Sample records for vanadyl spin probes

  1. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    The purposes of this vanadyl spin probe study are threefold: (1) to establish when the breakdown of motionally narrowed formulas occurs; (2) to analyze the experimental vanadyl EPR line shapes by the stochastic Lioville method as developed by Polnaszek et al. (1973) for slow tumbling in an anisotropic liquid; and (3) to compare the vanadyl probe study results with those of Polnaszek and Freed (1975). Spectral EPR line shapes are simulated for experimental spectra of vanadyl acetylacetonate (VOAA) in nematic liquid crystal butyl p-(p-ethoxyphenoxycarbonyl) phenyl carbonate (BEPC) and Phase V of EM laboratories. It is shown that the use of typical vanadyl complexes as spin probes for nematic liquid crystals simplifies the theoretical analysis and the subsequent interpretation. Guidelines for the breakdown of motionally narrowed formulas are established. Both the slow tumbling aspects and the effects of non-Brownian rotation should be resolved in order to extract quantitative information about molecular ordering and rotational mobility.

  2. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    An analysis of EPR line shapes by the method of Polnaszek, Bruno, and Freed is made for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals. The use of typical vanadyl complexes as spin probes for nematic liquid crystals is shown to simplify the theoretical analysis and the subsequent interpretation. Rotational correlation times tau and orientational ordering parameters S sub Z where slow tumbling effects are expected to be observed in vanadyl EPR spectra are indicated in a plot. Analysis of the inertial effects on the probe reorientation, which are induced by slowly fluctuating torque components of the local solvent structure, yield quantitative values for tau and S sub Z. The weakly ordered probe VOAA is in the slow tumbling region and displays these inertial effects throughout the nematic range of BEPC and Phase V. VOAA exhibits different reorientation behavior near the isotropic-nematic transition temperature than that displayed far below this transition temperature.

  3. Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits.

    PubMed

    Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M

    2017-10-12

    Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.

  4. Long coherence times in nuclear spin-free vanadyl qubits [Long coherence times in surface-compatible nuclear spin-free vanadium qubits

    DOE PAGES

    Yu, Chung -Jui; Graham, Michael J.; Zadrozny, Joseph M.; ...

    2016-10-31

    Quantum information processing (QIP) offers the potential to create new frontiers in fields ranging from quantum biology to cryptography. Two key figures of merit for electronic spin qubits, the smallest units of QIP, are the coherence time ( T2), the lifetime of the qubit, and the spin–lattice relaxation time ( T1), the thermally defined upper limit of T2. To achieve QIP, processable qubits with long coherence times are required. Recent studies on (Ph4P-d20)2[V(C8S8)3], a vanadium-based qubit, demonstrate that millisecond T2 times are achievable in transition metal complexes with nuclear spinfree environments. Applying these principles to vanadyl complexes offers a routemore » to combine the previously established surface compatibility of the flatter vanadyl structures with a long T2. Toward those ends, we investigated a series of four qubits, (Ph 4P) 2[VO(C 8S 8) 2] (1), (Ph 4P) 2[VO(β-C 3S 5) 2] (2), (Ph 4P) 2[VO(α-C 3S 5) 2] (3), and (Ph 4P) 2[VO(C 3S 4O) 2] (4), by pulsed electron paramagnetic resonance (EPR) spectroscopy and compared the performance of these species with our recently reported set of vanadium tris(dithiolene) complexes. Crucially we demonstrate that solutions of 1–4 in SO 2, a uniquely polar nuclear spinfree solvent, reveal T2 values of up to 152(6) μs, comparable to the best molecular qubit candidates. Upon transitioning to vanadyl species from the tris(dithiolene) analogues, we observe a remarkable order of magnitude increase in 12, attributed to stronger solute–solvent interactions with the polar vanadium-oxo moiety. Simultaneously, we detect a small decrease in T2 for the vanadyl analogues relative to the tris(dithiolene) complexes. We attribute this decrease to the absence of one nuclear spinfree ligand, which served to shield the vanadium centers against solvent nuclear spins. Lastly, our results highlight new design principles for long T1 and T2 times by demonstrating the efficacy of ligand-based tuning of solute

  5. Vanadium distribution in rats and DNA cleavage by vanadyl complex: implication for vanadium toxicity and biological effects.

    PubMed Central

    Sakurai, H

    1994-01-01

    Vanadium ion is toxic to animals. However, vanadium is also an agent used for chemoprotection against cancers in animals. To understand both the toxic and beneficial effects we studied vanadium distribution in rats. Accumulation of vanadium in the liver nuclei of rats given low doses of compounds in the +4 or +5 oxidation state was greater than in the liver nuclei of rats given high doses of vanadium compounds or the vanadate (+5 oxidation state) compound. Vanadium was incorporated exclusively in the vanadyl (+4 oxidation state) form. We also investigated the reactions of vanadyl ion and found that incubation of DNA with vanadyl ion and hydrogen peroxide (H2O2) led to intense DNA cleavage. ESR spin trapping demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion and H2O2. Thus, we propose that the mechanism for vanadium-dependent toxicity and antineoplastic action is due to DNA cleavage by hydroxyl radicals generated in living systems. PMID:7843133

  6. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    PubMed

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  7. Structure-dependent metallokinetics of antidiabetic vanadyl-picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics.

    PubMed

    Yasui, Hiroyuki; Tamura, Asuka; Takino, Toshikazu; Sakurai, Hiromu

    2002-07-25

    The insulinomimetic effect of vanadium is the most remarkable and important among its several biological actions. Vanadyl ion (+4 oxidation state of vanadium) and its complexes have been found to normalize the blood glucose levels of both type 1 and 2 diabetic animals. We have developed insulinomimetic vanadyl complexes having different coordination modes, emphasizing the possible usefulness of vanadyl-picolinate [VO(pa)(2)] and its related complexes with the VO(N(2)O(2)) coordination mode. In order to apply these complexes clinically in the future, the relationship between the chemical structure, insulinomimetic action, organ distribution of vanadium, and blood disposition of vanadyl species must be closely investigated. In the present investigation, we studied the blood disposition of the vanadyl-picolinate complexes in healthy rats, and tried to understand comprehensively the relationship between the structures, insulinomimetic activity, and metallokinetic parameters of the complexes, which had been recently prepared and specifically synthesized for the present study, by using an in vivo blood circulation monitoring -- electron spin resonance (BCM-ESR) method for analyzing ESR signals due to paramagnetic metal ions and complexes in the blood in real time. Metallokinetic parameters were estimated based on the blood clearance curves in terms of a two-compartment pharmacokinetic model, and vanadyl species were indicated to be distributed in peripheral tissues and gradually eliminated from the circulating blood, depending on their chemical structures. Vanadyl concentrations in the blood of rats given bis(5-iodopicolinato)oxovanadium(IV) [VO(5ipa)(2)] and bis(3-methylpicolinato)oxovanadium(IV) [VO(3mpa)(2)] with electron-withdrawing and donating groups, respectively, remained significantly higher and longer, due to their slower clearance rates from the blood, than in rats given other complexes, suggesting that the high exposure and long residence of vanadyl species

  8. Spin of Planetary Probes in Atmospheric Flight

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    Probes that enter planetary atmospheres are often spun during entry or descent for a variety of reasons. Their spin rate histories are influenced by often subtle effects. The spin requirements, control methods and flight experience from planetary and earth entry missions are reviewed. An interaction of the probe aerodynamic wake with a drogue parachute, observed in Gemini wind tunnel tests, is discussed in connection with the anomalous spin behaviour of the Huygens probe.

  9. A quantum spin-probe molecular microscope

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.

    2016-10-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  10. Scanned-probe detection of electron spin resonance from a nitroxide spin probe

    PubMed Central

    Moore, Eric W.; Lee, SangGap; Hickman, Steven A.; Wright, Sarah J.; Harrell, Lee E.; Borbat, Peter P.; Freed, Jack H.; Marohn, John A.

    2009-01-01

    We report an approach that extends the applicability of ultrasensitive force-gradient detection of magnetic resonance to samples with spin-lattice relaxation times (T 1) as short as a single cantilever period. To demonstrate the generality of the approach, which relies on detecting either cantilever frequency or phase, we used it to detect electron spin resonance from a T 1 = 1 ms nitroxide spin probe in a thin film at 4.2 K and 0.6 T. By using a custom-fabricated cantilever with a 4 μm-diameter nickel tip, we achieve a magnetic resonance sensitivity of 400 Bohr magnetons in a 1 Hz bandwidth. A theory is presented that quantitatively predicts both the lineshape and the magnitude of the observed cantilever frequency shift as a function of field and cantilever-sample separation. Good agreement was found between nitroxide T 1 's measured mechanically and inductively, indicating that the cantilever magnet is not an appreciable source of spin-lattice relaxation here. We suggest that the new approach has a number of advantages that make it well suited to push magnetic resonance detection and imaging of nitroxide spin labels in an individual macromolecule to single-spin sensitivity. PMID:20018707

  11. Effect of Vanadyl Rosiglitazone, a New Insulin-Mimetic Vanadium Complexes, on Glucose Homeostasis of Diabetic Mice.

    PubMed

    Jiang, Pingzhe; Dong, Zhen; Ma, Baicheng; Ni, Zaizhong; Duan, Huikun; Li, Xiaodan; Wang, Bin; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Li, Minggang

    2016-11-01

    Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.

  12. Switching-angle sample spinning NMR probe with a commercially available 20 kHz spinning system

    NASA Astrophysics Data System (ADS)

    Mizuno, Takashi; Takegoshi, K.; Terao, Takehiko

    2004-11-01

    A switching-angle sample spinning (SASS) probe workable at high spinning speeds was developed using a commercially available rotor/housing system. Details of the construction are described. As application examples of the SASS probe, we report experiments of powder pattern separation at the spinning speed of 20 kHz and broadband 13C- 13C polarization transfer at 16 kHz.

  13. Perforated cenosphere-supported pH-sensitive spin probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomenko, E.V.; Bobko, A.A.; Salanov, A.N.

    2008-03-15

    Porous supports with an accessible internal volume and a shell providing the diffusive migration of pH-sensitive spin probes were obtained for the first time from hollow aluminosilicate cenospheres isolated from the coal fly ash. Using the methods of scanning electron microscopy and electron spin resonance, the morphology of different porous cenosphere modifications and its influence on the diffusion of spin probes from the internal volume were studied. When supporting aqueous solutions of a radical, the characteristic diffusion time for the mesoporous structure of the support is longer by a factor of 3-5 than that for the macroporous structure. Ferrospinel inmore » a content of 6 wt.% do not virtually affect the diffusion rate of spin probes. A constant rate of radical migration of similar to 1 {mu} mol min{sup -1}, determined by radical solubility in water, is achieved when a radical in the solid aggregate state is supported on the magnetic cenospheres.« less

  14. Acute toxicity, twenty-eight days repeated dose toxicity and genotoxicity of vanadyl trehalose in kunming mice.

    PubMed

    Jiang, Pingzhe; Ni, Zaizhong; Wang, Bin; Ma, Baicheng; Duan, Huikun; Li, Xiaodan; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Liu, Qiqi; Xing, Shuguang; Li, Minggang

    2017-04-01

    A new trend has been developed using vanadium and organic ligands to form novel compounds in order to improve the beneficial actions and reduce the toxicity of vanadium compounds. In present study, vanadyl trehalose was explored the oral acute toxicity, 28 days repeated dose toxicity and genotoxicity in Kunming mice. The Median Lethal Dose (LD 50 ) of vanadyl trehalose was revealed to be 1000 mg/kg body weight in fasted Kunming mice. Stomach and intestine were demonstrated to be the main target organs of vanadyl trehalose through 28 days repeated dose toxicity study. And vanadyl trehalose also showed particular genotoxicity through mouse bone marrow micronucleus and mouse sperm malformation assay. In brief, vanadyl trehalose presented certain, but finite toxicity, which may provide experimental basis for the clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. EPR spin probe and spin label studies of some low molecular and polymer micelles

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  16. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  17. Using ultrashort terahertz pulses to directly probe spin dynamics in insulating antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bowlan, P.; Trugman, S. A.; Yarotski, D. A.; Taylor, A. J.; Prasankumar, R. P.

    2018-05-01

    Terahertz pulses are a direct and general probe of ultrafast spin dynamics in insulating antiferromagnets (AFM). This is shown by using optical-pump, THz-probe spectroscopy to directly track AFM spin dynamics in the hexagonal multiferroic HoMnO3 and the orthorhombic multiferroic TbMnO3. Our studies show that despite the different structural and spin orders in these materials, THz pulses can unambiguously resolve spin dynamics after optical photoexcitation. We believe that this approach is quite general and can be applied to a broad range of materials with different AFM spin alignments, providing a novel non-contact approach for probing AFM order with femtosecond temporal resolution.

  18. The Spin-Plane Double Probe Electric Field Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  19. Investigation of the fluidity of biological fluids with a PDDTBN spin probe

    NASA Astrophysics Data System (ADS)

    Severcan, Feride; Acar, Berrin; Gökalp, Saadet

    1997-06-01

    The aim of this study is to ascertain whether the electron spin resonance technique using perdeutero-di- t-butyl nitroxide (PDDTBN) as a spin probe is able to monitor relative fluidity changes occurring in body fluids, such as blood and parotid saliva, according to different physiological conditions. The present study reveals that the spin probe PDDTBN is able to monitor the fluidity changes in parotid saliva related to habitual smoking, and in whole blood related to the estradiol level. The rotational correlation time of the spin probe and the local viscosity values of the parotid saliva and blood have been reported.

  20. ESR/spin probe study of ice cream.

    PubMed

    Gillies, Duncan G; Greenley, Katherine R; Sutcliffe, Leslie H

    2006-07-12

    Spin probes based on the 1,1,3,3-tetramethylisoindolin-2-yl structure have been used, in conjunction with electron spin resonance spectroscopy (ESR), to study the physical changes occurring in ice cream during freezing and melting. The ESR measurements allowed the rotational correlation times, tau(B), of the spin probes to be determined. Two probes were used together in a given sample of ice cream, namely, 1,1,3,3-tetramethylisoindolin-2-yl (TMIO), which samples the fat phase, and the sodium salt of 1,1,3,3-tetramethylisoindolin-2-yloxyl-5-sulfonate (NaTMIOS), which samples the aqueous phase. Data from the TMIO probe showed that when ice cream is cooled, the fat phase is a mixture of solid and liquid fat until a temperature of approximately -60 degrees C is reached. The water-soluble probe NaTMIOS showed that the aqueous phase changes completely from liquid to solid within 1 degrees C of -18 degrees C. On cooling further to -24.7 degrees C and then allowing it to warm to +25.0 degrees C, the rotational correlation times of the NaTMIOS were slow to recover to their previous values. For the lipid phase, tau(B)(298) was found to be 65.7 +/- 2.0 ps and the corresponding activation enthalpy, DeltaH, was 32.5 +/- 0.9 kJ mol(-)(1): These values are typical of those expected to be found in the type of fat used to make ice cream. The water phase gave corresponding values of 32.2 +/- 0.5 ps and 24.5 +/- 0.4 kJ mol(-)(1) values, which are those expected for a sucrose concentration of 24%.

  1. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  2. Setting the magic angle for fast magic-angle spinning probes.

    PubMed

    Penzel, Susanne; Smith, Albert A; Ernst, Matthias; Meier, Beat H

    2018-06-15

    Fast magic-angle spinning, coupled with 1 H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1 H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13 C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13 C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13 C-labeled glycine-ethylester on the carbonyl due to the Cα-C' J-coupling, or optimization of the H-N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization. Copyright © 2018. Published by Elsevier Inc.

  3. Spin-dependent recombination probed through the dielectric polarizability

    PubMed Central

    Bayliss, Sam L.; Greenham, Neil C.; Friend, Richard H.; Bouchiat, Hélène; Chepelianskii, Alexei D

    2015-01-01

    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments. PMID:26439933

  4. Spin-current probe for phase transition in an insulator

    DOE PAGES

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; ...

    2016-08-30

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we present that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is amore » flux of spin without an electric charge and its transport reflects spin excitation. Additionally, we demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.« less

  5. Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses

    DOE PAGES

    Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...

    2016-11-22

    We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less

  6. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    PubMed

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  7. Inter-molecule interaction for magnetic property of vanadyl tetrakis(thiadiazole) porphyrazine film on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Hou, Jie; Wang, Yu; Eguchi, Keitaro; Nanjo, Chihiro; Takaoka, Tsuyoshi; Sainoo, Yasuyuki; Awaga, Kunio; Komeda, Tadahiro

    2018-05-01

    We report scanning tunneling microscope (STM) observation of vanadyl tetrakis(thiadiazole) porphyrazine (VOTTDPz) molecules, which is a family molecule of phthalocyanine (Pc) but without Csbnd H termination in the perimeter, deposited on Au(1 1 1) surface. Well-ordered film corresponding to 4 × 4 superstructure with respect to Au(1 1 1) surface is formed, in which the centers of the molecules are separated by 1.12 nm, which is much smaller than that observed for a VOPc molecule on Au(1 1 1), due to the absence of Csbnd H termination. At the same time, the azimuthal angles of neighboring molecules rotate with each other by 30°. A contrast variation of bright and dark molecules is observed, which are interpreted as O-up and O-down molecules, respectively, based on the density functional theory simulation. Spin-polarized local density of states calculation shows spin-polarized V 3d state, which is delocalized over the ring. Spin detection is executed by measuring Kondo resonance in the tunneling spectroscopy near the Fermi level, which is caused by the interaction of an isolated spin and conduction electron of the substrate. We detected asymmetric and weak Kondo peak for out-of-plane outer magnetic field of 0 T, which becomes strong and symmetric peak at 5 T, which is understood by the shift of the spin center of the Kondo resonance from V 3d to delocalized π state in ring with the magnetic field.

  8. Aqua-vanadyl ion interaction with Nafion® membranes

    DOE PAGES

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; ...

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  9. Studies on the magnetic ground state of a spin Mobius strip

    DOE PAGES

    Newton, Graham N.; Hoshino, Norihisa; Matsumoto, Takuto; ...

    2016-08-22

    In this paper, we report the synthesis, structure and detailed characterisation of three n-membered oxovanadium rings, Na n[(V=O) nNa n(H 2O) n(α, β, or γ-CD) 2]•m H 2O (n=6, 7, or 8), prepared by the reactions of (V=O)SO 4•x H 2O with α, β, or γ-cyclodextrins (CDs) and NaOH in water. Their alternating heterometallic vanadium/sodium cyclic core structures were sandwiched between two CD moieties such that O-Na-O groups separated the neighbouring vanadyl ions. Antiferromagnetic interactions between the S=1/2 vanadyl ions led to S=0 ground states for the even-membered rings, but to two quasi-degenerate S=1/2 states for the spin-frustrated heptanuclear cluster.

  10. Probing the mass degeneracy of particles with different spins

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Hua; Lü, Gang; Wei, Ke-Wei

    2015-05-01

    The spin is an important property of a particle. Although it is unlikely, there is still a possibility that two particles with different spins share similar masses. In this paper, we propose a method to probe this kind of mass degeneracy of particles with different spins. We use the cascade decay B+→X(3872)K+, X(3872)→D+D- to illustrate our method. It can be seen that the possible mass degeneracy of X(3872) can lead to interesting behavior in the corresponding cascade decay. Supported by National Natural Science Foundation of China (11347124, 11147003, U1204115), Doctoral Scientific Research Foundation of USC, and Innovation Team of Nuclear and Particle Physics of USC

  11. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  12. Diffusion studies on permeable nitroxyl spin probes through bilayer lipid membranes: A low frequency ESR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenakumari, V.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com; Utsumi, Hideo

    2015-06-24

    Electron spin resonance (ESR) studies were carried out for permeable 2mM {sup 14}N-labeled deutrated 3 Methoxy carbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water and 1mM, 2mM, 3mM, 4mM concentration of 14N-labeled deutrated MC-PROXYL in 400mM concentration of liposomal solution by using a 300 MHz ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported for these samples. The line broadening was observed for the nitroxyl spin probe in the liposomal solution. The line broadening indicates that the high viscous nature of the liposomal solution. The partition parameter and permeability values indicate the maximum diffusion ofmore » nitroxyl spin probes in the bilayer lipid membranes at 2 mM concentration of nitroxyl radical. This study illustrates that ESR can be used to differentiate between the intra and extra- membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the spin probe concentration was optimized as 2mM in liposomal solution for ESR phantom studies/imaging, invivo and invitro experiments.« less

  13. Crystal Structure and Characterization of Ba 2V 3O 9: A Vanadyl(IV) Vanadate Containing Rutile-like Chains of VO 6Octahedra

    NASA Astrophysics Data System (ADS)

    Dhaussy, Anne-Claire; Abraham, Francis; Mentre, Olivier; Steinfink, Hugo

    1996-11-01

    The crystal structure of Ba2V3O9has been determined and refined to finalRandRwvalues of 0.025 and 0.028 from 1562 independent single crystal reflections. It crystallizes in the space groupP21/mwitha= 9.302(1) Å,b= 5.969(1) Å,c= 8.118(1) Å, and β = 113.96 (1)°. The structure consists of one-dimensional rutile-type chains of edge-sharing VO6octahedra parallel to thebaxis. The VO4tetrahedra share corners with VO6octahedra of a single rutile-type chain to form one-dimensional [V3O9]4-∞columns which are held together by Ba2+ions. In this mixed valence compound V4+and V5+ions are distributed in an ordered way in octahedra and tetrahedra, respectively. In the almost perfect O6octahedron the vanadium atom is off-center so that it forms a short vanadyl V_dbO bond of 1.686(3) Å, typical of a V4+ion. This compound is a barium vanadyl vanadate Ba2(VO)(VO4)2. It is the first example of isolated rutile-type chains found with V4+ions. Magnetic susceptibility measurements show that this phase is an antiferromagnet withTN≅ 58 K. At about 20 K magnetic anisotropy causes a canted spin arrangement.

  14. VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS.

    Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and NHEERL, US EPA, Chapel Hill, North Ca...

  15. A Highly Sensitive Biocompatible Spin Probe for Imaging of Oxygen Concentration in Tissues

    PubMed Central

    Bratasz, Anna; Kulkarni, Aditi C.; Kuppusamy, Periannan

    2007-01-01

    The development of an injectable probe formulation, consisting of perchlorotriphenylmethyl triester radical dissolved in hexafluorobenzene, for in vivo oximetry and imaging of oxygen concentration in tissues using electron paramagnetic resonance (EPR) imaging is reported. The probe was evaluated for its oxygen sensitivity, biostability, and distribution in a radiation-induced fibrosarcoma tumor transplanted into C3H mice. Some of the favorable features of the probe are: a single narrow EPR peak (anoxic linewidth, 41 μT), high solubility in hexafluorobenzene (>12 mM), large linewidth sensitivity to molecular oxygen (∼1.8 μT/mmHg), good stability in tumor tissue (half-life: 3.3 h), absence of spin-spin broadening (up to 12 mM), and lack of power saturation effects (up to 200 mW). Three-dimensional spatial and spectral-spatial (spectroscopic) EPR imaging measurements were used to visualize the distribution of the probe, as well as to obtain spatially resolved pO2 information in the mice tumor subjected to normoxic and hyperoxic treatments. The new probe should enable unique opportunities for measurement of the oxygen concentration in tumors using EPR methods. PMID:17259268

  16. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  17. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    DOE PAGES

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...

    2015-04-14

    Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less

  18. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    NASA Astrophysics Data System (ADS)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  19. Scanning Probe Microscopy for Spin Mapping and Spin Manipulation on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    2008-03-01

    A fundamental understanding of magnetic and spin-dependent phenomena requires the determination of spin structures and spin excitations down to the atomic scale. The direct visualization of atomic-scale spin structures [1-4] has first been accomplished for magnetic metals by combining the atomic resolution capability of Scanning Tunnelling Microscopy (STM) with spin sensitivity, based on vacuum tunnelling of spin-polarized electrons [5]. The resulting technique, Spin-Polarized Scanning Tunnelling Microscopy (SP-STM), nowadays provides unprecedented insight into collinear and non-collinear spin structures at surfaces of magnetic nanostructures and has already led to the discovery of new types of magnetic order at the nanoscale [6,7]. More recently, the detection of spin-dependent exchange and correlation forces has allowed a first direct real-space observation of spin structures at surfaces of antiferromagnetic insulators [8]. This new type of scanning probe microscopy, called Magnetic Exchange Force Microscopy (MExFM), offers a powerful new tool to investigate different types of spin-spin interactions based on direct-, super-, or RKKY-type exchange down to the atomic level. By combining MExFM with high-precision measurements of damping forces, localized or confined spin excitations in magnetic systems of reduced dimensions now become experimentally accessible. Moreover, the combination of spin state read-out and spin state manipulation, based on spin-current induced switching across a vacuum gap by means of SP-STM [9], provides a fascinating novel type of approach towards ultra-high density magnetic recording without the use of magnetic stray fields. [1] R. Wiesendanger, I. V. Shvets, D. Bürgler, G. Tarrach, H.-J. Güntherodt, J. M. D. Coey, and S. Gräser, Science 255, 583 (1992) [2] S. Heinze, M. Bode, O. Pietzsch, A. Kubetzka, X. Nie, S. Blügel, and R. Wiesendanger, Science 288, 1805 (2000) [3] A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von

  20. Assessment of bilayer silicene to probe as quantum spin and valley Hall effect

    NASA Astrophysics Data System (ADS)

    Rehman, Majeed Ur; Qiao, Zhenhua

    2018-02-01

    Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.

  1. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less

  2. Reduction process of nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging: An ESR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration ofmore » ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.« less

  3. Reduction process of nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging: An ESR study

    NASA Astrophysics Data System (ADS)

    Meenakumari, V.; Jawahar, A.; Premkumar, S.; Benial, A. Milton Franklin

    2016-05-01

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of 14N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.

  4. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  5. Diffusion studies on permeable nitroxyl spin probe through lipid bilayer membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benial, A. Milton Franklin; Meenakumari, V.; Ichikawa, Kazuhiro

    2014-04-24

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled deutrated permeable 3- methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water, 1 mM, 2 mM, 3 mM and 4 mM concentration of MC-PROXYL in 300 mM concentration of liposomal solution by using a L-band ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported. The partition parameter and permeability values indicate the maximum spin distribution in the lipid phase at 2 mM concentration. This study illustrates that ESR can be used to differentiate between the intra and extra-membrane water by loading themore » liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the radical concentration was optimized as 2 mM in liposomal solution for ESR phantom studies and experiments.« less

  6. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect.

    PubMed

    Fang, Jiancheng; Wang, Tao; Quan, Wei; Yuan, Heng; Zhang, Hong; Li, Yang; Zou, Sheng

    2014-06-01

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz(1/2), which was mainly dominated by the noise of the magnetic shield.

  7. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE PAGES

    Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...

    2016-09-26

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  8. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, P.; Trugman, S. A.; Bowlan, J.

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  9. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jiancheng; Wang, Tao, E-mail: wangtaowt@aspe.buaa.edu.cn; Quan, Wei

    2014-06-15

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelengthmore » of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.« less

  10. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    DOE PAGES

    He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...

    2018-02-05

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less

  11. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less

  12. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    NASA Astrophysics Data System (ADS)

    He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo

    2018-05-01

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.

  13. Structural Effects on the Spin Dynamics of Potential Molecular Qubits.

    PubMed

    Atzori, Matteo; Benci, Stefano; Morra, Elena; Tesi, Lorenzo; Chiesa, Mario; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2018-01-16

    Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1 / 2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

  14. Dianionic Titanyl and Vanadyl (Cation+ )2 [MIV O(Pc4- )]2- Phthalocyanine Salts Containing Pc4- Macrocycles.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Litvinov, Alexey L; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N

    2018-06-18

    In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu 4 N + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) and (Bu 3 MeP + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) with [M IV O(Pc 4- )] 2- dianions were synthesized and characterized. Reduction of M IV O(Pc 2- ) carried out with an excess of sodium fluorenone ketyl in the presence of Bu 4 N + or Bu 3 MeP + is exclusive to the phthalocyanine centers, forming Pc 4- species. During reduction, the metal +4 charge did not change, implying that Pc is an non-innocent ligand. The Pc negative charge increase caused the C-N(pyr) bonds to elongate and the C-N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn-Teller effects are significant in the [eg(π*)] 2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q-bands were observed in the UV/Vis/NIR when M IV O(Pc 2- ) was reduced to [M IV O(Pc . 3- )] . - and [M IV O(Pc 4- )] 2- . From magnetic measurements, [Ti IV O(Pc 4- )] 2- was found to be diamagnetic and (Bu 4 N + ) 2 [V IV O(Pc 4- )] 2- and (Bu 3 MeP + ) 2 [V IV O(Pc 4- )] 2- were found to have magnetic moments of 1.72-1.78 μ B corresponding to an S=1/2 spin state owing to V IV electron spin. As a result, two latter salts show EPR signals with V IV hyperfine coupling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electron-nuclear spin dynamics of Ga centers in GaAsN dilute nitride semiconductors probed by pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.

    2018-03-01

    We propose an experimental procedure to track the evolution of electronic and nuclear spins in Ga2+ centers in GaAsN dilute semiconductors. The method is based on a pump-probe scheme that enables to monitor the time evolution of the three components of the electronic and nuclear spin variables. In contrast to other characterization methods, as nuclear magnetic resonance, this one only needs moderate magnetic fields (B≈ 10 mT), and does not require microwave irradiation. Specifically, we carry out a series of tests for different experimental conditions in order to optimize the procedure for maximum sensitivity in the measurement of the circular degree of polarization. Based on previous experimental results and the theoretical calculations presented here, we estimate that the method could yield a time resolution of about 10ps.

  16. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  17. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  18. Permeability studies of redox-sensitive nitroxyl spin probes in corn oil using an L-band ESR spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jebaraj, D. David; Utsumi, Hideo; Asath, R. Mohamed

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled {sup 2}H enriched 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) and 3–carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (carboxy-PROXYL) in pure water and various concentrations of corn oil. The ESR parameters, such as the line width, hyperfine coupling constant, g-factor, rotational correlation time, partition parameter and permeability were reported for the samples. The line width broadening was observed for both nitroxyl radicals in corn oil solutions. The partition parameter for permeable MC-PROXYL in corn oil increases with increasing concentration of corn oil, which reveals that the nitroxyl spin probe permeates into the oil phase. From the results, themore » corn oil concentration was optimized as 50 % for phantom studies. The rotational correlation time also increases with increasing concentration of corn oil. The permeable and impermeable nature of nitroxyl spin probes was demonstrated. These results will be useful for the development of ESR/OMR imaging modalities in in vivo and in vitro studies.« less

  19. Spin-exchange relaxation-free magnetometer with nearly parallel pump and probe beams

    DOE PAGES

    Karaulanov, Todor; Savukov, Igor; Kim, Young Jin

    2016-03-22

    We constructed a spin-exchange relaxation-free (SERF) magnetometer with a small angle between the pump and probe beams facilitating a multi-channel design with a flat pancake cell. This configuration provides almost complete overlap of the beams in the cell, and prevents the pump beam from entering the probe detection channel. By coupling the lasers in multi-mode fibers, without an optical isolator or field modulation, we demonstrate a sensitivity of 10 fTmore » $$/\\sqrt{\\text{Hz}}$$ for frequencies between 10 Hz and 100 Hz. In addition to the experimental study of sensitivity, we present a theoretical analysis of SERF magnetometer response to magnetic fields for small-angle and parallel-beam configurations, and show that at optimal DC offset fields the magnetometer response is comparable to that in the orthogonal-beam configuration. Based on the analysis, we also derive fundamental and probe-limited sensitivities for the arbitrary non-orthogonal geometry. The expected practical and fundamental sensitivities are of the same order as those in the orthogonal geometry. As a result, we anticipate that our design will be useful for magnetoencephalography (MEG) and magnetocardiography (MCG) applications.« less

  20. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-13

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. Here, we apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We also quantify the spin Hall effects in Ir and W using the conventional bilayer structures, and discuss the self-induced voltage in a single layer of ferromagnetic permalloy.more » Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.« less

  1. rotational Raman spectroscopy methods for probing energy thermalisation processes during spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Newton, Hayley; Walkup, Laura L.; Whiting, Nicholas; West, Linda; Carriere, James; Havermeyer, Frank; Ho, Lawrence; Morris, Peter; Goodson, Boyd M.; Barlow, Michael J.

    2014-05-01

    Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell.

  2. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  3. Measuring small compartment dimensions by probing diffusion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR.

    PubMed

    Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio

    2013-12-01

    Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    PubMed Central

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  5. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  6. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  7. Current-induced spin polarization on metal surfaces probed by spin-polarized positron beam

    PubMed Central

    Zhang, H. J.; Yamamoto, S.; Fukaya, Y.; Maekawa, M.; Li, H.; Kawasuso, A.; Seki, T.; Saitoh, E.; Takanashi, K.

    2014-01-01

    Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W nanoscaled films were studied using a spin-polarized positron beam. The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3~15% per input charge current of 105 A/cm2) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign of the CISP obeys the same rule in spin Hall effect suggesting that the spin-orbit coupling is mainly responsible for the CISP. The magnitude of the CISP is explained by the Rashba-Edelstein mechanism rather than the diffusive spin Hall effect. This settles a controversy, that which of these two mechanisms dominates the large CISP on metal surfaces. PMID:24776781

  8. Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices

    NASA Astrophysics Data System (ADS)

    Viglin, N. A.; Ustinov, V. V.; Demokritov, S. O.; Shorikov, A. O.; Bebenin, N. G.; Tsvelikhovskaya, V. M.; Pavlov, T. N.; Patrakov, E. I.

    2017-12-01

    Electric injection and detection of spin-polarized electrons in InSb semiconductors have been realized in nonlocal experimental geometry using an InSb-based "lateral spin valve." The valve of the InSb /MgO /C o0.9F e0.1 composition has semiconductor/insulator/ferromagnet nanoheterojunctions in which the thickness of the InSb layer considerably exceeded the spin diffusion length of conduction electrons. The spin direction in spin diffusion current has been manipulated by a magnetic field under the Hanle effect conditions. The spin polarization of the electron gas has been registered using ferromagnetic C o0.9F e0.1 probes by measuring electrical potentials arising in the probes in accordance with the Johnson-Silsbee concept of the spin-charge coupling. The developed theory is valid at any degree of degeneracy of electron gas in a semiconductor. The spin relaxation time and spin diffusion length of conduction electrons in InSb have been determined, and the electron-spin polarization in InSb has been evaluated for electrons injected from C o0.9F e0.1 through an MgO tunnel barrier.

  9. Synthesis, characterization, thermal and antimicrobial studies of diabetic drug models: Complexes of vanadyl(II) sulfate with ascorbic acid (vitamin C), riboflavin (vitamin B2) and nicotinamide (vitamin B3)

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2010-04-01

    The oxovanadium(II) complexes of the different vitamins like ascorbic acid (vitamin C; Vit. C), riboflavin (vitamin B2; Vit. B2) and nicotinamide (vitamin B3; Vit. B3) were synthesized and characterized by elemental analysis, molar conductance, IR, electronic, magnetic measurements, thermal studies, XRD and SEM. Conductance measurements indicated that the vanadyl(II) complexes of Vit. B2 and Vit. B3 are 1:2 electrolytes except for [VO(Vit. C) 2(H 2O) 2] complex is non-electrolyte. IR data show that Vit. B2 is bidentate ligand against azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione but Vit. B3 and Vit. C acts as a monodentate ligand through pyridine nitrogen and hydroxo oxygen of furan ring, respectively. Electronic spectral measurements indicated that all VO(II) complexes have a square-pyramidal geometry. Magnetic measurements for the new vanadyl(II) complexes are in a good agreement with the proposed formula. Thermal analyses (TG/DSC) of the studied complexes show that the decomposition process takes place in more than two steps. XRD refer that VO(II) complexes have an amorphous behavior. The surface morphology of the complexes was studied by SEM. The antimicrobial activities of the ligands and its complexes indicate that the vanadyl(II) complexes possess high antibacterial and antifungal activities towards the bacterial species and the fungal species than start ligands.

  10. Probing Electron Spin Resonance in Monolayer Graphene

    NASA Astrophysics Data System (ADS)

    Lyon, T. J.; Sichau, J.; Dorn, A.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Blick, R. H.

    2017-08-01

    The precise value of the g factor in graphene is of fundamental interest for all spin-related properties and their application. We investigate monolayer graphene on a Si /SiO2 substrate by resistively detected electron spin resonance. Surprisingly, the magnetic moment and corresponding g factor of 1.952 ±0.002 is insensitive to charge carrier type, concentration, and mobility.

  11. Nuclear spin noise in NMR revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrand, Guillaume; Luong, Michel; Huber, Gaspard

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurementsmore » validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.« less

  12. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  13. Coherent ultrafast spin-dynamics probed in three dimensional topological insulators

    PubMed Central

    Boschini, F.; Mansurova, M.; Mussler, G.; Kampmeier, J.; Grützmacher, D.; Braun, L.; Katmis, F.; Moodera, J. S.; Dallera, C.; Carpene, E.; Franz, C.; Czerner, M.; Heiliger, C.; Kampfrath, T.; Münzenberg, M.

    2015-01-01

    Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. We investigate a spin-related signal present only during the laser excitation studying real and imaginary part of the complex Kerr angle by disentangling spin and lattice contributions. This coherent signal is only present at the time of the pump-pulses’ light field and can be described in terms of a Raman coherence time. The Raman transition involves states at the bottom edge of the conduction band. We demonstrate a coherent femtosecond control of spin-polarization for electronic states at around the Dirac cone. PMID:26510509

  14. Magnetic order and spin dynamics in La2O2Fe2OSe2 probed by 57Fe Mössbauer, 139La NMR, and muon-spin relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Günther, M.; Kamusella, S.; Sarkar, R.; Goltz, T.; Luetkens, H.; Pascua, G.; Do, S.-H.; Choi, K.-Y.; Zhou, H. D.; Blum, C. G. F.; Wurmehl, S.; Büchner, B.; Klauss, H.-H.

    2014-11-01

    We present a detailed local probe study of the magnetic order in the oxychalcogenide La2O2Fe2OSe2 utilizing 57Fe Mössbauer, 139La NMR, and muon-spin relaxation spectroscopy. This system can be regarded as an insulating reference system of the Fe arsenide and chalcogenide superconductors. From the combination of the local probe techniques we identify a noncollinear magnetic structure similar to Sr2F2Fe2OS2 . The analysis of the magnetic order parameter yields an ordering temperature TN=90.1 K and a critical exponent of β =0.133 , which is close to the two-dimensional Ising universality class as reported in the related oxychalcogenide family.

  15. Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    NASA Astrophysics Data System (ADS)

    Mohammady, M. Hamed; Choi, Hyeongrak; Trusheim, Matthew E.; Bayat, Abolfazl; Englund, Dirk; Omar, Yasser

    2018-04-01

    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the z direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap-gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here, the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics.

  16. On the Tuning of High-Resolution NMR Probes

    PubMed Central

    Pöschko, Maria Theresia; Schlagnitweit, Judith; Huber, Gaspard; Nausner, Martin; Horničáková, Michaela; Desvaux, Hervé; Müller, Norbert

    2014-01-01

    Three optimum conditions for the tuning of NMR probes are compared: the conventional tuning optimum, which is based on radio-frequency pulse efficiency, the spin noise tuning optimum based on the line shape of the spin noise signal, and the newly introduced frequency shift tuning optimum, which minimizes the frequency pushing effect on strong signals. The latter results if the radiation damping feedback field is not in perfect quadrature to the precessing magnetization. According to the conventional RLC (resistor–inductor–capacitor) resonant circuit model, the optima should be identical, but significant deviations are found experimentally at low temperatures, in particular on cryogenically cooled probes. The existence of different optima with respect to frequency pushing and spin noise line shape has important consequences on the nonlinearity of spin dynamics at high polarization levels and the implementation of experiments on cold probes. PMID:25210000

  17. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    NASA Astrophysics Data System (ADS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  18. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  19. Higher-order spin-noise spectroscopy of atomic spins in fluctuating external fields

    DOE PAGES

    Li, Fuxiang; Crooker, S. A.; Sinitsyn, N. A.

    2016-03-09

    Here, we discuss the effect of external noisy magnetic fields on mesoscopic spin fluctuations that can be probed in semiconductors and atomic vapors by means of optical spin-noise spectroscopy. We also show that conventional arguments of the law of large numbers do not apply to spin correlations induced by external fields, namely, the magnitude of the 4th-order spin cumulant grows as ~N 2 with the number N of observed spins, i.e., it is not suppressed in comparison to the 2nd-order cumulant. Moreover, this allows us to design a simple experiment to measure the 4th-order cumulant of spin fluctuations in anmore » atomic system near thermodynamic equilibrium and develop a quantitative theory that explains all observations.« less

  20. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe.

    PubMed

    Jiang, Jia; Tian, Sizhu; Wang, Kun; Wang, Yang; Zang, Shuang; Yu, Aimin; Zhang, Ziwei

    2018-02-01

    With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe 3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe 3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL -1 , and the analytical sensitivity was 1.81 μg mL -1 . When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL -1 , and the sensitivity was 0.014 and 0.13 μg mL -1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.

  1. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    PubMed Central

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-01-01

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems. PMID:26497777

  2. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    DOE PAGES

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less

  3. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE PAGES

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; ...

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  4. Low-temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol

    NASA Astrophysics Data System (ADS)

    Kveder, Marina; Merunka, Dalibor; Jokić, Milan; Rakvin, Boris

    2008-03-01

    X -band electron paramagnetic resonance spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5-11.5K . The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time Tm for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of Tm and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

  5. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this usingmore » inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.« less

  6. W-band EPR of vanadyl complexes aggregates on the surface of Al2O3

    NASA Astrophysics Data System (ADS)

    Mamin, G.; Gafurov, M.; Galukhin, A.; Gracheva, I.; Murzakhanov, F.; Rodionov, A.; Orlinskii, S.

    2018-05-01

    Structural characterization of metalloporphyrins, asphaltenes and their aggregates in complex systems such as native hydrocarbons is in the focus of scientific and industrial interests since many years. We present W-band (95 GHz) electron paramagnetic resonance (EPR) study in the magnetic field of about 3.4 T and temperature of 100 K for Karmalinskoe oil, asphaltens and asphaltenes deposited on the surface of Al2O3. Features of the obtained spectra are described. Shift to the higher frequencies allows to separate spectrally the contributions from paramagnetic complexes of different origin and define the EPR parameters more accurately comparing to the conventional X-band (9 GHz). Changes of the EPR parameters are tracked. We suggest that the proposed approach can be used for the investigation of structure of vanadyl complexes aggregates in crude oil and their fractions.

  7. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236more » F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.« less

  8. Spin-dependent electron many-body effects in GaAs

    NASA Astrophysics Data System (ADS)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  9. Oxidation of tertiary amines by cytochrome p450-kinetic isotope effect as a spin-state reactivity probe.

    PubMed

    Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason

    2009-08-24

    Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.

  10. Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping

    NASA Astrophysics Data System (ADS)

    Hogan, Thomas C.

    Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1-x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility.

  11. Nonreciprocity of electrically excited thermal spin signals in CoFeAl-Cu-Py lateral spin valves

    NASA Astrophysics Data System (ADS)

    Hu, Shaojie; Cui, Xiaomin; Nomura, Tatsuya; Min, Tai; Kimura, Takashi

    2017-03-01

    Electrical and thermal spin currents excited by an electric current have been systematically investigated in lateral spin valves consisting of CoFeAl and Ni80Fe20 (Py) wires bridged by a Cu strip. In the electrical spin signal, the reciprocity between the current and voltage probes was clearly confirmed. However, a significant nonreciprocity was observed in the thermal spin signal. This provides clear evidence that a large spin-dependent Seebeck coefficient is more important than the spin polarization for efficient thermal spin injection and detection. We demonstrate that the spin-dependent Seebeck coefficient can be simply evaluated from the thermal spin signals for two configurations. Our experimental description paves a way for evaluating a small spin-dependent Seebeck coefficient for conventional ferromagnets without using complicated parameters.

  12. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  13. Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets

    NASA Astrophysics Data System (ADS)

    dos Santos, Flaviano José; dos Santos Dias, Manuel; Guimarães, Filipe Souza Mendes; Bouaziz, Juba; Lounis, Samir

    2018-01-01

    Topological noncollinear magnetic phases of matter are at the heart of many proposals for future information nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.

  14. Continuous Faraday measurement of spin precession without light shifts

    NASA Astrophysics Data System (ADS)

    Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.

    2017-12-01

    We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.

  15. Quantized spin-momentum transfer in atom-sized magnetic systems

    NASA Astrophysics Data System (ADS)

    Loth, Sebastian

    2010-03-01

    Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).

  16. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes

    NASA Astrophysics Data System (ADS)

    Phark, Soo-hyon; Sander, Dirk

    2017-04-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I/d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  17. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer

    DOE PAGES

    Chu, Pinghan; Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-08-15

    We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. Lastly, we estimate that by moving unpolarized or polarized objects nextmore » to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10 –2 m.« less

  18. Spin-orbit-coupled fermions in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.

    2017-02-01

    Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

  19. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezovsky, Jesse

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessarymore » to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.« less

  20. Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry

    PubMed Central

    2016-01-01

    Conspectus Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing “UP” or “DOWN” using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5–30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to

  1. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    NASA Astrophysics Data System (ADS)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  2. Dual-spin attitude control for outer planet missions

    NASA Technical Reports Server (NTRS)

    Ward, R. S.; Tauke, G. J.

    1977-01-01

    The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.

  3. Spin interferometry in anisotropic spin-orbit fields

    NASA Astrophysics Data System (ADS)

    Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku

    2018-03-01

    Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.

  4. Polaron spin echo envelope modulations in an organic semiconducting polymer

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less

  5. Spin label studies of micellar and pre-micellar aggregates.

    PubMed

    Ernades, J R; Schreier, S; Chaimovich, H

    1976-02-01

    Micelles of hexadecyl trimethyl ammonium bromide (CTABr) have been investigated with the use of a faty acid spin label and its methyl ester derivative. The esr * spectra provided information about the degree of motion of the probes in the micelles as evaluated from calculation of rotational correlation times. Evidence is presented for the formation of pre-micellar aggregates at concentrations below the cmc. The effect of addition of thiophenoxide on the structure of CTABr micelles was to decrease the rate of motion of the spin probes, probably due to a tighter packing of the hydrophobic core as a consequence of charge neutralization at the micelle surface by the substrate. Decreasing values of the isotropic hyperfine splitting of the spin probe with increasing concentration of thiophenoxide were taken as indicating that the latter causes a decrease of the degree of hydration of the polar head region of the detergent.

  6. Study of spin-ordering and spin-reorientation transitions in hexagonal manganites through Raman spectroscopy

    PubMed Central

    Chen, Xiang-Bai; Hien, Nguyen Thi Minh; Han, Kiok; Nam, Ji-Yeon; Huyen, Nguyen Thi; Shin, Seong-Il; Wang, Xueyun; Cheong, S. W.; Lee, D.; Noh, T. W.; Sung, N. H.; Cho, B. K.; Yang, In-Sang

    2015-01-01

    Spin-wave (magnon) scattering, when clearly observed by Raman spectroscopy, can be simple and powerful for studying magnetic phase transitions. In this paper, we present how to observe magnon scattering clearly by Raman spectroscopy, then apply the Raman method to study spin-ordering and spin-reorientation transitions of hexagonal manganite single crystal and thin films and compare directly with the results of magnetization measurements. Our results show that by choosing strong resonance condition and appropriate polarization configuration, magnon scattering can be clearly observed, and the temperature dependence of magnon scattering can be simple and powerful quantity for investigating spin-ordering as well as spin-reorientation transitions. Especially, the Raman method would be very helpful for investigating the weak spin-reorientation transitions by selectively probing the magnons in the Mn3+ sublattices, while leaving out the strong effects of paramagnetic moments of the rare earth ions. PMID:26300075

  7. Magnetic and Electric Transverse Spin Density of Spatially Confined Light

    NASA Astrophysics Data System (ADS)

    Neugebauer, Martin; Eismann, Jörg S.; Bauer, Thomas; Banzer, Peter

    2018-04-01

    When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments that spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.

  8. Proton spin: A topological invariant

    NASA Astrophysics Data System (ADS)

    Tiwari, S. C.

    2016-11-01

    Proton spin problem is given a new perspective with the proposition that spin is a topological invariant represented by a de Rham 3-period. The idea is developed generalizing Finkelstein-Rubinstein theory for Skyrmions/kinks to topological defects, and using non-Abelian de Rham theorems. Two kinds of de Rham theorems are discussed applicable to matrix-valued differential forms, and traces. Physical and mathematical interpretations of de Rham periods are presented. It is suggested that Wilson lines and loop operators probe the local properties of the topology, and spin as a topological invariant in pDIS measurements could appear with any value from 0 to ℏ 2, i.e. proton spin decomposition has no meaning in this approach.

  9. Quantum spin liquids: a review.

    PubMed

    Savary, Lucile; Balents, Leon

    2017-01-01

    Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  10. Femtosecond optical reflectivity measurements of lattice-mediated spin repulsions in photoexcited LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Bielecki, J.; Rata, A. D.; Börjesson, L.

    2014-01-01

    We present results on the temperature dependence of ultrafast electron and lattice dynamics, measured with pump-probe transient reflectivity experiments, of an epitaxially grown LaCoO3 thin film under tensile strain. Probing spin-polarized transitions into the antibonding eg band provides a measure of the low-spin fraction, both as a function of temperature and time after photoexcitation. It is observed that femtosecond laser pulses destabilize the constant low-spin fraction (˜63%-64%) in equilibrium into a thermally activated state, driven by a subpicosecond change in spin gap Δ. From the time evolution of the low-spin fraction, it is possible to disentangle the thermal and lattice contributions to the spin state. A lattice mediated spin repulsion, identified as the governing factor determining the equilibrium spin state in thin-film LaCoO3, is observed. These results suggests that time-resolved spectroscopy is a sensitive probe of the spin state in LaCoO3 thin films, with the potential to bring forward quantitative insight into the complicated interplay between structure and spin state in LaCoO3.

  11. Free-radical probes for functional in vivo EPR imaging

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  12. Spin-orbit optical cross-phase-modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasselet, Etienne

    2010-12-15

    We show experimentally that optical phase singularities (PSs) can be written and erased, locally and in a controllable manner, into a light beam using the giant Kerr optical nonlinearities of liquid crystals. The method relies on the nonlinear optical spin-orbit coupling experienced by a collimated probe beam when a collinear focused pump beam imprints a radial birefringent pattern into a nematic film. In addition, experimental data are quantitatively described, accounting for the elastic anisotropy of the material and its nonlocal spatial response to the pump light field. Since we show that the optical intensity of a light beam (the 'pump')more » controls the phase of another beam (the 'probe') in a singular fashion (i.e., with the generation of a screw PS) via their interaction in a nonlinear medium that involves spin-orbit coupling, we dubbed such a nonlinear optical process as spin-orbit optical cross-phase-modulation.« less

  13. Fingerprints of quantum spin ice in Raman scattering

    NASA Astrophysics Data System (ADS)

    Perkins, Natalia

    Quantum spin liquids (QSLs) emerging in frustrated magnetic systems have been a fascinating and challenging subject in modern condensed matter physics for over four decades. In these systems the conventional ordering is suppressed and, instead, unusual behaviors strongly dependent on the topology of the system are observed. The difficulty in the experimental observation of QSLs comes from the fact that unlike the states with broken symmetry, the topological order characteristic of cannot be captured by a local order parameter and thus cannot be detected by local measurements. Identifying QSLs therefore requires reconsideration of experimental probes to find ones sensitive to features characteristic of topological order. The fractionalization of excitations associated with this order can offer signatures that can be probed by conventional methods such as inelastic neutron scattering, Raman or Resonant X-ray scattering experiments. In my talk I will discuss the possibility to use Raman scattering to probe the excitations of Quantum Spin Ice, a model which has long been believed to host a U(1) spin liquid ground state. NSF DMR-1511768.

  14. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Altman, E.

    2010-10-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  15. Spin-orbit proximity effect in graphene

    NASA Astrophysics Data System (ADS)

    Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G. K. W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Özyilmaz, B.

    2014-09-01

    The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.

  16. Probing the inner space of resorcinarene molecular capsules with nitroxide guests.

    PubMed

    Mileo, Elisabetta; Yi, Song; Bhattacharya, Papri; Kaifer, Angel E

    2009-01-01

    In quarantine: Nitroxide spin probes are encapsulated by hexameric resorcinarene molecular capsules in dichloromethane solutions (see picture). A substantial reduction in the tumbling rates occurs upon encapsulation of two cationic probes and one neutral probe. As the molecular volume of the probe increases, the tumbling rate of the probe reflects the overall tumbling rate of the entire supramolecular assembly.

  17. A Cytidine Phosphoramidite with Protected Nitroxide Spin Label: Synthesis of a Full-Length TAR RNA and Investigation by In-Line Probing and EPR Spectroscopy.

    PubMed

    Weinrich, Timo; Jaumann, Eva A; Scheffer, Ute; Prisner, Thomas F; Göbel, Michael W

    2018-04-20

    EPR studies on RNA are complicated by three major obstacles related to the chemical nature of nitroxide spin labels: Decomposition while oligonucleotides are chemically synthesized, further decay during enzymatic strand ligation, and undetected changes in conformational equilibria due to the steric demand of the label. Herein possible solutions for all three problems are presented: A 2-nitrobenzyloxymethyl protective group for nitroxides that is stable under all conditions of chemical RNA synthesis and can be removed photochemically. By careful selection of ligation sites and splint oligonucleotides, high yields were achieved in the assembly of a full-length HIV-1 TAR RNA labeled with two protected nitroxide groups. PELDOR measurements on spin-labeled TAR in the absence and presence of arginine amide indicated arrest of interhelical motions on ligand binding. Finally, even minor changes in conformation due to the presence of spin labels are detected with high sensitivity by in-line probing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electron Spin Relaxation: The Role of Spin-Orbit Coupling in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Willis, M.; Nuccio, L.; Schulz, L.; Gillin, W.; Kreouzis, T.; Pratt, F.; Lord, J.; Heeney, M.; Fratini, S.; Bernhard, C.; Drew, A.

    2012-02-01

    Rapid development of organic materials has lead to their availability in commercial products. Until now, the spin degree of freedom has not generally been used in organic materials. As well as engineering difficulties, there are fundamental questions with respect to the electron spin relaxation (eSR) mechanisms in organic molecules. Muons used as a microscopic spin probe, localized to a single molecule, can access information needed to identify the relevant model for eSR. In this presentation I will introduce the ALC-MuSR technique describing how eSR can be extracted and the expected effects. I will show how the technique has been applied to small organic molecules such as the group III Quinolate series and functionalized molecules with a pentacene-like backbone. Lastly I will present the Z-number and temperature dependence in these organic molecules and show strong evidence for a spin-orbit based eSR mechanism.

  19. Application of ribonucleoside vanadyl complex (RVC) for developing a multifunctional tissue preservative solution

    PubMed Central

    Yu, Cheng-Chia; Chen, Chin-Chuan

    2018-01-01

    The quality of biological samples greatly affects the accuracy of scientific results. However, RNA in cryopreserved tissues gradually degrades during storage, leading to errors in the results of subsequent experiments. A suitable sample preservative solution can prolong storage and enhance the research value of samples. Here, we developed a sample preservative solution using the properties of the ribonucleoside vanadyl complex (RVC) and compared its effects on RNA and DNA quality, protein activity, and tissue morphology with the commercially available and widely used RNAlater® Stabilization Solution. The results showed that both the RVC-based preservative solution and RNAlater can effectively delay RNA degradation in tissue samples stored at 4°C or −80°C compared with samples stored without any preservative solution. In contrast to RNAlater, the RVC-based preservative solution did not result in damage to the tissue morphology or a loss of protein activity. Additionally, the RVC-based preservative solution did not affect the RNA and genomic DNA contents of the tissue samples or the results of subsequent experimental analyses. An RVC-based reagent can be used as a multifunctional yet relatively inexpensive tissue preservative solution to provide a comprehensive and cost-effective method for preserving samples for tissue banks. PMID:29538436

  20. EPR oximetry in three spatial dimensions using sparse spin distribution

    NASA Astrophysics Data System (ADS)

    Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan

    2008-08-01

    A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.

  1. High-Spin Structures as the Probes of Proton-Neutron Pairing

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.

    Rotating N = Z nuclei in the mass A = 58-80 region have been studied within the framework of isovector mean field theory. Available data is well and systematically described in the calculations. The present study supports the presence of strong isovector np pair field at low spin, which is, however, destroyed at high spin. No clear evidence for the existence of the isoscalar t = 0 np pairing has been found.

  2. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  3. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  4. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  5. Dynamic spin injection into a quantum well coupled to a spin-split bound state

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.

    2018-05-01

    We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.

  6. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa

    2016-07-28

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show thatmore » the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.« less

  7. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  8. Entanglement in 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Matern, S.; Hermanns, M.

    2018-06-01

    Quantum spin liquids are highly fascinating quantum liquids in which the spin degrees of freedom fractionalize. An interesting class of spin liquids are the exactly solvable, three-dimensional Kitaev spin liquids. Their fractionalized excitations are Majonara fermions, which may exhibit a variety of topological band structures—ranging from topologically protected Weyl semi-metals over nodal semi-metals to systems with Majorana Fermi surfaces. We study the entanglement spectrum of such Kitaev spin liquids and verify that it is closely related to the topologically protected edge spectrum. Moreover, we find that in some cases the entanglement spectrum contains even more information about the topological features than the surface spectrum, and thus provides a simple and reliable tool to probe the topology of a system.

  9. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  10. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  11. Spin-wave thermal population as temperature probe in magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Goff, A., E-mail: adrien.le-goff@u-psud.fr; Devolder, T.; Nikitin, V.

    We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm{sup 2} nanopillars. We apply hard axismore » (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.« less

  12. Spin-orbit-torque driven magnetoimpedance in Pt-layer/magnetic-ribbon heterostructures

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Mohseni, S. Morteza; Jamilpanah, L.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. Majid

    2017-11-01

    When a flow of electrons passes through a paramagnetic layer with strong spin-orbit-coupling such as platinum (Pt), a net spin current is produced via the spin Hall effect (SHE). This spin current can exert a torque on the magnetization of an adjacent ferromagnetic layer which can be probed via magnetization dynamic responses, e.g., spin-torque ferromagnetic resonance. Nevertheless, that effect in the lower frequency magnetization dynamic regime where the skin effect occurs in high permeability ferromagnetic conductors, namely, the magneto-impedance (MI) effect, can be fundamentally important, and has not been studied so far. Here, by utilizing the MI effect in the magnetic-ribbon/Pt heterostructure with high transvers magnetic permeability that allows the ac current effectively confined at the skin depth of ˜100 nm thickness, the effect of spin-orbit-torque (SOT) induced by the SHE probed via the MI measurement is investigated. We observed a systematic MI frequency shift that increases by increasing the applied current amplitude and thickness of the Pt layer (varying from 0 nm to 20 nm). In addition, the role of the Pt layer in the ribbon/Pt heterostructure is evaluated with the ferromagnetic resonance effect representing a standard Gilbert damping increase as a result of the presence of the SHE. Our results unveil the role of SOT in dynamic control of the transverse magnetic permeability probed by impedance spectroscopy as a useful and valuable technique for detection of future SHE devices.

  13. Spin current induced by a charged tip in a quantum point contact

    NASA Astrophysics Data System (ADS)

    Shchamkhalova, B. S.

    2017-03-01

    We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin-orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.

  14. Topological spinon bands and vison excitations in spin-orbit coupled quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jonas; Reuther, Johannes

    2017-12-01

    Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparticle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, additionally, topology enters via nontrivial band structures of the spinons. We revisit the Z2 spin-liquid phases that have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation symmetry is maximally lifted [J. Reuther et al., Phys. Rev. B 90, 174417 (2014), 10.1103/PhysRevB.90.174417]. We find that in the case of nearest-neighbor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second-neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang model for topological insulators. Assuming that the emergent gauge fields are static, we investigate vison excitations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin phases and topological p +i p superconductors with vortices. We propose experimental probes to detect such states in real materials.

  15. Spin interactions in InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  16. Spin correlations and new physics in τ -lepton decays at the LHC

    DOE PAGES

    Hayreter, Alper; Valencia, German

    2015-07-31

    We use spin correlations to constrain anomalous τ -lepton couplings at the LHC including its anomalous magnetic moment, electric dipole moment and weak dipole moments. Single spin correlations are ideal to probe interference terms between the SM and new dipole-type couplings as they are not suppressed by the τ -lepton mass. Double spin asymmetries give rise to T -odd correlations useful to probe CP violation purely within the new physics amplitudes, as their appearance from interference with the SM is suppressed by m τ. We compare our constraints to those obtained earlier on the basis of deviations from the Drell-Yanmore » cross-section.« less

  17. Spin and Valley Noise in Two-Dimensional Dirac Materials

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Saxena, A.; Smith, D. L.; Sinitsyn, N. A.

    2014-07-01

    We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.

  18. Quantum control and measurement of atomic spins in polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan H.; Jessen, Poul S.

    2010-03-01

    Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-designed time-dependent control fields must be applied to the system of interest. To read out the quantum state, information about the system must be transferred to a probe field. We study a particular example of this dual action in the context of quantum control and measurement of atomic spins through the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decomposition, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin state. This shows how polarization spectroscopy can be used for continuous weak measurement of atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering. Based on this formalism, we review applications to quantum control, including the design of state-to-state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically controlled ensemble.

  19. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe 2 O 6 : NMR and muon spin relaxation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khuntia, P.; Bert, F.; Mendels, P.

    In this study, PbCuTe 2O 6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu 2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointingmore » to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T 1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  20. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe 2 O 6 : NMR and muon spin relaxation studies

    DOE PAGES

    Khuntia, P.; Bert, F.; Mendels, P.; ...

    2016-03-11

    In this study, PbCuTe 2O 6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu 2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointingmore » to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T 1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  1. Ultrafast probes of nonequilibrium hole spin relaxation in the ferromagnetic semiconductor GaMnAs

    NASA Astrophysics Data System (ADS)

    Patz, Aaron; Li, Tianqi; Liu, Xinyu; Furdyna, Jacek K.; Perakis, Ilias E.; Wang, Jigang

    2015-04-01

    We report direct measurements of hole spin lifetimes in ferromagnetic GaMnAs carried out by time- and polarization-resolved spectroscopy. Below the Curie temperature, ultrafast photoexcitation of GaMnAs with linearly polarized light is shown to create a nonequilibrium hole spin population via dynamical polarization of the holes through p -d exchange scattering with ferromagnetically ordered Mn spins. The system is then observed to relax in a distinct three-step recovery process: (i) a femtosecond hole spin relaxation, on the scale of 160-200 fs; (ii) a picosecond hole energy relaxation, on the scale of 1-2 ps; and (iii) a coherent, damped Mn spin precession with a period of 250 ps. The transient amplitude of the hole spin relaxation component diminishes with increasing temperature, directly following the ferromagnetic order of GaMnAs, while the hole energy amplitude shows negligible temperature change. Our results serve to establish the hole spin lifetimes in the ferromagnetic semiconductor GaMnAs, at the same time demonstrating a spectroscopic method for studying nonequilibrium hole spins in the presence of magnetic order and spin-exchange interaction.

  2. Probing the antiferromagnetic long-range order with Glauber spin states

    NASA Technical Reports Server (NTRS)

    Cabrera, Guillermo G.

    1994-01-01

    It is well known that the ground state of low-dimensional antiferromagnets deviates from Neel states due to strong quantum fluctuations. Even in the presence of long-range order, those fluctuations produce a substantial reduction of the magnetic moment from its saturation value. Numerical simulations in anisotropic antiferromagnetic chains suggest that quantum fluctuations over Neel order appear in the form of localized reversal of pairs of neighboring spins. In this paper, we propose a coherent state representation for the ground state to describe the above situation. In the one-dimensional case, our wave function corresponds to a two-mode Glauber state, when the Neel state is used as a reference, while the boson fields are associated to coherent flip of spin pairs. The coherence manifests itself through the antiferromagnetic long-range order that survives the action of quantum fluctuations. The present representation is different from the standard zero-point spin wave state, and is asymptotically exact in the limit of strong anisotropy. The fermionic version of the theory, obtained through the Jordan-Wigner transformation, is also investigated.

  3. Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    PubMed Central

    de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald

    2012-01-01

    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480

  4. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    At Vandenberg AFB, the canister enclosing the Gravity Probe B (GP-B) spacecraft is removed from the transporter. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  5. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment enters the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  6. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment is lifted from its transporter in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  7. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    A transporter carrying the Gravity Probe B experiment backs into the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  8. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  9. Preparation, characterization, and stereochemistry of binuclear vanadyl(IV) monomethyl- and dimethyltartrate(4-) complexes and the crystal structure of tetrasodium (. mu. -(+)-dimethyltartrato(4-))-(. mu. -(-)-dimethyltartrato(4-))-bis(oxovanadate(IV)) dodecahydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahs, S.K.; Ortega, R.B.; Tapscott, R.E.

    1982-02-01

    The syntheses and characterizations (by ESR, IR, and electronic spectroscopies) of the sodium salts of the DL and DD (or LL) binuclear complexes of vanadyl(IV) with dimethyltartrate(4-), dmt, and with monomethyltartrate(4-), mmt, are described. Na/sub 4/((VO)/sub 22/((+)-dmt)((-)-dmt)) exists in two crystal forms - a blue dodecahydrate and a pink hexahydrate. An x-ray diffraction study of the former shows that the V-V distance (3.429 (3) A) of the binuclear anion is decreased relative to that of the unsubstituted tartrate(4-), tart, complex, as predicted from earlier ESR studies, and that this decrease is due in part to a dropping of the vanadiummore » atom into the plane of the four coordinating equatorial oxygen atoms. A sixth oxygen atom is weakly coordinated (2.377 (3) A) trans to the vanadyl oxygen atom. A purple tetradecahydrate also obtained with racenic dmt contains a mixture of ((VO)/sub 2/ ((+)-dmt)/sub 2/)/sup 4 -/ and ((VO)/sub 2/((-)-dmt)/sub 2/)/sup 4 -/). The aqueous solution ligand-exchange reaction between the DD and LL complexes of this salt to give the more stable DL isomer is remarkably slow (several hours at room temperature). Stereoselective effects allow the production of mixed-ligand species containing two of the three ligands tart, dmt, and mmt, and potentiometric titrations indicate a decreasing stability of the DL isomer (relative to the DD and LL isomers) as methyl substitution increases.« less

  10. Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Hao; Zhu, Ka-Di

    2015-01-01

    Nowadays hybrid spin-micro/nanomechanical systems are being actively explored for potential quantum sensing applications. In combination with the pump-probe technique or the spin resonance spectrum, we theoretically propose a realistic, feasible, and an exact way to measure the cantilever frequency in a hybrid spin-micromechanical cantilever system which has a strong coherent coupling of a single nitrogen vacancy center in the single-crystal diamond cantilever with the microcantilever. The probe absorption spectrum which exhibits new features such as mechanically induced three-photon resonance and ac Stark effect is obtained. Simultaneously, we further develop this hybrid spin-micromechanical system to be an ultrasensitive mass sensor, which can be operated at 300 K with a mass responsivity 0.137 Hz ag-1, for accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules. And the best performance on the minimum detectable mass can be 28.7 zg in vacuum. Finally, we illustrate an in situ measurement to detect Angiopoietin-1, a marker of tumor angiogenesis, accurately with this hybrid microcantilever at room temperature.

  11. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  12. Resonance spectra of a paramagnetic probe dissolved in a viscous medium

    NASA Technical Reports Server (NTRS)

    Kaplan, J. I.; Gelerinter, E.; Fryburg, G. C.

    1972-01-01

    A model is presented for calculating the paramagnetic resonance (EPR) spectrum of vanadyl acetylacetonate (VAAC) dissolved in either a liquid crystal or isotropic solvent. It employs density matrix formulation in the rotating reference frame. The molecules occupy several discrete angles with respect to the magnetic field and can relax to neighboring positions in a characteristic time tau(theta). The form of tau(theta) is found from a diffusion approach, and the magnitude of tau(theta) is a measure of how freely the VAAC probe tumbles in the solvent. Spectra are predicted for values of tau between 10 to the minus 11th power sec and 10 to the minus 7th power sec. The EPR spectrum, in the isotropic case, is obtained be summing the contributions from the allowed angles weighted by the polar volume element, sin theta. When applying the model to the nematic liquid crystal case it is also necessary to multiply by the Saupe distribution function. For this case tau(theta) is obtained from the diffusion approach in which two diffusion constants are employed to reflect the difference in the parallel and perpendicular components of the viscosity.

  13. XFM demonstrates preferential accumulation of a vanadyl-based MRI contrast agent in murine colonic tumors

    PubMed Central

    Mustafi, Devkumar; Ward, Jesse; Dougherty, Urszula; Bissonnette, Marc; Hart, John; Vogt, Stefan; Karczmar, Gregory S.

    2016-01-01

    Contrast agents that specifically enhance cancers on MRI would allow earlier detection. Vanadyl-based chelates (VCs) selectively enhance rodent cancers on MRI, suggesting selective uptake of VCs by cancers. Here we report X-ray fluorescence microscopy (XFM) of VC uptake by murine colon cancer. Colonic tumors in mice treated with azoxymethane/dextran sulfate sodium were identified by MRI. Then a gadolinium-based contrast agent and a VC were injected I.V.; mice were sacrificed and colons sectioned. VC distribution was sampled at 120 minutes after injection to evaluate the long term accumulation. Gadolinium distribution was sampled at 10 minutes after injection due to its rapid washout. XFM was performed on 72 regions of normal and cancerous colon from 5 normal mice and 4 cancer-bearing mice. XFM showed that all gadolinium was extracellular with similar concentrations in colon cancers and normal colon. In contrast, the average VC concentration was 2-fold higher in cancers vs. normal tissue (p<0.002). Cancers also contained numerous ‘hot spots’ with intracellular VC concentrations 6-fold higher than the concentration in normal colon (p<0.0001). No ‘hot spots’ were detected in normal colon. This is the first direct demonstration that VCs selectively accumulate in cancer cells, and thus may improve cancer detection. PMID:25813904

  14. Interplay of magnetism and superconductivity in EuFe2(As1-xPx)2 single crystals probed by muon spin rotation and 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Goltz, T.; Kamusella, S.; Jeevan, H. S.; Gegenwart, P.; Luetkens, H.; Materne, P.; Spehling, J.; Sarkar, R.; Klauss, H.-H.

    2014-12-01

    We present our results of a local probe study on EuFe2(As1-xPx)2 single crystals with x=0.13, 0.19 and 0.28 by means of muon spin rotation and 57Fe Mössbauer spectroscopy. We focus our discussion on the sample with x=0.19 viz. at the optimal substitution level, where bulk superconductivity (TSC = 28 K) sets in above static europium order (TEu = 20 K) but well below the onset of the iron antiferromagnetic (AFM) transition (~100 K). We find enhanced spin dynamics in the Fe sublattice closely above TSC and propose that these are related to enhanced Eu fluctuations due to the evident coupling of both sublattices observed in our experiments.

  15. Nuclear Spin Locking and Extended Two-Electron Spin Decoherence Time in an InAs Quantum Dot Molecule

    NASA Astrophysics Data System (ADS)

    Chow, Colin; Ross, Aaron; Steel, Duncan; Sham, L. J.; Bracker, Allan; Gammon, Daniel

    2015-03-01

    The spin eigenstates for two electrons confined in a self-assembled InAs quantum dot molecule (QDM) consist of the spin singlet state, S, with J = 0 and the triplet states T-, T0 and T+, with J = 1. When a transverse magnetic field (Voigt geometry) is applied, the two-electron system can be initialized to the different states with appropriate laser excitation. Under the excitation of a weak probe laser, non-Lorentzian lineshapes are obtained when the system is initialized to either T- or T+, where T- results in a ``resonance locking'' lineshape while T+ gives a ``resonance avoiding '' lineshape: two different manifestations of hysteresis showing the importance of memory in the system. These observations signify dynamic nuclear spin polarization (DNSP) arising from a feedback mechanism involving hyperfine interaction between lattice nuclei and delocalized electron spins, and Overhauser shift due to nuclear spin polarization. Using pump configurations that generate coherent population trapping, the isolation of the electron spin from the optical excitation shows the stabilization of the nuclear spin ensemble. The dark-state lineshape measures the lengthened electron spin decoherence time, from 1 ns to 1 μs. Our detailed spectra highlight the potential of QDM for realizing a two-qubit gate. This work is supported by NSF, ARO, AFOSR, DARPA, and ONR.

  16. Experimental demonstration of the vertical spin existence in evanescent waves

    NASA Astrophysics Data System (ADS)

    Maksimyak, P. P.; Maksimyak, A. P.; Ivanskyi, D. I.

    2018-01-01

    Physical existence of the recently discovered vertical spin arising in an evanescent light wave due to the total internal reflection of a linearly polarized probing beam with azimuthal angle 45° is experimentally verified. Mechanical action, caused by optical force, associated with the extraordinary transverse component of the spin in evanescent wave is demonstrated. The motion of a birefringent plate in a direction controlled by simultaneous action of the canonical momentum and the transversal spin momentum is observed. The contribution of the canonical and spin momenta in determination of the trajectory of the resulting motion occur commensurable under exceptionally delicately determined experimental conditions.

  17. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  18. Possibility of Cooper-pair formation controlled by multi-terminal spin injection

    NASA Astrophysics Data System (ADS)

    Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.

    2018-03-01

    A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.

  19. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment rests on an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  20. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment is lowered onto an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  1. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives on Vandenberg Air Force Base, headed for the spacecraft processing facility. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  2. Gravity Probe B

    NASA Image and Video Library

    2003-07-18

    In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  3. Gravity Probe B

    NASA Image and Video Library

    2003-07-18

    In the spacecraft processing facility on North Vandenberg Air Force Base, battery charge/discharge cycles are underway as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  4. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  5. Syntheses of vanadyl and zinc(II) complexes of 1-hydroxy-4,5,6-substituted 2(1H)-pyrimidinones and their insulin-mimetic activities.

    PubMed

    Yamaguchi, Mika; Wakasugi, Kei; Saito, Ryota; Adachi, Yusuke; Yoshikawa, Yutaka; Sakurai, Hiromu; Katoh, Akira

    2006-02-01

    Control of the glucose level in the blood plasma has been achieved in vitro and in vivo by administration of vanadium and zinc in form of inorganic salts. It has been shown that elements are poorly absorbed in their inorganic forms and required high doses which have been associated with undesirable side effects. Many researchers, therefore, have focused on metal complexes that were prepared from VOSO(4) or ZnSO(4) and low-molecular-weight bidentate ligands. Seven kinds of 1-hydroxy-4,6-disubstituted and 1-hydroxy-4,5,6-trisubstituted-2(1H)-pyrimidinones were synthesized by reaction of N-benzyloxyurea and beta-diketones and subsequent removal of the protecting group. Six kinds of 1-hydroxy-4-(substituted)amino-2(1H)-pyrimidinones were synthesized by the substitution reaction of 1-benzyloxy-4-(1',2',4'-triazol-1'-yl)-2(1H)-pyrimidinone with various alkyl amines or amino acids. Treatment with VOSO(4) and ZnSO(4) or Zn(OAc)(2) afforded vanadyl(IV) and zinc(II) complexes which were characterized by means of (1)H NMR, IR, EPR, and UV-vis spectroscopies, and combustion analysis. The in vitro insulin-mimetic activity of these complexes was evaluated from 50% inhibitory concentrations (IC(50)) on free fatty acid (FFA) release from isolated rat adipocytes treated with epinephrine. Vanadyl complexes of 4,6-disubstituted-2(1H)-pyrimidinones showed higher insulin-mimetic activities than those of 4,5,6-trisubstituted ones. On the other hand, Zn(II) complexes showed lower insulin-mimetic activities than VOSO(4) and ZnSO(4) as positive controls. It was found that the balance of the hydrophilicity and/or hydrophobicity is important for higher insulin-mimetic activity. The in vivo insulin-mimetic activity was evaluated with streptozotocin (STZ)-induced diabetic rats. Blood glucose levels were lowered from hyperglycemic to normal levels after the treatment with bis(1,2-dihydro-4,6-dimethyl-2-oxo-1-pyrimidinolato)oxovanadium(IV) by daily intraperitoneal injections. The improvement in

  6. Longitudinal and transverse spin dynamics of donor-bound electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.

    2015-06-01

    The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.

  7. Understanding the role of spin-motion coupling in Ramsey spectroscopy

    NASA Astrophysics Data System (ADS)

    Koller, Andrew; Beverland, Michael; Mundinger, Joshua; Gorshkov, Alexey; Rey, Ana Maria

    2014-05-01

    Ramsey spectroscopy has become a powerful technique for probing non-equilibrium dynamics of internal (pseudospin) degrees of freedom of interacting systems. In many theoretical treatments, the key to understanding the dynamics has been to assume the external (motional) degrees of freedom are decoupled from the pseudospin degrees of freedom. Determining the validity of this approximation - known as the spin model approximation - has not been addressed in detail. We shed light in this direction by calculating Ramsey dynamics exactly for two interacting spin-1/2 particles in a harmonic trap. We find that in 1D the spin model assumption works well over a wide range of experimentally-relevant conditions, but can fail at time scales longer than those set by the mean interaction energy. Surprisingly, in 2D a modified version of the spin model is exact to first order in the interaction strength. This analysis is important for a correct interpretation of Ramsey spectroscopy and has broad applications ranging from precision measurements to quantum information and to fundamental probes of many-body systems. Supported by NSF, ARO-DARPA-OLE, AFOSR, NIST, the Lee A. DuBridge and Gordon and Betty Moore Foundations, and the NDSEG program.

  8. Nanopatterned reconfigurable spin-textures for magnonics

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).

  9. Variation in the structure and optical properties of gamma-irradiated Vanadyl 2,3-naphthalocyanine (VONc) nanostructure films

    NASA Astrophysics Data System (ADS)

    Darwish, A. A. A.; Issa, Shams A. M.

    2018-07-01

    Naphthalocyanines have an important optical and electrical property, made it eligible to be a key utilitarian materials for a couple of special applications. Therefore, this study focused on the influence of gamma rays irradiation on the structure and optical properties of Vanadyl 2,3-naphthalocyanine (VONc) films. The VONc films have been prepared using the thermal evaporating technique. The investigated films were irradiated with gamma-rays 20, 40 and 60 kGy doses. X-ray diffraction exhibited that the as-deposited VONc films have nanostructure nature, which changed to the amorphous structure with gamma-rays radiation dosage. The optical results indicate that the optical absorption mechanism complied with the indirect allowed transition. It was observed also, there were no prominent changes found in the energy gap values when VONc films were exposed to gamma radiation. However, the optical conductivity rises with additional amounts of gamma-ray dose. This behavior may be attributed to the addition of electrons which freed by the incident photon energy because of a few changes in the film structure caused by the gamma-ray radiation. These outcomes illustrated that VONc films own the characteristics to be utilized in the field of optoelectronic applications.

  10. Muon spin rotation study of spin dimers on a triangular lattice in Ba3 MRu2 O9

    NASA Astrophysics Data System (ADS)

    Ziat, Djamel; Verrier, Aimé; Quilliam, Jeffrey; Aczel, Adam; Sinclair, Ryan; Chen, Qiang; Zhou, Haidong

    The family of hexagonal perovskites, Ba3 MA2 O9 has recently been proven to be fertile ground for the discovery of new, exotic magnetic phases, including several quantum spin liquid candidates. The 6H-perovskites can also accommodate spin dimers on a triangular lattice, as in the ruthenate materials Ba3MRu2O9. We will present measurements on materials containing M3 + (M = Y, La, Lu, In), which give rise to mixed valence Ru4.5 + ions wherein the orbital and charge degrees of freedom must also be considered. In particular, muon spin rotation (µSR) experiments, have allowed us to probe the nature of the magnetically ordered ground state of these materials at low temperatures.

  11. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  12. Probing low noise at the MOS interface with a spin-orbit qubit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jock, Ryan Michael; Jacobson, Noah Tobias; Harvey-Collard, Patrick

    The silicon metal-oxide-semiconductor (MOS) material system is technologically important for the implementation of electron spin-based quantum information technologies. Researchers predict the need for an integrated platform in order to implement useful computation, and decades of advancements in silicon microelectronics fabrication lends itself to this challenge. However, fundamental concerns have been raised about the MOS interface (e.g. trap noise, variations in electron g-factor and practical implementation of multi-QDs). Furthermore, two-axis control of silicon qubits has, to date, required the integration of non-ideal components (e.g. microwave strip-lines, micro-magnets, triple quantum dots, or introduction of donor atoms). In this paper, we introduce amore » spin-orbit (SO) driven singlet- triplet (ST) qubit in silicon, demonstrating all-electrical two-axis control that requires no additional integrated elements and exhibits charge noise properties equivalent to other more model, but less commercially mature, semiconductor systems. We demonstrate the ability to tune an intrinsic spin-orbit interface effect, which is consistent with Rashba and Dresselhaus contributions that are remarkably strong for a low spin-orbit material such as silicon. The qubit maintains the advantages of using isotopically enriched silicon for producing a quiet magnetic environment, measuring spin dephasing times of 1.6 μs using 99.95% 28Si epitaxy for the qubit, comparable to results from other isotopically enhanced silicon ST qubit systems. This work, therefore, demonstrates that the interface inherently provides properties for two-axis control, and the technologically important MOS interface does not add additional detrimental qubit noise. isotopically enhanced silicon ST qubit systems« less

  13. The magnetic particle in a box: Analytic and micromagnetic analysis of probe-localized spin wave modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan, E-mail: adur@physics.osu.edu; Du, Chunhui; Manuilov, Sergei A.

    2015-05-07

    The dipole field from a probe magnet can be used to localize a discrete spectrum of standing spin wave modes in a continuous ferromagnetic thin film without lithographic modification to the film. Obtaining the resonance field for a localized mode is not trivial due to the effect of the confined and inhomogeneous magnetization precession. We compare the results of micromagnetic and analytic methods to find the resonance field of localized modes in a ferromagnetic thin film, and investigate the accuracy of these methods by comparing with a numerical minimization technique that assumes Bessel function modes with pinned boundary conditions. Wemore » find that the micromagnetic technique, while computationally more intensive, reveals that the true magnetization profiles of localized modes are similar to Bessel functions with gradually decaying dynamic magnetization at the mode edges. We also find that an analytic solution, which is simple to implement and computationally much faster than other methods, accurately describes the resonance field of localized modes when exchange fields are negligible, and demonstrating the accessibility of localized mode analysis.« less

  14. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  15. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  16. Proposal for a graphene-based all-spin logic gate

    NASA Astrophysics Data System (ADS)

    Su, Li; Zhao, Weisheng; Zhang, Yue; Querlioz, Damien; Zhang, Youguang; Klein, Jacques-Olivier; Dollfus, Philippe; Bournel, Arnaud

    2015-02-01

    In this work, we present a graphene-based all-spin logic gate (G-ASLG) that integrates the functionalities of perpendicular anisotropy magnetic tunnel junctions (p-MTJs) with spin transport in graphene-channel. It provides an ideal integration of logic and memory. The input and output states are defined as the relative magnetization between free layer and fixed layer of p-MTJs. They can be probed by the tunnel magnetoresistance and controlled by spin transfer torque effect. Using lateral non-local spin valve, the spin information is transmitted by the spin-current interaction through graphene channels. By using a physics-based spin current compact model, the operation of G-ASLG is demonstrated and its performance is analyzed. It allows us to evaluate the influence of parameters, such as spin injection efficiency, spin diffusion length, contact area, the device length, and their interdependence, and to optimize the energy and dynamic performance. Compared to other beyond-CMOS solutions, longer spin information transport length (˜μm), higher data throughput, faster computing speed (˜ns), and lower power consumption (˜μA) can be expected from the G-ASLG.

  17. Imaging single spin probes embedded in a conductive diamagnetic layer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, P.; Fradin, F.

    2009-01-01

    The detection of spin noise by means of scanning tunneling microscopy (STM) has recently been substantially improved by the work presented by Komeda and Manassen (Komeda, T.; Manassen, Y. Appl. Phys. Lett. 2008, 92, 212506). The application of this technique to molecular paramagnets requires the positioning and anchoring of paramagnetic molecules at surfaces. It also requires the possibility of tunneling high current densities into the STM-molecule-substrate tunneling junction. In this letter, we exploit the self-assembly of 1,10-phenantroline on the Au(111) surface to form a diamagnetic matrix that hosts individual molecules and dimers of diphenyl-2-picryl-hydrazyl (DPPH). STM measurements are used tomore » characterize the molecular layer. Electron spin resonance (ESR) measurements elucidate the role of thermal annealing in the preservation of the paramagnetic nature of the DPPH molecules.« less

  18. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling

    PubMed Central

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César de la; Arnaudas, José Ignacio

    2015-01-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417

  19. Spin decoherence of InAs surface electrons by transition metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Soghomonian, V.; Heremans, J. J.

    2018-04-01

    Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.

  20. Coherent manipulation of spin correlations in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.

    2018-05-01

    We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.

  1. The first observation of Carbon-13 spin noise spectra

    PubMed Central

    Schlagnitweit, Judith; Müller, Norbert

    2012-01-01

    We demonstrate the first 13C NMR spin noise spectra obtained without any pulse excitation by direct detection of the randomly fluctuating noise from samples in a cryogenically cooled probe. Noise power spectra were obtained from 13C enriched methanol and glycerol samples at 176 MHz without and with 1H decoupling, which increases the sensitivity without introducing radio frequency interference with the weak spin noise. The multiplet amplitude ratios in 1H coupled spectra indicate that, although pure spin noise prevails in these spectra, the influence of absorbed circuit noise is still significant at the high concentrations used. In accordance with the theory heteronuclear Overhauser enhancements are absent from the 1H-decoupled 13C spin noise spectra. PMID:23041799

  2. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  3. Hamiltonian identifiability assisted by single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola; Quantum Engineering Group Team

    2017-04-01

    We study the Hamiltonian identifiability of a many-body spin- 1 / 2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm (ERA) approach employed in. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the non-identifiable Hamiltonian to be an identifiable Hamiltonian.

  4. Probing the strongly driven spin-boson model in a superconducting quantum circuit.

    PubMed

    Magazzù, L; Forn-Díaz, P; Belyansky, R; Orgiazzi, J-L; Yurtalan, M A; Otto, M R; Lupascu, A; Wilson, C M; Grifoni, M

    2018-04-11

    Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators. A fundamental question to date is to what extent intense coherent driving impacts a strongly dissipative system. Here we investigate experimentally and theoretically a superconducting qubit strongly coupled to an electromagnetic environment and subjected to a coherent drive. This setup realizes the driven Ohmic spin-boson model. We show that the drive reinforces environmental suppression of quantum coherence, and that a coherent-to-incoherent transition can be achieved by tuning the drive amplitude. An out-of-equilibrium detailed balance relation is demonstrated. These results advance fundamental understanding of open quantum systems and bear potential for the design of entangled light-matter states.

  5. Comparing T-odd and T-even spin sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O.V.

    2015-04-10

    Sum rules for T-even and T-odd structure functions and parton distributions are considered. The case of spin-dependent distributions related to energy-momentum tensor (EMT) is specifically addressed. The Burkardt sum rule for T-odd Sivers functions may be related to EMT provided the imaginary prescription for gluonic pole correlator is incorporated. The momentum sum rule for deuteron tensor spin structure function allows one to probe indirectly the gravity couplings to quarks and gluons.

  6. Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag /Ni 81Fe19/Ag/Co 2MnGe /Ag /Ta spin-valve structures

    NASA Astrophysics Data System (ADS)

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; Hicken, R. J.; Figueroa, A. I.; Baker, A. A.; van der Laan, G.; Duffy, L. B.; Shafer, P.; Klewe, C.; Arenholz, E.; Cavill, S. A.; Childress, J. R.; Katine, J. A.

    2017-10-01

    Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0-5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.

  7. DC and AC Electric Field Measurements by Spin-Plane Double Probes Onboard MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Ergun, R. E.; Goodrich, K.; Torbert, R. B.; Argall, M. R.; Nakamura, R.

    2015-12-01

    The four spacecraft of the NASA Magnetospheric Multiscale mission (MMS) were launched on 12 March 2015 into a 1.2 x 12 Re equatorial orbit to study energy conversion processes in Earth's magnetosphere. After a 5-month commissioning period the first scientific phase starts on 1 September as the orbit enters the dusk magnetopause region. The Spin-plane Double Probe electric field instrument (SDP), part of the electric and magnetic fields instrument suite FIELDS, measures the electric field in the range 0.3 - 500 mV/m with a continuous time resolution up to 8192 samples/s. The instrument features adjustable bias currents and guard voltages to optimize the measurement performance. SDP also measures the spacecraft potential, which can be controlled by the Active Spacecraft Potential Control (ASPOC) ion emitter, and under certain conditions can be used to determine plasma density. We present observations of DC and AC electric fields in different plasma regions covered by MMS since launch including the night side flow braking region, reconnection regions at the dusk and dayside magnetopause, and in the magnetosheath. We compare the electric field measurements by SDP to other, independent determinations of the electric field, in particular by the Electron Drift Instrument (EDI), in order to assess the accuracy of the electric field measurement under different plasma conditions. We also study the influence of the currents emitted by ASPOC and EDI on the SDP measurements.

  8. Spin Josephson effect in topological superconductor-ferromagnet junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn

    2014-03-21

    The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less

  9. Spin-Dependent Processes Measured without a Permanent Magnet.

    PubMed

    Fontanesi, Claudio; Capua, Eyal; Paltiel, Yossi; Waldeck, David H; Naaman, Ron

    2018-05-07

    A novel Hall circuit design that can be incorporated into a working electrode, which is used to probe spin-selective charge transfer and charge displacement processes, is reviewed herein. The general design of a Hall circuit based on a semiconductor heterostructure, which forms a shallow 2D electron gas and is used as an electrode, is described. Three different types of spin-selective processes have been studied with this device in the past: i) photoinduced charge exchange between quantum dots and the working electrode through chiral molecules is associated with spin polarization that creates a local magnetization and generates a Hall voltage; ii) charge polarization of chiral molecules by an applied voltage is accompanied by a spin polarization that generates a Hall voltage; and iii) cyclic voltammetry (current-voltage) measurements of electrochemical redox reactions that can be spin-analyzed by the Hall circuit to provide a third dimension (spin) in addition to the well-known current and voltage dimensions. The three studies reviewed open new doors into understanding both the spin current and the charge current in electronic materials and electrochemical processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Damping of spin-dipole mode and generation of quadrupole mode excitations in a spin-orbit coupled Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Blasing, David; Chen, Yong

    2017-04-01

    In cold atom systems, spin excitations have been shown to be a sensitive probe of interactions and quantum statistical effects, and can be used to study spin transport in both Fermi and Bose gases. In particular, spin-dipole mode (SDM) is a type of excitation that can generate a spin current without a net mass current. We present recent measurements and analysis of SDM in a disorder-free, interacting three-dimensional (3D) 87Rb Bose-Einstein condensate (BEC) by applying spin-dependent synthetic electric fields to actuate head-on collisions between two BECs of different spin states. We experimentally study and compare the behaviors of the system following SDM excitations in the presence as well as absence of synthetic 1D spin-orbit coupling (SOC). We find that in the absence of SOC, SDM is relatively weakly damped, accompanied with collision-induced thermalization which heats up the atomic cloud. However, in the presence of SOC, we find that SDM is more strongly damped with reduced thermalization, and observe excitation of a quadrupole mode that exhibits BEC shape oscillation even after SDM is damped out. Such a mode conversion bears analogies with the Beliaev coupling process or the parametric frequency down conversion of light in nonlinear optics.

  11. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    PubMed

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  12. Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.

  13. Candidate muon-probe sites in oxide superconductors

    NASA Astrophysics Data System (ADS)

    Dawson, W. K.; Tibbs, K.; Weathersby, S. P.; Boekema, C.; Chan, K.-C. B.

    1988-11-01

    Two independent search methods (potential-energy and magnetic-dipole-field calculations) are used to determine muon stop sites in the RBa2Cu3O(x) (x equal to about 7) superconductors. Possible sites, located about 1 A away from oxygen ions, have been found and are prime candidates as muon-probe locations. The results are discussed in light of existing muon-spin-relaxation data of these exciting oxides, and are compared to H-oxide and positron-oxide superconductor studies. Further work is in progress to establish in detail the muon-probe sites.

  14. Probing temperature-driven flow lines in a gated two-dimensional electron gas with tunable spin-splitting.

    PubMed

    Wang, Yi-Ting; Kim, Gil-Ho; Huang, C F; Lo, Shun-Tsung; Chen, Wei-Jen; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Chang, Y H; Liang, C-T; Dolan, B P

    2012-10-10

    We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.

  15. Gravity Probe B

    NASA Image and Video Library

    2003-07-13

    In the spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to remove the soft shipping cover from the Gravity Probe B experiment. Immediate processing includes setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  16. Gravity Probe B

    NASA Image and Video Library

    2003-07-11

    Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment, including setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  17. Beyond the Spin Model Approximation for Ramsey Spectroscopy

    DTIC Science & Technology

    2014-03-26

    December 2013; revised manuscript received 31 January 2014; published 26 March 2014) Ramsey spectroscopy has become a powerful technique for probing...atomic systems without the need for ultralow temperatures. It is thus important to determine the parameter regime in which a pure interacting-spins picture

  18. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  19. Practical method for transversely measuring the spin polarization of optically pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Ding, Zhichao; Yuan, Jie; Long, Xingwu

    2018-06-01

    A practical method to measure the spin polarization of optically pumped alkali atoms is demonstrated. In order to realize transverse measurement, the transverse spin component of spin-polarized alkali atoms is created by a rotating exciting magnetic field, and detected using the optical rotation of a near-resonant probe beam for realizing a high detection sensitivity. The dependency of the optical rotation on the spin polarization of 133Cs atoms is derived theoretically and verified experimentally. By changing the direction of the rotating magnetic field, we realize the transverse measurement of the spin polarization of 133Cs atoms in either ground-state hyperfine level.

  20. Probing spin dynamics and quantum relaxation in Li Y0.998 Ho0.002 F4 via 19F NMR

    NASA Astrophysics Data System (ADS)

    Graf, M. J.; Lascialfari, A.; Borsa, F.; Tkachuk, A. M.; Barbara, B.

    2006-01-01

    We report measurements of F19 nuclear spin-lattice relaxation 1/T1 as a function of temperature and external magnetic field in a LiY0.998Ho0.002F4 single crystal, a single-ion magnet exhibiting interesting quantum effects. The F19 1/T1 is found to depend on the coupling with the diluted rare-earth (RE) moments, making it an effective probe of the rare-earth spin dynamics. The results for 1/T1 show a behavior similar to that observed in molecular nanomagnets, a result which we attribute to the discreteness of the energy levels in both cases. At intermediate temperatures the lifetime broadening of the crystal field split RE magnetic levels follows a T3 power law. At low temperature the field dependence of 1/T1 shows peaks in correspondence to the critical magnetic fields for energy level crossings (LC). A key result of this study is that the broadening of the levels at LC is found to become extremely small at low temperatures, about 1.7mT , a value which is comparable to the weak dipolar fields at the RE lattice positions. Thus, unlike the molecular magnets, decoherence effects are strongly suppressed, and it may be possible to measure directly the level repulsions at avoided level crossings.

  1. Electron spin resonance studies of Bi1-xScxFeO3 nanoparticulates: Observation of an enhanced spin canting over a large temperature range

    NASA Astrophysics Data System (ADS)

    Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.

    2017-12-01

    Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.

  2. Decoherence and fluctuation dynamics of the quantum dot nuclear spin bath probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Chekhovich, Evgeny A.

    2017-06-01

    Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.

  3. Probing Microenvironment in Ionic Liquids by Time-Resolved EPR of Photoexcited Triplets.

    PubMed

    Ivanov, M Yu; Veber, S L; Prikhod'ko, S A; Adonin, N Yu; Bagryanskaya, E G; Fedin, M V

    2015-10-22

    Unusual physicochemical properties of ionic liquids (ILs) open vistas for a variety of new applications. Herewith, we investigate the influence of microviscosity and nanostructuring of ILs on spin dynamics of the dissolved photoexcited molecules. We use two most common ILs [Bmim]PF6 and [Bmim]BF4 (with its close analogue [C10mim]BF4) as solvents and photoexcited Zn tetraphenylporphyrin (ZnTPP) as a probe. Time-resolved electron paramagnetic resonance (TR EPR) is employed to investigate spectra and kinetics of spin-polarized triplet ZnTPP in the temperature range 100-270 K. TR EPR data clearly indicate the presence of two microenvironments of ZnTPP in frozen ILs at 100-200 K, being manifested in different spectral shapes and different spin relaxation rates. For one of these microenvironments TR EPR data is quite similar to those obtained in common frozen organic solvents (toluene, glycerol, N-methyl-2-pyrrolidone). However, the second one favors the remarkably slow relaxation of spin polarization, being much longer than in the case of common solvents. Additional experiments using continuous wave EPR and stable nitroxide as a probe confirmed the formation of heterogeneities upon freezing of ILs and complemented TR EPR results. Thus, TR EPR of photoexcited triplets can be effectively used for probing heterogeneities and nanostructuring in frozen ILs. In addition, the increase of polarization lifetime in frozen ILs is an interesting finding that might allow investigation of short-lived intermediates inaccessible otherwise.

  4. Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo model

    NASA Astrophysics Data System (ADS)

    Bayat, Abolfazl; Sodano, Pasquale; Bose, Sougato

    2010-02-01

    We study the entanglement of an impurity at one end of a spin chain with a block of spins using negativity as a true measure of entanglement to characterize the unique features of the gapless Kondo regime in the spin-chain Kondo model. For this spin chain in the Kondo regime we determine—with a true entanglement measure—the spatial extent of the Kondo screening cloud, we propose an ansatz for its ground state and demonstrate that the impurity spin is indeed maximally entangled with the cloud. To better evidence the peculiarities of the Kondo regime, we carry a parallel analysis of the entanglement properties of the Kondo spin-chain model in the gapped dimerized regime. Our study shows how a genuine entanglement measure stemming from quantum information theory can fully characterize also nonperturbative regimes accessible to certain condensed matter systems.

  5. Spin Currents and Ferromagnetic Resonance in Magnetic Thin Films

    NASA Astrophysics Data System (ADS)

    Ellsworth, David

    Spin currents represent a new and exciting phenomenon. There is both a wealth of new physics to be discovered and understood, and many appealing devices which may result from this area of research. To fully realize the potential of this discipline it is necessary to develop new methods for realizing spin currents and explore new materials which may be suitable for spin current applications. Spin currents are an inherently dynamic phenomenon involving the transfer of angular momentum within and between different thin films. In order to understand and optimize such devices the dynamics of magnetization must be determined. This dissertation reports on novel approaches for spin current generation utilizing the magnetic insulators yttrium iron garnet (YIG) and M-type barium hexagonal ferrite (BaM). First, the light-induced spin Seebeck effect is reported for the first time in YIG. Additionally, the first measurement of the spin Seebeck effect without an external magnetic field is demonstrated. To accomplish this the self-biased BaM thin films are utilized. Second, a new method for the generation of spin currents is presented: the photo-spin-voltaic effect. In this new phenomenon, a spin current may be generated by photons in a non-magnetic metal that is in close proximity to a magnetic insulator. On exposure to light, there occurs a light induced, spin-dependent excitation of electrons in a few platinum layers near the metal/magnetic insulator interface. This excitation gives rise to a pure spin current which flows in the metal. This new effect is explored in detail and extensive measurements are carried out to confirm the photonic origin of the photo-spin-voltaic effect and exclude competing effects. In addition to the spin current measurements, magnetization dynamics were probed in thin films using ferromagnetic resonance (FMR). In order to determine the optimal material configuration for magnetic recording write heads, FMR measurements were used to perform damping

  6. Slow Domain Motions of an Oligomeric Protein from Deep-Sea Hyperthermophile probed by Neutron Spin Echo

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Dhindsa, Gurpreet; Sharp, Melissa; Stingaciu, Laura R.; Chu, Xiang-Qiang; Xiang-Qiang Chu Team

    Deep-sea microorganisms have the ability to survive under extreme conditions, such as high pressure and high temperature. In this work, we used the combination of the neutron spin-echo (NSE) and the small angle neutron scattering (SANS) techniques to study the inter-domain motions of the inorganic pyrophosphate (IPPase) enzyme derived from thermostable microorganisms Thermococcus thioreducens. The IPPase has hexameric quaternary structure with molecular mass of approx. 120kDa (each subunit of 20kDa), which is a large oligomeric structure. The understanding of its slow inter-domain motions can be the key to explain how they are able to perform catalytic activity at higher temperature compared to mesophilic enzymes, thus leading to adapt to extreme environment present at the seabed. The NSE can probe these slow motions directly in the time domain up to several tens of nanoseconds at the nanometers length scales, while the corresponding structural change can be explored by the SANS. Our results provide a better picture of the local flexibility and conformational substates unique to these types of proteins, which will help us better understandthe relation between protein dynamics and their biological activities

  7. Tunneling measurement of quantum spin oscillations

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Hruška, M.; Ortiz, G.

    2003-09-01

    experimental results observed using scanning tunneling microscopy dynamic probes of the localized spin.

  8. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    PubMed

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Interfering with the neutron spin

    NASA Astrophysics Data System (ADS)

    Wagh, Apoorva G.; Rakhecha, Veer Chand

    2004-07-01

    Charge neutrality, a spin frac{1}{2} and an associated magnetic moment of the neu- tron make it an ideal probe of quantal spinor evolutions. Polarized neutron interferometry in magnetic field Hamiltonians has thus scored several firsts such as direct verification of Pauli anticommutation, experimental separation of geometric and dynamical phases and observation of non-cyclic amplitudes and phases. This paper provides a flavour of the physics learnt from such experiments.

  10. Quasiparticle-mediated spin Hall effect in a superconductor.

    PubMed

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  11. Dependence of spin pumping and spin transfer torque upon Ni 81 Fe 19 thickness in Ta / Ag / Ni 81 Fe 19 / Ag / Co 2 MnGe / Ag / Ta spin-valve structures

    DOE PAGES

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; ...

    2017-10-18

    Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less

  12. Dependence of spin pumping and spin transfer torque upon Ni 81 Fe 19 thickness in Ta / Ag / Ni 81 Fe 19 / Ag / Co 2 MnGe / Ag / Ta spin-valve structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.

    Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less

  13. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids.

    PubMed

    Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2018-05-11

    In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  14. Numerical simulation of the helium gas spin-up channel performance of the relativity gyroscope

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.; Edgell, Josephine; Zhang, Burt X.

    1991-01-01

    The dependence of the spin-up system efficiency on each geometrical parameter of the spin-up channel and the exhaust passage of the Gravity Probe-B (GPB) is individually investigated. The spin-up model is coded into a computer program which simulates the spin-up process. Numerical results reveal optimal combinations of the geometrical parameters for the ultimate spin-up performance. Comparisons are also made between the numerical results and experimental data. The experimental leakage rate can only be reached when the gap between the channel lip and the rotor surface increases beyond physical limit. The computed rotating frequency is roughly twice as high as the measured ones although the spin-up torques fairly match.

  15. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  16. Increased sensitivity of spin noise spectroscopy using homodyne detection in n -doped GaAs

    NASA Astrophysics Data System (ADS)

    Petrov, M. Yu.; Kamenskii, A. N.; Zapasskii, V. S.; Bayer, M.; Greilich, A.

    2018-03-01

    We implement the homodyne detection scheme for an increase in the polarimetric sensitivity in spin noise spectroscopy. Controlling the laser intensity of the local oscillator, which is guided around the sample and does not perturb the measured spin system, we are able to improve the signal-to-noise ratio. The opportunity for additional amplification of the measured signal strength allows us to reduce the probe laser intensity incident on the sample and therefore to approach the nonperturbative regime. The efficiency of this scheme with signal enhancement by more than a factor of 3 at low probe powers is demonstrated on bulk n -doped GaAs, where the reduced electron-spin relaxation rate is shown experimentally. Additionally, the control of the optical phase provides us with the possibility to switch between measuring Faraday rotation and ellipticity without changes in the optical setup.

  17. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.

    2018-07-01

    Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.

  18. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WS 2

    DOE PAGES

    Yang, Luyi; Sinitsyn, Nikolai A.; Chen, Weibing; ...

    2015-08-03

    The recently discovered monolayer transition metal dichalcogenides (TMDCs) provide a fertile playground to explore new coupled spin–valley physics. Although robust spin and valley degrees of freedom are inferred from polarized photoluminescence (PL) experiments PL timescales are necessarily constrained by short-lived (3–100 ps) electron–hole recombination9, 10. Direct probes of spin/valley polarization dynamics of resident carriers in electron (or hole)-doped TMDCs, which may persist long after recombination ceases, are at an early stage. Here we directly measure the coupled spin–valley dynamics in electron-doped MoS 2 and WS 2 monolayers using optical Kerr spectroscopy, and reveal very long electron spin lifetimes, exceeding 3more » ns at 5 K (2-3 orders of magnitude longer than typical exciton recombination times). In contrast with conventional III–V or II–VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. Supported by a model of coupled spin–valley dynamics, these results indicate a novel mechanism of itinerant electron spin dephasing in the rapidly fluctuating internal spin–orbit field in TMDCs, driven by fast inter-valley scattering. Additionally, a long-lived spin coherence is observed at lower energies, commensurate with localized states. These studies provide insight into the physics underpinning spin and valley dynamics of resident electrons in atomically thin TMDCs.« less

  19. Gravity Probe B

    NASA Image and Video Library

    2003-07-11

    Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment. Mechanical and electrical ground support equipment will be set up and necessary connections made with the spacecraft. Spacecraft battery conditioning will also begin. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  20. The role and behavior of spin in gravitational physics

    NASA Technical Reports Server (NTRS)

    Ray, John R.

    1987-01-01

    A self-consistent method of introducing spin into any Lagrangian based theory of gravitation was developed. The metric variation of the Lagrangian in the theory leads to an improved energy-momentum tensor which represents the source term in the gravitational field equations. The goal of the research is the construction of a theory general enough to be used to investigate spin effects in astrophysical objects and cosmology, and also to serve as a basis for discussion of the theoretical ideas tested by the NASA Gyroscope Experiment (aboard Gravity Probe B). Specific accomplishments in the following areas are summarized: the inclusion of electromagnetism into the variational principle for spinning matter, formulation of a self-consistent theory for the case of a fluid in which particle production processes occur, and the derivation of the Raychaudhuri equation in the case of spinning matter.

  1. Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co heterojunctions

    NASA Astrophysics Data System (ADS)

    Pietsch, Torsten; Egle, Stefan; Keller, Martin; Fridtjof-Pernau, Hans; Strigl, Florian; Scheer, Elke

    2016-09-01

    We experimentally investigate the effect of resonant microwave absorption on the magneto-conductance of tunable Co/Pd point contacts. At the interface a non-equilibrium spin accumulation is created via microwave absorption and can be probed via point contact spectroscopy. We interpret the results as a signature of direct spin-flip excitations in Zeeman-split spin-subbands within the Pd normal metal part of the junction. The inverse effect, which is associated with the emission of a microwave photon in a ferromagnet/normal metal point contact, can also be detected via its unique signature in transport spectroscopy.

  2. Biomolecular solid state NMR with magic-angle spinning at 25K.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2008-12-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.

  3. Improved Estimation of Electron Temperature from Rocket-borne Impedance Probes

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Wolfinger, K.; Stamm, J. D.

    2017-12-01

    The impedance probe technique is a well known method for determining high accuracy measurements of electron number density in the Earth's ionosphere. We present analysis of impedance probe data from several sounding rockets at low, mid-, and auroral latitudes, including high cadence estimates of the electron temperature, derived from analytical fits to the antenna impedance curves. These estimates compare favorably with independent estimates from Langmuir Probes, but at much higher temporal and spatial resolution, providing a capability to resolve small-scale temperature fluctuations. We also present some considerations for the design of impedance probes, including assessment of the effects of resonance damping due to rocket motion, effects of wake and spin modulation, and aspect angle to the magnetic field.

  4. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    PubMed

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  5. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  6. Enhanced Spin Squeezing in Atomic Ensembles via Control of the Internal Spin States

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Norris, Leigh; Baragiola, Ben; Montano, Enrique; Hemmer, Daniel; Jessen, Poul; Deutsch, Ivan

    2015-05-01

    Abstract: We study the process by which the collective spin squeezing of an ensemble of Cesium atoms is enhanced by control of the internal spin state of the atoms. By increasing the initial atomic projection noise, one can enhance the Faraday interaction that entangles the atoms with a probe. The light acts as a quantum bus for creating atom-atom entanglement via measurement backaction. Further control can be used to transfer this entanglement to metrologically useful squeezing. We numerically simulate this protocol by a stochastic master equation, including QND measurement and optical pumping, which accounts for decoherence and transfer of coherences between magnetic sub-levels. We study the tradeoff between the enhanced entangling interaction and increased rates of decoherence for different initial state preparations. Under realistic conditions, we find that we can achieve squeezing with a ``CAT-State'' superpostion |F = 4, Mz = 4> + |F, Mz = -4> of ~ 9.9 dB and for the spin coherent state |F = 4, Mx = 4> of ~ 7.5 dB. The increased entanglement enabled by the CAT state preparation is partially, but not completely reduced by the increased fragility to decoherence. National Science Foundation.

  7. Strong-coupling phases of the spin-orbit-coupled spin-1 Bose-Hubbard chain: Odd-integer Mott lobes and helical magnetic phases

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Cole, William S.; Spielman, I. B.; Rizzi, Matteo; Das Sarma, S.

    2017-10-01

    We study the odd-integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a universality class with critical exponents associated with the divergence of the correlation length ν ≈2 /3 and the order-parameter susceptibility γ ≈1 /2 . We solve the effective spin model exactly using the density-matrix renormalization group, and compare with both a large-S classical solution and a phenomenological Landau theory. We discuss how these exotic bosonic magnetic phases can be produced and probed in ultracold atomic experiments in optical lattices.

  8. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids

    NASA Astrophysics Data System (ADS)

    Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.

    2018-05-01

    In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the Y89 3 + nuclear spins through their superhyperfine coupling with the Er3 + electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3 + nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  9. Galaxy bispectrum from massive spinning particles

    NASA Astrophysics Data System (ADS)

    Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora

    2018-05-01

    Massive spinning particles, if present during inflation, lead to a distinctive bispectrum of primordial perturbations, the shape and amplitude of which depend on the masses and spins of the extra particles. This signal, in turn, leaves an imprint in the statistical distribution of galaxies; in particular, as a non-vanishing galaxy bispectrum, which can be used to probe the masses and spins of these particles. In this paper, we present for the first time a new theoretical template for the bispectrum generated by massive spinning particles, valid for a general triangle configuration. We then proceed to perform a Fisher-matrix forecast to assess the potential of two next-generation spectroscopic galaxy surveys, EUCLID and DESI, to constrain the primordial non-Gaussianity sourced by these extra particles. We model the galaxy bispectrum using tree-level perturbation theory, accounting for redshift-space distortions and the Alcock-Paczynski effect, and forecast constraints on the primordial non-Gaussianity parameters marginalizing over all relevant biases and cosmological parameters. Our results suggest that these surveys would potentially be sensitive to any primordial non-Gaussianity with an amplitude larger than fNL≈ 1, for massive particles with spins 2, 3, and 4. Interestingly, if non-Gaussianities are present at that level, these surveys will be able to infer the masses of these spinning particles to within tens of percent. If detected, this would provide a very clear window into the particle content of our Universe during inflation.

  10. Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.

    PubMed

    Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas

    2008-04-25

    We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.

  11. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation.

    PubMed

    Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B

    2017-05-01

    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H 2 ) into a metal dihydride complex and then follows the time-evolution of the p-H 2 -derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H 2 -derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H 2 -derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H 2 -derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1 H and 31 P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H 2 -derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  13. Probing the strange nature of the nucleon with phi photoproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, M.M.

    1997-03-06

    The presence inside the nucleon of a significant component of strange-antistrange quark pairs has been invoked to explain a number of current puzzles in the low energy realm of QCD. The {sigma} term in {pi}N scattering is a venerable conundrum which can be explained with a 10%--20% admixture. The spin crisis brought on by the EMC result and follow on experiments was first interpreted as requiring a large strange content of s quarks whose spin helped cancel the contribution of the u and d quarks to the nucleon spin, again of order 10%. Excess phi meson production in p{anti p}more » annihilation at LEAR has also been explained in terms of up to a 19% admixture of s{anti s} pairs. Charm production in deep-inelastic neutrino scattering would appear to provide evidence for a 3% strange sea. It is clear that a definite probe of the strange quark content would be an invaluable tool in unraveling a number of mysteries. The longitudinal beam target asymmetry in {psi} photoproduction is a particularly sensitive probe of that content. It is explored here.« less

  14. Thermal aging effect of vanadyl acetylacetonate precursor for deposition of VO{sub 2} thin films with thermochromic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jung-Hoon; Nam, Sang-Hun; Kim, Donguk

    Highlights: • 7 day aged VO(acac){sub 2} sol shows enhanced adhesivity on the SiO{sub 2} compared with non-aged sol. • The aging process has significantly affected the morphologies of VO{sub 2} films. • From the FT-IR spectra, thermal aging process provides the deformation of precursor. • The metal insulator transition (MIT) efficiency (ΔT{sub at2000} {sub nm}) reached a maximum value of 51% at 7 day aging. • Thermal aging process could shorten the aging time of sol solution. - Abstract: Thermochromic properties of vanadium dioxide (VO{sub 2}) have been studied extensively due to their IR reflection applications in energy smartmore » windows. In this paper, we studied the optical switching property of VO{sub 2} thin film, depending on the thermal aging time of the vanadyl acetylacetonate (VO(acac){sub 2}) precursor. We found the alteration of the IR spectra of the precursor by tuning the aging time as well as heat treatments of the precursor. An aging effect of vanadium precursor directly affects the morphologies, optical switching property and crystallinity of VO{sub 2} films. The optimum condition was achieved at the 7 day aging time with metal insulator transition (MIT) efficiency of 50%.« less

  15. Periastron shift for a spinning test particle around naked singularities

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal

    2018-06-01

    In the present article, we investigate the Periastron precession for a spinning test particle moving in nearly circular orbits around naked singularities. We consider two well-known solutions that can produce a spacetime with naked singularity—(a) first, the Reissner-Nordström metric, which is a static charged solution with spherical symmetry, and (b) second, the stationary, axisymmetric Kerr metric. For simplicity, we only consider the motion confined on the equatorial plane in both these cases and solve exactly the Mathisson-Papapetrou equations. In addition, we analytically compute the Periastron precession within the framework of linear spin approximation. The inclusion of the spin parameter modifies the results with nonspinning particles and also reflects some interesting properties of the naked geometries. Furthermore, we carried out a numerical approach without any assumptions to probe the large order spin values. The implication of the spin-curvature coupling in connection with the naked geometries is also discussed.

  16. Muon Spin Relaxation/Rotation Studies of Novel Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Luke, Graeme

    Muon spin relaxation/rotation is a powerful technique for probing magnetism in materials. As a real space probe, the muon complements neutron scattering's reciprocal space sensitivity. Muons probe magnetic fluctuations in a frequency window between inelastic neutron scattering and nuclear magnetic resonance. In this presentation I will describe our recent work on geometrically frustrated materials including the pyrochlore lattice compounds Yb2Ti

  17. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  18. Spin response of magnetic dipole transitions in 156Gd and 164Dy

    NASA Astrophysics Data System (ADS)

    Frekers, D.; Bohle, D.; Richter, A.; Abegg, R.; Azuma, R. E.; Celler, A.; Chan, C.; Drake, T. E.; Jackson, K. P.; King, J. D.; Miller, C. A.; Schubank, R.; Watson, J.; Yen, S.

    1989-03-01

    Intermediate energy proton scattering has been used to probe the spin part of the recently discovered low-lying isovector magnetic dipole transitions in the rotational rare earth nuclei 156Gd and 164Dy. A large spin response is found in 164Dy, whereas in 156Gd the results are consistent with the picture of a predominantly convective excitation. The results are discussed in the context of the IBA-2 model and recent RPA calculations.

  19. Spin and charge ordering in organic conductors investigated by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Tokumoto, Takahisa D.

    This dissertation presents systematic studies on ordered states of organic conductors investigated mainly by Electron Spin Resonance (ESR). First, we describe an introduction to organic conductors. Organic conductors are based on conducting layers of highly planar donor molecules, separated by insulating layers of acceptors. The donor arrangements in the conducting layers determine the three simple parameters, transfer integral t between the donor molecules, onsite Coulomb interaction U and next neighboring Coulomb interaction V. Depending on the values of the above three parameters, a variety of ground states is realized and hence the organic conductors has become a main stream of condensed matter physics. Among many ground states, the main focus is on magnetic orders in this dissertation. Therefore we have employed ESR to probe local magnetic structures. And we cover a basic theory of ESR in paramagnetic/antiferromagnetically ordered states and the experimental realizations. Next, after an introduction to a system with an exchange interaction between d magnetic moments embedded at acceptor sites and pi spins at donor molecules is given, we discuss the effectiveness of systematic studies on isostructural magnetic and non-magnetic acceptor based organic conductors. Then, we go over one of the "exchange coupled" materials, beta-(BDA-TTP)2MCl 4 (M=Fe3+,Ga3+). We examine the origins of the Metal-Insulator transition and the long range antiferromangetic order in the magnetic acceptor based material, where we found the critical importance of the quantum fluctuations of pi spins. Finally, we delineate the magnetic order of alternating easy axes of a class of an organic conductor, tau-(P-(S,S)-DMEDT)2(AuBr2) 1+y, at low temperature/field by ESR. We briefly discuss the origin of this unprecedented magnetic structure in terms of the unstoichiometric ratio of donors to acceptors and the tetragonal symmetry of the unit cell. Then, we report the results of the ultra high field

  20. Hamiltonian identifiability assisted by a single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola

    2017-02-01

    We study the Hamiltonian identifiability of a many-body spin-1 /2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm approach employed in Zhang and Sarovar, Phys. Rev. Lett. 113, 080401 (2014), 10.1103/PhysRevLett.113.080401. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin-chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the nonidentifiable Hamiltonian to be an identifiable Hamiltonian.

  1. Rashba and Dresselhaus spin-orbit couplings effects on electromagnetically induced transparency of a lens-shaped quantum dot: External electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.

    2017-06-01

    In this article the spin of electron as well as simultaneous effects of Rashba and Dresselhaus spin-orbit interactions are considered for a lens-shaped GaAs quantum dot and the influences of applied electric field and Zeeman effect on the electromagnetically induced transparency (EIT) of this system are investigated. To do so, the absorption, refractive index as well as the group velocity of the probe light pulse are presented and discussed. Study of the absorption and refractive index reveals that, at a particular frequency of probe field, absorption diminishes, refractive index becomes unity and so the EIT occurs. Furthermore, the investigation of group velocity show that, around such frequency the probe propagation is sub-luminal, which shifts to super-luminal for higher and lower frequencies. Our results illustrate that the EIT frequency, transparency window and sub(super)-luminal frequency intervals are strongly sensitive to applied fields in the presence of spin-orbit couplings. It is found that, in comparison with the investigations with negligence of spin, the EIT behavior under the effects of applied fields are quite different.

  2. Aging, memory, and nonhierarchical energy landscape of spin jam

    NASA Astrophysics Data System (ADS)

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-10-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.

  3. Landau Levels of Majorana Fermions in a Spin Liquid.

    PubMed

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.

  4. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor

    PubMed Central

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-01-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346

  5. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical

  6. Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.

    We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to QND measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe.more » Thus, by proper choice of geometry, the ratio of good to bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nano fiber and a square waveguide. We nd, with about 2500 atoms using realistic experimental parameters, ~ 6:3 dB and ~ 13 dB of squeezing can be achieved on the nano fiber and square waveguide, respectively.« less

  7. Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide

    DOE PAGES

    Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.

    2018-03-16

    We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to QND measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe.more » Thus, by proper choice of geometry, the ratio of good to bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nano fiber and a square waveguide. We nd, with about 2500 atoms using realistic experimental parameters, ~ 6:3 dB and ~ 13 dB of squeezing can be achieved on the nano fiber and square waveguide, respectively.« less

  8. Enhanced cooperativity for quantum-nondemolition-measurement-induced spin squeezing of atoms coupled to a nanophotonic waveguide

    NASA Astrophysics Data System (ADS)

    Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.

    2018-03-01

    We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to quantum nondemolition (QND) measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe. Thus, by proper choice of geometry, the ratio of good-to-bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nanofiber and a square waveguide. We find that, with about 2500 atoms and using realistic experimental parameters, ˜6.3 and ˜13 dB of squeezing can be achieved on the nanofiber and square waveguide, respectively.

  9. A nuclear magnetic resonance spectrometer concept for hermetically sealed magic angle spinning investigations on highly toxic, radiotoxic, or air sensitive materials.

    PubMed

    Martel, L; Somers, J; Berkmann, C; Koepp, F; Rothermel, A; Pauvert, O; Selfslag, C; Farnan, I

    2013-05-01

    A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (~10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th(1-x)U(x))O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first (17)O MAS-NMR measurements on NpO(2+x) samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.

  10. Nematicity in FeSe single crystals probed by pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, C. W.; Cheng, P. C.; Wu, K. H.; Juang, J. Y.; Wang, S.-H.; Chiang, J.-C.; Lin, J.-Y.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    The anisotropic quasiparticle dynamics in FeSe single crystals have been studied by polarized pump-probe spectroscopy. Two distinguishable relaxation components were unambiguously observed in transient reflectivity changes (ΔR / R) . The orientation-dependent fast component with the timescale of 0.1-1.5 ps associated with the electronic structure clearly shows two-fold symmetry, which further reveals the gap opening along ky below the temperature of structure phase transition (Ts) and the electronic nematicity can persist up to 200 K. For the slow component with the timescale of 8-25 ps, it is assigned to the energy relaxation through spin sub-system and also shows a two-fold symmetry below Ts. However, this two-fold symmetry is dramatically weakened above Ts and surprisingly persists up to at least 200 K. Consequently, the high-temperature nematic fluctuations in FeSe may be driven by the order parameters which associated with both charge (orbital) and spin sub-systems. This project is financially sponsored by the MOST, Taiwan, (Grants No. 103-2923-M-009-001-MY3) and the MOE-ATU plan at NCTU.

  11. Black holes are neither particle accelerators nor dark matter probes.

    PubMed

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  12. Spin dynamics of close-in planets exhibiting large transit timing variations

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.

    2017-09-01

    We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.

  13. Spin-polarized current injection induced magnetic reconstruction at oxide interface

    NASA Astrophysics Data System (ADS)

    Fang, F.; Yin, Y. W.; Li, Qi; Lüpke, G.

    2017-01-01

    Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO3/La0.5Ca0.5MnO3/La0.7Sr0.3MnO3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition of the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. The effect is robust and may serve as a viable route for electronic and spintronic applications.

  14. Measurement of the proton $$A_1$$ and $$A_2$$ spin asymmetries. Probing Color Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Whitney

    The Spin Asymmetries of the Nucleon Experiment (SANE) measured the proton spin structure functionmore » $$g_2$$ in a range of Bjorken x, 0.3 < x < 0.8, where extraction of the twist-3 matrix element $$d_2^p$$ (an integral of $$g_2$$ weighted by $x^2$) is most sensitive. The data was taken from $Q^2$ equal to 2.5 $GeV^2$ up to 6.5 $GeV^2$. In this polarized electron scattering off a polarized hydrogen target experiment, two double spin asymmetries, A∥ and A⊥ were measured using the BETA (Big Electron Telescope Array) Detector. BETA consisted of a scintillator hodoscope, gas Cerenkov counter, lucite hodoscope and a large lead glass electromagnetic calorimeter. With a unique open geometry, a threshold gas Cerenkov detector allowed BETA to cleanly identify electrons for this inclusive experiment. A measurement of $$d_2^p$$ is compared to lattice QCD calculations.« less

  15. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  16. Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning.

    PubMed

    Domingue, S R; Winters, D G; Bartels, R A

    2014-07-15

    Using a spinning window pump-probe delay scanner, we demonstrate a means of acquiring time-resolved vibrational spectra at rates up to 700 Hz. The time-dependent phase shift accumulated by the probe pulse in the presence of a coherently vibrating sample gives rise to a Raman-induced frequency shifting readily detectable in a balanced detector. This rapid delay scanning system represents a 23-fold increase in averaging speed and is >10× faster than state-of-the-art voice coil delay lines. These advancements make pump-probe spectroscopy a more practical means of imaging complex media.

  17. Spin-orbit interaction driven dimerization in one dimensional frustrated magnets

    NASA Astrophysics Data System (ADS)

    Zhang, Shang-Shun; Batista, Cristian D.

    Spin nematic ordering has been proposed to emerge near the saturation of field of a class of frustrated magnets. The experimental observation of this novel phase is challenging for the traditional experimental probes. Nematic spin ordering is expected to induce a local quadrupolar electric moment via the spin-orbit coupling. However, a finite spin-orbit interaction explicitly breaks the U(1) symmetry of global spin rotations down to Z2, which renders the traditional nematic order no longer well-defined. In this work we investigate the relevant effect of spin-orbit interaction on the 1D frustrated J1 -J2 model. The real and the imaginary parts of the nematic order parameter belong to different representations of the discrete symmetry group of the new Hamiltonian. We demonstrate that spin-orbit coupling stabilizes the real component and simultaneously induces bond dimerization in most of the phase diagram. Such a bond dimerization can be observed with X-rays or nuclear magnetic resonance. In addition, an incommensurate bond-density wave (ICBDW) appears for smaller values of J2 / |J1 | . The experimental fingerprint of the ICBDW is a double-horn shape of the the NMR line. These conclusions can shed light on the experimental search of this novel phase.

  18. 1 / f α noise and generalized diffusion in random Heisenberg spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Kartiek; Demler, Eugene; Martin, Ivar

    2015-11-01

    We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less

  19. Spin injection and transport in semiconductor and metal nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes

  20. Aging, memory, and nonhierarchical energy landscape of spin jam

    PubMed Central

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-01-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes. PMID:27698141

  1. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    PubMed Central

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  2. New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries.

    PubMed

    Shamie, Jack S; Liu, Caihong; Shaw, Leon L; Sprenkle, Vincent L

    2017-02-08

    In this study, a new mechanism for the reduction of vanadyl acetylacetonate, VO(acac) 2 , to vanadium acetylacetonate, V(acac) 3 , is introduced. V(acac) 3 has been studied for use in redox flow batteries (RFBs) for some time; however, contamination by moisture leads to the formation of VO(acac) 2 . In previous work, once this transformation occurs, it is no longer reversible because there is a requirement for extreme low potentials for the reduction to occur. Here, we propose that, in the presence of excess acetylacetone (Hacac) and free protons (H + ), the reduction can take place between 2.25 and 1.5 V versus Na/Na + via a one-electron-transfer reduction. This reduction can take place in situ during discharge in a novel hybrid Na-based flow battery (HNFB) with a molten Na-Cs alloy as the anode. The in situ recovery of V(acac) 3 during discharge is shown to allow the Coulombic efficiency of the HNFB to be ≈100 % with little or no capacity decay over cycles. In addition, utilizing two-electron-transfer redox reactions (i.e., V 3+ /V 4+ and V 2+ /V 3+ redox couples) per V ion to increase the energy density of RFBs becomes possible owing to the in situ recovery of V(acac) 3 during discharge. The concept of in situ recovery of material can lead to more advances in maintaining the cycle life of RFBs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  4. Modeling of micro thrusters for gravity probe B

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.

    1996-01-01

    The concept of testing Einstein's general theory of relativity by means of orbiting gyroscopes was first proposed in 1959, which lead to the development of the Gravity Probe B experiment. Einstein's theory concerns the predictions of the relativistic precession of a gyroscope in orbit around earth. According to his theory, there will be two precessions due to the warping of space-time by the earth's gravitational field: the geodetic precession in the plane of the orbit, and the frame-dragging effect, in the direction of earth rotation. For a polar orbit, these components are orthogonal. In order to simplify the measurement of the precessions, Gravity Probe B (GP-B) will be placed in a circular polar orbit at 650 km, for which the predicted precessions will be 6.6 arcsec/year (geodetic) and 42 milli-arcsec/year (frame-dragging). As the gyroscope precesses, the orientation of its spin-axis will be measured with respect to the line-of-sight to Rigel, a star whose proper motion is known to be within the required accuracy. The line-of-sight to Rigel will be established using a telescope, and the orientation of the gyroscope spin axis will be measured using very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The four gyroscopes will be coated with niobium. Below 2K, the niobium becomes superconducting and a dipole field will be generated which is precisely aligned with the gyroscope spin-axis. The change in orientation of these fields, as well as the spin-axis, is sensed by the SQUID magnetometers. In order to attain the superconducting temperatures for the gyroscopes and the SQUID's, the experiment package will be housed in a dewar filled with liquid helium. The helium flow through a GP-B micro thruster and into a vacuum is investigated using the Direct Simulation Monte Carlo method.

  5. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron

    PubMed Central

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-01-01

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598

  6. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO{sub 2}/NiFe trilayers near simultaneous ferromagnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K.; Peng, Bin

    2015-08-15

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-localmore » SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.« less

  7. Reduced-gravity Testing of The Huygens Probe Ssp Tiltmeter and Hasi Accelerometer Sensors and Their Role In Reconstruction of The Probe Descent Dynamics

    NASA Astrophysics Data System (ADS)

    Ghafoor, N.; Zarnecki, J.

    When the ESA Huygens Probe arrives at Titan in 2005, measurements taken during and after the descent through the atmosphere are likely to revolutionise our under- standing of SaturnSs most enigmatic moon. The accurate atmospheric profiling of Titan from these measurements will require knowledge of the probe descent trajectory and in some cases attitude history, whilst certain atmospheric information (e.g. wind speeds) may be inferred directly from the probe dynamics during descent. Two of the instruments identified as contributing valuable information for the reconstruction of the probeSs parachute descent dynamics are the Surface Science Package Tilt sensor (SSP-TIL) and the Huygens Atmospheric Structure Instrument servo accelerometer (HASI-ACC). This presentation provides an overview of these sensors and their static calibration before describing an investigation into their real-life dynamic performance under simulated Titan-gravity conditions via a low-cost parabolic flight opportunity. The combined use of SSP-TIL and HASI-ACC in characterising the aircraft dynam- ics is also demonstrated and some important challenges are highlighted. Results from some simple spin tests are also presented. Finally, having validated the performance of the sensors under simulated Titan conditions, estimates are made as to the output of SSP-TIL and HASI-ACC under a variety of probe dynamics, ranging from verti- cal descent with spin to a simple 3 degree-of-freedom parachute descent model with horizontal gusting. It is shown how careful consideration must be given to the instru- mentsS principles of operation in each case, and also the impact of the sampling rates and resolutions as selected for the Huygens mission. The presentation concludes with a discussion of ongoing work on more advanced descent modelling and surface dy- namics modelling, and also of a proposal for the testing of the sensors on a sea-surface.

  8. Characterizing the Dynamic Response of the Estrogen Receptor to Agonists and Antagonists by Multifrequency Electron Spin Resonance Spin-Labeling

    DTIC Science & Technology

    2008-05-01

    Engen , for corroborative studies of ER dynamics using hydrogen deuterium exchange mass spectrometry (HDXMS). The more detailed mass spectroscopic...American Chemical Society, New Orleans, LA, April 6-10, 2008 3. Stefano V Gulla1, Kalman Hideg,2 David E. Budil, Characterization of spin labeled...estradiol as a probe for Estrogen Receptor binding interactions, 235th National Meeting of the American Chemical Society, New Orleans, LA, April 6-10, 2008

  9. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  10. Pioneer spacecraft operation at low and high spin rates

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of executing major changes upward or downward from the nominal spin rate for which the Pioneer F&G spacecraft was designed was investigated along with the extent of system and subsystem modifications required to implement these mode changes in future spacecraft evolving from the baseline Pioneer F and G. Results of a previous study are re-examined and updated for an extended range of spin rate variations for missions that include outer planet orbiters, outer planet flyby and outer planet probe delivery. However, in the interest of design simplicity and cost economy, major modifications of the baseline Pioneer system and subsystem concept were avoided.

  11. Entangled spins and ghost-spins

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Narayan, K.

    2017-09-01

    We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  12. Moving THEMIS to a spin table for testing at Astrotech

    NASA Image and Video Library

    2007-01-12

    In the Hazardous Processing Facility at Astrotech Space Operations, workers attach an overhead crane to the integrated THEMIS spacecraft. The carrier is being moved to a spin table for spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.

  13. Moving THEMIS to a spin table for testing at Astrotech

    NASA Image and Video Library

    2007-01-12

    In the Hazardous Processing Facility at Astrotech Space Operations, workers guide the integrated THEMIS spacecraft onto the spin table in the foreground. There it will undergo spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.

  14. Diradicals acting through diamagnetic phenylene vinylene bridges: Raman spectroscopy as a probe to characterize spin delocalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Sandra Rodríguez; Nieto-Ortega, Belén; González Cano, Rafael C.

    2014-04-28

    We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization.more » These items are addressed by using the “oligomer approach” in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.« less

  15. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    NASA Astrophysics Data System (ADS)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  16. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  17. Image routing via atomic spin coherence

    PubMed Central

    Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue

    2015-01-01

    Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846

  18. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet

    PubMed Central

    Lachance-Quirion, Dany; Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Nakamura, Yasunobu

    2017-01-01

    Combining different physical systems in hybrid quantum circuits opens up novel possibilities for quantum technologies. In quantum magnonics, quanta of collective excitation modes in a ferromagnet, called magnons, interact coherently with qubits to access quantum phenomena of magnonics. We use this architecture to probe the quanta of collective spin excitations in a millimeter-sized ferromagnetic crystal. More specifically, we resolve magnon number states through spectroscopic measurements of a superconducting qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic moment of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. Our demonstration highlights the strength of hybrid quantum systems to provide powerful tools for quantum sensing and quantum information processing. PMID:28695204

  19. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less

  20. Magnetic Charge Organization and Screening in Thermalized Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian

    2014-03-01

    Artificial spin ice is a material-by-design in which interacting single-domain ferromagnetic nanoislands are used to model Ising spins in frustrated spin systems. Artificial spin ice has proved a useful system in which to directly probe the physics of geometrical frustration, allowing us to better understand materials such as spin ice. Recently, several new experimental techniques have been developed that allow effective thermalization of artificial spin ice. Given the intense interest in magnetic monopole excitations in spin ice materials and artificial spin ice's success in modeling these materials, it should not come as a surprise that interesting monopole physics emerges here as well. The first experimental investigation of thermalized artificial square spin ice determined that the system's monopole-like excitations obeyed a Boltzmann distribution and also found evidence for monopole-antimonopole interactions. Further experiments have implicated these monopole excitations in the growth of ground state domains. Our recent study of artificial kagome spin ice, whose odd-coordinated vertices always possess a net magnetic charge, has revealed a theoretically-predicted magnetic charge ordering transition which has not been previously observed experimentally. We have also investigated the details of magnetic charge interactions in lattices of mixed coordination number. This work was done in collaboration with Sheng Zhang, Cristiano Nisoli, Gia-Wei Chern, Michael Erickson, Liam O'Brien, Chris Leighton, Paul Lammert, Vincent Crespi, and Peter Schiffer. This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division, grant no. DE-SC0005313.

  1. The GalileoJupiter Probe Doppler Wind Experiment

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.

    2001-09-01

    The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind

  2. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Utama, M. Iqbal Bakti; Regan, Emma C.; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-01

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS2)–tungsten diselenide (WSe2) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices.

  3. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    NASA Astrophysics Data System (ADS)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β22<0 have higher spin-orbit barrier (compact spin-orbit configuration) in comparison to systems with β2>0. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  4. Spin Dynamics in Novel Materials Systems

    NASA Astrophysics Data System (ADS)

    Yu, Howard

    Spintronics and organic electronics are fields that have made considerable advances in recent years, both in fundamental research and in applications. Organic materials have a number of attractive properties that enable them to complement applications traditionally fulfilled by inorganic materials, while spintronics seeks to take advantage of the spin degree of freedom to produce new applications. My research is aimed at combining these two fields to develop organic materials for spintronics use. My thesis is divided into three primary projects centered around an organic-based semiconducting ferrimagnet, vanadium tetracyanoethylene. First, we investigated the transport characteristics of a hybrid organic-inorganic heterostructure. Semiconductors form the basis of the electronics industry, and there has been considerable effort put forward to develop organic semiconductors for applications like organic light-emitting diodes and organic thin film transistors. Working with hybrid organic-inorganic semiconductor device structures allows us to potentially take advantage of the infrastructure that has already been developed for silicon and other inorganic semiconductors. This could potentially pave the way for a new class of active hybrid devices with multifunctional behavior. Second, we investigated the magnetic resonance characteristics of V[TCNE]x, in multiple measurement schemes and exploring the effect of temperature, frequency, and chemical tuning. Recently, the spintronics community has shifted focus from static electrical spin injection to various dynamic processes, such as spin pumping and thermal effects. Spin pumping in particular is an intriguing way to generate pure spin currents via magnetic resonance that has attracted a high degree of interest, with the FMR linewidth being an important metric for spin injection. Furthermore, we can potentially use these measurements to probe the magnetic properties as we change the physical properties of the materials by

  5. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  6. Electrically Driving Donor Spin Qubits in Silicon Using Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    In conventional experiments, donor nuclear spin qubits in silicon are driven using radiofrequency (RF) magnetic fields. However, magnetic fields are difficult to confine at the nanoscale, which poses major issues for individually addressable qubits and device scalability. Ideally one could drive spin qubits using RF electric fields, which are easy to confine, but spins do not naturally have electric dipole transitions. In this talk, we present a new method for electrically controlling nuclear spin qubits in silicon by modulating the hyperfine interaction between the nuclear spin qubit and the donor-bound electron. By fabricating planar superconducting photonic bandgap resonators, we are able to use pulsed electron-nuclear double resonance (ENDOR) techniques to selectively probe both electrically and magnetically driven transitions for 31P and 75As nuclear spin qubits. The electrically driven spin resonance mechanism allows qubits to be driven at either their transition frequency, or at one-half their transition frequency, thus reducing bandwidth requirements for future quantum devices. Moreover, this form of control allows for higher qubit densities and lower power requirements compared to magnetically driven schemes. In our proof-of-principle experiments we demonstrate electrically driven Rabi frequencies of approximately 50 kHz for widely spaced (10 μm) gates which should be extendable to MHz for nanoscale devices.

  7. "Spin-dependent" \\varvec{μ → e} conversion on light nuclei

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha; Kuno, Yoshitaka; Saporta, Albert

    2018-02-01

    The experimental sensitivity to μ → e conversion will improve by four or more orders of magnitude in coming years, making it interesting to consider the "spin-dependent" (SD) contribution to the rate. This process does not benefit from the atomic-number-squared enhancement of the spin-independent (SI) contribution, but probes different operators. We give details of our recent estimate of the spin-dependent rate, expressed as a function of operator coefficients at the experimental scale. Then we explore the prospects for distinguishing coefficients or models by using different targets, both in an EFT perspective, where a geometric representation of different targets as vectors in coefficient space is introduced, and also in three leptoquark models. It is found that comparing the rate on isotopes with and without spin could allow one to detect spin-dependent coefficients that are at least a factor of few larger than the spin-independent ones. Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would require calculating the nuclear matrix elements for the second two. Comparing the SD rate on nuclei with an odd proton vs. odd neutron could allow one to distinguish operators involving u quarks from those involving d quarks; this is interesting because the distinction is difficult to make for SI operators.

  8. Spin-polarized current injection induced magnetic reconstruction at oxide interface

    DOE PAGES

    Fang, F.; Yin, Y. W.; Li, Qi; ...

    2017-01-04

    Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO 3/La 0.5Ca 0.5MnO 3/La 0.7Sr 0.3MnO 3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition ofmore » the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. As a result, the effect is robust and may serve as a viable route for electronic and spintronic applications.« less

  9. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  10. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun

    2015-03-20

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. Here, we measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. While using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. Furthermore, the relative strengthmore » of the effect is in agreement with spectroscopic measurements and first principles calculations. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.« less

  11. Spin orbital singlet system FeSc2S4 under pressure

    NASA Astrophysics Data System (ADS)

    Biffin, Alun; Chernyshov, Dmitry; Canevet, Emmanuel; Fennell, Tom; White, Jonathan S.; Khasanov, Rustem; Luetkens, Hubertus; Loidl, Alois; Tsurkan, Vladimir; Rüegg, Christian

    The role of orbital degrees of freedom in quantum magnets is receiving intense focus recently, with the understanding that spin-orbit coupled systems can display physics qualitatively different from their spin only counter parts. An example is the spin-orbital singlet (SOS) state, which can provide an alternative to the conventional spin and orbitally ordered groundstates of quantum magnets. In such a scenario, the relative strengths of the exchange interaction and spin orbit coupling parameters determine the low temperature structure, with the former preferring ordered moments and the latter a non-magnetic singlet. Moreover the quantum critical point separating these two phases is rather unique in that it marks the onset of criticality in both the spin and orbital sectors. This SOS picture has recently been applied to FeSc2S4, where despite strong antiferromagnetic exchange between Jahn-Teller active Fe2+ ions no experimental signature of spin or orbital order has been detected. Building on our previous neutron scattering measurements, we have used hydrostatic pressure in neutron scattering, muon spin rotation and x-ray diffraction measurements to probe the unique phase diagram of FeSc2S4. My talk will focus on the results and interpretation of these experiments SNF SCOPES project IZ73Z0_152734/1, the Marie Curie FP7 COFUND PSI Fellowship program, Swiss National Science Foundation.

  12. Improved spin squeezing of an atomic ensemble through internal state control

    NASA Astrophysics Data System (ADS)

    Hemmer, Daniel; Montano, Enrique; Deutsch, Ivan; Jessen, Poul

    2016-05-01

    Squeezing of collective atomic spins is typically generated by quantum backaction from a QND measurement of the relevant spin component. In this scenario the degree of squeezing is determined by the measurement resolution relative to the quantum projection noise (QPN) of a spin coherent state (SCS). Greater squeezing can be achieved through optimization of the 3D geometry of probe and atom cloud, or by placing the atoms in an optical cavity. We explore here a complementary strategy that relies on quantum control of the large internal spin available in alkali atoms such as Cs. Using a combination of rf and uw magnetic fields, we coherently map the internal spins in our ensemble from the SCS (| f = 4, m = 4>) to a ``cat'' state which is an equal superposition of | f = 4, m = 4>and | f = 4, m = -4>. This increases QPN by a factor of 2 f = 8 relative to the SCS, and therefore the amount of backaction and spin-spin entanglement produced by our QND measurement. In a final step, squeezing generated in the cat state basis can be mapped back to the SCS basis, where it corresponds to increased squeezing of the physical spin. Our experiments suggest that up to 8dB of metrologically useful squeezing can be generated in this way, compared to ~ 3 dB in an otherwise identical experiment starting from a SCS.

  13. FMR-driven spin pumping in Y3Fe5O12-based structures

    NASA Astrophysics Data System (ADS)

    Yang, Fengyuan; Hammel, P. Chris

    2018-06-01

    Ferromagnetic resonance driven spin pumping, a topic of steadily increasing interest since its emergence over two decades ago, remains one of the most exciting research fields in condensed matter physics. Among the many materials that have been explored for spin pumping, yttrium iron garnet (YIG) is one of the most extensively studied because of its exceptionally low magnetic damping and insulating nature. There is a great amount of literature in the spin pumping and related research fields, too broad for this review to cover. In this Topical Review, we focus on the YIG-based spin pumping results carried out by our groups, including: the mechanism and technical details of our off-axis sputtering technique for the growth of single-crystalline YIG epitaxial films with a high degree ordering, experimental evidence for the high quality of the YIG films, spin pumping results from YIG into various transition metals and their heterostructures, dynamic spin transport in YIG/antiferromagnet hybrid structures, intralayer spin pumping by localized spin wave modes confined by a micromagnetic probe, dynamic spin coupling between YIG and nitrogen-vacancy centers in diamond, parametric spin pumping from high-wavevector spin waves in YIG, and localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations. These results build on the power and versatility of YIG spin pumping to improve our understanding of spin dynamics, spin currents, spin Hall physics, spin–orbit coupling, dynamic magnetic coupling, and the relationship between these phenomena in a broad range of materials, geometries, and settings.

  14. Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Hu, Fang-Qi; Wu, Ning; Zhao, Qing

    2017-12-01

    We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction within the triplet. Through an analytical diagonalization based on the SU (3 ) Lie algebra, we find that the electron spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction, but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or electron spin polarization.

  15. Superfluidity and spin superfluidity in spinor Bose gases

    NASA Astrophysics Data System (ADS)

    Armaitis, J.; Duine, R. A.

    2017-05-01

    We show that spinor Bose gases subject to a quadratic Zeeman effect exhibit coexisting superfluidity and spin superfluidity, and study the interplay between these two distinct types of superfluidity. To illustrate that the basic principles governing these two types of superfluidity are the same, we describe the magnetization and particle-density dynamics in a single hydrodynamic framework. In this description spin and mass supercurrents are driven by their respective chemical potential gradients. As an application, we propose an experimentally accessible stationary state, where the two types of supercurrents counterflow and cancel each other, thus resulting in no mass transport. Furthermore, we propose a straightforward setup to probe spin superfluidity by measuring the in-plane magnetization angle of the whole cloud of atoms. We verify the robustness of these findings by evaluating the four-magnon collision time, and find that the time scale for coherent (superfluid) dynamics is separated from that of the slower incoherent dynamics by one order of magnitude. Comparing the atom and magnon kinetics reveals that while the former can be hydrodynamic, the latter is typically collisionless under most experimental conditions. This implies that, while our zero-temperature hydrodynamic equations are a valid description of spin transport in Bose gases, a hydrodynamic description that treats both mass and spin transport at finite temperatures may not be readily feasible.

  16. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    NASA Astrophysics Data System (ADS)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  17. In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.

    PubMed

    Towner, Rheal A; Smith, Nataliya

    2018-05-20

    In vivo free radical imaging in preclinical models of disease has become a reality. Free radicals have traditionally been characterized by electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. The disadvantage of the ESR/EPR approach is that spin adducts are short-lived due to biological reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an antibody that recognizes macromolecular 5,5-dimethyl-pyrroline-N-oxide (DMPO) spin adducts (anti-DMPO antibody), regardless of the oxidative/reductive state of trapped radical adducts. Recent Advances: The IST approach has been extended to an in vivo application that combines IST with molecular magnetic resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a spin-trapping agent, DMPO, to trap free radicals in disease models, and administration of an mMRI probe, an anti-DMPO probe, which combines an antibody against DMPO-radical adducts and an MRI contrast agent, resulting in targeted free radical adduct detection. The combined IST-mMRI approach has been used in several rodent disease models, including diabetes, amyotrophic lateral sclerosis (ALS), gliomas, and septic encephalopathy. The advantage of this approach is that heterogeneous levels of trapped free radicals can be detected directly in vivo and in situ to pin point where free radicals are formed in different tissues. The approach can also be used to assess therapeutic agents that are either free radical scavengers or generate free radicals. Smaller probe constructs and radical identification approaches are being considered. The focus of this review is on the different applications that have been studied, advantages and limitations, and future directions. Antioxid. Redox Signal. 28, 1404-1415.

  18. A brushless dc spin motor for momentum exchange altitude control

    NASA Technical Reports Server (NTRS)

    Stern, D.; Rosenlieb, J. W.

    1972-01-01

    Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.

  19. Novel synthesis and structural characterization of a high-affinity paramagnetic kinase probe for the identification of non-ATP site binders by nuclear magnetic resonance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moy, Franklin J.; Lee, Arthur; Gavrin, Lori Krim

    2010-07-23

    To aid in the pursuit of selective kinase inhibitors, we have developed a unique ATP site binder tool for the detection of binders outside the ATP site by nuclear magnetic resonance (NMR). We report here the novel synthesis that led to this paramagnetic spin-labeled pyrazolopyrimidine probe (1), which exhibits nanomolar inhibitory activity against multiple kinases. We demonstrate the application of this probe by performing NMR binding experiments with Lck and Src kinases and utilize it to detect the binding of two compounds proximal to the ATP site. The complex structure of the probe with Lck is also presented, revealing howmore » the probe fits in the ATP site and the specific interactions it has with the protein. We believe that this spin-labeled probe is a valuable tool that holds broad applicability in a screen for non-ATP site binders.« less

  20. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  1. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  2. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  3. Persistent Optical Nuclear Spin Narrowing in a Singly Charged InAs Quantum Dot

    DTIC Science & Technology

    2012-02-01

    explained in terms of an anisotropic hyperfine coupling between the hole spin and the nuclear spins. © 2012 Optical Society of America OCIS codes: 300.6250...February 2012 / J. Opt. Soc. Am. B A121 where γs (γt) is the spin (trion) dephasing rate, χ is half the pump Rabi frequency ΩR (ΩR # μEℏ , where μ is...probe ab- sorption at the dark state dip (αdip) and the Rabi sideband (αpeak): αdip # α0 χ2γs & γt$γ2s% χ4 & 2χ2γtγs & γ2t γ2s ; (11) αpeak # α0 χ2γs

  4. Degree of Biomimicry of Artificial Spider Silk Spinning Assessed by NMR Spectroscopy.

    PubMed

    Otikovs, Martins; Andersson, Marlene; Jia, Qiupin; Nordling, Kerstin; Meng, Qing; Andreas, Loren B; Pintacuda, Guido; Johansson, Jan; Rising, Anna; Jaudzems, Kristaps

    2017-10-02

    Biomimetic spinning of artificial spider silk requires that the terminal domains of designed minispidroins undergo specific structural changes in concert with the β-sheet conversion of the repetitive region. Herein, we combine solution and solid-state NMR methods to probe domain-specific structural changes in the NT2RepCT minispidroin, which allows us to assess the degree of biomimicry of artificial silk spinning. In addition, we show that the structural effects of post-spinning procedures can be examined. By studying the impact of NT2RepCT fiber drying, we observed a reversible beta-to-alpha conversion. We think that this approach will be useful for guiding the optimization of artificial spider silk fibers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.

  6. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz

    NASA Astrophysics Data System (ADS)

    Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  7. Spin excitations in the deformed nuclei 154Sm, 158Gd and 168Er

    NASA Astrophysics Data System (ADS)

    Frekers, D.; Wörtche, H. J.; Richter, A.; Abegg, R.; Azuma, R. E.; Celler, A.; Chan, C.; Drake, T. E.; Helmer, R.; Jackson, K. P.; King, J. D.; Miller, C. A.; Schubank, R.; Vetterli, M. C.; Yen, S.

    1990-07-01

    An intermediate energy proton scattering experiment has been performed to probe spin excitation in the deformed rare earth nuclei 154Sm, 158Gd and 168Er for energies up to 12 MeV. A concentration of spin M1 strength is observed between 6 and 10MeV with a total strength of about 11 μN2 independent of the nucleus. The strength function shows two distinct structures separated by about 2.5 MeV and each having a width of about 2 MeV.

  8. Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach.

    PubMed

    Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo

    2006-04-05

    The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.

  9. Metallic Bead Detection by Using Eddy-Current Probe with SV-GMR Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, S.; Chomsuwan, K.; Hagino, T.

    2005-04-09

    The progress of the ECT probe with micro magnetic sensor becomes possible to apply to various applications. The detection of micro metallic bead used for electric packaging has been reported in this paper. We proposed micro ECT probes with meander coil as exciter and spin-valve giant magneto-resistance (SV-GMR) as receiver. Micro metallic bead(solder ball) with the diameter of 0.25 to 0.76 mm is used as a measuring object. We discuss the detection and alignment of metallic bead by using ECT technique.

  10. Using Light to Prepare and Probe an Electron Spin in a Quantum Dot

    DTIC Science & Technology

    2005-01-01

    A. Shabaev, A.L. Efros, D. Park, D. Gershoni, V.L. Korenev , and I.A. Merkulov, “Optical Pumping of the Electronic and Nuclear Spin in Single Charge-tunable Quantum Dots,” Phys. Rev. Lett. 94, 047402 (2005). ´

  11. Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Xu, Chen

    With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.

  12. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  13. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  14. Experimental observation of magnetoelectricity in spin ice Dy 2Ti 2O 7

    DOE PAGES

    Lin, L.; Xie, Y. L.; Wen, J. -J.; ...

    2015-12-14

    The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, due to their many emergent properties (e.g., spin-ice and monopole-type excitation). Recent works have suggested that the magnetic monopole excitation of spin-ice systems is magnetoelectric active, but this fact has rarely been confirmed via experiment. In this work, we performed a systematic experimental investigation on the magnetoelectricity of Dy 2Ti 2O 7 by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at T c1 = 25 K and T c2 =13 K were observed. Remarkable magnetoelectric coupling was identified below the lower transition temperature, with significantmore » suppression of the electric polarization on applied magnetic field. Our results show that the lower ferroelectric transition temperature coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, which indicates implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms are discussed. Our findings can be used for more investigations to explore multiferroicity in these spin-ice systems and other frustrated magnets.« less

  15. Spin coherence in silicon/silicon-germanium nanostructures

    NASA Astrophysics Data System (ADS)

    Truitt, James L.

    This thesis investigates the spin coherence of electrons in silicon/silicon-germanium (Si/SiGe) quantum wells. With a long spin coherence time, an electron trapped in a quantum dot in Si/SiGe is a prime candidate for a quantum bit (qubit) in a solid state implementation of a quantum computer. In particular, the mechanisms responsible for decoherence are examined in a variety of Si/SiGe quantum wells, and it is seen that their behavior does not correspond to published theories of decoherence in these structures. Transport data are analyzed for all samples to determine the electrical properties of each, taking into account a parallel conduction path seen in all samples. Furthermore, the effect of confining the electrons into nanostructures of varying size in one of the samples is studied. All but one of the samples examined are grown by ultrahigh vacuum chemical vapor deposition at the University of Wisconsin - Madison. The nanostructures are patterned on a sample provided by IBM using the Nabity Pattern Generation Software (NPGS) on a LEO1530 Scanning Electron Microscope, and etched using SF6 in an STS reactive ion etcher. Continuous-wave electron spin resonance studies are done using a Bruker ESP300E spectrometer, with a 4.2K continuous flow cryostat and X-band cavity. In order to fully characterize the sample, electrical measurements were done. Hall bars are etched into the 2DEGs, and Ohmic contacts are annealed in to provide a current path through the 2DEG. Measurements are made both from room temperature down to 2K in a Physical Property Measurement System (PPMS), and at 300mK using a custom built probe in a one shot 3He cryostat made by Oxford Instruments. The custom built probe also allows high frequency excitations, facilitating electrically detected magnetic resonance (EDMR) experiments. In many of the samples, an orientationally dependent electron spin resonance linewidth is seen whose anisotropy is much larger at small angles than that predicted by

  16. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    NASA Astrophysics Data System (ADS)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  17. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    DOE PAGES

    Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; ...

    2016-08-18

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu 3(OD) 6Cl 2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit belowmore » the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.« less

  18. EXTASE - An Experimental Thermal Probe for Applications in Snow Research and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Schroeer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.

    2002-12-01

    EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, funded by DLR. The application of this probe is to be tested in different fields, e.g. in snow research, agriculture, permafrost etc. The system consists of the probe itself with a portable field electronic and a computer for control of the system and storage of the data. The probe penetrates the surface ca. 32 cm deep and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: - no need to excavate material - minimized influence of the probe on the temperature field - minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Further applications could be e.g.: monitoring waste deposits and the heat released by decomposition, volcanology and ground truth for remote sensing. We present the general concept of the probe and also data obtained during different field measurement campaigns with prototypes of the probe.

  19. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE PAGES

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  20. Temperature-induced changes in lecithin model membranes detected by novel covalent spin-labelled phospholipids.

    PubMed

    Stuhne-Sekalec, L; Stanacev, N Z

    1977-02-01

    Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.

  1. Spin Exchange Optical Pumping of 129Xe for the Neutron Electron Dipole Moment Experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Miller, Eric; Hayamizu, Tomohiro; Wienands, Joshua; Altiere, Emily; Jones, David; Madison, Kirk; Momose, Takamasa; Lang, Michael; Bidinosti, Chris; Martin, Jeffery

    2016-09-01

    Spin polarized noble gases have been a field of study for several decades and are of particular interest with respect to magnetic sensing. Using the Spin Exchange Optical Pumping technique, one can use the angular momentum of circularly polarized NIR photons to spin polarize Rb atoms, which then collide with Xe to polarize the ground state Zeeman sublevels of Xe many orders of magnitude above typical thermal Boltzmann distributions. The resulting polarized gas, with its magnetic dipole moment, is a useful probe of magnetic fields. We plan to use two spin polarized species, 129Xe and 199Hg, as dual co-magnetometers for the neutron EDM experiment at TRIUMF. They will be used to correct the neutron precession frequency for drifts due to magnetic field instability and geometric phase effects. For 129Xe, we aim to probe the populations of the ground state Zeeman sublevels using UV two-photon transitions. The respective populations depend on how much polarization we can produce using the SEOP technique. We will present technical details of our apparatus including results from a parameter space search, investigating how mode of preparation (batch or continuous flow), temperature, flow rate, and laser power affect 129Xe polarization as measured by low field NMR.

  2. Electric field numerical simulation of disc type electrostatic spinning spinneret

    NASA Astrophysics Data System (ADS)

    Wei, L.; Deng, ZL; Qin, XH; Liang, ZY

    2018-01-01

    Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.

  3. Control of single-spin magnetic anisotropy by exchange coupling

    NASA Astrophysics Data System (ADS)

    Oberg, Jenny C.; Calvo, M. Reyes; Delgado, Fernando; Moro-Lagares, María; Serrate, David; Jacob, David; Fernández-Rossier, Joaquín; Hirjibehedin, Cyrus F.

    2014-01-01

    The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons in water molecules in a host's tissue. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices in which an individual magnetic atom or molecule is coupled to conducting leads.

  4. Constraining torsion with Gravity Probe B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao Yi; Guth, Alan H.; Cabi, Serkan

    2007-11-15

    It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) suchmore » as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.« less

  5. MEASUREMENT OF HYDROXYL RADICAL ACTIVITY IN A SOIL SLURRY USING THE SPIN TRAP A-(4-PYRIDYL-1-OXIDE)-N-TERT-BUTYLNITRONE

    EPA Science Inventory

    The spin trap compound a-(4-pyridyl-1-oxide)N-tert-butylnitrone (4-POBN) served as a probe to estimate the activity of Fenton-derived hydroxyl radicals (.OH) in a batch suspension comprised of silica sand and crushes goethite ore. The rate of probe disappearance was used to anal...

  6. Laser-muon spin spectroscopy in liquids - a technique to study the excited state chemistry of transients.

    PubMed

    Ghandi, Khashayar; Clark, Ian P; Lord, James S; Cottrell, Stephen P

    2007-01-21

    This study introduces laser-muon spin spectroscopy in the liquid phase, which extends muonium chemistry in liquids to the realm of excited states and enables the detection of muoniated molecules by their spin evolution after laser excitation. This leads to new opportunities to study the Kinetic Isotope Effects (KIEs) of muonium/atomic hydrogen reactions and to probe transient chemistry in radiolysis processes involved in muonium formation, as well as muoniated intermediates in excited states.

  7. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE PAGES

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu; ...

    2017-05-31

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  8. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  9. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei, E-mail: zwei@anl.gov; Jungfleisch, Matthias B.; Jiang, Wanjun

    2015-05-07

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. We measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. Using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. The relative strength of the effect is in agreementmore » with spectroscopic measurements and first principles calculations. We also vary the interlayer materials to study the voltage output in relation to the change of the effective spin mixing conductance. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.« less

  10. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Song, M.; Liu, W.

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2NaOsO 6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probemore » spin and orbital/lattice degrees of freedom of Ba 2NaOsO 6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less

  11. Exploring Localization in Nuclear Spin Chains

    NASA Astrophysics Data System (ADS)

    Wei, Ken Xuan; Ramanathan, Chandrasekhar; Cappellaro, Paola

    2018-02-01

    Characterizing out-of-equilibrium many-body dynamics is a complex but crucial task for quantum applications and understanding fundamental phenomena. A central question is the role of localization in quenching thermalization in many-body systems and whether such localization survives in the presence of interactions. Probing this question in real systems necessitates the development of an experimentally measurable metric that can distinguish between different types of localization. While it is known that the localized phase of interacting systems [many-body localization (MBL)] exhibits a long-time logarithmic growth in entanglement entropy that distinguishes it from the noninteracting case of Anderson localization (AL), entanglement entropy is difficult to measure experimentally. Here, we present a novel correlation metric, capable of distinguishing MBL from AL in high-temperature spin systems. We demonstrate the use of this metric to detect localization in a natural solid-state spin system using nuclear magnetic resonance (NMR). We engineer the natural Hamiltonian to controllably introduce disorder and interactions, and observe the emergence of localization. In particular, while our correlation metric saturates for AL, it slowly keeps increasing for MBL, demonstrating analogous features to entanglement entropy, as we show in simulations. Our results show that our NMR techniques, akin to measuring out-of-time correlations, are well suited for studying localization in spin systems.

  12. Horndeski theories confront the Gravity Probe B experiment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal; Chakraborty, Sumanta

    2018-06-01

    In this work we have investigated various properties of a spinning gyroscope in the context of Horndeski theories. In particular, we have focused on two specific situations—(a) when the gyroscope follows a geodesic trajectory and (b) when it is endowed with an acceleration. In both these cases, besides developing the basic formalism, we have also applied the same to understand the motion of a spinning gyroscope in various static and spherically symmetric spacetimes pertaining to Horndeski theories. Starting with the Schwarzschild de Sitter spacetime as a warm up exercise, we have presented our results for two charged Galileon black holes as well as for a black hole in scalar coupled Einstein-Gauss-Bonnet gravity. In all these cases we have shown that the spinning gyroscope can be used to distinguish black holes from naked singularities. Moreover, using the numerical estimation of the geodetic precession from the Gravity Probe B experiment, we have constrained the gauge/scalar charge of the black holes in these Horndeski theories. Implications are also discussed.

  13. Bound States and Field-Polarized Haldane Modes in a Quantum Spin Ladder.

    PubMed

    Ward, S; Mena, M; Bouillot, P; Kollath, C; Giamarchi, T; Schmidt, K P; Normand, B; Krämer, K W; Biner, D; Bewley, R; Guidi, T; Boehm, M; McMorrow, D F; Rüegg, Ch

    2017-04-28

    The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin-ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modeling of the dynamical response demonstrates our complete quantitative understanding of these states.

  14. Spin-phonon coupling in BaFe{sub 12}O{sub 19} M-type hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Júnior, Flávio M.; Paschoal, Carlos W. A., E-mail: paschoal.william@gmail.com

    2014-12-28

    The spin-phonon coupling in magnetic materials is due to the modulation of the exchange integral by lattice vibrations. BaFe{sub 12}O{sub 19} M-type hexaferrite, which is the most used magnetic material as permanent magnet, transforms into ferrimagnet at high temperatures, but no spin-phonon coupling was previously observed at this transition. In this letter, we investigated the temperature-dependent Raman spectra of polycrystalline BaFe{sub 12}O{sub 19} M-type hexaferrite from room temperature up to 780 K to probe spin-phonon coupling at the ferrimagnetic transition. An anomaly was observed in the position of the phonon attributed to the Fe{sup (4)}O{sub 6}, Fe{sup (5)}O{sub 6}, and Fe{supmore » (1)}O{sub 6} octahedra, evidencing the presence of a spin-phonon coupling in BaM in the ferrimagnetic transition at 720 K. The results also confirmed the spin-phonon coupling is different for each phonon even when they couple with the same spin configuration.« less

  15. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    . This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.

  16. Transverse single-spin asymmetry in the low-virtuality leptoproduction of open charm as a probe of the gluon Sivers function

    NASA Astrophysics Data System (ADS)

    Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha

    2018-04-01

    We study the low-virtuality inclusive leptoproduction of open charm, p↑l →D0+X as a probe of the gluon Sivers function. We perform the analysis in a generalized parton model framework. At leading order, this process is sensitive only to the gluon content of the proton. Hence any detection of a transverse single-spin asymmetry in this process would be clear indication of a non-zero gluon Sivers function (GSF). Considering COMPASS and a future Electron-Ion Collider (EIC), we present predictions for asymmetry using fits for the GSF available in literature. Predictions for peak asymmetry values lie in the range of 0.8% to 13%. We also present estimates of the upper bound on the asymmetry as obtained with a maximal gluon Sivers function. Further, for the case of the Electron-Ion Collider, we evaluate the asymmetry in the muons decaying from the D -meson and find that the asymmetry is well preserved in the kinematics of the muons. Peak values of the muon asymmetry are close to those obtained for the D -meson and lie in the range 0.75% to 11%.

  17. A polarized Drell-Yan experiment to probe the dynamics of the nucleon sea

    DOE PAGES

    Kleinjan, David W.

    2015-01-01

    In QCD, nucleon spin comes from the sum of the quark spin, gluon spin, and the quark and gluon orbital angular momentum, but how these different components contribute and the interplay among them is not yet understood. For instance, sea quark orbital contribution remains largely unexplored. Measurements of the Sivers function for the sea quarks will provide a probe of the sea quark orbital contribution. The upcoming E1039 experiment at Fermilab will measure the Sivers asymmetry of the sea quarks via the Drell-Yan process using a 120 GeV unpolarized proton beam directed a transversely polarized ammonia target. Lastly, we reportmore » on the status and plans of the E1039 polarized Drell-Yan experiment.« less

  18. A polarized Drell-Yan experiment to probe the dynamics of the nucleon sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinjan, David

    In QCD, nucleon spin comes from the sum of the quark spin, gluon spin, and the quark and gluon orbital angular momentum, but how these different components contribute and the interplay among them is not yet understood. For instance, sea quark orbital contribution remains largely unexplored. Measurements of the Sivers function for the sea quarks will provide a probe of the sea quark orbital contribution. The upcoming E1039 experiment at Fermilab will measure the Sivers asymmetry of the sea quarks via the Drell-Yan process using a 120 GeV unpolarized proton beam directed a transversely polarized ammonia target. We report onmore » the status and plans of the E1039 polarized Drell-Yan experiment.« less

  19. Spin dependent transport and spin transfer in nanoconstrictions and current confined nanomagnets

    NASA Astrophysics Data System (ADS)

    Ozatay, Ozhan

    In this thesis, I have employed point contact spectroscopy to determine the nature of electron transport across constrained domain walls in a ferromagnetic nanocontact and to uncover the relationship between ballisticity of electron transport and domain wall magnetoresistance. In the range of hole sizes studied (from 10 to 3 nm) the resulting magnetoresistance was found to be less than 0.5% and one that increases with decreasing contact size. I have used point contacts as local probes, to study the spin dependent transport across Ferromagnet/Normal Metal/Ferromagnet(FM/NM/FM) trilayers as well as the consequences of localized spin polarized current injection into a nano magnet on spin angular momentum transfer and high frequency magnetization dynamics. I have demonstrated that absolute values for spin transfer switching critical currents are reduced in this new geometry as compared to uniform current injection. I have also performed micromagnetic simulations to determine the evolution of magnetization under the application of magnetic fields and currents to gain more insights into experimental results. I have used Scanning Transmission Electron Microscopy (STEM), X-Ray Photoemission Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) techniques to characterize the interfacial mixing and oxygen diffusion in the metallic multilayers of interest. I have shown that the Ta/CuOx bilayer structure provides a smooth substrate by improving interfacial roughness due to grain boundary diffusion of oxygen and reaction with Ta that fills in the grain boundary gaps in Cu. Analysis of the Py/AlOx interface proved a strong oxidation passivation on the Py surface by Al coating accompanied by Fe segregation into the alumina. I have utilized the characterization results to design a new nanomagnet whose sidewalls are protected from adventitious sidewall oxide layers and yields improved device performance. The oxide layers that naturally develop at the sidewalls of Py

  20. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  1. Muon spin relaxation study of the layered magnetoelectric FeTe2O5Br with spin amplitude modulated magnetic structure

    NASA Astrophysics Data System (ADS)

    Zorko, A.; Pregelj, M.; Berger, H.; Arčon, D.

    2010-05-01

    Local-probe weak-transverse-field and zero-field μSR measurements have been employed to investigate magnetic ordering in the new magnetoelectric compound FeTe2O5Br. Below the Néel transition temperature TN=10.6 K a static local magnetic field starts to develop at the μ+ sites. Fast μ+ polarization decay below TN speaks in favor of a broad distribution of internal magnetic fields, in agreement with the incommensurate magnetic structure suggested by neutron diffraction experiments. Above TN the presence of short-range order is detected as high as at 2TN, which suggests only weak interlayer magnetic coupling. On the other hand, strong Fe3+ spin fluctuations likely reflect geometrically frustrated structure of [Fe4O16]20- spin clusters, which are the main building blocks of the layered FeTe2O5Br structure.

  2. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet

    DOE PAGES

    Banerjee, A.; Bridges, C. A.; Yan, J. -Q.; ...

    2016-04-04

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less

  3. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, A.; Bridges, C. A.; Yan, J. -Q.

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less

  4. Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Shastry, K.; Saniz, Rolando; Makkonen, Ilja; Barbiellini, Bernardo; Assaf, Badih A.; Heiman, Donald; Moodera, Jagadeesh S.; Partoens, Bart; Bansil, Arun; Weiss, A. H.

    2016-09-01

    Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of Eb=2.7 ±0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.

  5. Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling.

    PubMed

    Sicoli, Giuseppe; Mathis, Gérald; Aci-Sèche, Samia; Saint-Pierre, Christine; Boulard, Yves; Gasparutto, Didier; Gambarelli, Serge

    2009-06-01

    Double electron-electron resonance (DEER) was applied to determine nanometre spin-spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes' positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.

  6. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures.

    PubMed

    Jin, Chenhao; Kim, Jonghwan; Utama, M Iqbal Bakti; Regan, Emma C; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-25

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )-tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field-free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.

    2015-10-01

    Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

  8. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments.

    PubMed

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-05-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  9. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  10. Tracking Gravity Probe B gyroscope polhode motion

    NASA Technical Reports Server (NTRS)

    Keiser, George M.; Parkinson, Bradford W.; Cohen, Clark E.

    1990-01-01

    The superconducting Gravity Probe B spacecraft is being developed to measure two untested predictions of Einstein's theory of general relativity by using orbiting gyroscopes; it possesses an intrinsic magnetic field which rotates with the rotor and is fixed with respect to the rotor body frame. In this paper, the path of the rotor spin axes is tracked using this trapped magnetic flux as a reference. Both the rotor motion and the magnetic field shape are estimated simultaneously, employing the higher order components of the magnetic field shape.

  11. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  12. Searching for New Spin- and Velocity-Dependent Interactions by Spin Relaxation of Polarized ^{3}He Gas.

    PubMed

    Yan, H; Sun, G A; Peng, S M; Zhang, Y; Fu, C; Guo, H; Liu, B Q

    2015-10-30

    We have constrained possible new interactions which produce nonrelativistic potentials between polarized neutrons and unpolarized matter proportional to ασ[over →]·v[over →] where σ[over →] is the neutron spin and v[over →] is the relative velocity. We use existing data from laboratory measurements on the very long T_{1} and T_{2} spin relaxation times of polarized ^{3}He gas in glass cells. Using the best available measured T_{2} of polarized ^{3}He gas atoms as the polarized source and the Earth as an unpolarized source, we obtain constraints on two new interactions. We present a new experimental upper bound on possible vector-axial-vector (V_{VA}) type interactions for ranges between 1 and 10^{8} m. In combination with previous results, we set the most stringent experiment limits on g_{V}g_{A} ranging from ~μm to ~10^{8} m. We also report what is to our knowledge the first experimental upper limit on the possible torsion fields induced by the Earth on its surface. Dedicated experiments could further improve these bounds by a factor of ~100. Our method of analysis also makes it possible to probe many velocity dependent interactions which depend on the spins of both neutrons and other particles which have never been searched for before experimentally.

  13. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  14. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  15. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE PAGES

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung; ...

    2017-05-24

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  16. Optically-pumped spin-exchange polarized electron source

    NASA Astrophysics Data System (ADS)

    Pirbhai, Munir Hussein

    Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, unpolarized electrons and oriented rubidium atoms in the presence of a quenching gas. This system has less stringent vacuum requirements than those of GaAs sources, and is capable of operating in background pressures of ~1mTorr. Beams with ~24% polarization and 4μA of current have been recorded, which is comparable to the performance obtained with the earlier version built in our lab. The present system is however not as unstable as in the previous work, and has the potential to be developed into a "turn-key" source of polarized electron beams. It has also allowed us to undertake a study to find factors which affect the beam polarization in this scheme of producing polarized electrons. Such knowledge will help us to design better optically-pumped spin-exchange polarized electron sources.

  17. Spin filtering in a double quantum dot device: Numerical renormalization group study of the internal structure of the Kondo state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.

    2014-03-31

    A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less

  18. Can Gravity Probe B usefully constrain torsion gravity theories?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Rosenthal, Eran

    2007-06-15

    In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the amount of torsion generated by macroscopic bodies is normally negligible. However, in a recent paper, Mao et al. (arXiv:gr-qc/0608121) point out that there is a class of theories, including the Hayashi-Shirafuji (1979) theory, in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They further argue that, by the principle of action equals reaction, one would expect the angular momentum of test bodies to couplemore » to a background torsion field, and therefore the precession of the Gravity Probe B gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories, essentially because the torsion is not an independent dynamical degree of freedom. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of different versions of this theory, depending on the precise form of the coupling to matter chosen for the torsion. We show that, for any coupling to matter that is compatible with the spin transport equation postulated by Mao et al., the theory has either ghosts or an ill-posed initial-value formulation. These theoretical problems can be avoided by specializing the parameters of the theory and in addition choosing the standard minimal coupling to matter of the torsion tensor. This yields a consistent theory, but one in which the action equals reaction principle is violated, and in which the angular momentum of the gyroscopes does not couple to the Earth's torsion field. Thus, the Einstein-Hayashi-Shirafuji theory does not predict a detectable torsion signal for Gravity Probe B. There may be other torsion theories which

  19. Calculation method of spin accumulations and spin signals in nanostructures using spin resistors

    NASA Astrophysics Data System (ADS)

    Torres, Williams Savero; Marty, Alain; Laczkowski, Piotr; Jamet, Matthieu; Vila, Laurent; Attané, Jean-Philippe

    2018-02-01

    Determination of spin accumulations and spin currents is essential for a deep understanding of spin transport in nanostructures and further optimization of spintronic devices. So far, they are easily obtained using different approaches in nanostructures composed of few elements; however their calculation becomes complicated as the number of elements increases. Here, we propose a 1-D spin resistor approach to calculate analytically spin accumulations, spin currents and magneto-resistances in heterostructures. Our method, particularly applied to multi-terminal metallic nanostructures, provides a fast and systematic mean to determine such spin properties in structures where conventional methods remain complex.

  20. Bias Dependent Spin Relaxation in a [110]-InAs/AlSb Two Dimensional Electron System

    NASA Astrophysics Data System (ADS)

    Hicks, J.; Holabird, K.

    2005-03-01

    Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin-orbit interaction. The large spin-orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [110]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [110]-oriented, gate-controlled InAs quantum well channel [1]. We report measurements of the electron spin lifetime as a function of applied electric field in a [110]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2V per quantum well at room temperature. This work is supported by DARPA, NSERC and the NSF grant ECS - 0322021. [1] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).

  1. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    NASA Astrophysics Data System (ADS)

    He, Shikun; Meng, Zhaoliang; Huang, Lisen; Yap, Lee Koon; Zhou, Tiejun; Panagopoulos, Christos

    2016-07-01

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0∘ to 90∘ and φ from 0∘ to 360∘. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. The operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.

  2. EXTASE - An Experimental Thermal Probe For Applications In Snow Research And Earth Sciences

    NASA Astrophysics Data System (ADS)

    Schröer, K.; Seiferlin, K.; Marczewski, W.; Spohn, T.

    EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, both funded by DLR. The application of this probe is to be tested in different fields e.g. in snow research, agriculture, permafrost etc. The probe penetrates the surface ca. 32 cm and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: -no need to excavate material -minimized influence of the probe on the temperature field -minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Fur- ther applications could be: monitoring waste deposits and the heat set free by decom- position, volcanology and ground truth for remote sensing. We present the general concept of the probe, some temperature profiles measured during a field measurement campaign to demonstrate the capability of this new technique and first experiments made in the laboratory. First attempts to calculate thermal diffusivity and conductivity from the data are also given.

  3. Probing inter- and intrachain Zhang-Rice excitons in Li 2 CuO 2 and determining their binding energy

    DOE PAGES

    Monney, Claude; Bisogni, Valentina; Zhou, Ke-Jin; ...

    2016-10-10

    Cuprate materials, such as those hosting high-temperature superconductivity, represent a famous class of materials where the correlations between the strongly entangled charges and spins produce complex phase diagrams. Several years ago, the Zhang-Rice singlet was proposed as a natural quasiparticle in hole-doped cuprates. The occurrence and binding energy of this quasiparticle, consisting of a pair of bound holes with antiparallel spins on the same CuO 4 plaquette, depends on the local electronic interactions, which are fundamental quantities for understanding the physics of the cuprates. Here, we employ state-of-the-art resonant inelastic x-ray scattering (RIXS) to probe the correlated physics of themore » CuO 4 plaquettes in the quasi-one-dimensional chain cuprate Li 2CuO 2. By tuning the incoming photon energy to the O K edge, we populate bound states related to the Zhang-Rice quasiparticles in the RIXS process. Both intra- and interchain Zhang-Rice singlets are observed and their occurrence is shown to depend on the nearest-neighbor spin-spin correlations, which are readily probed in this experiment. Finally, we also extract the binding energy of the Zhang-Rice singlet and identify the Zhang-Rice triplet excitation in the RIXS spectra.« less

  4. Measuring mechanical motion with a single spin

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.; Kolkowitz, S.; Unterreithmeier, Q. P.; Rabl, P.; Bleszynski Jayich, A. C.; Harris, J. G. E.; Lukin, M. D.

    2012-12-01

    We study theoretically the measurement of a mechanical oscillator using a single two-level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen-vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature (Kolkowitz et al 2012 Science 335 1603). Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero-point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero-point motion. Throughout the paper, we focus on the experimental implementation of a nitrogen-vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. The implications for the preparation of nonclassical states of a mechanical oscillator are also discussed.

  5. Peptide-membrane Interactions by Spin-labeling EPR

    PubMed Central

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  6. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Zero Quantum Coherence in a Series of Covalent Spin-Correlated Radical Pairs.

    PubMed

    Nelson, Jordan N; Krzyaniak, Matthew D; Horwitz, Noah E; Rugg, Brandon K; Phelan, Brian T; Wasielewski, Michael R

    2017-03-23

    Photoinitiated subnanosecond electron transfer within covalently linked electron donor-acceptor molecules can result in the formation of a spin-correlated radical pair (SCRP) with a well-defined initial singlet spin configuration. Subsequent coherent mixing between the SCRP singlet and triplet m s = 0 spin states, the so-called zero quantum coherence (ZQC), is of potential interest in quantum information processing applications because the ZQC can be probed using pulse electron paramagnetic resonance (pulse-EPR) techniques. Here, pulse-EPR spectroscopy is utilized to examine the ZQC oscillation frequencies and ZQC dephasing in three structurally well-defined D-A systems. While transitions between the singlet and triplet m s = 0 spin states are formally forbidden (Δm s = 0), they can be addressed using specific microwave pulse turning angles to map information from the ZQC onto observable single quantum coherences. In addition, by using structural variations to tune the singlet-triplet energy gap, the ZQC frequencies determined for this series of molecules indicate a stronger dependence on the electronic g-factor than on electron-nuclear hyperfine interactions.

  8. First applications of the EXTASE thermal probe

    NASA Astrophysics Data System (ADS)

    Schröer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.

    2003-04-01

    EXTASE is a spin-off project from the MUPUS (Rosetta Lander) thermal probe, both funded by DLR. The thermal probe will be tested in various environments and fields, e.g. in snow research, agriculture, permafrost, monitoring waste deposits and the heat released by decomposition, ground truth for remote sensing etc. The probe is a glass-fibre tube of 1cm diameter, about 32 cm long and carries of 16 sensors for measuring temperature profiles. Each of the sensors can also be heated for in situ measurements of the thermal diffusivity of the penetrated layers, from which we can derive the thermal conductivity. All necessary connections and the sensors itself are printed on a foil which is rolled and glued to the inner wall of the tube. This design results in the significant advantage that the measurements can be done in-situ. No excavation of material is required to measure the thermal conductivity, for instance. Presently we are concentrating on soil science and snow research.We made several measurements in different conditions with prototypes of the probe so far. Among other things, we measured soil temperatures together with meteorological boundary conditions in cooperation with the local Institute of Agrophysics in Lublin (Poland). The first measurements in snow under natural conditions were made on Svalbard (Spitzbergen) together with the Alfred-Wegener-Institute in Bremerhaven (Germany). First results of the measuring campaigns are shown.

  9. Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La 2 - x Sr x NiO 4 Observed by X Rays

    DOE PAGES

    Fabbris, G.; Meyers, D.; Xu, L.; ...

    2017-04-12

    Here, we report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L 3 edge of La 2$-$xSr xNiO 4 (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital charactermore » of the doped holes in these two families. Lastly, this work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.« less

  10. Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La 2 - x Sr x NiO 4 Observed by X Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbris, G.; Meyers, D.; Xu, L.

    Here, we report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L 3 edge of La 2$-$xSr xNiO 4 (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital charactermore » of the doped holes in these two families. Lastly, this work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.« less

  11. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Luyi

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is

  12. Long spin lifetime and large barrier polarisation in single electron transport through a CoFe nanoparticle

    PubMed Central

    Temple, R. C.; McLaren, M.; Brydson, R. M. D.; Hickey, B. J.; Marrows, C. H.

    2016-01-01

    We have investigated single electron spin transport in individual single crystal bcc Co30Fe70 nanoparticles using scanning tunnelling microscopy with a standard tungsten tip. Particles were deposited using a gas-aggregation nanoparticle source and individually addressed as asymmetric double tunnel junctions with both a vacuum and a MgO tunnel barrier. Spectroscopy measurements on the particles show a Coulomb staircase that is correlated with the measured particle size. Field emission tunnelling effects are incorporated into standard single electron theory to model the data. This formalism allows spin-dependent parameters to be determined even though the tip is not spin-polarised. The barrier spin polarisation is very high, in excess of 84%. By variation of the resistance, several orders of magnitude of the system timescale are probed, enabling us to determine the spin relaxation time on the island. It is found to be close to 10 μs, a value much longer than previously reported. PMID:27329575

  13. Determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by ICP-OES

    NASA Astrophysics Data System (ADS)

    Yong, Cheng

    2018-03-01

    The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.

  14. NMR in Pulsed Magnetic Fields on the Orthogonal Shastry-Sutherland spin system SrCu2 (BO3)2

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Kohlrautz, Jonas; Kühne, Hannes; Greene, Liz; Wosnitza, Jochen; Haase, Jügen

    2015-03-01

    SrCu2(BO3)2 is a quasi-two-dimensional spin system consisting of Cu2+ ions which form orthogonal spin singlet dimers, also known as the Shastry-Sutherland lattice, in the ground state. Though this system has been studied extensively using a variety of techniques to probe the spin triplet excitations, including recent magnetization measurements over 100 T, microscopic techniques, such as nuclear magnetic resonance (NMR), could provide further insight into the spin excitations and spin-coupling mechanisms. We demonstrate the feasibility of performing NMR on real physics system in pulsed magnets. We present 11B NMR spectra measured in pulsed magnetic fields up to 53 T, and compare those with prior results obtained in static magnetic fields. Herewith we prove the efficacy of this technique and then extend to higher fields to fully explore the spin structure of the 1/3 plateau. Support by EMFL, DFG, ETAg (EML+ & PUT210).

  15. Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets

    NASA Astrophysics Data System (ADS)

    Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.

    2018-04-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  16. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. Here, we performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ~ 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  17. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    NASA Astrophysics Data System (ADS)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; Choi, Yongseong; Haskel, Daniel; Lee, Young S.

    2018-02-01

    The application of pressure reveals a rich phase diagram for the quantum S =1 /2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T =4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ˜6 GPa up to 215 K but possibly extends in temperature to above T =300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.

  18. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE PAGES

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; ...

    2018-02-15

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. Here, we performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ~ 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  19. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    PubMed

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  20. Quantum simulation of the spin-boson model with a microwave circuit

    NASA Astrophysics Data System (ADS)

    Leppäkangas, Juha; Braumüller, Jochen; Hauck, Melanie; Reiner, Jan-Michael; Schwenk, Iris; Zanker, Sebastian; Fritz, Lukas; Ustinov, Alexey V.; Weides, Martin; Marthaler, Michael

    2018-05-01

    We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the Ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.

  1. Observation of spinon spin currents in one-dimensional spin liquid

    NASA Astrophysics Data System (ADS)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.

  2. Control of electron spin decoherence in nuclear spin baths

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  3. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    NASA Astrophysics Data System (ADS)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  4. Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Shi, Ping; Qian, Xuan; Li, Wei; Ji, Yang

    2016-11-01

    The spin fluctuation in rubidium atom gas is studied via all-optical spin noise spectroscopy (SNS). Experimental results show that the integrated SNS signal and its full width at half maximum (FWHM) strongly depend on the frequency detuning of the probe light under resonant and non-resonant conditions. The total integrated SNS signal can be well fitted with a single squared Faraday rotation spectrum and the FWHM dependence may be related to the absorption profile of the sample. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310 and 11404325) and the National Basic Research Program of China (Grant No. 2013CB922304).

  5. ProbingSpin-Forbidden’ Oxygen Atom Transfer: Gas-Phase Reactions of Chromium-Porphyrin Complexes

    PubMed Central

    Fornarini, Simonetta; Lanucara, Francesco; Warren, Jeffrey J.

    2010-01-01

    Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a ‘two-state’ reactivity model has been extensively applied especially in iron-porphyrin systems. Herein we explore the gas phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)CrIII]+ (1) and [(TPFPP)CrVO]+ (2). These are an attractive system to examine the effects of spin state change on oxygen atom transfer because the d1 CrV species are doublets while the CrIII complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)CrIII]+ forms adducts with a variety of neutral donors but O-atom transfer is only observed for NO2. Pyridine N-oxide adducts of 1 do yield 2 upon collision induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogs do not. [(TPFPP)CrVO]+ is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)3. In general, [(TPFPP)CrVO]+ species are much less reactive than the Fe and Mn analogs. Thermochemical analysis of the reactions points towards the involvement of spin issues in the lower observed reactivity of the chromium complexes. PMID:20218631

  6. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  7. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  8. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance.

    PubMed

    Andreev, Pavel A

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin

  9. Spin nematics next to spin singlets

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  10. Using polarized muons as ultrasensitive spin labels in free radical chemistry

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Roduner, Emil

    2009-08-01

    In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.

  11. Design of spin-Seebeck diode with spin semiconductors.

    PubMed

    Zhang, Zhao-Qian; Yang, Yu-Rong; Fu, Hua-Hua; Wu, Ruqian

    2016-12-16

    We report a new design of spin-Seebeck diode using two-dimensional spin semiconductors such as sawtooth-like (ST) silicence nanoribbons (SiNRs), to generate unidirectional spin currents with a temperature gradient. ST SiNRs have subbands with opposite spins across the Fermi level and hence the flow of thermally excited carriers may produce a net spin current but not charge current. Moreover, we found that even-width ST SiNRs display a remarkable negative differential thermoelectric resistance due to a charge-current compensation mechanism. In contrast, odd-width ST SiNRs manifest features of a thermoelectric diode and can be used to produce both charge and spin currents with temperature gradient. These findings can be extended to other spin semiconductors and open the door for designs of new materials and spin caloritronic devices.

  12. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shikun; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371; Meng, Zhaoliang

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0{sup ∘} to 90{sup ∘} and φ from 0{sup ∘} to 360{sup ∘}. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. Themore » operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.« less

  13. Pressure driven spin transition in siderite and magnesiosiderite single crystals.

    PubMed

    Weis, Christopher; Sternemann, Christian; Cerantola, Valerio; Sahle, Christoph J; Spiekermann, Georg; Harder, Manuel; Forov, Yury; Kononov, Alexander; Sakrowski, Robin; Yavaş, Hasan; Tolan, Metin; Wilke, Max

    2017-11-28

    Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO 3 and magnesiosiderite (Mg 0.74 Fe 0.26 )CO 3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.

  14. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    DOE PAGES

    Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...

    2015-01-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.

  15. Probing equilibrium by nonequilibrium dynamics: Aging in Co/Cr superlattices

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2013-03-01

    Magnetic aging phenomena are investigated in a structurally ordered Co/Cr superlattice through measurements of magnetization relaxation, magnetic susceptibility, and hysteresis at various temperatures above and below the onset of collective magnetic order. We take advantage of the fact that controlled growth of magnetic multilayer thin films via molecular beam epitaxy allows tailoring the intra and inter-layer exchange interaction and thus enables tuning of magnetic properties including the spin-fluctuation spectra. Tailored nanoscale periodicity in Co/Cr multilayers creates mesoscopic spatial magnetic correlations with slow relaxation dynamics when quenching the system into a nonequilibrium state. Magnetization relaxation in weakly correlated spin systems depends on the microscopic spin-flip time of about 10 ns and is therefore a fast process. The spin correlations in our Co/Cr superlattice bring the magnetization dynamics to experimentally better accessible time scales of seconds or hours. In contrast to spin-glasses, where slow dynamics due to disorder and frustration is a well-known phenomenon, we tune and increase relaxation times in ordered structures. This is achieved by increasing spin-spin correlation between mesoscopically correlated regions rather than individual atomic spins, a concept with some similarity to block spin renormalization. Magnetization transients are measured after exposing the Co/Cr heterostructure to a magnetic set field for various waiting times. Scaling analysis reveals an asymptotic power-law behavior in accordance with a full aging scenario. The temperature dependence of the relaxation exponent shows pronounced anomalies at the equilibrium phase transitions of the antiferromagnetic superstructure and the ferromagnetic to paramagnetic transition of the Co layers. The latter leaves only weak fingerprints in the equilibrium magnetic behavior but gives rise to a prominent change in nonequilibrium properties. Our findings suggest that

  16. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  17. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90 L of liquid nitrogen per day

    NASA Astrophysics Data System (ADS)

    Albert, Brice J.; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L.; Rand, Peter W.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Barnes, Alexander B.

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90 L per day to perform magic-angle spinning (MAS) DNP experiments below 85 K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328 ± 3 at 81 ± 2 K, and 276 ± 4 at 105 ± 2 K.

  18. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  19. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE PAGES

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; ...

    2018-02-15

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  20. Theoretical investigations of the local distortion and spectral properties for VO2+ in SiO2 Glass

    NASA Astrophysics Data System (ADS)

    Li, Mu-Neng; Zhang, Zhi-Hong; Wu, Shao-Yi

    2017-11-01

    The local distortions and the spin Hamiltonian parameters g factors g∥, g⊥ and the hyperfine structure constants A∥ and A⊥ for isolated vanadyl ions VO2+ doped in SiO2 glass at 700°C are theoretically investigated from the perturbation formulas of these parameters for a 3d1 ion in tetragonally compressed octahedra. In these formulas, the relationships between local structure of VO2+ ions center and the tetragonal crystal field parameters are established. As a result, the distortion of the ligand octahedron is attributed to the strong axial crystal-fields associated with the short V4+-O2- bond due to the strong V=O bonding in the silica matrix. The theoretical spin Hamiltonian parameters obtained in this work show reasonable agreement with the experimental data.

  1. Sensitivity enhancement for detection of hyperpolarized 13 C MRI probes with 1 H spin coupling introduced by enzymatic transformation in vivo.

    PubMed

    von Morze, Cornelius; Tropp, James; Chen, Albert P; Marco-Rius, Irene; Van Criekinge, Mark; Skloss, Timothy W; Mammoli, Daniele; Kurhanewicz, John; Vigneron, Daniel B; Ohliger, Michael A; Merritt, Matthew E

    2018-07-01

    Although 1 H spin coupling is generally avoided in probes for hyperpolarized (HP) 13 C MRI, enzymatic transformations of biological interest can introduce large 13 C- 1 H couplings in vivo. The purpose of this study was to develop and investigate the application of 1 H decoupling for enhancing the sensitivity for detection of affected HP 13 C metabolic products. A standalone 1 H decoupler system and custom concentric 13 C/ 1 H paddle coil setup were integrated with a clinical 3T MRI scanner for in vivo 13 C MR studies using HP [2- 13 C]dihydroxyacetone, a novel sensor of hepatic energy status. Major 13 C- 1 H coupling J CH  = ∼150 Hz) is introduced after adenosine triphosphate-dependent enzymatic transformation of HP [2- 13 C]dihydroxyacetone to [2- 13 C]glycerol-3-phosphate in vivo. Application of WALTZ-16 1 H decoupling for elimination of large 13 C- 1 H couplings was first tested in thermally polarized glycerol phantoms and then for in vivo HP MR studies in three rats, scanned both with and without decoupling. As configured, 1 H-decoupled 13 C MR of thermally polarized glycerol and the HP metabolic product [2- 13 C]glycerol-3-phosphate was achieved at forward power of approximately 15 W. High-quality 3-s dynamic in vivo HP 13 C MR scans were acquired with decoupling duty cycle of 5%. Application of 1 H decoupling resulted in sensitivity enhancement of 1.7-fold for detection of metabolic conversion of [2- 13 C]dihydroxyacetone to HP [2- 13 C]glycerol-3-phosphate in vivo. Application of 1 H decoupling provides significant sensitivity enhancement for detection of HP 13 C metabolic products with large 1 H spin couplings, and is therefore expected to be useful for preclinical and potentially clinical HP 13 C MR studies. Magn Reson Med 80:36-41, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN

    NASA Astrophysics Data System (ADS)

    Koehl, William

    Spins bound to point defects have emerged as an important resource in quantum information and spintronic technologies, especially as new materials systems have been developed that enable robust and precise quantum state control via optical, electronic, or mechanical degrees of freedom. In an effort to broaden the range of materials platforms available to such defect-based quantum technologies, we have recently begun exploring optically active transition metal ion spins doped into common wide-bandgap semiconductors. The spins of such ions are derived in part from unpaired d orbital electron states, suggesting in some cases that they may be portable across multiple materials systems. This in contrast to many vacancy-related defect spins such as the diamond nitrogen vacancy center or silicon carbide divacancy, which are formed primarily from the dangling bond states of the host. Here we demonstrate ensemble optical spin polarization and time-resolved optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). We find that these impurities possess narrow optical linewidths (<8.5 GHz at cryogenic temperatures) that allow us to optically resolve the magnetic sublevels of the spins even when probing a large ensemble of many ions simultaneously. This enables us to directly polarize and probe the Cr4+ spins using straightforward optical techniques, which we then combine with coherent microwave excitation in order to characterize the dynamical properties of the ensemble. Significantly, these near-infrared emitters also possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained within the defects' zero-phonon lines. These characteristics make the Cr4+ ion system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials. In collaboration with

  3. Quantum spin transistor with a Heisenberg spin chain.

    PubMed

    Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T

    2016-10-10

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  4. AFTI/F-16 Spin chute close-up

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A close-up photo of the spin chute mounted on the rear fuselage of the AFTI F-16, a safety device designed to prevent the loss of aircraft in spin conditions. Under some circumstances, pilots cannot recover from spins using normal controls. It these instances, the spin chute is deployed, thus 'breaking' the spin and enabling the pilot to recover. The spin chute is held in a metal cylinder attached to the AFTI F-16 by four tubes, a structure strong enough to withstand the shock of the spin chute opening. Unlike the air probe in the last photo, spin chutes are not standard equipment on research or prototype aircraft but are commonly attached expressly for actual spin tests. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This

  5. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    NASA Astrophysics Data System (ADS)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  6. Spin filter and spin valve in ferromagnetic graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yu, E-mail: kwungyusung@gmail.com; Dai, Gang; Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang 621999

    2015-06-01

    We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spinmore » filter can operate at higher temperature than the spin valve.« less

  7. Low-Virtuality Leptoproduction of Open-Charm as a Probe of the Gluon Sivers Function

    NASA Astrophysics Data System (ADS)

    Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha

    2018-05-01

    We propose low-virtuality leptoproduction of open-charm, p^\\uparrow l→ D^0+X, as a probe of the gluon Sivers function (GSF). At leading-order, this process directly probes the gluon content of the proton, making detection of a trasverse single-spin asymmetry in the process a clear indication of a non-zero GSF. Considering the kinematics of the proposed future Electron-Ion Collider, we present predictions for asymmetry using fits of the GSF available in literature. We also study the asymmetry at the level of muons produced in D-meson decays and find that the asymmetry is preserved therein as well.

  8. Manipulating and probing the polarisation of a methyl tunnelling system by field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Abu-Khumra, Sabah M. M.; Aibout, Abdellah; Horsewill, Anthony J.

    2017-02-01

    In NMR the polarisation of the Zeeman system may be routinely probed and manipulated by applying resonant rf pulses. As with spin-1/2 nuclei, at low temperature the quantum tunnelling states of a methyl rotor are characterised by two energy levels and it is interesting to consider how these tunnelling states might be probed and manipulated in an analogous way to nuclear spins in NMR. In this paper experimental procedures based on magnetic field-cycling NMR are described where, by irradiating methyl tunnelling sidebands, the polarisations of the methyl tunnelling systems are measured and manipulated in a prescribed fashion. At the heart of the technique is a phenomenon that is closely analogous to dynamic nuclear polarisation and the solid effect where forbidden transitions mediate polarisation transfer between 1H Zeeman and methyl tunnelling systems. Depending on the irradiated sideband, both positive and negative polarisations of the tunnelling system are achieved, the latter corresponding to population inversion and negative tunnelling temperatures. The transition mechanics are investigated through a series of experiments and a theoretical model is presented that provides good quantitative agreement.

  9. An MR/MRI compatible core holder with the RF probe immersed in the confining fluid

    NASA Astrophysics Data System (ADS)

    Shakerian, M.; Balcom, B. J.

    2018-01-01

    An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1H and 19F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF6 was imaged as a high pressure gas and as a supercritical fluid.

  10. An MR/MRI compatible core holder with the RF probe immersed in the confining fluid.

    PubMed

    Shakerian, M; Balcom, B J

    2018-01-01

    An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1 H and 19 F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF 6 was imaged as a high pressure gas and as a supercritical fluid. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Robust spin-current injection in lateral spin valves with two-terminal Co2FeSi spin injectors

    NASA Astrophysics Data System (ADS)

    Oki, S.; Kurokawa, T.; Honda, S.; Yamada, S.; Kanashima, T.; Itoh, H.; Hamaya, K.

    2017-05-01

    We demonstrate generation and detection of pure spin currents by combining a two-terminal spin-injection technique and Co2FeSi (CFS) spin injectors in lateral spin valves (LSVs). We find that the two-terminal spin injection with CFS has the robust dependence of the nonlocal spin signals on the applied bias currents, markedly superior to the four-terminal spin injection with permalloy reported previously. In our LSVs, since the spin transfer torque from one CFS injector to another CFS one is large, the nonlocal magnetoresistance with respect to applied magnetic fields shows large asymmetry in high bias-current conditions. For utilizing multi-terminal spin injection with CFS as a method for magnetization reversals, the terminal arrangement of CFS spin injectors should be taken into account.

  12. Angular dependence of spin-orbit spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurélien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-04-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  13. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  14. Thermally Generated Spin Signals in a Nondegenerate Silicon Spin Valve

    NASA Astrophysics Data System (ADS)

    Yamashita, Naoto; Ando, Yuichiro; Koike, Hayato; Miwa, Shinji; Suzuki, Yoshishige; Shiraishi, Masashi

    2018-05-01

    Thermally generated spin signals are observed in a nondegenerate Si spin valve. The spin-dependent Seebeck effect is used for thermal spin-signal generation. A thermal gradient of about 200 mK at the interface of Fe and Si enables the generation of a spin voltage of 8 μ V at room temperature. A simple expansion of the conventional spin-drift-diffusion model that takes into account the spin-dependent Seebeck effect shows that semiconductor materials are more promising for thermal spin-signal generation comparing than metallic materials, and thus enable efficient heat recycling in semiconductor spin devices.

  15. Spin resonance and spin fluctuations in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pokrovsky, V. L.

    2017-02-01

    This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the

  16. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  17. Noise in tunneling spin current across coupled quantum spin chains

    NASA Astrophysics Data System (ADS)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  18. When measured spin polarization is not spin polarization

    NASA Astrophysics Data System (ADS)

    Dowben, P. A.; Wu, Ning; Binek, Christian

    2011-05-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO2 and Cr2O3 illustrate some of the complications which hinders comparisons of spin polarization values.

  19. Transmission through a potential barrier in Luttinger liquids with a topological spin gap

    NASA Astrophysics Data System (ADS)

    Kainaris, Nikolaos; Carr, Sam T.; Mirlin, Alexander D.

    2018-03-01

    We study theoretically the transport of the one-dimensional single-channel interacting electron gas through a strong potential barrier in the parameter regime where the spin sector of the low-energy theory is gapped by interaction (Luther-Emery liquid). There are two distinct phases of this nature, of which one is of particular interest as it exhibits nontrivial interaction-induced topological properties. Focusing on this phase and using bosonization and an expansion in the tunneling strength we calculate the conductance through the barrier as a function of the temperature as well as the local density of states (LDOS) at the barrier. Our main result concerns the mechanism of bound-state-mediated tunneling. The characteristic feature of the topological phase is the emergence of protected zero-energy bound states with fractional spin located at the impurity position. By flipping this fractional spin, single electrons can tunnel across the impurity even though the bulk spectrum for spin excitations is gapped. This results in a finite LDOS below the bulk gap and in a nonmonotonic behavior of the conductance. The system represents an important physical example of an interacting symmetry-protected topological phase, which combines features of a topological spin insulator and a topological charge metal, in which the topology can be probed by measuring transport properties.

  20. Radical production from the interaction of ozone and PUFA as demonstrated by electron spin resonance spin-trapping techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, W.A.; Prier, D.G.; Church, D.F.

    1981-02-01

    There is considerable evidence that indicates that a fraction of the damage caused by ozone to cellular systems involves radical-mediated reactions. The most direct method for probing the mechanism by which ozone reacts with target molecules such as polyunsaturated fatty acids involves the use of electron spin resonance. In 1968, Goldstein et al. reported that ESR signals were observed when 40 ppM ozone in air is bubbled through linoleic acid. We have repeated this experiment and have performed several experiments modified from this design; in none of these do we observe ESR signals. We have studied the reaction of ozonemore » with PUFA at -78/sup 0/C using spin traps. Spin traps themselves react with ozone, but the following protocol avoids that reaction. (1) Ozone in air or oxygen-free ozone is allowed to bubble through the sample in Freon-11 in an ESR tube at -78/sup 0/C; no ESR absorption is observed. (2) Unreacted ozone is flushed out with argon or nitrogen. (3) The spin trap in Freon-11 is added to give a 0.1 M solution, still at -78/sup 0/C; no ESR signal is observed. (4) The tube is allowed to warm slowly. At about -45/sup 0/C, the ESR spectra of spin adducts appear. Using this method with methyl linoleate we observe spin adducts of alkoxy radicals and also a signal that is consistent with a carbon radical with one ..cap alpha..-H. We hypothesize that an intermediate is formed from the reaction of ozone with PUFA that is stable at -78/sup 0/Cbut decomposes to form radicals at about -45/sup 0/C. We tentatively identify the intermediate as a trioxide on the basis of analogies and its temperature profile for decomposition to radicals. It appears reasonable to suggest that the reaction(s) responsible for the production of radicals under these low-temperature conditions also occurs at room temperature. Although the low-temperature intermediate cannot be observed at ambient temperatures, radicals from it could be responsible for the effects on autoxidation that

  1. Spin asymmetries for vector boson production in polarized p + p collisions

    DOE PAGES

    Huang, Jin; Kang, Zhong-Bo; Vitev, Ivan; ...

    2016-01-28

    We study the cross section for vector boson (W ±/Z 0/γ more » $$\\star$$) production in polarized nucleon-nucleon collisions for low transverse momentum of the observed vector boson. For the case where one measures the transverse momentum and azimuthal angle of the vector bosons, we present the cross sections and the associated spin asymmetries in terms of transverse momentum dependent parton distribution functions (TMDs) at tree level within the TMD factorization formalism. To assess the feasibility of experimental measurements, we estimate the spin asymmetries forW ±/Z 0 boson production in polarized proton-proton collisions at the Relativistic Heavy Ion Collider by using current knowledge of the relevant TMDs. Here, we find that some of these asymmetries can be sizable if the suppression effect from TMD evolution is not too strong. The W program at RHIC can, thus, test and constrain spin theory by providing unique information on the universality properties of TMDs, TMD evolution, and the nucleon structure. For example, the single transverse spin asymmetries could be used to probe the well-known Sivers function f$$⊥q\\atop{1T}$$, as well as the transversal helicity distribution g$$q\\atop{1T}$$ via the parity-violating nature of W production.« less

  2. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  3. Spin Relaxation and Manipulation in Spin-orbit Qubits

    NASA Astrophysics Data System (ADS)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  4. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    PubMed Central

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  5. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto

    2017-06-01

    Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.

  6. Spin temperature concept verified by optical magnetometry of nuclear spins

    NASA Astrophysics Data System (ADS)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  7. Observation of Ultrafast Magnon Dynamics in Antiferromagnetic Nickel Oxide by Optical Pump-Probe and Terahertz Time-Domain Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kohmoto, T.; Moriyasu, T.; Wakabayashi, S.; Jinn, H.; Takahara, M.; Kakita, K.

    2018-01-01

    We have studied the ultrafast magnon dynamics in an antiferromagnetic 3d-transition-metal monoxide, nickel oxide (NiO), using optical pump-probe spectroscopy and terahertz time-domain spectroscopy (THz-TDS). THz damped magnon oscillations were observed in the Faraday rotation signal and in the transmitted THz electric field via optical pump-probe spectroscopy and THz-TDS, respectively. The magnon signals were observed in both the optical pump-probe spectroscopy and THz-TDS experiments, which shows that both Raman- and infrared-active modes are included in the NiO magnon modes. The magnon relaxation rate observed using THz-TDS was found to be almost constant up to the Néel temperature T N (= 523 K) and to increase abruptly near that temperature. This shows that temperature-independent spin-spin relaxation dominates up to T N . In our experiment, softening of the magnon frequency near T N was clearly observed. This result shows that the optical pump-probe spectroscopy and THz-TDS have high frequency resolution and a high signal to noise ratio in the THz region. We discuss the observed temperature dependence of the magnon frequencies using three different molecular field theories. The experimental results suggest that the biquadratic contribution of the exchange interaction plays an important role in the temperature dependence of the sublattice magnetization and the magnon frequency in cubic antiferromagnetic oxides.

  8. Electronic spin transport in gate-tunable black phosphorus spin valves

    NASA Astrophysics Data System (ADS)

    Liu, Jiawei; Avsar, Ahmet; Tan, Jun You; Oezyilmaz, Barbaros

    High charge mobility, the electric field effect and small spin-orbit coupling make semiconducting black phosphorus (BP) a promising material for spintronics device applications requiring long spin distance spin communication with all rectification and amplification actions. Towards this, we study the all electrical spin injection, transport and detection under non-local spin valve geometry in fully encapsulated ultra-thin BP devices. We observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. These values are an order of magnitude higher than what have been measured in typical graphene spin valve devices. Moreover, the spin transport depends strongly on charge carrier concentration and can be manipulated in a spin transistor-like manner by controlling electric field. This behaviour persists even at room temperature. Finally, we will show that similar to its electrical and optical properties, spin transport property is also strongly anisotropic.

  9. Spin-Mechatronics

    NASA Astrophysics Data System (ADS)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  10. Bulk electron spin polarization generated by the spin Hall current

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  11. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  12. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  13. Tunable nonequilibrium dynamics of field quenches in spin ice

    PubMed Central

    Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L.

    2014-01-01

    We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. PMID:24379372

  14. Moving THEMIS to a spin table for testing at Astrotech

    NASA Image and Video Library

    2007-01-12

    At Astrotech Space Operations, workers look over the integrated THEMIS spacecraft before spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.

  15. Moving THEMIS to a spin table for testing at Astrotech

    NASA Image and Video Library

    2007-01-12

    At Astrotech Space Operations, workers prepare the integrated THEMIS spacecraft for spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.

  16. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  17. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    PubMed Central

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  18. Strong excitation of surface and bulk spin waves in yttrium iron garnet placed in a split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-02-01

    This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.

  19. Spin manipulation and relaxation in spin-orbit qubits

    NASA Astrophysics Data System (ADS)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  20. Fluorinated Paramagnetic Complexes: Sensitive and Responsive Probes for Magnetic Resonance Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Peterson, Katie L.; Srivastava, Kriti; Pierre, Valérie C.

    2018-05-01

    Fluorine magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) of chemical and physiological processes is becoming more widespread. The strength of this technique comes from the negligible background signal in in vivo 19F MRI and the large chemical shift window of 19F that enables it to image concomitantly more than one marker. These same advantages have also been successfully exploited in the design of responsive 19F probes. Part of the recent growth of this technique can be attributed to novel designs of 19F probes with improved imaging parameters due to the incorporation of paramagnetic metal ions. In this review, we provide a description of the theories and strategies that have been employed successfully to improve the sensitivity of 19F probes with paramagnetic metal ions. The Bloch-Wangsness-Redfield theory accurately predicts how molecular parameters such as distance, geometry, rotational correlation times, as well as the nature, oxidation state, and spin state of the metal ion affect the sensitivity of the fluorine-based probes. The principles governing the design of responsive 19F probes are subsequently described in a “how to” guide format. Examples of such probes and their advantages and disadvantages are highlighted through a synopsis of the literature.

  1. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    PubMed

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing

    PubMed Central

    A. Abdel‐Rahman, Engy; Mahmoud, Ali M.; Khalifa, Abdulrahman M.

    2016-01-01

    Abstract Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site‐directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. PMID:26801204

  3. Optical Polarization of Nuclear Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Falk, Abram L.; Klimov, Paul V.; Ivády, Viktor; Szász, Krisztián; Christle, David J.; Koehl, William F.; Gali, Ádám; Awschalom, David D.

    2015-06-01

    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4 H - and 6 H -SiC. The 9 9 % ±1 % degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 μ K . By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

  4. Wurtzite spin lasers

    NASA Astrophysics Data System (ADS)

    Faria Junior, Paulo E.; Xu, Gaofeng; Chen, Yang-Fang; Sipahi, Guilherme M.; Žutić, Igor

    2017-03-01

    Semiconductor lasers are strongly altered by adding spin-polarized carriers. Such spin lasers could overcome many limitations of their conventional (spin-unpolarized) counterparts. While the vast majority of experiments in spin lasers employed zinc-blende semiconductors, the room-temperature electrical manipulation was first demonstrated in wurtzite GaN-based lasers. However, the underlying theoretical description of wurtzite spin lasers is still missing. To address this situation, focusing on (In,Ga)N-based wurtzite quantum wells, we develop a theoretical framework in which the calculated microscopic spin-dependent gain is combined with a simple rate equation model. A small spin-orbit coupling in these wurtzites supports simultaneous spin polarizations of electrons and holes, providing unexplored opportunities to control spin lasers. For example, the gain asymmetry, as one of the key figures of merit related to spin amplification, can change the sign by simply increasing the carrier density. The lasing threshold reduction has a nonmonotonic dependence on electron-spin polarization, even for a nonvanishing hole spin polarization.

  5. Squeezed spin states: Squeezing the spin uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kitagawa, Masahiro; Ueda, Masahito

    1993-01-01

    The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.

  6. Using RIXS to uncover elementary charge and spin excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Chunjing; Wohlfeld, Krzysztof; Wang, Yao

    2016-05-13

    Despite significant progress in resonant inelastic x-ray scattering (RIXS) experiments on cuprates at the Cu L-edge, a theoretical understanding of the cross section remains incomplete in terms of elementary excitations and the connection to both charge and spin structure factors. Here, we use state-of-the-art, unbiased numerical calculations to study the low-energy excitations probed by RIXS in the Hubbard model, relevant to the cuprates. The results highlight the importance of scattering geometry, in particular, both the incident and scattered x-ray photon polarization, and they demonstrate that on a qualitative level the RIXS spectral shape in the cross-polarized channel approximates that ofmore » the spin dynamical structure factor. Furthermore, in the parallel-polarized channel, the complexity of the RIXS process beyond a simple two-particle response complicates the analysis and demonstrates that approximations and expansions that attempt to relate RIXS to less complex correlation functions cannot reproduce the full diversity of RIXS spectral features.« less

  7. Building Complex Kondo Impurities by Manipulating Entangled Spin Chains.

    PubMed

    Choi, Deung-Jang; Robles, Roberto; Yan, Shichao; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Gauyacq, Jean-Pierre; Lorente, Nicolás; Ternes, Markus; Loth, Sebastian

    2017-10-11

    The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu 2 N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.

  8. Epitaxy of spin injectors and their application toward spin-polarized lasers

    NASA Astrophysics Data System (ADS)

    Holub, Michael A.

    Spintronics is an emerging; multidisciplinary field which examines the role of electron and nuclear spin in solid-state physics. Recent experiments suggest that the spin degree of freedom may be exploited to enhance the functionality of conventional semi conductor devices. Such endeavors require methods for efficient spin injection; spin transport, and spin detection in semiconductor heterostructures. This dissertation investigates the molecular-beam epitaxial growth and properties of ferromagnetic materials for electrical spin injection. Spin-injecting contacts are incorporated into prototype spintronic devices and their performance is examined. Two classes of materials may be used for spin injection into semiconductors: dilute magnetic semiconductor and ferromagnetic metals. The low-temperature growth and properties of (Al)Gal4nAs and In(Ga)MnAs epilayers and nanostructures are investigated, and a technique for the self-organized growth of Mn-doped InAs quantum dots is developed. The epitaxial growth of (Fe,MnAs)/(Al)GaAs Schottky tunnel barriers for electron spin injection is also investigated. The spin-injection efficiency of these contacts is assessed using a spin-valve or spin-polarized light-emitting diode. Lateral MnAs/GaAs spin-valves where Schottky tunnel barriers enable all-electrical spin injection and detection are grown, fabricated, and characterized. The Rowell criteria confirm that tunneling is the dominant, transport mechanism for the Schottky tunnel contacts. A peak magnetoresistance of 3.6% at 10 K and 1.1% at 125 K are observed for a 0.5 pin channel length spin-valve. Measurements using non-local spin-valves and other control devices verify that spurious contributions from anisotropic magnetoresistance and local Hall effects are negligible. Spin-polarized lasers offer inherent polarization control, reduced chirp, and lower threshold currents and are expected to outperform their charge-based counterparts. Initial efforts to realize a spin

  9. Lattice spin models for non-Abelian chiral spin liquids

    DOE PAGES

    Lecheminant, P.; Tsvelik, A. M.

    2017-04-26

    Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.

  10. Effect of hyperfine-induced spin mixing on the defect-enabled spin blockade and spin filtering in GaNAs

    NASA Astrophysics Data System (ADS)

    Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.

    2013-03-01

    The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.

  11. Spin transfer and spin pumping in disordered normal metal-antiferromagnetic insulator systems

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, Sverre A.; Brataas, Arne

    2018-02-01

    We consider an antiferromagnetic insulator that is in contact with a metal. Spin accumulation in the metal can induce spin-transfer torques on the staggered field and on the magnetization in the antiferromagnet. These torques relate to spin pumping: the emission of spin currents into the metal by a precessing antiferromagnet. We investigate how the various components of the spin-transfer torque are affected by spin-independent disorder and spin-flip scattering in the metal. Spin-conserving disorder reduces the coupling between the spins in the antiferromagnet and the itinerant spins in the metal in a manner similar to Ohm's law. Spin-flip scattering leads to spin-memory loss with a reduced spin-transfer torque. We discuss the concept of a staggered spin current and argue that it is not a conserved quantity. Away from the interface, the staggered spin current varies around a 0 mean in an irregular manner. A network model explains the rapid decay of the staggered spin current.

  12. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    NASA Astrophysics Data System (ADS)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  13. Exploring spin-3 /2 dark matter with effective Higgs couplings

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Feng; He, Xiao-Gang; Tandean, Jusak

    2017-10-01

    We study an economical model of weakly interacting massive particle dark matter (DM) which has spin 3 /2 and interacts with the 125 GeV Higgs boson via effective scalar and pseudoscalar operators. We apply constraints on the model from the relic density data, LHC measurements of the Higgs boson, and direct and indirect searches for DM, taking into account the effective nature of the DM-Higgs couplings. We show that this DM is currently viable in most of the mass region from about 58 GeV to 2.3 TeV and will be probed more stringently by ongoing and upcoming experiments. Nevertheless, the presence of the DM-Higgs pseudoscalar coupling could make parts of the model parameter space elusive from future tests. We find that important aspects of this scenario are quite similar to those of its more popular spin-1 /2 counterpart.

  14. Spin-orbital fluctuations in the paramagnetic Mott insulator (V1-xCrx)2O3

    NASA Astrophysics Data System (ADS)

    Leiner, Jonathan; Stone, Matthew; Lumsden, Mark; Bao, Wei; Broholm, Collin

    2015-03-01

    The phase diagram of rhombohedral V2O3 features several distinct strongly correlated phases as a function of doping, pressure and temperature. When doped with chromium for 180 K probed the excitation spectrum of (V0.96Cr0.04)2O3 in the PI phase and in the monoclinic commensurate anti-ferromagnet for T <180 K. An effective exchange Hamiltonian that accounts for the low T spin waves indicates alternating FM and AFM interactions for nearest neighbor spin pairs that are equivalent in the PI. We argue that the corresponding spin-orbital fluctuations are responsible for the extremely short-range dynamic spin correlations that we document in the PI phase. Research at the Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Research was also supported by ORNL LDRD funding.

  15. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    NASA Astrophysics Data System (ADS)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  16. Tunable spin splitting and spin lifetime in polar WSTe monolayer

    NASA Astrophysics Data System (ADS)

    Adhib Ulil Absor, Moh.; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo

    2018-04-01

    The established spin splitting with out-of-plane Zeeman spin polarizations in the monolayer (ML) of transition metal dichalcogenides (TMDs) is dictated by inversion symmetry breaking together with mirror symmetry in the surface plane. Here, by density functional theory calculations, we find that mirror symmetry breaking in the polar WSTe ML leads to large spin splitting exhibiting in-plane Rashba spin polarizations. We also find that the interplay between the out-of-plane Zeeman- and in-plane Rashba spin-polarized states sensitively affects the spin lifetime, which can be effectively controlled by in-plane strain. In addition, the tunability of spin splitting using an external electric field is also demonstrated. Our study clarifies that the use of in-plane strain and an external electric field is effective for tuning the spin splitting and spin lifetime of the polar WSTe ML; thus, it is useful for designing spintronic devices.

  17. Nuclear spin noise in the central spin model

    NASA Astrophysics Data System (ADS)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  18. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    NASA Astrophysics Data System (ADS)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  19. Spin transport study in a Rashba spin-orbit coupling system

    PubMed Central

    Mei, Fuhong; Zhang, Shan; Tang, Ning; Duan, Junxi; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2014-01-01

    One of the most important topics in spintronics is spin transport. In this work, spin transport properties of two-dimensional electron gas in AlxGa1-xN/GaN heterostructure were studied by helicity-dependent photocurrent measurements at room temperature. Spin-related photocurrent was detected under normal incidence of a circularly polarized laser with a Gaussian distribution. On one hand, spin polarized electrons excited by the laser generate a diffusive spin polarization current, which leads to a vortex charge current as a result of anomalous circular photogalvanic effect. On the other hand, photo-induced spin polarized electrons driven by a longitudinal electric field give rise to a transverse current via anomalous Hall Effect. Both of these effects originated from the Rashba spin-orbit coupling. By analyzing spin-related photocurrent varied with laser position, the contributions of the two effects were differentiated and the ratio of the spin diffusion coefficient to photo-induced anomalous spin Hall mobility Ds/μs = 0.08 V was extracted at room temperature. PMID:24504193

  20. Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Willems, F.; Smeenk, C. T. L.; Zhavoronkov, N.; Kornilov, O.; Radu, I.; Schmidbauer, M.; Hanke, M.; von Korff Schmising, C.; Vrakking, M. J. J.; Eisebitt, S.

    2015-12-01

    Magnetic circular dichroism in the extreme ultraviolet (XUV) spectral range is a powerful technique for element-specific probing of magnetization in multicomponent magnetic alloys and multilayers. We combine a high-harmonic generation source with a λ /4 phase shifter to obtain circularly polarized XUV femtosecond pulses for ultrafast magnetization studies. We report on simultaneously measured resonant magnetic circular dichroism (MCD) of Co and Ni at their respective M2 ,3 edges and of Pt at its O edge, originating from interface magnetism. We present a time-resolved MCD absorption measurement of a thin magnetic Pt/Co/Pt film, showing simultaneous demagnetization of Co and Pt on a femtosecond time scale.

  1. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor

    DOE PAGES

    Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas; ...

    2018-02-09

    Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less

  2. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas

    Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less

  3. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxu; Peng, Bin; Han, Fangbin; Wang, Qiuru; Soh, Wee Tee; Ong, Chong Kim; Zhang, Wanli

    2016-03-01

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  4. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Pollack, James B.; Seiff, Alvin

    1998-09-01

    During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.

  5. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  6. Probe Knots and Hopf Insulators with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Wang, Sheng-Tao; Sun, Kai; Duan, L.-M.

    2018-01-01

    Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here we find that knotted structures also exist in a peculiar class of three-dimensional topological insulators—the Hopf insulators. In particular, we demonstrate that the momentum-space spin textures of Hopf insulators are twisted in a nontrivial way, which implies the presence of various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in Hopf insulators, which may have potential applications in spintronics and quantum information processing. D.L.D., S.T.W. and L.M.D. are supported by the ARL, the IARPA LogiQ program, and the AFOSR MURI program, and supported by Tsinghua University for their visits. K.S. acknowledges the support from NSF under Grant No. PHY1402971. D.L.D. is also supported by JQI-NSF-PFC and LPS-MPO-CMTC at the final stage of this paper.

  7. Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation

    PubMed Central

    Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre

    2015-01-01

    Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high—temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T3 dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s—wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s—wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry. PMID:26286229

  8. Generalized Elliott-Yafet spin-relaxation time for arbitrary spin mixing

    NASA Astrophysics Data System (ADS)

    Vollmar, Svenja; Hilton, David J.; Schneider, Hans Christian

    2017-08-01

    We extend our recent result for the spin-relaxation time due to acoustic electron-phonon scattering in degenerate bands with spin mixing [New J. Phys. 18, 023012 (2016), 10.1088/1367-2630/18/2/023012] to include interactions with optical phonons, and present a numerical evaluation of the spin-relaxation time for intraband hole-phonon scattering in the heavy-hole (HH) bands of bulk GaAs. Comparing our computed spin-relaxation times to the conventional Elliott-Yafet result quantitatively demonstrates that the latter underestimates the spin-relaxation time because it does not correctly describe how electron-phonon interactions change the (vector) spin expectation value of the single-particle states. We show that the conventional Elliott-Yafet spin relaxation time is a special case of our result for weak spin mixing.

  9. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjustmore » the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.« less

  10. All-atom molecular dynamics simulations of spin labelled double and single-strand DNA for EPR studies.

    PubMed

    Prior, C; Danilāne, L; Oganesyan, V S

    2018-05-16

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of electron paramagnetic resonance (EPR) spectra of spin labelled DNA. Models for two structurally different DNA spin probes with either the rigid or flexible position of the nitroxide group in the base pair, employed in experimental studies previously, have been developed. By the application of the combined MD-EPR simulation methodology we aimed at the following. Firstly, to provide a test bed against a sensitive spectroscopic technique for the recently developed improved version of the parmbsc1 force field for MD modelling of DNA. The predicted EPR spectra show good agreement with the experimental ones available from the literature, thus confirming the accuracy of the currently employed DNA force fields. Secondly, to provide a quantitative interpretation of the motional contributions into the dynamics of spin probes in both duplex and single-strand DNA fragments and to analyse their perturbing effects on the local DNA structure. Finally, a combination of MD and EPR allowed us to test the validity of the application of the Model-Free (M-F) approach coupled with the partial averaging of magnetic tensors to the simulation of EPR spectra of DNA systems by comparing the resultant EPR spectra with those simulated directly from MD trajectories. The advantage of the M-F based EPR simulation approach over the direct propagation techniques is that it requires motional and order parameters that can be calculated from shorter MD trajectories. The reported MD-EPR methodology is transferable to the prediction and interpretation of EPR spectra of higher order DNA structures with novel types of spin labels.

  11. Frapid: achieving full automation of FRAP for chemical probe validation

    PubMed Central

    Yapp, Clarence; Rogers, Catherine; Savitsky, Pavel; Philpott, Martin; Müller, Susanne

    2016-01-01

    Fluorescence Recovery After Photobleaching (FRAP) is an established method for validating chemical probes against the chromatin reading bromodomains, but so far requires constant human supervision. Here, we present Frapid, an automated open source code implementation of FRAP that fully handles cell identification through fuzzy logic analysis, drug dispensing with a custom-built fluid handler, image acquisition & analysis, and reporting. We successfully tested Frapid on 3 bromodomains as well as on spindlin1 (SPIN1), a methyl lysine binder, for the first time. PMID:26977352

  12. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  13. Signatures of spin-orbital states of t2g 2 system in optical conductivity: R VO3 (R =Y and La)

    NASA Astrophysics Data System (ADS)

    Kim, Minjae

    2018-04-01

    We investigate signatures of the spin and orbital states of R VO3 (R =Y and La) in optical conductivity using density functional theory plus dynamical mean-field theory (DFT+DMFT). From the assignment of multiplet state configurations to optical transitions, the DFT+DMFT reproduces experimental temperature-dependent evolutions of optical conductivity for both YVO3 and LaVO3. We also show that the optical conductivity is a useful quantity to probe the evolution of the orbital state even in the absence of spin order. The result provides a reference to investigate the spin and orbital states of t2g 2 vanadate systems, which is an important issue for both fundamental physics on spin and orbital states and applications of vanadates by means of orbital state control.

  14. How can we probe the atom mass currents induced by synthetic gauge fields?

    NASA Astrophysics Data System (ADS)

    Paramekanti, Arun; Killi, Matthew; Trotzky, Stefan

    2013-05-01

    Ultracold atomic fermions and bosons in an optical lattice can have quantum ground states which support equilibrium currents in the presence of synthetic magnetic fields or spin orbit coupling. As a tool to uncover these mass currents, we propose using an anisotropic quantum quench of the optical lattice which dynamically converts the current patterns into measurable density patterns. Using analytical calculations and numerical simulations, we show that this scheme can probe diverse equilibrium bulk current patterns in Bose superfluids and Fermi fluids induced by synthetic magnetic fields, as well as detect the chiral edge currents in topological states of atomic matter such as quantum Hall and quantum spin Hall insulators. This work is supported by NSERC of Canada and the Canadian Institute for Advanced Research.

  15. Design of planar microcoil-based NMR probe ensuring high SNR

    NASA Astrophysics Data System (ADS)

    Ali, Zishan; Poenar, D. P.; Aditya, Sheel

    2017-09-01

    A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF) generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR) of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η ) are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  16. Excitation of propagating spin waves by pure spin current

    NASA Astrophysics Data System (ADS)

    Demokritov, Sergej

    Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.

  17. Spin glass model for cell reprogramming

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Castillo, Horacio E.

    2014-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor state to another attractor state. We use a simple model based on spin glass theory that can construct a simulated epigenetic landscape starting from the experimental genomic data. We modify the model to incorporate experimental reprogramming protocols. Our simulations successfully reproduce several reprogramming experiments. We probe the robustness of the results against random changes in the model, explore the importance of asymmetric interactions between transcription factors and study the importance of histone modification errors in reprogramming.

  18. A Probabilistic Model of Spin and Spin Measurements

    NASA Astrophysics Data System (ADS)

    Niehaus, Arend

    2016-01-01

    Several theoretical publications on the Dirac equation published during the last decades have shown that, an interpretation is possible, which ascribes the origin of electron spin and magnetic moment to an autonomous circular motion of the point-like charged particle around a fixed centre. In more recent publications an extension of the original so called "Zitterbewegung Interpretation" of quantum mechanics was suggested, in which the spin results from an average of instantaneous spin vectors over a Zitterbewegung period. We argue that, the corresponding autonomous motion of the electron should, if it is real, determine non-relativistic spin measurements. Such a direct connection with the established formal quantum mechanical description of spin measurements, into which spin is introduced as a "non-classical" quantity has, to our knowledge, not been reported. In the present work we show that, under certain "model assumptions" concerning the proposed autonomous motion, results of spin measurements, including measurements of angular correlations in singlet systems, can indeed be correctly described using classical probabilities. The success of the model is evidence for the "reality" of the assumed autonomous motion. The resulting model violates the Bell—inequalities to the same extent as quantum mechanics.

  19. Measuring the Spin Rate Change of V455 And

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gaensicke, Boris T; Hermes, JJ

    2014-06-01

    V455 And (HS2331+3905) is an unusual cataclysmic variable that displays both an orbital (81 min) and a spin (67s) period, thus classifying it as an Intermediate Polar. The magnetic field of this interacting white dwarf channels the accretion stream from the secondary towards the white dwarf poles, which become heated, resulting in the visibility of both the spin period and its harmonic in the lightcurves of V455 And. Our group has been observing this object since its discovery. In 2007, V455 And underwent a large amplitude dwarf nova outburst. This provided an unique opportunity to gauge the overall angular momentum gain due to its long-term accretion as well as its 2007 outburst. Using these data that span the timebase of a decade from 2003 to 2013, we constrain the rate of change of its spin period with time to be dP/dt = (-6.8 +/- 4.8) 10^{-15} s/s for the spin period of 67.61970396 +/- 0.00000024s. We were able to fit the pre- and post-outburst data together because we did not find any evidence for a significant discontinuity in the O-C diagram due to the 2007 outburst. This implies that the magnetic field couples the angular momentum gain to the white dwarf interior. Our next goal is to constrain the angular momentum evolution of a non-magnetic accreting white dwarf to probe how the gain in angular momentum due to accretion is transferred to the envelope and core of the white dwarf.

  20. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  1. Outer planet mission guidance and navigation for spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Russell, R. K.; Ellis, J.

    1974-01-01

    The orbit determination accuracies, maneuver results, and navigation system specification for spinning Pioneer planetary probe missions are analyzed to aid in determining the feasibility of deploying probes into the atmospheres of the outer planets. Radio-only navigation suffices for a direct Saturn mission and the Jupiter flyby of a Jupiter/Uranus mission. Saturn ephemeris errors (1000 km) plus rigid entry constraints at Uranus result in very high velocity requirements (140 m/sec) on the final legs of the Saturn/Uranus and Jupiter/Uranus missions if only Earth-based tracking is employed. The capabilities of a conceptual V-slit sensor are assessed to supplement radio tracking by star/satellite observations. By processing the optical measurements with a batch filter, entry conditions at Uranus can be controlled to acceptable mission-defined levels (+ or - 3 deg) and the Saturn-Uranus leg velocity requirements can be reduced by a factor of 6 (from 139 to 23 m/sec) if nominal specified accuracies of the sensor can be realized.

  2. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  3. Dynamical spin accumulation in large-spin magnetic molecules

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  4. Hardy's argument and successive spin-s measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahanj, Ali

    2010-07-15

    We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)){sup 4s}, which is more than in the spatial case.

  5. Spin caloric effects in antiferromagnets assisted by an external spin current

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Yamamoto, Kei; Sinova, Jairo

    2018-07-01

    Searching for novel spin caloric effects in antiferromagnets, we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect—generation of a heat flux by spin accumulation—in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related to the spin-current induced splitting of the relaxation times of the magnons with the opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature larger than the energy of the low-frequency magnons, this force is much larger than the force caused by direct spin transfer between the spin current and the domain wall. We also demonstrate that the external spin current can induce the magnon spin Seebeck effect. The corresponding Seebeck coefficient is controlled by the current density. These spin-current assisted caloric effects open new ways for the manipulation of the magnetic states in antiferromagnets.

  6. Large spin current injection in nano-pillar-based lateral spin valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization bymore » the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.« less

  7. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  8. 1D spin chain of Cu2+ in Sr3CuPtO6 with possible Haldane physics

    NASA Astrophysics Data System (ADS)

    Leiner, Jonathan; Oh, Joosung; Kolesnikov, Alexander; Stone, Matthew; Le, Manh Duc; Cheong, Sang-Wook; Park, Je-Geun

    Antiferromagnetic spin chain systems have attracted considerable attention since the discovery of fractional spinon excitations in spin-half chain systems and Haldane gap phases in spin-one chain systems. It has been reported from bulk susceptibility and heat capacity measurements that the magnetic Cu2+ ions in Sr3CuPtO6 exhibit S=1/2 Heisenberg spin chain behavior with a substantial amount of AFM interchain coupling. Using the modern time-of-flight inelastic neutron scattering spectrometer SEQUOIA at the SNS, we have probed the magnetic excitation spectrum for a polycrystalline sample of Sr3CuPtO6. Modeling with linear spin wave theory accounts for the major features of the spinwave spectra, including a nondispersive intense magnon band at 8meV. The magnetic excitations broaden considerably as temperature is increased, persisting up to above 100K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which we argue is consistent with Haldane physics in an ideal uniform S=1/2 spin-chain system. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1). Research at the Spallation Neutron Source was sponsored by the Scientific User Facilities Division, US Department of Energy.

  9. Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Ping; Zhang, Yu-Ying; Wang, Qiang; Nie, Yi-Hang

    2016-11-01

    We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spin-orbital interaction (RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green’s function method in the linear response regime. Under the appropriate configuration of magnetic flux phase and RSOI phase, the spin figure of merit can be enhanced and is even larger than the charge figure of merit. In particular, the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs. For some specific configuration of the two phases, the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero, which is useful in realizing the thermal spin battery and inducing a pure spin current in the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274208 and 11447170).

  10. Spin transport across antiferromagnets induced by the spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Cramer, Joel; Ritzmann, Ulrike; Dong, Bo-Wen; Jaiswal, Samridh; Qiu, Zhiyong; Saitoh, Eiji; Nowak, Ulrich; Kläui, Mathias

    2018-04-01

    For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport across an antiferromagnet in Y3Fe5O12 |Ir20Mn80|Pt heterostructures. We determine the spin transport signals for spin currents generated in the Y3Fe5O12 by the spin Seebeck effect and compare to measurements of the spin Hall magnetoresistance in the heterostructure stack. By means of temperature-dependent and thickness-dependent measurements, we deduce conclusions on the spin transport mechanism across Ir20Mn80 and furthermore correlate it to its paramagnetic-antiferromagnetic phase transition.

  11. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    PubMed

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  12. Indirect consequences of exciplex states on the phosphorescence lifetime of phenazine-based 1,2,3-triazole luminescent probes.

    PubMed

    Costa, Bárbara B A; Jardim, Guilherme A M; Santos, Paloma L; Calado, Hállen D R; Monkman, Andrew P; Dias, Fernando B; da Silva Júnior, Eufrânio N; Cury, Luiz A

    2017-02-01

    The optical properties of phenazine derivative probe solutions involving intersystem crossing from singlet to triplet states were investigated by time resolved spectroscopy. The room temperature phosphorescence emission presented different time responses when Cd 2+ ions were bound to the probe chemical structure. The complex exciplex formation observed to occur in this case was not directly responsible for the change in the phosphorescence lifetime. This was more influenced by the new molecular conformation and modified spin-orbit coupling imposed by the binding of the Cd 2+ ions to the phenazine molecules.

  13. Demonstration of the spin solar cell and spin photodiode effect

    PubMed Central

    Endres, B.; Ciorga, M.; Schmid, M.; Utz, M.; Bougeard, D.; Weiss, D.; Bayreuther, G.; Back, C.H.

    2013-01-01

    Spin injection and extraction are at the core of semiconductor spintronics. Electrical injection is one method of choice for the creation of a sizeable spin polarization in a semiconductor, requiring especially tailored tunnel or Schottky barriers. Alternatively, optical orientation can be used to generate spins in semiconductors with significant spin-orbit interaction, if optical selection rules are obeyed, typically by using circularly polarized light at a well-defined wavelength. Here we introduce a novel concept for spin injection/extraction that combines the principle of a solar cell with the creation of spin accumulation. We demonstrate that efficient optical spin injection can be achieved with unpolarized light by illuminating a p-n junction where the p-type region consists of a ferromagnet. The discovered mechanism opens the window for the optical generation of a sizeable spin accumulation also in semiconductors without direct band gap such as Si or Ge. PMID:23820766

  14. In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; Lupu, Florea; Silasi-Mansat, Robert; West, Melinda; Ramirez, Dario C; Gomez-Mejiba, Sandra E; Bonini, Marcelo G; Mason, Ronald P; Ehrenshaft, Marilyn; Hensley, Kenneth

    2013-10-01

    Free radicals associated with oxidative stress play a major role in amyotrophic lateral sclerosis (ALS). By combining immuno-spin trapping and molecular magnetic resonance imaging, in vivo trapped radical adducts were detected in the spinal cords of SOD1(G93A)-transgenic (Tg) mice, a model for ALS. For this study, the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) was administered (ip) over 5 days before administration (iv) of an anti-DMPO probe (anti-DMPO antibody covalently bound to an albumin-gadolinium-diethylenetriamine pentaacetic acid-biotin MRI contrast agent) to trap free radicals. MRI was used to detect the presence of the anti-DMPO radical adducts by a significant sustained increase in MR signal intensities (p < 0.05) or anti-DMPO probe concentrations measured from T₁ relaxations (p < 0.01). The biotin moiety of the anti-DMPO probe was targeted with fluorescence-labeled streptavidin to locate the probe in excised tissues. Negative controls included either Tg ALS mice initially administered saline rather than DMPO followed by the anti-DMPO probe or non-Tg mice initially administered DMPO and then the anti-DMPO probe. The anti-DMPO probe was found to bind to neurons via colocalization fluorescence microscopy. DMPO adducts were also confirmed in diseased/nondiseased tissues from animals administered DMPO. Apparent diffusion coefficients from diffusion-weighted images of spinal cords from Tg mice were significantly elevated (p < 0.001) compared to wild-type controls. This is the first report regarding the detection of in vivo trapped radical adducts in an ALS model. This novel, noninvasive, in vivo diagnostic method can be applied to investigate the involvement of free radical mechanisms in ALS rodent models. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Moving THEMIS to a spin table for testing at Astrotech

    NASA Image and Video Library

    2007-01-12

    In the Hazardous Processing Facility at Astrotech Space Operations, a worker checks data on the integrated THEMIS spacecraft sitting on the spin table. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.

  16. Rotational Invariance of the 2d Spin - Spin Correlation Function

    NASA Astrophysics Data System (ADS)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  17. Understanding the spin-driven polarizations in Bi MO3 (M = 3 d transition metals) multiferroics

    NASA Astrophysics Data System (ADS)

    Kc, Santosh; Lee, Jun Hee; Cooper, Valentino R.

    Bismuth ferrite (BiFeO3) , a promising multiferroic, stabilizes in a perovskite type rhombohedral crystal structure (space group R3c) at room temperature. Recently, it has been reported that in its ground state it possess a huge spin-driven polarization. To probe the underlying mechanism of this large spin-phonon response, we examine these couplings within other Bi based 3 d transition metal oxides Bi MO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) using density functional theory. Our results demonstrate that this large spin-driven polarization is a consequence of symmetry breaking due to competition between ferroelectric distortions and anti-ferrodistortive octahedral rotations. Furthermore, we find a strong dependence of these enhanced spin-driven polarizations on the crystal structure; with the rhombohedral phase having the largest spin-induced atomic distortions along [111]. These results give us significant insights into the magneto-electric coupling in these materials which is essential to the magnetic and electric field control of electric polarization and magnetization in multiferroic based devices. Research is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and the Office of Science Early Career Research Program (V.R.C) and used computational resources at NERSC.

  18. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  19. Dynamics of a localized spin excitation close to the spin-helix regime

    NASA Astrophysics Data System (ADS)

    Salis, Gian; Walser, Matthias; Altmann, Patrick; Reichl, Christian; Wegscheider, Werner

    2014-03-01

    The time evolution of a local spin excitation in a (001)-confined two-dimensional electron gas subjected to Rashba and Dresselhaus spin-orbit interactions of similar strength is investigated theoretically and compared with experimental data. Specifically, the consequences of a finite spatial extension of the initial spin polarization are studied for non-balanced Rashba and Dresselhaus terms and for finite cubic Dresselhaus spin-orbit interaction. We show that the initial out-of-plane spin polarization evolves into a helical spin pattern with a wave number that gradually approaches the value q0 of the persistent spin helix mode. In addition to an exponential decay of the spin polarization that is proportional to both the spin-orbit imbalance and the cubic Dresselhaus term, the finite width w of the spin excitation reduces the spin polarization by a factor that approaches exp(-q02w2 / 2) at longer times. This result bridges the gap between the formation of a long-lived helical spin mode and a spatially homogeneous spin decay described by the Dyakonov-Perel mechanism. This work is financially supported by NCCR QSIT.

  20. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    PubMed Central

    Levy, Miguel; Karki, Dolendra

    2017-01-01

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120