thermal, and mechanical properties which have led to the development of novel nanomechanical materials and devices. In this thesis, the mechanical properties of carbon nanotubes are studied with an Atomic Force Microscope (AFM) and, conversely, the use of CNTs to enhance conventional AFM probes is also investigated. First, the performance of AFM probes with multiwalled CNT tips are evaluated during attractive regime AFM imaging of high aspect ratio structures. The presented experimental results show two distinct imaging artifacts, the divot and large ringing artifacts, which are inherent to such CNT AFM probes. Through the adjustment of operating parameters, the connection of these artifacts to CNT bending, adhesion, and stiction is described qualitatively and explained. Next, the adhesion and peeling of CNTs on different substrates is quantitatively investigated with theoretical models and a new AFM mode for nanomechanical peeling. The theoretical model uncovers the rich physics of peeling of CNTs from surfaces, including sudden transitions between different geometric configurations of the nanotube with vastly different interfacial energies. The experimental peeling of CNTs is shown to be capable of resolving differences in CNT peeling energies at attoJoule levels on different materials. AFM peeling force spectroscopy is further studied on a variety of materials, including several polymers, to demonstrate the capability of direct measurement of interfacial energy between an individual nanotube or nanofiber and a given material surface. Theoretical investigations demonstrate that interfacial and flexural energies can be decoupled so that the work of the applied peeling force can be used to estimate the CNT-substrate interfacial fracture energy and nanotube's flexural stiffness. Hundreds of peeling force experiments on graphite, epoxy, and polyimide demonstrate that the peeling force spectroscopy offers a convenient

  9. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  10. Deposition and characterization of vanadium oxide based thin films for MOS device applications

    NASA Astrophysics Data System (ADS)

    Rakshit, Abhishek; Biswas, Debaleen; Chakraborty, Supratic

    2018-04-01

    Vanadium Oxide films are deposited on Si (100) substrate by reactive RF-sputtering of a pure Vanadium metallic target in an Argon-Oxygen plasma environment. The ratio of partial pressures of Argon to Oxygen in the sputtering-chamber is varied by controlling their respective flow rates and the resultant oxide films are obtained. MOS Capacitor based devices are then fabricated using the deposited oxide films. High frequency Capacitance-Voltage (C-V) and gate current-gate voltage (I-V) measurements reveal a significant dependence of electrical characteristics of the deposited films on their sputtering deposition parameters mainly, the relative content of Argon/Oxygen in the plasma chamber. A noteworthy change in the electrical properties is observed for the films deposited under higher relative oxygen content in the plasma atmosphere. Our results show that reactive sputtering serves as an indispensable deposition-setup for fabricating vanadium oxide based MOS devices tailor-made for Non-Volatile Memory (NVM) applications.

  11. Vanadium

    USGS Publications Warehouse

    Kelley, Karen D.; Scott, Clinton T.; Polyak, Désirée E.; Kimball, Bryn E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    sands, and oil shales may be important future sources.Vanadium occurs in one of four oxidation states in nature: +2, +3, +4, and +5. The V3+ ion has an octahedral radius that is almost identical to that of (Fe3+) and (Al3+) and, therefore, it substitutes in ferromagnesian minerals. During weathering, much of the vanadium may partition into newly formed clay minerals, and it either remains in the +3 valence state or oxidizes to the +4 valence state, both of which are relatively insoluble. If erosion is insignificant but chemical leaching is intense, the residual material may be enriched in vanadium, as are some bauxites and laterites. During the weathering of igneous, residual, or sedimentary rocks, some vanadium oxidizes to the +5 valence state, especially in the intensive oxidizing conditions that are characteristic of arid climates.The average contents of vanadium in the environment are as follows: soils [10 to 500 parts per million (ppm)]; streams and rivers [0.2 to 2.9 parts per billion (ppb)]; and coastal seawater (0.3 to 2.8 ppb). Concentrations of vanadium in soils (548 to 7,160 ppm) collected near vanadium mines in China, the Czech Republic, and South Africa are many times greater than natural concentrations in soils. Additionally, if deposits contain sulfide minerals such as chalcocite, pyrite, and sphalerite, high levels of acidity may be present if sulfide dissolution is not balanced by the presence of acid-neutralizing carbonate minerals. Some of the vanadium-bearing deposit types, particularly some SSV and black-shale deposits, contain appreciable amounts of carbonate minerals, which lowers the acid-generation potential.Vanadium is a micronutrient with a postulated requirement for humans of less than 10 micrograms per day, which can be met through dietary intake. Primary and secondary drinking water regulations for vanadium are not currently in place in the United States. Vanadium toxicity is thought to result from an intake of more than 10 to 20 milligrams

  12. A Kinetics and Equilibrium Study of Vanadium Dissolution from Vanadium Oxides and Phosphates in Battery Electrolytes: Possible Impacts on ICD Battery Performance.

    PubMed

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2013-06-01

    Silver vanadium oxide (Ag 2 V 4 O 11 , SVO) has enjoyed widespread commercial success over the past 30 years as a cathode material for implantable cardiac defibrillator (ICD) batteries. Recently, silver vanadium phosphorous oxide (Ag 2 VO 2 PO 4 , SVPO) has been studied as possibly combining the desirable thermal stability aspects of LiFePO 4 with the electrical conductivity of SVO. Further, due to the noted insoluble nature of most phosphate salts, a lower material solubility of SVPO relative to SVO is anticipated. Thus, the first vanadium dissolution studies of SVPO in battery electrolyte solutions are described herein. The equilibrium solubility of SVPO was ~5 times less than SVO, with a rate constant of dissolution ~3.5 times less than that of SVO. The vanadium dissolution in SVO and SVPO can be adequately described with a diffusion layer model, as supported by the Noyes-Whitney equation. Cells prepared with vanadium-treated anodes displayed higher AC impedance and DC resistance relative to control anodes. These data support the premise that SVPO cells are likely to exhibit reduced cathode solubility and thus less affected by increased cell resistance due to cathode solubility compared to SVO based cells.

  13. Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field 51 V Magic-Angle Spinning NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaegers, Nicholas R.; Wan, Chuan; Hu, Mary Y.

    Supported V2O5/SiO2 catalysts were studied using solid state 51V MAS NMR at a sample spinning rate of 36 kHz and at a magnetic field of 19.975 T for a better understanding of the coordination of the vanadium oxide as a function of environmental conditions . Structural transformations of the supported vanadium oxide species between the catalyst in the dehydrated state and hydrated state under an ambient environment were revisited to examine the degree of oligomerization and the effect of water. The experimental results indicate the existence of a single dehydrated surface vanadium oxide species that resonates at -675 ppm andmore » two vanadium oxide species under ambient conditions that resonate at -566 and -610 ppm, respectively. No detectable structural difference was found as a function of vanadium oxide loading on SiO2 (3% V2O5/SiO2 and 8% V2O5/SiO2). Quantum chemistry simulations of the 51V NMR chemical shifts on predicted surface structures were used as an aide in understanding potential surface vanadium oxide species on the silica support. The results suggest the formation of isolated surface VO4 units for the dehydrated catalysts with the possibility of dimer and cyclic trimer presence. The absence of bridging V-O-V vibrations (~200-300 cm-1) in the Raman spectra [Gao et al. J. Phys. Chem. B 1998, 102, 10842-10852], however, indicates that the isolated surface VO4 sites are the dominant dehydrated surface vanadia species on silica. Upon exposure to water, hydrolysis of the bridging V-O-Si bonds is most likely responsible for the decreased electron shielding experienced by vanadium. No indicators for the presence of hydrated decavanadate clusters or hydrated vanadia gels previously proposed in the literature were detected in this study.« less

  14. Transparent conducting oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  15. Combining Portable Raman Probes with Nanotubes for Theranostic Applications

    PubMed Central

    Bhirde, Ashwinkumar A.; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A.; Leapman, Richard D.; Gutkind, J. Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  16. Combining portable Raman probes with nanotubes for theranostic applications.

    PubMed

    Bhirde, Ashwinkumar A; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A; Leapman, Richard D; Gutkind, J Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  17. Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery.

    PubMed

    Kim, Byung Guk; Han, Tae Hee; Cho, Chang Gi

    2014-12-01

    Nafion is the most frequently used as the membrane material due to its good proton conductivity, and excellent chemical and mechanical stabilities. But it is known to have poor barrier property due to its well-developed water channels. In order to overcome this drawback, graphene oxide (GO) derivatives were introduced for Nafion composite membranes. Sulfonated graphene oxide (sGO) was prepared from GO. Both sGO and GO were treated each with phenyl isocyanate and transformed into corresponding isGO and iGO in order to promote miscibility with Nafion. Then composite membranes were obtained, and the adaptability as a membrane for vanadium redox flow battery (VRFB) was investigated in terms of proton conductivity and vanadium permeability. Compared to a pristine Nafion, proton conductivities of both isGO/Nafion and iGO/Nafion membranes showed less temperature sensitivity. Both membranes also showed quite lower vanadium permeability at room temperature. Selectivity of the membrane was the highest for isGO/Nafion and the lowest for the pristine Nafion.

  18. Reversible phase transition in vanadium oxide films sputtered on metal substrates

    NASA Astrophysics Data System (ADS)

    Palai, Debajyoti; Carmel Mary Esther, A.; Porwal, Deeksha; Pradeepkumar, Maurya Sandeep; Raghavendra Kumar, D.; Bera, Parthasarathi; Sridhara, N.; Dey, Arjun

    2016-11-01

    Vanadium oxide films, deposited on aluminium (Al), titanium (Ti) and tantalum (Ta) metal substrates by pulsed RF magnetron sputtering at a working pressure of 1.5 x10-2 mbar at room temperature are found to display mixed crystalline vanadium oxide phases viz., VO2, V2O3, V2O5. The films have been characterized by field-emission scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy, and their thermo-optical and electrical properties have been investigated. Studies of the deposited films by DSC have revealed a reversible-phase transition found in the temperature range of 45-49 °C.

  19. Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium-Pentoxide-Decorated Multiwalled Carbon Nanotubes.

    PubMed

    Lee, Juhan; Srimuk, Pattarachai; Aristizabal, Katherine; Kim, Choonsoo; Choudhury, Soumyadip; Nah, Yoon-Chae; Mücklich, Frank; Presser, Volker

    2017-09-22

    A hybrid membrane pseudocapacitive deionization (MPDI) system consisting of a hydrated vanadium pentoxide (hV 2 O 5 )-decorated multi-walled carbon nanotube (MWCNT) electrode and one activated carbon electrode enables sodium ions to be removed by pseudocapacitive intercalation with the MWCNT-hV 2 O 5 electrode and chloride ion to be removed by non-faradaic electrosorption of the porous carbon electrode. The MWCNT-hV 2 O 5 electrode was synthesized by electrochemical deposition of hydrated vanadium pentoxide on the MWCNT paper. The stable electrochemical operating window for the MWCNT-hV 2 O 5 electrode was between -0.5 V and +0.4 V versus Ag/AgCl, which provided a specific capacity of 44 mAh g -1 (corresponding with 244 F g -1 ) in aqueous 1 m NaCl. The desalination performance of the MPDI system was investigated in aqueous 200 mm NaCl (brackish water) and 600 mm NaCl (seawater) solutions. With the aid of an anion and a cation exchange membrane, the MPDI hybrid cell was operated from -0.4 to +0.8 V cell voltage without crossing the reduction and oxidation potential limit of both electrodes. For the 600 mm NaCl solution, the NaCl salt adsorption capacity of the cell was 23.6±2.2 mg g -1 , which is equivalent to 35.7±3.3 mg g -1 normalized to the mass of the MWCNT-hV 2 O 5 electrode. Additionally, we propose a normalization method for the electrode material with faradaic reactions based on sodium uptake capacities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phase Stability and Transformations in Vanadium Oxide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Bergerud, Amy Jo

    Vanadium oxides are both fascinating and complex, due in part to the many compounds and phases that can be stabilized as well as the phase transformations which occur between them. The metal to insulator transitions (MITs) that take place in vanadium oxides are particularly interesting for both fundamental and applied study as they can be induced by a variety of stimuli ( i.e., temperature, pressure, doping) and utilized in many applications (i.e., smart windows, sensors, phase change memory). Nanocrystals also tend to demonstrate interesting phase behavior, due in part to the enhanced influence of surface energy on material thermodynamics. Vanadium oxide nanocrystals are thus expected to demonstrate very interesting properties in regard to phase stability and phase transformations, although synthesizing vanadium oxides in nanocrystal form remains a challenge. Vanadium sesquioxide (V2O3) is an example of a material that undergoes a MIT. For decades, the low temperature monoclinic phase and high temperature corundum phase were the only known crystal structures of V2O3. However, in 2011, a new metastable polymorph of V2O3 was reported with a cubic, bixbyite crystal structure. In Chapter 2, a colloidal route to bixbyite V2O 3 nanocrystals is presented. In addition to being one of the first reported observations of the bixbyite phase in V2O3, it is also one of the first successful colloidal syntheses of any of the vanadium oxides. The nanocrystals possess a flower-like morphology, the size and shape of which are dependent on synthesis time and temperature, respectively. An aminolysis reaction mechanism is determined from Fourier transform infrared spectroscopy data and the bixbyite crystal structure is confirmed by Rietveld refinement of X-ray diffraction (XRD) data. Phase stability is assessed in both air and inert environments, confirming the metastable nature of the material. Upon heating in an inert atmosphere above 700°C, the nanocrystals irreversibly transform

  1. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  2. Electrical and Infrared Optical Properties of Vanadium Oxide Semiconducting Thin-Film Thermometers

    NASA Astrophysics Data System (ADS)

    Zia, Muhammad Fakhar; Abdel-Rahman, Mohamed; Alduraibi, Mohammad; Ilahi, Bouraoui; Awad, Ehab; Majzoub, Sohaib

    2017-10-01

    A synthesis method has been developed for preparation of vanadium oxide thermometer thin film for microbolometer application. The structure presented is a 95-nm thin film prepared by sputter-depositing nine alternating multilayer thin films of vanadium pentoxide (V2O5) with thickness of 15 nm and vanadium with thickness of 5 nm followed by postdeposition annealing at 300°C in nitrogen (N2) and oxygen (O2) atmospheres. The resulting vanadium oxide (V x O y ) thermometer thin films exhibited temperature coefficient of resistance (TCR) of -3.55%/°C with room-temperature resistivity of 2.68 Ω cm for structures annealed in N2 atmosphere, and TCR of -3.06%/°C with room-temperature resistivity of 0.84 Ω cm for structures annealed in O2 atmosphere. Furthermore, optical measurements of N2- and O2-annealed samples were performed by Fourier-transform infrared ellipsometry to determine their dispersion curves, refractive index ( n), and extinction coefficient ( k) at wavelength from 7000 nm to 14,000 nm. The results indicate the possibility of applying the developed materials in thermometers for microbolometers.

  3. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-min; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao

    2018-02-01

    An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.

  4. Iron oxide nanotubes synthesized via template-based electrodeposition

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  5. Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Chen, Mao; Guo, Yufeng; Jiang, Tao; Zhao, Baojun

    2018-04-01

    Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.

  6. Formation, structure and bond dissociation thresholds of gas-phase vanadium oxide cluster ions

    NASA Astrophysics Data System (ADS)

    Bell, R. C.; Zemski, K. A.; Justes, D. R.; Castleman, A. W.

    2001-01-01

    The formation and structure of gas-phase vanadium oxide cluster anions are examined using a guided ion beam mass spectrometer coupled with a laser vaporization source. The dominant peaks in the anion total mass distribution correspond to clusters having stoichiometries of the form (VO2)n(VO3)m(O2)q-. Collision-induced dissociation studies of the vanadium oxide species V2O4-6-, V3O6-9-, V4O8-10-, V5O11-13-, V6O13-15-, and V7O16-18- indicate that VO2, VO3, and V2O5 units are the main building blocks of these clusters. There are many similarities between the anion mass distribution and that of the cation distribution studied previously. The principal difference is a shift to higher oxygen content by one additional oxygen atom for the stoichiometric anions (VxOy-) as compared to the cations with the same number of vanadium atoms, which is attributed to the extra pair of electrons of the anionic species. The oxygen-rich clusters, VxOy(O2)-, are shown to more tightly adsorb molecular oxygen than those of the corresponding cationic clusters. In addition, the bond dissociation thresholds for the vanadium oxide clusters ΔE(V+-O)=6.09±0.28 eV, ΔE(OV+-O)=3.51±0.36 eV, and ΔE(O2V--O)=5.43±0.31 eV are determined from the energy-dependent collision-induced dissociation cross sections with Xe as the collision partner. To the best of our knowledge, this is the first bond dissociation energy reported for the breaking of the V-O bond of a vanadium oxide anion.

  7. Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Khorrami, Gh. H.; Kompany, A.; Yazdi, Sh. Tabatabai

    2017-12-01

    In this study, F-doped vanadium oxide thin films with doping levels up to 60 at % were prepared by spray pyrolysis method on glass substrates. To measure the electrochemical properties, some films were deposited on fluorine-tin oxide coated glass substrates. The effect of F-doping on the structural, electrical, optical and electrochemical properties of vanadium oxide samples was investigated. The X-ray diffractographs analysis has shown that all the samples grow in tetragonal β-V2O5 phase structure with the preferred orientation of [200]. The intensity of (200) peak belonging to β-V2O5 phase was strongest in the undoped vanadium oxide film. The scanning electron microscopy images show that the samples have nanorod- and nanobelt-shaped structure. The size of the nanobelts in the F-doped vanadium oxide films is smaller than that in the pure sample and the width of the nanobelts increases from 30 to 70 nm with F concentration. With increasing F-doping level from 10 to 60 at %, the resistivity, the transparency and the optical band gap decrease from 111 to 20 Ω cm, 70 to 50% and 2.4 to 2.36 eV, respectively. The cyclic voltammogram (CV) results show that the undoped sample has the most extensive CV and by increasing F-doping level from 20 to 60 at %, the area of the CV is expanded. The anodic and cathodic peaks in F-doped samples are stronger.

  8. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  9. Redox properties of vanadium ions in SBA-15-supported vanadium oxide: an FTIR spectroscopic study.

    PubMed

    Venkov, Tzvetomir V; Hess, Christian; Jentoft, Friederike C

    2007-02-13

    The state of vanadium ions in VxOy/SBA-15 (2.7 wt % V) was studied with FTIR spectroscopy using CO and NO as probe molecules. Neither CO (at 85 K) nor NO (at RT) adsorb on the oxidized sample because of the coordinative saturation of V5+ ions and the covalent character of the V5+=O bond. After treatment of the sample in 50 kPa H2 at 673 K, the V5+ ions are reduced to two different types of V3+ sites, as manifested by carbonyl bands at 2189 and 2177 cm-1. In the presence of O2 at 85 K, thus formed V3+ ions are partly oxidized to V4+ sites showing carbonylic bands at 2202 and 2190 cm-1. When the reduced sample is exposed to O2 at room temperature, the V3+ ions are fully oxidized to V5+. The adsorption of NO on the reduced VxOy/SBA-15 shows that the V3+ and V4+ ions possess two effective coordinative vacancies and as a result can adsorb two NO molecules forming the respective V3+(NO)2 and V4+(NO)2 dinitrosyls. The introduction of O2 to the VxOy/SBA-15-NO system leads to reoxidation of the V3+ and V4+ ions to V5+ and formation of bridged (1639 cm-1) and bidentate (1573 cm-1) surface nitrates. After coadsorption of CO and NO on the reduced sample the formation of surface mixed carbonyl-nitrosyls (2108 and 1723 cm-1) was observed for the first time.

  10. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    PubMed

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  11. Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science to Semiconductors

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)

    2001-01-01

    In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.

  12. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    PubMed Central

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-01-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks. PMID:27388704

  13. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    NASA Astrophysics Data System (ADS)

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-07-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks.

  14. Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature

    NASA Astrophysics Data System (ADS)

    de Castro, Marcelo S. B.; Ferreira, Carlos L.; de Avillez, Roberto R.

    2013-09-01

    Vanadium oxide thin films were grown by RF magnetron sputtering from a V2O5 target at room temperature, an alternative route of production of vanadium oxide thin films for infrared detector applications. The films were deposited on glass substrates, in an argon-oxygen atmosphere with an oxygen partial pressure from nominal 0% to 20% of the total pressure. X-ray diffraction (XRD) and X-ray photon spectroscopy (XPS) analyses showed that the films were a mixture of several vanadium oxides (V2O5, VO2, V5O9 and V2O3), which resulted in different colors, from yellow to black, depending on composition. The electrical resistivity varied from 1 mΩ cm to more than 500 Ω cm and the thermal coefficient of resistance (TCR), varied from -0.02 to -2.51% K-1. Computational thermodynamics was used to simulate the phase diagram of the vanadium-oxygen system. Even if plasma processes are far from equilibrium, this diagram provides the range of oxygen pressures that lead to the growth of different vanadium oxide phases. These conditions were used in the present work.

  15. Structure-property relationships in NOx sensor materials composed of arrays of vanadium oxide nanoclusters

    NASA Astrophysics Data System (ADS)

    Putrevu, Naga Ravikanth; Darling, Seth B.; Segre, Carlo U.; Ganegoda, Hasitha; Khan, M. Ishaque

    2017-12-01

    The mixed-valent vanadium oxide based three-dimensional framework structure species [Cd3(H2O)12V16IVV2VO36(OH)6 (AO4)]·24H2O, (A = V,S) (Cd3(VO)o) represents a rare example of an interesting sensor material which exhibits NOx {NO + NO2} semiconducting gas sensor properties under ambient conditions. The electrical resistance of the sensor material Cd3(VO)o decreases in air. Combined characterization studies revealed that the building block, {V18O42(AO4)} cluster, of 3-D framework undergoes oxidation and remains intact for at least 2 months. The decrease in resistance is attributable to the reactivity of molecular oxygen towards vanadium which results in an increase in the oxidation state as well as the coordination number of vanadium center and decrease in band gap of Cd3(VO)o. Based on these results we propose that the changes in semiconducting properties of Cd3(VO)o under ambient conditions are due to the greater overlap between the O 2p and V 3d orbitals occurring during the oxidation.

  16. Vanadium distribution in rats and DNA cleavage by vanadyl complex: implication for vanadium toxicity and biological effects.

    PubMed Central

    Sakurai, H

    1994-01-01

    Vanadium ion is toxic to animals. However, vanadium is also an agent used for chemoprotection against cancers in animals. To understand both the toxic and beneficial effects we studied vanadium distribution in rats. Accumulation of vanadium in the liver nuclei of rats given low doses of compounds in the +4 or +5 oxidation state was greater than in the liver nuclei of rats given high doses of vanadium compounds or the vanadate (+5 oxidation state) compound. Vanadium was incorporated exclusively in the vanadyl (+4 oxidation state) form. We also investigated the reactions of vanadyl ion and found that incubation of DNA with vanadyl ion and hydrogen peroxide (H2O2) led to intense DNA cleavage. ESR spin trapping demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion and H2O2. Thus, we propose that the mechanism for vanadium-dependent toxicity and antineoplastic action is due to DNA cleavage by hydroxyl radicals generated in living systems. PMID:7843133

  17. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement.

    PubMed

    Espinosa, Nieves; Dam, Henrik Friis; Tanenbaum, David M; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-11

    The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V₂O₅·(H₂O) n /Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker.

  18. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    PubMed

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  19. Growth, Structure, and Photocatalytic Properties of Hierarchical V₂O₅-TiO₂ Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti-V Alloys.

    PubMed

    Nevárez-Martínez, María C; Mazierski, Paweł; Kobylański, Marek P; Szczepańska, Grażyna; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana

    2017-04-05

    V₂O₅-TiO₂ mixed oxide nanotube (NT) layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM), UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (DRX), and micro-Raman spectroscopy. The effect of the applied voltage (30-50 V), vanadium content (5-15 wt %) in the alloy, and water content (2-10 vol %) in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt %) exhibited the best auto-alignment and self-organization (length = 1 μm, diameter = 86 nm and wall thickness = 11 nm). Additionally, a probable growth mechanism of V₂O₅-TiO₂ nanotubes (NTs) over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λ max = 465 nm) in the presence of the modified TiO₂ nanostructures. The highest degradation value was 35% after 60 min of irradiation. V₂O₅ species were ascribed as the main structures responsible for the generation of photoactive e - and h⁺ under Vis light and a possible excitation mechanism was proposed.

  20. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes.

    PubMed

    Sun, Xiang; Zhou, Changgong; Xie, Ming; Hu, Tao; Sun, Hongtao; Xin, Guoqing; Wang, Gongkai; George, Steven M; Lian, Jie

    2014-09-21

    Uniform amorphous vanadium oxide films were coated on graphene via atomic layer deposition and the nano-composite displays an exceptional capacity of ~900 mA h g(-1) at 200 mAg(-1) with an excellent capacity retention at 1 A g(-1) after 200 cycles. The capacity contribution (1161 mA h g(-1)) from vanadium oxide only almost reaches its theoretical value.

  1. Thermally Stable Solution Processed Vanadium Oxide as a Hole Extraction Layer in Organic Solar Cells

    PubMed Central

    Alsulami, Abdullah; Griffin, Jonathan; Alqurashi, Rania; Yi, Hunan; Iraqi, Ahmed; Lidzey, David; Buckley, Alastair

    2016-01-01

    Low-temperature solution-processable vanadium oxide (V2Ox) thin films have been employed as hole extraction layers (HELs) in polymer bulk heterojunction solar cells. V2Ox films were fabricated in air by spin-coating vanadium(V) oxytriisopropoxide (s-V2Ox) at room temperature without the need for further thermal annealing. The deposited vanadium(V) oxytriisopropoxide film undergoes hydrolysis in air, converting to V2Ox with optical and electronic properties comparable to vacuum-deposited V2O5. When s-V2Ox thin films were annealed in air at temperatures of 100 °C and 200 °C, OPV devices showed similar results with good thermal stability and better light transparency. Annealing at 300 °C and 400 °C resulted in a power conversion efficiency (PCE) of 5% with a decrement approximately 15% lower than that of unannealed films; this is due to the relative decrease in the shunt resistance (Rsh) and an increase in the series resistance (Rs) related to changes in the oxidation state of vanadium. PMID:28773356

  2. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement

    PubMed Central

    Espinosa, Nieves; Dam, Henrik Friis; Tanenbaum, David M.; Andreasen, Jens W.; Jørgensen, Mikkel; Krebs, Frederik C.

    2011-01-01

    The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V2O5·(H2O)n/Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker. PMID:28879984

  3. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Lithium vanadium oxides (Li1+xV3O8) as cathode materials in lithium-ion batteries for soldier portable power systems

    NASA Astrophysics Data System (ADS)

    Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.

  5. Environmental Electrometry with Luminescent Carbon Nanotubes.

    PubMed

    Noé, Jonathan C; Nutz, Manuel; Reschauer, Jonathan; Morell, Nicolas; Tsioutsios, Ioannis; Reserbat-Plantey, Antoine; Watanabe, Kenji; Taniguchi, Takashi; Bachtold, Adrian; Högele, Alexander

    2018-06-25

    We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.

  6. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Nguyen, Tam D.; Whitehead, Adam; Scherer, Günther G.; Wai, Nyunt; Oo, Moe O.; Bhattarai, Arjun; Chandra, Ghimire P.; Xu, Zhichuan J.

    2016-12-01

    Despite many desirable properties, the vanadium redox flow battery is limited, in the maximum operation temperature that can be continuously endured, before precipitation begins in the positive electrolyte. Many additives have been proposed to improve the thermal stability of the charged positive electrolyte. However, we have found that the apparent stability, revealed in laboratory testing, is often simply an artifact of the test method and arises from the oxidation of the additive, with corresponding partial reduction of V(V) to V(IV). This does not improve the stability of the electrolyte in an operating system. Here, we examined the oxidation of some typical organic additives with carboxyl, alcohol, and multi-functional groups, in sulfuric acid solutions containing V(V). The UV-vis measurements and titration results showed that many compounds reduced the state-of-charge (SOC) of vanadium electrolyte, for example, by 27.8, 88.5, and 81.9% with the addition of 1%wt of EDTA disodium salt, pyrogallol, and ascorbic acid, respectively. The cell cycling also indicated the effect of organic additives on the cell performance, with significant reduction in the usable charge capacity. In addition, a standard screening method for thermally stable additives was introduced, to quickly screen suitable additives for the positive vanadium electrolyte.

  7. Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode.

    PubMed

    Mikhaylov, Alexey A; Medvedev, Alexander G; Grishanov, Dmitry A; Sladkevich, Sergey; Gun, Jenny; Prikhodchenko, Petr V; Xu, Zhichuan J; Nagasubramanian, Arun; Srinivasan, Madhavi; Lev, Ovadia

    2018-02-27

    Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (V 3 O 7 , VO 2 ) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The V 3 O 7 @GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g -1 at 3000 mA g -1 vs 300 mAh g -1 at 100 mA g -1 ) due to the nanomorphology of the vanadium oxide.

  8. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties.

    PubMed

    Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar

    2016-11-17

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V 2 O 5 , V 2 O 3 and VO 2 along with MoO 3 . Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10 -5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  9. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-11-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  10. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    PubMed Central

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-01-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21–475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45–50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10−5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films. PMID:27853234

  11. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    NASA Astrophysics Data System (ADS)

    Mazov, Ilya; Kuznetsov, Vladimir L.; Simonova, Irina A.; Stadnichenko, Andrey I.; Ishchenko, Arkady V.; Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B.

    2012-06-01

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ("mélange" solution) and mixture of sulfuric acid and hydrogen peroxide ("piranha" solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  12. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  13. Mineralogy and geochemistry of vanadium in the Colorado Plateau

    USGS Publications Warehouse

    Weeks, A.D.

    1961-01-01

    The chief domestic source of vanadium is uraniferous sandstone in the Colorado Plateau. Vanadium is 3-, 4-, or 5-valent in nature and, as oxides or combined with other elements, it forms more than 40 minerals in the Plateau ores. These ores have been studied with regard to the relative amounts of vanadium silicates and oxide-vanadates, uranium-vanadium ratios, the progressive oxidation of black low-valent ores to high-valent carnotite-type ores, and theories of origin. ?? 1961.

  14. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.

    PubMed

    Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael; Kausar, Nadeem; Mousa, Asem

    2016-07-07

    The electrolyte is one of the most important components of the vanadium redox flow battery and its properties will affect cell performance and behavior in addition to the overall battery cost. Vanadium exists in several oxidation states with significantly different half-cell potentials that can produce practical cell voltages. It is thus possible to use the same element in both half-cells and thereby eliminate problems of cross-contamination inherent in all other flow battery chemistries. Electrolyte properties vary with supporting electrolyte composition, state-of-charge, and temperature and this will impact on the characteristics, behavior, and performance of the vanadium battery in practical applications. This Review provides a broad overview of the physical properties and characteristics of the vanadium battery electrolyte under different conditions, together with a description of some of the processing methods that have been developed to produce vanadium electrolytes for vanadium redox flow battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    DTIC Science & Technology

    2015-04-24

    As a result, two major approaches have been taken to increase electrode- electrolyte interfacial area while minimizing lithium diffusion lengths...Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries Siu on Tung, Krista L. Hawthorne, Yi Ding, James Mainero, and Levi T. Thompson...Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries, cathode

  16. Carbon nanotubes as in vivo bacterial probes.

    PubMed

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-09-17

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  17. Carbon nanotubes as in vivo bacterial probes

    NASA Astrophysics Data System (ADS)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  18. Carbon Nanotubes as in vivo Bacterial Probes

    PubMed Central

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-01-01

    With the rise in antibiotic-resistant infections, noninvasive sensing of infectious diseases is increasingly important. Optical imaging, while safer and simpler, is less developed than other modalities like radioimaging; due to low availability of target-specific molecular probes. Here, we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F’-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4× enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08×, and higher signal amplification ~1.4×, compared to conventional dyes. We show the probe offers greater ~5.7× enhancement in imaging of S. aureus infective endocarditis. These biologically-functionalized, aqueous-dispersed, actively-targeted, modularly-tunable SWNT probes offer new avenues for exploration of deeply-buried infections. PMID:25230005

  19. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes.

    PubMed

    Niskanen, Jukka; Zhang, Issan; Xue, Yanming; Golberg, Dmitri; Maysinger, Dusica; Winnik, Françoise M

    2016-01-01

    To evaluate the response of cells to boron nitride nanotubes (BNNTs) carrying fluorescent probes or drugs in their inner channel by assessment of the cellular localization of the fluorescent cargo, evaluation of the in vitro release and biological activity of a drug (curcumin) loaded in BNNTs. Cells treated with curcumin-loaded BNNTs and stimulated with lipopolysaccharide were assessed for nitric oxide release and stimulation of IL-6 and TNF-α. The cellular trafficking of two cell-permeant dyes and a non-cell-permeant dye loaded within BNNTs was imaged. BNNTs loaded with up to 13 wt% fluorophores were internalized by cells and controlled release of curcumin triggered cellular pathways associated with the known anti-inflammatory effects of the drug. The overall findings indicate that BNNTs can function as nanocarriers of biologically relevant probes/drugs allowing one to examine/control their local intracellular localization and biochemical effects, leading the way to applications as intracellular nanosensors.

  20. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke

    2015-09-01

    Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.

  1. Probing Photosensitization by Functionalized Carbon Nanotubes.

    PubMed

    Chen, Chia-Ying; Zepp, Richard G

    2015-12-01

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that may damage organisms by biomembrane oxidation or mediate environmental transformations of CNTs. Photosensitization by derivatized carbon nanotubes from various synthetic methods, and thus with different intrinsic characteristics (e.g., diameter and electronic properties), has been investigated under environmentally relevant aquatic conditions. We used the CNT-sensitized photoisomerization of sorbic acid ((2E,4E)-hexa-2,4-dienoic acid) and singlet oxygen formation to quantify the triplet states ((3)CNT*) formed upon irradiation of selected single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The CNTs used in our studies were derivatized by carboxyl groups to facilitate their dispersion in water. Results indicate that high-defect-density (thus well-stabilized), small-diameter, and semiconducting-rich CNTs have higher-measured excited triplet state formation and therefore singlet oxygen ((1)O2) yield. Derivatized SWCNTs were significantly more photoreactive than derivatized MWCNTs. Moreover, addition of sodium chloride resulted in increased aggregation and small increases in (1)O2 production of CNTs. The most photoreactive CNTs exhibited comparable photoreactivity (in terms of (3)CNT* formation and (1)O2 yield) to reference natural organic matter (NOM) under sunlight irradiation with the same mass-based concentration. Selected reference NOM could therefore be useful in evaluating environmental photoreactivity or intended antibacterial applications of CNTs.

  2. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor

  3. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, Frederick; Carlson, O. Norman

    1986-09-09

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  4. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, F.; Carlson, O.N.

    1984-05-16

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  5. Reactions of sulfur dioxide with neutral vanadium oxide clusters in the gas phase. I. Density functional theory study.

    PubMed

    Jakubikova, Elena; Bernstein, Elliot R

    2007-12-27

    Thermodynamics of reactions of vanadium oxide clusters with SO2 are studied at the BPW91/LANL2DZ level of theory. BPW91/LANL2DZ is insufficient to properly describe relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute reliable enthalpy changes for reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Stable intermediate structures of VOy (y = 1 - 4) clusters with SO2 are also obtained at the BPW91/TZVP level of theory. Some possible mechanisms for SO3 formation and catalyst regeneration for condensed-phase systems are suggested. These results are in agreement with, and complement, gas-phase experimental studies of neutral vanadium oxide clusters.

  6. Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

    PubMed Central

    Klemm, Matthias; Horn, Siegfried; Woydt, Mathias

    2011-01-01

    Summary Magnéli-type vanadium oxides form the homologous series VnO2 n -1 and exhibit a temperature-induced, reversible metal–insulator first order phase transition (MIT). We studied the change of the adhesion force across the transition temperature between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that crossing the transition temperatures leads to a distinct change of the adhesion force. Low adhesion corresponds consistently to the metallic state. Accordingly, the ability to modify the electronic structure of the vanadium Magnéli phases while maintaining composition, stoichiometry and crystallographic integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired. PMID:21977416

  7. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-06-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  8. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Technical Reports Server (NTRS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  9. Hierarchical Branched Vanadium Oxide Nanorod@Si Nanowire Architecture for High Performance Supercapacitors.

    PubMed

    Li, Zhaodong; Wang, Fei; Wang, Xudong

    2017-01-01

    Vanadium oxide (VO x ) nanorods are uniformly synthesized on dense Si nanowire arrays. This 3D hierarchical nanoarchitecture offers a novel high-performance supercapacitor electrode design with significantly improved specific capacitance and high-rate capability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The role of vanadium in biology.

    PubMed

    Rehder, Dieter

    2015-05-01

    Vanadium is special in at least two respects: on the one hand, the tetrahedral anion vanadate(v) is similar to the phosphate anion; vanadate can thus interact with various physiological substrates that are otherwise functionalized by phosphate. On the other hand, the transition metal vanadium can easily expand its sphere beyond tetrahedral coordination, and switch between the oxidation states +v, +iv and +iii in a physiological environment. The similarity between vanadate and phosphate may account for the antidiabetic potential of vanadium compounds with carrier ligands such as maltolate and picolinate, and also for vanadium's mediation in cardiovascular and neuronal defects. Other potential medicinal applications of more complex vanadium coordination compounds, for example in the treatment of parasitic tropical diseases, may also be rooted in the specific properties of the ligand sphere. The ease of the change in the oxidation state of vanadium is employed by prokarya (bacteria and cyanobacteria) as well as by eukarya (algae and fungi) in respiratory and enzymatic functions. Macroalgae (seaweeds), fungi, lichens and Streptomyces bacteria have available haloperoxidases, and hence enzymes that enable the 2-electron oxidation of halide X(-) with peroxide, catalyzed by a Lewis-acidic V(V) center. The X(+) species thus formed can be employed to oxidatively halogenate organic substrates, a fact with implications also for the chemical processes in the atmosphere. Vanadium-dependent nitrogenases in bacteria (Azotobacter) and cyanobacteria (Anabaena) convert N2 + H(+) to NH4(+) + H2, but are also receptive for alternative substrates such as CO and C2H2. Among the enigmas to be solved with respect to the utilization of vanadium in nature is the accumulation of V(III) by some sea squirts and fan worms, as well as the purport of the nonoxido V(IV) compound amavadin in the fly agaric.

  11. Carbon nanotube scanning probe for imaging in aqueous environment

    NASA Technical Reports Server (NTRS)

    Stevens, Ramsey M.; Nguyen, Cattien V.; Meyyappan, M.

    2004-01-01

    Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.

  12. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  13. Can Supported Reduced Vanadium Oxides form H2 from CH3OH? A Computational Gas-Phase Mechanistic Study.

    PubMed

    González-Navarrete, Patricio; Andrés, Juan; Calatayud, Monica

    2018-02-01

    A detailed density functional theory study is presented to clarify the mechanistic aspects of the methanol (CH 3 OH) dehydrogenation process to yield hydrogen (H 2 ) and formaldehyde (CH 2 O). A gas-phase vanadium oxide cluster is used as a model system to represent reduced V(III) oxides supported on TiO 2 catalyst. The theoretical results provide a complete scenario, involving several reaction pathways in which different methanol adsorption sites are considered, with presence of hydride and methoxide intermediates. Methanol dissociative adsorption process is both kinetically and thermodynamically feasible on V-O-Ti and V═O sites, and it might lead to form hydride species with interesting catalytic reactivity. The formation of H 2 and CH 2 O on reduced vanadium sites, V(III), is found to be more favorable than for oxidized vanadium species, V(V), taking place along energy barriers of 29.9 and 41.0 kcal/mol, respectively.

  14. Attachment of Single Multiwall WS2 Nanotubes and Single WO3-x Nanowhiskers to a Probe

    NASA Astrophysics Data System (ADS)

    Ashiri, I.; Gartsman, K.; Cohen, S. R.; Tenne, R.

    2003-10-01

    WS2 nanotubes were the first inorganic fullerene-like (IF) structures to be synthesized. Although the physical properties of IF were not fully studied it seems that the WS2 nanotubes can be suitable for applications in the nanoscale range. An approach toward nanofabrication is simulated in this study. High resolution scanning electron microscope equipped with micromanipulator was used to attach single multiwall WS2 nanotubes and single WO3-x nanowhiskers to a probe, which is an atomic force microscope (AFM) silicon tip in the present case. The imaging capabilities of this nanotube or nanowhisker tip were tested in the AFM. The WO3-x nanowhisker tip was found to be stable, but it has a low lateral resolution (100nm). The WS2 nanotube tips were found to be stable only when its length was smaller than 1 μm. The fabrication technique of WS2 nanotube tip and WO3-x nanowhisker tip was found to be controllable and reliable and it can probably be used to various applications as well as for preparation of single nanotubes samples for measurements, like mechanical or optical probes.

  15. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review.

    PubMed

    Kustin, Kenneth

    2015-06-01

    Aqueous solutions of the four highest vanadium oxidation states exhibit four diverse colors, which only hint at the diverse reactions that these ions can undergo. Cationic vanadium ions form complexes with ligands; anionic vanadium ions form complexes with ligands and self-react to form isopolyanions. All vanadium species undergo oxidation-reduction reactions. With a few exceptions, elucidation of the dynamics of these reactions awaited the development of fast reaction techniques before the kinetics of elementary ligation, condensation, reduction, and oxidation of the aqueous vanadium ions could be investigated. As the biological roles played by endogenous and therapeutic vanadium expand, it is appropriate to bring the results of the diverse kinetics studies under one umbrella. To achieve this goal this review presents a systematic examination of elementary aqueous vanadium ion dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Plasma assisted facile synthesis of vanadium oxide (V3O7) nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Saini, Sujit K.; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.

    2018-05-01

    Vanadium oxides nanostructured thin films are synthesized using plasma assisted sublimation process. The effect of temperatures on growth of V2O5 and V3O7 thin films is studied. Scanning electron micrographs shows different morphologies are obtained at different temperatures i.e. at 450 °C nano cubes-like structures are obtained, whereas at 550 °C and 650 °C nanorods are obtained. Sample deposited at 450 °C is entirely composed of V2O5 and sample at higher temperatures are composed of mixed phase of vanadium oxides i.e. V2O5 and V3O7. As temperature increased, so the content of V3O7 in the sample is increased as confirmed by XRD and Raman analyses.

  17. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    PubMed

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  18. Insights into Metal Oxide and Zero-Valent Metal Nanocrystal Formation on Multiwalled Carbon Nanotube Surfaces during Sol-Gel Process.

    PubMed

    Das, Dipesh; Sabaraya, Indu V; Sabo-Attwood, Tara; Saleh, Navid B

    2018-06-05

    Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu₂O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.

  19. Biotinylated vanadium and chromium sulfide nanoparticles as probes for colocalization of membrane proteins.

    PubMed

    Loukanov, Alexandre; Emin, Saim

    2016-09-01

    We report the microemulsion synthesis of vanadium and chromium sulfide nanoparticles (NPs) and their biological application as nanoprobes for colocalization of membrane proteins. Spherical V2 S3 and Cr2 S3 NPs were prepared in reverse microemulsion droplets, as nanoreactors, obtained by the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in nonpolar organic phase (heptane). Electron microscopic data indicated that the size distribution of the nanoparticles was uniform with an average diameter between 3 ÷ 5 nm. The prepared hydrophobic nanocrystals were transferred in aqueous phase by surface cap exchange of AOT with biotin-dihydrolipoic ligands. This substitution allows the nanoparticles solubility in aqueous solutions and confer their bioactivity. In addition, we report the conjugation procedure between α-Lipoic acid (LA) and biotin (abbreviated as biotin-LA). The biotin-LA structure was characterized by 1D and 2D NMR spectroscopy. The biotinylated vanadium and chromium sulfide nanoparticles were tested as probes for colocalization of glutamate receptors on sodium-dodecyl-sulfate-digested replica prepared from rat hippocampus. The method suggests their high labeling efficiency for study of membrane biological macromolecules. Microsc. Res. Tech. 79:799-805, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes.

    PubMed

    Stéfani, Diego; Paula, Amauri J; Vaz, Boniek G; Silva, Rodrigo A; Andrade, Nádia F; Justo, Giselle Z; Ferreira, Carmen V; Filho, Antonio G Souza; Eberlin, Marcos N; Alves, Oswaldo L

    2011-05-15

    The removal of oxidation debris from the oxidized carbon nanotube surface with a NaOH treatment is a key step for an effective functionalization and quality improvement of the carbon nanotube samples. In this work, we show via infrared spectroscopy and ultrahigh resolution and accuracy mass spectrometry that oxidation debris obtained from HNO(3)-treated multiwalled carbon nanotubes is a complex mixture of highly condensed aromatic oxygenated carbonaceous fragments. We have also evaluated their cytotoxicity by using BALB/c 3T3 mouse fibroblasts and HaCaT human keratinocytes as models. By knowing the negative aspects of dissolved organic carbon (DOC) to the water quality, we have demonstrated the removal of these carbon nanotube residues from the NaOH solution (wastewater) by using aluminium sulphate, which is a standard coagulant agent used in conventional drinking water purification and wastewater treatment plants. Our results contribute to elucidate the structural and proactive safety aspects of oxidation debris from oxidized carbon nanotubes towards a greener nanotechnology. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Viscous properties of aluminum oxide nanotubes and aluminium oxide nanoparticles - silicone oil suspensions

    NASA Astrophysics Data System (ADS)

    Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen

    2010-03-01

    Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.

  2. Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay

    2008-10-01

    One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.

  3. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageev, O. A., E-mail: ageev@sfedu.ru; Bykov, Al. V.; Kolomiitsev, A. S.

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is withinmore » the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.« less

  4. Dependence of annealing temperature on microstructure and photoelectrical properties of vanadium oxide thin films prepared by DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping

    2013-12-01

    Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.

  5. Reductive transformation of V(iii) precursors into vanadium(ii) oxide nanowires.

    PubMed

    Ojelere, Olusola; Graf, David; Ludwig, Tim; Vogt, Nicholas; Klein, Axel; Mathur, Sanjay

    2018-05-15

    Vanadium(ii) oxide nanostructures are promising materials for supercapacitors and electrocatalysis because of their excellent electrochemical properties and high surface area. In this study, new homoleptic vanadium(iii) complexes with bi-dentate O,N-chelating heteroarylalkenol ligands (DmoxCH[double bond, length as m-dash]COCF3, PyCH[double bond, length as m-dash]COCF3 and PyN[double bond, length as m-dash]COCF3) were synthesized and successfully transformed by reductive conversion into VO nanowires. The chemical identity of V(iii) complexes and their redox behaviour were unambiguously established by single crystal X-ray diffraction studies, cyclic voltammetry, spectrometric studies and DFT calculations. Transformation into the metastable VO phase was verified by powder X-ray diffraction and thermo-gravimetry. Transmission electron microscopy and X-ray photoelectron spectroscopy data confirmed the morphology and chemical composition of VO nanostructures, respectively.

  6. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

    PubMed

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Rocca, Jorge J; Bernstein, Elliot R; Wang, Zhe-Chen; Deng, Ke; He, Sheng-Gui

    2008-02-13

    Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.

  7. Low temperature electrolytes for lithium/silver vanadium oxide cells

    NASA Technical Reports Server (NTRS)

    Tuhovak, Denise R.; Takeuchi, Esther S.

    1991-01-01

    Combinations of methyl formate (MF) and propylene carbonate (PC) using salt concentrations of 0.6 to 2.4 M, with lithium hexafluoroarsenate and lithium tetrafluoroborate in a five to one molar ratio, were investigated as electrolytes in lithium/silver vanadium oxide batteries. The composition of the electrolyte affected cell performance at low temperature, self-discharge and abuse resistance as characterized by short circuit and crush testing. The electrolyte that provided the best combination of good low temperature performance, low cell self-discharge and abuse resistance was 0.6 M salt in 10:90 PC/MF.

  8. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    NASA Astrophysics Data System (ADS)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  9. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.

    PubMed

    Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak

    2018-05-07

    The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

  10. Vanadium Induces Dopaminergic Neurotoxicity Via Protein Kinase C-Delta Dependent Oxidative Signaling Mechanisms: Relevance to Etiopathogenesis of Parkinson's Disease

    PubMed Central

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, R. S.; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration. PMID:19646462

  11. Atomic Layer-Deposited Titanium-Doped Vanadium Oxide Thin Films and Their Thermistor Applications

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...

    2016-11-30

    In this paper, we report the enhancement in the temperature coefficient of resistance (TCR) of atomic layer-deposited vanadium oxide thin films through the doping of titanium oxide. The Hall effect measurement provides a potential explanation for the phenomenon. The composition and morphology of the thin films are investigated by x-ray diffraction and scanning electron microscopy techniques. The high TCR, good uniformity, and low processing temperature of the material make it a good candidate for thermistor application.

  12. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    de Sousa, Marcelo; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-06-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H2SO4 and HNO3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  13. Atom probe study of vanadium interphase precipitates and randomly distributed vanadium precipitates in ferrite.

    PubMed

    Nöhrer, M; Zamberger, S; Primig, S; Leitner, H

    2013-01-01

    Atom probe tomography and transmission electron microscopy were used to examine the precipitation reaction in the austenite and ferrite phases in vanadium micro-alloyed steel after a thermo-mechanical process. It was observed that only in the ferrite phase precipitates could be found, whereupon two different types were detected. Thus, the aim was to reveal the difference between these two types. The first type was randomly distributed precipitates from V supersaturated ferrite and the second type V interphase precipitates. Not only the arrangement of the particles was different also the chemical composition. The randomly distributed precipitates consisted of V, C and N in contrast to that the interphase precipitates showed a composition of V, C and Mn. Furthermore the randomly distributed precipitates had maximum size of 20 nm and the interphase precipitates a maximum size of 15 nm. It was assumed that the reason for these differences is caused by the site in which they were formed. The randomly distributed precipitates were formed in a matrix consisting mainly of 0.05 at% C, 0.68 at% Si, 0.03 at% N, 0.145 at% V and 1.51 at% Mn. The interphase precipitates were formed in a region with a much higher C, Mn and V content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Zhou, Mi; Gao, Hui-yang; Liu, Jia-yi; Xue, Xiang-xin

    2018-05-01

    Calcification roasting-acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 ( n(CaO)/ n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation-calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/ n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630°C for n(CaO)/ n(V2O5) ratios of 0.5 and 5, respectively.

  15. ALTERNATIVE ROUTES FOR CATALYST PREPARATION: USE OF ULTRASOUND AND MICROWAVE IRRADIATION FOR THE PREPARATION OF VANADIUM PHOSPHORUS OXIDE CATALYST AND THEIR ACTIVITY FOR HYDROCARBON OXIDATION

    EPA Science Inventory

    Vanadium phosphorus oxide (VPO) has been prepared using ultrasound and microwave irradiation methods and compared with the catalyst prepared by conventional method for both the phase composition and activity for hydrocarbon oxidation. It is found that ultrasound irradiation metho...

  16. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

  17. Structure-property relationships in NO x sensor materials composed of arrays of vanadium oxide nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putrevu, Naga Ravikanth; Darling, Seth B.; Segre, Carlo U.

    The mixed-valent vanadium oxide based three-dimensional framework structure species [Cd 3(H 2O) 12V 16 IVV 2 VO 36(OH) 6(AO 4)]∙24H 2O, (A=V,S) (Cd 3(VO) o) represents a rare example of an interesting sensor material which exhibits NO x {NO+NO 2} semiconducting gas sensor properties under ambient conditions. The electrical resistance of the sensor material Cd 3(VO) o decreases in air. Combined characterization studies revealed that the building block, {V 18O 42(AO 4)} cluster, of 3-D framework undergoes oxidation and remains intact for at least 2 months. The decrease in resistance is attributable to the reactivity of molecular oxygen towards vanadiummore » which results in an increase in the oxidation state as well as the coordination number of vanadium center and decrease in band gap of Cd 3(VO) o. Based on these results we propose that the changes in semiconducting properties of Cd 3(VO) o under ambient conditions are due to the greater overlap between the O 2p and V 3d orbitals occurring during the oxidation.« less

  18. Bi-functional anodic TiO2 oxide: Nanotubes for wettability control and barrier oxide for uniform coloring

    NASA Astrophysics Data System (ADS)

    Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub

    2017-06-01

    A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.

  19. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  20. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F.

    We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency ofmore » the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.« less

  1. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    NASA Astrophysics Data System (ADS)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  2. Substrate-Wrapped, Single-Walled Carbon Nanotube Probes for Hydrolytic Enzyme Characterization.

    PubMed

    Kallmyer, Nathaniel E; Musielewicz, Joseph; Sutter, Joel; Reuel, Nigel F

    2018-04-17

    Hydrolytic enzymes are a topic of continual study and improvement due to their industrial impact and biological implications; however, the ability to measure the activity of these enzymes, especially in high-throughput assays, is limited to an established, few enzymes and often involves the measurement of secondary byproducts or the design of a complex degradation probe. Herein, a versatile single-walled carbon nanotube (SWNT)-based biosensor that is straightforward to produce and measure is described. The hydrolytic enzyme substrate is rendered as an amphiphilic polymer, which is then used to solubilize the hydrophobic nanotubes. When the target enzyme degrades the wrapping, the SWNT fluorescent signal is quenched due to increased solvent accessibility and aggregation, allowing quantitative measurement of hydrolytic enzyme activity. Using (6,5) chiral SWNT suspended with polypeptides and polysaccharides, turnover frequencies are estimated for cellulase, pectinase, and bacterial protease. Responses are recorded for concentrations as low as 5 fM using a well-characterized protease, Proteinase K. An established trypsin-based plate reader assay is used to compare this nanotube probe assay with standard techniques. Furthermore, the effect of freeze-thaw cycles and elevated temperature on enzyme activity is measured, suggesting freezing to have minimal impact even after 10 cycles and heating to be detrimental above 60 °C. Finally, rapid optimization of enzyme operating conditions is demonstrated by generating a response surface of cellulase activity with respect to temperature and pH to determine optimal conditions within 2 h of serial scans.

  3. A quantitative comparison of resolution, scanning speed and lifetime behavior of CVD grown Single Wall Carbon Nanotubes and silicon SPM probes using spectral methods

    NASA Astrophysics Data System (ADS)

    Krause, O.; Bouchiat, V.; Bonnot, A. M.

    2007-03-01

    Due to their extreme aspect ratios and exceptional mechanical properties Carbon Nanotubes terminated silicon probes have proven to be the ''ideal'' probe for Atomic Force Microscopy. But especially for the manufacturing and use of Single Walled Carbon Nanotubes there are serious problems, which have not been solved until today. Here, Single and Double Wall Carbon Nanotubes, batch processed and used as deposited by Chemical Vapor Deposition without any postprocessing, are compared to standard and high resolution silicon probes concerning resolution, scanning speed and lifetime behavior.

  4. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    PubMed

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  5. Structural and electrical properties of different vanadium oxide phases in thin film form synthesized using pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majid, S. S., E-mail: suhailphy276@gmail.com; Rahman, F.; Shukla, D. K.

    2015-06-24

    We present here the structural and electrical properties of the thin films of V{sub 2}O{sub 3} (Vanadium sesquioxide) and V{sub 5}O{sub 9}. Both these oxide phases, V{sub 2}O{sub 3} and V{sub 5}O{sub 9}, have beenachieved on (001) orientedSi substrate using the V{sub 2}O{sub 5} target by optimizing the deposition parameters using pulsed laser deposition technique (PLD).Deposited films were characterized by X-ray diffraction(XRD)and four probe temperature dependent resistivity measurements. XRD studies reveal the V{sub 2}O{sub 3} and V{sub 5}O{sub 9} phases and the amount of strain present in both these films. The temperature dependency of electrical resistivity confirmed the characteristic metal-insulatormore » transitions (MIT) for both the films, V{sub 2}O{sub 3} and V{sub 5}O{sub 9}.« less

  6. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  7. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

    PubMed

    Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E

    2016-08-10

    Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.

  8. ALTERNATIVE ROUTES FOR CATALYST PREPARATION: USE OF ULTRASOUND AND MICROWAVE IRRADIATION FOR THE PREPARATION OF VANADIUM PHOSPHORUS OXIDE CATALYST AND ITS ACTIVITY FOR HYDROCARBON OXIDATION

    EPA Science Inventory

    Vanadium phosphorus oxide (VPO) is a well-known catalyst used for the vapor phase n-butane oxidation to maleic anhydride. It is prepared by a variety of methods, all of which, however, eventually result in the same active phase. The two main methods for the preparation of its pr...

  9. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.

    PubMed

    Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P

    2008-04-15

    As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.

  10. Computational studies of small neutral vanadium oxide clusters and their reactions with sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Jakubikova, Elena; He, Sheng-Gui; Xie, Yan; Matsuda, Yoshiyuki; Bernstein, Elliot

    2007-03-01

    Vanadium oxide is a catalytic system that plays an important role in the conversion of SO2 to SO3. Density functional theory at the BPW91/LANL2DZ level is employed to obtain structures of VOy (y=1,,5), V2Oy (y=2,,7), V3Oy (y=4,,9), V4Oy (y=7,,12) and their complexes with SO2. BPW91/LANL2DZ is insufficient to describe properly relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute enthalpies of reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Subsequent experimental studies confirm the presence of SO in the molecular beam as well as the presence of VxOy complexes with SO2. Some possible mechanisms for SO3 formation and catalyst regeneration for solids are also suggested.

  11. New nanotube synthesis strategy--application of sodium nanotubes formed inside anodic aluminium oxide as a reactive template.

    PubMed

    Wang, Lung-Shen; Lee, Chi-Young; Chiu, Hsin-Tien

    2003-08-07

    Formation of Na nanotubes inside the channels of anodic aluminium oxide (AAO) membranes has been achieved by decomposing NaH thermally on AAO. The as-produced material, Na@AAO, is applied as a reactive template to prepare other tubular materials. Reacting Na@AAO with gaseous C6Cl6 generates carbon nanotubes (ca. 250 nm, wall thickness of 20 nm, tube length of 60 microm) inside the AAO channels. Highly aligned bundles of nearly amorphous carbon nanotubes are isolated after AAO is removed.

  12. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    PubMed

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  13. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model.

    PubMed

    Espinosa-Zurutuza, Maribel; González-Villalva, Adriana; Albarrán-Alonso, Juan Carlos; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; López-Valdéz, Nelly; Fortoul, Teresa I

    Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.

  14. Temperature-dependent mechanical behavior of silicon dioxide, gold and gold-vanadium thin films for VLSI integrated circuits and MicroElectroMechanical systems (MEMs)

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Tzer

    The Semiconductor Industry has grown rapidly in the last twenty years. The national technology roadmap for semiconductors plans for developing the complexity and packing density of semiconductor devices into the next decade, allowing ever smaller and more densely packed structures to be fabricated. Recently, MEMS (Micro-Electro-Mechanical Systems) have become important in modern technology. The goal of MEMs is to integrate many types of miniature devices on a single chip, creating a new micro-world. The oxidation of silicon is one of the most important processes in semiconductor technology. Producing high-quality IC's and MEMS devices requires an understanding of the basic oxidation mechanism. In addition, for the reliability of IC's and MEMS devices, the mechanical properties of the oxide play a critical role. There has been an apparent convergence of opinion on the relevant mechanism leading to the "standard computational model" for stress effects on silicon oxidation. This model has recently become suspect. Most of the reasonably direct experimental data on the flow properties of SiO 2 thin film do not support a stress-dependent viscosity of the sort envisioned by the model. Gold and gold vanadium alloys are used in electrical interconnections and in radio frequency switch contacts for the semiconductor industry, MEMs sensors for the aerospace industry and also in brain probes by the bioelectronics mechanical industry. Despite the strong potential usage of gold and gold vanadium thin films at the small scale, very little is known about their mechanical properties. Our goal was to experimentally investigate stress and its influence on SiO2 thin films and the mechanical properties of gold and gold vanadium thin films at room temperature and at elevated temperature of different vanadium concentration. We found that the application of relatively small amounts of bending to an oxidizing silicon substrate leads to significant decreases in oxide thickness in the

  15. Optical and Probe Diagnostics Applied to Reacting Flows

    NASA Technical Reports Server (NTRS)

    Ticich, Thomas M.

    2003-01-01

    The general theme of the research my NASA colleague and I have planned is "Optical and probe diagnostics applied to reacting flows". We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Having demonstrated the viability of the technique for nanotube synthesis, we seek to understand the details of this reacting system which are important to its practical application. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Despite the impact of soot on engine performance, fire safety and pollution, models for its oxidation are inhibited by uncertainty in the values of the oxidation rate. We plan to employ both optical and microscopic measurements to refine this rate. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. These data will be benchmarked against changes in soot nanostructures as revealed by transmission electron microscopic images from directly sampled material.

  16. Synthesis and characterization of self-bridged silver vanadium oxide/CNTs composite and its enhanced lithium storage performance.

    PubMed

    Liang, Liying; Liu, Haimei; Yang, Wensheng

    2013-02-07

    The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.

  17. Carbon-nanotube probes for three-dimensional critical-dimension metrology

    NASA Astrophysics Data System (ADS)

    Park, B. C.; Ahn, S. J.; Choi, J.; Jung, K. Y.; Song, W. Y.

    2006-03-01

    We fabricate three kinds of carbon nanotube (CNT) probes to be employed in critical dimension atomic force microscope (CD-AFM). Despite unique advantages in its size and hardness, use of nanotube tip has been limited due to the lack of reproducible control of CNT orientation and its shape. We proposed that CNT alignment issues can be addressed based on the ion beam bending process, where a CNT free-standing on the apex of an AFM tip aligns itself in parallel to the FIB direction so that its free end is directed toward the ion source, with no external electric or magnetic field involved. The process allowed us to embody cylindrical probes of CNT diameters, and subsequently two additional types of CNT tips. One is ball-ended CNT tip which has, at the end of CNT tip, side-protrusions of tungsten/amorphous carbon in the horizontal dithering direction. The other is 'bent' CNT tip where the end of CNT is bent to a side direction. Using the former type of CNT tip, both sides of trench/line sidewall can be measured except for bottom corners, while the corners can be reached with the latter type, but the only one sidewall can be measured at a tip setting. The three types of tips appear to satisfy the requirements in both the size and accessibility to the re-entrant sidewall, and are awaiting actual test in CD-AFM.

  18. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  19. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  20. High-Fat Diet Increased Renal and Hepatic Oxidative Stress Induced by Vanadium of Wistar Rat.

    PubMed

    Wang, J P; Cui, R Y; Zhang, K Y; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W

    2016-04-01

    The study was conducted to assess the effect of vanadium (V) in high-fat diet on the liver and kidney of rats in a 5-week trial. Seventy-two female Wistar rats (BW = 95 ± 5 g) were randomly allotted into eight groups. Groups I, II, III, and IV obtained low-fat diet containing 0, 3, 15, and 30 mg/kg V, and V, VI, VII, and VIII groups received the respective vanadium doses with high-fat diet, respectively. There were lesions in the liver and kidney of V, VI, VII, and VIII groups, granular degeneration and vacuolar degeneration were observed in the renal tubular and glomerulus epithelial cells, and hepatocytes showed granular degeneration and vacuolar degeneration. Supplemented high-fat diet with vanadium was shown to decrease (P < 0.05) activities of superoxide dismutase, total antioxidant capacity, glutathione-S transferase, and NAD(P)H/quinone oxidoreductase 1 (NQO1) and increase malondialdehyde content in the liver and kidney. The relative expression of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and NQO1 mRNA was downregulated by V addition and high-fat diet, and the effect of V was more pronounced in high-fat diet (interaction, P < 0.05), with VIII group having the lowest mRNA expression of Nrf-2 and NQO1 in the liver and kidney. In conclusion, it suggested that dietary vanadium ranging from 15 to 30 mg/kg could lead to oxidative damage and vanadium accumulation in the liver and kidney, which caused renal and hepatic toxicity. The high-fat diet enhanced vanadium-induced hepatic and renal damage, and the mechanism was related to the modulation of the hepatic and renal mRNA expression of Nrf-2 and NQO1.

  1. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  2. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  3. A cone-shaped 3D carbon nanotube probe for neural recording.

    PubMed

    Su, Huan-Chieh; Lin, Chia-Min; Yen, Shiang-Jie; Chen, Yung-Chan; Chen, Chang-Hsiao; Yeh, Shih-Rung; Fang, Weileun; Chen, Hsin; Yao, Da-Jeng; Chang, Yen-Chung; Yew, Tri-Rung

    2010-09-15

    A novel cone-shaped 3D carbon nanotube (CNT) probe is proposed as an electrode for applications in neural recording. The electrode consists of CNTs synthesized on the cone-shaped Si (cs-Si) tip by catalytic thermal chemical vapor deposition (CVD). This probe exhibits a larger CNT surface area with the same footprint area and higher spatial resolution of neural recording compared to planar-type CNT electrodes. An approach to improve CNT characteristics by O(2) plasma treatment to modify the CNT surface will be also presented. Electrochemical characterization of O(2) plasma-treated 3D CNT (OT-CNT) probes revealed low impedance per unit area (∼64.5 Ω mm(-2)) at 1 kHz and high specific capacitance per unit area (∼2.5 mF cm(-2)). Furthermore, the OT-CNT probes were employed to record the neural signals of a crayfish nerve cord. Our findings suggest that OT-CNT probes have potential advantages as high spatial resolution and superb electrochemical properties which are suitable for neural recording applications. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Influence of Heat Treatment Conditions on the Properties of Vanadium Oxide Thin Films for Thermochromic Applications.

    PubMed

    Kim, Donguk; Kwon, Samyoung; Park, Young; Boo, Jin-Hyo; Nam, Sang-Hun; Joo, Yang Tae; Kim, Minha; Lee, Jaehyeong

    2016-05-01

    In present work, the effects of the heat treatment on the structural, optical, and thermochromic properties of vanadium oxide films were investigated. Vanadium dioxide (VO2) thin films were deposited on glass substrate by reactive pulsed DC magnetron sputtering from a vanadium metal target in mixture atmosphere of argon and oxygen gas. Various heat treatment conditions were applied in order to evaluate their influence on the crystal phases formed, surface morphology, and optical properties. The films were characterized by an X-ray diffraction (XRD) in order to investigate the crystal structure and identify the phase change as post-annealing temperature of 500-600 degrees C for 5 minutes. Surface conditions of the obtained VO2(M) films were analyzed by field emission scanning electron microscopy (FE-SEM) and the semiconductor-metal transition (SMT) characteristics of the VO2 films were evaluate by optical spectrophotometry in the UV-VIS-NIR, controlling temperature of the films.

  5. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes.

    PubMed

    Al Araimi, Mohammed; Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola; Rozhin, Aleksey

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  6. Electronic properties of functionalized (5,5) beryllium oxide nanotubes.

    PubMed

    Chigo Anota, Ernesto; Cocoletzi, Gregorio Hernández

    2013-05-01

    Using the density functional theory (DFT) we study the structural and electronic properties of functionalized (5,5) chirality single wall beryllium oxide nanotubes (SW-BeONTs), i.e. armchair nanotubes. The nanotube surface and ends are functionalized by the hydroxyl (OH) functional group. Our calculations consider the Hamprecht-Cohen-Tozer-Handy functional in the generalized gradient approximation (HCTH-GGA) to deal with the exchange-correlation energies, and the base function with double polarization (DNP). The geometry optimization of both defects free and with point defects nanotubes is done applying the criterion of minimum energy. Six configurations are considered: The OH oriented toward the Be (on the surface and at the end), toward the O (on the surface and at the end) and placed at the nanotube ends. Simulation results show that the nanotube functionalization takes place at the nanotube ends with the BeO bond displaying hydrogen-like bridge bonds. Moreover the nanotube semiconductor behavior remains unchanged. The polarity is high (it shows a transition from covalent to ionic) favoring solvatation. On the other hand, the work function low value suggests this to be a good candidate for the device fabrication. When the nanotube contains surface point defects the work function is reduced which provides excellent possibilities for the use of this material in the electronic industry. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. System Assessment of Carbon Dioxide Used as Gas Oxidant and Coolant in Vanadium-Extraction Converter

    NASA Astrophysics Data System (ADS)

    Du, Wei Tong; Wang, Yu; Liang, Xiao Ping

    2017-10-01

    With the aim of reducing carbon dioxide (CO2) emissions and of using waste resources in steel plants, the use of CO2 as a gas oxidant and coolant in the converter to increase productivity and energy efficiency was investigated in this study. Experiments were performed in combination with thermodynamic theory on vanadium-extraction with CO2 and oxygen (O2) mixed injections. The results indicate that the temperature of the hot metal bath decreased as the amount of CO2 introduced into O2 increased. At an injection of 85 vol.% O2 and 15 vol.% CO2, approximately 12% of additional carbon was retained in the hot metal. Moreover, the content of vanadium trioxide in the slag was higher. In addition, the O2 consumption per ton of hot metal was reduced by 8.5% and additional chemical energy was recovered by the controlled injection of CO2 into the converter. Therefore, using CO2 as a gas coolant was conducive to vanadium extraction, and O2 consumption was reduced.

  8. Fabrication and design of vanadium oxide microbolometer

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, M.; Al-Khalli, N.; Zia, M. F.; Alduraibi, M.; Ilahi, B.; Awad, E.; Debbar, N.

    2017-02-01

    Vanadium oxide (VxOy) multilayer sandwich structures previously studied by our group were found to yield a sensitive thermometer thin film material suitable for microbolometer applications. In this work, we aim to estimate the performance of a proposed air-bridge microbolometer configuration based on VxOy multilayer sandwich structure thermometer thin films. For this purpose, a microbolometer was fabricated on silicon (Si) substrate covered with a silicon nitride (Si3N4) insulating layer using VxOy thermometer thin film material. The fabricated microbolometer was patterned using electron-beam lithography and liftoff techniques and it was characterized in terms of its voltage repsonsivity (Rv), signal to noise ratio (SNR), noise equivalent power (NEP) and detectivity D*. A model was then developed by the aid of numerical optical/thermal simulations and experimentally measured parameters to estimate the performance of the microbolometer when fabricated in an air-bridge configuration. The estimated D* was found to be 1.55×107 cm.√Hz/ W.

  9. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of themore » surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.« less

  10. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.

    2002-03-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.

  11. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

    NASA Astrophysics Data System (ADS)

    Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang

    2012-08-01

    Marine biofouling--the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls--is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen (1O2) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

  12. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  13. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.

    PubMed

    Chen, Desheng; Zhao, Hongxin; Hu, Guoping; Qi, Tao; Yu, Hongdong; Zhang, Guozhi; Wang, Lina; Wang, Weijing

    2015-08-30

    An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite was developed. In this study, a mixed solvent system of di(2-ethylhexyl) phosphate (D2EHPA) and tri-n-butyl phosphate (TBP) diluted with kerosene was used for the selective extraction of vanadium from a hydrochloric acid leaching solution that contained low vanadium concentration with high concentrations of iron and impurities of Ca, Mg, and Al. In the extraction process, the initial solution pH and the phase ratio had considerable functions in the extraction of vanadium from the hydrochloric acid leaching solution. Under optimal extraction conditions (i.e., 30-40°C for 10min, 1:3 phase ratio (O/A), 20% D2EHPA concentration (v/v), and 0-0.8 initial solution pH), 99.4% vanadium and only 4.2% iron were extracted by the three-stage counter-current extraction process. In the stripping process with H2SO4 as the stripping agent and under optimal stripping conditions (i.e., 20% H2SO4 concentration, 5:1 phase ratio (O/A), 20min stripping time, and 40°C stripping temperature), 99.6% vanadium and only 5.4% iron were stripped by the three-stage counter-current stripping process. The stripping solution contained 40.16g/LV2O5,0.691g/L Fe, 0.007g/L TiO2, 0.006g/L SiO2 and 0.247g/L CaO. A V2O5 product with a purity of 99.12% V2O5 and only 0.026% Fe was obtained after the oxidation, precipitation, and calcination processes. The total vanadium recovered from the hydrochloric acid leaching solution was 85.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Self-assembly of a tetrahedral 58-nuclear barium vanadium oxide cluster.

    PubMed

    Kastner, Katharina; Puscher, Bianka; Streb, Carsten

    2013-01-07

    We report the synthesis and characterization of a molecular barium vanadium oxide cluster featuring high nuclearity and high symmetry. The tetrameric, 2.3 nm cluster H(5)[Ba(10)(NMP)(14)(H(2)O)(8)[V(12)O(33)](4)Br] is based on a bromide-centred, octahedral barium scaffold which is capped by four previously unknown [V(12)O(33)](6-) clusters in a tetrahedral fashion. The compound represents the largest polyoxovanadate-based heterometallic cluster known to date. The cluster is formed in organic solution and it is suggested that the bulky N-methyl-2-pyrrolidone (NMP) solvent ligands allow the isolation of this giant molecule and prevent further condensation to a solid-state metal oxide. The cluster is fully characterized using single-crystal XRD, elemental analysis, ESI mass spectrometry and other spectroscopic techniques.

  15. Catalytic determination of vanadium in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1964-01-01

    A rapid, accurate, and sensitive spectrophotometric method for the quantitative determination of trace amounts of vanadium in water is based on the catalytic effect of vanadium on the rate of oxidation of gallic acid by persulfate in acid solution. Under given conditions of concentrations of reactants, temperature, and reaction time, the extent of oxidation of gallic acid is proportional to the concentration of vanadium present. Vanadium is determined by measuring the absorbance of the sample at 415 m?? and comparison with standard solutions treated in an identical manner. Concentrations in the range of from 0.1 to 8.0 ??g. per liter may be determined with a standard deviation of 0.2 or less. By reducing the reaction time, the method may be extended to cover the range from 1 to 100 ??g. with a standard deviation of 0.8 or less. Several substances interfere, including chloride above 100 p.p.m., and bromide and iodide in much lower concentrations. Interference from the halides is eliminated or minimized by the addition of mercuric nitrate solution. Most other substances do not interfere at the concentration levels at which they commonly occur in natural waters.

  16. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  17. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    PubMed Central

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g−1, far exceeding spider dragline silk (165 J g−1) and Kevlar (78 J g−1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs. PMID:22337128

  18. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    PubMed

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  19. Oxidation States of Grim Glasses in EET79001 Based on Vanadium Valence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.

    2010-01-01

    Gas-rich impact-melt (GRIM) glasses in SNC meteorites are very rich in Martian atmospheric noble gases and sulfur suggesting a possible occurrence of regolith-derived secondary mineral assemblages in these samples. Previously, we have studied two GRIM glasses, 506 and 507, from EET79001 Lith A and Lith B, respectively, for elemental abundances and spatial distribution of sulfur using EMPA (WDS) and FE-SEM (EDS) techniques and for sulfur-speciation using K-edge XANES techniques. These elemental and FE-SEM micro-graph data at several locations in the GRIM glasses from Shergotty (DBS), Zagami 994 and EET79001, Lith B showed that FeO and SO3 are positively correlated (SO3 represents a mixture of sulfide and sulfate). FE-SEM (EDS) study revealed that the sulfur-rich pockets in these glasses contain numerous micron-sized iron-sulfide (Fe-S) globules sequestered throughout the volume. However, in some areas (though less frequently), we detected significant Fe-S-O signals suggesting the occurrence of iron sulfate. These GRIM glasses were studied by K-edge microXANES techniques for sulfur speciation in association with iron in sulfur-rich areas. In both samples, we found the sulfur speciation dominated by sulfide with minor oxidized sulfur mixed in with various proportions. The abundance of oxidized sulfur was greater in 506 than in 507. Based on these results, we hypothesize that sulfur initially existed as sulfate in the glass precursor materials and, on shock-impact melting of the precursor materials producing these glasses, the oxidized sulfur was reduced to predominately sulfide. In order to further test this hypothesis, we have used microXANES to measure the valence states of vanadium in GRIM glasses from Lith A and Lith B to complement and compare with previous analogous measurements on Lith C (note: 506 and 507 contain the largest amounts of martian atmospheric gases but the gas-contents in Lith C measured by are unknown). Vanadium is ideal for addressing this re

  20. Ab Initio Calculations of Transport Properties of Vanadium Oxides

    NASA Astrophysics Data System (ADS)

    Lamsal, Chiranjivi; Ravindra, N. M.

    2018-04-01

    The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.

  1. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Xun-Lei, E-mail: dingxl@ncepu.edu.cn, E-mail: chemzyx@iccas.ac.cn; Wang, Dan; Wu, Xiao-Nan

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters decreases as the N increases, and it is higher than that of (V {sub 2}O{sub 5}){sub N}{sup +} for N ≥ 4. Theoretical studies were conducted on (Nb{sub 2}O{sub 5}){sub N}{sup +} (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorablemore » thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.« less

  2. Vanadium recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  3. Characterization and Electrochromic Properties of Vanadium Oxide Thin Films Prepared via Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.

    2013-08-01

    Vanadium oxide thin films were grown on glass substrates using spray pyrolysis technique. The effects of substrate temperature, vanadium concentration in the initial solution and the solution spray rate on the nanostructural and the electrochromic properties of deposited films are investigated. Characterization and the electrochromic measurements were carried out using X-ray diffraction, scanning electron microscopy and cyclic voltammogram. XRD patterns showed that the prepared films have polycrystalline structure and are mostly mixed phases of orthorhombic α-V2O5 along with minor β-V2O5 and V4O9 tetragonal structures. The preferred orientation of the deposited films was found to be along [101] plane. The cyclic voltammogram results obtained for different samples showed that only the films with 0.2 M solution concentration, 5 ml/min solution spray rate and 450°C substrate temperature exhibit two-step electrochromic properties. The results show a correlation between cycle voltammogram, morphology and resistance of the films.

  4. The role of probe oxide in local surface conductivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.

    2015-05-07

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantummore » dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.« less

  5. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.

    PubMed

    Zhang, Lina; Zhang, Haoxu; Zhou, Ruifeng; Chen, Zhuo; Li, Qunqing; Fan, Shoushan; Ge, Guanglu; Liu, Renxiao; Jiang, Kaili

    2011-09-23

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  6. Application of carbon nanotubes to topographical resolution enhancement of tapered fiber scanning near field optical microscopy probes

    NASA Astrophysics Data System (ADS)

    Huntington, S. T.; Jarvis, S. P.

    2003-05-01

    Scanning near field optical microscopy (SNOM) probes are typically tapered optical fibers with metallic coatings. The tip diameters are generally in excess of 300 nm and thus provide poor topographical resolution. Here we report on the attachment multiwalled carbon nanotubes to the probes in order to substantially enhance the topographical resolution, without adversely affecting the optical resolution.

  7. Effect of vanadium compounds on acid phosphatase activity.

    PubMed

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  8. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe

  9. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors.

    PubMed

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-08-07

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm(-2) (for a single electrode) and 17.3 mF cm(-2) (for the whole device) at 0.1 mA cm(-2), respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.

  10. Transformers: the changing phases of low-dimensional vanadium oxide bronzes.

    PubMed

    Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit

    2015-03-28

    In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.

  11. Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.

    PubMed

    Raczyński, Przemysław; Górny, Krzysztof; Dawid, Aleksander; Gburski, Zygmunt

    2014-07-15

    Computer simulations have been performed to study the nanoindentation of phospholipid bilayer by the single-walled armchair carbon nanotube, filled with the nitric oxide molecules. The process has been simulated by means of molecular dynamics (MD) technique at physiological temperature T = 310 K with a constant pulling velocity of the nanotube. The force acting on the nanotube during membrane penetration has been calculated. We show that the indentation by carbon nanotube does not permanently destroy the membrane structure (self-sealing of the membrane occurs). The mobility of nitric oxide molecules during the membrane nanoindentation is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng

    2015-12-01

    Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.

  13. Modeling of CMOS compatible ring resonator switch with intermediate vanadium oxide as the switching element

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Datta, Arnab

    2018-05-01

    In this paper, silicon based dual ring resonator with hybrid plasmonic bus waveguides (Cu-SiO2-Si-SiO2-Cu) is investigated for achieving switching in the telecommunication C-band (λ = 1.54-1.553µm). The switch element uses vanadium oxide (VO2) as the switching medium when inserted between the rings in order to tailor transmission from one ring to the other through heating induced phase transition. In this manner, the proposed switch element uses one vanadium oxide medium instead of refractive index tailoring of the whole ring as in the prior reported works and achieves switching response. From two-dimensional finite element analysis we have found that, the proposed switch can achieve maximum extinction ratio of 2.72 dB at λ = 1.5434µm, exclusively by tailoring VO2 phase. Furthermore, impact of aperture width, and gap (separation between the bus waveguide and rings) are investigated to gain insight on the improvement of extinction ratio. From our numerical simulations, we find that free spectral range (FSR) and figure of merit (Q) for OFF and ON states are (173.36 nm, 92.63), and (173.58 nm, 65.39), respectively.

  14. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    PubMed

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  15. Effect of substrate temperature on thermochromic vanadium dioxide thin films sputtered from vanadium target

    NASA Astrophysics Data System (ADS)

    Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.

    2018-05-01

    Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.

  16. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    PubMed

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  17. A sub-nanomolar real-time nitric oxide probe: in vivo nitric oxide release in heart.

    PubMed

    Mantione, Kirk J; Stefano, George B

    2004-04-01

    Amperometric nitric oxide probes are critical in evaluating real-time nitric oxide levels. This valuable tool enables one to measure spontaneous baseline levels of nitric oxide as well as 'puffs' of the gaseous signal molecule that may last for only seconds to minutes. However, in the past, many probes suffered from a lack of sensitivity, durability and reliability, causing investigators to design numerous controls to support their data. Our laboratory evaluated the new ISO-NOPF100 NO probe manufactured by World Precision Instruments of Sarasota, Florida. An invertebrate in vivo heart preparation was used, which presents a high degree of difficuly in obtaining nitric oxide measurements due to space limitations, resulting in physical contact of the probe with tissues. Additionally, we used in vitro invertebrate ganglionic preparations as a comparison since this tissue releases spontaneous and low levels of NO. Calibration of the new probe demonstrated high linearity and sensitivity. The detection limit for this new probe was determined to be approximately two times lower than probes previously used in our laboratory. Basal nitric oxide fluctuations in Mytilus edulis heart and excised ganglia were able to be resolved in the sub-nanomolar range. The ISO-NOPF100 NO probe represents a significant advancement for measuring nitric oxide in real-time.

  18. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  19. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3-Li2O-ZnO-V2O5 Glasses.

    PubMed

    Arya, S K; Danewalia, S S; Arora, Manju; Singh, K

    2016-12-01

    In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.

  20. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xinbo; Wang, Danjun; College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalystmore » is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.« less

  1. Candidate muon-probe sites in oxide superconductors

    NASA Astrophysics Data System (ADS)

    Dawson, W. K.; Tibbs, K.; Weathersby, S. P.; Boekema, C.; Chan, K.-C. B.

    1988-11-01

    Two independent search methods (potential-energy and magnetic-dipole-field calculations) are used to determine muon stop sites in the RBa2Cu3O(x) (x equal to about 7) superconductors. Possible sites, located about 1 A away from oxygen ions, have been found and are prime candidates as muon-probe locations. The results are discussed in light of existing muon-spin-relaxation data of these exciting oxides, and are compared to H-oxide and positron-oxide superconductor studies. Further work is in progress to establish in detail the muon-probe sites.

  2. Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.

    PubMed

    Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S

    2018-08-17

    This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.

  3. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    PubMed Central

    Kadri, Atikah; Jia, Yi; Chen, Zhigang; Yao, Xiangdong

    2015-01-01

    Mg (MgH2)-based composites, using carbon nanotubes (CNTs) and pre-synthesized vanadium-based complex (VCat) as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD) results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time) are better to enhance the hydrogen sorption performance.

  4. Vanadium based materials as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  5. Differential thermodynamic signature of carbon nanomaterials using amphiphilic micellar probe

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr

    2018-04-01

    The thermodynamic signature of single-wall carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and reduced graphene oxide (rG-O) using amphiphilic micellar probe has been explored. The study reveals an intricate correlation between nano-surface topology and calorimetric profile of SWCNTs, MWCNTs and rG-O. The critical micelle concentration (CMC) is found to be sensitive to the topological diversity of nanomaterials. The study explores a thermodynamic approach to characterize the nano-surface topology of SWCNTs, MWCNTs and graphene surface.

  6. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions

    PubMed Central

    Roberts, N.A.; Noh, J.H.; Lassiter, M.G.; Guo, S.; Kalinin, S.V.; Rack, P.D.

    2012-01-01

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by deposited a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex. PMID:22433664

  7. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions.

    PubMed

    Roberts, N A; Noh, J H; Lassiter, M G; Guo, S; Kalinin, S V; Rack, P D

    2012-04-13

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by depositing a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex.

  8. Vanadium As a Potential Membrane Material for Carbon Capture: Effects of Minor Flue Gas Species.

    PubMed

    Yuan, Mengyao; Liguori, Simona; Lee, Kyoungjin; Van Campen, Douglas G; Toney, Michael F; Wilcox, Jennifer

    2017-10-03

    Vanadium and its surface oxides were studied as a potential nitrogen-selective membrane material for indirect carbon capture from coal or natural gas power plants. The effects of minor flue gas components (SO 2 , NO, NO 2 , H 2 O, and O 2 ) on vanadium at 500-600 °C were investigated by thermochemical exposure in combination with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ X-ray diffraction (XRD). The results showed that SO 2 , NO, and NO 2 are unlikely to have adsorbed on the surface vanadium oxides at 600 °C after exposure for up to 10 h, although NO and NO 2 may have exhibited oxidizing effects (e.g., exposure to 250 ppmv NO/N 2 resulted in an 2.4 times increase in surface V 2 O 5 compared to exposure to just N 2 ). We hypothesize that decomposition of surface vanadium oxides and diffusion of surface oxygen into the metal bulk are both important mechanisms affecting the composition and morphology of the vanadium membrane. The results and hypothesis suggest that the carbon capture performance of the vanadium membrane can potentially be strengthened by material and process improvements such as alloying, operating temperature reduction, and flue gas treatment.

  9. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  10. CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN

    DOEpatents

    Bailes, R.H.; Ellis, D.A.

    1958-08-26

    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  11. Geochemical controls on vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  12. Geochemical controls of vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  13. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  14. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

    NASA Astrophysics Data System (ADS)

    Sourmail, T.; Garcia-Mateo, C.; Caballero, F. G.; Cazottes, S.; Epicier, T.; Danoix, F.; Milbourn, D.

    2017-09-01

    The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

  15. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment.

    PubMed

    Yu, Yonglin; Shen, Xinkun; Luo, Zhong; Hu, Yan; Li, Menghuan; Ma, Pingping; Ran, Qichun; Dai, Liangliang; He, Ye; Cai, Kaiyong

    2018-06-01

    Oxidative stress is commonly existed in bone degenerative disease (osteoarthritis, osteoporosis etc.) and some antioxidants had great potential to enhance osteogenesis. In this study, we aim to investigate the anti-oxidative properties of various TiO 2 nanotubes (TNTs) so to screen the desirable size for improved osteogenesis and reveal the underlying molecular mechanism in vitro. Comparing cellular behaviors under normal and oxidative stress conditions, an interesting conclusion was obtained. In normal microenvironment, small TNTs were beneficial for adhesion and proliferation of osteoblasts, but large TNTs greatly increased osteogenic differentiation. However, after H 2 O 2 (300 μM) treatment (mimicking oxidative stress), only large TNTs samples demonstrated superior cellular behaviors of increased osteoblasts' adhesion, survival and differentiation when comparing with those of native titanium (control). Molecular results revealed that oxidative stress resistance of large nanotubes was closely related to the high expression of integrin α5β1 (ITG α5β1), which further up-regulated the production of anti-apoptotic proteins (p-FAK, p-Akt, p-FoxO3a and Bcl2) and down-regulated the expression of pro-apoptotic protein (Bax). Moreover, we found that Wnt signals (Wnt3a, Wnt5a, Lrp5, Lrp6 and β-catenin) played an important role in promoting osteogenic differentiation of osteoblasts under oxidative condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A comparative assessment of the acute inhalation toxicity of vanadium compounds.

    PubMed

    Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A

    2016-11-01

    Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.

  17. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  18. Hydrothermal synthesis and characterization of novel vanadium oxides and their application as cathodes in lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Chirayil, Thomas George

    Novel layered or tunneled vanadium oxides are sought as a substitute for the expensive Lisb{x}CoOsb2 cathode material in lithium rechargeable batteries. The hydrothermal synthesis approach was taken in search of new vanadium oxides in the presence of a structure directing cation, TMA. A systematic study was done on the hydrothermal synthesis of the Vsb{2}Osb{5}-TMAOH-LiOH system. It was determined from this study that the pH of the reaction mixture was very critical in the formation of many compounds. Acetic acid utilized to adjust the pH of the reaction mixture in the presence of TMA behaved as a buffer and maintained a constant pH during the reaction. Hydrothermal synthesis conducted between pH 10 and 2 resulted in the formation of 7 compounds. At the highest pH, a well known compound Lisb3VOsb4, was formed. Between pH 5.2-9, a layered compound, TMAVsb3Osb7 resulted. The thermal treatment of TMAVsb3Osb7 under oxygen lead to an oxidized phase, TMAVsb3Osb8, which increased its lithium capacity significantly. Between pH 5-6, a cluster compound, TMAsb8lbrack Vsb{22}Osb{54}(CHsb3COO)rbrack{*}4Hsb2O with the acetate ion trapped inside the caged Vsb{22}Osb{54} cluster, and a layered vanadium oxide, Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O was obtained. The Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O compound was dehydrated to form Lisb{x}Vsb{2-delta}Osb{4-delta} and the lithium was removed electrochemically to form a new type of "VOsb2". Several alkylamines, DMSO and an additional water molecule were intercalated to swell the layers of Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O. Lowering the pH between 3.0-3.5, resulted in layered compound, TMAVsb4Osb{10}, with TMA residing between the layers. Layered compounds, TMAVsb8Osb{20} and TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5, were obtained at very acidic conditions. The hydrothermally grown TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5 is similar to the xerogel Vsb2Osb5 intercalated with TMA synthesized by the sol-gel process. Several trends were observed

  19. A well-defined terminal vanadium(III) oxo complex.

    PubMed

    King, Amanda E; Nippe, Michael; Atanasov, Mihail; Chantarojsiri, Teera; Wray, Curtis A; Bill, Eckhard; Neese, Frank; Long, Jeffrey R; Chang, Christopher J

    2014-11-03

    The ubiquity of vanadium oxo complexes in the V+ and IV+ oxidation states has contributed to a comprehensive understanding of their electronic structure and reactivity. However, despite being predicted to be stable by ligand-field theory, the isolation and characterization of a well-defined terminal mononuclear vanadium(III) oxo complex has remained elusive. We present the synthesis and characterization of a unique terminal mononuclear vanadium(III) oxo species supported by the pentadentate polypyridyl ligand 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine (PY5Me2). Exposure of [V(II)(NCCH3)(PY5Me2)](2+) (1) to either dioxygen or selected O-atom-transfer reagents yields [V(IV)(O)(PY5Me2)](2+) (2). The metal-centered one-electron reduction of this vanadium(IV) oxo complex furnishes a stable, diamagnetic [V(III)(O)(PY5Me2)](+) (3) species. The vanadium(III) oxo species is unreactive toward H- and O-atom transfer but readily reacts with protons to form a putative vanadium hydroxo complex. Computational results predict that further one-electron reduction of the vanadium(III) oxo species will result in ligand-based reduction, even though pyridine is generally considered to be a poor π-accepting ligand. These results have implications for future efforts toward low-valent vanadyl chemistry, particularly with regard to the isolation and study of formal vanadium(II) oxo species.

  20. Effect of S-doping on structural, optical and electrochemical properties of vanadium oxide thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.

    2013-12-01

    In this research, S-doped vanadium oxide thin films, with doping levels from 0 to 40 at.%, are prepared by spray pyrolysis technique on glass substrates. For electrochemical measurements, the films were deposited on florin-tin oxide coated glass substrates. The effect of S-doping on structural, electrical, optical and electrochemical properties of vanadium oxide thin films was studied. The x-ray diffractometer analysis indicated that most of the samples have cubic β-V2O5 phase structure with preferred orientation along [200]. With increase in the doping levels, the structure of the samples tends to be amorphous. The scanning electron microscopy images show that the structure of the samples is nanobelt-shaped and the width of the nanobelts decreases from nearly 100 to 40 nm with increase in the S concentration. With increase in the S-doping level, the sheet resistance and the optical band gap increase from 940 to 4015 kΩ/square and 2.41 to 2.7 eV, respectively. The cyclic voltammogram results obtained for different samples show that the undoped sample is expanded and the sample prepared at 20 at.% S-doping level has sharper anodic and cathodic peaks.

  1. Inhibiting the VIM-2 Metallo-β-Lactamase by Graphene Oxide and Carbon Nanotubes.

    PubMed

    Huang, Po-Jung Jimmy; Pautler, Rachel; Shanmugaraj, Jenitta; Labbé, Geneviève; Liu, Juewen

    2015-05-13

    Metallo-β-lactamases (MBLs) degrade a broad spectrum of antibiotics including the latest carbapenems. So far, limited success has been achieved in developing its inhibitors using small organic molecules. VIM-2 is one of the most studied and important MBLs. In this work, we screened 10 nanomaterials, covering a diverse range of surface properties including charge, hydrophobicity, and specific chemical bonding. Among these, graphene oxide and carbon nanotubes are the most potent inhibitors, while most other materials do not show much inhibition effect. The inhibition is noncompetitive and is attributed to the hydrophobic interaction with the enzyme. Adsorption of VIM-2 was further probed using protein displacement assays where it cannot displace or be displaced by bovine serum albumin (BSA). This information is useful for rational design inhibitors for MBLs and more specific inhibition might be achieved by further surface modifications on these nanocarbons.

  2. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes.

    PubMed

    Simon-Deckers, A; Gouget, B; Mayne-L'hermite, M; Herlin-Boime, N; Reynaud, C; Carrière, M

    2008-11-20

    If released in the environment, nanomaterials might be inhaled by populations and cause damage to the deepest regions of the respiratory tract, i.e., the alveolar compartment. To model this situation, we studied the response of A549 human pneumocytes after exposure to aluminium oxide or titanium oxide nanoparticles, and to multi-walled carbon nanotubes. The influence of size, crystalline structure and chemical composition was investigated. After a detailed identification of nanomaterial physico-chemical characteristics, cells were exposed in vitro and viability and intracellular accumulation were assessed. In our conditions, carbon nanotubes were more toxic than metal oxide nanoparticles. Our results confirmed that both nanotubes and nanoparticles are able to rapidly enter into cells, and distribute in the cytoplasm and intracellular vesicles. Among nanoparticles, we demonstrate significant difference in biological response as a function of size, crystalline phase and chemical composition. Their toxicity was globally lower than nanotubes toxicity. Among nanotubes, the length did not influence cytotoxicity, neither the presence of metal catalyst impurities.

  3. Sorptive Activity and Hydrophobic Behavior of Aerogels Based on Reduced Graphene Oxide and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Sultanov, F.; Bakbolat, B.; Daulbaev, Ch.; Urazgalieva, A.; Azizov, Z.; Mansurov, Z.; Tulepov, M.; Pei, S. S.

    2017-07-01

    A study has been made of the possibility of obtaining three-dimensional porous aerogel structures based on reduced graphene oxide and carbon nanotubes. Carbon nanotubes in the structure of the finished aerogel based on reduced graphene oxide were grown by thermal decomposition of ferrocene into cyclopentadienyl and iron ions which served as the source of carbon and a catalyst respectively. The obtained composite aerogels exhibit high sorptive activity for organic liquids of different densities.

  4. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas

    2016-03-01

    Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.

  5. Anodic aluminium oxide membranes used for the growth of carbon nanotubes.

    PubMed

    López, Vicente; Morant, Carmen; Márquez, Francisco; Zamora, Félix; Elizalde, Eduardo

    2009-11-01

    The suitability of anodic aluminum oxide (AAO) membranes as template supported on Si substrates for obtaining organized iron catalyst for carbon nanotube (CNT) growth has been investigated. The iron catalyst was confined in the holes of the AAO membrane. CVD synthesis with ethylene as carbon source led to a variety of carbon structures (nanotubes, helices, bamboo-like, etc). In absence of AAO membrane the catalyst was homogeneously distributed on the Si surface producing a high density of micron-length CNTs.

  6. Study on the poisoning effect-of non-vanadium catalysts by potassium

    NASA Astrophysics Data System (ADS)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  7. Comparative erythropoietic effects of three vanadium compounds.

    PubMed

    Hogan, G R

    2000-07-10

    The biotoxic effects of vanadium are variable depending upon a number of factors including the oxidation state of the test compound. This study reports the effects of three vanadium compounds on peripheral erythrocytes. On day 0 female ICR mice received a single injection of vanadium chloride (V-III), vanadyl sulfate (V-IV), or sodium orthovandate (V-V). At scheduled intervals post-injection, the number of circulating erythrocytes [red blood cells per millimeter cubed (RBC/mm3)], reticulocyte percentages, and radioiron uptake percentages were determined and compared to mice receiving saline only. Data show that all three test substances promoted a significant lowering of RBC/mm3 beginning on day 1 for V-IV and V-V and on day 2 for V-III through day 4. The reticulocyte percentages increase followed the same time course as that of the peripheral RBC decrease. Peak reticulocytosis was noted on days 2 and 4 for all three vanadium-treated groups; for V-IV and V-V the increase continued to day 6. Radioiron data showed an erythropoietic stimulation by a significant increase in uptake percentages on days 4-6 after vanadium injections compared to saline-treated controls.

  8. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  9. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery.

    PubMed

    Park, Minjoon; Jung, Yang-jae; Kim, Jungyun; Lee, Ho il; Cho, Jeaphil

    2013-10-09

    Carbon nanofiber/nanotube (CNF/CNT) composite catalysts grown on carbon felt (CF), prepared from a simple way involving the thermal decomposition of acetylene gas over Ni catalysts, are studied as electrode materials in a vanadium redox flow battery. The electrode with the composite catalyst prepared at 700 °C (denoted as CNF/CNT-700) demonstrates the best electrocatalytic properties toward the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples among the samples prepared at 500, 600, 700, and 800 °C. Moreover, this composite electrode in the full cell exhibits substantially improved discharge capacity and energy efficiency by ~64% and by ~25% at 40 mA·cm(-2) and 100 mA·cm(-2), respectively, compared to untreated CF electrode. This outstanding performance is due to the enhanced surface defect sites of exposed edge plane in CNF and a fast electron transfer rate of in-plane side wall of the CNT.

  10. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  11. Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Shen, Weidian; Jiang, Bin; Han, Bao Shan; Xie, Si-Shen

    2001-03-01

    Carbon nanotubes have attracted great interest since they were first synthesized. The tubes have substantial promise in a variety of applications due to their unique properties. Efforts have been made to characterize the mechanical properties of the tubes. However, previous work has concentrated on the tubes’ longitudinal properties, and studies of their radial properties lag behind. We have operated a scanning probe microscope, NanoScopeTM IIIa, in the indentation/scratching mode to carry out a nanoindentation test on the top of multiwalled carbon nanotubes. We measured the correlation between the radial stress and the tube compression, and thereby determined the radial compressive elastic modulus at different compressive forces. The measurements also allowed us to estimate the radial compressive strength of the tubes. Support of this work by an Eastern Michigan University Faculty Research Fellowship and by the K. C. Wong Education Foundation, Hong Kong is gratefully acknowledged.

  12. Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application.

    PubMed

    Patel, Manoj Kumar; Ali, Md Azahar; Srivastava, Saurabh; Agrawal, Ved Varun; Ansari, S G; Malhotra, Bansi D

    2013-12-15

    Nanostructured magnesium oxide (size<10nm) grafted carboxyl (COOH) functionalized multi-walled carbon nanotubes (nMgO-cMWCNTs) deposited electrophoretically onto indium tin oxide (ITO) coated glass electrode and have been utilized for Vibrio cholerae detection. Aminated 23 bases single stranded DNA (NH2-ssDNA) probe sequence (O1 gene) of V. cholerae has been covalently functionalized onto nMgO-cMWCNTs/ITO electrode surface using EDC-NHS chemistry. This DNA functionalized MgO grafted cMWCNTs electrode has been characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical techniques. The results of XPS studies reveal that sufficient O-C=O groups present at the nMgO-cMWCNTs surface are utilized for DNA binding. The results of hybridization studies conducted with fragmented target DNA (ftDNA) of V. cholerae using electrochemical impedance spectroscopy (EIS) reveal sensitivity as 3.87 Ω ng(-1) cm(-2), detection limit of ~21.70 ng µL(-1) in the linear range of 100-500 ng µL(-1) and stability of about 120 days. The proposed DNA functionalized nMgO-cMWCNTs nanomatrix provides a novel impedimetric platform for the fabrication of a compact genosensor device for biomedical application. © 2013 Elsevier B.V. All rights reserved.

  13. Organometalic carbosilane polymers containing vanadium and their preparation

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Fukuda, K.

    1983-01-01

    The present invention concerns a new organometallic polymer material containing in part a vanadium-siloxane linkage (V-0-Si), which has excellent resistance to heat and oxidation and a high residue ratio after high temperature treatment in a non-oxidizing atmosphere, for example, nitrogen, argon, helium, ammonia, or hydrogen.

  14. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less

  15. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. THE COLORIMETRIC DETERMINATION OF VANADIUM IN NIOBIUM-VANADIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Articolo, O.J.

    1959-06-26

    A procedure is described for the analysis of vanadium in niobium-- vanadium alloys in the range >0.1% vanadium with an accuracy of better than 3%. The method was applied to the analysis of niobium alloys in which the nominal per cent vanadium varied between 0.3 to 4.6%. The sample is dissolved in a mixture of nitric and hydrofluoric acid and then evaporated to fumes with sulfuric acid. The niobium is hydrolyzed with sulfurous acid and separated from the vanadium by filtration. Hydrogen peroxide is added to the filtrate to form a reddish brown complex with the vanadium. The optical densitymore » of the resulting solution is obtained at 450 m mu on a model B Beckman spectrophotometer. (auth)« less

  17. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula; Sharma, Vimal, E-mail: manjula.physics@gmail.com

    2016-05-23

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  18. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process

    NASA Astrophysics Data System (ADS)

    Jung, Myungwon; Mishra, Brajendra

    2018-02-01

    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  19. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  20. Correlation between molten vanadium salts and the structural degradation of HK-type steel superheater tubes

    NASA Astrophysics Data System (ADS)

    de Carvalho Nunes, Frederico; de Almeida, Luiz Henrique; Ribeiro, André Freitas

    2006-12-01

    HK steels are among the most used heat-resistant cast stainless steels, being corrosion-resistant and showing good mechanical properties at high service temperatures. These steels are widely used in reformer furnaces and as superheater tubes. During service, combustion gases leaving the burners come in contact with these tubes, resulting in corrosive attack and a large weight loss occurs due to the presence of vanadium, which forms low melting point salts, removing the protective oxide layer. In this work the external surface of a tube with dramatic wall thickness reduction was analyzed using light microscopy, scanning electron microscopy, and transmission electron microscopy. The identification of the phases was achieved by energy dispersive spectroscopy (EDS) analyses. The results showed oxides arising from the external surface. In this oxidized region vanadium compounds inside chromium carbide particles were also observed, due to inward vanadium diffusion during corrosion attack. A chemical reaction was proposed to explain the presence of vanadium in the metal microstructure.

  1. Duttonite, a new quadrivalent vanadium oxide from the Peanut mine, Montrose County, Colorado

    USGS Publications Warehouse

    Thompson, Mary Eleanor; Roach, Carl Houston; Meyrowitz, Robert

    1956-01-01

    Duttonite, a new quadrivalent vanadium oxide from the Peanut mine, Montrose County, Colo., has the formula VO(OH)2. The mineral occurs as crusts and coatings of pale-brown transparent platy crystals, as one of the first oxidation products of montroseite ore. It is associated with melanovanadite and abundant crystals of hexagonal native selenium. Duttonite is biaxial positive, 2V is about 60°, dispersion is r v, moderate; X = a, pale pinkish brown; Y = c, pale yellow-brown; Z = b, pale brown; α = 1.810 ± 0.003, β = 1.900 ± 0.003, γ > 2.01. The hardness is about 2.5; the calculated specific gravity is 3.24. The chemical analysis shows, in percent: V2o3 2.6, V2O4 75.3, FeO 0.4, H2O 18.1, insoluble 4.2, total 100.6. Duttonite is monoclinic, ao = 8.80 ± 0.02A, bo - 3.95 ± 0.01A, co - 5.96 ± 0.02A, β = 90°401 ± 51. The space group is I2/c, (C62h); the cell contents are 4[VO(OH)2]. The crystals are strongly pseudo-orthorhombic, and the structure departs only slightly from the space group Imcm. Duttonite is named for Captain Clarence Edward Dutton (1841-1912). A detailed study of the geology, geochemistry, and mineralogy of the vanadium-uranium ore at the Peanut mine, Montrose County, Colo., was begun early in 1954 by Carl H. Roach of the U. S. Geological Survey. A number of rare and new minerals were found in the ore and the study of these samples was undertaken by Mary E. Thompson. Duttonite is the first new vanadium mineral to be described from the Peanut mine. It is named for Captain Clarence Edward Dutton (1841-1912), who was one of the first geologists to work in the Colorado Plateau region and who was a member of the U. s. Geological Survey from 1879-91. We are indebted to the following members of the Geological Surbey: K. E. Valentine for spectrographic analyses of duttonite, and M. E. Mrose and H. T. Evans, Jr., for measurement of the unit cell constants. This work is part of a program being conducted by the U. S. Geological Survey on behalf of the

  2. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  3. Vanadium doped tin dioxide as a novel sulfur dioxide sensor.

    PubMed

    Das, S; Chakraborty, S; Parkash, O; Kumar, D; Bandyopadhyay, S; Samudrala, S K; Sen, A; Maiti, H S

    2008-04-15

    Considering the short-term exposure limit of SO2 to be 5 ppm, we first time report that semiconductor sensors based on vanadium doped SnO2 can be used for SO2 leak detection because of their good sensitivity towards SO2 at concentrations down to 5 ppm. Such sensors are quite selective in presence of other gases like carbon monoxide, methane and butane. The high sensitivity of vanadium doped tin dioxide towards SO2 may be understood by considering the oxidation of sulfur dioxide to sulfur trioxide on SnO2 surface through redox cycles of vanadium-sulfur-oxygen adsorbed species.

  4. Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles

    PubMed Central

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2011-01-01

    The thermal stability of multiwalled carbon nanotubes (CNTs) was studied in high vacuum using tungsten nanoparticles as miniaturized thermal probes. The particles were placed on CNTs inside a high-resolution transmission electron microscope equipped with a scanning tunneling microscope unit. The setup allowed manipulating individual nanoparticles and heating individual CNTs by applying current to them. CNTs were found to withstand high temperatures, up to the melting point of 60-nm-diameter W particles (∼3400 K). The dynamics of W particles on a hot CNT, including particle crystallization, quasimelting, melting, sublimation and intradiffusion, were observed in real time and recorded as a video. Graphite layers reel off CNTs when melted or premelted W particles revolve along the tube axis. PMID:27877413

  5. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  6. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics

    NASA Astrophysics Data System (ADS)

    Perez-Aguilar, Nancy Veronica; Muñoz-Sandoval, Emilio; Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene

    2010-02-01

    Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 °C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.

  7. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.

    PubMed

    Li, Qi; Shang, Jian Ku

    2009-12-01

    Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.

  8. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats.

    PubMed

    El Karib, Abbas O; Al-Ani, Bahjat; Al-Hashem, Fahaid; Dallak, Mohammad; Bin-Jaliah, Ismaeel; El-Gamal, Basiouny; Bashir, Salah O; Eid, Refaat A; Haidara, Mohamed A

    2016-07-01

    Diabetic complications such as cardiovascular disease and osteoarthritis (OA) are among the common public health problems. The effect of insulin on OA secondary to diabetes has not been investigated before in animal models. Therefore, we sought to determine whether insulin and the insulin-mimicking agent, vanadium can protect from developing OA in diabetic rats. Type 1 diabetes mellitus (T1DM) was induced in Sprague-Dawley rats and treated with insulin and/or vanadium. Tissues harvested from the articular cartilage of the knee joint were examined by scanning electron microscopy, and blood samples were assayed for oxidative stress and inflammatory biomarkers. Eight weeks following the induction of diabetes, a profound damage to the knee joint compared to the control non-diabetic group was observed. Treatment of diabetic rats with insulin and/or vanadium differentially protected from diabetes-induced cartilage damage and deteriorated fibrils of collagen fibers. The relative biological potencies were insulin + vanadium > insulin > vanadium. Furthermore, there was about 2- to 5-fold increase in TNF-α (from 31.02 ± 1.92 to 60.5 ± 1.18 pg/ml, p < 0.0001) and IL-6 (from 64.67 ± 8.16 to 338.0 ± 38.9 pg/ml, p < 0.0001) cytokines and free radicals measured as TBARS (from 3.21 ± 0.37 to 11.48 ± 1.5 µM, p < 0.0001) in the diabetic group, which was significantly reduced with insulin and or vanadium. Meanwhile, SOD decreased (from 17.79 ± 8.9 to 8.250.29, p < 0.0001) and was increased with insulin and vanadium. The relative potencies of the treating agents on inflammatory and oxidative stress biomarkers were insulin + vanadium > insulin > vanadium. The present study demonstrates that co-administration of insulin and vanadium to T1DM rats protect against diabetes-induced OA possibly by lowering biomarkers of inflammation and oxidative stress.

  9. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    PubMed

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  10. Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viayan, B.; Dimitrijevic, N. M.; Rajh, T.

    Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonancemore » (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.« less

  11. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.

    PubMed

    Li, Xiukai; Ko, Jogie; Zhang, Yugen

    2018-02-09

    Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Insulin mimesis of vanadium derivatives. Oxidation of cysteine by V(V) oxo diperoxo complexes.

    PubMed

    Ballistreri, F P; Barbuzzi, E G; Tomaselli, G A; Toscano, R M

    2000-05-30

    Kinetics of the oxidation of cysteine to cystine by four V(V) oxo diperoxo complexes [VO(O2)2L] possessing insulin mimetic activity, where L = oxalate(oxa), picolinate (pic), bipyridil (bipy), phenanthroline(phen), were performed in water at 10 degrees C by the UV or stopped-flow technique. 51V NMR spectra indicate that oxa undergoes a total ligand dissociation differently from pic, bipy and phen which hold their ligands also in solution. The observed reactivity is deeply affected by the identity of the ligand. The process seems to require coordination of the cysteine to the metal, followed by oxidation within the coordination sphere. In this respect phen and bipy make the coordination of cysteine much easier than oxa and pic. It is suggested, also on the basis of some preliminary observations concerning the oxidation of C6H5CH2SH, that the oxidation process is triggered by an electron transfer step. The rate of this step would be higher for oxa and pic than for phen and bipy. The observation that the oxidative ability of these vanadium peroxo complexes is dependent upon the nature of the ligands might match the analogous finding that their insulin mimetic activity is also modulated by the ligand identities.

  13. Structural investigation of phosphate - bismuth glasses with vanadium

    NASA Astrophysics Data System (ADS)

    Stǎnescu, R.; Vedeanu, N.; Cozar, I. B.; Mǎgdaş, A.

    2013-11-01

    The xV2O5(1-dx)[0.5P2O5ṡ0.5Bi2O3] glass system with 0 ≤ x ≤ 50 mol% is investigated by IR and Raman spectroscopy. Both P2O5 and Bi2O3 oxides are known as network formers, but Bi2O3 is an unconventional one. At low content of vanadium oxide (x ≤ 5 mol%), both IR and Raman spectra are dominated by vibration bands characteristics to structural groups of phosphate and bismuthate lattices. Due to the network modifier role, vanadium oxide acts mainly on the Bi2O3 network allowing the phosphate groups to impose their characteristics absorption bands in spectra. These bands are strongly reduced for x ≥ 20 mol% due to the phosphate network depolymerization and the appearance of new vibrations characteristic to P-O-V, Bi-O-V and V-O-V groups showing the network former role of V2O5.

  14. The effect of solution concentration on the physical and electrochemical properties of vanadium oxide films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M. M.

    2013-10-01

    Vanadium oxide thin films were prepared on glass substrates by using the spray pyrolysis technique. The effect of solution concentration (0.1 M, 0.2 M and 0.3 M) on the nanostructural, electrical, optical, and electrochromic properties of deposited films were investigated using X-ray diffraction, scanning electron microscopy, UV—vis spectroscopy, and cyclic volta-metrics. The X-ray diffraction shows that only the sample at 0.1 M has a single β-V2O5 phase and the others have mixed phases of vanadium oxide. The lowest sheet resistance was obtained for the samples prepared at 0.3 M solution. It was also found that the optical transparency of the samples changes from 70% to 35% and the optical band gap of the samples was in the range of 2.20 to 2.41 eV, depending on the morality of solution. The cycle voltammogram shows that the sample prepared at 0.3 M has one-step electerochoromic but the other samples have two-step electerochoromic. The results show a correlation between the cycle voltammogram and the physical properties of the films.

  15. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhikun; Cao, Zeyuan; Deng, Biwei; Wang, Yuefeng; Shao, Jiayi; Kumar, Prashant; Liu, C. Richard; Wei, Bingqing; Cheng, Gary J.

    2014-05-01

    Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications.Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr

  16. Enrichment Mechanism of Semiconducting Single-walled Carbon Nanotubes by Surfactant Amines

    PubMed Central

    Ju, Sang-Yong; Utz, Marcel; Papadimitrakopoulos, Fotios

    2009-01-01

    Utilization of single-walled carbon nanotubes (SWNTs) in high-end applications hinges on separating metallic (met-) from semiconducting (sem-) SWNTs. Surfactant amines, like octadecylamine (ODA) have proven instrumental for the selective extraction of sem-SWNTs from tetrahydrofuran (THF) nanotube suspensions. The chemical shift differences along the tail of an asymmetric, diacetylenic surfactant amine were used to probe the molecular dynamics in the presence and absence of nanotubes via NMR. The results suggest that the surfactant amine head is firmly immobilized onto the nanotube surface together with acidic water, while the aliphatic tail progressively gains larger mobility as it gets farther from the SWNT. X-ray and high-resolution TEM studies indicate that the sem-enriched sample is populated mainly by small nanotube bundles containing ca. three SWNTs. Molecular simulations in conjunction with previously determined HNO3/H2SO4 oxidation depths for met- and sem-SWNTs indicate that the strong pinning of the amine surfactants on the sem-enriched SWNTs bundles is a result of a well-ordered arrangement of nitrate/amine salts separated with a monomolecular layer of H2O. Such continuous 2D arrangement of nitrate/amine salts shields the local environment adjacent to sem-enriched SWNTs bundles and maintains an acidic pH that preserves nanotube oxidation (i.e. SWNTn+). This, in turn, results in strong interactions with charge-balancing NO3- counter ions that through their association with neutralized surfactant amines provide effective THF dispersion and consequent sem-enrichment. PMID:19397291

  17. Plasma assisted synthesis of vanadium pentoxide nanoplates

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Sharma, Rabindar Kumar; Kumar, Prabhat; Reddy, G. B.

    2015-08-01

    In this work, we report the growth of α-V2O5 (orthorhombic) nanoplates on glass substrate using plasma assisted sublimation process (PASP) and Nickel as catalyst. 100 nm thick film of Ni is deposited over glass substrate by thermal evaporation process. Vanadium oxide nanoplates have been deposited treating vanadium metal foil under high vacuum conditions with oxygen plasma. Vanadium foil is kept at fixed temperature growth of nanoplates of V2O5 to take place. Samples grown have been studied using XPS, XRD and HRTEM to confirm the growth of α-phase of V2O5, which revealed pure single crystal of α- V2O5 in orthorhombic crystallographic plane. Surface morphological studies using SEM and TEM show nanostructured thin film in form of plates. Uniform, vertically aligned randomly oriented nanoplates of V2O5 have been deposited.

  18. Electrochemical oxidation of 4-chlorophenol for wastewater treatment using highly active UV treated TiO2 nanotubes.

    PubMed

    Tian, Min; Thind, Sapanbir S; Dondapati, Jesse S; Li, Xinyong; Chen, Aicheng

    2018-06-07

    In the present work, we report on a facile UV treatment approach for enhancing the electrocatalytic activity of TiO 2 nanotubes. The TiO 2 nanotubes were prepared using an anodization oxidation method by applying a voltage of 40 V for 8 h in a DMSO + 2% HF solution, and further treated under UV light irradiation. Compared with Pt and untreated TiO 2 nanotubes, the UV treated electrode exhibited a superior electrocatalytic activity toward the oxidation of 4-chlorophenol (4-ClPh). The effects of current density and temperature on the electrochemical oxidation of the 4-ClPh were also systematically investigated. The high electrocatalytic activity of the UV treated TiO 2 nanotubes was further confirmed by the electrochemical oxidation of other persistent organic pollutants including phenol, 2-, 3-, 4-nitrophenol, and 4-aminophenol. The total organic carbon (TOC) analysis revealed that over 90% 4-ClPh was removed when the UV treated TiO 2 electrode was employed and the rate constant was 16 times faster than that of the untreated TiO 2 electrode; whereas only 60% 4-ClPh was eliminated at the Pt electrode under the same conditions. This dramatically improved electrocatalytic activity might be attributed to the enhanced donor density, conductivity, and high overpotential for oxygen evolution. Our results demonstrated that the application of the UV treatment to the TiO 2 nanotubes enhanced their electrochemical activity and energy consumption efficiency significantly, which is highly desirable for the abatement of persistent organic pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    PubMed

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  20. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm.

    PubMed

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M; Mutter, George L; Ozkan, Mihrimah; Ozkan, Cengiz S; Demirci, Utkan

    2016-08-19

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  1. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  2. Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Goh, P. S.; Ismail, A. F.; Aziz, M.

    2009-06-01

    A means of dispersion of multiwalled carbon nanotube (MWCNT) via mixed acid (HNO3 and H2SO4) oxidation with different treatment durations was investigated through the solubility study of the treated carbon nanotubes in some common solvents. Fourier transformed infrared (FTIR) characterization of the reaction products revealed that the surface of MWCNTs was successfully functionalized with surface acidic groups. The acid-base titration demonstrated that the amount of surface acidic groups increased in parallel with the refluxing duration. The acid modified MWCNTs were found to be well dispersed in polar solvents, such as ethanol and water due to the presence of the hydrophilic acid functional groups on the surface of raw MWCNTs. Such chemical modification of carbon nanotube properties will pave the way towards the realistic applications in the nanotechnology world.

  3. Exploring the Chemistry and Biology of Vanadium-dependent Haloperoxidases*

    PubMed Central

    Winter, Jaclyn M.; Moore, Bradley S.

    2009-01-01

    Nature has developed an exquisite array of methods to introduce halogen atoms into organic compounds. Most of these enzymes are oxidative and require either hydrogen peroxide or molecular oxygen as a cosubstrate to generate a reactive halogen atom for catalysis. Vanadium-dependent haloperoxidases contain a vanadate prosthetic group and utilize hydrogen peroxide to oxidize a halide ion into a reactive electrophilic intermediate. These metalloenzymes have a large distribution in nature, where they are present in macroalgae, fungi, and bacteria, but have been exclusively characterized in eukaryotes. In this minireview, we highlight the chemistry and biology of vanadium-dependent haloperoxidases from fungi and marine algae and the emergence of new bacterial members that extend the biological function of these poorly understood halogenating enzymes. PMID:19363038

  4. Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.

    PubMed

    Gilburd, Leonid; Xu, Xiaoji G; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2016-01-21

    Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed.

  5. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Defect-mediated room temperature ferromagnetism in vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Nori, Sudhakar; Zhou, Honghui; Narayan, Jagdish

    2009-09-01

    High quality epitaxial undoped vanadium oxide (VO2) thin films on c-plane sapphire (0001) substrate have been grown using pulsed laser deposition technique. The as-grown films exhibited excellent structural and transport properties without requiring further annealing treatments for these oxygen-deficient oxide films. The epitaxial growth has been achieved via domain matching epitaxy, where matching of integral multiples of planes occurs across the film-substrate interface. The magnetic properties of vanadium oxide (VO2) films investigated at different temperatures in the range of 10-360 K showed significant magnetic hysteresis as well as saturation of the magnetic moment. The origin of ferromagnetic properties with an estimated Curie temperature above 500 K is discussed in the absence of magnetic impurities in VO2 thin films as determined by x-ray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy.

  7. Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Dintcheva, Nadka Tzankova; Arrigo, Rossella; Gambarotti, Cristian; Guenzi, Monica; Carroccio, Sabrina; Cicogna, Francesca; Filippone, Giovanni

    2014-05-01

    The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a synergistic effect of the natural anti-oxidant and carbon nanotubes, i.e. strong interaction between CNT surface and anti-oxidant molecules. Particularly, these interactions cause the formation of structural defects onto outer CNT surfaces, which, in turn, increase the CNT radical scavenging activity.

  8. Multi-Wall Carbon Nanotubes as Lithium Nanopipettes and SPM Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Bharath, Satyaveda; Cullen, William; Reutt-Robey, Janice

    2014-03-01

    A multi-walled carbon nanotube (MWCNT) - terminated SPM cantilever, was utilized to perform nanolithography and surface diffusion measurements on a thin film of vapor-deposited lithium atop a silicon (111) substrate under ultra-high vacuum conditions. In these investigations the MWCNT tip was shown to act as both a lithium nanopipette and a probe for non-contact atomic force microscopy (NC-AFM) measurements. With the application of appropriate bias conditions, the MWCNT could site-selectively extract (expel) nano-scale amounts of lithium from (to) the sample surface. Depressions, mounds, and spikes were generated on the surface in this way and were azimuthally symmetric about the selected point of pipetting. Following lithium transfer to/from the substrate, the MWCNT pipette-induced features were sequentially imaged with NC-AFM using the MWCNT as the probe. Vacancy pits of ca. 300 nm diameter and 1.5 nm depth were observed to decay on a timescale of hours at room temperature, through diffusion-limited decay processes. A continuum model was utilized to simulate the island decay rates, and the lithium surface diffusion coefficient of D =7.5 (+/-1.3)*10-15 cm2/s was extracted. U.S. Department of Energy Award Number DESC0001160.

  9. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes.

    PubMed

    Li, Zhao; Chen, Min; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-02-01

    This work describes the mechanochemical transformations of molybdenum and vanadium sulfides into corresponding molybdate and vanadate, to serve as a new environment-friendly approach for processing hazardous spent hydrodesulphurization (HDS) catalysts solid waste to achieve an easy recovery of not only molybdenum and vanadium but also nickel and cobalt. Co-grinding the molybdenum and vanadium sulfides with oxidants and sodium carbonate stimulates solid-state reactions without any heating aid to form metal molybdates and vanadates. The reactions proceed with an increase in grinding time and were enhanced by using more sodium carbonate and stronger oxidant. The necessary conditions for the successful transformation can be explained on the basis of thermodynamic analyses, namely a negative change in Gibbs free energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    PubMed Central

    Elkady, Marwa F.; Hassan, Hassan Shokry; Amer, Wael A.; Salama, Eslam; Algarni, Hamed; Shaaban, Essam Ramadan

    2017-01-01

    Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA) as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD) analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM). The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes. PMID:29186853

  11. Carbon Nanotube Devices Engineered by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Prisbrey, Landon

    This dissertation explores the engineering of carbon nanotube electronic devices using atomic force microscopy (AFM) based techniques. A possible application for such devices is an electronic interface with individual biological molecules. This single molecule biosensing application is explored both experimentally and with computational modeling. Scanning probe microscopy techniques, such as AFM, are ideal to study nanoscale electronics. These techniques employ a probe which is raster scanned above a sample while measuring probe-surface interactions as a function of position. In addition to topographical and electrostatic/magnetic surface characterization, the probe may also be used as a tool to manipulate and engineer at the nanoscale. Nanoelectronic devices built from carbon nanotubes exhibit many exciting properties including one-dimensional electron transport. A natural consequence of onedimensional transport is that a single perturbation along the conduction channel can have extremely large effects on the device's transport characteristics. This property may be exploited to produce electronic sensors with single-molecule resolution. Here we use AFM-based engineering to fabricate atomic-sized transistors from carbon nanotube network devices. This is done through the incorporation of point defects into the carbon nanotube sidewall using voltage pulses from an AFM probe. We find that the incorporation of an oxidative defect leads to a variety of possible electrical signatures including sudden switching events, resonant scattering, and breaking of the symmetry between electron and hole transport. We discuss the relationship between these different electronic signatures and the chemical structure/charge state of the defect. Tunneling through a defect-induced Coulomb barrier is modeled with numerical Verlet integration of Schrodinger's equation and compared with experimental results. Atomic-sized transistors are ideal for single-molecule applications due to their

  12. The electric field gradient at111Cd in vanadium oxides

    NASA Astrophysics Data System (ADS)

    Naicker, V.; Bartos, A.; Lieb, K. P.; Uhrmacher, M.; Wenzel, T.; Wiarda, D.

    1993-03-01

    The electric field gradient (efg) of111Cd in polycrystalline V2O5 was studied using perturbed angular correlation (PAC) spectroscopy, with the111In activity ion-implanted at 400 keV. Between the individual steps of an isochronal annealing program, a distinct efg ( v Q 1=88.1(3) MHz, ν1=0.62(2)) was recorded the contribution of which increased with annealing temperature up to 74% at 870 K. Corresponding X-ray analysis of inactive V2O5 samples, which underwent the same annealing treatment, proved that the sample always stayed as V2O5. Since V2O5 has only one equivalent cation site, it is concluded that this efg belongs to111Cd at this site. Oxidation of a vanadium foil at T=675 and 800 K at p_{{{O}}_{{2}} } =200 mbar also yielded this efg. From PAC measurements in VO2, two well-defined efg's were found above and below the metal-semiconductor transition at 340 K, which are tentatively attributed to the monoclinic and the tetragonal phase.

  13. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells.

    PubMed

    Varghese, Oomman K; Paulose, Maggie; Grimes, Craig A

    2009-09-01

    Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 microm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.

  14. Long range superhyperfine interactions in polycrystalline vanadium doped SnO 2 investigated by CW and pulsed ENDOR spectroscopy

    NASA Astrophysics Data System (ADS)

    Murphy, Damien M.; Farley, Robert D.; Marshall, Joanne; Willock, David J.

    2004-06-01

    CW and pulsed ENDOR was used to probe the electron nuclear superhyperfine interactions between V 4+ ions and distant Sn nuclei in vanadium doped tin oxide (V/SnO 2). Whilst interactions with two sets of nearest neighbour Sn nuclei (with a V-Sn distance of 3.185 and 3.708 Å respectively) are observed by EPR, superhyperfine couplings to two remote sets of tins (with a V-Sn distance of 6.370 and ˜7.42 Å) are detected by ENDOR. The interaction was found to be largely isotropic and largest along the crystal c axis. Small differences in the remote tin environments were also detected by ENDOR.

  15. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  16. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation.

    PubMed

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Kim, Young Dok

    2018-04-27

    NiO/NiCo 2 O 4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N 2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m 2 g -1 ) than expected for a flat-surface structure (<15 m 2 g -1 ). Herein, we present a study of the catalytic activity of our novel NiO/NiCo 2 O 4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo 2 O 4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo 2 O 4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo 2 O 4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  17. Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection.

    PubMed

    Singh, Renu; Verma, Rachna; Sumana, G; Srivastava, Avanish Kumar; Sood, Seema; Gupta, Rajinder K; Malhotra, B D

    2012-08-01

    The nanocomposite based on polyaniline (PANI)-iron oxide nanoparticles (nFe(3)O(4)) and multi walled carbon-nanotubes (CNT) has been fabricated onto indium tin oxide (ITO) coated glass plate via facile electrochemical synthesis of polyaniline in presence of nFe(3)O(4) (~20 nm) and CNT (20-80 nm in diameter). The results of transmission electron microscopic studies show evidence of coating of PANI and nFe(3)O(4) onto the CNT. The PANI-nFe(3)O(4)-CNT/ITO nanoelectrode has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy studies. The biotinylated nucleic acid probe sequence consisting of 20 bases has been immobilized onto PANI-nFe(3)O(4)-CNT/ITO nanoelectrode using biotin-avidin coupling. It is shown that the PANI-nFe(3)O(4)-CNT platform based biosensor can be used to specifically detect bacteria (N. gonorrhoeae) at minute concentration as low as (1×10(-19) M) indicating high sensitivity within 45 s of hybridization time at 298 K by differential pulse voltammetry using methylene blue as electroactive indicator. This bacterial sensor has also been tested with 4 positive and 4 negative PCR amplicons of gonorrhoea affected patient samples. The results of these studies have implications towards the fabrication of a handheld device for Neisseria gonorrhoeae detection that may perhaps result in a decrease in the human immunodeficiency virus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Adhesive Bonding Experiments for Titanium 6 Aluminum 4 Vanadium (Ti6Al4V). Part I. Anodization Treatments.

    DTIC Science & Technology

    1979-12-01

    Identification of Surface Treat- 4 ments of Ti 6-4 II Effect of Increasing Oxide Porosity on H20 Contact Angle on Titanium 6 Aluminum 4 Vanadium 26 viii SECTIONI...and a high SIMS yield. The lithium does not appear in the oxide formed on titanium by this mixture. Similarly porosity may be induced by anodization at...Porous Oxide (B). 25 TABLE II EFFECT OF INCREASING OXIDE POROSITY ON H2 0 CONTACT ANGLE ON TITANIUM 6 ALUMINUM 4 VANADIUM - I H 2 0Sample Electrolyte

  19. Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries.

    PubMed

    Kim, Ki Jae; Park, Min-Sik; Kim, Jae-Hun; Hwang, Uk; Lee, Nam Jin; Jeong, Goojin; Kim, Young-Jun

    2012-06-04

    A new approach for enhancing the electrochemical performance of carbon felt electrodes by employing non-precious metal oxides is designed. The outstanding electro-catalytic activity and mechanical stability of Mn(3)O(4) are advantageous in facilitating the redox reaction of vanadium ions, leading to efficient operation of a vanadium redox flow battery.

  20. In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles

    NASA Astrophysics Data System (ADS)

    Pedrosa, Paulo; Cote, Jean-Marc; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain

    2017-02-01

    The present study describes a sputtering and in situ vacuum electrical resistivity setup that allows a more efficient sputtering-oxidation coupling process for the fabrication of oxide compounds like vanadium dioxide, VO2. After the sputtering deposition of pure V thin films, the proposed setup enables the sample holder to be transferred from the sputtering to the in situ annealing + resistivity chamber without venting the whole system. The thermal oxidation of the V films was studied by implementing two different temperature cycles up to 550 °C, both in air (using a different resistivity setup) and vacuum conditions. Main results show that the proposed system is able to accurately follow the different temperature setpoints, presenting clean and low-noise resistivity curves. Furthermore, it is possible to identify the formation of different vanadium oxide phases in air, taking into account the distinct temperature cycles used. The metallic-like electrical properties of the annealed coatings are maintained in vacuum whereas those heated in air produce a vanadium oxide phase mixture.

  1. In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles.

    PubMed

    Pedrosa, Paulo; Cote, Jean-Marc; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain

    2017-02-01

    The present study describes a sputtering and in situ vacuum electrical resistivity setup that allows a more efficient sputtering-oxidation coupling process for the fabrication of oxide compounds like vanadium dioxide, VO 2 . After the sputtering deposition of pure V thin films, the proposed setup enables the sample holder to be transferred from the sputtering to the in situ annealing + resistivity chamber without venting the whole system. The thermal oxidation of the V films was studied by implementing two different temperature cycles up to 550 °C, both in air (using a different resistivity setup) and vacuum conditions. Main results show that the proposed system is able to accurately follow the different temperature setpoints, presenting clean and low-noise resistivity curves. Furthermore, it is possible to identify the formation of different vanadium oxide phases in air, taking into account the distinct temperature cycles used. The metallic-like electrical properties of the annealed coatings are maintained in vacuum whereas those heated in air produce a vanadium oxide phase mixture.

  2. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  3. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE PAGES

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; ...

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru 0.90Pt 0.10 display a surface-specific activity (2.4 mA/cm 2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm 2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specificmore » activity of 1240 A/gPt for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  4. Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications.

    PubMed

    Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke

    2018-06-15

    We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.

  5. Vanadium Oxide Deposited on Strontium Titanate and Related Supports: Structural, Redox, and Catalytic Properties in Oxidative Dehydrogenation Reactions

    NASA Astrophysics Data System (ADS)

    McCarthy, James A.

    The field of heterogeneous catalysis has advanced largely through the understanding of structure-function relationships, and novel support materials constitute one possible strategy to further this knowledge through the determination of support effects. To this end, the synthesis, characterization, and reactivity of a new catalytic system are reported herein. Vanadium oxide supported on SrTiO3 (VOx/STO) was prepared by atomic layer deposition, and its activity was investigated in various oxidative dehydrogenation (ODH) reactions. In cyclohexane and propane ODH experiments at 500 °C, selectivity toward COx was found to decrease with greater VOx density and minimal STO surface exposure. This indicates that the support itself is an effective total oxidation catalyst, which complicates VOx performance measurements. In the propane studies, VOx/STO achieved lower turnover frequency (TOF) and propylene yield compared to conventional supported VO x materials. The lower activity of VOx/STO catalysts was correlated with their VOx species being less easily reducible, as determined by temperature-programmed reduction (TPR). The suppressed reducibility is attributed to the stronger surface basicity of STO, which is induced by the presence of relatively electropositive Sr2+ within the perovskite lattice. Studies of cyclohexene ODH at 300 °C were conducted to minimize intrinsic conversion from the supports. The VOx/STO catalysts were mostly found to be less active than VOx/TiO2 and VOx/Al 2O3, in accordance with reducibility measurements. However, one sample containing 0.75% vanadium on STO was particularly active, achieving a TOF greater than 0.01 s-1, while maintaining almost 90% dehydrogenation selectivity. In general, VOx/STO materials were found to be more selective for 1,3-cyclohexadiene compared to traditional catalysts. Other titanates of the form A2+TiO3 were also investigated as supports, and the reducibility of VOx was found to trend with the electronegativity of the

  6. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    PubMed

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  7. Vanadium Respiration by Geobacter metallireducens: Novel Strategy for In Situ Removal of Vanadium from Groundwater

    PubMed Central

    Ortiz-Bernad, Irene; Anderson, Robert T.; Vrionis, Helen A.; Lovley, Derek R.

    2004-01-01

    Vanadium can be an important contaminant in groundwaters impacted by mining activities. In order to determine if microorganisms of the Geobacteraceae, the predominant dissimilatory metal reducers in many subsurface environments, were capable of reducing vanadium(V), Geobacter metallireducens was inoculated into a medium in which acetate was the electron donor and vanadium(V) was the sole electron acceptor. Reduction of vanadium(V) resulted in the production of vanadium(IV), which subsequently precipitated. Reduction of vanadium(V) was associated with cell growth with a generation time of 15 h. No vanadium(V) was reduced and no precipitate was formed in heat-killed or abiotic controls. Acetate was the most effective of all the electron donors evaluated. When acetate was injected into the subsurface to enhance the growth and activity of Geobacteraceae in an aquifer contaminated with uranium and vanadium, vanadium was removed from the groundwater even more effectively than uranium. These studies demonstrate that G. metallireducens can grow via vanadium(V) respiration and that stimulating the activity of Geobacteraceae, and hence vanadium(V) reduction, can be an effective strategy for in situ immobilization of vanadium in contaminated subsurface environments. PMID:15128571

  8. Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte

    DOE PAGES

    Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...

    2016-09-08

    Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less

  9. Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention

    NASA Astrophysics Data System (ADS)

    Torres, D.; Pinilla, J. L.; Suelves, I.

    2017-12-01

    Few-layer graphene oxide (FLGO) was obtained by chemical unzipping of multi-wall carbon nanotubes (MWCNT) of different diameter distributions. MWCNT were synthesized by catalytic decomposition of methane using Fe-Mo/MgO catalysts. The variation in the Fe/Mo ratio (1, 2 and 5) was very influential in MWCNT diameter distribution and type of MWCNT obtained, including textural, chemical, structural and morphological characteristics. MWCNT diameter distribution and surface defects content had a profound impact on the characteristics of the resulting FLGO. Thus, MWCNT obtained with the catalyst with a Fe/Mo: 5 and presenting a narrow diameter distribution centered at 8.6 ± 3.3 nm led to FLGO maintaining non-oxidized graphite stacking (according to XRD analysis), lower specific surface area and higher thermostability as compared to FLGO obtained from MWCNT showing wider diameter distributions. The presence of more oxygen-containing functionalities and structural defects in large diameter nanotubes promotes the intercalation of species towards the inner layers of the nanotube, resulting in an enhanced MWCNT oxidation and opening into FLGO, what improves both micro- and mesoporosity.

  10. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for vanadium(V) detection in mineral water samples

    NASA Astrophysics Data System (ADS)

    He, Lijun; Zhang, Heng; Fan, Huanhuan; Jiang, Xiuming; Zhao, Wenjie; Xiang, Guo Qiang

    2018-01-01

    Herein, we propose a simple and effective strategy for designing a ratiometric fluorescent nanosensor. We designed and developed a carbon dots (CDs) based dual-emission nanosensor for vanadium(V) by coating the surface of dye-doped silica nanoparticles with CDs. The fluorescence of dual-emission silica nanoparticles was quenched in acetic acid through potassium bromate (KBrO3) oxidation. V(V) could catalyze KBrO3 oxidation reaction process, resulting in the ratiometric fluorescence quenching of dual-emission silica nanoparticles. We investigated several important parameters affecting the performance of the nanosensor. Under the optimized conditions, the detection limit of this nanosensor reached 1.1 ng mL- 1 and the linear range from 10 to 800 ng mL- 1. Furthermore, we found that the sensor was suitable for determination of V(V) in different mineral water samples with satisfactory results.

  12. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    PubMed

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  13. Sodium chloride-catalyzed oxidation of multiwalled carbon nanotubes for environmental benefit.

    PubMed

    Endo, Morinobu; Takeuchi, Kenji; Tajiri, Takeyuki; Park, Ki Chul; Wang, Feng; Kim, Yoong-Ahm; Hayashi, Takuya; Terrones, Mauricio; Dresselhaus, Mildred S

    2006-06-22

    A sodium chloride (NaCl) catalyst (0.1 w/w %) lowers the oxidation temperature of graphitized multiwalled carbon nanotubes: MWCNT-20 (diameter: 20-70 nm) and MWCNT-80 (diameter: 80-150 nm). The analysis of the reaction kinetics indicates that the oxidation of MWCNT-20 and MWCNT-80 mixed with no NaCl exhibits single reaction processes with activation energies of E(a) = 159 and 152 kJ mol(-1), respectively. The oxidation reaction in the presence of NaCl is shown to consist of two different reaction processes, that is, a first reaction and a second reaction process. The first reaction process is dominant at a low temperature of around 600 degrees C, while the second reaction process becomes more dominant than the first one in a higher temperature region. The activation energies of the first reaction processes (MWCNT-20: E(a1) = 35.7 kJ mol(-1); MWCNT-80: E(a1) = 43.5 kJ mol(-1)) are much smaller than those of the second reaction processes (MWCNT-20: E(a2) = 170 kJ mol(-1); MWCNT-80: E(a2) = 171 kJ mol(-1)). The comparison of the kinetic parameters and the results of the spectroscopic and microscopic analyses imply that the lowering of the oxidation temperature in the presence of NaCl results from the introduction of disorder into the graphitized MWCNTs (during the first reaction process), thus increasing the facility of the oxidation reaction of the disorder-induced nanotubes (in the second reaction process). It is found that the larger nanopits and cracks on the outer graphitic layers are caused by the catalytic effect of NaCl. Therefore, the NaCl-mixed samples showed more rapid and stronger oxidation compared with that of the nonmixed samples at the same residual quantity.

  14. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  16. Carbon Nanotubes Facilitate Oxidation of Cysteine Residues of Proteins.

    PubMed

    Hirano, Atsushi; Kameda, Tomoshi; Wada, Momoyo; Tanaka, Takeshi; Kataura, Hiromichi

    2017-10-19

    The adsorption of proteins onto nanoparticles such as carbon nanotubes (CNTs) governs the early stages of nanoparticle uptake into biological systems. Previous studies regarding these adsorption processes have primarily focused on the physical interactions between proteins and nanoparticles. In this study, using reduced lysozyme and intact human serum albumin in aqueous solutions, we demonstrated that CNTs interact chemically with proteins. The CNTs induce the oxidation of cysteine residues of the proteins, which is accounted for by charge transfer from the sulfhydryl groups of the cysteine residues to the CNTs. The redox reaction simultaneously suppresses the intermolecular association of proteins via disulfide bonds. These results suggest that CNTs can affect the folding and oxidation degree of proteins in biological systems such as blood and cytosol.

  17. Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.

    2018-01-01

    This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.

  18. Microbial Reduction and Precipitation of Vanadium by Shewanella oneidensis

    PubMed Central

    Carpentier, W.; Sandra, K.; De Smet, I.; Brigé, A.; De Smet, L.; Van Beeumen, J.

    2003-01-01

    Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (VV). The bacterium reduces VV (vanadate ion) to VIV (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a VIV-containing solid. PMID:12788772

  19. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site.

    PubMed

    Yang, Jinyan; Tang, Ya; Yang, Kai; Rouff, Ashaki A; Elzinga, Evert J; Huang, Jen-How

    2014-01-15

    A series of column leaching experiments were performed to understand the leaching behaviour and the potential environmental risk of vanadium in a Panzhihua soil and vanadium titanomagnetite mine tailings. Results from sequential extraction experiments indicated that the mobility of vanadium in both the soil and the mine tailings was low, with <1% of the total vanadium readily mobilised. Column experiments revealed that only <0.1% of vanadium in the soil and mine tailing was leachable. The vanadium concentrations in the soil leachates did not vary considerably, but decreased with the leachate volume in the mine tailing leachates. This suggests that there was a smaller pool of leachable vanadium in the mine tailings compared to that in the soil. Drought and rewetting increased the vanadium concentrations in the soil and mine tailing leachates from 20μgL(-1) to 50-90μgL(-1), indicating the potential for high vanadium release following periods of drought. Experiments with soil columns overlain with 4, 8 and 20% volume mine tailings/volume soil exhibited very similar vanadium leaching behaviour. These results suggest that the transport of vanadium to the subsurface is controlled primarily by the leaching processes occurring in soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites.

    PubMed

    Narayanan, T N; Mary, A P Reena; Shaijumon, M M; Ci, Lijie; Ajayan, P M; Anantharaman, M R

    2009-02-04

    Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT-SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at approximately 110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT-SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT-SPION composite can be envisaged as a good agent for various biomedical applications.

  1. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; ...

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  2. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  3. Controlled preparation of carbon nanotube-iron oxide nanoparticle hybrid materials by a modified wet impregnation method

    NASA Astrophysics Data System (ADS)

    Tsoufis, Τheodoros; Douvalis, Alexios P.; Lekka, Christina E.; Trikalitis, Pantelis N.; Bakas, Thomas; Gournis, Dimitrios

    2013-09-01

    We report a novel, simple, versatile, and reproducible approach for the in situ synthesis of iron oxide nanoparticles (NP) on the surface of carbon nanotubes (CNT). Chemically functionalized single- or multi-wall CNT were used as nanotemplates for the synthesis of a range of very small (<10 nm) ferrimagnetic and/or anti-ferromagnetic iron oxide NP on their surface. For the synthesis of the hybrid materials, we employed for the first time a modified wet impregnation method involving the adsorption of ferric cations (as nanoparticle's precursor) on the functionalized nanotube surface and the subsequent interaction with acetic acid vapors followed by calcination at 400 °C under different atmospheres (air, argon, and oxygen). X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and magnetization measurements were used to study in-detail the morphology, size, and type of crystalline phases in the resulting hybrid materials. In addition, Raman measurements were used to monitor possible structural changes of the nanotubes during the synthetic approach. The experimental results were further supported by density functional theory calculations. These calculations were also used to disclose, how the type of the carbon nanotube template affects the nature and the size of the resulting NP in the final hybrids.

  4. Oxidation Kinetics of Bromophenols by Nonradical Activation of Peroxydisulfate in the Presence of Carbon Nanotube and Formation of Brominated Polymeric Products.

    PubMed

    Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Ma, Jun; Zhou, Yang; Yang, Yi

    2017-09-19

    This work demonstrated that bromophenols (BrPs) could be readily oxidized by peroxydisulfate (PDS) activated by a commercial carbon nanotube (CNT), while furfuryl alcohol (a chemical probe for singlet oxygen ( 1 O 2 )) was quite refractory. Results obtained by radical quenching experiments, electron paramagnetic resonance spectroscopy, and Fourier transform infrared spectroscopy further confirmed the involvement of nonradical PDS-CNT complexes rather than 1 O 2 . Bicarbonate and chloride ion exhibited negligible impacts on BrPs degradation by the PDS/CNT system, while a significant inhibitory effect was observed for natural organic matter. The oxidation of BrPs was influenced by solution pH with maximum rates occurring at neutral pH. Linear free energy relationships (LFERs) were established between the observed pseudo-first-order oxidation rates of various substituted phenols and the classical descriptor variables (i.e., Hammett constant σ + , and half-wave oxidation potential E 1/2 ). Products analyses by liquid chromatography tandem mass spectrometry clearly showed the formation of hydroxylated polybrominated diphenyl ethers and hydroxylated polybrominated biphenyls on CNT surface. Their formation pathway possibly involved the generation of bromophenoxyl radicals from BrPs one-electron oxidation and their subsequent coupling reactions. These results suggest that the novel nonradical PDS/CNT oxidation technology is a good alternative for selectively eliminating BrPs with alleviating toxic byproducts in treated water effluent.

  5. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  6. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    NASA Astrophysics Data System (ADS)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  7. Supported Lipid Bilayer/Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose; Craighead, Harold; McEuen, Paul

    2007-03-01

    We form supported lipid bilayers on single-walled carbon nanotubes and use this hybrid structure to probe the properties of lipid membranes and their functional constituents. We first demonstrate membrane continuity and lipid diffusion over the nanotube. A membrane-bound tetanus toxin protein, on the other hand, sees the nanotube as a diffusion barrier whose strength depends on the diameter of the nanotube. Finally, we present results on the electrical detection of specific binding of streptavidin to biotinylated lipids with nanotube field effect transistors. Possible techniques to extract dynamic information about the protein binding events will also be discussed.

  8. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.

    PubMed

    Sha, Xuelong; Ma, Wei; Meng, Fanqing; Wang, Ren; Fuping, Tian; Wei, Linsen

    2016-12-01

      In this study, we explored an effective and low-cost catalyst and its adsorption capacity and catalytic capacity for Methyl Orange Fenton oxidation degradation were investigated. The catalyst was directly prepared by reuse of magnetic iron oxide (Fe3O4) after saturated adsorption of vanadium (V) from waste SCR (Selective Catalytic Reduction) catalyst. The obtained catalyst was characterized by FTIR, XPS and the results showed that vanadium (V) adsorption process of Fe3O4 nanoparticles was non-redox reaction. The effects of pH, adsorption kinetics and equilibrium isotherms of adsorption were assessed. Adsorption of vanadium (V) ions by Fe3O4 nanoparticles could be well described by the Sips isotherm model which controlled by the mixed surface reaction and diffusion (MSRDC) adsorption kinetic model. The results show that vanadium (V) was mainly adsorbed on external surface of the Fe3O4 nanoparticles. The separation-recovering tungsten (VI) and vanadium (V) from waste SCR catalyst alkaline solution through pH adjustment was also investigated in this study. The results obtained from the experiments indicated that tungsten (VI) was selectively adsorbed from vanadium (V)/tungsten (VI) mixed solution in certain acidic condition by Fe3O4 nanoparticle to realize their recovery. Tungsten (V) with some impurity can be obtained by releasing from adsorbent, which can be confirmed by ICP-AES. The Methyl Orange degradation catalytic performance illustrated that the catalyst could improve Fenton reaction effectively at pH = 3.0 compare to Fe3O4 nanoparticles alone. Therefore, Fe3O4 nanoparticle adsorbed vanadium (V) has a potential to be employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the decoloration efficiency of Methyl Orange.

  9. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acidmore » (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  10. Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template.

    PubMed

    Zhang, Zhang; Liu, Lifeng; Shimizu, Tomohiro; Senz, Stephan; Gösele, Ulrich

    2010-02-05

    Silicon nanotubes (SiNTs) are compatible with Si-based semiconductor technology. In particular, the small diameters and controllable structure of such nanotubes are remaining challenges. Here we describe a method to fabricate SiNTs intrinsically connected with cobalt silicide ends based on highly ordered anodic aluminum oxide (AAO) templates. Size and growth direction of the SiNTs can be well controlled via the templates. The growth of SiNTs is catalyzed by the Co nanoparticles reduced on the pore walls of the AAO after annealing, with a controllable thickness at a given growth temperature and time. Simultaneously, cobalt silicide forms on the bottom side of the SiNTs.

  11. Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic water oxidation.

    PubMed

    Li, Fusheng; Li, Lin; Tong, Lianpeng; Daniel, Quentin; Göthelid, Mats; Sun, Licheng

    2014-11-21

    Electrochemically driven water oxidation has been performed using a molecular water oxidation catalyst immobilized on hybrid carbon nanotubes and nano-material electrodes. A high turnover frequency (TOF) of 7.6 s(-1) together with a high catalytic current density of 2.2 mA cm(-2) was successfully obtained at an overpotential of 480 mV after 1 h of bulk electrolysis.

  12. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  13. Phase formation polycrystalline vanadium oxide via thermal annealing process under controlled nitrogen pressure

    NASA Astrophysics Data System (ADS)

    Jessadaluk, S.; Khemasiri, N.; Rahong, S.; Rangkasikorn, A.; Kayunkid, N.; Wirunchit, S.; Horprathum, M.; Chananonnawathron, C.; Klamchuen, A.; Nukeaw, J.

    2017-09-01

    This article provides an approach to improve and control crystal phases of the sputtering vanadium oxide (VxOy) thin films by post-thermal annealing process. Usually, as-deposited VxOy thin films at room temperature are amorphous phase: post-thermal annealing processes (400 °C, 2 hrs) under the various nitrogen (N2) pressures are applied to improve and control the crystal phase of VxOy thin films. The crystallinity of VxOy thin films changes from amorphous to α-V2O5 phase or V9O17 polycrystalline, which depend on the pressure of N2 carrier during annealing process. Moreover, the electrical resistivity of the VxOy thin films decrease from 105 Ω cm (amorphous) to 6×10-1 Ω cm (V9O17). Base on the results, our study show a simply method to improve and control phase formation of VxOy thin films.

  14. Thirty years through vanadium chemistry.

    PubMed

    Costa Pessoa, J

    2015-06-01

    The relevance of vanadium in biological systems is known for many years and vanadium-based catalysts have important industrial applications, however, till the beginning of the 80s research on vanadium chemistry and biochemistry did not receive much attention from the scientific community. The understanding of the broad bioinorganic implications resulting from the similarities between phosphate and vanadate(V) and the discovery of vanadium dependent enzymes gave rise to an enormous increase in interest in the chemistry and biological relevance of vanadium. Thereupon the last 30years corresponded to a period of enormous research effort in these fields, as well as in medicinal applications of vanadium and in the development of catalysts for use in fine-chemical synthesis, some of these inspired by enzymatic active sites. Since the 80s my group in collaboration with others made contributions, described throughout this text, namely in the understanding of the speciation of vanadium compounds in aqueous solution and in biological fluids, and to the transport of vanadium compounds in blood plasma and their uptake by cells. Several new types of vanadium compounds were also synthesized and characterized, with applications either as prospective therapeutic drugs or as homogeneous or heterogenized catalysts for the production of fine chemicals. The developments made are described also considering the international context of the evolution of the knowledge in the chemistry and bioinorganic chemistry of vanadium compounds during the last 30years. This article was compiled based on the Vanadis Award presentation at the 9th International Vanadium Symposium. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    PubMed

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  16. Fabrication of vanadium dioxide polycrystalline films with higher temperature coefficient of resistance

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Yuan, Ningyi; Jiang, Meiping; Kun, Li

    2011-08-01

    Vanadium Dioxide Polycrystalline Films with High Temperature Coefficient of Resistance(TCR) were fabricated by modified Ion Beam Enhanced Deposition(IBED) method. The TCR of the Un-doping VO2 was about -4%/K at room temperature after appropriate thermal annealing. The XRD results clearly showed that IBED polycrystalline VO2 films had a single [002] orientation of VO2(M). The TCR of 5at.%W and 7at.% Ta doped Vanadium Dioxide Polycrystalline Films were high up to -18%/K and -12%/K at room temperature, respectively. Using 7at.% Ta and 2at.% Ti co-doping, the TCR of the co-doped vanadium oxide film was -7%/K and without hysteresis during temperature increasing and decresing from 0-80°C. It should indicate that the W-doped vanadium dioxide films colud be used for high sensing IR detect and the Ta/Ti co-doped film without hysteresis is suitable for infrarid imaging application.

  17. The Reactivity and Structure of Size Selected VxO y Clusters on a TiO2 (110)-(1 X 1) Surface of Variable Oxidation State

    NASA Astrophysics Data System (ADS)

    Neilson, Hunter L.

    The Reactivity and Structure of Size Selected VxOy Clusters on a TiO2 (110) Surface of Variable Oxidation State by Hunter L Neilson The selective oxidative dehydrogenation of methanol by vanadium oxide/TiO2 model systems has received a great deal of interest in the surface science community. Previous studies using temperature programmed desorption and reaction (TPD/R) to probe the oxidation of methanol to formaldehyde by vanadia/TiO2 model catalysts have shown that the activity of these systems vary considerably based on the way in which the model system is prepared with formaldehyde desorption temperatures observed anywhere from room temperature to 660 K. The principle reason for this variation is that the preparation of sub-monolayer films of vanadia on TiO2 produces clusters with a multitude of VxOy structures and a mixture of vanadium oxidation states. As a result the stoichiometry of the active vanadium oxide catalyst as well as the oxidation state of vanadium in the active catalyst remain unknown. To better understand this system, our group has probed the reactivity and structure of size-selected Vx, VOy and VxOy clusters on a reduced TiO2 (110) support in ultra-high vacuum (UHV) via TPD/R and scanning tunneling microscopy (STM). Ex situ preparation of these clusters in the gas phase prior to deposition has allowed us to systematically vary the stoichiometry of the vanadia clusters; a layer of control not available via the usual routes to vanadium oxide. The most active catalysts are shown to have (VO3)n stoichiometry in agreement with the theoretical models of the Metiu group. We have shown that both the activity and selectivity of V2O6 and V3O9 cluster catalysts depend sensitively on the oxidation state of the TiO2 (110) support. For example, V2O6 on a reduced surface is selective for the oxidation of methanol to formaldehyde while the selectivity shifts to favor methyl formate as the surface becomes increasingly oxidized. STM studies show that the

  18. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiangwei; Luo, Hao; Liu, Yang

    2016-09-14

    The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can bemore » induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.« less

  19. Detailed mineral and chemical relations in two uranium-vanadium ores

    USGS Publications Warehouse

    Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.

    1956-01-01

    Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the

  20. Structural characterization of vanadium oxide catalysts supported on nanostructured silica SBA-15 using X-ray absorption spectroscopy

    PubMed Central

    2010-01-01

    The local structure of vanadium oxide supported on nanostructured SiO2 (VxOy/SBA-15) was investigated by in situ X-ray absorption spectroscopy (XAS). Because the number of potential parameters in XAS data analysis often exceeds the number of "independent" parameters, evaluating the reliability and significance of a particular fitting procedure is mandatory. The number of independent parameters (Nyquist) may not be sufficient. Hence, in addition to the number of independent parameters, a novel approach to evaluate the significance of structural fitting parameters in XAS data analysis is introduced. Three samples with different V loadings (i.e. 2.7 wt %, 5.4 wt %, and 10.8 wt %) were employed. Thermal treatment in air at 623 K resulted in characteristic structural changes of the V oxide species. Independent of the V loading, the local structure around V centers in dehydrated VxOy/SBA-15 corresponded to an ordered arrangement of adjacent V2O7 units. Moreover, the V2O7 units were found to persist under selective oxidation reaction conditions. PMID:20181222

  1. Structural characterization of vanadium oxide catalysts supported on nanostructured silica SBA-15 using X-ray absorption spectroscopy.

    PubMed

    Walter, Anke; Herbert, Rita; Hess, Christian; Ressler, Thorsten

    2010-02-11

    The local structure of vanadium oxide supported on nanostructured SiO2 (VxOy/SBA-15) was investigated by in situ X-ray absorption spectroscopy (XAS). Because the number of potential parameters in XAS data analysis often exceeds the number of "independent" parameters, evaluating the reliability and significance of a particular fitting procedure is mandatory. The number of independent parameters (Nyquist) may not be sufficient. Hence, in addition to the number of independent parameters, a novel approach to evaluate the significance of structural fitting parameters in XAS data analysis is introduced. Three samples with different V loadings (i.e. 2.7 wt %, 5.4 wt %, and 10.8 wt %) were employed. Thermal treatment in air at 623 K resulted in characteristic structural changes of the V oxide species. Independent of the V loading, the local structure around V centers in dehydrated VxOy/SBA-15 corresponded to an ordered arrangement of adjacent V2O7 units. Moreover, the V2O7 units were found to persist under selective oxidation reaction conditions.

  2. Electro-thermal control of aluminum-doped zinc oxide/vanadium dioxide multilayered thin films for smart-device applications

    PubMed Central

    Skuza, J. R.; Scott, D. W.; Mundle, R. M.; Pradhan, A. K.

    2016-01-01

    We demonstrate the electro-thermal control of aluminum-doped zinc oxide (Al:ZnO) /vanadium dioxide (VO2) multilayered thin films, where the application of a small electric field enables precise control of the applied heat to the VO2 thin film to induce its semiconductor-metal transition (SMT). The transparent conducting oxide nature of the top Al:ZnO film can be tuned to facilitate the fine control of the SMT of the VO2 thin film and its associated properties. In addition, the Al:ZnO film provides a capping layer to the VO2 thin film, which inhibits oxidation to a more energetically favorable and stable V2O5 phase. It also decreases the SMT of the VO2 thin film by approximately 5–10 °C because of an additional stress induced on the VO2 thin film and/or an alteration of the oxygen vacancy concentration in the VO2 thin film. These results have significant impacts on technological applications for both passive and active devices by exploiting this near-room-temperature SMT. PMID:26884225

  3. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.

    PubMed

    Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Zhang, Jialu; Zhou, Chongwu

    2011-02-22

    Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circuits using aligned carbon nanotubes. By using Pd as source/drain contacts for p-type transistors, small work function metal Gd as source/drain contacts for n-type transistors, and evaporated SiO(2) as a passivation layer, we have achieved n-type transistor, PN diode, and integrated CMOS inverter with an air-stable operation. Compared with other nanotube n-doping techniques, such as potassium doping, PEI doping, hydrazine doping, etc., using low work function metal contacts for n-type nanotube devices is not only air stable but also integrated circuit fabrication compatible. Moreover, our aligned nanotube platform for CMOS integrated circuits shows significant advantage over the previously reported individual nanotube platforms with respect to scalability and reproducibility and suggests a practical and realistic approach for nanotube-based CMOS integrated circuit applications.

  4. Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.

    PubMed

    Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri

    2011-09-05

    The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis of Nanostructured Carbides of Titanium and Vanadium from Metal Oxides and Ferroalloys Through High-energy Mechanical Milling and Heat Treatment

    NASA Astrophysics Data System (ADS)

    Basu, P.; Jian, P. F.; Seong, K. Y.; Seng, G. S.; Masrom, A. K.; Hussain, Z.; Aziz, A.

    2010-03-01

    Carbides of Ti and V have been synthesized directly from their oxides and ferroalloys through mechanical milling and heat treatment. The powder mixtures are milled in a planetary ball mill from 15-80 hours and subsequently heat treated at 1000-1300° C for TiO2-C mixtures, at 500-550° C for V2O5-C mixtures and at 600-1000° C for (Fe-V)-C mixtures. The milled and heat treated powders are characterized by SEM, EDAX, XRD, and BET techniques. Nanostructured TiC has been successfully synthesized under suitable processing conditions. However, carbides of vanadium is unidentified even though possibilities of V2O5-C reaction are indicated with an extent of induced amorphism in the powder mixture. Density, specific surface area and particle size of the milled and heat treated mixtures are correlated with heat treatment temperatures. Similar attempts are also made to synthesize vanadium carbides from industrial grade Fe-V.

  6. Ozone assisted oxidation of gaseous PCDD/Fs over CNTs-containing composite catalysts at low temperature.

    PubMed

    Wang, Qiulin; Tang, Minghui; Peng, Yaqi; Du, Cuicui; Lu, Shengyong

    2018-05-01

    Ozone assisted carbon nanotubes (CNTs) supported vanadium oxide/titanium dioxide (V/Ti-CNTs) or vanadium oxide-manganese oxide/titanium dioxide (V-Mn/Ti-CNTs) catalysts towards gaseous PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) catalytic oxidations at low temperature (150 °C) were investigated. The removal efficiency (RE) and decomposition efficiency (DE) of PCDD/Fs achieved with V-Mn/Ti-CNTs alone were 95% and 45% at 150 °C under a space velocity (SV) of 14000 h -1 ; yet, these values reached 99% and 91% when catalyst and low concentration (50 ppm) ozone were used in combined. The ozone promotion effect on catalytic activity was further enhanced with the addition of manganese oxide (MnO x ) and CNTs. Adding MnO x and CNTs in V/Ti catalysts facilitated the ozone decomposition (creating more active species on catalyst surface), thus, improved ozone utilization (demanding relatively lower ozone addition concentration). On the other hand, this study threw light upon ozone promotion mechanism based on the comparison of catalyst properties (i.e. components, surface area, surface acidity, redox ability and oxidation state) before and after ozone treatment. The experimental results indicate that a synergistic effect exists between catalyst and ozone: ozone is captured and decomposed on catalyst surface; meanwhile, the catalyst properties are changed by ozone in return. Reactive oxygen species from ozone decomposition and the accompanied catalyst properties optimization are crucial reasons for catalyst activation at low temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A facile growth process of CeO2-Co3O4 composite nanotubes and its catalytic stability for CO oxidation

    NASA Astrophysics Data System (ADS)

    Oh, Hyerim; Kim, Il Hee; Lee, Nam-Suk; Dok Kim, Young; Kim, Myung Hwa

    2017-08-01

    Hybrid cerium dioxide (CeO2)-cobalt oxide (Co3O4) composite nanotubes were successfully prepared by a combination of electrospinning and thermal annealing using CeO2 and Co3O4 precursors for the first time. Electrospun CeO2-Co3O4 composite nanotubes represent relatively porous surface texture with small dimensions between 80 and 150 nm in the outer diameter. The microscopic investigations indicate that the nanoparticle like crystalline structures of CeO2 and Co3O4 are homogenously distributed and continuously connected to form the shape of nanotube in the length of a few micrometers during thermal annealing. It is expected that the different evaporation behaviors of solvents and matrix polymer between the core and the shell in as-spun nanofibers in the course of thermal annealing could be reasonably responsible for the formation of well-defined CeO2/Co3O4 hybrid nanotubes. Additionally, the general catalytic activities of electrospun CeO2/Co3O4 hybrid nanotubes toward the oxidation of carbon monoxide (CO) were carefully examined by a continuous flow system, resulting in favorable catalytic activity as well as catalytic stability for CO oxidation between 150 °C and 200 °C without the deactivation of the catalyst with time stems from accumulation of reaction intermediates such as carbonate species.

  8. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes.

    PubMed

    Ntim, Susana Addo; Mitra, Somenath

    2011-05-12

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L(-1). The absorption capacity of the composite was 1723 µg g(-1) and 189 µg g(-1) for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models.

  9. Ultrasensitive Nanoimmunosensor by coupling non-covalent functionalized graphene oxide platform and numerous ferritin labels on carbon nanotubes.

    PubMed

    Akter, Rashida; Jeong, Bongjin; Choi, Jong-Soon; Rahman, Md Aminur

    2016-06-15

    An ultrasensitive electrochemical nanostructured immunosensor for a breast cancer biomarker carbohydrate antigen 15-3 (CA 15-3) was fabricated using non-covalent functionalized graphene oxides (GO/Py-COOH) as sensor probe and multiwalled carbon nanotube (MWCNTs)-supported numerous ferritin as labels. The immunosensor was constructed by immobilizing a monoclonal anti-CA 15-3 antibody on the GO modified cysteamine (Cys) self-assembled monolayer (SAM) on an Au electrode (Au/Cys) through the amide bond formation between the carboxylic acid groups of GO/Py-COOH and amine groups of anti-CA 15-3. Secondary antibody conjugated MWCNT-supported ferritin labels (Ab2-MWCNT-Ferritin) were prepared through the amide bond formation between amine groups of Ab2 and ferritin and carboxylic acid groups of MWCNTs. The detection of CA 15-3 was based on the enhanced bioelectrocatalytic reduction of hydrogen peroxide mediated by hydroquinone (HQ) at the GO/Py-COOH-based sensor probe. The GO/Py-COOH-based sensor probe and Ab2-MWCNT-Ferritin labels were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), transmission electron microscope (TEM), and x-ray photoelectron spectroscopy (XPS) techniques. Using differential pulse voltammetry (DPV) technique, CA 15-3 can be selectively detected as low as 0.01 ± 0.07 U/mL in human serum samples. Additionally, the proposed CA 15-3 immunosensor showed excellent selectivity and better stability in human serum samples, which demonstrated that the proposed immunosensor has potentials in proteomic researches and diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications.

    PubMed

    Fan, Hai-Ming; Yi, Jia-Bao; Yang, Yi; Kho, Kiang-Wei; Tan, Hui-Ru; Shen, Ze-Xiang; Ding, Jun; Sun, Xiao-Wei; Olivo, Malini Carolene; Feng, Yuan-Ping

    2009-09-22

    We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 < x < 1) intermediate. The transformed ferrites nanocrystals retain the hollow structure and single-crystalline nature of the original templates. However, the crystallographic orientation-relationships of cubic spinel ferrites and trigonal hematite show strong correlation with their morpologies. The hollow-structured MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.

  11. Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H. J.

    2008-05-01

    We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. The obtained nanopowder was characterised by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range after thermal treatment at 500 °C in air. The energy position of the obtained PL band depends on the wavelength excitation and presents a blue shift with measurement temperature increase. Different possible attributions of this emission band will be discussed.

  12. Aligned coaxial tungsten oxide-carbon nanotube sheet: a flexible and gradient electrochromic film.

    PubMed

    Yao, Zhaojun; Di, Jiangtao; Yong, Zhenzhong; Zhao, Zhigang; Li, Qingwen

    2012-08-25

    We develop a simple dry wrapping method to fabricate a tungsten oxide (WO(3))/carbon nanotube (CNT) cable, in which WO(3) layers act as an electrochromic component while aligned CNTs as the core provide mechanical support and an anisotropic, continuous electron transport pathway. Interestingly, the resultant cable material exhibits an obvious gradient electrochromic phenomenon.

  13. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat

    2017-03-01

    Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

  14. Two-probe versus van der Pauw method in studying the piezoresistivity of single-wall carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Yao, Yanbo; Duan, Xiaoshuang; Luo, Jiangjiang; Liu, Tao

    2017-11-01

    The use of the van der Pauw (VDP) method for characterizing and evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors have not been systematically studied. By using single-wall carbon nanotube (SWCNT) thin films as a model system, herein we report a coupled electrical-mechanical experimental study in conjunction with a multiphysics finite element simulation as well as an analytic analysis to compare the two-probe and VDP testing configuration in evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors. The key features regarding the sample aspect ratio dependent piezoresistive sensitivity or gauge factor were identified for the VDP testing configuration. It was found that the VDP test configuration offers consistently higher piezoresistive sensitivity than the two-probe testing method.

  15. Investigation of Phenols Activity in Early Stage Oxidation of Edible Oils by Electron Paramagnetic Resonance and 19F NMR Spectroscopies Using Novel Lipid Vanadium Complexes As Radical Initiators.

    PubMed

    Drouza, Chryssoula; Dieronitou, Anthi; Hadjiadamou, Ioanna; Stylianou, Marios

    2017-06-21

    A novel dynamic method for the investigation of the phenols activity in early stage oxidation of edible oils based on the formation of α-tocopheryl radicals initiated by oil-soluble vanadium complexes is developed. Two new vanadium complexes in oxidation states V and IV were synthesized by reacting 2,2'-((2-hydroxyoctadecyl)azanediyl)bis(ethan-1-ol) (C18DEA) with [VO(acac) 2 ] and 1-(bis(pyridin-2-ylmethyl)amino)octadecan-2-ol (C18DPA) with VOCl 2 . Addition of a solution of either complex in edible oils resulted in the formation of α-tocopheryl radical, which was monitored by electron paramagnetic resonance (EPR) spectroscopy. The intensity of the α-tocopheryl signal in the EPR spectra was measured versus time. It was found that the profile of the intensity of the α-tocopheryl signal versus time depends on the type of oil, the phenolic content, and the storage time of the oil. The time interval until the occurrence of maximum peak intensity be reached (t m ), the height of the maximum intensity, and the rate of the quenching of the α-tocopheryl radical were used for the investigation of the mechanism of the edible oils oxidation. 19 F NMR of the 19 F labeled phenolic compounds (through trifluoroacetate esters) and radical trap experiments showed that the vanadium complexes in edible oil activate the one electron reduction of dioxygen to superperoxide radical. Superperoxide reacts with the lipids to form alkoperoxyl and alkoxyl lipid radicals, and all these radicals react with the phenols contained in oils.

  16. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    NASA Astrophysics Data System (ADS)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  17. Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution

    PubMed Central

    Heinemann, Günter; Fichtl, Burckhard; Vogt, Wolfgang

    2003-01-01

    Aims Vanadium is currently undergoing clinical trials as an oral drug in patients with noninsulin-dependent diabetes mellitus. Furthermore, vanadium occurs in elevated concentrations in the blood of patients receiving intravenous albumin solutions containing large amounts of the metal ion as an impurity. The present study was performed to examine the pharmacokinetics of vanadium in humans following a single intravenous (i.v.) dose of a commercial albumin solution containing a high amount of vanadium. Methods The study was conducted in five healthy volunteer subjects who received intravenously 90 ml of a commercial 20% albumin infusion solution containing 47.6 µg vanadium as an impurity. Vanadium concentrations in serum and urine were determined by electrothermal atomic absorption spectrometry. Results Vanadium serum concentrations after i.v. administration were measured for 31 days. The data could be fitted by a triexponential function corresponding formally to a three-compartment model. There was an initial rapid decrease in serum concentrations with half-lives of 1.2 and 26 h. This was followed by a long-terminal half-life time of 10 days. The terminal phase accounted for about 80% of the total area under the serum concentration-time curve (AUC). The mean apparent volume of distribution of the central compartment was found to be 10 l. The volume of distribution at steady state was 54 l, and total clearance was 0.15 l h−1. Vanadium was mainly excreted by the kidneys. About 52% of the dose was recovered in the urine after 12 days. Conclusions This study provides data on vanadium pharmacokinetics in healthy humans. PMID:12630973

  18. Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO₂ Nanotubes Using a Super-Oxidative Solution.

    PubMed

    Beltrán-Partida, Ernesto; Moreno-Ulloa, Aldo; Valdez-Salas, Benjamín; Velasquillo, Cristina; Carrillo, Monica; Escamilla, Alan; Valdez, Ernesto; Villarreal, Francisco

    2015-03-02

    Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO₂ nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.

  19. Critical V2O5/TeO2 Ratio Inducing Abrupt Property Changes in Vanadium Tellurite Glasses.

    PubMed

    Kjeldsen, Jonas; Rodrigues, Ana C M; Mossin, Susanne; Yue, Yuanzheng

    2014-12-26

    Transition metal containing glasses have unique electrical properties and are therefore often used for electrochemical applications, such as in batteries. Among oxide glasses, vanadium tellurite glasses exhibit the highest electronic conductivity and thus the high potential for applications. In this work, we investigate how the dynamic and physical properties vary with composition in the vanadium tellurite system. The results show that there exists a critical V(2)O(5) concentration of 45 mol %, above which the local structure is subjected to a drastic change with increasing V(2)O(5), leading to abrupt changes in both hardness and liquid fragility. Electronic conductivity does not follow the expected correlation to the valence state of the vanadium as predicted by the Mott-Austin equation but shows a linear correlation to the mean distance between vanadium ions. These findings could contribute to designing optimum vanadium tellurite compositions for electrochemical devices. The work gives insight into the mechanism of electron conduction in the vanadium tellurite systems.

  20. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6. The open-end of MWNTs present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. Oligonucleotide probes are selectively functionalized at the open ends cf the nanotube array and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of subattomoles of PCR amplified DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the Ru(bpy)32' amplification mechanism. This system provides a general platform of molecular diagnostics for applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparations.

  1. Scanning probes for lithography: Manipulation and devices

    NASA Astrophysics Data System (ADS)

    Rolandi, Marco

    2005-11-01

    Scanning probes are relatively low cost equipment that can push the limit of lithography in the nanometer range, with the advantages of high resolution, accuracy in the positioning of the overlayers and no proximity aberrations. We have developed three novel scanning probe lithography (SPL) resists based on thin films of Titanium, Molybdenum and Tungsten and we have manipulated single walled carbon nanotubes using the sharp tip of an atomic force microscope (AFM) for the fabrication of nanostructures. A dendrimer-passivated Ti film was imaged in the positive and the negative tone using SPL. This is the first example of SPL imaging in both tones using a unique resist. Positive tone patterning was obtained by locally scribing the dendrimer molecules and subsequent acid etch of the deprotected Ti film. Local anodic oxidation transforms Ti into TiO2 and deposits a thin layer of amorphous carbon on the patterned areas. This is very resistive to base etch and affords negative tone imaging of the Ti surface. Molybdenum and Tungsten were patterned using local anodic oxidation. This scheme is particularly flexible thanks to the solubility in water of the fully oxidized states of the two metals. We will present the facile fabrication of several nanostructures such as of trenches, dots wires and nanoelectrodes and show the potential of this scheme for competing with conventional lithographic techniques based on radiation. Quasi one dimensional electrodes for molecular electronics applications were also fabricated by creating nanogaps in single walled carbon nanotubes. The tubes, connected to microscopic contacts, were controllably cut via local anodic oxidation using the tip of the AFM. This technique leads to nanoscopic carboxyl terminated wires to which organic molecules can be linked using covalent chemistry. This geometry is particularly useful for the high gate efficiency without the need of a thin gate dielectric and the stability of the junction. Room temperature and

  2. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  3. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode

    NASA Astrophysics Data System (ADS)

    Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping

    2016-01-01

    A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light ( λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.

  4. Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes

    PubMed Central

    Bakather, Omer Y.; Khraisheh, Majeda; Nasser, Mustafa S.

    2017-01-01

    The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions. PMID:28555093

  5. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  6. A method for the determination of vanadium and iron oxidation states in naturally occurring oxides and silicates

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.

    1985-01-01

    A valence-specific analytical method for determining V3+ in ore minerals has been developed that involves two steps: dissolution of a mineral sample without disturbing the V3+/Vtot ratio, followed by determination of V3+ in the presence of V4+. The samples are dissolved in a mixture of hydrofluoric and sulphuric acids at 100?? in Teflon-lined reaction vessels. Tervalent vanadium is then determined colorimetrically by formation of a V3+-thiocyanate complex in aqueous-acetone medium. Fe3+ is measured semi-quantitatively in the same solution. The method has been tested with two naturally occurring samples containing vanadium and iron. The results obtained were supported by those obtained by other methods, including electron spin resonance spectroscopy, thermogravimetric analysis, and Mo??ssbauer spectroscopy. ?? 1985.

  7. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    EPA Science Inventory

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and the...

  8. DFT study of cyanide oxidation on surface of Ge-embedded carbon nanotube

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Milad Abrishamifar, Seyyed; Ebrahimzadeh Rajaei, Gholamreza; Razavi, Razieh; Najafi, Meysam

    2018-03-01

    In recent years, the discovery of suitable catalyst to oxidation of the cyanide (CN) has high importance in the industry. In present study, in the first step, the carbon nanotube (CNT) with the Ge atom embedded and the surface of Ge-CNT via the O2 molecule activated. In second step, the oxidation of CN on surface of the Ge-CNT via the Langmuir Hinshelwood (LH) and the Eley Rideal (ER) mechanisms was investigated. Results show that O2-Ge-CNT oxidized the CN molecule via the Ge-CNT-O-O∗ + CN → Ge-CNT-O-O∗-CN → Ge-CNT-O∗ + OCN and the Ge-CNT-O∗ + CN → Ge-CNT + OCN reactions. Results show that oxidation of CN on surface of Ge-CNT via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that Ge-CNT is acceptable catalyst with high performance for CN oxidation, form theoretical point of view.

  9. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  10. Peptide and protein-based nanotubes for nanobiotechnology.

    PubMed

    Petrov, Anna; Audette, Gerald F

    2012-01-01

    The development of biologically relevant nanosystems such as biomolecular probes and sensors requires systems that effectively interface specific biochemical environments with abiotic architectures. The most widely studied nanomaterial, carbon nanotubes, has proven challenging in their adaptation for biomedical applications despite their numerous advantageous physical and electrochemical properties. On the other hand, development of bionanosystems through adaptation of existing biological systems has several advantages including their adaptability through modern recombinant DNA strategies. Indeed, the use of peptides, proteins and protein assemblies as nanotubes, scaffolds, and nanowires has shown much promise as a bottom-up approach to the development of novel bionanosystems. We highlight several unique peptide and protein systems that generate protein nanotubes (PNTs) that are being explored for the development of biosensors, probes, bionanowires, and drug delivery systems. Copyright © 2012 Wiley Periodicals, Inc.

  11. Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO2 Nanotubes Using a Super-Oxidative Solution

    PubMed Central

    Beltrán-Partida, Ernesto; Moreno-Ulloa, Aldo; Valdez-Salas, Benjamín; Velasquillo, Cristina; Carrillo, Monica; Escamilla, Alan; Valdez, Ernesto; Villarreal, Francisco

    2015-01-01

    Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials. PMID:28787976

  12. Vanadium Partitioning and Mantle Oxidation State: New Experimental Data

    NASA Astrophysics Data System (ADS)

    Mallmann, G.; O'Neill, H. S.

    2007-12-01

    Vanadium exists in multiple valences in natural basaltic melts, namely V2+, V3+, V4+ and V5+. Because most crystalline phases prefer to incorporate V3+ rather than V4+ and V5+, the crystal/silicate-melt partitioning of vanadium (DVcry/melt) tends to decrease with increasing oxygen fugacity (fO2). Such dependence has been experimentally demonstrated and used to estimate the fO2 of mantle and mantle-derived rocks. Recent modelling of V and V/Sc systematics in basalts has lead to the view that the relative fO2 of the upper mantle is constant, both through time and among the sources of different types of basaltic magmas (i.e. MORB, OIB and IAB). This is contrary to the notion given by other oxygen barometric methods on peridotites and basalts, which indicate an upper mantle heterogeneous in relative fO2. To explore further the potential of V abundances and V/Sc ratios to estimate the relative fO2 of mantle peridotites and basalts, and in particular to understand variations in mantle oxidation state better, we carried out an experimental campaign aimed at measuring DVcry/melt for all the relevant phases of the upper mantle (i.e. olivine, orthopyroxene, clinopyroxene, garnet and spinel) over a range of fO2 conditions large enough to pin down not only the behaviour of V3+ and V4+ but also V2+ and V5+. Experiments were done in 1-atm vertical tube furnaces (1300°C) and piston-cylinder apparatus (1275-1450°C and 1.5-3.2 GPa). For the high-pressure experiments, fO2 was controlled by the Re-ReOx/2 equilibrium (10-9 to 10-0.7 bar), whereas for the 1-atm experiments, fO2 was controlled by Ar-CO-CO2- O2 gas mixes (10-18 to 10-0.7 bar). Five starting compositions were used to ensure the presence of all the desired phases. Experimental products were analysed for major elements by electron microprobe and for trace elements by laser-ablation ICP-MS, which enables V to be measured precisely even at very low concentrations. Partition coefficients for all phases plot as approximately

  13. Landau-Squire jet as a versatile probe to measure flow rate through individual nanochannel and nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Marbach, Sophie; Siria, Alessandro; Bocquet, Lyderic

    2015-11-01

    Over the last decade, nanometric sized channels have been intensively investigated since new model of fluid transport are expected due to the flow confinement at the nanometric scale. Nanoconfinement generates new phenomena, such as superfast flows in carbon nanotubes and slippage over smooth surfaces. However, a major challenge of nanofluidics lies in fabricating nanoscale fluidic devices and developing new velocimetry techniques able to measure flow rates down to femtoL/s. In this work we report the experimental study of the velocity fields generated by pressure driven flow from glass nanochannel with a diameter ranging from 1 μm to 100nm. The flow emerging from these channels can be described by the classical Landau-Squire solution of the Navier-Stokes equation for a point jet. We show that due to the peculiarity of this flow, it can be used as an efficient probe to characterize the permeability of nanochannels. Velocity field is measured experimentally seeding the fluid in the reservoir with 500 nm Polystyrene particles and measuring the velocity with a standard PIV algorithm. Predictions are tested for nanochannels of several dimensions and supported by ionic current measurement. This demonstrates that this technique is a powerful tool to characterize the flow through nanochannels. We finally apply this method to the measurement of the flow emerging from a single carbon nanotube inserted in the nanochannels and present first data of permeability measurement through a single nanotube.

  14. Methods of Functionalization of Carbon Nanotubes by Photooxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel (Inventor); Meador, Michael A. (Inventor)

    2016-01-01

    A method of photooxidizing carbon nanotubes, such as single-walled and multi-walled carbon nanotubes. The nanotubes are purified and dispersed in a solvent, such as n-methyl pyrrolidinone or dimethylformamide. A singlet oxygen sensitizer like Rose Bengal is added to the solution. Oxygen gas is continuously supplied while irradiating the solution while irradiating the solution with ultraviolet light to produce singlet oxygen to oxidize the single-walled carbon nanotubes. Advantageously, the method significantly increases the level of oxidation compared with prior art methods.

  15. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  16. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery

    NASA Astrophysics Data System (ADS)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther

    2016-02-01

    In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.

  17. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder.

    PubMed

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-11-11

    Iron oxide (Fe₂O₃) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe₂O₃ gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability.

  18. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  19. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes

    PubMed Central

    Ntim, Susana Addo; Mitra, Somenath

    2011-01-01

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L−1. The absorption capacity of the composite was 1723 µg g−1 and 189 µg g−1 for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models. PMID:21625394

  20. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    DOE PAGES

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; ...

    2016-08-19

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Lastly, ourmore » results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.« less

  1. Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder

    NASA Astrophysics Data System (ADS)

    Orfali, Wasim A.

    This article demonstrates the acoustic properties of added small amount of carbon-nanotube and siliconoxide nano powder (S-type, P-Type) to the host material polyurethane composition. By adding CNT and/or nano-silica in the form of powder at different concentrations up to 2% within the PU composition to improve the sound absorption were investigated in the frequency range up to 1600 Hz. Sound transmission loss measurement of the samples were determined using large impedance tube. The tests showed that addition of 0.2 wt.% Silicon Oxide Nano-powder and 0.35 wt.% carbon nanotube to polyurethane composition improved sound transmissions loss (Sound Absorption) up to 80 dB than that of pure polyurethane foam sample.

  2. Vanadium-Catalyzed C(sp3)–H Fluorination Reactions†

    PubMed Central

    Xia, Ji-Bao; Ma, Yuyong; Chen, Chuo

    2014-01-01

    Vanadium(III) oxide catalyzes the direct fluorination of C(sp3)–H groups with Selectfluor. This reaction is operationally simple. The catalyst and the reaction byproduct can be removed easily by filtration. Using this method, a fluorine atom can be introduced to the tertiary position of 1,4-cineole and L-menthone selectively. PMID:24976971

  3. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    PubMed Central

    M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892

  4. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    PubMed

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  5. [An in vitro study on toxic effect of vanadium-titanium-magnetite dust on alveolar macrophage in rabbits].

    PubMed

    Song, Y; Chen, Q; Guan, Y

    1998-11-01

    To study the toxic effect of vanadium-titanium-magnetite (VTM) dust on alveolar macrophage (AM) and its hazardous extent. Survival rates, morphology and function of AM were compared in rabbits exposed to dust of VTM, vanadium oxide, titanium dioxide and silica in various doses and length of time with in vitro cell culture and putamen membrane cover glass transmission electron microscopy, and changes in activities of lactic dehydrogenase (LDH) and acid phosphatase (ACP) in cell culture were measured. Exposure to all the four kinds of dust could lead to decrease in survival rate of AM, increase in activities of LDH and ACP in the cell culture, and changes in their morphology and function to the extent dependent on the nature of dust. Toxic effect of exposure to VTM dust was lower than that to vanadium oxide and silica, but higher than that to titanium dioxide, which had slight toxic effect.

  6. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries

    DOE PAGES

    Liu, Qi; Li, Zhe-Fei; Liu, Yadong; ...

    2015-01-20

    The long-standing issues of low intrinsic electronic conductivity, slow lithium-ion diffusion and irreversible phase transitions on deep discharge prevent the high specific capacity/energy (443 mAh g -1 and 1,550 Wh kg -1) vanadium pentoxide from being used as the cathode material in practical battery applications. Here we develop a method to incorporate graphene sheets into vanadium pentoxide nanoribbons via the sol–gel process. The resulting graphene-modified nanostructured vanadium pentoxide hybrids contain only 2 wt. % graphene, yet exhibits extraordinary electrochemical performance: a specific capacity of 438 mAh g -1, approaching the theoretical value (443 mAh g -1), a long cyclability andmore » significantly enhanced rate capability. Such performance is the result of the combined effects of the graphene on structural stability, electronic conduction, vanadium redox reaction and lithium-ion diffusion supported by various experimental studies. Finally, this method provides a new avenue to create nanostructured metal oxide/graphene materials for advanced battery applications.« less

  7. Vertically aligned carbon nanotube probes for monitoring blood cholesterol

    NASA Astrophysics Data System (ADS)

    Roy, Somenath; Vedala, Harindra; Choi, Wonbong

    2006-02-01

    Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes (MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol (PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g. uric acid, ascorbic acid and glucose, is also reported.

  8. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    PubMed Central

    Ereifej, Evon S.; Rial, Griffin M.; Hermann, John K.; Smith, Cara S.; Meade, Seth M.; Rayyan, Jacob M.; Chen, Keying; Feng, He; Capadona, Jeffrey R.

    2018-01-01

    Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp), and Stearoyl-Coenzyme A desaturase 1 (Scd1) were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1) relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage following

  9. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NASA Astrophysics Data System (ADS)

    Kruit, P.; Bezuijen, M.; Barth, J. E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.

  10. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  11. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  12. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  13. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    PubMed

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Probing the non-linear transient response of a carbon nanotube mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Tang, Xiaowu Shirley; Baugh, Jonathan

    2017-11-01

    Carbon nanotube (CNT) electromechanical resonators have demonstrated unprecedented sensitivities for detecting small masses and forces. The detection speed in a cryogenic setup is usually limited by the CNT contact resistance and parasitic capacitance of cabling. We report the use of a cold heterojunction bipolar transistor amplifying circuit near the device to measure the mechanical amplitude at microsecond timescales. A Coulomb rectification scheme, in which the probe signal is at much lower frequency than the mechanical drive signal, allows investigation of the strongly non-linear regime. The behaviour of transients in both the linear and non-linear regimes is observed and modeled by including Duffing and non-linear damping terms in a harmonic oscillator equation. We show that the non-linear regime can result in faster mechanical response times, on the order of 10 μs for the device and circuit presented, potentially enabling the magnetic moments of single molecules to be measured within their spin relaxation and dephasing timescales.

  15. Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system.

    PubMed

    Gambetta, A; Galzerano, G; Rozhin, A G; Ferrari, A C; Ramponi, R; Laporta, P; Marangoni, M

    2008-08-04

    An extremely compact and versatile near-infrared two-color femtosecond pump-probe spectroscopy apparatus based on an amplified Erfiber laser system is presented and applied to the characterization of the relaxation dynamics of single-wall carbon nanotubes with fundamental absorption in the 2 microm spectral region. By implementing a fast-scan technique, dynamics as long as 3 ps are acquired in 5 s with a relative sensitivity of 10(-4) and a temporal resolution below 100 fs at 2 microm.

  16. Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching

    NASA Astrophysics Data System (ADS)

    Li, Meng; Du, Hao; Zheng, Shili; Wang, Shaona; Zhang, Yang; Liu, Biao; Dreisinger, David Bruce; Zhang, Yi

    2017-10-01

    A clean method featuring non-salt roasting followed by (NH4)2C2O4 leaching to recover vanadium from vanadium slag was proposed. The carcinogenic Cr6+ compounds and exhaust gases were avoided, and the water generated from vanadate precipitation may be recycled and reused in this new leaching process. The leaching residues may be easily used by a blast furnace. Moreover, (NH4)2C2O4 solution was used as a leaching medium to avoid expensive and complicated ammonium controlling operations as a result of the stability of (NH4)2C2O4 at a high temperature. The transformation mechanisms of vanadium- and chromium-bearing phases were systematically investigated by x-ray diffraction analysis and scanning electron microscopy with energy-disperse x-ray spectrometry, respectively. In addition, the effects of oxygen concentration, roasting temperature, and holding time on vanadium recovery were investigated. Finally, the effects of leaching variables on the vanadium leaching rate were also examined.

  17. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    PubMed

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-04

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  18. Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Chimie Douce Preparation and Resulting Lithium Cell Electrochemistry.

    PubMed

    Kim, Young Jin; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-08-15

    Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.

  19. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis

    NASA Astrophysics Data System (ADS)

    Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji

    2018-06-01

    Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.

  20. Ceramic oxide reactions with V2O5 and SO3

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Williams, C. E.

    1985-01-01

    Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO3, and Na2SO4 to yield low melting mixed sulfate eutectics, and with vanadium compounds to produce vanadates. Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO3 partial pressure necessary for molten mixed sulfate formation with Na2SO3. Vanadium pentoxide is an acidic oxide that reacts with Na2O, SO3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramix oxides of increasing acidity, and on the other axis, vanadium compounds of increasing acidity. Resistance to vanadium compound reaction increased as the oxide acidity increased. Oxides more acidic than ZrO2 displaced V2O5. Examination of Y2O3- and CeO2-stabilized ZrO2 sintered ceramics which were degraded in 700 C NaVO3 has shown good agreement with the reactions predicted above, except that the CeO2-ZrO2 ceramic appears to be inexplicably degraded by NaVO3.

  1. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    NASA Astrophysics Data System (ADS)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification

  2. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  3. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso A.; Guitierrez, Daniel H.; Peaslee, David; Cheng, Arthur; Gao, Theodore; Wong, Chee Wei; Chen, Bin

    2015-10-01

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT-GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g-1. Upon thermal reduction, MWCNT-GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs.

  4. Effects of dietary vanadium in mallard ducks

    USGS Publications Warehouse

    White, D.H.; Dieter, M.P.

    1978-01-01

    Adult mallard ducks fed 0, 1, 10, or 100 ppm vanadyl sulfate in the diet were sacrificed after 12 wk on treatment; tissues were analyzed for vanadium. No birds died during the study and body weights did not change. Vanadium accumulated to higher concentrations in the bone and liver than in other tissues. Concentrations in bones of hens were five times those in bones of drakes, suggesting an interaction between vanadium and calcium mobilization in laying hens. Vanadium concentrations in most tissues were significantly correlated and increased with treatment level. Lipid metabolism was altered in laying hens fed 100 ppm vanadium. Very little vanadium accumulated in the eggs of laying hens.

  5. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study

    PubMed Central

    Abbas, Aamir; Ihsanullah; Al-Baghli, Nadhir A. H.

    2017-01-01

    Multiwall carbon nanotubes (CNTs) and iron oxide impregnated carbon nanotubes (CNTs-iron oxide) were investigated for the adsorption of hazardous toluene and paraxylene (p-xylene) from aqueous solution. Pure CNTs were impregnated with iron oxides nanoparticles using wet impregnation technique. Various characterization techniques including thermogravimetric analysis, scanning electron microscopy, elemental dispersion spectroscopy, X-ray diffraction, and nitrogen adsorption analysis were used to study the thermal degradation, surface morphology, purity, and surface area of the materials. Batch adsorption experiments show that iron oxide impregnated CNTs have higher degree of removal of p-xylene (i.e., 90%) compared with toluene (i.e., 70%), for soaking time 2 h, with pollutant initial concentration 100 ppm, at pH 6 and shaking speed of 200 rpm at 25°C. Pseudo-second-order model provides better fitting for the toluene and p-xylene adsorption. Langmuir and Freundlich isotherm models demonstrate good fitting for the adsorption data of toluene and p-xylene. PMID:28386208

  6. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  7. Speciation of vanadium in Chinese cabbage (Brassica rapa L.) and soils in response to different levels of vanadium in soils and cabbage growth.

    PubMed

    Tian, Liyan; Yang, Jinyan; Alewell, Christine; Huang, Jen-How

    2014-09-01

    This study highlights the accumulation and speciation of vanadium in Chinese cabbage (Brassica rapa L.) in relation to the speciation of soil vanadium with pot experiments at 122-622mgVkg(-1) by spiking NH4VO3. Cabbage planting decreased the bioavailable and residual vanadium based on sequential extraction, leading to enrichment of oxalate-extractable vanadium in soils. The biomass production increased with increasing concentrations of soil vanadium from 122 to 372mgVkg(-1), probably due to the increasing nitrogen availability and low vanadium availability in our soils with a consequent low vanadium toxicity. Although the concentrations of root vanadium (14.4-24.9mgVkg(-1)) related positively with soil vanadium, the bio-dilution alleviated the increase of leaf vanadium (2.1-2.7mgVkg(-1)). The predominance of vanadium(IV) in leaves (∼60-80% of total vanadium) indicates bio-reduction of vanadium in Chinese cabbage, since the mobile vanadium in oxic soils was usually pentavalent. Approximately 15-20% of the leaf vanadium was associated with recalcitrant leaf tissues. The majority of leaf vanadium was water and ethanol extractable, which is considered mobile and may cause more toxic effects on Chinese cabbage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites

    NASA Astrophysics Data System (ADS)

    Jyoti, Jeevan; Pratap Singh, Bhanu; Chockalingam, Sreekumar; Joshi, Amish G.; Gupta, Tejendra K.; Dhakate, S. R.

    2018-04-01

    Herein, multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), graphene oxide-carbon nanotubes (GCNTs) hybrid reinforced acrylonitrile butadiene styrene (ABS) nanocomposites have been prepared by micro twin screw extruder with back flow channel and the effect of different type of fillers on the nanomechanical properties are studied. The combination of both graphene oxide and CNT has enhanced the dispersion in polymer matrix and lower the probability of CNTs aggregation. GCNTs hybrid have been synthesized via novel chemical route and well characterized using Raman spectroscopic technique. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid nanocomposites were improved from 211.3 MPa and 4.12 GPa of neat ABS to 298.9 MPa and 6.02 GPa, respectively at 5wt% GCNTs loading. In addition to hardness and elastic modulus, other mechanical properties i.e. plastic index parameter, elastic recovery, ratio of residual displacement after load removal and displacement at the maximum load and plastic deformation energy have also been investigated. These results were correlated with Raman and X-ray photoelectron spectroscopic (XPS) techniques and microstructural characterizations (scanning electron microscopy). Our demonstration would provide guidelines for the fabrication of hard and scratches nanocomposite materials for potential use in, automotive trim components and bumper bars, carrying cases and electronic industries and electromagnetic interference shielding.

  9. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian

    2017-01-01

    Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  10. Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers

    PubMed Central

    2014-01-01

    Background Some experimental animal studies reported that vanadium had beneficial effects on blood total cholesterol (TC) and triglyceride (TG). However, the relationship between vanadium exposure and lipid, lipoprotein profiles in human subjects remains uncertain. This study aimed to compare the serum lipid and lipoprotein profiles of occupational vanadium exposed and non-exposed workers, and to provide human evidence on serum lipid, lipoprotein profiles and atherogenic indexes changes in relation to vanadium exposure. Methods This cross-sectional study recruited 533 vanadium exposed workers and 241 non-exposed workers from a Steel and Iron Group in Sichuan, China. Demographic characteristics and occupational information were collected through questionnaires. Serum lipid and lipoprotein levels were measured for all participants. The ratios of total cholesterol to high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) to HDL-C and apoB to apoA-I were used as atherogenic indexes. A general linear model was applied to compare outcomes of the two groups while controlling possible confounders and multivariate logistic regression was performed to evaluate the relationship between low HDL-C level, abnormal atherogenic index and vanadium exposure. Results Higher levels of HDL-C and apoA-I could be observed in the vanadium exposed group compared with the control group (P < 0.05). Furthermore, atherogenic indexes (TC/HDL-C, LDL-C/HDL-C, and apoB/apoA-I ratios) were found statistically lower in the vanadium exposed workers (P < 0.05). Changes in HDL-C, TC/HDL-C, and LDL-C/HDL-C were more pronounced in male workers than that in female workers. In male workers, after adjusting for potential confounding variables as age, habits of smoking and drinking, occupational vanadium exposure was still associated with lower HDL-C (OR 0.41; 95% CI, 0.27-0.62) and abnormal atherogenic index (OR 0.38; 95% CI, 0.20-0.70). Conclusion Occupational

  11. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  12. Protective effect of alpha glucosyl hesperidin (G-hesperidin) on chronic vanadium induced testicular toxicity and sperm nuclear DNA damage in male Sprague Dawley rats.

    PubMed

    Vijaya Bharathi, B; Jaya Prakash, G; Krishna, K M; Ravi Krishna, C H; Sivanarayana, T; Madan, K; Rama Raju, G A; Annapurna, A

    2015-06-01

    The study was conducted to evaluate the vanadium-induced testicular toxicity and its effect on sperm parameters, sperm nuclear DNA damage and histological alterations in Sprague Dawley rats and to assess the protective effect of G-hesperidin against this damage. Treatment of rats with vanadium at a dose of 1 mg kg bw(-1) for 90 days resulted in significant reduction in serum testosterone levels, sperm count and motility. Further, a parallel increase in abnormal sperm morphology and adverse histopathological changes in testis was also associated with vanadium administration when compared to normal control. Moreover, sperm chromatin dispersion assay revealed that vanadium induces sperm nuclear DNA fragmentation. A marked increase in testicular malondialdehyde levels and decreased activity of antioxidant enzymes such as superoxide dismutase and catalase indicates vanadium-induced oxidative stress. Co-administration of G-hesperidin at a dose of 25 and 50 mg kg bw(-1) significantly attenuated the sperm parameters and histological changes by restoring the antioxidant levels in rat testis. These results suggested that vanadium exposure caused reduced bioavailability of androgens to the tissue and increased free radical formation, thereby causing structural and functional changes in spermatozoa. G-hesperidin exhibited antioxidant effect by protecting the rat testis against vanadium-induced oxidative damage, further ensures antioxidant potential of bioflavonoids. © 2014 Blackwell Verlag GmbH.

  13. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  14. Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.

    PubMed

    Zhang, Yi; Hillier, Andrew C

    2010-07-15

    We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.

  15. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-06-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  16. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-04-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  17. Structural study of VO {sub x} doped aluminium fluoride and aluminium oxide catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    The structural properties of vanadium doped aluminium oxyfluorides and aluminium oxides, prepared by a modified sol-gel synthesis route, were thoroughly investigated. The influence of the preparation technique and the calcination temperature on the coordination of vanadium, aluminium and fluorine was analysed by different spectroscopic methods such as Raman, MAS NMR and ESR spectroscopy. In all samples calcined at low temperatures (350 deg. C), vanadium coexists in two oxidation states V{sup IV} and V{sup V}, with V{sup IV} as dominating species in the vanadium doped aluminium oxyfluorides. In the fluoride containing solids aluminium as well as vanadium are coordinated by fluorinemore » and oxygen. Thermal annealing of 800 deg. C leads to an extensive reorganisation of the original matrices and to the oxidation of V{sup IV} to V{sup V} in both systems. - Graphical abstract: Structure model for VO {sub x} doped aluminium oxide.« less

  18. Commercialization of the Chevron FCC vanadium trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.V.; Kuehler, C.W.; Krishna, A.S.

    1995-09-01

    Vanadium, present to varying degrees in FCC feed, deposits on the catalyst virtually quantitatively in the cracking process. In resid operations, vanadium levels on catalyst can reach 10,000 ppm at typical catalyst make-up rates. Once on the catalyst, vanadium destroys the zeolite and restricts access to active sites. This reduces catalyst activity. A vanadium trap is a material that when introduced into the catalyst inventory selectively reacts with migrating vanadium, thus protecting the zeolite and other active components of the catalyst. The trap may be incorporated into the catalyst, or introduced as a separate particle. Only a limited amount ofmore » trap can be incorporated into the catalyst without limiting the amount of zeolite that can be included. Gulf began development of a vanadium trap during the early 1980`s. The work produced a variety of promising materials whose use as vanadium traps was subsequently patented. The work ultimately led to a formulation with a phase very active for trapping vanadium while still quite sulfur tolerant. Based on these results, an extensive pilot plant evaluation was undertaken by Chevron after the Chevron-Gulf merger to better simulate commercial operation. The paper describes pilot plant tests as well as 3 commercial tests of this vanadium trap.« less

  19. Controlled coordination in vanadium(V) dimethylhydrazido compounds.

    PubMed

    Sakuramoto, Takashi; Moriuchi, Toshiyuki; Hirao, Toshikazu

    2016-11-01

    The vanadium(V) dimethylhydrazido compounds were structurally characterized to elucidate the effect of the alkoxide ligands in the coordination environment of vanadium(V) hydrazido center. The single-crystal X-ray structure determination of the vanadium(V) dimethylhydrazido compound with isopropoxide ligands revealed a dimeric structure with the V(1)-N(1) distance of 1.680(5)Å, in which each vanadium atom is coordinated in a distorted trigonal-bipyramidal geometry (τ 5 =0.81) with the hydrazido and bridging isopropoxide ligands in the apical positions. On the contrary, nearly tetrahedral arrangement around the vanadium metal center (τ 4 =0.06) with the V(1)-N(1) distance of 1.660(2)Å was observed in the vanadium(V) dimethylhydrazido compound with tert-butoxide ligands. The introduction of the 2,2',2″-nitrilotriethoxide ligand led to a pseudo-trigonal-bipyramidal geometry (τ 5 =0.92) at the vanadium center with the V(1)-N(1) distance of 1.691(5)Å, wherein vanadium atom is pulled out of the plane formed by the nitrilotriethoxide oxygen atoms in the direction of the hydrazido nitrogen. The coordination from the apical ligand in the vanadium(V) dimethylhydrazido compound was found to result in the longer V(1)-N(1) distance. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Chemical composition of an aqueous oxalato-/citrato-VO(2+) solution as determinant for vanadium oxide phase formation.

    PubMed

    Peys, Nick; Maurelli, Sara; Reekmans, Gunter; Adriaensens, Peter; De Gendt, Stefan; Hardy, An; Van Doorslaer, Sabine; Van Bael, Marlies K

    2015-01-05

    Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 °C, which then turns into crystalline V6O13 at 500 °C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 °C that crystallizes into VO2 M1 and V6O13 at 500 °C.

  1. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    NASA Astrophysics Data System (ADS)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  2. Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Ghoul, J.; Barthou, C.; El Mir, L.

    2012-06-01

    We report the synthesis of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.

  3. Vanadium-Binding Ability of Nucleoside Diphosphate Kinase from the Vanadium-Rich Fan Worm, Pseudopotamilla occelata.

    PubMed

    Yamaguchi, Nobuo; Yoshinaga, Masafumi; Kamino, Kei; Ueki, Tatsuya

    2016-06-01

    Polychaete fan worms and ascidians accumulate high levels of vanadium ions. Several vanadiumbinding proteins, known as vanabins, have been found in ascidians. However, no vanadium-binding factors have been isolated from the fan worm. In the present study, we sought to identify vanadiumbinding proteins in the branchial crown of the fan worm using immobilized metal ion affinity chromatography. A nucleoside diphosphate kinase (NDK) homolog was isolated and determined to be a vanadium-binding protein. Kinase activity of the NDK homologue, PoNDK, was suppressed by the addition of V(IV), but was unaffected by V(V). The effect of V(IV) on PoNDK precedes its activation by Mg(II). This is the first report to describe the relationship between NDK and V(IV). PoNDK is located in the epidermis of the branchial crown, and its distribution is very similar to that of vanadium. These results suggest that PoNDK is associated with vanadium accumulation and metabolism in P. occelata.

  4. Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Skyllas-Kazacos, M.

    The electrochemical behaviour of the V(V)/V(IV) couple has been studied at a graphite disc electrode in sulfuric acid using both cyclic and rotating-disc voltammetry. The results from the latter technique have revealed that the cathodic and anodic characteristics of this redox couple are quite different. The diffusion coefficient for V(IV), 2.14×10-6 cm2 s-1, is independent of the vanadium concentration. For V(IV) oxidation, the electrode kinetic parameters i0 and α have values of 2.47×10-4 A cm-2 and 0.71, respectively. The exchange current density, i0, for the V(V)/V(IV) reaction has been obtained at both graphite felt and reticulated vitreous carbon electrodes.

  5. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    PubMed

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  6. Comparison of Ultrasound-Assisted and Regular Leaching of Vanadium and Chromium from Roasted High Chromium Vanadium Slag

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Gao, Huiyang; Liu, Yajing; Zheng, Xiaole; Xue, Xiangxin

    2018-02-01

    Ultrasound-assisted leaching (UAL) was used for vanadium and chromium leaching from roasted material obtained by the calcification roasting of high-chromium-vanadium slag. UAL was compared with regular leaching. The effect of the leaching time and temperature, acid concentration, and liquid-solid ratio on the vanadium and chromium leaching behaviors was investigated. The UAL mechanism was determined from particle-size-distribution and microstructure analyses. UAL decreased the reaction time and leaching temperature significantly. Furthermore, 96.67% vanadium and less than 1% chromium were leached at 60°C for 60 min with 20% H2SO4 at a liquid-solid ratio of 8, which was higher than the maximum vanadium leaching rate of 90.89% obtained using regular leaching at 80°C for 120 min. Ultrasonic waves broke and dispersed the solid sample because of ultrasonic cavitation, which increased the contact area of the roasted sample and the leaching medium, the solid-liquid mass transfer, and the vanadium leaching rate.

  7. Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites

    NASA Astrophysics Data System (ADS)

    Pan, Hongfei; Zhao, Xiaona; Fu, Zhanming; Tu, Wenmao; Fang, Pengfei; Zhang, Haining

    2018-06-01

    High recombination rate of photogenerated electron-hole pairs and relatively narrow photoresponsive range of TiO2-based photocatalysts are the remaining challenges for their practical applications. To address such challenges, photocatalysts consisting of AgCl covered Ag nanoparticles (AgCl@Ag), titanate nanotubes (TiNT), and nitrogen-doped reduced graphite oxide (rGON) are fabricated through alkaline hydrothermal process, followed by deposition and in situ surface-oxidation of silver nanoparticles. In the synthesized photocatalysts, the titanate nanotubes have average length of about 100 nm with inner diameters of about 5 nm and the size of the formed silver nanoparticles is in the range of 50-100 nm. The synthesized photocatalyst degrades almost all the model organic pollutant Rhodamine B in 35 min and remains 90% of photocatalytic efficiency after 5 degradation cycles under visible light irradiation. Since the oxidant FeCl3 applied for oxidation of surface Ag to AgCl is difficult to be completely removed due to the high adsorption capacity of TiNT and rGON, the effect of reside Fe atoms on photocatalytic activity is evaluated and the results reveal that the residue Fe atom only affect the initial photodegradation performance. Nevertheless, the results demonstrate that the formed composite catalyst is a promising candidate for antibiosis and remediation in aquatic environmental contamination.

  8. [The vanadium compounds: chemistry, synthesis, insulinomimetic properties].

    PubMed

    Fedorova, E V; Buriakina, A V; Vorob'eva, N M; Baranova, N I

    2014-01-01

    The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.

  9. Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wang, Ning; Long, Yi

    2013-10-01

    Vanadium dioxide (VO2) has a great potential to be utilized as solar energy switching glazing, even though there exist some intrinsic problems of low luminous transmittance (Tlum) and poor oxidation resistance. Si-Al based anti-reflection (AR) sol-gel coatings processed at low temperature have been developed to tackle these issues assisted by adjusting ramping rate and annealing temperature. Si-Al based AR coating gives large relative enhancement on the transmittance (22% for Tlum, 14% for the whole solar spectrum Tsol,) and successfully maintains IR contrast at 2500 nm wavelength with 18% relative increase in solar modulation (ΔTsol). The optimized Si-Al based AR coating annealing conditions are recorded at 3 °C/min ramping rate and 100 °C annealing temperature. Fluorinated-Si based gel offers a new direction of multifunctional overcoat on thermochromic smart windows with hydrophobicity (contact angle 111°), averaged 14% relatively increased luminous transmittance and enhanced oxidation resistance.

  10. One-step oxidation preparation of unfolded and good soluble graphene nanoribbons by longitudinal unzipping of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Hu, Yizhen; Huang, Jindan; Zhou, Ning; Liu, Yuhan; Wei, Lin; Chen, Xin; Zhuang, Naifeng

    2018-04-01

    A simple one-step method to prepare graphene nanoribbon (GNR) is reported in this paper. Compared with water steam etching, the oxidation and co-etching of dilute sulfuric acid can result in the more complete longitudinal unzipping of carbon nanotube, although there is no other strong oxidant. As-prepared GNRs are more flat and have more oxygenated functional groups along the edge. Moreover, they can steadily disperse in a water system. These make them suitable as a carrier for supporting palladium (Pd) nanoparticles. The Pd/GNR composite exhibits a superior electrocatalytic activity for ethanol oxidation.

  11. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors.

    PubMed

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-11-21

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g(-1)), energy (9.0 W h kg(-1)), power (59.7 kW kg(-1)), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.

  12. Interference of flavonoids with fluorescent intracellular probes: methodological implications in the evaluation of the oxidative burst by flow cytometry.

    PubMed

    Peluso, Ilaria; Manafikhi, Husseen; Reggi, Raffaella; Palmery, Maura

    2014-08-01

    The evaluation of oxidative burst is particularly relevant in many pathological and subclinical conditions. Flow cytometry provides quick and accurate measures of the reactive oxygen species production by leukocytes in most situations. However, spurious results, related to probes' efflux may be observed in several instances. Many factors affect the evaluation of the oxidative burst with fluorescent probes that require intracellular deacetylation and could be substrate of the multidrug resistance proteins (MDR). After discussing the implications of the efflux of fluorophores in the normalization strategies in flow cytometry assays, we have pointed out the possible interference of flavonoids with fluorescet probes' staining and signal. We have also reviewed the results from human intervention studies regarding the evaluation of oxidative burst with these probes. In vitro, at concentrations close to post-ingestion circulating levels, some flavonoids and their metabolites could interfere with probes' staining and fluorescence signal through different mechanisms, such as the inhibition of esterases, the modulation of the MDR-mediate efflux of probe and the inhibition of the oxidation of probe. These effects may explain the contrasting results obtained by human intervention studies. Finally, also inflammatory state or the use of drugs substrate of MDR proteins could affect the evaluation of the oxidative burst with intracellular probes. © 2014 International Society for Advancement of Cytometry.

  13. Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys

    NASA Astrophysics Data System (ADS)

    Ferreira, C. P.; Gonçalves, M. C.; Caram, R.; Bertazzoli, R.; Rodrigues, C. A.

    2013-11-01

    The formation of nanotubular oxide layers on Ti and Ti alloys has been widely investigated for the photocatalytic degradation of organic compounds due to their excellent catalytic efficiency, chemical stability, and low cost and toxicity. Aiming to improve the photocatalytic efficiency of this nanostructured oxide, this work investigated the influence of substrate grain size on the growth of nanotubular oxide layers. Ti and Ti alloys (Ti-6Al, Ti-6Al-7Nb) were produced by arc melting with non-consumable tungsten electrode and water-cooled copper hearth under argon atmosphere. Some of the ingots were heat-treated at 1000 °C for 12 and 24 h in argon atmosphere, followed by slow cooling rates to reduce crystalline defects and increase the grain size of their microstructures. Three types of samples were anodized: commercial substrate, as-prepared and heat-treated samples. The anodization was performed using fluoride solution and a cell potential of 20 V. The samples were characterized by optical microscopy, field-emission scanning electron microscopy and X-ray diffraction. The heat treatment preceding the anodization process increased the grain size of pure Ti and Ti alloys and promoted the formation of Widmanstätten structures in Ti6Al7Nb. The nanotubes layers grown on smaller grain and thermally untreated samples were more regular and homogeneous. In the case of Ti-6Al-7Nb alloy, which presents a α + β phase microstructure, the morphology of nanotubes nucleated on α matrix was more regular than those of nanotubes nucleated on β phase. After the annealing process, the Ti-6Al-7Nb alloy presented full diffusion process and the growth of equilibrium phases resulting in the appearance of regions containing higher concentrations of Nb, i.e. beta phase. In those regions the dissolution rate of Nb2O5 is lower than that of TiO2, resulting in a nanoporous layer. In general, heat treating reduces crystalline defects and promotes the increasing of the grain sizes, not

  14. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2017-05-01

    Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.

  15. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lin, Hai; Dong, Ying-bo; Li, Gan-yu

    2018-03-01

    This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial pH value, initial Fe2+ concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield (H2SO4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11wt% greater than the chemical leaching yield. The Community Bureau of Reference (BCR) sequential extraction results revealed that 88.62wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44wt%. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.

  16. Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes.

    PubMed

    Rocks, Conor; Mitra, Somak; Macias-Montero, Manuel; Maguire, Paul; Svrcek, Vladimir; Levchenko, Igor; Ostrikov, Kostya; Mariotti, Davide

    2016-07-27

    Carbon nanotube (CNT) growth has been demonstrated recently using a number of nonmetallic semiconducting and metal oxide nanoparticles, opening up pathways for direct CNT synthesis from a number of more desirable templates without the need for metallic catalysts. However, CNT growth mechanisms using these nonconventional catalysts has been shown to largely differ and reamins a challenging synthesis route. In this contribution we show CNT growth from partially oxidized silicon nanocrystals (Si NCs) that exhibit quantum confinement effects using a microwave plasma enhanced chemical vapor deposition (PECVD) method. On the basis of solvent and a postsynthesis frgamentation process, we show that oxidation of our Si NCs can be easily controlled. We determine experimentally and explain with theoretical simulations that the Si NCs morphology together with a necessary shell oxide of ∼1 nm is vital to allow for the nonmetallic growth of CNTs. On the basis of chemical analysis post-CNT-growth, we give insight into possible mechanisms for CNT nucleation and growth from our partially oxidized Si NCs. This contribution is of significant importance to the improvement of nonmetallic catalysts for CNT growth and the development of Si NC/CNT interfaces.

  17. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice.

    PubMed

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal.

  18. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage.

    PubMed

    Pérez Del Pino, A; György, E; Alshaikh, I; Pantoja-Suárez, F; Andújar, J L; Pascual, E; Amade, R; Bertran-Serra, E

    2017-09-29

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO 2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT's long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO 2 -VACNT system (100 F g -1 ) as compared to the initial VACNT one (21 F g -1 ).

  19. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage

    NASA Astrophysics Data System (ADS)

    Pérez del Pino, A.; György, E.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar, J. L.; Pascual, E.; Amade, R.; Bertran-Serra, E.

    2017-09-01

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT’s long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO2-VACNT system (100 F g-1) as compared to the initial VACNT one (21 F g-1).

  20. Ultrafast optical spectroscopy of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ostojic, Gordana

    Wavelength-dependent, near-infrared pump-probe study of micelle-suspended Single-Walled Carbon Nanotubes (SWCNTs) whose linear absorption spectra show chirality-assigned peaks is presented. Two distinct relaxation regimes were observed: fast (0.3--1.2 ps) and slow (5--20 ps). The slow component, which has previously been unobserved in pump-probe measurements of bundled tubes, was resonantly enhanced whenever the pump photon energy matched with an interband absorption peak, and it is attributed to interband carrier recombination. It represents the lower limit of the intrinsic radiative recombination time of photoexcited carriers in SWCNTs since the exact value of this parameter depends on the presence of possible nonradiative recombination channels. The slow decay component was highly dependent on the pH of the solution, suggesting that the surrounding H+ ions strongly affect electronic states in nanotubes through the Burnstein-Moss effect. The effect was bandgap energy dependent, affecting the smaller bandgap tubes more significantly. To elucidate carrier dynamics in more detail, nondegenerate pump-probe experiments with wide and continuum probing throughout the lowest and second lowest energy transition ranges of SWCNTs were used. Complex signals were revealed with photoinduced absorption and bleaching, both of which were strongly wavelength dependent. Due to the high optical quality of unbundled SWCNT samples, clear signs of band filling and broadening of the exciton absorption peaks were found to be the main nonlinear mechanisms. The identification of these nonlinear mechanisms presents a novel explanation of the observed nonlinear behavior of nanotubes in general and helps clarify the controversial issues presented in previously published work. This explanation is also consistent with the previously observed pump-probe signals in bundled nanotube samples. Another novel and important conclusion drawn from the nondegenerate pump-probe experiments is that the

  1. Communication—Sol-Gel Synthesized Magnesium Vanadium Oxide, Mg x V 2 O 5 · nH 2 O: The Role of Structural Mg 2+ on Battery Performance

    DOE PAGES

    Yin, Jiefu; Pelliccione, Christopher J.; Lee, Shu Han; ...

    2016-07-12

    Magnesium intercalated vanadium oxide xerogels, Mg 0.1V 2O 5 · 2.35H 2O and Mg 0.2V 2O 5 · 2.46H 2O were synthesized using an ion removal sol gel strategy. X-ray diffraction indicated lamellar ordering with turbostratic character. X-ray absorption spectroscopy indicated greater distortion of the vanadium-oxygen coordination environment in Mg 0.2V 2O 5 · 2.46H 2O. Elemental analysis after cycling in Li + or Mg 2+ based electrolytes revealed that the magnesium content was unchanged, indicating structural Mg 2+ are retained. Furthermore, the Mg 0.1V 2O 5 · 2.35H 2O material displayed high voltage, energy density, and discharge/charge efficiency, indicatingmore » promise as a cathode material for future magnesium based batteries.« less

  2. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

    PubMed Central

    Fulati, Alimujiang; Ali, Syed M.Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells. PMID:22291545

  3. Optoelectronic and Electrochemical Properties of Vanadium Pentoxide Nanowires Synthesized by Vapor-Solid Process

    PubMed Central

    Pan, Ko-Ying; Wei, Da-Hua

    2016-01-01

    Substantial synthetic vanadium pentoxide (V2O5) nanowires were successfully produced by a vapor-solid (VS) method of thermal evaporation without using precursors as nucleation sites for single crystalline V2O5 nanowires with a (110) growth plane. The micromorphology and microstructure of V2O5 nanowires were analyzed by scanning electron microscope (SEM), energy-dispersive X-ray spectroscope (EDS), transmission electron microscope (TEM) and X-ray diffraction (XRD). The spiral growth mechanism of V2O5 nanowires in the VS process is proved by a TEM image. The photo-luminescence (PL) spectrum of V2O5 nanowires shows intrinsic (410 nm and 560 nm) and defect-related (710 nm) emissions, which are ascribable to the bound of inter-band transitions (V 3d conduction band to O 2p valence band). The electrical resistivity could be evaluated as 64.62 Ω·cm via four-point probe method. The potential differences between oxidation peak and reduction peak are 0.861 V and 0.470 V for the first and 10th cycle, respectively. PMID:28335268

  4. Oligodeoxyribonucleotide association with single-walled carbon nanotubes studied by SPM.

    PubMed

    Lahiji, Roya R; Dolash, Bridget D; Bergstrom, Donald E; Reifenberger, Ronald

    2007-11-01

    Studies have been performed on both as-received and chemically oxidized single-walled carbon nanotubes (SWCNTs) grown by two different growth methods to better understand the preferential association of the oligodeoxyribonucleotide T30 (ODN) with SWCNTs. Samples of T30 ODN:SWCNT were examined under ambient conditions using non-contact scanning probe microscope (SPM) techniques. The resulting images show different morphologies ranging from tangled networks of SWCNTs to individual, well-dispersed isolated SWCNTs as the sonication time is increased. SPM images of well-dispersed, as-received SWCNTs reveal isolated features that are 1.4 to 2.8 nm higher than the bare SWCNT itself. X-ray photoemission spectroscopy (XPS) confirmed these features to be T30 ODN in nature. Chemically oxidizing the SWCNTs before sonication is found to be an effective way to increase the number of T30 ODN features.

  5. ⁵¹V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site.

    PubMed

    Gupta, Rupal; Hou, Guangjin; Renirie, Rokus; Wever, Ron; Polenova, Tatyana

    2015-04-29

    Vanadium-dependent haloperoxidases (VHPOs) perform two-electron oxidation of halides using hydrogen peroxide. Their mechanism, including the factors determining the substrate specificity and the pH-dependence of the catalytic rates, is poorly understood. The vanadate cofactor in the active site of VHPOs contains "spectroscopically silent" V(V), which does not change oxidation state during the reaction. We employed an NMR crystallography approach based on (51)V magic angle spinning NMR spectroscopy and Density Functional Theory, to gain insights into the structure and coordination environment of the cofactor in the resting state of vanadium-dependent chloroperoxidases (VCPO). The cofactor environments in the wild-type VCPO and its P395D/L241V/T343A mutant exhibiting 5-100-fold improved catalytic activity are examined at various pH values. Optimal sensitivity attained due to the fast MAS probe technologies enabled the assignment of the location and number of protons on the vanadate as a function of pH. The vanadate cofactor changes its protonation from quadruply protonated at pH 6.3 to triply protonated at pH 7.3 to doubly protonated at pH 8.3. In contrast, in the mutant, the vanadate protonation is the same at pH 5.0 and 8.3, and the cofactor is doubly protonated. This methodology to identify the distinct protonation environments of the cofactor, which are also pH-dependent, could help explain the different reactivities of the wild-type and mutant VCPO and their pH-dependence. This study demonstrates that (51)V-based NMR crystallography can be used to derive the detailed coordination environments of vanadium centers in large biological molecules.

  6. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications.

    PubMed

    Chen, Chia-Ling; Agarwal, Vinay; Sonkusale, Sameer; Dokmeci, Mehmet R

    2009-06-03

    A simple methodology for integrating single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry is presented. The SWNTs were incorporated onto the CMOS chip as the feedback resistor of a two-stage Miller compensated operational amplifier utilizing dielectrophoretic assembly. The measured electrical properties from the integrated SWNTs yield ohmic behavior with a two-terminal resistance of approximately 37.5 kOmega and the measured small signal ac gain (-2) from the inverting amplifier confirmed successful integration of carbon nanotubes onto the CMOS circuitry. Furthermore, the temperature response of the SWNTs integrated onto CMOS circuitry has been measured and had a thermal coefficient of resistance (TCR) of -0.4% degrees C(-1). This methodology, demonstrated for the integration of SWNTs onto CMOS technology, is versatile, high yield and paves the way for the realization of novel miniature carbon-nanotube-based sensor systems.

  7. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice

    PubMed Central

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal. PMID:26962395

  8. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    NASA Astrophysics Data System (ADS)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  9. The synthesis of silica nanotubes through chlorosilanization of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Wu; Shen, Hsin-Hui

    2010-09-01

    We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 °C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl4 or ZrCl4 is used.

  10. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs).

    PubMed

    Henderson, W Matthew; Bouchard, Dermont; Chang, Xiaojun; Al-Abed, Souhail R; Teng, Quincy

    2016-09-15

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100ng/mL of MWCNTs for 24 and 48h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for (1)H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni]≤2×10(-10)g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with carbonaceous

  11. Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Nan; Fu, Gui-qin; Chu, Man-sheng; Zhu, Miao-yong

    2018-04-01

    As part of a research project to develop a novel clean smelting process for the comprehensive utilization of Hongge vanadium titanomagnetite (HVTM), in this study, the effect of Cr2O3 addition on the oxidation induration mechanism of HVTM pellets (HVTMPs) was investigated in detail. The results showed that the compressive strength of the HVTMPs was greatly weakened by the Cr2O3 addition, mainly because of a substantial increase in the porosity of the HVTMPs. The Cr2O3 addition marginally affected the phase composition but greatly affected the microstructural changes of the HVTMPs. Increased amounts of Cr2O3 resulted in a decrease in the uniform distribution of the hematite grains and in an increase in the Fe-Cr solid solutions (Fe1.2Cr0.8O3 and Fe0.7Cr1.3O3) embedded in the hematite grains. Moreover, the compact hematite was destroyed by forming a dispersed structure and the hematite recrystallization was hindered during the oxidation induration, which adversely affected the compressive strength. On the basis of these results, a schematic was formulated to describe the oxidation induration mechanism with different amounts of added Cr2O3. This study provides theoretical and technical foundations for the effective production of HVTMPs and a reference for chromium-bearing minerals.

  12. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  13. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors

    NASA Astrophysics Data System (ADS)

    Moon, Geon Dae; Joo, Ji Bong; Yin, Yadong

    2013-11-01

    A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production.A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images and additional electrochemical data. See DOI: 10.1039/c3nr04339h

  14. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi

    2015-12-01

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  15. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lushington, Andrew; Liu, Jian; Tang, Yongji

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTsmore » was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.« less

  16. Brain Metal Distribution and Neuro-Inflammatory Profiles after Chronic Vanadium Administration and Withdrawal in Mice

    PubMed Central

    Folarin, Oluwabusayo R.; Snyder, Amanda M.; Peters, Douglas G.; Olopade, Funmilayo; Connor, James R.; Olopade, James O.

    2017-01-01

    Vanadium is a potentially toxic environmental pollutant and induces oxidative damage in biological systems including the central nervous system (CNS). Its deposition in brain tissue may be involved in the pathogenesis of certain neurological disorders which after prolonged exposure can culminate into more severe pathology. Most studies on vanadium neurotoxicity have been done after acute exposure but in reality some populations are exposed for a lifetime. This work was designed to ascertain neurodegenerative consequences of chronic vanadium administration and to investigate the progressive changes in the brain after withdrawal from vanadium treatment. A total of 85 male BALB/c mice were used for the experiment and divided into three major groups of vanadium treated (intraperitoneally (i.p.) injected with 3 mg/kg body weight of sodium metavanadate and sacrificed every 3 months till 18 months); matched controls; and animals that were exposed to vanadium for 3 months and thereafter the metal was withdrawn. Brain tissues were obtained after animal sacrifice. Sagittal cut sections of paraffin embedded tissue (5 μm) were analyzed by the Laser ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS) to show the absorption and distribution of vanadium metal. Also, Haematoxylin and Eosin (H&E) staining of brain sections, and immunohistochemistry for Microglia (Iba-1), Astrocytes (GFAP), Neurons (Neu-N) and Neu-N + 4′,6-diamidine-2′-pheynylindole dihydrochloride (Dapi) Immunofluorescent labeling were observed for morphological and morphometric parameters. The LA–ICP–MS results showed progressive increase in vanadium uptake with time in different brain regions with prediction for regions like the olfactory bulb, brain stem and cerebellum. The withdrawal brains still show presence of vanadium metal in the brain slightly more than the controls. There were morphological alterations (of the layering profile, nuclear shrinkage) in the prefrontal cortex

  17. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes.

    PubMed

    Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro Antonio Alencar

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study, the surface modification of TiO2 nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO2 nanotubes used in this work were obtained by sol-gel template synthesis. The ZnS quantum dots were deposited onto TiO2 nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO2/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO2 nanotubes exhibited a high emission at 380nm (3.26eV), whereas TiO2/ZnS exhibited an emission at 410nm (3.02eV). The TiO2/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells-CHO) suggesting that TiO2/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO2/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO2/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    NASA Astrophysics Data System (ADS)

    Sreejesh, M.; Shenoy, Sulakshana; Sridharan, Kishore; Kufian, D.; Arof, A. K.; Nagaraja, H. S.

    2017-07-01

    Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM-1 cm-2 with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg-1 at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  19. Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor

    NASA Astrophysics Data System (ADS)

    Lv, Xinrui; Cao, Yunzhen; Yan, Lu; Li, Ying; Song, Lixin

    2017-02-01

    VO2 thin films have been grown on Si(100) (VO2/Si) and fused silica substrates (VO2/SiO2) by atomic layer deposition (ALD) using tetrakis-dimethyl-amino vanadium (IV) (TDMAV) as a novel vanadium precursor and water as reactant gas. The quartz crystal microbalance (QCM) measurement was performed to study the ALD process of VO2 thin film deposition, and a constant growth rate of about 0.95 Å/cycle was obtained at the temperature range of 150-200 °C. XRD measurement was performed to study the influence of deposition temperature and post-annealing condition on the crystallization of VO2 films, which indicated that the films deposited between 150 and 200 °C showed well crystallinity after annealing at 475 °C for 100 min in Ar atmosphere. XPS measurement verified that the vanadium oxidation state was 4+ for both as-deposited film and post-annealed VO2/Si film. AFM was applied to study the surface morphology of VO2/Si films, which showed a dense polycrystalline film with roughness of about 1 nm. The resistance of VO2/Si films deposited between 150 °C and 200 °C as a function of temperature showed similar semiconductor-to-metal transition (SMT) characters with the transition temperature for heating branch (Tc,h) of about 72 °C, a hysteresis width of about 10 °C and the resistance change of two orders of magnitude. The increase of Tc,h compared with the bulk VO2 (68 °C) may be attributed to the tensile stress along the c-axis in the film. Transmittance measurement of VO2/SiO2 films showed typical thermochromic property with a NIR switching efficiency of above 50% at 2 μm across the transition.

  20. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Treesearch

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  1. Vanadium in landscape components of western Transbaikalia

    NASA Astrophysics Data System (ADS)

    Kashin, V. K.

    2017-10-01

    Vanadium in soil-forming rocks, soils, and vegetation of forest-steppe, steppe, and dry-steppe landscapes of Transbaikalia has been studied. The mean element contents in rocks and soils are equal to its mean natural abundances (clarke values). The content of vanadium in soils is strictly determined by its content in parent materials; its dependence on the vanadium concentration in plants and on the soil pH and humus is less pronounced. With respect to the coefficient of biological uptake by plants, vanadium is assigned to the group of elements of slight accumulation (0.10-0.33) on mineral soils and of moderate accumulation (1.1-1.5) on peat bog soils. The mean vanadium concentration in steppe, meadow, and cultivated vegetation exceeds the norm for animals by 1.7-2.6 times but does not rich toxic levels. Vanadium uptake by plants is most intensive in meadow cenoses and is less intensive in dry-steppe cenoses.

  2. Vanadium sorption by mineral soils: Development of a predictive model.

    PubMed

    Larsson, Maja A; Hadialhejazi, Golshid; Gustafsson, Jon Petter

    2017-02-01

    The toxicity of vanadium in soils depends on its sorption to soil components. Here we studied the vanadate(V) sorption properties of 26 mineral soils. The data were used to optimise parameters for a Freundlich equation with a pH term. Vanadium K-edge XANES spectroscopy for three selected soils confirmed that the added vanadate(V) had accumulated mostly as adsorbed vanadate(V) on Fe and Al hydrous oxides, with only minor contributions from organically complexed vanadium(IV). Data on pH-dependent V solubility for seven soils showed that on average 0.36 H + accompanied each V during adsorption and desorption. The resulting model provided reasonable fits to the V sorption data, with r 2  > 0.99 for 20 of 26 soils. The observed K dS value, i.e. the ratio of total to dissolved V, was strongly dependent on V addition and soil; it varied between 3 and 4 orders of magnitude. The model was used to calculate the Freundlich sorption strength (FSS), i.e. the amount of V sorbed at [V] = 2.5 mg L -1 , in the concentration range of observed plant toxicities. A close relationship between FSS and oxalate-extractable Fe and Al was found (r 2  = 0.85) when one acidic soil was removed from the regression. The FSS varied between 27 and 8718 mg V kg -1 , showing that the current environmental guidelines can be both under- and overprotective for vanadium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  4. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    NASA Technical Reports Server (NTRS)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  5. Fluorescent probes for real-time measurement of nitric oxide in living cells.

    PubMed

    Li, Huili; Wan, Ajun

    2015-11-07

    Nitric oxide (NO) is an important signaling molecule in biology. Both NO excess and insufficiency have been implicated in numerous physiological and pathological conditions. In order to study the diverse biological roles of NO in cells and tissues, many techniques have been developed for assaying NO. Recently, new generations of fluorescent probes have become indispensible tools for the study of NO biology because of their sensitivity, selectivity, spatiotemporal resolution, and experimental feasibility. Rational application of these probes in the study requires the understanding of the molecular mechanism that the probes are involved in. In this review, we will present an arsenal of fluorescent probes used to detect NO in living cells and animal tissues. We will also discuss the molecular mechanisms, actualities and prospects of fluorescent probes in detecting NO in cell biology.

  6. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE PAGES

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; ...

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO 2 film with EUV diffraction from the optically excited sample. The VO 2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separatemore » the two features.« less

  7. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    PubMed

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  8. Conductive multi-walled boron nitride nanotubes by catalytic etching using cobalt oxide.

    PubMed

    Kim, Do-Hyun; Jang, Ho-Kyun; Kim, Min-Seok; Kim, Sung-Dae; Lee, Dong-Jin; Kim, Gyu Tae

    2017-01-04

    Boron nitride nanotubes (BNNTs) are ceramic compounds which are hardly oxidized below 1000 °C due to their superior thermal stability. Also, they are electrically almost insulators with a large band gap of 5 eV. Thus, it is a challenging task to etch BNNTs at low temperature and to convert their electrical properties to a conductive behavior. In this study, we demonstrate that BNNTs can be easily etched at low temperature by catalytic oxidation, resulting in an electrically conductive behavior. For this, multi-walled BNNTs (MWBNNTs) impregnated with Co precursor (Co(NO 3 ) 2 ·6H 2 O) were simply heated at 350 °C under air atmosphere. As a result, diverse shapes of etched structures such as pits and thinned walls were created on the surface of MWBNNTs without losing the tubular structure. The original crystallinity was still kept in the etched MWBNNTs in spite of oxidation. In the electrical measurement, MWBNNTs with a large band gap were converted to electrical conductors after etching by catalytic oxidation. Theoretical calculations indicated that a new energy state in the gap and a Fermi level shift contributed to MWBNNTs being conductive.

  9. Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties.

    PubMed

    Mjejri, Issam; Rougier, Aline; Gaudon, Manuel

    2017-02-06

    In this study, vanadium sesquioxide (V 2 O 3 ), dioxide (VO 2 ), and pentoxide (V 2 O 5 ) were all synthesized from a single polyol route through the precipitation of an intermediate precursor: vanadium ethylene glycolate (VEG). Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size. To the best of our knowledge, the synthesis of the three oxides V 2 O 5 , VO 2 , and V 2 O 3 from a single polyol batch has never been reported in the literature. In a second part of the study, the potentialities brought about by the successful preparation of sub-micrometer V 2 O 5 , VO 2 , and V 2 O 3 are illustrated by the characterization of the electrochromic properties of V 2 O 5 films, a discussion about the metal to insulator transition of VO 2 on the basis of in situ measurements versus temperature of its electrical and optical properties, and the characterization of the magnetic transition of V 2 O 3 powder from SQUID measurements. For the latter compound, the influence of the crystallite size on the magnetic properties is discussed.

  10. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Roznyatovskaya, Nataliya V.; Roznyatovsky, Vitaly A.; Höhne, Carl-Christoph; Fühl, Matthias; Gerber, Tobias; Küttinger, Michael; Noack, Jens; Fischer, Peter; Pinkwart, Karsten; Tübke, Jens

    2017-09-01

    Catholyte in all-vanadium redox-flow battery (VRFB) which consists of vanadium salts dissolved in sulphuric acid is known to be stabilized by phosphoric acid to slow down the thermal aging at temperatures higher than 40 °C. To reveal the role of phosphoric acid, the thermally-induced aggregation is investigated using variable-temperature 51V, 31P, 17O, 1H nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS). The results indicate that the thermal stabilization of vanadium(V) electrolyte is attained by the involvement of monomeric and dimeric vanadium(V) species in the reaction with phosphoric acid which is concurrent to the formation of neutral hydroxo-aqua vanadium(V) precipitation precursor. The dimers are stabilized by counter ions due to association reaction or if such stabilization is not possible, precipitation of vanadium pentoxide is favored. The evolution of particles size distributions at 50 °C in electrolyte samples containing 1.6 M vanadium and 4.0 M total sulphate and the pathways of precipitate formation are discussed. The optimal total phosphate concentration is found to be of 0.15 M. However, the induction time is assumed to be dependent not only on the total phosphate concentrations, but also on the ratio of total vanadium(V) to sulphate concentrations.

  11. Mineral resource of the month: vanadium

    USGS Publications Warehouse

    Magyar, Michael J.

    2007-01-01

    Vanadium, the name of which comes from Vanadis, a goddess in Scandinavian mythology, is one of the most important ferrous metals. Vanadium has many uses, but the metal’s metallurgical applications, such as an alloying element in iron and steel, account for more than 85 percent of U.S. consumption. The dominant nonmetallurgical use of the metal is as a catalyst for the production of maleic anhydride and sulfuric acid, ceramics, vanadium chemicals and electronics.

  12. Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture.

    PubMed

    Zhang, Baogang; Hao, Liting; Tian, Caixing; Yuan, Songhu; Feng, Chuanping; Ni, Jinren; Borthwick, Alistair G L

    2015-09-01

    Vanadium is an important contaminant impacted by natural and industrial activities. Vanadium (V) reduction efficiency as high as 87.0% was achieved by employing immobilized mixed anaerobic sludge as inoculated seed within 12h operation, while V(IV) was the main reduction product which precipitated instantly. Increasing initial V(V) concentration resulted in the decrease of V(V) removal efficiency, while this index increased first and then decreased with the increase of initial COD concentration, pH and conductivity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the decreased microbial diversity. V(V) reduction was realized through dissimilatory reduction process by significantly enhanced Lactococcus and Enterobacter with oxidation of lactic and acetic acids from fermentative microorganisms such as the enriched Paludibacter and the newly appeared Acetobacterium, Oscillibacter. This study is helpful to detect new functional species for V(V) reduction and constitutes a step ahead in developing in situ bioremediations of vanadium contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.

    PubMed

    Kang, Myungshim; Chakraborty, Kaushik; Loverde, Sharon M

    2018-06-25

    We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 μs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π-π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems.

  14. Carbon Nanotubes as Optical Sensors in Biomedicine.

    PubMed

    Farrera, Consol; Torres Andón, Fernando; Feliu, Neus

    2017-11-28

    Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.

  15. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.

    1992-01-01

    A critical review of thermodynamic data for aqueous and solid V species is presented to evaluate dissolution, transport, and precipitation of V under natural conditions. Emphasis is given to results of experimental studies of V chemistry, especially those for which the experimental conditions are near those found in nature. Where possible, data are obtained for or corrected to the reference conditions of 298.15K, 1 atm (1.01325 bar) and zero ionic strength. Vanadium [IV] (VIV) and vanadium[V] (VV) are the most soluble forms of V in nature, and their complexes with fluoride, sulfate, and oxalate may act to increase V solubility under oxidizing conditions. Because redox behavior is of fundamental importance to understanding natural V chemistry, the kinetics of reduction of VIV to VIII H2S were studied. Although H2S is predicted from thermodynamic data to be capable of reducing VIV to VIII, this reaction has not been demonstrated experimentally. Experiments were carried out under conditions of temperature (45??C), pH (3.6-6.8), ionic strength (0.05-0.1 m), and V concentrations (9.8-240 ??molar) likely to be found in nature. Because the reaction is very slow, H2S concentrations in excess of natural conditions were used (8.1 ?? 10-4 to 0.41 atm). The results show that VIV is reduced to VIII under a variety of conditions. The rate increases with increasing pH, but is not appreciably affected by ionic strength (as represented by the concentration of KCl, which was used as the supporting electrolyte in all cases). Prior to initiation of the reaction, there is an induction period, the length of which increases with increasing KCl concentration or decreasing pH. Attempts to model the reaction mechanism by numerical methods have failed to produce a satisfying fit of the results, indicating partial reaction orders, a complex mechanism, or involvement of a variety of intermediate species. The results of the thermodynamic and kinetic studies were applied to understanding the

  16. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway

    PubMed Central

    Elgrabli, Dan; Dachraoui, Walid; Marmier, Hélène de; Ménard-Moyon, Cécilia; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    The in vivo fate and biodegradability of carbon nanotubes is still a matter of debate despite tremendous applications. In this paper we describe a molecular pathway by which macrophages degrade functionalized multi-walled carbon nanotubes (CNTs) designed for biomedical applications and containing, or not, iron oxide nanoparticles in their inner cavity. Electron microscopy and Raman spectroscopy show that intracellularly-induced structural damages appear more rapidly for iron-free CNTs in comparison to iron-loaded ones, suggesting a role of iron in the degradation mechanism. By comparing the molecular responses of macrophages derived from THP1 monocytes to both types of CNTs, we highlight a molecular mechanism regulated by Nrf2/Bach1 signaling pathways to induce CNT degradation via NOX2 complex activation and O2•−, H2O2 and OH• production. CNT exposure activates an oxidative stress-dependent production of iron via Nrf2 nuclear translocation, Ferritin H and Heme oxygenase 1 translation. Conversely, Bach1 was translocated to the nucleus of cells exposed to iron-loaded CNTs to recycle embedded iron. Our results provide new information on the role of oxidative stress, iron metabolism and Nrf2-mediated host defence for regulating CNT fate in macrophages. PMID:28120861

  17. Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes

    NASA Astrophysics Data System (ADS)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-05-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and nonequilibrium Green’s function techniques. We consider weak and strong cluster-contact bonds. Depending on the bonding we find from 73% (strong bonds) up to 99% (weak bonds) spin polarization of the electron transmission, and enhanced polarization with increased cluster length.

  18. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.

    PubMed

    Jing, Yin; Chaplin, Brian P

    2017-02-21

    The detection of hydroxyl radicals (OH • ) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH • probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH • adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH • formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH • mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH • probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH • probe compound for the characterization of electrochemical and catalytic systems.

  19. Electrochemically-Induced Redox Reactions in Basalt at High Pressure and Temperature: An Iron and Vanadium K-edge XANES Study

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.; Newville, M.; Sutton, S. R.

    2005-12-01

    An applied electric field across a silicate sample at high pressures and temperatures in a piston cylinder apparatus can generate a wide range of oxidation states of polyvalent cations within a single experiment. If two or more polyvalent cations are included, this technique can be used to cross-calibrate oxybarometers within a single experiment. The redox state of Fe and V within a partially melted basaltic silicate was manipulated in situ in a piston-cylinder experiment with a DC power supply providing a source and sink of electrons to the sample. A 1V electrical potential differential was applied across vanadium-doped and Fe-bearing synthetic basalt samples for 24 hrs. at 20 kbar and 1400°C in a specially-designed piston cylinder sample assembly. Three experiments were performed: a control sample with no applied voltage, one with bottom cathode and top anode, and a third with top cathode and bottom anode. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy was used to provide spot analysis of iron and vanadium oxidation states with 5μm x 5μm spatial resolution throughout the recovered samples. Systematic spatial changes of increasing oxidation states of V and Fe were observed approaching the anode. The differences in oxidation states were mapped to a corresponding local effective oxygen fugacity by comparison and extension of a calibration of vanadium oxidation states as a function of controlled oxygen fugacity from a previous study (Sutton et al., 2005, GCA, vol. 69, pp. 2333-2348). The vanadium mapping indicates that a 1V potential drop across the sample induces effective oxygen fugacity perturbations in excess of ten orders of magnitude. The presence of both Fe and V within the same sample provides a wide range of oxygen fugacity cross-calibration in these recovered samples. A relationship between oxygen fugacity and electrochemical driving force is derived. The experimental results are in good agreement with the derived

  20. NMR data (ppm) from liver cells exposed to surfactant-wrapped (SDS) and oxidized (-OH) multi-walled carbon nanotubes (MWCNTs)

    EPA Pesticide Factsheets

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100 ng/mL of MWCNTs for 24 and 48 hr. MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for 1H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure exper

  1. A combined theoretical-experimental study of interactions between vanadium ions and Nafion membrane in all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Intan, Nadia N.; Klyukin, Konstantin; Zimudzi, Tawanda J.; Hickner, Michael A.; Alexandrov, Vitaly

    2018-01-01

    Vanadium redox flow batteries (VRFBs) are a promising solution for large-scale energy storage, but a number of problems still impede the deployment of long-lifetime VRFBs. One important aspect of efficient operation of VRFBs is understanding interactions between vanadium species and the membrane. Herein, we investigate the interactions between all four vanadium cations and Nafion membrane by a combination of infrared (IR) spectroscopy and density-functional-theory (DFT)-based static and molecular dynamics simulations. It is observed that vanadium species primarily lead to changes in the IR spectrum of Nafion in the SO3- spectral region which is attributed to the interaction between vanadium species and the SO3- exchange sites. DFT calculations of vanadium -Nafion complexes in the gas phase show that it is thermodynamically favorable for all vanadium cations to bind to SO3- via a contact pair mechanism. Car-Parrinello molecular dynamics-based metadynamics simulations of cation-Nafion systems in aqueous solution suggest that V2+ and V3+ species coordinate spontaneously to SO3-, which is not the case for VO2+ and VO2+ . The interaction behavior of the uncycled membrane determined in this study is used to explain the experimentally observed changes in the vibrational spectra, and is discussed in light of previous results on device-cycled membranes.

  2. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two

  3. Effect of Vanadium and Sodium Compounds on Accelerated Oxidation of Nickel-Base Alloys.

    DTIC Science & Technology

    The product of the reaction between V2O5 and the substrates is dependent upon the alloying elements present in the alloy. In the absence of alloying...reaction appears to be a glass . The study is related to corrosion inhibitions in vanadium containing fuels in gas turbines. (Modified author abstract)

  4. Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors.

    PubMed

    Park, Hae Woong; Na, Byung-Ki; Cho, Byung Won; Park, Sun-Min; Roh, Kwang Chul

    2013-10-28

    In this study, V-doped NiO materials were prepared by simple coprecipitation and thermal decomposition, and the effect of the vanadium content on the morphology, structural properties, electrochemical behavior, and cycling stability of NiO upon oxidation and reduction was analyzed for supercapacitor applications. The results show an improvement in the capacitive characteristics of the V-doped NiO, including increases in the specific capacitance after the addition of just 1.0, 2.0, and 4.0 at% V. All VxNi1-xO electrodes (x = 0.01, 0.02, 0.04) exhibited higher specific capacitances of 371.2, 365.7, and 386.2 F g(-1) than that of pure NiO (303.2 F g(-1)) at a current density of 2 A g(-1) after 500 cycles, respectively. The V0.01Ni0.99O electrode showed good capacitance retention of 73.5% at a current density of 2 A g(-1) for more than 500 cycles in a cycling test. Importantly, the rate capability of the V0.01Ni0.99O electrode was maintained at about 84.7% as discharge current density was increased from 0.5 A g(-1) to 4 A g(-1).

  5. A Ratiometric Acoustogenic Probe for in Vivo Imaging of Endogenous Nitric Oxide.

    PubMed

    Reinhardt, Christopher J; Zhou, Effie Y; Jorgensen, Michael D; Partipilo, Gina; Chan, Jefferson

    2018-01-24

    Photoacoustic (PA) imaging is an emerging imaging modality that utilizes optical excitation and acoustic detection to enable high resolution at centimeter depths. The development of activatable PA probes can expand the utility of this technology to allow for detection of specific stimuli within live-animal models. Herein, we report the design, development, and evaluation of a series of Acoustogenic Probe(s) for Nitric Oxide (APNO) for the ratiometric, analyte-specific detection of nitric oxide (NO) in vivo. The best probe in the series, APNO-5, rapidly responds to NO to form an N-nitroso product with a concomitant 91 nm hypsochromic shift. This property enables ratiometric PA imaging upon selective irradiation of APNO-5 and the corresponding product, tAPNO-5. Moreover, APNO-5 displays the requisite photophysical characteristics for in vivo PA imaging (e.g., high absorptivity, low quantum yield) as well as high biocompatibility, stability, and selectivity for NO over a variety of biologically relevant analytes. APNO-5 was successfully applied to the detection of endogenous NO in a murine lipopolysaccharide-induced inflammation model. Our studies show a 1.9-fold increase in PA signal at 680 nm and a 1.3-fold ratiometric turn-on relative to a saline control.

  6. Microbial vanadium (V) reduction in groundwater with different soils from vanadium ore mining areas.

    PubMed

    Hao, Liting; Zhang, Baogang; Feng, Chuanping; Zhang, Zhenya; Lei, Zhongfang; Shimizu, Kazuya; Cao, Xuelong; Liu, Hui; Liu, Huipeng

    2018-07-01

    This work investigated the potential of vanadium (V) (V(V)) bioreduction by using soils sampled from four main kinds of vanadium ore mining areas, i.e. vanadium titanomagnetite, stone coal, petroleum associated minerals and uvanite as inocula. During a typical operation cycle of 60 h, the soils from vanadium titanomagnetite area and petroleum associated minerals area exhibited higher V(V) removal efficiencies, about 92.0 ± 2.0% and 91.0 ± 1.9% in comparison to 87.1 ± 1.9% and 69.0 ± 1.1% for the soils from uvanite and stone coal areas, respectively. Results from high-throughput 16 S rRNA gene pyrosequencing analysis reflect the accumulation of Bryobacter and Acidobacteriaceae with capabilities of V(V) reduction, accompanied with other functional species. This study is helpful to search new functional species for V(V) reduction and to develop in situ bioremediations of V(V) polluted groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals.

    PubMed

    Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B

    2014-01-28

    We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.

  8. Influence of media with different acidity on structure of FeNi nanotubes

    NASA Astrophysics Data System (ADS)

    Shumskaya, Alena; Kaniukov, Egor; Kutuzau, Maksim; Bundyukova, Victoria; Tulebayeva, Dinara; Kozlovskiy, Artem; Borgekov, Daryn; Kenzhina, Inesh; Zdorovets, Maxim

    2018-04-01

    A detailed analysis of the structure features of FeNi nanotubes exposed at environment with different acidity is carried out. It is demonstrated that the exposure of the nanostructures in the environment with high acidity causes the structure deformation, leading to sharply increasing of the presents of oxide phases and partial amorphization of nanotubes walls that determined the rate of FeNi nanotubes destruction. It was established that the evolution of the crystal structure parameters concerned with appearance of oxide phases and with formation of disorder regions as a result of oxidation processes.

  9. Selective functionalization of carbon nanotube tips allowing fabrication of new classes of nanoscale sensing and manipulation tools

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor); Shapiro, Ian R. (Inventor); Bittner, Jr., Vern Garrett (Inventor); Collier, Charles Patrick (Inventor); Esplandiu, Maria J. (Inventor); Giapis, Konstantinos P. (Inventor)

    2009-01-01

    Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes. Biological macromolecules such as proteins or DNA can be attached to nanotubes to create highly specific single-molecule probes for investigations of intermolecular dynamics, for assembling hybrid biological and nanoscale materials, or for developing molecular electronics. In one example, electrical wiring of single redox enzymes to carbon nanotube scanning probes allows observation and electrochemical control over single enzymatic reactions by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes ''nanowired'' to the tips of carbon nanotubes in accordance with embodiments of the present invention, may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction.

  10. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta

    2018-04-14

    Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

  11. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  12. TiO 2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  13. Facilitation of NADH Electrooxidation at Treated Carbon Nanotubes

    PubMed Central

    Wooten, Marilyn; Gorski, Waldemar

    2010-01-01

    The relationship between the state of the surface of carbon nanotubes (CNT) and their electrochemical activity was investigated using the enzyme cofactor dihydronicotinamide adenine dinucleotide (NADH) as a redox probe. The boiling of CNT in water, while nondestructive, activated them toward the oxidation of NADH as indicated by a shift in the anodic peak potential of NADH (ENADH) from 0.4 to 0.0 V. The shift in ENADH was due to the redox mediation of NADH oxidation by traces of quinone species that were formed on the surface of treated CNT. The harsher treatment that comprised of microwaving of CNT in concentrated nitric acid had a similar effect on the ENADH and, additionally, it increased the anodic peak current of NADH. The latter correlated with the formation of defects on the surface of acid-microwaved CNT as indicated by their Raman spectra. The increase in current was discussed considering a role of surface mediators on the buckled graphene sheets of acid-microwaved CNT. The other carbon allotropes including the edge plane pyrolytic graphite, graphite powder, and glassy carbon did not display a comparable activation toward the oxidation of NADH. PMID:20088562

  14. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Lim, Seong Chu

    2013-11-01

    Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.

  15. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-09

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

  16. Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis.

    PubMed

    Renirie, Rokus; Charnock, John M; Garner, C David; Wever, Ron

    2010-06-01

    Vanadium K-edge X-ray Absorption Spectra have been recorded for the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis at pH 6.0. The Extended X-ray Absorption Fine Structure (EXAFS) regions provide a refinement of previously reported crystallographic data; one short V=O bond (1.54A) is present in both forms. For the native enzyme, the vanadium is coordinated to two other oxygen atoms at 1.69A, another oxygen atom at 1.93A and the nitrogen of an imidazole group at 2.02A. In the peroxo-form, the vanadium is coordinated to two other oxygen atoms at 1.67A, another oxygen atom at 1.88A and the nitrogen of an imidazole group at 1.93A. When combined with the available crystallographic and kinetic data, a likely interpretation of the EXAFS distances is a side-on bound peroxide involving V-O bonds of 1.67 and 1.88A; thus, the latter oxygen would be 'activated' for transfer. The shorter V-N bond observed in the peroxo-form is in line with the previously reported stronger binding of the cofactor in this form of the enzyme. Reduction of the enzyme with dithionite has a clear influence on the spectrum, showing a change from vanadium(V) to vanadium(IV).

  17. CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT

    EPA Science Inventory

    Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...

  18. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, H., E-mail: hudsonzanin@gmail.com; Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970; Saito, E., E-mail: esaito135@gmail.com

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Ramanmore » spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.« less

  19. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Madiba, I. G.; Émond, N.; Chaker, M.; Thema, F. T.; Tadadjeu, S. I.; Muller, U.; Zolliker, P.; Braun, A.; Kotsedi, L.; Maaza, M.

    2017-07-01

    Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO2) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO2 phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO2 structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V-V inter-dimer distance, which in turns favours the presence of the VO2 metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V4+ towards V5+ is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the valence band. Our observations suggest that gamma radiations induce the formation of Frenkel pairs. Moreover, THz transmission measurements show that the long range structure of VO2 remains intact after irradiation whilst the electrical measurements evidence that the coating resistivity decreases with gamma irradiation and that their transition temperature is slightly reduced for high gamma ray doses. Even though gamma rays are only one of the sources of radiations that are encountered in space environment, these results are very promising with regards to the potential of integration of such VO2 films as a protective coating for spacecrafts.

  20. Micro-XANES Measurements on Experimental Spinels and the Oxidation State of Vanadium in Spinel-Melt Pairs

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.R.; Newville, M.

    2004-01-01

    Spinel can be a significant host phase for V as well as other transition metals such as Ni and Co. However, vanadium has multiple oxidation states V(2+), V(3+), V(4+) or V(5+) at oxygen fugacities relevant to natural systems. We do know that D(V) spinel/melt is correlated with V and TiO2 content and fO2, but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V(3+) is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al2O3-SiO2 system. On the other hand, it has been argued that V(4+) will be stable across the range of natural oxygen fugacities in nature. In order to gain a better understanding of D(V) spinel/melt we have equilibrated spinel-melt pairs at controlled oxygen fugacities, between HM to NNO, where V is present in the spinel at natural levels (approx. 300 ppm V). These spinel-melt pairs were analyzed using micro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with spinel compositional data (Ti, V content) and oxygen fugacity, to unravel the effects of these variables on D(V) spinel/melt.

  1. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-02

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  2. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Chen, Zhaohui; Lu, Gang

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings canmore » shed light on other transition metal nitride-based electrochemical energy storage systems.« less

  3. An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac.

    PubMed

    Hu, Liuyi; Zheng, Jing; Zhao, Kang; Deng, Anping; Li, Jianguo

    2018-03-15

    In this study, a novel competition-type electrochemiluminescent (ECL) immunosensor for detecting diclofenac (DCF) was fabricated with graphene oxide coupled graphite-like carbon nitride (GO-g-C 3 N 4 ) as signal probe for the first time. The ECL intensity of carboxylated g-C 3 N 4 was significantly enhanced after being combined with graphene oxide (GO) which exhibited excellent charge-transport property. The sensing platform was constructed by multiwalled carbon nanotubes and gold nanoparticles (MWCNTs-AuNPs), which not only provided an effective matrix for immobilizing a large amount of coating antigen but also facilitated the electronic transmission rate to enhance the ECL intensity. Based on the synergistic effect of GO-g-C 3 N 4 and MWCNTs-AuNPs composite, the proposed sensor showed high sensitivity, good stability, and wide linearity for the detection of DCF in the range of 0.005-1000ngmL -1 with a detection limit of 1.7pgmL -1 . Furthermore, the developed immunoassay has been applied to real samples with satisfactory results. Therefore, this work provided a promising method for the detection of DCF and other small molecular compounds in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    fabricate air-stable n-type semiconducting nanotube thin-film transistor is developed and complementary metal--oxide--semiconductor (CMOS) logic circuits are demonstrated. Chapter 5 discusses the application of carbon nanotubes in transparent and flexible electronics. After that, in chapter 6, a simple and low cost nanotube separation method is introduced and the electrical performance of separated nanotubes with different diameter is studied. Finally, in chapter 7 a brief summary is drawn and some future research directions are proposed with preliminary results.

  5. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    PubMed

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  6. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    NASA Astrophysics Data System (ADS)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  7. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clichici, Simona, E-mail: simonaclichici@yahoo.com; Biris, Alexandru Radu; Tabaran, Flaviu

    2012-03-15

    Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTsmore » (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF

  8. Sacrificial template method of fabricating a nanotube

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  9. Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity

    PubMed Central

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2014-01-01

    Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson’s disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182 µg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3, 4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions. PMID:24362016

  10. Enrichment, Distribution of Vanadium-Containing Protein in Vanadium-Enriched Sea Cucumber Apostichopus japonicus and the Ameliorative Effect on Insulin Resistance.

    PubMed

    Liu, Yanjun; Zhou, Qingxin; Zhao, Yanlei; Wang, Yiming; Wang, Yuming; Wang, Jingfeng; Xu, Jie; Xue, Changhu

    2016-05-01

    Sea cucumbers are a potential source of natural organic vanadium that may improve insulin resistance. In this work, vanadium was accumulated rapidly in blood, body wall, and intestine by sea cucumber Apostichopus japonicus. Furthermore, water-soluble vanadium-containing proteins, the main form of the organic vanadium, were tentatively accumulated and isolated by a bioaccumulation experiment. It was also designed to evaluate the beneficial effect of vanadium-containing proteins (VCPs) from sea cucumber rich in vanadium on the development of hyperglycemia and insulin resistance in C57BL/6J mice fed with a high-fat high-sucrose diet (HFSD). HFSD mice treated with VCPs significantly decreased fasting blood glucose, serum insulin, and HOMA-IR values as compared to HFSD mice, respectively. Serum adiponectin, resistin, TNF-α, and leptin levels in insulin-resistant mice were dramatically reduced by a VCP supplement. These results show an ameliorative effect on insulin resistance by treatment with VCPs. Such compound seems to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes.

  11. Applications of Carbon Nanotubes in Biotechnology and Biomedicine

    PubMed Central

    Bekyarova, Elena; Ni, Yingchun; Malarkey, Erik B.; Montana, Vedrana; McWilliams, Jared L.; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    Due to their electrical, chemical, mechanical and thermal properties, carbon nanotubes are one of the most promising materials for the electronics, computer and aerospace industries. Here, we discuss their properties in the context of future applications in biotechnology and biomedicine. The purification and chemical modification of carbon nanotubes with organic, polymeric and biological molecules are discussed. Additionally we review their uses in biosensors, assembly of structures and devices, scanning probe microscopy and as substrates for neuronal growth. We note that additional toxicity studies of carbon nanotubes are necessary so that exposure guidelines and safety regulations can be established in a timely manner. PMID:19763242

  12. Thermogravimetric analysis of the interaction of ferromagnetic metal atom and multiwalled carbon nanotubes.

    PubMed

    Rawat, Naveen; Gudyaka, Russel; Kumar, Mohit; Joshi, Bharat; Santhanam, Kalathur S V

    2008-04-01

    This paper describes the thermal oxidative behavior of atomized iron or atomized cobalt in the presence of multiwalled carbon nanotubes (MWCNT). The thermogravimetric analysis shows the atomized iron thermal oxidation starts at about 500 degrees C that is absent when the atomized iron is sintered with multiwalled carbon naonotubes. The thermal oxidation of iron in the sintered samples requires the collapse of the multiwalled carbon nanotubes. A similar behavior is observed with atomized cobalt when its oxidation requires the collapse of the nanotubes. This thermal oxidative shift is interpreted as due to the atomized iron or atomized cobalt atom experiencing extensive overlap and confinement effect with multiwalled carbon nanotubes causing a spin transfer. This confinement effect is suggested to produce a transformation of iron from the outermost electronic distribution of 3d64s2 to an effective configuration of 3d84s0 and for cobalt 3d74s2 to 3d94s0 producing spintronics effect.

  13. Synthesis of carbon nanotube (CNT)-entangled CuO nanotube networks via CNT-catalytic growth and in situ thermal oxidation as additive-free anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Xia; Song, Bo; Cheng, Shisu; Xie, Yun; Shao, Yijiang; Sun, Yueming

    2018-01-01

    We demonstrated the utility of carbon nanotubes (CNTs) as a catalyst and conductive agent to synthesize CNT-entangled copper nanowire (CuNW-CNT) networks within a melted mixture of hexadecylamine and cetyltrimethy ammounium bromide. The CuNW-CNT networks were further in situ thermally oxidized into CuO nanotube-CNT (CuONT-CNT) with the high retention of network structure. The binder- and conducting-additive-free anodes constructed using the CuONT-CNT networks exhibited high performance, such as high capability (557.7 mAh g-1 at 0.2 °C after 200 cycles), high Coulombic efficiency (near 100%), good rate performance (385.5 mAh g-1 at 5 °C and 310.3 mAh g-1 at 10 °C), and long cycling life.

  14. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.

    PubMed

    Liu, Xiao Tong; Mu, Xi Yan; Wu, Xiao Li; Meng, Li Xuan; Guan, Wen Bi; Ma, Yong Qiang; Sun, Hua; Wang, Cheng Ju; Li, Xue Feng

    2014-09-01

    This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated. Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism

    NASA Astrophysics Data System (ADS)

    Xin, Xuelian; Wang, Jingxin; Gong, Chuanfang; Xu, Hai; Wang, Rongming; Ji, Shijie; Dong, Hanxiao; Meng, Qingguo; Zhang, Liangliang; Dai, Fangna; Sun, Daofeng

    2016-02-01

    Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2‧ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2‧ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.

  16. Stopped-in-loop flow analysis system for successive determination of trace vanadium and iron in drinking water using their catalytic reactions.

    PubMed

    Ayala Quezada, Alejandro; Ohara, Keisuke; Ratanawimarnwong, Nuanlaor; Nacapricha, Duangjai; Murakami, Hiroya; Teshima, Norio; Sakai, Tadao

    2015-11-01

    An automated stopped-in-loop flow analysis (SILFA) system is proposed for the successive catalytic determination of vanadium and iron. The determination of vanadium was based on the p-anisidine oxidation by potassium bromate in the presence of Tiron as an activator to form a reddish dye, which has an absorption maximum at 510 nm. The selectivity of the vanadium determination was greatly improved by adding diphosphate as a masking agent of iron. For the iron determination, an iron-catalyzed oxidative reaction of p-anisidine by hydrogen peroxide with 1,10-phenanthroline as an activator to produce a reddish dye (510 nm) was employed. The SILFA system consisted of two peristaltic pumps, two six-port injection valves, a four-port selection valve, a heater device, a spectrophotometric detector and a data acquisition device. One six-port injection valve was used for the isolation of a mixed solution of standard/sample and reagent to promote each catalytic reaction, and another six-port injection valve was used for switching the reagent for vanadium or iron to achieve selective determination of each analyte. The above mentioned four-port selection valve was used to select standard solutions or sample. These three valves and the two peristaltic pumps were controlled by a built-in programmable logic controller in a touchscreen controller. The obtained results showed that the proposed SILFA monitoring system constituted an effective approach for the selective determination of vanadium and iron. The limits of detection, 0.052 and 0.55 µg L(-1), were obtained for vanadium and iron, respectively. The proposed system was successfully applied to drinking water samples without any preconcentration procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.

    2013-03-01

    Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.

  18. Methods for producing reinforced carbon nanotubes

    DOEpatents

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  19. Assessment of Dephosphorization During Vanadium Extraction Process in Converter

    NASA Astrophysics Data System (ADS)

    Chen, Lian; Diao, Jiang; Wang, Guang; Xie, Bing

    2018-06-01

    Dephosphorization during the vanadium extraction process in the converter was studied. The effects of the slag basicity and FeO content on the dephosphorization and the mineral phases in the phosphorus-containing vanadium slag are discussed. The results show that removal of phosphorus from the hot metal during the vanadium extraction process can be achieved by adding lime into the vanadium extraction converter. The highest dephosphorization rate was obtained at slag basicity of 1.93. The phosphorus distribution ratio increased with increasing FeO content up to 16-18% but decreased thereafter. Vanadium was present in the slag only as spinels rather than calcium vanadate. Phosphorus was still present in the form of calcium phosphate eutectic in calcium silicate. The present work proves that the vanadium extraction and dephosphorization processes are nonconflicting reactions.

  20. ROLE OF THE NETWORK FORMER IN SEMICONDUCTING OXIDE GLASSES.

    DTIC Science & Technology

    SEMICONDUCTOR DEVICES, * GLASS ), (*ELECTRICAL NETWORKS, GLASS ), ELECTRICAL PROPERTIES, SEEBECK EFFECT, BORATES, PHOSPHATES, ELECTRICAL RESISTANCE, X RAY DIFFRACTION, ANNEALING, OXIDATION, OXIDES, ELECTRODES, VANADIUM