Sample records for vancomycin-resistant enterococcus faecium

  1. High-Level Fosfomycin Resistance in Vancomycin-Resistant Enterococcus faecium

    PubMed Central

    Guo, Yan; Tomich, Adam D.; McElheny, Christi L.; Cooper, Vaughn S.; Tait-Kamradt, Amelia; Wang, Minggui; Hu, Fupin; Rice, Louis B.; Sluis-Cremer, Nicolas

    2017-01-01

    Of 890 vancomycin-resistant Enterococcus faecium isolates obtained by rectal screening from patients in Pittsburgh, Pennsylvania, USA, 4 had MICs >1,024 μg/mL for fosfomycin. These isolates had a Cys119Asp substitution in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase. This substitution increased the fosfomycin MIC >4-fold and rendered this drug inactive in biochemical assays. PMID:29048285

  2. Role of Combination Antimicrobial Therapy for Vancomycin-Resistant Enterococcus faecium Infections: Review of the Current Evidence.

    PubMed

    Yim, Juwon; Smith, Jordan R; Rybak, Michael J

    2017-05-01

    Enterococcus species are the second most common cause of nosocomial infections in the United States and are particularly concerning in critically ill patients with preexisting comorbid conditions. Rising resistance to antimicrobials that were historically used as front-line agents for treatment of enterococcal infections, such as ampicillin, vancomycin, and aminoglycosides, further complicates the treatment of these infections. Of particular concern are Enterococcus faecium strains that are associated with the highest rate of vancomycin resistance. The introduction of antimicrobial agents with specific activity against vancomycin-resistant Enterococcus (VRE) faecium including daptomycin, linezolid, quinupristin-dalfopristin, and tigecycline did not completely resolve this clinical dilemma. In this review, the mechanisms of action and resistance to currently available anti-VRE antimicrobial agents including newer agents such as oritavancin and dalbavancin will be presented. In addition, novel combination therapies including β-lactams and fosfomycin, and the promising results from in vitro, animal studies, and clinical experience in the treatment of VRE faecium will be discussed. © 2017 Pharmacotherapy Publications, Inc.

  3. Prevalence, outcome and risk factor associated with vancomycin-resistant Enterococcus faecalis and Enterococcus faecium at a Tertiary Care Hospital in Northern India.

    PubMed

    Tripathi, A; Shukla, S K; Singh, A; Prasad, K N

    2016-01-01

    To determine the prevalence, genotype, risk factors and mortality in patients having vancomycin-resistant Enterococcus faecalis (VR E. faecalis) and Enterococcus faecium (VR E. faecium) infection or colonisation. A total of 1488 clinical isolates of E. faecalis and E. faecium were tested for vancomycin resistance by phenotypic (disk diffusion, E-test and broth micro-dilution test) and genotypic polymerase chain reaction methods. Records of all 1488 patients who had E. faecalis or E. faecium infection or colonisation were reviewed for the identification of host, hospital and medication related risk factors associated with VR E. faecalis and VR E. faecium. Of 1488 isolates, 118 (7.9%) were vancomycin-resistant and their distributions were as follows: E. faecalis=72 (61%) and E. faecium=46 (39%). All 118 vancomycin-resistant isolates were vanA genotype (minimum inhibitory concentration [MIC] to vancomycin ≥64 μg/ml and MIC to teicoplanin≥32 μg/ml) and none of the isolates was vanB genotype. Multivariate logistic regression analysis identified ventilator support and hospital stay for ≥48 h as independent risk factors associated with VR E. faecalis and VR E. faecium infection or colonisation. Hospital stay≥48 h was the only independent risk factor for mortality in patients infected with vancomycin-resistant enterococci. Strategies to limit the nosocomial infection especially in patients on ventilator support can reduce VRE incidence and related mortality.

  4. First outbreak of linezolid-resistant vancomycin-resistant Enterococcus faecium in an Irish hospital, February to September 2014.

    PubMed

    O'Driscoll, C; Murphy, V; Doyle, O; Wrenn, C; Flynn, A; O'Flaherty, N; Fenelon, L E; Schaffer, K; FitzGerald, S F

    2015-12-01

    An outbreak of linezolid-resistant vancomycin-resistant Enterococcus faecium (LRVREfm) occurred in the hepatology ward of a tertiary referral hospital in Ireland between February and September 2014. LRVREfm was isolated from 15 patients; pulsed-field gel electrophoresis confirmed spread of a single clone. This is the first report of an outbreak of linezolid-resistant vancomycin-resistant enterococcus in Ireland. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance

    PubMed Central

    Ip, Camilla L. C.; Ansari, M. Azim; Wilson, Daniel J.; Espedido, Bjorn A.; Jensen, Slade O.; Bowden, Rory

    2016-01-01

    Enterococcus faecium, a major cause of hospital-acquired infections, remains problematic because of its propensity to acquire resistance to vancomycin, which currently is considered first-line therapy. Here, we assess the evolution and resistance acquisition dynamics of E. faecium in a clinical context using a series of 132 bloodstream infection isolates from a single hospital. All isolates, of which 49 (37 %) were vancomycin-resistant, underwent whole-genome sequencing. E. faecium was found to be subject to high rates of recombination with little evidence of sequence importation from outside the local E. faecium population. Apart from disrupting phylogenetic reconstruction, recombination was frequent enough to invalidate MLST typing in the identification of clonal expansion and transmission events, suggesting that, where available, whole-genome sequencing should be used in tracing the epidemiology of E. faecium nosocomial infections and establishing routes of transmission. Several forms of the Tn1549-like element–vanB gene cluster, which was exclusively responsible for vancomycin resistance, appeared and spread within the hospital during the study period. Several transposon gains and losses and instances of in situ evolution were inferred and, although usually chromosomal, the resistance element was also observed on a plasmid background. There was qualitative evidence for clonal expansions of both vancomycin-resistant and vancomycin-susceptible E. faecium with evidence of hospital-specific subclonal expansion. Our data are consistent with continuing evolution of this established hospital pathogen and confirm hospital vancomycin-susceptible and vancomycin-resistant E. faecium patient transmission events, underlining the need for careful consideration before modifying current E. faecium infection control strategies. PMID:27713836

  6. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance.

    PubMed

    van Hal, Sebastiaan J; Ip, Camilla L C; Ansari, M Azim; Wilson, Daniel J; Espedido, Bjorn A; Jensen, Slade O; Bowden, Rory

    2016-01-19

    Enterococcus faecium , a major cause of hospital-acquired infections, remains problematic because of its propensity to acquire resistance to vancomycin, which currently is considered first-line therapy. Here, we assess the evolution and resistance acquisition dynamics of E. faecium in a clinical context using a series of 132 bloodstream infection isolates from a single hospital. All isolates, of which 49 (37 %) were vancomycin-resistant, underwent whole-genome sequencing. E. faecium was found to be subject to high rates of recombination with little evidence of sequence importation from outside the local E. faecium population. Apart from disrupting phylogenetic reconstruction, recombination was frequent enough to invalidate MLST typing in the identification of clonal expansion and transmission events, suggesting that, where available, whole-genome sequencing should be used in tracing the epidemiology of E. faecium nosocomial infections and establishing routes of transmission. Several forms of the Tn 1549 -like element- vanB gene cluster, which was exclusively responsible for vancomycin resistance, appeared and spread within the hospital during the study period. Several transposon gains and losses and instances of in situ evolution were inferred and, although usually chromosomal, the resistance element was also observed on a plasmid background. There was qualitative evidence for clonal expansions of both vancomycin-resistant and vancomycin-susceptible E. faecium with evidence of hospital-specific subclonal expansion. Our data are consistent with continuing evolution of this established hospital pathogen and confirm hospital vancomycin-susceptible and vancomycin-resistant E. faecium patient transmission events, underlining the need for careful consideration before modifying current E. faecium infection control strategies.

  7. Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium.

    PubMed

    Carter, Glen P; Buultjens, Andrew H; Ballard, Susan A; Baines, Sarah L; Tomita, Takehiro; Strachan, Janet; Johnson, Paul D R; Ferguson, John K; Seemann, Torsten; Stinear, Timothy P; Howden, Benjamin P

    2016-12-01

    Enterococcus faecium is a major nosocomial pathogen causing significant morbidity and mortality worldwide. Assessment of E. faecium using MLST to understand the spread of this organism is an important component of hospital infection control measures. Recent studies, however, suggest that MLST might be inadequate for E. faecium surveillance. To use WGS to characterize recently identified vancomycin-resistant E. faecium (VREfm) isolates non-typeable by MLST that appear to be causing a multi-jurisdictional outbreak in Australia. Illumina NextSeq and Pacific Biosciences SMRT sequencing platforms were used to determine the genome sequences of 66 non-typeable E. faecium (NTEfm) isolates. Phylogenetic and bioinformatics analyses were subsequently performed using a number of in silico tools. Sixty-six E. faecium isolates were identified by WGS from multiple health jurisdictions in Australia that could not be typed by MLST due to a missing pstS allele. SMRT sequencing and complete genome assembly revealed a large chromosomal rearrangement in representative strain DMG1500801, which likely facilitated the deletion of the pstS region. Phylogenomic analysis of this population suggests that deletion of pstS within E. faecium has arisen independently on at least three occasions. Importantly, the majority of these isolates displayed a vancomycin-resistant genotype. We have identified NTEfm isolates that appear to be causing a multi-jurisdictional outbreak in Australia. Identification of these isolates has important implications for MLST-based typing activities designed to monitor the spread of VREfm and provides further evidence supporting the use of WGS for hospital surveillance of E. faecium. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: evidence of gene exchange between human and animal enterococci.

    PubMed

    Simjee, S; White, D G; McDermott, P F; Wagner, D D; Zervos, M J; Donabedian, S M; English, L L; Hayes, J R; Walker, R D

    2002-12-01

    Thirty-five enterococcal isolates were recovered from dogs diagnosed with urinary tract infections at the Michigan State University Veterinary Teaching Hospital over a 2-year period (1996 to 1998). Isolated species included Enterococcus faecium (n = 13), Enterococcus faecalis (n = 7), Enterococcus gallinarum (n = 11), and Enterococcus casseliflavus (n = 4). Antimicrobial susceptibility testing revealed several different resistance phenotypes, with the majority of the enterococcal isolates exhibiting resistance to three or more antibiotics. One E. faecium isolate, CVM1869, displayed high-level resistance to vancomycin (MIC > 32 micro g/ml) and gentamicin (MIC > 2,048 micro g/ml). Molecular analysis of this isolate revealed the presence of Tn1546 (vanA), responsible for high-level vancomycin resistance, and Tn5281 carrying aac6'-aph2", conferring high-level aminoglycoside resistance. Pulsed-field gel electrophoresis analysis revealed that CVM1869 was a canine E. faecium clone that had acquired Tn1546, perhaps from a human vancomycin-resistant E. faecium. Transposons Tn5281 and Tn1546 were located on two different conjugative plasmids. Sequence analysis revealed that in Tn1546, ORF1 had an 889-bp deletion and an IS1216V insertion at the 5' end and an IS1251 insertion between vanS and vanH. To date, this particular form of Tn1546 has only been described in human clinical vancomycin-resistant enterococcus isolates unique to the United States. Additionally, this is the first report of a vancomycin-resistant E. faecium isolated from a companion animal in the United States.

  9. Molecular Epidemiology of Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Clinical Specimens in the Northwest of Iran.

    PubMed

    Jahansepas, Ali; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Sharifi, Yaeghob; Rahnamaye Farzami, Marjan; Dolatyar, Alireza; Aghazadeh, Mohammad

    2018-04-30

    This study was conducted to investigate the phenotypic and genotypic characteristics of vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. Antibiotic resistance and virulence genes in the aforementioned resistant isolates were studied using the epsilometer (E)-test and polymerase chain reaction (PCR). These isolates were subjected to typing by pulsed-field gel electrophoresis (PFGE). Thirty vancomycin-resistant enterococci (VRE; 18.75%) were isolated from a total of 160 various clinical specimens cultured for any bacterial growth. Of these, 11 (36.7%) isolates were identified as E. faecalis and 19 (63.3%) as E. faecium. Minimum inhibitory concentrations (MICs) of vancomycin, teicoplanin, and three alternative therapeutic options (linezolid, daptomycin, and quinupristin/dalfopristin) were determined using the E-test. Multiplex PCR was done for confirming species, identification of the resistant genotypes, and the detection of the virulence genes. Finally, the clonal relationship of all VRE strains was studied by PFGE. All VRE strains showed vancomycin MIC ≥256 μg/mL, and 27 (90%) isolates carried the vanA gene, whereas none of the isolates carried vanB. The most common resistance antibiotic pattern observed was toward rifampicin (n = 30 [100%]). Among all virulence genes studied, gelE (n = 28 [93.33%]) was found as the most prevalent virulent gene. VRE isolates exhibited 90%, 46.67%, 100%, and 66.67% resistance to teicoplanin, linezolid, quinupristin/dalfopristin, and daptomycin, respectively. Molecular typing demonstrated 16 PFGE types of VRE isolates (A-P). Although vanA was carried by most of the isolates, PFGE displayed small clonal dissemination among VR E. faecium and VR E. faecalis species.

  10. Prevalence of Diverse Clones of Vancomycin-Resistant Enterococcus faecium ST78 in a Chinese Hospital.

    PubMed

    Yang, Jiyong; Jiang, Yufeng; Guo, Ling; Ye, LIyan; Ma, Yanning; Luo, Yanping

    2016-06-01

    Vancomycin-resistant Enterococcus (VRE) has been identified in China. However, little is known about the spread of VRE isolates. The genetic relatedness of vancomycin-resistant Enterococcus faecium (VREfm) isolates was analyzed by pulsed-field gel electrophoresis (PFGE), their antimicrobial susceptibilities were analyzed by E-test and the VITEK 2 AST-GP67 test Kit, and their sequence types (STs) were investigated by multilocus sequence typing (MLST). S1-PFGE was used for plasmid profiling, and PCR and subsequent sequencing were performed to identify the virulence genes. A total of 96 nonduplicated VREfm isolates were obtained and categorized into 38 PFGE types (type 1-38). The predominant MLST type was ST78, while ST17, ST341, and ST342 were also sporadically identified. All types of clinical VREfm strains harbored the vanA gene; however, they carried plasmids of different sizes. While 92.1%, 71.1%, and 60.5% of VREfm strains carried hyl, scm, and ecbA genes, respectively, all of them were positive for esp, acm, sgrA, pilA, and pilB genes. Clonal VREfm spread was observed, and nonplasmid-mediated horizontal transfer of vancomycin-resistant gene might have conveyed resistance to some vancomycin-susceptible E. faecium strains. E. faecium ST78 carrying vanA gene was the most prevalent clone in this study. The high prevalence of virulence genes, including esp, hyl, acm, scm, ecbA, sgrA, pilA, and pilB, confirmed their important roles in the emergence of VREfm ST78 in nosocomial infections.

  11. Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium

    PubMed Central

    Buultjens, Andrew H.; Lam, Margaret M.C.; Ballard, Susan; Monk, Ian R.; Mahony, Andrew A.; Grabsch, Elizabeth A.; Grayson, M. Lindsay; Pang, Stanley; Coombs, Geoffrey W.; Robinson, J. Owen; Seemann, Torsten; Howden, Benjamin P.

    2017-01-01

    From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments. PMID:28149688

  12. Identification of VanN-type vancomycin resistance in an Enterococcus faecium isolate from chicken meat in Japan.

    PubMed

    Nomura, Takahiro; Tanimoto, Koichi; Shibayama, Keigo; Arakawa, Yoshichika; Fujimoto, Shuhei; Ike, Yasuyoshi; Tomita, Haruyoshi

    2012-12-01

    Five VanN-type vancomycin-resistant Enterococcus faecium strains were isolated from a sample of domestic chicken meat in Japan. All isolates showed low-level resistance to vancomycin (MIC, 12 mg/liter) and had the same pulsed-field gel electrophoresis profile. The vancomycin resistance was encoded on a large plasmid (160 kbp) and was expressed constitutively. The VanN-type resistance operon was identical to the first resistance operon to be reported, with the exception of a 1-bp deletion in vanT(N) and a 1-bp substitution in vanS(N).

  13. Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium.

    PubMed

    Vignaroli, Carla; Zandri, Giada; Aquilanti, Lucia; Pasquaroli, Sonia; Biavasco, Francesca

    2011-05-01

    Forty-eight isolates resistant to at least two antibiotics were selected from 53 antibiotic-resistant enterococci from chicken and pig meat and faeces and analysed for specific resistance determinants. Of the 48 multidrug-resistant (MDR) strains, 31 were resistant to two antibiotics (29 to erythromycin and tetracycline, 1 to erythromycin and vancomycin, 1 to vancomycin and tetracycline), 14 to three (erythromycin, tetracycline and vancomycin or ampicillin) and 3 to four (erythromycin, vancomycin, ampicillin and gentamicin). erm(B), tet(M), vanA and aac (6')-Ie aph (2'')-Ia were the antibiotic resistance genes most frequently detected. All 48 MDR enterococci were susceptible to linezolid and daptomycin. Enterococcus faecalis (16), Enterococcus faecium (8), Enterococcus mundtii (2) and Enterococcus gallinarum (1) were identified in meat, and E. faecium (13) and Enterococcus durans (13) in faeces. Clonal spread was not detected, suggesting a large role of gene transfer in the dissemination of antibiotic resistance. Conjugative transfer of resistance genes was more successful when donors were enterococcal strains isolated from faeces; co-transfer of vanA and erm(B) to a human E. faecium occurred from both E. faecium and E. durans pig faecal strains. These data show that multidrug resistance can be found in food and animal species other than E. faecium and E. faecalis, and that these species can efficiently transfer antibiotic resistance to human strains in inter-specific matings. In particular, the occurrence of MDR E. durans in the animal reservoir could have a role in the emergence of human enterococcal infections difficult to eradicate with antibiotics.

  14. Influence of low-level resistance to vancomycin on efficacy of teicoplanin and vancomycin for treatment of experimental endocarditis due to Enterococcus faecium.

    PubMed Central

    Fantin, B; Leclercq, R; Arthur, M; Duval, J; Carbon, C

    1991-01-01

    Emergence of vancomycin-resistant strains among enterococci raises a new clinical challenge. Rabbits with aortic endocarditis were infected with Enterococcus faecium BM4172, a clinical strain resistant to low levels of vancomycin (MIC, 16 micrograms/ml) and susceptible to teicoplanin (MIC, 1 micrograms/ml), and against its susceptible variant E. faecium BM4172S obtained in vitro by insertional mutagenesis (MICs, 2 and 0.5 micrograms/ml, respectively). Control animals retained 8 to 10.5 log10 CFU/g of vegetation. We evaluated in this model the efficacy of vancomycin (30 mg/kg of body weight; mean peak and trough serum levels, 27 and 5 micrograms/ml, respectively), teicoplanin (standard dose, 10 mg/kg; mean peak and trough levels, 23 and 9 micrograms/ml, respectively; and high dose, 20 mg/kg; mean peak and trough levels, 63 and 25 micrograms/ml, respectively), gentamicin (6 mg/kg; mean peak and trough levels, 8.6 and less than 0.1 micrograms/ml, respectively), alone or in combination, given every 12 h intramuscularly for 5 days. Teicoplanin standard dose was as active as vancomycin against both strains. Vancomycin was not effective against E. faecium BM4172 but was highly effective against E. faecium BM4172S (7.5 +/- 1.1 log10 CFU/g of vegetation versus 4.9 +/- 1.0 log10 CFU/g of vegetation for vancomycin against E. faecium BM4172 and E. faecium BM4172S, respectively; P = 0.0012). A high dose of teicoplanin was more effective than vancomycin against E. faecium BM4172 (4.4 +/- 1.8 log10 CFU/g of vegetation versus 7.5 +/- 1.1 log10 CFU/g of vegetation for teicoplanin high dose and vancomycin, respectively; P less than 0.05). Against E. faecium BM4172 glycopeptide-gentamicin combinations were the most effective regimens in vitro and in vivo (2.8 +/- 0.7 and 3.5 +/- 1.3 log10 CFU/g of vegetation for vancomycin plus gentamicin and teicoplanin standard dose plus gentamicin, respectively; P < 0.05 versus single-drug regimens). We concluded that high-dose teicoplanin or the

  15. Complex Routes of Nosocomial Vancomycin-Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing.

    PubMed

    Raven, Kathy E; Gouliouris, Theodore; Brodrick, Hayley; Coll, Francesc; Brown, Nicholas M; Reynolds, Rosy; Reuter, Sandra; Török, M Estée; Parkhill, Julian; Peacock, Sharon J

    2017-04-01

    Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission. A retrospective study at a single hospital in the United Kingdom identified 342 patients with E. faecium bloodstream infection over 7 years. Of these, 293 patients had a stored isolate and formed the basis for the study. The first stored isolate from each case was sequenced (200 VREfm [197 vanA, 2 vanB, and 1 isolate containing both vanA and vanB], 93 vancomycin-susceptible E. faecium) and epidemiological data were collected. Genomes were also available for E. faecium associated with bloodstream infections in 15 patients in neighboring hospitals, and 456 patients across the United Kingdom and Ireland. The majority of infections in the 293 patients were hospital-acquired (n = 249) or healthcare-associated (n = 42). Phylogenetic analysis showed that 291 of 293 isolates resided in a hospital-associated clade that contained numerous discrete clusters of closely related isolates, indicative of multiple introductions into the hospital followed by clonal expansion associated with transmission. Fine-scale analysis of 6 exemplar phylogenetic clusters containing isolates from 93 patients (32%) identified complex transmission routes that spanned numerous wards and years, extending beyond the detection of conventional infection control. These contained both vancomycin-resistant and -susceptible isolates. We also identified closely related isolates from patients at Cambridge University Hospitals NHS Foundation Trust and regional and national hospitals, suggesting interhospital transmission. These findings provide important insights for infection control practice and signpost areas for interventions. We conclude that sequencing represents a powerful tool for the enhanced surveillance and control of nosocomial E. faecium transmission and infection. © The Author 2017. Published by Oxford

  16. CARRIAGE OF MULTIDRUG RESISTANT ENTEROCOCCUS FAECIUM AND ENTEROCOCCUS FAECALIS AMONG APPARENTLY HEALTHY HUMANS.

    PubMed

    Adesida, Solayide A; Ezenta, Cynthia C; Adagbada, Ajoke O; Aladesokan, Amudat A; Coker, Akitoye O

    2017-01-01

    Enterococci are indigenous flora of the gastro-intestinal tracts of animals and humans. Recently, interest in two major species, E. faecium and E. faecalis , has heightened because of their ability to cause serious infections and their intrinsic resistance to antimicrobials. This study was aimed at determining the prevalence of E . faecium and E . faecalis in human faecal samples and evaluating the susceptibility of the isolates to antibiotics. One hundred faecal samples were collected from apparently healthy individuals and analysed using conventionalbacteriological methods. The susceptibility profile of the isolates to nine antibiotics were determined using disk diffusion method. Seventy-three (73) Enterococcus were phenotypically identified and 65 of the isolates were differentiated into 36 (55.4%) E. faecium and 29 (44.6%) E. faecalis . Eight (8) isolates could not be identified by the conventional biochemical methods employed. No dual colonization by the E. faecalis and E. faecium was observed and isolation rate was not dependent on sex of the participants. All the isolates were resistant to ceftriaxone, cefuroxime and ceftizoxime. Enterococcus faecium exhibited resistance toerythromycin (88.9%), gentamicin (77.8%), amoxicillin-clavulanate (63.9%), ofloxacin (44.4%), teicoplanin (19.4%) and vancomycin (16.7%). Enterococcus faecalis showed the least resistance to vancomycin (13.8%) and teicoplanin (27.7%). Remarkable multiple antibiotic resistances to the classes of antibiotic tested were observed among the two species. The high carriage rate of antibiotic resistant E. faecium and E. faecalis in this study provides information on the local antibiotic patterns of our enterococci isolates thereby suggesting that they could present as important reservoir and vehicle for dissemination of resistant genes in our community.

  17. Survey of Virulence Determinants among Vancomycin Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Clinical Specimens of Hospitalized Patients of North west of Iran

    PubMed Central

    Sharifi, Yaeghob; Hasani, Alka; Ghotaslou, Reza; Varshochi, Mojtaba; Hasani, Akbar; Aghazadeh, Mohammad; Milani, Morteza

    2012-01-01

    Recent data indicates an increasing rate of vancomycin resistance in clinical enterococcal isolates worldwide. The nosocomial enterococci are likely to harbor virulence elements that increase their ability to colonize hospitalized patients. The aim of this study was to characterize virulence determinants in vancomycin-resistant enterococci (VRE) obtained from various clinical sources. During the years 2008 to 2010, a total of 48 VRE isolates were obtained from three University teaching hospitals in Northwest, Iran. Initially, phenotypic speciation was done and minimum inhibitory concentrations (MICs) of vancomycin were determined by agar dilution method and E-test. Then, species identification and resistance genotypes along with detection of virulence genes (asa1, esp, gelE, ace and cpd) of the isolates were performed by multiplex PCR. Thirty eight isolates were identified as vancomycin-resistant Enterococcus faecium (VREfm) and ten as E. faecalis (VREfs). Irrespective of the species, vanA gene (89.58%) was dominant and three phenotypically vancomycin susceptible E. faecium isolates carried the vanB gene. Among virulence genes investigated, the esp was found in 27(71%) VREfm strains, but did not in any VREfs. Other virulence determinants were highly detected in VREfs strains. Our data indicate a high prevalence of E. faecium harboring vancomycin resistance with vanA genotype and the two VRE species displayed different virulence genes. PMID:22582098

  18. Susceptibility of vancomycin-resistant and -sensitive Enterococcus faecium obtained from Danish hospitals to benzalkonium chloride, chlorhexidine and hydrogen peroxide biocides.

    PubMed

    Alotaibi, Sulaiman M I; Ayibiekea, Alafate; Pedersen, Annemette Frøling; Jakobsen, Lotte; Pinholt, Mette; Gumpert, Heidi; Hammerum, Anette M; Westh, Henrik; Ingmer, Hanne

    2017-12-01

    In Danish hospitals, the number of infections caused by vancomycin-resistant Enterococcus faecium (VRE faecium) has dramatically increased in recent years. Hospital disinfectants are essential in eliminating pathogenic microorganisms, and reduced susceptibility may contribute to hospital-associated infections. We have addressed whether clinical VRE faecium display decreased biocide susceptibility when compared to vancomycin-sensitive Enterococcus faecium (VSE faecium) isolates. In total 12 VSE faecium and 37 VRE faecium isolates obtained from Danish hospitals over an extended time period were tested for susceptibility towards three commonly applied biocides, namely benzalkonium chloride, chlorhexidine and hydrogen peroxide. For benzalkonium chloride, 89 % of VRE faecium strains had a minimal inhibitory concentration (MIC) of 8 mg l -1 , whereas for VSE faecium, only 25 % of the strains had an MIC of 8 mg l -1 . For chlorhexidine, the MIC of 95 % of VRE faecium strains was 4 mg l -1 or higher, while only 33 % of VSE faecium strains displayed MIC values at the same level. In contrast, both VRE and VSE faecium displayed equal susceptibility to hydrogen peroxide, but a higher minimal bactericidal concentration (MBC) was found for the former. The efflux activity was also assessed, and this was generally higher for the VRE faecium strains compared to VSE faecium. VRE faecium from Danish hospitals demonstrated decreased susceptibility towards benzalkonium chloride and chlorhexidine compared to VSE faecium, where the use of chlorhexidine is particularly heavy in the hospital environment. These findings suggest that biocide tolerance may characterize VRE faecium isolated in Danish hospitals.

  19. Genetic Variability of Vancomycin-Resistant Enterococcus faecium and Enterococcus faecalis Isolates from Humans, Chickens, and Pigs in Malaysia

    PubMed Central

    Getachew, Yitbarek; Zakaria, Zunita; Abdul Aziz, Saleha

    2013-01-01

    Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals. PMID:23666337

  20. Characterization of Class IIa Bacteriocin Resistance in Enterococcus faecium

    PubMed Central

    Geldart, Kathryn

    2017-01-01

    ABSTRACT Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium. We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes, resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified. PMID:28115354

  1. Isolation and Biochemical Fingerprinting of Vancomycin-Resistant Enterococcus faecium From Meat, Chicken and Cheese.

    PubMed

    Talebi, Malihe; Sadeghi, Javad; Rahimi, Fateh; Pourshafie, Mohammad Reza

    2015-04-01

    Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens and food chain has been considered as an assumed source for dissemination of VRE to human. The presence of VRE isolates from food samples and typing of these isolates with Phene plate, a biochemical fingerprinting method, were investigated. Thirty samples of meat, chicken and cheese were analyzed for VRE during 2010. Antibiotic susceptibility tests and minimum inhibitory concentration (MIC) were also examined. VRE isolates were typed with the Phene plate system (PhPlate), a biochemical fingerprinting method. A total of 70 VRE isolates were obtained and identified as Enterococcus faecium by species-specific PCR. All the isolates carried vanA, while none of them harbored vanB. The VRE isolates included 35, 27, and 8 isolates from meat, chicken and cheese, respectively. Typing with the PhPlate revealed a diversity index of 0.78 for E. faecium, containing 10 common and four single types. The results of antibiotic susceptibility and MIC tests showed an increased resistance to ciprofloxacin, erythromycin, ampicillin and gentamicin, to which, 100%, 100%, 100%, and 95% of VRE isolates were resistant, respectively. Only 5% of the isolates were resistant to chloramphenicol and the MIC of the isolates for vancomycin and teicoplanin was ≥ 256 µg/mL and for gentamicin-resistant isolates it was 1024 µg/mL. Conventional and molecular identification tests exhibited that all the isolates were E. faecium carrying vanA. None of the isolates harbored vanB. The results showed that enterococci are common contaminants in food. Indeed, this study indicates a high prevalence of multidrug-resistant enterococci in food of animal origin in Iran. Isolating some persisting enterococcal isolates revealed that continuous surveillance of antimicrobial resistance in enterococci from food is essential.

  2. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium

    PubMed Central

    2013-01-01

    Background In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. Results To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb–130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. Conclusions Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic

  3. Molecular Epidemiology of Vancomycin-Resistant Enterococcus faecium: a Prospective, Multicenter Study in South American Hospitals▿

    PubMed Central

    Panesso, Diana; Reyes, Jinnethe; Rincón, Sandra; Díaz, Lorena; Galloway-Peña, Jessica; Zurita, Jeannete; Carrillo, Carlos; Merentes, Altagracia; Guzmán, Manuel; Adachi, Javier A.; Murray, Barbara E.; Arias, Cesar A.

    2010-01-01

    Enterococcus faecium has emerged as an important nosocomial pathogen worldwide, and this trend has been associated with the dissemination of a genetic lineage designated clonal cluster 17 (CC17). Enterococcal isolates were collected prospectively (2006 to 2008) from 32 hospitals in Colombia, Ecuador, Perú, and Venezuela and subjected to antimicrobial susceptibility testing. Genotyping was performed with all vancomycin-resistant E. faecium (VREfm) isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. All VREfm isolates were evaluated for the presence of 16 putative virulence genes (14 fms genes, the esp gene of E. faecium [espEfm], and the hyl gene of E. faecium [hylEfm]) and plasmids carrying the fms20-fms21 (pilA), hylEfm, and vanA genes. Of 723 enterococcal isolates recovered, E. faecalis was the most common (78%). Vancomycin resistance was detected in 6% of the isolates (74% of which were E. faecium). Eleven distinct PFGE types were found among the VREfm isolates, with most belonging to sequence types 412 and 18. The ebpAEfm-ebpBEfm-ebpCEfm (pilB) and fms11-fms19-fms16 clusters were detected in all VREfm isolates from the region, whereas espEfm and hylEfm were detected in 69% and 23% of the isolates, respectively. The fms20-fms21 (pilA) cluster, which encodes a putative pilus-like protein, was found on plasmids from almost all VREfm isolates and was sometimes found to coexist with hylEfm and the vanA gene cluster. The population genetics of VREfm in South America appear to resemble those of such strains in the United States in the early years of the CC17 epidemic. The overwhelming presence of plasmids encoding putative virulence factors and vanA genes suggests that E. faecium from the CC17 genogroup may disseminate in the region in the coming years. PMID:20220167

  4. Comparative genome analysis of multiple vancomycin-resistant Enterococcus faecium isolated from two fatal cases.

    PubMed

    Lim, Shu Yong; Yap, Kien-Pong; Teh, Cindy Shuan Ju; Jabar, Kartini Abdul; Thong, Kwai Lin

    2017-04-01

    Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VRE fm ) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Characterization of Class IIa Bacteriocin Resistance in Enterococcus faecium.

    PubMed

    Geldart, Kathryn; Kaznessis, Yiannis N

    2017-04-01

    Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium , pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium 's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes , resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified. Copyright © 2017 American Society for Microbiology.

  6. Molecular characterization of resistance, virulence and clonality in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis: A hospital-based study in Beijing, China.

    PubMed

    Yang, Jing-xian; Li, Tong; Ning, Yong-zhong; Shao, Dong-hua; Liu, Jing; Wang, Shu-qin; Liang, Guo-wei

    2015-07-01

    The incidence of vancomycin-resistant enterococcus (VRE) in China is increasing, the molecular epidemiology of VRE in China is only partly known. This study was conducted to assess the molecular characterization of resistance, virulence and clonality of 69 vancomycin-resistant Enterococcus faecium (VREfm) and seven vancomycin-resistant Enterococcus faecalis (VREfs) isolates obtained from a Chinese hospital between July 2011 and July 2013. The glycopeptide resistance genes (VanA and VanB) were screened by multiplex PCR. The presence of five putative virulence genes (esp, gelE, asa1, hyl and cylA) were evaluated by another multiplex PCR. Multilocus sequence typing (MLST) scheme was used to assess the clonality. All 76 VRE isolates exhibited VanA phenotype and harbored VanA gene. Esp was the only gene detected both in VREfm and VREfs strains, accounting for 89.9% and 42.9%, respectively. The hyl gene was merely positive in 27.5% of VREfm strains. MLST analysis demonstrated three STs (ST6, ST4 and ST470) in VREfs and twelve STs (ST78, ST571, ST17, ST564, ST389, ST18, ST547, ST341, ST414, ST343, ST262 and ST203) in VREfm, which were all designated as CC17 by eBURST algorithm. An outbreak of VREfm belonging to ST571 was found to happen within the neurology ward in this hospital. To our knowledge, this is the first report of ST6 (CC2) VREfs strains in China and the first outbreak report of VREfm strains belonging to ST571 around the world. Our data could offer important information for understanding the molecular features of VRE in China. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparative Analysis of the First Complete Enterococcus faecium Genome

    PubMed Central

    Lam, Margaret M. C.; Seemann, Torsten; Bulach, Dieter M.; Gladman, Simon L.; Chen, Honglei; Haring, Volker; Moore, Robert J.; Ballard, Susan; Grayson, M. Lindsay; Johnson, Paul D. R.; Howden, Benjamin P.

    2012-01-01

    Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen. PMID:22366422

  8. [Vancomycin-resistant enterococcus--chronicle of a foretold problem].

    PubMed

    Bonten, Marc J M; Willems, Rob J

    2012-01-01

    There have recently been 12 outbreaks of infection caused by vancomycin-resistant enterococci (VRE) in Dutch hospitals. Although the first VRE outbreaks were reported almost 12 years ago, such outbreaks remained uncommon and the question is why they are occurring now. Based on molecular epidemiological studies we have learned that a subpopulation of Enterococcus faecium, resistant to amoxicillin but susceptible to vancomycin, has become highly endemic in Dutch hospitals in the past 12 years. Initial analyses suggest that several transposons containing vancomycin-resistance genes have been introduced into this population, followed by nosocomial spread. We recommend that hospitals without detected VRE outbreaks screen high-risk patients for the presence of VRE. If transmission has already occurred in many hospitals, it will be extremely difficult (and costly) to eradicate VRE.

  9. Virulence and antimicrobial resistance of Enterococcus faecium isolated from water samples.

    PubMed

    Enayati, M; Sadeghi, J; Nahaei, M R; Aghazadeh, M; Pourshafie, M R; Talebi, M

    2015-10-01

    The aim of this study was to determine the incidence of Enterococcus species and six virulence factors of Enterococcus faecium which were isolated from surface water and wells. Fifteen different water samples, which were used for drinking as well as agricultural irrigation, were collected from nine private wells and surface water from six rivers located at the east of Tehran. The Ent. faecium isolates were tested for their resistance to 10 antibiotics and their virulence factors were detected using multiplex PCR for esp, acm, gelE, asa1, cylA and hyl genes. The most predominant species in 315 isolates were Ent. faecium (n = 118) followed by Enterococcus galinarom (n = 110), Enterococcus mundeti (n = 18), Enterococcus hirea (n = 37) and Enterococcus casselifelavus (n = 32). The resistance rates were observed in 41·5, 27·1, 12·7, 6·8 and 1·7% isolates for tetracycline, erythromycin, ampicillin, ciprofloxacin and chloramphenicol respectively. None of the Ent. faecium isolates were resistant to vancomycin, teicoplanin, linezolid, gentamicin and quinuspristin-dalfopristin. Virulence determinant was found in 84·7, 33·9, 16·1 and 2·5% of isolates for acm, asa1, esp, cylA respectively. None of the isolates carried hyl and gelE gene. The presence of virulence factors and antibiotic resistance indicated that water might be an important source of dissemination of virulent enterococci. Contamination of drinking or recreational water by human or animal faecal waste is a major public health threat. In this study, we determine the incidence of Enterococcus species and six virulence factors of Enterococcus faecium which were isolated from surface water and wells. Results from this study suggest that the presence of Ent. faecium in natural and well waters was found to be significant in rural areas of Tehran. Resistant to erythromycin among Ent. faecium was relatively high and the incidence of acm and asa1 among our isolates was common overall. © 2015 The

  10. Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates.

    PubMed

    Klupp, E-M; Both, A; Belmar Campos, C; Büttner, H; König, C; Christopeit, M; Christner, M; Aepfelbacher, M; Rohde, H

    2016-12-01

    Vancomycin-resistant enterococci (VRE) are of ever-increasing importance, most notably in high-risk patient populations. Therapy options are often limited for these isolates, and apart from tigecycline and daptomycin, oxazolidinone linezolid is frequently administered. The broad usage of linezolid, however, has driven the emergence of linezolid-resistant VRE strains (LR-VRE), further shortening therapeutic options. Second-generation oxazolidinone tedizolid has the advantage of being active against a specific subset of LR-VRE, i.e. isolates expressing the plasmid-encoded chloramphenicol-florfenicol resistance (cfr) gene. Here we tested tedizolid activity in a collection of 30 LR Enterococcus faecium VRE (MIC range 32-256 mg/l) isolated between 2012 and 2015 from clinical and screening specimens. By pulsed field gel electrophoresis (PFGE) isolates were assigned to 16 clonal lineages. In three cases, linezolid-susceptible progenitor isolates of LR-VRE were isolated, thus demonstrating the de-novo emergence of the linezolid-resistant phenotype. PCR did not detect cfr, cfr(B) or novel oxazolidinone resistance gene optrA in LR-VRE. All isolates, however, carried mutations within the 23S rDNA. Compared to linezolid, tedizolid MICs were lower in all isolates (MIC range 2-32 mg/l), but remained above the FDA tedizolid breakpoint for E. faecalis at 0.5 mg/l. Thus, related to the predominant resistance mechanism, tedizolid is of limited value for treatment of most LR-VRE and represents a therapeutic option only for a limited subset of isolates.

  11. Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda

    PubMed Central

    Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R.

    2017-01-01

    Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island. PMID:28267763

  12. Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda.

    PubMed

    Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R

    2017-01-01

    Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island.

  13. Antibiotic resistance and virulence traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates.

    PubMed

    Rathnayake, I U; Hargreaves, M; Huygens, F

    2012-07-01

    This study compared virulence and antibiotic resistance traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E, esp and acm were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.8% of E. faecalis and 70.4% of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linezolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.2% of E. faecalis and 70.3% of E. faecium) compared to water isolates (only 5.7% E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Analysis of the world epidemiological situation among vancomycin-resistant Enterococcus faecium infections and the current situation in Poland

    PubMed

    Talaga-Ćwiertnia, Katarzyna; Bulanda, Małgorzata

    2018-01-01

    Vancomycin-resistant Enterococcus faecium (VREfm) strains have become an important hospital pathogen due to their rapid spread, high mortality rate associated with infections and limited therapeutic options. Vancomycin resistance is predominantly mediated by VanA or VanB phenotypes, which differ as regards maintaining sensitivity to teicoplanin in the VanB phenotype. The majority of VREfm cases in the United States, Europe, Korea, South America and Africa are currently caused by the VanA phenotype. However, the epidemics in Australia and Singapore are chiefly brought about by the VanB phenotype. The rate of VREfm isolate spread varies greatly. The greatest percentage of VREfm is now recorded in the USA, Ireland and Australia. Supervision of VRE is implemented to varying degrees. Therefore, the epidemiological situation in some countries is difficult to assess due to limited data or lack thereof.

  15. Vancomycin-resistant Enterococcus faecium sequence type 796 - rapid international dissemination of a new epidemic clone.

    PubMed

    Mahony, Andrew A; Buultjens, Andrew H; Ballard, Susan A; Grabsch, Elizabeth A; Xie, Shirley; Seemann, Torsten; Stuart, Rhonda L; Kotsanas, Despina; Cheng, Allen; Heffernan, Helen; Roberts, Sally A; Coombs, Geoffrey W; Bak, Narin; Ferguson, John K; Carter, Glen C; Howden, Benjamin P; Stinear, Timothy P; Johnson, Paul D R

    2018-01-01

    Vancomycin-resistant Enterococcus faecium (VRE) is a leading cause of hospital-acquired infections. New, presumably better-adapted strains of VRE appear unpredictably; it is uncertain how they spread despite improved infection control. We aimed to investigate the relatedness of a novel sequence type (ST) of vanB E. faecium - ST796 - very near its time of origin from hospitals in three Australian states and New Zealand. Following near-simultaneous outbreaks of ST796 in multiple institutions, we gathered then tested colonization and bloodstream infection isolates' antimicrobial resistance (AMR) phenotypes, and phylogenomic relationships using whole genome sequencing (WGS). Patient meta-data was explored to trace the spread of ST796. A novel clone of vanB E. faecium (ST796) was first detected at one Australian hospital in late 2011, then in two New Zealand hospitals linked by inter-hospital transfers from separate Melbourne hospitals. ST796 also appeared in hospitals in South Australia and New South Wales and was responsible for at least one major colonization outbreak in a Neonatal Intensive Care Unit without identifiable links between centers. No exceptional AMR was detected in the isolates. While WGS analysis showed very limited diversity at the core genome, consistent with recent emergence of the clone, clustering by institution was observed. Evolution of new E. faecium clones, followed by recognized or unrecognized movement of colonized individuals then rapid intra-institutional cross-transmission best explain the multi-center, multistate and international outbreak we observed.

  16. Prolonged linezolid use is associated with the development of linezolid-resistant Enterococcus faecium.

    PubMed

    Smith, Tiffeny T; Tamma, Pranita D; Do, Tiffany B; Dzintars, Kathryn E; Zhao, Yuan; Cosgrove, Sara E; Avdic, Edina

    2018-06-01

    We assessed risk factors for and outcomes of linezolid-resistant vancomycin-resistant Enterococcus faecium (LRVREF) bacteremia over 7 years. Thirty-four LRVREF cases were matched to 68 linezolid-susceptible VREF controls. The odds of bacteremia with LRVREF increased by 7% for each additional day of prior linezolid exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cluster of linezolid-resistant Enterococcus faecium ST117 in Norwegian hospitals.

    PubMed

    Hegstad, Kristin; Longva, Jørn-Åge; Hide, Reidar; Aasnæs, Bettina; Lunde, Tracy M; Simonsen, Gunnar Skov

    2014-10-01

    A linezolid-resistant, vancomycin-susceptible Enterococcus faecium strain was isolated from 3 patients who had not received linezolid. The first patient was hospitalized in the same hospitals and wards as the 2 following patients. The E. faecium isolates were resistant to linezolid (minimum inhibitory concentration 8-32 mg/l), ampicillin, and high levels of gentamicin. Resistance to linezolid was associated with a G2576T mutation in 23S rDNA. The cfr linezolid resistance gene was not detected. The 3 isolates showed identical DNA fingerprints by pulsed-field gel electrophoresis, belonged to ST117, and harboured virulence genes esp, hyl, acm, efaAfm, srgA, ecbA, scm, pilA, pilB, and pstD typically associated with high-risk E. faecium genotypes. The linezolid-resistant E. faecium high-risk clone caused bacteraemia in the first 2 cancer patients and survived in the hospital environment for more than a year before appearing in the urethral catheter of the third patient.

  18. Studies on the drug resistance profile of Enterococcus faecium distributed from poultry retailers to hospitals.

    PubMed

    Limayem, Alya; Donofrio, Robert Scott; Zhang, Chao; Haller, Edward; Johnson, Michael G

    2015-01-01

    The multidrug resistant Enterococcus faecium (MEF) strains originating from farm animals are proliferating at a substantial pace to impact downstream food chains and could reach hospitals. This study was conducted to elucidate the drug susceptibility profile of MEF strains collected from poultry products in Ann Arbor, MI area and clinical settings from Michigan State Lab and Moffitt Cancer Center (MCC) in Florida. Presumptive positive Enterococcus isolates at species level were identified by Matrix Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) analysis. The antibiotic susceptibility profile for both poultry and clinical strains was determined by the Thermo Scientific's Sensititre conform to the National Committee for Clinical Laboratory Standards (NCCLS) and validated via quantitative real-time PCR (qPCR) methods. Out of 50 poultry samples (Turkey: n = 30; Chicken: n = 20), 36 samples were positive for Enterococcus species from which 20.83% were identified as E. faecium. All the E. faecium isolates were multidrug resistant and displayed resistance to the last alternative drug, quinupristin/dalfopristin (QD) used to treat vancomycin resistant E. faecium (VRE) in hospitals. Results indicate the presence of MEF strains in food animals and clinical settings that are also resistant to QD.

  19. Genotyping of clinical and environmental multidrug resistant Enterococcus faecium strains.

    PubMed

    Shokoohizadeh, Leili; Mobarez, Ashraf Mohabati; Alebouyeh, Masoud; Zali, Mohammad Reza; Ranjbar, Reza

    2017-01-01

    Multidrug resistant (MDR) Enterococcus faecium is a nosocomial pathogen and clonal complex 17 (CC17) is the main genetic subpopulation of E. faecium in hospitals worldwide. There has thus far been no report of major E. faecium clones in Iranian hospitals. The present study analyzed strains of MDR E. faecium obtained from patients and the Intensive Care Unit environments using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to determine the antibiotic resistance patterns and genetic features of the dominant. clones of E. faecium. PFGE and MLST analysis revealed the presence of 17and 15 different subtypes, respectively. Of these, 18 (86%) isolates belonged toCC17. Most strains in this clonal complex harbored the esp gene and exhibited resistance to vancomycin, teicoplanin, ampicillin, ciprofloxacin, gentamicin, and erythromycin. The MLST results revealed 12 new sequence types (ST) for the first time. Approximately 50% of the STs were associated with ST203. Detection of E. faecium strains belonging to CC17 on medical equipment and in clinical specimens verified the circulation of high-risk MDR clones among the patients and in hospital environments in Iran.

  20. [Clinical features of Enterococcus faecium meningitis in children].

    PubMed

    Wang, Li-Yuan; Cai, Xiao-Tang; Wang, Zhi-Ling; Liu, Shun-Li; Xie, Yong-Mei; Zhou, Hui

    2018-03-01

    To summarize the clinical features of Enterococcus faecium meningitis in children. The clinical data of nine children with Enterococcus faecium meningitis were analyzed. In all the nine children, Enterococcus faecium was isolated from blood, cerebrospinal fluid, or peripherally inserted central catheters; 6 (67%) patients were neonates, 2 (22%) patients were younger than 6 months, and 1 (11%) patient was three years and four months of age. In those patients, 56% had high-risk factors before onset, which included intestinal infection, resettlement of drainage tube after surgery for hydrocephalus, skull fracture, perinatal maternal infection history, and catheter-related infection. The main symptoms were fever and poor response. In those patients, 22% had seizures; no child had meningeal irritation sign or disturbance of consciousness. The white blood cell count and level of C-reactive protein were normal or increased; the nucleated cell count in cerebrospinal fluid was normal or mildly elevated; the protein level was substantially elevated; the glucose level was decreased. The drug sensitivity test showed that bacteria were all sensitive to vancomycin and the vancomycin treatment was effective. Only one child had the complication of hydrocephalus. Enterococcus faecium meningitis occurs mainly in neonates and infants. The patients have atypical clinical features. A high proportion of patients with Enterococcus faecium meningitis have high-risk factors. Enterococcus faecium is sensitive to vancomycin.

  1. Emergence of daptomycin non-susceptibility in colonizing vancomycin-resistant Enterococcus faecium isolates during daptomycin therapy.

    PubMed

    Lellek, Heinrich; Franke, Gefion C; Ruckert, Carolin; Wolters, Manuel; Wolschke, Christiane; Christner, Martin; Büttner, Henning; Alawi, Malik; Kröger, Nicolaus; Rohde, Holger

    2015-12-01

    Infections due to vancomycin-resistant enterococci (VRE) are of significant importance in high-risk populations, and daptomycin is a bactericidal antibiotic to treat multidrug-resistant VRE in these patients. The emergence of daptomycin non-susceptibility invasive VRE during daptomycin therapy is a major clinical issue. Here the hypothesis was tested that systemic daptomycin therapy also induces the emergence of daptomycin non-susceptible (DNS-) isolates in colonizing VRE populations. 11 vancomycin-resistant Enterococcus faecium strain pairs recovered from rectal swabs were available for analysis. All initial isolates exhibited daptomycin MICs within the wild type MIC distribution of E. faecium (MIC≤4 mg/L). In follow-up isolates from five patients a 4-16-fold daptomycin MIC increase was detected. All patients carrying DNS-VRE received daptomycin (14-28 days) at 4 mg/kg body weight, while two patients in whom no DNS-VRE emerged were only treated with daptomycin for 1 and 4 days, respectively. Comparative whole genome sequencing identified DNS-VRE-specific single nucleotide polymorphisms (SNP), including mutations in cardiolipin synthase (Cls), and additional SNPs in independent genes potentially relevant for the DNS phenotype. Mutations within cls were also identified in three additional, colonizing DNS-VRE. Of these, at least one strain was transmitted within the hospital. In none of the VRE isolates tested, pre-existing or de novo mutations in the liaFSR operon were detected. This is the first report documenting the emergence of DNS-VRE in colonizing strains during daptomycin treatment, putting the patient at risk for subsequent DNS-VRE infections and priming the spread of DNS-VRE within the hospital environment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain.

    PubMed

    Rizzotti, Lucia; Rossi, Franca; Torriani, Sandra

    2016-12-01

    In this study nine strains of Enterococcus faecalis and 12 strains of Enterococcus faecium, isolated from different sample types in the swine meat chain and previously characterized for the presence of antibiotic resistance genes, were examined for phenotypic tolerance to seven biocides (chlorexidine, benzalkonium chloride, triclosan, sodium hypochlorite, 2-propanol, formaldehyde and hydrogen peroxide) and resistance to nine antibiotics (ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline and chloramphenicol). Moreover, the presence of efflux system encoding genes qacA/B, qacC, qacE, qacEΔ1, emeA, and stress response genes, sigV and gsp65, involved in the tolerance to biocides, was analysed. Most strains were not tolerant to the biocides, but showed minimum inhibitory concentrations (MICs) higher than the recommended cut-off values for all the antibiotics tested, except for vancomycin and chloramphenicol. Only weak correlations, if any, were found between biocide and antibiotic resistance data. One E. faecalis strain was tolerant to triclosan and one E. faecium strain, with higher tolerance to chlorexidine than the other strains tested, was found to carry a qacA/B gene. Our results indicated that phenotypic resistance to antibiotics is very frequent in enterococcal isolates from the swine meat chain, but phenotypic tolerance to biocides is not common. On the other hand, the gene qacA/B was found for the first time in the species E. faecium, an indication of the necessity to adopt measures suitable to control the spread of biocide resistance determinants among enterococci. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Characteristic of Enterococcus faecium clinical isolates with quinupristin/dalfopristin resistance in China.

    PubMed

    Wang, Shanshan; Guo, Yinjuan; Lv, Jingnan; Qi, Xiuqin; Li, Dan; Chen, Zengqiang; Zhang, Xueqing; Wang, Liangxing; Yu, Fangyou

    2016-10-21

    Quinupristin/dalfopristin (Q/D) is a valuable alternative antibiotic to vancomycin for the treatment of multi-drug resistant Enterococcus faecium infections. However, resistance to Q/D in E. faecium clinical isolates and nosocomial dissemination of Q/D-resistant E. faecium have been reported in several countries and should be of concern. From January 2012 to December 2015, 911 E. faecium clinical isolates were isolated from various specimens of inpatients at the first Affiliated Hospital of Wenzhou Medical University located in Wenzhou, east China. Of 911 E. faecium clinical isolates, 9 (1.0 %, 9/911) were resistant to Q/D, with the Q/D MIC values of 64 mg/L(1), 32 mg/L(1), 16 mg/L(3), 8 mg/L(1) and 4 mg/L(3) determined by broth microdilution. All Q/D-resistant isolates were susceptible to vancomycin, tigecycline and teicoplanin but resistant to penicillin, ampicillin and erythromycin. vatE was only found in one Q/D-resistant E. faecium isolate while vatD was not detected in any of the isolates tested. 8 of 9 Q/D-resistant E. faecium isolates were found be positive for both ermB and msrC. The combinations of Q/D resistance determinants were ermB-msrC (7 isolates) and ermB-msrC-vatE (one isolate). ST78, ST761, ST94, ST21 and ST323 accounted for 4, 2, 1, 1 and 1 isolate, respectively, among which ST78 was the prevalent ST. Q/D-resistant E. faecium clinical isolates were first described in China. Carriage of vatE, ermB and msrC was responsible for Q/D resistance.

  4. Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium.

    PubMed

    Kellogg, Stephanie L; Little, Jaime L; Hoff, Jessica S; Kristich, Christopher J

    2017-05-01

    Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis , exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. Copyright © 2017 American Society for Microbiology.

  5. Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium

    PubMed Central

    Kellogg, Stephanie L.; Little, Jaime L.; Hoff, Jessica S.

    2017-01-01

    ABSTRACT Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis. Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis. Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium. Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. PMID:28223383

  6. Phenotypic and molecular antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium isolated from different traditional fermented foods.

    PubMed

    Sánchez Valenzuela, Antonio; Lavilla Lerma, Leyre; Benomar, Nabil; Gálvez, Antonio; Pérez Pulido, Rubén; Abriouel, Hikmate

    2013-02-01

    A collection of 55 enterococci (41 Enterococcus faecium and 14 E. faecalis strains) isolated from various traditional fermented foodstuffs of both animal and vegetable origins, and water was evaluated for resistance against 15 antibiotics. Lower incidence of resistance was observed with gentamicin, ampicillin, penicillin and teicoplanin. However, a high incidence of antibiotic resistance was detected for rifampicin (12 out of 14 of isolates), ciprofloxacin (9/14), and quinupristin/dalfopristin (8/14) in E. faecalis strains. Enterococcus faecium isolates were resistant to rifampicin (25/41), ciprofloxacin (23/41), erythromycin (18/41), levofloxacin (16/41), and nitrofurantoin (15/41). One Enterococcus faecalis and two E. faecium strains were resistant to vancomycin (MIC>16 μg/mL). Among 55 isolates, 27 (19 E. faecium and eight E. faecalis) were resistant to at least three antibiotics. High level of multidrug resistance to clinically important antibiotics was detected in E. faecalis strains (57% of E. faecalis versus 46% of E. faecium), which showed resistance to six to seven antibiotics, especially those isolated from foods of animal origin. So, it is necessary to re-evaluate the use of therapeutic antibiotics in stock farms at both regional and international levels due to the high number of multiple resistant (MR) bacteria. Fifty-six MR E. faecalis and E. faecium strains selected from this and previous studies (Valenzuela et al., 2008, 2010) were screened by polymerase chain reaction for antibiotic resistance genes, revealing the presence of tet(L), tet(M), ermB, cat, efrA, efrB, mphA, or msrA/B genes. The ABC Multidrug Efflux Pump EfrAB was detected in 96% of E. faecalis strains and also in 13% of E. faecium strains; this is the first report describing EfrAB in this enterococcal species. The efflux pump-associated msrA/B gene was detected in 66.66% of E. faecium strains, but not in E. faecalis strains.

  7. Effect of vancomycin, tylosin, and chlortetracycline on vancomycin-resistant Enterococcus faecium colonization of broiler chickens during grow-out

    USDA-ARS?s Scientific Manuscript database

    Broiler chickens may serve as reservoirs for human colonization by vancomycin-resistant Enterococcus (VRE). We examined the effects of vancomycin and two commonly-used antimicrobial feed additives on VRE colonization in broiler chickens during grow-out. Chicks received unsupplemented feed or feed ...

  8. Diversity of Tn1546 in vanA-positive Enterococcus faecium clinical isolates with VanA, VanB, and VanD phenotypes and susceptibility to vancomycin.

    PubMed

    Cha, J O; Yoo, J I; Kim, H K; Kim, H S; Yoo, J S; Lee, Y S; Jung, Y H

    2013-10-01

    To investigate diversity in the vanA cluster in Enterococcus faecium isolates from nontertiary hospitals. We identified 43 vanA-positive Ent. faecium isolates, including two vancomycin-susceptible isolates, from hospitals between 2003 and 2006. Of these isolates, >85% were resistant to ampicillin, erythromycin and ciprofloxacin. The vanA cluster was classified into six types using overlapping PCR, but the prototype transposon Tn1546 was not found. Most vanA-positive vancomycin-resistant Enterococcus (VRE) carried IS1216V and belonged to Type III (58·1%) or Type II (20·9%). vanY, vanZ and IS1216V were observed in the left and right ends of Type III with long-range PCR. IS1216V was also observed within vanS and vanX in the two vancomycin-susceptible isolates and in two vancomycin-resistant isolates. No VRE isolates with VanB and VanD phenotypes contained point mutations in vanS, unlike in previous reports. Sequence types (STs) of all isolates belonged to clonal complex 17, and ST78 was predominant. Insertion sequences, especially IS1216V, cause structural variation in the vanA cluster. We report the first observation of vanY and vanZ at the left end of Tn1546 in clinical isolates. This is the first report of the frequency of vancomycin resistance and diversity of Tn1546 in vanA-positive Ent. faecium isolates from nontertiary hospitals. © 2013 The Society for Applied Microbiology.

  9. High prevalence of diverse vancomycin resistance Enterococcus faecium isolates in clinical and environmental sources in ICU wards in southwest of Iran.

    PubMed

    Arshadi, Maniya; Douraghi, Masoumeh; Shokoohizadeh, Leili; Moosavian, Seyed Mojtaba; Pourmand, Mohammad Reza

    2017-10-01

    This study aimed at determining the prevalence, antibiotic resistance patterns, and genetic linkage of Vancomycin Resistant Enterococcus faecium (VREfm) from different sources in the southwest of Iran. A total of 51 VREfm isolates were obtained and subjected to antibiotic susceptibility testing, carriage of virulence genes, and pulsed-field gel electrophoresis (PFGE) method. All the VRE isolates exhibited a high level of resistance to teicoplanin, ampicillin, erythromycin, ciprofloxacin, and gentamicin, also carried the vanA gene. A total of 59% and 34% of the VREfm strains harbored esp and hyl genes, respectively. The results from PFGE showed 31 PFGE patterns including 10 common types (CT) and 21 single types (ST) among the VRE isolates. Furthermore, isolates from different sources in each common type revealed cross transmission between clinical and environmental sources. Overall, the study showed a high prevalence of diverse VRE faecium strains with threatening resistance phenotypes in the environment and clinical sections among different ICU wards of Ahvaz hospitals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. High-level vancomycin resistant Enterococcus faecium related to humans and pigs found in dust from pig breeding facilities.

    PubMed

    Braga, Teresa M; Pomba, Constança; Lopes, M Fátima Silva

    2013-01-25

    Environmental dust from animal breeding facilities was never screened for the presence of enterococci, nor of vancomycin-resistant enterococci (VRE), despite the possibility of being a vehicle of transmission of strains and antibiotic resistance genes between food-producing animals and man. Bio-security measures in pig facilities include disinfection with biocides to avoid the dissemination of opportunistic pathogenic bacteria, namely enterococci and in particular VRE. We thus undertook collection of enterococci and VRE in a representative number of breeding pig facilities in Portugal (n=171) and analyzed their susceptibility to benzalkonium chloride (BC) and chlorhexidine (CHX). A prevalence of 15% of VRE was found, with 6% high-level resistance found, and MIC values for CHX and BC were similar to those commonly found among enterococcal isolates from related environments, 8 μg/ml and 4 μg/ml, respectively. Among the isolated high-level vancomycin resistant Enterococcus faecium carrying the vanA genotype, we found multilocus sequence types closely related to pig and human isolates from European countries and Brazil. These results strongly advise constant surveillance of this environment and its inclusion in future epidemiologic studies on VRE. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Antimicrobial resistance profiles of Enterococcus faecalis and Enterococcus faecium isolated from artisanal food of animal origin in Argentina.

    PubMed

    Delpech, Gastón; Pourcel, Gisela; Schell, Celia; De Luca, María; Basualdo, Juan; Bernstein, Judith; Grenovero, Silvia; Sparo, Mónica

    2012-10-01

    Enterococci are part of the indigenous microbiota of human gastrointestinal tract and food of animal origin. Enterococci inhabiting non-human reservoirs play a critical role in the acquisition and dissemination of antimicrobial resistance determinants. The aim of this work was to investigate the antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium strains recovered from artisanal food of animal origin. Samples of goat cheese (n = 42), cow cheese (n = 40), artisanal salami (n = 30), and minced meat for the manufacture of hamburgers (n = 60) were analyzed. Phenotypic and genotypic tests for species-level identification of the recovered isolates were carried out. Minimum inhibitory concentration (MIC) study for in vitro quantitative antimicrobial resistance assessment was performed, and 71 E. faecalis and 22 E. faecium were isolated. The recovered enterococci showed different multi-drug resistance patterns that included tretracycline, erythromycin, ciprofloxacin, linezolid, penicillin, ampicillin, vancomycin, teicoplanin, gentamicin (high-level resistance), and streptomycin (high-level resistance). VanA-type E. faecium were detected. β-lactamase activity was not observed. Artisanal foods of animal origin act as a non-human reservoir of E. faecalis and E. faecuim strains, expressing multi-resistance to antimicrobials. In conclusion, the implementation of a continuous antimicrobial resistance surveillance in enterococci isolated from artisanal food of animal origin is important.

  12. d-Ala-d-Ser VanN-Type Transferable Vancomycin Resistance in Enterococcus faecium▿

    PubMed Central

    Lebreton, François; Depardieu, Florence; Bourdon, Nancy; Fines-Guyon, Marguerite; Berger, Pierre; Camiade, Sabine; Leclercq, Roland; Courvalin, Patrice; Cattoir, Vincent

    2011-01-01

    Enterococcus faecium UCN71, isolated from a blood culture, was resistant to low levels of vancomycin (MIC, 16 μg/ml) but susceptible to teicoplanin (MIC, 0.5 μg/ml). No amplification was observed with primers specific for the previously described glycopeptide resistance ligase genes, but a PCR product corresponding to a gene called vanN was obtained using degenerate primers and was sequenced. The deduced VanN protein was related (65% identity) to the d-alanine:d-serine VanL ligase. The organization of the vanN gene cluster, determined using degenerate primers and by thermal asymmetric interlaced (TAIL)-PCR, was similar to that of the vanC operons. A single promoter upstream from the resistance operon was identified by rapid amplification of cDNA ends (RACE)-PCR. The presence of peptidoglycan precursors ending in d-serine and d,d-peptidase activities in the absence of vancomycin indicated constitutive expression of the resistance operon. VanN-type resistance was transferable by conjugation to E. faecium. This is the first report of transferable d-Ala-d-Ser-type resistance in E. faecium. PMID:21807981

  13. Dissemination of Enterococcus faecalis and Enterococcus faecium in a ricotta processing plant and evaluation of pathogenic and antibiotic resistance profiles.

    PubMed

    Fernandes, Meg da Silva; Fujimoto, Graciela; de Souza, Leandro Pio; Kabuki, Dirce Yorika; da Silva, Márcio José; Kuaye, Arnaldo Yoshiteru

    2015-04-01

    In this work, the sources of contamination by Enterococcus spp. in a ricotta processing line were evaluated. The isolated strains were tested for virulence genes (gelE, cylA,B, M, esp, agg, ace, efaA, vanB), expression of virulence factors (hemolysin and gelatinase), and the resistance to 10 different antibiotics. Enterococcus faecium and Enterococcus faecalis were subjected to discriminatory identification by intergenic spacer region (ITS)-polymerase chain reaction and sequencing of the ITS region. The results showed that Enterococcus spp. was detected in the raw materials, environment samples and the final product. None of the 107 Enterococcus isolates were completely free from all virulence genes considered. A fraction of 21.5% of the isolates containing all of the genes of the cylA, B, M operon also expressed β-hemolysis. Most of the isolates showed the gelE gene, but only 9.3% were able to hydrolyze gelatin. In addition, 23.5% of the observed Enterococcus isolates had the vanB gene but were susceptible to vancomycin in vitro. The dissemination of antibiotic-resistant enterococci was revealed in this study: 19.3% of the E. faecium samples and 78.0% of the E. faecalis samples were resistant to at least one of the antibiotics tested. Sequencing of region discriminated 5 and 7 distinct groups among E. faecalis and E. faecium, respectively. Although some similarity was observed among some of the isolates, all E. faecalis and E. faecium isolates had genetic differences both in the ITS region and in the virulence profile, which makes them different from each other. © 2015 Institute of Food Technologists®

  14. Phenotypic and genotypic characterization of vancomycin-resistant Enterococcus faecium clinical isolates from two hospitals in Mexico: First detection of VanB phenotype-vanA genotype.

    PubMed

    Bocanegra-Ibarias, Paola; Flores-Treviño, Samantha; Camacho-Ortiz, Adrián; Morfin-Otero, Rayo; Villarreal-Treviño, Licet; Llaca-Díaz, Jorge; Martínez-Landeros, Erik Alan; Rodríguez-Noriega, Eduardo; Calzada-Güereca, Andrés; Maldonado-Garza, Héctor Jesús; Garza-González, Elvira

    2016-01-01

    Enterococcus faecium has emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. Our aim was to determine the antimicrobial susceptibility, biofilm production, and clonal relatedness of vancomycin-resistant E. faecium (VREF) clinical isolates from two hospitals in Mexico. Consecutive clinical isolates (n=56) were collected in two tertiary care hospitals in Mexico from 2011 to 2014. VREF isolates were characterized by phenotypic and molecular methods including pulsed-field gel electrophoresis (PFGE). VREF isolates were highly resistant to vancomycin, erythromycin, norfloxacin, high-level streptomycin, and teicoplanin, and showed lower resistance to tetracycline, nitrofurantoin and quinupristin-dalfopristin. None of the isolates were resistant to linezolid. The vanA gene was detected in all isolates. Two VanB phenotype-vanA genotype isolates, highly resistant to vancomycin and susceptible to teicoplanin, were detected. Furthermore, 17.9% of the isolates were classified as biofilm producers, and the espfm gene was found in 98.2% of the isolates. A total of 37 distinct PFGE patterns and 6 clones (25% of the isolates as clone A, 5.4% as clone B, and 3.6% each as clone C, D, E, and F) were detected. Clone A was detected in 5 different wards of the same hospital during 14 months of surveillance. The high resistance to most antimicrobial agents and the moderate cross-transmission of VREF detected accentuates the need for continuous surveillance of E. faecium in the hospital setting. This is also the first reported incidence of the E. faecium VanB phenotype-vanA genotype in the Americas. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. Wild corvid birds colonized with vancomycin-resistant Enterococcus faecium of human origin harbor epidemic vanA plasmids.

    PubMed

    Oravcová, Veronika; Peixe, Luísa; Coque, Teresa M; Novais, Carla; Francia, Maria V; Literák, Ivan; Freitas, Ana R

    2018-06-02

    The most prevalent type of acquired vancomycin resistance in Enterococcus faecium (VREfm) is encoded by the vanA transposon Tn1546, mainly located on transferable plasmids. vanA plasmids have been characterized in VREfm from a variety of sources but not wild birds. The aim of this study was to analyse the genetic context of VREfm strains recovered from wild corvid birds and to compare their plasmid and strain characteristics with human strains. To achieve that, 75 VREfm isolates, including strains from wild birds recovered during wide surveillance studies performed in Europe, Canada and the United States (2010-2013), and clinical and wastewater strains from Czech Republic, a region lacking data about vanA plasmids, were analysed. Their population structure, presence of major putative virulence markers and characterization of vanA transposons and plasmids were established. VREfm from wild birds were mainly associated with major human lineages (ST18 and ST78) circulating in hospitals worldwide and were enriched in putative virulence markers that are highly associated with clinical E. faecium from human infections. They also carried plasmids of the same families usually found in the clinical setting [RCR, small theta plasmids, RepA_N (pRUM/pLG1) and Inc18]. The clinically widespread IS1251-carrying Tn1546 type "F" was predominant and Tn1546-vanA was mainly located on pRUM/Axe-Txe (USA) and Inc18- or pLG1-like (Europe) plasmids. VREfm from hospitals and wastewaters carried Tn1546-vanA in different plasmid types including mosaic pRUM-Inc18 plasmids, not identified in wild birds. This is the first characterization of vanA plasmids obtained from wild birds. A similar plasmid pool seems to exist in different clonal E. faecium backgrounds of humans and wild birds. The isolation of VREfm strains from wild birds that belong to human E. faecium adapted lineages and carry virulence genes, Tn1546 and plasmid variants widespread in the clinical setting is of concern and highlight

  16. Fitness costs of various mobile genetic elements in Enterococcus faecium and Enterococcus faecalis

    PubMed Central

    Starikova, Irina; Al-Haroni, Mohammed; Werner, Guido; Roberts, Adam P.; Sørum, Vidar; Nielsen, Kaare M.; Johnsen, Pål J.

    2013-01-01

    Objectives To determine the fitness effects of various mobile genetic elements (MGEs) in Enterococcus faecium and Enterococcus faecalis when newly acquired. We also tested the hypothesis that the biological cost of vancomycin resistance plasmids could be mitigated during continuous growth in the laboratory. Methods Different MGEs, including two conjugative transposons (CTns) of the Tn916 family (18 and 33 kb), a pathogenicity island (PAI) of 200 kb and vancomycin-resistance (vanA) plasmids (80–200 kb) of various origins and classes, were transferred into common ancestral E. faecium and E. faecalis strains by conjugation assays and experimentally evolved (vanA plasmids only). Transconjugants were characterized by PFGE, S1 nuclease assays and Southern blotting hybridization analyses. Single specific primer PCR was performed to determine the target sites for the insertion of the CTns. The fitness costs of various MGEs in E. faecium and E. faecalis were estimated in head-to-head competition experiments, and evolved populations were generated in serial transfer assays. Results The biological cost of a newly acquired PAI and two CTns were both host- and insertion-locus-dependent. Newly acquired vanA plasmids may severely reduce host fitness (25%–27%), but these costs were rapidly mitigated after only 400 generations of continuous growth in the absence of antibiotic selection. Conclusions Newly acquired MGEs may impose an immediate biological cost in E. faecium. However, as demonstrated for vanA plasmids, the initial costs of MGE carriage may be mitigated during growth and beneficial plasmid–host association can rapidly emerge. PMID:23833178

  17. Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis.

    PubMed

    Schwaiger, Karin; Bauer, Johann; Hörmansdorfer, Stefan; Mölle, Gabriele; Preikschat, Petra; Kämpf, Peter; Bauer-Unkauf, Ilse; Bischoff, Meike; Hölzel, Christina

    2012-08-01

    Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.

  18. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

    PubMed

    Paganelli, Fernanda L; van de Kamer, Tim; Brouwer, Ellen C; Leavis, Helen L; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    2017-03-01

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. [Enterococcus faecium lung abscess: one case report and literature review].

    PubMed

    Fang, Xiang-Qun; Liu, You-Ning

    2010-02-01

    to study the diagnosis and treatment of enterococcus faecium lung abscess. a retrospective analysis of one case of Enterococcus faecium lung abscess and literature review was conducted. this patient suffered from cough and sputum over 6 months and complicated with hemoptysis over 3 months. Pulmonary embolism and lung cancer were suspected initially. After 2 times of CT-guided percutaneous transthoracic needle aspiration biopsy the diagnosis of pneumonia was made in other hospitals. However, the consolidation in the lung progressed and cavity appeared although antibiotic therapy was conducted. After admission to our hospital, CT-guided percutaneous transthoracic needle aspiration biopsy was made and the lung tissue was sent for bacterial culture. Enterococcus faecium was cultured and it was susceptible to vancomycin, teicoplanin and linezolid. The disease improved significantly after treatment with these 3 antibiotics in turn. In addition, 13 cases of enterococcus pneumonia or lung abscess were reviewed, including 3 cases of enterococcus faecium lung abscess. enterococcus faecium is rarely a pathogen for lung abscess. The diagnosis of enterococcus faecium lung abscess could be confirmed by lung biopsy and bacterial culture of lung tissue which could also provide the susceptibility of antibiotics and guide the antibiotic therapy.

  20. Novel type of VanB2 teicoplanin-resistant hospital-associated Enterococcus faecium.

    PubMed

    Santona, Antonella; Paglietti, Bianca; Al-Qahtani, Ahmed A; Bohol, Marie Fe F; Senok, Abiola; Deligios, Massimo; Rubino, Salvatore; Al-Ahdal, Mohammed N

    2014-08-01

    Seven high-risk clones of vancomycin-resistant Enterococcus faecium (VREF) belonging to clonal complex 17 were identified using multilocus sequence typing (MLST) among clinical isolates from Saudi Arabia. Among these isolates, a new hospital-associated sequence type (ST795), VanB(2)-type teicoplanin-resistant strain was detected. Its unusual phenotype resulted from a new combination of mutations in the ddl, vanS and vanW genes, which confirmed the trend of evolution in VanB-type resistance. Furthermore, characteristics of adaptation and persistence in the hospital environment of ST795 were emphasised by the presence of genes and clusters recognised to be specific for hospital-associated VREF. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Characterization of Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Fresh Produces and Human Fecal Samples.

    PubMed

    Kim, Min-Chan; Cha, Min-Hyeok; Ryu, Jae-Gee; Woo, Gun-Jo

    2017-04-01

    Increased enterococcal infections in hospitals and multidrug-resistant and vancomycin-resistant enterococci (VRE) isolated from humans, animals, and food sources raised public health concern on the presence of VRE in multiple sources. We performed a comparative analysis of the antimicrobial resistance and genetics of VRE isolates derived from fresh produce and human fecal samples. Of 389 Enterococcus isolates, 8 fecal and 3 produce isolates were resistant to vancomycin and teicoplanin; all harbored vanA gene. The VRE isolates showed multidrug-resistant properties. The isolates from fresh produce in this study showed to have the common shared characteristics with the isolates from humans by the results of antimicrobial resistance, multilocus sequence typing, and Tn 1546 transposon analysis. Therefore, VRE isolates from fresh produce are likely related to VRE derived from humans. The results suggested that VRE may contaminate vegetables through the environment, and the contaminated vegetables could then act as a vehicle for human infections. Ongoing nationwide surveillance of antibiotic resistance and the promotion of the proper use of antibiotics are necessary.

  2. Emergence of vanA Enterococcus faecium in Denmark, 2005-15.

    PubMed

    Hammerum, Anette M; Baig, Sharmin; Kamel, Yasmin; Roer, Louise; Pinholt, Mette; Gumpert, Heidi; Holzknecht, Barbara; Røder, Bent; Justesen, Ulrik S; Samulioniené, Jurgita; Kjærsgaard, Mona; Østergaard, Claus; Holm, Anette; Dzajic, Esad; Søndergaard, Turid Snekloth; Gaini, Shahin; Edquist, Petra; Alm, Erik; Lilje, Berit; Westh, Henrik; Stegger, Marc; Hasman, Henrik

    2017-08-01

    To describe the changing epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in clinical samples in Denmark 2005-15 according to species and van type, and, furthermore, to investigate the genetic relatedness of the clinical E. faecium isolates from 2015. During 2005-14, all clinical VRE isolates were tested for the presence of vanA/B/C genes by PCR. In 2015, all clinical VRE isolates were whole-genome sequenced. From the WGS data, the presence of van genes and MLST STs were extracted in silico . Core-genome MLST (cgMLST) analysis was performed for the vancomycin-resistant E. faecium isolates. During 2005-15, 1043 vanA E. faecium , 25 vanB E. faecium , 4 vanA E. faecalis and 28 vanB E. faecalis were detected. The number of VRE was <50 isolates/year until 2012 to > 200 isolates/year in 2013-15. In 2015, 368 vanA E. faecium and 1 vanB E. faecium were detected along with 1 vanA E. faecalis and 1 vanB E. faecalis . cgMLST subdivided the 368 vanA E. faecium isolates into 33 cluster types (CTs), whereas the vanB E. faecium isolate belonged to a different CT. ST203-CT859 was most prevalent (51%), followed by ST80-CT14 (22%), ST117-CT24 (6%), ST80-CT866 (4%) and ST80-CT860 (2%). Comparison with the cgMLST.org database, previous studies and personal communications with neighbouring countries revealed that the novel cluster ST203-CT859 emerged in December 2014 and spread to the south of Sweden and the Faroe Islands during 2015. VRE increased in Denmark during 2005-15 due to the emergence of several vanA E. faecium clones. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A polyclonal outbreak of bloodstream infections by Enterococcus faecium in patients with hematologic malignancies.

    PubMed

    Alatorre-Fernández, Pamela; Mayoral-Terán, Claudia; Velázquez-Acosta, Consuelo; Franco-Rodríguez, Cecilia; Flores-Moreno, Karen; Cevallos, Miguel Ángel; López-Vidal, Yolanda; Volkow-Fernández, Patricia

    2017-03-01

    Enterococcus faecium causes bloodstream infection (BSI) in patients with hematologic malignancies (HMs). We studied the clinical features and outcomes of patients with HM with vancomycin-sensitive E faecium (VSE) and vancomycin-resistant E faecium (VRE) BSI and determined the genetic relatedness of isolates and circumstances associated with the upsurge of E faecium BSI. Case-control study of patients with HM and E faecium-positive blood culture from January 2008-December 2012; cases were patients with VRE and controls were VSE isolates. The strains were tested for Van genes by polymerase chain reaction amplification and we performed pulsed-field gel electrophoresis to determine genetic relatedness. Fifty-eight episodes of E faecium BSI occurred: 35 sensitive and 23 resistant to vancomycin. Mortality was 46% and 57%, attributable 17% and 40%, respectively. Early stage HM was associated with VSE (P = .044), whereas an episode of BSI within the 3 months before the event (P = .039), prophylactic antibiotics (P = .013), and vancomycin therapy during the previous 3 months (P = .001) was associated with VRE. The VanA gene was identified in 97% of isolates studied. E faecium isolates were not clonal. E faecium BSI was associated with high mortality. This outbreak of VRE was not clonal; it was associated with antibiotic-use pressure and highly myelosuppressive chemotherapy. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Antimicrobial resistance pattern and genetic correlation in Enterococcus faecium isolated from healthy volunteers.

    PubMed

    Asadian, M; Sadeghi, J; Rastegar Lari, A; Razavi, Sh; Hasannejad Bibalan, M; Talebi, M

    2016-03-01

    Enterococci are known as a cause of nosocomial infections and this aptitude is intensified by the growth of antibiotic resistance. In the present study, Enterococcus faecium isolates from healthy volunteers were considered to determine the antibiotic resistance profiles and genetic correlation. A total 91 normal flora isolates of enterococci were included in this study. Identification of Enterococcus genus and species were done by biochemical and PCR methods, respectively. Sensitivity for 10 antibiotics was determined and genetic relatedness of all isolates was assessed using Repetitive Element Palindromic PCR (REP-PCR) followed by Pulse Field Gel Electrophoresis (PFGE) on the representative patterns. None of the isolates were resistant to teicoplanin, vancomycin, quinupristin-dalfopristin, linezolid, chloramphenicol, ampicillin and high-level gentamicin. On the other hand, the resistance rate was detected in 30.7%, 23%, and 3.29% of isolates for erythromycin, tetracycline and ciprofloxacin, respectively. The results of PFGE showed 19 (61.5% of our isolates) common types (CT) and 35 (38.5%) single types (ST) amongst the isolates. This is the first study to describe antibiotic resistance pattern and genetic relationship among normal flora enterococci in Iran. This study showed no prevalence of Vancomycin Resistant Enterococci (VRE) and high degrees of diversity among normal flora isolates by genotyping using PFGE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. SNP diversity of Enterococcus faecalis and Enterococcus faecium in a South East Queensland waterway, Australia, and associated antibiotic resistance gene profiles

    PubMed Central

    2011-01-01

    Background Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. Results Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. Conclusions The distribution of E. faecalis and E. faecium

  6. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in the screening of vanA-positive Enterococcus faecium.

    PubMed

    Wang, Li-jun; Lu, Xin-xin; Wu, Wei; Sui, Wen-jun; Zhang, Gui

    2014-01-01

    In order to evaluate a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MAIDI-TOF MS) assay in screening vancomycin-resistant Enterococcus faecium, a total of 150 E. faecium clinical strains were studied, including 60 vancomycin-resistant E. faecium (VREF) isolates and 90 vancomycin-susceptible (VSEF) strains. Vancomycin resistance genes were detected by sequencing. E. faecium were identified by MALDI-TOF MS. A genetic algorithm model with ClinProTools software was generated using spectra of 30 VREF isolates and 30 VSEF isolates. Using this model, 90 test isolates were discriminated between VREF and VSEF. The results showed that all sixty VREF isolates carried the vanA gene. The performance of VREF detection by the genetic algorithm model of MALDI-TOF MS compared to the sequencing method was sensitivity = 80%, specificity = 90%, false positive rate =10%, false negative rate =10%, positive predictive value = 80%, negative predictive value= 90%. MALDI-TOF MS can be used as a screening test for discrimination between vanA-positive E. faecium and vanA-negative E. faecium.

  7. Horizontal transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to clinical isolates of E. faecium and Enterococcus faecalis.

    PubMed

    Jahan, Musarrat; Zhanel, George G; Sparling, Richard; Holley, Richard A

    2015-04-16

    Enterococcus species are part of the normal intestinal flora of a large number of mammals including humans and consequently, they can be used as indicators of faecal contamination in food and water for human consumption. Their presence in large numbers in foods may indicate a lapse in sanitation and their ability to serve as a genetic reservoir of transferable antibiotic resistance is of concern. In the present study, Enterococcus spp., isolated from commercially fermented meat and human clinical specimen were studied to determine genetic relationships. SmaI pulsed-field gel electrophoresis (PFGE) patterns exhibited genomic heterogeneity within and between both groups of isolates. However, in spite of this heterogeneity there were still substantial phenotypic similarities which suggested that food might be a potential vehicle for distribution of resistant bacteria among humans. In vitro conjugation experiments demonstrated transfer of the tetracycline resistant determinant, tet(M), from Enterococcus faecium S27 isolated from fermented sausage to clinical isolates of both E. faecium and Enterococcus faecalis. The streptomycin resistance of E. faecium S27 was also transferred to a clinical strain, E. faecalis 82916, which was confirmed by the presence of the streptomycin resistance gene, aadA, in the donor and transconjugant strains. Since the aadA gene is associated with a class 1 integron, results also suggested that resistance transfer might have occurred via an integron. It appears this is the first identification of a class 1 integron in E. faecium isolated from food. The importance of food enterococci as a reservoir of antibiotic resistance genes and the potential for their genetic transfer to human strains following consumption of uncooked or undercooked contaminated meat is underlined by this work. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterization of an anti-listerial enterocin from wheat silage based Enterococcus faecium.

    PubMed

    Bal, Emel Banu Buyukunal; Isevi, Taner; Bal, Mehmet Ali

    2012-10-01

    Two Enterococcus faecium and one E. faecalis strains isolated and identified from wheat silage were characterized based on plasmid content, hemolytic activity, antibiotic resistance patterns, bacteriocin production potential, and presence of enterocin structural genes (entA, entB, entP, entL50B). Among the isolates, only the E. faecium U7 strain exhibited bacteriocin activity against Listeria monocytogenes ATCC 7644, and vancomycin resistant Enterococcus spp. (VRE). A combination of three structural genes (entA, entB, and entP) was detected in E. faecium U7. A relationship between the presence of enterocin structural genes, and bacteriocin activity was detected in E. faecium U7; therefore partially purified enterocin (PPE) was further investigated from the isolate. Several bands of different molecular weights were expressed from PPE extracts following tricine SDS-PAGE analysis. However, the only band showing bacteriocin activity was in an approximate 4-kDa region. PPE treatment with proteinase K, lysozyme, and α -amylase caused complete loss of bacteriocin activity. PPE heat treatment at various temperatures resulted in a notable reduction in bacteriocin expression. Enterocin U7 was relatively heat stable, and presumably exhibits a glucoprotein nature with distinct inhibitory properties. Specific bacterial inhibitory activity of enterocin U7, and the producer strain absence of β -hemolysis and vancomycin susceptibility features deserves further investigation to evaluate its potential application in silage inoculation and food preservation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antimicrobial resistance profile of Enterococcus spp isolated from food in Southern Brazil

    PubMed Central

    Riboldi, Gustavo Pelicioli; Frazzon, Jeverson; d’Azevedo, Pedro Alves; Frazzon, Ana Paula Guedes

    2009-01-01

    Fifty-six Enterococcus spp. strains were isolated from foods in Southern Brazil, confirmed by PCR and classified as Enterococcus faecalis (27), Enterococcus faecium (23) and Enterococcus spp (6). Antimicrobial susceptibility tests showed resistance phenotypes to a range of antibiotics widely administrated in humans such as gentamycin, streptomycin, ampicillin and vancomycin. PMID:24031330

  10. Development and evaluation of a Quadruplex Taq Man real-time PCR assay for simultaneous detection of clinical isolates of Enterococcus faecalis, Enterococcus faecium and their vanA and vanB genotypes.

    PubMed

    Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman

    2014-10-01

    We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.

  11. Vancomycin resistant Enterococcus spp. from crows and their environment in metropolitan Washington State, USA: Is there a correlation between VRE positive crows and the environment?

    PubMed

    Roberts, Marilyn C; No, David B; Marzluff, John M; Delap, Jack H; Turner, Robert

    2016-10-15

    Vancomycin-resistant enterococci [VRE] have been isolated from municipal, hospital and agricultural wastewater, recreational beaches, wild animals, birds and food animals around the world. In this study, American crows (Corvus brachyrhynchos) from sewage treatment plants (WWTP), dairy farms, and a large roost in a restored wetland with corresponding environmental samples were cultured for VRE. A total of 245 samples [156 crows, 89 environmental] were collected and screened for acquired vanA, vanB and/or intrinsic vanC1 genes. Samples were enriched overnight in BHI supplemented with 20μg/mL aztreonam, 4μg/mL vancomycin and plated on m-Enterococcus agar media supplemented with 6μg/mL vancomycin. Selected colonies were grown on BHI media supplemented with 18μg/mL vancomycin. Of these, 24.5% of the crow and 55% the environmental/cow samples were VRE positive as defined by Enterococcus spp. able to grow on media supplemented with 18μg/mL vancomycin. A total of 122 VRE isolates, 43 crow and 79 environmental isolates were screened, identified to species level using 16S sequencing and further characterized. Four vanA E. faecium and multiple vanC1 E. gallinarum were identified from crows isolated from three sites. E. faecium vanA and E. gallinarum vanC1 along with other Enterococcus spp. carrying vanA, vanB, vanC1 were isolated from three environments. All enterococci were multidrug resistant. Crows were more likely to carry vanA E. faecium than either the cow feces or wetland waters/soils. Comparing E. gallinarum vanC1 from crows and their environment would be useful in determining whether crows share VRE strains with their environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Screening municipal wastewater effluent and surface water used for drinking water production for the presence of ampicillin and vancomycin resistant enterococci.

    PubMed

    Taučer-Kapteijn, Maja; Hoogenboezem, Wim; Heiliegers, Laura; de Bolster, Danny; Medema, Gertjan

    2016-07-01

    The emergence of clinical enterococcal isolates that are resistant to both ampicillin and vancomycin is a cause of great concern, as therapeutic alternatives for the treatment of infections caused by such organisms are becoming limited. Aquatic environments could play a role in the dissemination of antibiotic resistant enterococci. This study investigated the presence of ampicillin and vancomycin resistant enterococci in the treated effluent of six wastewater treatment plants (WWTPs) and in surface water used as a source for drinking water production in the Netherlands. Membrane filtration in combination with selective media with ampicillin or vancomycin was applied to determine the presence of ampicillin resistant Enterococcus (ARE) and vancomycin resistant Enterococcus (VRE) species. Ampicillin resistant Enterococcus faecium (minimal inhibitory concentration (MIC) >16μg/mL; n=1033) was observed in all studied WWTP effluents. In surface water used for drinking water production (intake locations), no ARE or VRE were observed. At both types of location, intrinsic vancomycin resistant Pediococcus spp., Leuconostoc spp. and Lactobacillus spp. were isolated with the vancomycin medium. The ampicillin resistant E. faecium (AREfm) isolates (n=113) did not contain the vanA or vanB gene, but MIC testing for vancomycin showed intermediate vancomycin resistance (2-8μgmL(-1)) to occur in these AREfm strains. This study documents the discharge of ampicillin resistant E. faecium strains with intermediate vancomycin resistance by the WWTPs into the surface water, but no presence of these strains downstream at intake locations for drinking water production. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Antimicrobial Susceptibility Patterns of Enterococcus faecalis and Enterococcus faecium Isolated from Poultry Flocks in Germany.

    PubMed

    Maasjost, J; Mühldorfer, K; Cortez de Jäckel S; Hafez, H M

    2015-03-01

    Between 2010 and 2011, 145 Enterococcus isolates (Enterococcus faecalis, n = 127; Enterococcus faecium, n = 18) were collected during routine bacteriologic diagnostics from broilers, layers, and fattening turkeys in Germany showing various clinical signs. The susceptibility to 24 antimicrobial agents was investigated by broth microdilution test to determine minimum inhibitory concentrations (MICs). All E. faecalis isolates (n = 127) were susceptible to the beta-lactam antibiotics ampicillin, amoxicillin-clavulanic acid, and penicillin. Corresponding MIC with 50% inhibition (MIC50) and MIC with 90% inhibition (MIC90) values of these antimicrobial agents were at the lower end of the test range (≤ 4 μg/ml). In addition, no vancomycin-resistant enterococci (VRE) were found. High resistance rates were identified in both Enterococcus species for lincomycin (72%-99%) and tetracycline (67%-82%). Half or more than half of Enterococcus isolates were resistant to gentamicin (54%-72%) and the macrolide antibiotics erythromycin (44%-61%) and tylosin-tartate (44%-56%). Enterococcus faecalis isolated from fattening turkeys showed the highest prevalence of antimicrobial resistance compared to other poultry production systems. Eighty-nine out of 145 Enterococcus isolates were resistant to three or more antimicrobial classes. Again, turkeys stood out with 42 (8 1%) multiresistant isolates. The most-frequent resistance patterns of E. faecalis were gentamicin, lincomycin, and tetracycline in all poultry production systems.

  14. 1,2,4-Oxadiazole antimicrobials act synergistically with daptomycin and display rapid kill kinetics against MDR Enterococcus faecium.

    PubMed

    Carter, Glen P; Harjani, Jitendra R; Li, Lucy; Pitcher, Noel P; Nong, Yi; Riley, Thomas V; Williamson, Deborah A; Stinear, Timothy P; Baell, Jonathan B; Howden, Benjamin P

    2018-06-01

    Enterococcus faecium is an important nosocomial pathogen. It has a high propensity for horizontal gene transfer, which has resulted in the emergence of MDR strains that are difficult to treat. The most notorious of these, vancomycin-resistant E. faecium, are usually treated with linezolid or daptomycin. Resistance has, however, been reported, meaning that new therapeutics are urgently needed. The 1,2,4-oxadiazoles are a recently discovered family of antimicrobials that are active against Gram-positive pathogens and therefore have therapeutic potential for treating E. faecium. However, only limited data are available on the activity of these antimicrobials against E. faecium. To determine whether the 1,2,4-oxadiazole antimicrobials are active against MDR and daptomycin-non-susceptible E. faecium. The activity of the 1,2,4-oxadiazole antimicrobials against vancomycin-susceptible, vancomycin-resistant and daptomycin-non-susceptible E. faecium was determined using susceptibility testing, time-kill assays and synergy assays. Toxicity was also evaluated against human cells by XTT and haemolysis assays. The 1,2,4-oxadiazoles are active against a range of MDR E. faecium, including isolates that display non-susceptibility to vancomycin and daptomycin. This class of antimicrobial displays rapid bactericidal activity and demonstrates superior killing of E. faecium compared with daptomycin. Finally, the 1,2,4-oxadiazoles act synergistically with daptomycin against E. faecium, with subinhibitory concentrations reducing the MIC of daptomycin for non-susceptible isolates to a level below the clinical breakpoint. The 1,2,4-oxadiazoles are active against MDR and daptomycin-non-susceptible E. faecium and hold great promise as future therapeutics for treating infections caused by these difficult-to-treat isolates.

  15. The first report of the vanC₁ gene in Enterococcus faecium isolated from a human clinical specimen.

    PubMed

    Sun, Mingyue; Wang, Yue; Chen, Zhongju; Zhu, Xuhui; Tian, Lei; Sun, Ziyong

    2014-09-01

    The vanC₁ gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC₁gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC₁ and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC₁ gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC₁gene. However, this study is the first to report the presence of the vanC₁gene in E. faecium of human origin. Additionally, our research showed the vanC₁gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC₁gene from different species.

  16. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.

    PubMed

    Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy

    2015-03-01

    In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.

  17. Application of DNA probes for rRNA and vanA genes to investigation of a nosocomial cluster of vancomycin-resistant enterococci.

    PubMed Central

    Woodford, N; Morrison, D; Johnson, A P; Briant, V; George, R C; Cookson, B

    1993-01-01

    DNA probes specific for genes encoding rRNA and the glycopeptide resistance gene vanA were used to investigate a cluster of vancomycin-resistant (MICs, > 512 mg/liter) Enterococcus faecalis and Enterococcus faecium isolated from separate patients in a renal unit in a London hospital. When digested with BamHI, 12 of 13 vancomycin-resistant E. faecalis isolates exhibited a common restriction fragment length polymorphism pattern of rRNA genes (ribotype). A vanA probe hybridized with chromosomal DNA in these 12 isolates. The other isolate of vancomycin-resistant E. faecalis had a different ribotype and the vanA gene was located on plasmid DNA. These data suggest that cross-infection with a single strain of vancomycin-resistant E. faecalis occurred in most instances. In contrast, 23 vancomycin-resistant E. faecium isolates showed greater heterogeneity, comprising 8 ribotypes, suggesting that multiple strains were present in the unit. Twenty-one of these 23 isolates harbored a 24-MDa plasmid which hybridized with the vanA probe, implying that interstrain dissemination of a vancomycin resistance plasmid may have occurred among E. faecium isolates in the renal unit. Images PMID:8096216

  18. Genome-Wide Identification of Ampicillin Resistance Determinants in Enterococcus faecium

    PubMed Central

    Zhang, Xinglin; Paganelli, Fernanda L.; Bierschenk, Damien; Kuipers, Annemarie; Bonten, Marc J. M.; Willems, Rob J. L.; van Schaik, Willem

    2012-01-01

    Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistance in E. faecium, but the existence of additional resistance determinants has been suggested. Here, we constructed a high-density transposon mutant library in E. faecium and developed a transposon mutant tracking approach termed Microarray-based Transposon Mapping (M-TraM), leading to the identification of a compendium of E. faecium genes that contribute to ampicillin resistance. These genes are part of the core genome of E. faecium, indicating a high potential for E. faecium to evolve towards β-lactam resistance. To validate the M-TraM results, we adapted a Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. We confirmed the role of four genes in ampicillin resistance by the generation of targeted mutants and further characterized these mutants regarding their resistance to lysozyme. The results revealed that ddcP, a gene predicted to encode a low-molecular-weight penicillin binding protein with D-alanyl-D-alanine carboxypeptidase activity, was essential for high-level ampicillin resistance. Furthermore, deletion of ddcP sensitized E. faecium to lysozyme and abolished membrane-associated D,D-carboxypeptidase activity. This study has led to the development of a broadly applicable platform for functional genomic-based studies in E. faecium, and it provides a new perspective on the genetic basis of ampicillin resistance in this organism. PMID:22761597

  19. A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland

    PubMed Central

    Raven, Kathy E.; Reuter, Sandra; Reynolds, Rosy; Brodrick, Hayley J.; Russell, Julie E.; Török, M. Estée; Parkhill, Julian; Peacock, Sharon J.

    2016-01-01

    Vancomycin-resistant Enterococcus faecium (VREfm) is an important cause of healthcare-associated infections worldwide. We undertook whole-genome sequencing (WGS) of 495 E. faecium bloodstream isolates from 2001–2011 in the United Kingdom and Ireland (UK&I) and 11 E. faecium isolates from a reference collection. Comparison between WGS and multilocus sequence typing (MLST) identified major discrepancies for 17% of isolates, with multiple instances of the same sequence type (ST) being located in genetically distant positions in the WGS tree. This confirms that WGS is superior to MLST for evolutionary analyses and is more accurate than current typing methods used during outbreak investigations. E. faecium has been categorized as belonging to three clades (Clades A1, hospital-associated; A2, animal-associated; and B, community-associated). Phylogenetic analysis of our isolates replicated the distinction between Clade A (97% of isolates) and Clade B but did not support the subdivision of Clade A into Clade A1 and A2. Phylogeographic analyses revealed that Clade A had been introduced multiple times into each hospital referral network or country, indicating frequent movement of E. faecium between regions that rarely share hospital patients. Numerous genetic clusters contained highly related vanA-positive and -negative E. faecium, which implies that control of vancomycin-resistant enterococci (VRE) in hospitals also requires consideration of vancomycin-susceptible E. faecium. Our findings reveal the evolution and dissemination of hospital-associated E. faecium in the UK&I and provide evidence for WGS as an instrument for infection control. PMID:27527616

  20. A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland.

    PubMed

    Raven, Kathy E; Reuter, Sandra; Reynolds, Rosy; Brodrick, Hayley J; Russell, Julie E; Török, M Estée; Parkhill, Julian; Peacock, Sharon J

    2016-10-01

    Vancomycin-resistant Enterococcus faecium (VREfm) is an important cause of healthcare-associated infections worldwide. We undertook whole-genome sequencing (WGS) of 495 E. faecium bloodstream isolates from 2001-2011 in the United Kingdom and Ireland (UK&I) and 11 E. faecium isolates from a reference collection. Comparison between WGS and multilocus sequence typing (MLST) identified major discrepancies for 17% of isolates, with multiple instances of the same sequence type (ST) being located in genetically distant positions in the WGS tree. This confirms that WGS is superior to MLST for evolutionary analyses and is more accurate than current typing methods used during outbreak investigations. E. faecium has been categorized as belonging to three clades (Clades A1, hospital-associated; A2, animal-associated; and B, community-associated). Phylogenetic analysis of our isolates replicated the distinction between Clade A (97% of isolates) and Clade B but did not support the subdivision of Clade A into Clade A1 and A2. Phylogeographic analyses revealed that Clade A had been introduced multiple times into each hospital referral network or country, indicating frequent movement of E. faecium between regions that rarely share hospital patients. Numerous genetic clusters contained highly related vanA-positive and -negative E. faecium, which implies that control of vancomycin-resistant enterococci (VRE) in hospitals also requires consideration of vancomycin-susceptible E. faecium Our findings reveal the evolution and dissemination of hospital-associated E. faecium in the UK&I and provide evidence for WGS as an instrument for infection control. © 2016 Raven et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Assessment of virulence factors, antibiotic resistance and amino-decarboxylase activity in Enterococcus faecium MXVK29 isolated from Mexican chorizo.

    PubMed

    Alvarez-Cisneros, Y M; Fernández, F J; Sainz-Espuñez, T; Ponce-Alquicira, E

    2017-02-01

    Enterococcus faecium MXVK29 has the ability to produce an antimicrobial compound that belongs to Class IIa of the Klaenhammer classification, and could be used as part of a biopreservation technology through direct inoculation of the strain as a starter or protective culture. However, Enterococcus is considered as an opportunistic pathogen, hence, the purpose of this work was to study the food safety determinants of E. faecium MXVK29. The strain was sensitive to all of the antibiotics tested (penicillin, tetracycline, vancomycin, erythromycin, chloramphenicol, gentamicin, neomycin, kanamycin and netilmicin) and did not demonstrate histamine, cadaverine or putrescine formation. Furthermore, tyrosine-decarboxylase activity was detected by qualitative assays and PCR. Among the virulence factors analysed for the strain, only the genes encoding the sexual pheromone cCF10 precursor lipoprotein (ccf) and cell-wall adhesion (efaA fm ) were amplified. The presence of these genes has low impact on pathogenesis, as there are no other genes encoding for virulence factors, such as aggregation proteins. Therefore, Enterococcus faecium could be employed as part of a bioconservation method, because it does not produce risk factors for consumer's health; in addition, it could be used as part of the hurdle technology in foods. The use of molecular techniques has allowed, in recent years, to detect pathogenicity genes present in the genome of starter cultures used in food processing and preservation. The presence of these genes is undesirable, because horizontal transfer may occur with the natural biota of consumers. For this reason, it is important to analyse the presence of pathogenicity genes in such cultures. In this work, virulence factors and antibiotic resistance of Enterococcus faecium strain MXVK29, producing an antimicrobial compound with high antilisterial activity, were analysed. The results indicate that the strain is safe to be used in food processing as starter

  2. Evaluation of BBL CHROMagar VanRE for detection of vancomycin-resistant Enterococci in rectal swab specimens.

    PubMed

    Stamper, Paul D; Shulder, Stephanie; Bekalo, Pearl; Manandhar, Deepika; Ross, Tracy L; Speser, Sharon; Kingery, Julie; Carroll, Karen C

    2010-11-01

    A study was performed on 517 surveillance rectal swabs to evaluate a selective and differential chromogenic medium, the BBL CHROMagar VanRE (CVRE), which enables recovery and identification of VanA- and VanB-containing Enterococcus faecium (ENFM) and Enterococcus faecalis (ENFS) isolates. Compared to BBL Enterococcosel agar, a bile-esculin-azide-vancomycin (BEAV) agar, the initial overall sensitivity, specificity, and positive and negative predictive values of CVRE for the detection of vancomycin-resistant ENFM and ENFS were 99.1% and 94.8% and 84.2% and 99.7%, respectively. Among our patient population, more vancomycin-resistant enterococci (VRE) were recovered with CVRE than BEAV.

  3. Evaluation of BBL CHROMagar VanRE for Detection of Vancomycin-Resistant Enterococci in Rectal Swab Specimens▿

    PubMed Central

    Stamper, Paul D.; Shulder, Stephanie; Bekalo, Pearl; Manandhar, Deepika; Ross, Tracy L.; Speser, Sharon; Kingery, Julie; Carroll, Karen C.

    2010-01-01

    A study was performed on 517 surveillance rectal swabs to evaluate a selective and differential chromogenic medium, the BBL CHROMagar VanRE (CVRE), which enables recovery and identification of VanA- and VanB-containing Enterococcus faecium (ENFM) and Enterococcus faecalis (ENFS) isolates. Compared to BBL Enterococcosel agar, a bile-esculin-azide-vancomycin (BEAV) agar, the initial overall sensitivity, specificity, and positive and negative predictive values of CVRE for the detection of vancomycin-resistant ENFM and ENFS were 99.1% and 94.8% and 84.2% and 99.7%, respectively. Among our patient population, more vancomycin-resistant enterococci (VRE) were recovered with CVRE than BEAV. PMID:20739492

  4. Safety, beneficial and technological properties of Enterococcus faecium isolated from Brazilian cheeses

    PubMed Central

    dos Santos, Karina Maria Olbrich; Vieira, Antônio Diogo Silva; Salles, Hévila Oliveira; Oliveira, Jacqueline da Silva; Rocha, Cíntia Renata Costa; Borges, Maria de Fátima; Bruno, Laura Maria; Franco, Bernadette Dora Gombossy de Melo; Todorov, Svetoslav Dimitrov

    2015-01-01

    This study aimed to characterize the safety and technological properties of Enterococcus faecium strains isolated from Brazilian Coalho cheeses. High levels of co-aggregation were observed between Enterococcus faecium strains EM485 and EM925 and both Escherichia coli and Clostridium perfringens . Both strains presented low levels of hydrophobicity. E. faecium EM485 and EM925 were both able to grow in the presence of 0.5% of the sodium salts of taurocholic acid (TC), taurodeoxycholic acid (TDC), glycocholic acid (GC), and glycodeoxycholic acid (GDC), although they showed the ability to deconjugate only GDC and TDC. Both strains showed good survival when exposed to conditions simulating the gastro intestinal tract (GIT). When tested for the presence of virulence genes, only tyrosine decarboxylase and vancomycin B generated positive PCR results. PMID:26221113

  5. Safety, beneficial and technological properties of Enterococcus faecium isolated from Brazilian cheeses.

    PubMed

    Dos Santos, Karina Maria Olbrich; Vieira, Antônio Diogo Silva; Salles, Hévila Oliveira; Oliveira, Jacqueline da Silva; Rocha, Cíntia Renata Costa; Borges, Maria de Fátima; Bruno, Laura Maria; Franco, Bernadette Dora Gombossy de Melo; Todorov, Svetoslav Dimitrov

    2015-03-01

    This study aimed to characterize the safety and technological properties of Enterococcus faecium strains isolated from Brazilian Coalho cheeses. High levels of co-aggregation were observed between Enterococcus faecium strains EM485 and EM925 and both Escherichia coli and Clostridium perfringens . Both strains presented low levels of hydrophobicity. E. faecium EM485 and EM925 were both able to grow in the presence of 0.5% of the sodium salts of taurocholic acid (TC), taurodeoxycholic acid (TDC), glycocholic acid (GC), and glycodeoxycholic acid (GDC), although they showed the ability to deconjugate only GDC and TDC. Both strains showed good survival when exposed to conditions simulating the gastro intestinal tract (GIT). When tested for the presence of virulence genes, only tyrosine decarboxylase and vancomycin B generated positive PCR results.

  6. Antimicrobial Resistance of Enterococcus Species Isolated from Chicken in Turkey

    PubMed Central

    Sanlibaba, Pınar; Tezel, Basar Uymaz; Senturk, Esra

    2018-01-01

    Abstract The aim of the present work was to provide information about Enterococcus strains isolated from pre-packaged chicken samples in Ankara (Turkey), focusing on their prevalence, phenotypic and genotypic characteristics, and antibiotic resistance. We report the first study on the occurrence of antibiotic resistant enterococci in pre-packaged chicken samples in Ankara. A total of 97 suspicious enterococcal isolates were identified from 122 chicken samples. All isolates were identified to species level by phenotypic and molecular methods. In the 16S rDNA sequence analysis, Enterococcus faecium (61.85%) and Enterococcus faecalis (38.15%) were found to be the most frequently detected Enterococcus spp. Of the 97 isolates tested for hemolytic activity, 12.37% enterococcal strains were β-hemolytic. β-Hemolysin was most prevalent among E. faecium (58.33%) compared to E. faecalis (41.66%). Disk diffusion method was used for determining of antibiotic resistance. The analysis of the antimicrobial resistance of the 97 Enterococcus isolates revealed that the resistance to kanamycin (98.96%), rifampicin (80.41%) and ampicillin (60.82%) was most frequent. Furthermore, resistance to erythromycin (38.14%) and ciprofloxacin (34.02%) was also observed. The frequencies of resistance to tetracycline (9.27%), penicillin G (8.24%), and chloramphenicol (3.09%), gentamicin (2.06%) and streptomycin (1.03%) were low. None of the isolates was resistant to vancomycin. Multi-drug resistance was found in 97.93% of Enterococcus strains. E. faecium strains showed a more resistant phenotype than E. faecalis strains according to the antibiotic resistance levels. The results of this study indicated that chicken meat is a potential reservoir for the transmission of antibiotic resistance from animals to humans. PMID:29805287

  7. Molecular epidemiology of vancomycin resistant enterococci in a tertiary care hospital in Saudi Arabia.

    PubMed

    Somily, Ali M; Al-Mohizea, Maha M; Absar, Muhammed M; Fatani, Amal J; Ridha, Afaaf M; Al-Ahdal, Mohammed N; Senok, Abiola C; Al-Qahtani, Ahmed A

    2016-08-01

    Vancomycin-resistant enterococci (VRE) are a major cause of nosocomial infections with high mortality and morbidity. There is limited data on the molecular characterization of VRE in Saudi Arabia. This study was carried out to investigate the premise that a shift in VRE epidemiology is occurring in our setting. Enterococcus species identification and susceptibility testing plus VRE phenotypic confirmation by vancomycin and teicoplanin E-test were carried out. Vancomycin resistance genes were detected by PCR. Strain typing was conducted using PFGE. Among the strains of Enterococcus spp. investigated in this study, 17 (4.5%) were VRE. With the exception of one isolate from rectal swab, all others were clinical specimens with blood being the commonest source (n = 11; 64.7%), followed by urine (n = 3; 17.6%). The 17 VRE isolates were Enterococcus faecium (n/N = 13/17) and Enterococcus gallinarum (n/N = 4/17). Among E. faecium isolates, vanA(+)/vanB(+) (n/N = 8/13; 62%) exhibiting VanB phenotype were predominant. One of the five vanA(+)E. faecium isolates exhibited a VanB phenotype indicative of vanA genotype-VanB phenotype incongruence. E. gallinarum isolates exhibited a Van C phenotype although two were vanA(+)/vanC1(+). PFGE revealed a polyclonal distribution with eight pulsotypes. These findings indicate an evolving VRE epidemiology with vanA(+)/vanB(+) isolates and vanA genotype-VanB phenotype incongruence isolates, which were previously described as colonizers, are now causing clinical infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysis of Clonality and Antibiotic Resistance among Early Clinical Isolates of Enterococcus faecium in the United States

    PubMed Central

    Galloway-Peña, Jessica R.; Nallapareddy, Sreedhar R.; Arias, Cesar A.; Eliopoulos, George M.; Murray, Barbara E.

    2009-01-01

    Background The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. Methods Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994 we determined the multi-locus sequence type, the presence of 16 putative virulence genes (hylEfm, espEfm and fms genes), resistance to ampicillin (AMPR), vancomycin (VANR) and high-levels of gentamicin and streptomycin. Results Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the US. The earliest CC17 isolates were part of an outbreak in 1982 in Richmond, VA. Characteristics of CC17 isolates included increases in AMPR, the presence of hylEfm and espEfm, emergence of VANR and the presence of at least 13/14 fms genes. Eight out of forty-one of the early AMPR isolates, however, were not within CC17. Conclusions While not all early US AMPR isolates were clonally related, E. faecium CC17 isolates have been circulating in the US since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment. PMID:19821720

  9. Characterization of antimicrobial resistance and quinolone resistance factors in high-level ciprofloxacin-resistant Enterococcus faecalis and Enterococcus faecium isolates obtained from fresh produce and fecal samples of patients.

    PubMed

    Kim, Min-Chan; Woo, Gun-Jo

    2017-07-01

    The emergence of fluoroquinolone-resistant enterococci is worldwide. Antimicrobial resistance was characterized and the effect of quinolone-resistance factors was analyzed in high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis and Enterococcus faecium isolated from fresh produce and fecal samples of patients. Among the 81 ciprofloxacin-resistant Enterococcus isolates, 46 showed high levels of ciprofloxacin resistance, resistance to other quinolone antibiotics, and multidrug resistance profiles. The virulence factors esp and hyl were identified in 27 (58.7%) and 25 (54.3%) of isolates, respectively. Sequence type analysis showed that 35 strains of HLCR E. faecium were clonal complex 17. Eleven strains of HLCR E. faecalis were confirmed as sequence type (ST) 28, ST 64 and ST 125. Quinolone resistance-determining region mutation was identified in HLCR Enterococcus isolates; with serine being changed in gyrA83, gyrA87 and parC80. This result shows that gyrA and parC mutations could be important factors for high-level resistance to fluoroquinolones. No significant differences were observed in antimicrobial resistance patterns and genetic characteristics among the isolates from fresh produce and fecal samples. Therefore, good agricultural practices in farming and continuous monitoring of patients, food and the environment for Enterococcus spp. should be performed to prevent antimicrobial resistance and enable reduction of resistance rates. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Emergence of a daptomycin-non-susceptible Enterococcus faecium strain that encodes mutations in DNA repair genes after high-dose daptomycin therapy.

    PubMed

    Matono, Takashi; Hayakawa, Kayoko; Hirai, Risen; Tanimura, Akira; Yamamoto, Kei; Fujiya, Yoshihiro; Mawatari, Momoko; Kutsuna, Satoshi; Takeshita, Nozomi; Mezaki, Kazuhisa; Ohmagari, Norio; Miyoshi-Akiyama, Tohru

    2016-04-01

    An increasing number of reports have documented the emergence of daptomycin-nonsusceptible Enterococcus in patients during daptomycin therapy. Even though several mechanisms for daptomycin-nonsusceptibility have been suggested, the potential genetic mutations which might contribute to the daptomycin-nonsusceptibility are not fully understood. We isolated a vancomycin-susceptible, daptomycin nonsusceptible Enterococcus faecium strain from a patient with acute lymphocytic leukemia who received high-dose daptomycin therapy for E. faecium endocarditis. Whole-genome sequencing analysis revealed mutations within genes encoding DNA repair proteins MutL and RecJ of the daptomycin-nonsusceptible Enterococcus strain which might have facilitated its emergence. We identified the mutations of DNA mismatch repair genes in a clinical isolate of daptomycin nonsusceptible E. faecium which emerged in spite of high-dose daptomycin therapy. The finding implicates the possible association of DNA repair mechanism and daptomycin resistance. Careful monitoring is necessary to avoid the emergence of daptomycin non-susceptible isolates of E. faecium and particularly in cases of long-term daptomycin use or in immunocompromised patients.

  11. Detection of vancomycin resistances in enterococci within 3 1/2 hours

    NASA Astrophysics Data System (ADS)

    Schröder, U. -Ch.; Beleites, C.; Assmann, C.; Glaser, U.; Hübner, U.; Pfister, W.; Fritzsche, W.; Popp, J.; Neugebauer, U.

    2015-02-01

    Vancomycin resistant enterococci (VRE) constitute a challenging problem in health care institutions worldwide. Novel methods to rapidly identify resistances are highly required to ensure an early start of tailored therapy and to prevent further spread of the bacteria. Here, a spectroscopy-based rapid test is presented that reveals resistances of enterococci towards vancomycin within 3.5 hours. Without any specific knowledge on the strain, VRE can be recognized with high accuracy in two different enterococci species. By means of dielectrophoresis, bacteria are directly captured from dilute suspensions, making sample preparation very easy. Raman spectroscopic analysis of the trapped bacteria over a time span of two hours in absence and presence of antibiotics reveals characteristic differences in the molecular response of sensitive as well as resistant Enterococcus faecalis and Enterococcus faecium. Furthermore, the spectroscopic fingerprints provide an indication on the mechanisms of induced resistance in VRE.

  12. Characterization of functional properties of Enterococcus faecium strains isolated from human gut.

    PubMed

    İspirli, Hümeyra; Demirbaş, Fatmanur; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.

  13. Polyclonal emergence of vanA vancomycin-resistant Enterococcus faecium in Australia.

    PubMed

    van Hal, Sebastiaan J; Espedido, Björn A; Coombs, Geoffrey W; Howden, Benjamin P; Korman, Tony M; Nimmo, Graeme R; Gosbell, Iain B; Jensen, Slade O

    2017-04-01

    To investigate the genetic context associated with the emergence of vanA VRE in Australia. The whole genomes of 18 randomly selected vanA -positive Enterococcus faecium patient isolates, collected between 2011 and 2013 from hospitals in four Australian capitals, were sequenced and analysed. In silico typing and transposon/plasmid assembly revealed that the sequenced isolates represented (in most cases) different hospital-adapted STs and were associated with a variety of different Tn 1546 variants and plasmid backbone structures. The recent emergence of vanA VRE in Australia was polyclonal and not associated with the dissemination of a single 'dominant' ST or vanA -encoding plasmid. Interestingly, the factors contributing to this epidemiological change are not known and future studies may need to consider investigation of potential community sources. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Raising the Alarmone: Within-Host Evolution of Antibiotic-Tolerant Enterococcus faecium

    PubMed Central

    2017-01-01

    ABSTRACT Enterococci are ancient commensal bacteria that recently emerged as leading causes of antibiotic-resistant, hospital-acquired infection. Vancomycin-resistant enterococci (VRE) epitomize why drug-resistant enterococcal infections are a problem: VRE readily colonize the antibiotic-perturbed gastrointestinal (GI) tract where they amplify to large numbers, and from there, they infect other body sites, including the bloodstream, urinary tract, and surgical wounds. VRE are resistant to many antimicrobials and host defenses, which facilitates establishment at the site of infection and confounds therapeutic clearance. Having evolved to colonize the GI tract, VRE are comparatively ill adapted to the human bloodstream. A recent study by Honsa and colleagues (E. S. Honsa et al., mBio 8:e02124-16, 2017, https://doi.org/10.1128/mBio.02124-16) found that a strain of vancomycin-resistant Enterococcus faecium evolved antibiotic tolerance within the bloodstream of an immunocompromised host by activating the stringent response through mutation of relA. Precisely how VRE colonize and infect and the selective pressures that led to the outgrowth of relA mutants are the subjects of ongoing research. PMID:28223450

  15. Detection of a cfr(B) Variant in German Enterococcus faecium Clinical Isolates and the Impact on Linezolid Resistance in Enterococcus spp.

    PubMed

    Bender, Jennifer K; Fleige, Carola; Klare, Ingo; Fiedler, Stefan; Mischnik, Alexander; Mutters, Nico T; Dingle, Kate E; Werner, Guido

    2016-01-01

    The National Reference Centre for Staphylococci and Enterococci in Germany has received an increasing number of clinical linezolid-resistant E. faecium isolates in recent years. Five isolates harbored a cfr(B) variant gene locus the product of which is capable of conferring linezolid resistance. The cfr(B)-like methyltransferase gene was also detected in Clostridium difficile. Antimicrobial susceptibility was determined for cfr(B)-positive and linezolid-resistant E. faecium isolates and two isogenic C. difficile strains. All strains were subjected to whole genome sequencing and analyzed with respect to mutations in the 23S rDNA, rplC, rplD and rplV genes and integration sites of the cfr(B) variant locus. To evaluate methyltransferase function, the cfr(B) variant of Enterococcus and Clostridium was expressed in both E. coli and Enterococcus spp. Ribosomal target site mutations were detected in E. faecium strains but absent in clostridia. Sequencing revealed 99.9% identity between cfr(B) of Enterococcus and cfr of Clostridium. The methyltransferase gene is encoded by transposon Tn6218 which was present in C. difficile Ox3196, truncated in some E. faecium and absent in C. difficile Ox3206. The latter finding explains the lack of linezolid and chloramphenicol resistance in C. difficile Ox3206 and demonstrates for the first time a direct correlation of elevated linezolid MICs in C. difficile upon cfr acquisition. Tn6218 insertion sites revealed novel target loci for integration, both within the bacterial chromosome and as an integral part of plasmids. Importantly, the very first plasmid-association of a cfr(B) variant was observed. Although we failed to measure cfr(B)-mediated resistance in transformed laboratory strains the occurrence of the multidrug resistance gene cfr on putatively highly mobile and/or extrachromosomal DNA in clinical isolates is worrisome with respect to dissemination of antibiotic resistances.

  16. Detection of a cfr(B) Variant in German Enterococcus faecium Clinical Isolates and the Impact on Linezolid Resistance in Enterococcus spp.

    PubMed Central

    Fleige, Carola; Klare, Ingo; Fiedler, Stefan; Mischnik, Alexander; Mutters, Nico T.; Dingle, Kate E.; Werner, Guido

    2016-01-01

    The National Reference Centre for Staphylococci and Enterococci in Germany has received an increasing number of clinical linezolid-resistant E. faecium isolates in recent years. Five isolates harbored a cfr(B) variant gene locus the product of which is capable of conferring linezolid resistance. The cfr(B)-like methyltransferase gene was also detected in Clostridium difficile. Antimicrobial susceptibility was determined for cfr(B)-positive and linezolid-resistant E. faecium isolates and two isogenic C. difficile strains. All strains were subjected to whole genome sequencing and analyzed with respect to mutations in the 23S rDNA, rplC, rplD and rplV genes and integration sites of the cfr(B) variant locus. To evaluate methyltransferase function, the cfr(B) variant of Enterococcus and Clostridium was expressed in both E. coli and Enterococcus spp. Ribosomal target site mutations were detected in E. faecium strains but absent in clostridia. Sequencing revealed 99.9% identity between cfr(B) of Enterococcus and cfr of Clostridium. The methyltransferase gene is encoded by transposon Tn6218 which was present in C. difficile Ox3196, truncated in some E. faecium and absent in C. difficile Ox3206. The latter finding explains the lack of linezolid and chloramphenicol resistance in C. difficile Ox3206 and demonstrates for the first time a direct correlation of elevated linezolid MICs in C. difficile upon cfr acquisition. Tn6218 insertion sites revealed novel target loci for integration, both within the bacterial chromosome and as an integral part of plasmids. Importantly, the very first plasmid-association of a cfr(B) variant was observed. Although we failed to measure cfr(B)-mediated resistance in transformed laboratory strains the occurrence of the multidrug resistance gene cfr on putatively highly mobile and/or extrachromosomal DNA in clinical isolates is worrisome with respect to dissemination of antibiotic resistances. PMID:27893790

  17. Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family.

    PubMed

    Nallapareddy, Sreedhar R; Weinstock, George M; Murray, Barbara E

    2003-03-01

    A collagen-binding adhesin of Enterococcus faecium, Acm, was identified. Acm shows 62% similarity to the Staphylococcus aureus collagen adhesin Cna over the entire protein and is more similar to Cna (60% and 75% similarity with Cna A and B domains respectively) than to the Enterococcus faecalis collagen-binding adhesin, Ace, which shares homology with Acm only in the A domain. Despite the detection of acm in 32 out of 32 E. faecium isolates, only 11 of these (all clinical isolates, including four vancomycin-resistant endocarditis isolates and seven other isolates) exhibited binding to collagen type I (CI). Although acm from three CI-binding vancomycin-resistant E. faecium clinical isolates showed 100% identity, analysis of acm genes and their promoter regions from six non-CI-binding strains identified deletions or mutations that introduced stop codons and/or IS elements within the gene or the promoter region in five out of six strains, suggesting that the presence of an intact functional acm gene is necessary for binding of E. faecium strains to CI. Recombinant Acm A domain showed specific and concentration-dependent binding to collagen, and this protein competed with E. faecium binding to immobilized CI. Consistent with the adherence phenotype and sequence data, probing with Acm-specific IgGs purified from anti-recombinant Acm A polyclonal rabbit serum confirmed the surface expression of Acm in three out of three collagen-binding clinical isolates of E. faecium tested, but in none of the strains with a non-functional pseudo acm gene. Introduction of a functional acm gene into two non-CI-binding natural acm mutant strains conferred a CI-binding phenotype, further confirming that native Acm is sufficient for the binding of E. faecium to CI. These results demonstrate that acm, which encodes a potential virulence factor, is functional only in certain infection-derived clinical isolates of E. faecium, and suggest that Acm is the primary adhesin responsible for the

  18. RelA Mutant Enterococcus faecium with Multiantibiotic Tolerance Arising in an Immunocompromised Host.

    PubMed

    Honsa, Erin S; Cooper, Vaughn S; Mhaissen, Mohammed N; Frank, Matthew; Shaker, Jessica; Iverson, Amy; Rubnitz, Jeffrey; Hayden, Randall T; Lee, Richard E; Rock, Charles O; Tuomanen, Elaine I; Wolf, Joshua; Rosch, Jason W

    2017-01-03

    Serious bacterial infections in immunocompromised patients require highly effective antibacterial therapy for cure, and thus, this setting may reveal novel mechanisms by which bacteria circumvent antibiotics in the absence of immune pressure. Here, an infant with leukemia developed vancomycin-resistant Enterococcus faecium (VRE) bacteremia that persisted for 26 days despite appropriate antibiotic therapy. Sequencing of 22 consecutive VRE isolates identified the emergence of a single missense mutation (L152F) in relA, which constitutively activated the stringent response, resulting in elevated baseline levels of the alarmone guanosine tetraphosphate (ppGpp). Although the mutant remained susceptible to both linezolid and daptomycin in clinical MIC testing and during planktonic growth, it demonstrated tolerance to high doses of both antibiotics when growing in a biofilm. This biofilm-specific gain in resistance was reflected in the broad shift in transcript levels caused by the mutation. Only an experimental biofilm-targeting ClpP-activating antibiotic was able to kill the mutant strain in an established biofilm. The relA mutation was associated with a fitness trade-off, forming smaller and less-well-populated biofilms on biological surfaces. We conclude that clinically relevant relA mutations can emerge during prolonged VRE infection, causing baseline activation of the stringent response, subsequent antibiotic tolerance, and delayed eradication in an immunocompromised state. The increasing prevalence of antibiotic-resistant bacterial pathogens is a major challenge currently facing the medical community. Such pathogens are of particular importance in immunocompromised patients as these individuals may favor emergence of novel resistance determinants due to lack of innate immune defenses and intensive antibiotic exposure. During the course of chemotherapy, a patient developed prolonged bacteremia with vancomycin-resistant Enterococcus faecium that failed to clear

  19. Characterization and risk factors of vancomycin-resistant Enterococci (VRE) among animal-affiliated workers in Malaysia.

    PubMed

    Getachew, Y; Hassan, L; Zakaria, Z; Zaid, C Z M; Yardi, A; Shukor, R A; Marawin, L T; Embong, F; Aziz, S A

    2012-11-01

    This study determined the risk factors and characteristics of vancomycin-resistant Enterococci (VRE) among individuals working with animals in Malaysia. Targeted cross-sectional studies accompanied with laboratory analysis for the identification and characterization of resistance and virulence genes and with genotype of VRE were performed. VRE were detected in 9·4% (95% CI: 6·46-13·12) of the sampled populations. Enterococcus faecium, Enterococcus faecalis and Enterococcus gallinarum were isolated, and vanA was detected in 70% of the isolates. Enterococcus faecalis with vanB was obtained from one foreign poultry worker. At least one virulence gene was detected in >50% of Ent. faecium and Ent. faecalis isolates. The esp and gelE genes were common among Ent. faecium (58·3%) and Ent. faecalis (78%), respectively. The VRE species showed diverse RAPD profiles with some clustering of strains based on the individual's background. However, the risk factors found to be significantly associated with the prevalence of VRE were age (OR: 5·39, 95% CI: 1·98-14·61) and previous hospitalization (OR: 4·06, 95% CI: 1·33-12·35). VRE species isolated from individuals in this study have high level of vancomycin resistance, were genetically diverse and possessed the virulence traits. Age of individuals and history of hospitalization rather than occupational background determined VRE colonization. This study provides comprehensive findings on the epidemiological and molecular features of VRE among healthy individuals working with animals. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. [Emergence of glycopeptide resistant Enterococcus faecium in Algeria: a case report].

    PubMed

    Hamidi, Moufida; Ammari, Houria; Ghaffor, Mohamed; Benamrouche, Nabila; Tali-Maamar, Hassiba; Tala-Khir, Farida; Younsi, Mokhtar; Rahal, Kheira

    2013-01-01

    A glycopeptide-resistant Enterococcus faecium (EFRG) was isolated from a wound in a patient hospitalized in a university hospital in Algiers. This strain was resistant to several antibiotics. This patient was carrying this strain in the digestive tract which may partly explain its origin. Genotypic comparison of the two strains by pulsed field gel electrophoresis showed that it was the same strain. Glycopeptide resistance was due to the presence of the vanA gene. Vigilance is required facing the emergence of strains of EFRG in our hospitals.

  1. Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5.

    PubMed

    Gong, Pengjuan; Cheng, Mengjun; Li, Xinwei; Jiang, Haiyan; Yu, Chuang; Kahaer, Nadire; Li, Juecheng; Zhang, Lei; Xia, Feifei; Hu, Liyuan; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Han, Wenyu; Gu, Jingmin

    2016-05-01

    Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Enterococcus in surface waters from the Des Moines River (Iowa) watershed: location, persistence and vancomycin resistance.

    PubMed

    Larsen, Bryan; Essmann, Michael K; Geletta, Simon; Duff, Barbara

    2012-01-01

    The object of this study was to quantify vancomycin-resistant enterococci in surface water from Central Iowa obtained from April 2007 to August 2007. Water from established sampling sites in four watersheds was plated on bile-esculin agar. Presumptively identified enterococci were categorized as "above the level of concern" if the sample contained ≥ 107 CFU per 100 ml. Confirmation of isolates as enterococci was based on growth at elevated temperature in high salt and on Enterococcus agar. Isolates that grew on 6 μg/ml vancomycin agar were deemed resistant. PCR analysis of resistant strains characterized vancomycin resistance genes. 77.2% of surface water samples from Central Iowa contained enterococci. Among enterococcal isolates, 10.4% grew on media containing 6 μg/ml vancomycin. PCR analysis of resistance genes showed a preponderance of VanC2/C3 in the area studied and VanB was not detected. Vancomycin-resistant Enterococcus is present in Central Iowa surface waters but resistance rarely involved VanA genotypes. Nevertheless, the potential for community-acquired infections remains a risk.

  3. Characterization and susceptibility patterns of clinically important Enterococcus species in eastern Nepal.

    PubMed

    Acharya, A; Khanal, A; Kanungo, R; Mohapatra, T

    2007-12-01

    Life threatening infections caused by enterococcus species with multidrug resistance has emerged as a threat to medical care in the present era. This study was conducted to characterize enterococcus species isolated from different clinical samples and to detect the pattern of susceptibility to some of the commonly used antibiotics in B.P Koirala Institute of Health Sciences (BPKIHS), a tertiary care hospital in eastern Nepal. Clinical samples submitted to the microbiology unit of Central Laboratory Service (CLS) for culture and sensitivity during March 2002 - February 2003 was analyzed. Enterococcus species were identified by colony characteristics, gram staining and relevant biochemical tests. Antibiotic susceptibility test was done by the Kirby Bauer disc diffusion technique. Of 50 Enterococcus species isolated, E. faecalis was the predominant isolate (48.0%) followed by E. faecium (32.0%) and E. avium (20.0%). Eighty-eight percent of E. faecalis showed sensitivity to cephotaxime and 87.0% to vancomycin. Multiple drug resistance was observed most commonly in E. faecium. Seventeen percent of E. faecium were resistant to vancomycin and 63.0% to ciprofloxacin and 44.0% to ampicillin. On the contrary E. avium rarely showed resistance to the antimicrobials tested including vancomycin. Enterococcal infections are common nowadays specially in hospitalized patients. Inappropriate use of antibiotics in clinical practice and poultry should be discouraged to prevent the emergence of multidrug resistant species.

  4. High Rate of Resistance to Quinupristin-Dalfopristin in Enterococcus faecium Clinical Isolates from Korea

    PubMed Central

    Oh, Won Sup; Ko, Kwan Soo; Song, Jae-Hoon; Lee, Mi Young; Park, Sulhee; Peck, Kyong Ran; Lee, Nam Yong; Kim, Choon-Kwan; Lee, Hyuck; Kim, Shin-Woo; Chang, Hyun-Ha; Kim, Yeon-Sook; Jung, Sook-In; Son, Jun Seong; Yeom, Joon-Sup; Ki, Hyun Kyun; Woo, Gun-Jo

    2005-01-01

    We tested the in vitro susceptibilities of 603 enterococcal isolates from eight tertiary-care hospitals in Korea. The quinupristin-dalfopristin resistance rate in Enterococcus faecium was very high (25 isolates, 10.0%). It was suggested that both clonal spread and the sporadic emergence of quinupristin-dalfopristin-resistant isolates may explain the high prevalence of quinupristin-dalfopristin resistance in Korea. PMID:16304198

  5. Global Spread of the hylEfm Colonization-Virulence Gene in Megaplasmids of the Enterococcus faecium CC17 Polyclonal Subcluster▿

    PubMed Central

    Freitas, Ana R.; Tedim, Ana P.; Novais, Carla; Ruiz-Garbajosa, Patricia; Werner, Guido; Laverde-Gomez, Jenny A.; Cantón, Rafael; Peixe, Luísa; Baquero, Fernando; Coque, Teresa M.

    2010-01-01

    Enterococcus faecium has increasingly been reported as a nosocomial pathogen since the early 1990s, presumptively associated with the expansion of a human-associated Enterococcus faecium polyclonal subcluster known as clonal complex 17 (CC17) that has progressively acquired different antibiotic resistance (ampicillin and vancomycin) and virulence (espEfm, hylEfm, and fms) traits. We analyzed the presence and the location of a putative glycoside hydrolase hylEfm gene among E. faecium strains obtained from hospitalized patients (255 patients; outbreak, bacteremic, and/or disseminated isolates from 23 countries and five continents; 1986 to 2009) and from nonclinical origins (isolates obtained from healthy humans [25 isolates], poultry [30], swine [90], and the environment [55]; 1999 to 2007). Clonal relatedness was established by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmid analysis included determination of content and size (S1-PFGE), transferability (filter mating), screening of Rep initiator proteins (PCR), and location of vanA, vanB, ermB, and hylEfm genes (S1/I-CeuI hybridization). Most E. faecium isolates contained large plasmids (>150 kb) and showed variable contents of van, hylEfm, or espEfm. The hylEfm gene was associated with megaplasmids (170 to 375 kb) of worldwide spread (ST16, ST17, and ST18) or locally predominant (ST192, ST203, ST280, and ST412) ampicillin-resistant CC17 clones collected in the five continents since the early 1990s. All but one hylEfm-positive isolate belonged to the CC17 polyclonal subcluster. The presence of hylEfm megaplasmids among CC17 from Europe, Australia, Asia, and Africa since at least the mid-1990s was documented. This study further demonstrates the pandemic expansion of particular CC17 clones before acquisition of vancomycin resistance and putative virulence traits and describes the presence of megaplasmids in most of the contemporary E. faecium isolates with different origins. PMID

  6. High-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium causing invasive infection: Twelve-year surveillance in the Minami Ibaraki Area.

    PubMed

    Osuka, Hanako; Nakajima, Jun; Oishi, Tsuyoshi; Funayama, Yasunori; Ebihara, Tsugio; Ishikawa, Hiroichi; Saito, Kazuto; Koganemaru, Hiroshi; Hitomi, Shigemi

    2016-01-01

    We examined prevalence of high-level aminoglycoside resistance (HLAR) in Enterococcus faecalis and Enterococcus faecium causing invasive infection in the Minami Ibaraki Area. Ten strains of both species each, recovered from the blood or the cerebrospinal fluid between 2003 and 2014, were randomly selected every year. High-level resistance to gentamicin (HLR-GM) and streptomycin (HLR-SM) was detected in 34% (41 of 120 strains) and 18% (21) of E. faecalis and 9% (11) and 39% (48) of E. faecium, respectively. In comparisons of the proportions among three four-year periods, HLR-SM among E. faecium was significantly lower in the 2011-2014 period. All strains with HLR-GM were positive for the aac(6')-Ie-aph(2″)-Ia gene. The ant(6')-Ia gene was detected in all with HLR-SM except for one E. faecalis strain. The present study showed that prevalence of HLR-GM among E. faecalis and E. faecium causing invasive infection in this area was nearly equivalent to that described in previous studies in Japan and that proportions of strains with HLAR did not vary during the study period except for that of HLR-SM among E. faecium. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains.

    PubMed

    Ibarguren, Carolina; Raya, Raúl R; Apella, María C; Audisio, M Carina

    2010-02-01

    Four Enterococcus faecium strains, isolated from honeycombs (C1 and M2d strains) and feral combs (Mori1 and M1b strains) secreted antimicrobial substances active against fourteen different Listeria spp. strains. The antimicrobial compound(s) present in the cell free supernatant were highly thermostable (121 degrees C for 15 min) and inactivated by proteolytic enzymes, but not by alpha-amylase and lipase, thus suggesting a peptidic nature. Since the structural bacteriocin gene determinants of enterocins A and B were PCR amplified from the four E. faecium isolates, only the bacteriocin produced by strain C1 was further characterized: it showed a broad band of approximately 4.0-7.0 kDa in SDS-PAGE and was bactericidal (4 log decrease) against L. monocytogenes 99/287. L. monocytogenes 99/287R, a clone spontaneously resistant to the enterocin produced by E. avium DSMZ17511 (ex PA1), was not inhibited by the enterocin-like compounds produced by strain C1. However, it was inhibited in mixed culture fermentations by E. faecium C1 and a bacteriostatic effect was observed. The bacteriocin-producer Enterococcus strains were not haemolytic; gelatinase negative and sensitive to vancomycin and other clinically relevant antibiotics.

  8. Antibiotic resistance patterns and genetic relatedness of Enterococcus faecalis and Enterococcus faecium isolated from military working dogs in Korea.

    PubMed

    Bang, Kiman; An, Jae-Uk; Kim, Woohyun; Dong, Hee-Jin; Kim, Junhyung; Cho, Seongbeom

    2017-06-30

    Enterococcus spp. are normally present in the gastrointestinal tracts of animals and humans, but can cause opportunistic infections that can be transmitted to other animals or humans with integrated antibiotic resistance. To investigate if this is a potential risk in military working dogs (MWDs), we analyzed antibiotic resistance patterns and genetic relatedness of Enterococcus spp. isolated from fecal samples of MWDs of four different age groups. Isolation rates of Enterococcus spp., Enterococcus ( E. ) faecalis , and E. faecium , were 87.7% (57/65), 59.6% (34/57), and 56.1% (32/57), respectively, as determined by bacterial culture and multiplex PCR. The isolation rate of E. faecalis gradually decreased with age (puppy, 100%; adolescent, 91.7%; adult, 36.4%; and senior, 14.3%). Rates of resistance to the antibiotics ciprofloxacin, gentamicin, streptomycin, sulfamethoxazole/trimethoprim, imipenem, and kanamycin among Enterococcus spp. increased in adolescents and adults and decreased in senior dogs, with some isolates having three different antibiotic resistance patterns. There were indistinguishable pulsed-field gel electrophoresis patterns among the age groups. The results suggest that Enterococcus is horizontally transferred, regardless of age. As such, periodic surveillance studies should be undertaken to monitor changes in antibiotic resistance, which may necessitate modification of antibiotic regimens to manage antibiotic resistance transmission.

  9. Synthesis and Evaluation of 1,2,4-Triazolo[1,5-a]pyrimidines as Antibacterial Agents Against Enterococcus faecium

    PubMed Central

    Wang, Huan; Lee, Mijoon; Peng, Zhihong; Blázquez, Blas; Lastochkin, Elena; Kumarasiri, Malika; Bouley, Renee; Chang, Mayland; Mobashery, Shahriar

    2015-01-01

    Rapid emergence of antibiotic resistance is one of the most challenging global public health concerns. In particular, vancomycin-resistant Enterococcus faecium infections have been increasing in frequency, representing 25% of enterococci infections in intensive care units. A novel class of 1,2,4-triazolo[1,5-a]pyrimidines active against E. faecium is reported herein. We used a three-component Biginelli-like heterocyclization reaction for the synthesis of a series of these derivatives based on reactions of aldehydes, β-dicarbonyl compounds, and 3-alkylthio-5-amino-1,2,4-tria-zoles. The resulting compounds were assayed for antimicrobial activity against the ESKAPE panel of bacteria, followed by investigation of their in vitro activities. These analyses identified a subset of 1,2,4-triazolo[1,5-a]pyrimidines that had good narrow-spectrum antibacterial activity against E. faecium and exhibited metabolic stability with low intrinsic clearance. Macromolecular synthesis assays revealed cell-wall biosynthesis as the target of these antibiotics. PMID:25923368

  10. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes

    PubMed Central

    2012-01-01

    Background Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. Results In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported

  11. Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium

    PubMed Central

    Sinel, Clara; Cacaci, Margherita; Meignen, Pierrick; Guérin, François; Davies, Bryan W.; Sanguinetti, Maurizio; Giard, Jean-Christophe

    2017-01-01

    ABSTRACT Enterococcus faecium has emerged as a major opportunistic pathogen for 2 decades with the spread of hospital-adapted multidrug-resistant clones. As members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo, with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of this study was to evaluate globally the impact of SICs of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium. Transcriptomic analysis was performed by RNA sequencing (RNA-seq) (HiSeq 2500; Illumina) using the vanB-positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/liter, i.e., 1/8 of the MIC). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced, whereas 286 genes were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Among upregulated genes, EFAU004_02294 (fold change, 14.3) encoded a protein (Qnr of E. faecium [EfmQnr]) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive fluoroquinolone (FQ) resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292, coding for the collagen adhesin Acm, was also induced by the SIC of ciprofloxacin (fold change, 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both EfmQnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving fluoroquinolone therapy. PMID:28193670

  12. Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium.

    PubMed

    Sinel, Clara; Cacaci, Margherita; Meignen, Pierrick; Guérin, François; Davies, Bryan W; Sanguinetti, Maurizio; Giard, Jean-Christophe; Cattoir, Vincent

    2017-05-01

    Enterococcus faecium has emerged as a major opportunistic pathogen for 2 decades with the spread of hospital-adapted multidrug-resistant clones. As members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo , with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of this study was to evaluate globally the impact of SICs of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium Transcriptomic analysis was performed by RNA sequencing (RNA-seq) (HiSeq 2500; Illumina) using the vanB -positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/liter, i.e., 1/8 of the MIC). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced, whereas 286 genes were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Among upregulated genes, EFAU004_02294 (fold change, 14.3) encoded a protein (Qnr of E. faecium [EfmQnr]) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive fluoroquinolone (FQ) resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292, coding for the collagen adhesin Acm, was also induced by the SIC of ciprofloxacin (fold change, 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both EfmQnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving fluoroquinolone therapy. Copyright © 2017 American Society for Microbiology.

  13. Vancomycin resistant enterococci in farm animals – occurrence and importance

    PubMed Central

    Nilsson, Oskar

    2012-01-01

    The view on enterococci has over the years shifted from harmless commensals to opportunistic but important pathogens mainly causing nosocomial infections. One important part of this development is the emergence of vancomycin resistance enterococci (VRE). The term VRE includes several combinations of bacterial species and resistance genes of which the most clinically important is Enterococcus faecium with vanA type vancomycin resistance. This variant is also the most common VRE among farm animals. The reason for VRE being present among farm animals is selection by extensive use of the vancomycin analog avoparcin for growth promotion. Once the use of avoparcin was discontinued, the prevalence of VRE among farm animals decreased. However, VRE are still present among farm animals and by spread via food products they could potentially have a negative impact on public health. This review is based on the PhD thesis Vancomycin Resistant Enterococci in Swedish Broilers – Emergence, Epidemiology and Elimination and makes a short summary of VRE in humans and food producing animals. The specific situation regarding VRE in Swedish broiler production is also mentioned. PMID:22957131

  14. High-level penicillin resistance and penicillin-gentamicin synergy in Enterococcus faecium.

    PubMed Central

    Torres, C; Tenorio, C; Lantero, M; Gastañares, M J; Baquero, F

    1993-01-01

    Thirty-seven Enterococcus faecium strains with different levels of penicillin susceptibility were studied in time-kill experiments with a fixed concentration (5 micrograms/ml) of gentamicin combined with different penicillin concentrations (6 to 600 micrograms/ml). Synergy was defined as a relative decrease in counts of greater than 2 log10 CFU per milliliter after 24 h of incubation when the combination of the antibiotics was compared with its most active component alone. The minimal synergistic penicillin concentrations found were 6 micrograms/ml for 16 of 16 strains for which penicillin MICs were < or = 25 micrograms/ml, 20 to 100 micrograms/ml for 14 of 17 strains for which penicillin MICs were 50 to 200 micrograms/ml, and 200 to 500 micrograms/ml for 4 of 4 strains for which MICs penicillin were > 200 micrograms/ml. Penicillin-gentamicin synergy was observed even in high-level penicillin-resistant E. faecium strains at penicillin concentrations close to one-half the penicillin MIC. The possibility of treating infections caused by high-level penicillin-resistant E. faecium strains with penicillin-gentamicin combinations in particular cases may depend on the penicillin levels attainable in vivo. PMID:8285628

  15. Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi

    This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  16. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium.

    PubMed

    Lee, Sae-Mi; Huh, Hee Jae; Song, Dong Joon; Shim, Hyang Jin; Park, Kyung Sun; Kang, Cheol-In; Ki, Chang-Seok; Lee, Nam Yong

    2017-12-01

    To investigate linezolid-resistance mechanisms in linezolid-nonsusceptible enterococci (LNSE) isolated from a tertiary hospital in Korea. Enterococcal isolates exhibiting linezolid MICs ≥4 mg l -1 that were isolated between December 2011 and May 2016 were investigated by PCR and sequencing for mutations in 23S rRNA or ribosomal proteins (L3, L4 and L22) and for the presence of cfr, cfr(B) and optrA genes.Results/Key findings. Among 135 LNSE (87 Enterococcus faecium and 48 Enterococcus faecalis isolates), 39.1 % (34/87) of E. faecium and 18.8 % (9/48) of E. faecalis isolates were linezolid-resistant. The optrA carriage was the dominant mechanism in E. faecalis: 13 isolates, including 10 E. faecalis [70 % (7/10) linezolid-resistant and 30 % (3/10) linezolid-intermediate] and three E. faecium [33.3 % (1/3) linezolid-resistant and 66.7 % (2/3) linezolid-intermediate], contained the optrA gene. G2576T mutations in the 23S rRNA gene were detected only in E. faecium [14 isolates; 71.4 % (10/14) linezolid-resistant and 28.6 % (4/14) linezolid-intermediate]. One linezolid-intermediate E. faecium harboured a L22 protein alteration (Ser77Thr). No isolates contained cfr or cfr(B) genes and any L3 or L4 protein alterations. No genetic mechanism of resistance was identified for 67.6 % (23/34) of linezolid-resistant E. faecium. A low rate of 23S rRNA mutations and the absence of known linezolid-resistance mechanisms in the majority of E. faecium isolates suggest regional differences in the mechanisms of linezolid resistance and the possibility of additional mechanisms.

  17. Draft genome sequence of Enterococcus faecium strain LMG 8148.

    PubMed

    Michiels, Joran E; Van den Bergh, Bram; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    Enterococcus faecium, traditionally considered a harmless gut commensal, is emerging as an important nosocomial pathogen showing increasing rates of multidrug resistance. We report the draft genome sequence of E. faecium strain LMG 8148, isolated in 1968 from a human in Gothenburg, Sweden. The draft genome has a total length of 2,697,490 bp, a GC-content of 38.3 %, and 2,402 predicted protein-coding sequences. The isolation of this strain predates the emergence of E. faecium as a nosocomial pathogen. Consequently, its genome can be useful in comparative genomic studies investigating the evolution of E. faecium as a pathogen.

  18. Vancomycin tolerance in enterococci.

    PubMed

    Saribas, Suat; Bagdatli, Yasar

    2004-11-01

    Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the

  19. Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter.

    PubMed

    Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M

    2008-07-01

    Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.

  20. pHTβ-promoted mobilization of non-conjugative resistance plasmids from Enterococcus faecium to Enterococcus faecalis.

    PubMed

    Di Sante, Laura; Morroni, Gianluca; Brenciani, Andrea; Vignaroli, Carla; Antonelli, Alberto; D'Andrea, Marco Maria; Di Cesare, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E; Rossolini, Gian Maria; Biavasco, Francesca

    2017-09-01

    To analyse the recombination events associated with conjugal mobilization of two multiresistance plasmids, pRUM17i48 and pLAG (formerly named pDO1-like), from Enterococcus faecium 17i48 to Enterococcus faecalis JH2-2. The plasmids from two E. faecalis transconjugants (JH-4T, tetracycline resistant, and JH-8E, erythromycin resistant) and from the E. faecium donor (also carrying a pHTβ-like conjugative plasmid, named pHTβ17i48) were investigated by several methods, including PCR mapping and sequencing, S1-PFGE followed by Southern blotting and hybridization, and WGS. Two locations of repApHTβ were detected in both transconjugants, one on a ∼50 kb plasmid (as in the donor) and the other on plasmids of larger sizes. In JH-4T, WGS disclosed an 88.6 kb plasmid resulting from the recombination of pHTβ17i48 (∼50 kb) and a new plasmid, named pLAG (35.3 kb), carrying the tet(M), tet(L), lsa(E), lnu(B), spw and aadE resistance genes. In JH-8E, a 75 kb plasmid resulting from the recombination of pHTβ17i48 and pRUM17i48 was observed. In both cases, the cointegrates were apparently derived from replicative transposition of an IS1216 present in each of the multiresistance plasmids into pHTβ17i48. The cointegrates could resolve to yield the multiresistance plasmids and a pHTβ17i48 derivative carrying an IS1216 (unlike the pHTβ17i48 of the donor). Our results completed the characterization of the multiresistance plasmids carried by the E. faecium 17i48, confirming the role of pHT plasmids in the mobilization of non-conjugative antibiotic resistance elements among enterococci. Results also revealed that mobilization to E. faecalis was associated with the generation of cointegrate plasmids promoted by IS1216-mediated transposition. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates.

    PubMed

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.

  2. Wide Distribution of Virulence Genes among Enterococcus faecium and Enterococcus faecalis Clinical Isolates

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species. PMID:25147855

  3. Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry.

    PubMed

    Stępień-Pyśniak, Dagmara; Marek, Agnieszka; Banach, Tomasz; Adaszek, Łukasz; Pyzik, Ewelina; Wilczyński, Jarosław; Winiarczyk, Stanisław

    2016-06-01

    The aim of this study was to evaluate the frequency of occurrence of bacteria of the genus Enterococcus in poultry, to identify them by means of matrixassisted laser desorption/ionisation time-of-flight mass spectrometry (MALDITOF MS), and to analyse the antimicrobial susceptibility of the isolated strains to the drugs most frequently used in poultry. The material for the bacteriological tests was obtained mainly from the heart (97%) of the birds investigated. Of a total of 2,970 samples tested, 911 (30.7%) tested positive for Enterococcus spp. Enterococci were detected in broilers (88.1%), laying hens (5.3%), turkeys (3.9%), breeding hens (2.2%), and geese (0.4%). The most commonly identified species were Enterococcus (E.) faecalis (74.7%), E. faecium (10.1%), E. gallinarum (5.5%), E. hirae (4.6%), and E. cecorum (4.1%). The most frequent resistance properties were resistance to sulphamethoxazole/trimethoprim (88%), tylosin (71.4%), enrofloxacin (69.4%), doxycycline (67.3%), and lincomycin/spectinomycin (56.1%). Only one vancomycin-resistant Enterococcus, E. cecorum from a broiler, was found.

  4. Mature biofilms of Enterococcus faecalis and Enterococcus faecium are highly resistant to antibiotics.

    PubMed

    Holmberg, Anna; Rasmussen, Magnus

    2016-01-01

    Enterococcus faecalis and Enterococcus faecium are important nosocomial pathogens that form biofilms on implanted materials. We compare the antibiotic sensitivity of bacteria in new (established during 24 hours) and mature (established during 120 hours) enterococcal biofilms. Mature biofilms contained more bacteria and were much more tolerant to antibiotics, including rifampicin-containing combinations, as judged by determination of minimal biofilm eradication concentrations and by time-kill experiments of bacteria in biofilms formed on beads of bone cement. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Molecular analysis and distribution of multidrug-resistant Enterococcus faecium isolates belonging to clonal complex 17 in a tertiary care center in Mexico City

    PubMed Central

    2013-01-01

    Background Enterococcus faecium has recently emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. A high rate of resistance to different antibiotics has been associated with virulent clonal complex 17 isolates carrying the esp and hyl genes and the purK1 allele. Results Twelve clinical vancomycin-resistant Enterococcus faecium (VREF) isolates were obtained from pediatric patients at the Hospital Infantil de México Federico Gómez (HIMFG). Among these VREF isolates, 58.3% (7/12) were recovered from urine, while 41.7% (5/12) were recovered from the bloodstream. The VREF isolates showed a 100% rate of resistance to ampicillin, amoxicillin-clavulanate, ciprofloxacin, clindamycin, chloramphenicol, streptomycin, gentamicin, rifampicin, erythromycin and teicoplanin. In addition, 16.7% (2/12) of the isolates were resistant to linezolid, and 66.7% (8/12) were resistant to tetracycline and doxycycline. PCR analysis revealed the presence of the vanA gene in all 12 VREF isolates, esp in 83.3% (10/12) of the isolates and hyl in 50% (6/12) of the isolates. Phylogenetic analysis via molecular typing was performed using pulsed-field gel electrophoresis (PFGE) and demonstrated 44% similarity among the VREF isolates. MLST analysis identified four different sequence types (ST412, ST757, ST203 and ST612). Conclusion This study provides the first report of multidrug-resistant VREF isolates belonging to clonal complex 17 from a tertiary care center in Mexico City. Multidrug resistance and genetic determinants of virulence confer advantages among VREF in the colonization of their host. Therefore, the prevention and control of the spread of nosocomial infections caused by VREF is crucial for identifying new emergent subclones that could be challenging to treat in subsequent years. PMID:24330424

  6. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis.

    PubMed Central

    Poyart, C; Pierre, C; Quesne, G; Pron, B; Berche, P; Trieu-Cuot, P

    1997-01-01

    Streptococcus bovis NEM760 was isolated from a stool swab collected on admission from a patient as surveillance for vancomycin-resistant enterococci. Strain NEM760 was identified as S. bovis by conventional biochemical methods and partial sequence analysis of its 16S rRNA. This strain was resistant to a low level of vancomycin (MIC, 64 micrograms/ml) but was susceptible to teicoplanin (MIC, 1 micrograms/ml), and vancomycin induced resistance to both glycopeptides. The presence of a vanB-related gene in NEM760 was demonstrated in a PCR assay which enabled specific amplification of a 635-hp internal segment of vanB. Sequence analysis of the corresponding PCR product revealed that it was highly homologous (96% identity) to the prototype vanB sequence of Enterococcus faecalis V583. The VanB resistance of determinant of S. bovis NEM760 was transferred by conjugation to E. faecalis and Enterococcus faecium at a similar frequency of 2 x 10(-5) per donor. SmaI-digested genomic DNAs of independently obtained transconjugants of E. faecalis and E. faecium were analyzed by pulsed-field gel electrophoresis and Southern hybridization with a vanB DNA probe. The electrophoretic and hybridization patterns obtained with all transconjugants of the same species were indistinguishable and revealed vanB-containing chromosomal insertions of approximately 100 kb. These results suggest that the genes mediating VanB-type resistance in S. bovis NEM760 are part of large transferable genetic elements. The results presented in the report demonstrate for the first time the role of streptococci in the dissemination of vancomycin resistance among gram-positive bacteria. PMID:8980749

  7. Detection of the High-Level Aminoglycoside Resistance Gene aph(2")-Ib in Enterococcus faecium

    PubMed Central

    Kao, Susan J.; You, Il; Clewell, Don B.; Donabedian, Susan M.; Zervos, Marcus J.; Petrin, Joanne; Shaw, Karen J.; Chow, Joseph W.

    2000-01-01

    A new high-level gentamicin resistance gene, designated aph(2")-Ib, was cloned from Enterococcus faecium SF11770. The deduced amino acid sequence of the 897-bp open reading frame of aph(2")-Ib shares homology with the aminoglycoside-modifying enzymes AAC(6′)-APH(2"), APH(2")-Ic, and APH(2")-Id. The observed phosphotransferase activity is designated APH(2")-Ib. PMID:10991878

  8. Faster and economical screening for vancomycin-resistant enterococci by sequential use of chromogenic agar and real-time polymerase chain reaction.

    PubMed

    Tan, Thean Yen; Jiang, Boran; Ng, Lily Siew Yong

    2017-08-01

    Screening for vancomycin-resistant enterococci (VRE) by culture takes days to generate results, while polymerase chain reaction (PCR) testing directly from clinical specimens lacks specificity. The aims of this study were to develop a real-time PCR to detect and identify Enterococcus faecium, Enterococcus faecalis, and vanA and vanB genes, and to evaluate the impact of this PCR on test-reporting times when performing it directly from suspect VRE isolates present on screening chromogenic media. The tetraplex PCR primers were designed to amplify E. faecium, E. faecalis, and vanA and vanB genes, with melt-curve analysis of PCR products. Following analytical and clinical validation of the molecular assay, PCR testing was performed for target colonies present on VRE chromogenic media. PCR results were evaluated against conventional phenotypic identification and susceptibility testing, with the time to result being monitored for both modalities. A total of 519 colonies from clinical specimens were tested concurrently by real-time PCR and phenotypic methods. In all, 223 isolates were identified with phenotypic vancomycin resistance (vanA, n = 108; vanB, n = 105; non-vanA/vanB = 10), with complete agreement between PCR and phenotypic testing for vancomycin-resistant E. faecium and E. faecalis. The majority (88.6%) of PCR results were reported, on average, 24.8 hours earlier than those of phenotypic testing, with 68% reduction in total costs. The use of culture on selective media, followed by direct colony PCR confirmation allows faster and economical VRE screening. Copyright © 2015. Published by Elsevier B.V.

  9. Comparison of risk factors and outcomes of daptomycin-susceptible and -nonsusceptible vancomycin-resistant Enterococcus faecium infections in liver transplant recipients.

    PubMed

    Lewis, J D; Barros, A J; Sifri, C D

    2018-02-10

    Vancomycin-resistant Enterococcus faecium (VRE) infections are common in liver transplant recipients (LTRs). Daptomycin (DAP) is an important treatment for such infections; however, DAP-nonsusceptible VRE (DNS-VRE) are increasingly frequent. The purpose of this study was to compare clinical characteristics and outcomes of LTRs with infections due to DNS-VRE and DAP-susceptible VRE (DS-VRE). A single center, retrospective review of patients who underwent liver transplantation between January 1, 2010 and December 31, 2015 and developed infections due to DS-VRE or DNS-VRE post transplant was performed. Patients with DNS-VRE and DS-VRE infections were compared using univariate and logistic regression analysis. Fourteen LTRs developed DNS-VRE and 20 LTRs developed DS-VRE infection post-transplantation. No significant differences were observed in demographics, model for end-stage liver disease (MELD) scores, causes of end-stage liver disease, or rate of pre-transplant perirectal VRE colonization between groups. Bleeding complications and renal replacement therapy were more common in the DNS-VRE group than in the DS-VRE group. The duration of transplant hospitalization and post-transplant intensive care unit (ICU) admission was longer in the DNS-VRE group than in the DS-VRE group. The 30-day and 6-month mortality rate associated with DNS-VRE infection was similar to that associated with DS-VRE infection. Liver transplant recipients who develop DNS-VRE infection have higher bleeding complications and longer, more complex hospitalizations compared to those who develop DS-VRE infection post transplantation; however, mortality at 30 days and 6 months is not significantly worse. Further study is needed to determine optimal strategies for the prevention and treatment of DNS-VRE infections in LTRs. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to Listeria monocytogenes and Listeria innocua.

    PubMed

    Jahan, M; Holley, R A

    2016-04-01

    Listeria monocytogenes is an important foodborne pathogen that can cause infection in children, pregnant women, the immunocompromised and the elderly. Antibiotic resistance in this species would represent a significant public health problem since the organism has a high fatality/case ratio and resistance may contribute to failure of therapeutic treatment. This study was designed to explore whether the in vitro transferability of antibiotic resistance from enterococci to Listeria spp. could occur. It was found that 2/8 Listeria strains were able to acquire tetracycline resistance from Enterococcus faecium. Listeria monocytogenes GLM-2 acquired the resistance determinant tet(M) and additional streptomycin resistance through in vitro mating with Ent. faecium S27 isolated from commercial fermented dry sausage. Similarly, Listeria innocua became more resistant to tetracycline, but the genetic basis for this change was not confirmed. It has been suggested that enterococci may transfer antibiotic resistance genes via transposons to Listeria spp., and this may explain, in part, the origin of their antibiotic resistance. Thus, the presence of enterococci in food should not be ignored since they may actively contribute to enhanced antibiotic resistance of L. monocytogenes and other pathogens. Acquisition of antibiotic resistance by pathogenic bacteria in the absence of antibiotic pressure represents an unquantified threat to human health. In the present work resistance to tetracycline and streptomycin were transferred by nonplasmid-based conjugation from Enterococcus faecium isolated from fermented sausage to Listeria monocytogenes and Listeria innocua. Thus, natural transfer of antibiotic resistance to Listeria strains may occur in the future which reinforces the concern about the safety of enterococcal strains present in foods. © 2016 The Society for Applied Microbiology.

  11. Antimicrobial resistance of Enterococcus isolates in Turkey: A meta-analysis of current studies.

    PubMed

    Kilbas, Imdat; Ciftci, Ihsan Hakki

    2018-03-01

    In this study, a meta-analysis of Enterococcus isolates collected in 2000-2015 in Turkey and their susceptibility/resistance to antibiotics, clinical indications for initial drug treatment, and identification of alternative treatments was conducted. The meta-analysis examined antibiotic susceptibility/resistance in Enterococcus spp. isolates. The study was planned and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Statements on antimicrobial resistance were grouped according to the antimicrobial stewardship programme (ASP). The mean resistance rates of Enterococcus faecalis to vancomycin (VAN) and linezolid (LNZ) were 1.0±2.2% and 1.9±2.6%, respectively, whereas the mean resistance rates of Enterococcus faecium to VAN and LNZ were 10.3±11.3% and 2.4±0%, respectively. This study is the first meta-analysis of the resistance of clinical Enterococcus isolates in Turkey to antimicrobial agents, which is a major problem stemming from the excessive usage of antibiotics. The development of antibiotic resistance in Turkey has changed over time. To support the practice of evidence-based medicine, more notifications about Enterococcus resistance status are needed, especially notifications following ASP rules. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  12. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.

    PubMed

    Wang, Yang; Lv, Yuan; Cai, Jiachang; Schwarz, Stefan; Cui, Lanqing; Hu, Zhidong; Zhang, Rong; Li, Jun; Zhao, Qin; He, Tao; Wang, Dacheng; Wang, Zheng; Shen, Yingbo; Li, Yun; Feßler, Andrea T; Wu, Congming; Yu, Hao; Deng, Xuming; Xia, Xi; Shen, Jianzhong

    2015-08-01

    The oxazolidinone-resistant Enterococcus faecalis E349 from a human patient tested negative for the cfr gene and 23S rRNA mutations. Here we report the identification of a novel oxazolidinone resistance gene, optrA, and a first investigation of the extent to which this gene was present in E. faecalis and Enterococcus faecium from humans and food-producing animals. The resistance gene optrA was identified by whole-plasmid sequencing and subsequent cloning and expression in a susceptible Enterococcus host. Transformation and conjugation assays served to investigate the transferability of optrA. All optrA-positive E. faecalis and E. faecium isolates of human and animal origin were analysed for their MICs and their genotype, as well as the location of optrA. The novel plasmid-borne ABC transporter gene optrA from E. faecalis E349 conferred combined resistance or elevated MICs (when no clinical breakpoints were available) to oxazolidinones (linezolid and tedizolid) and phenicols (chloramphenicol and florfenicol). The corresponding conjugative plasmid pE349, on which optrA was located, had a size of 36 331 bp and also carried the phenicol exporter gene fexA. The optrA gene was functionally expressed in E. faecalis, E. faecium and Staphylococcus aureus. It was detected more frequently in E. faecalis and E. faecium from food-producing animals (20.3% and 5.7%, respectively) than from humans (4.2% and 0.6%, respectively). Enterococci with elevated MICs of linezolid and tedizolid should be tested not only for 23S rRNA mutations and the gene cfr, but also for the novel resistance gene optrA. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Clinical and molecular epidemiology of hospital Enterococcus faecium isolates in eastern France. Members of Réseau Franc-Comtois de Lutte contr les Infections Nosocomiales.

    PubMed

    Bertrand, X; Thouverez, M; Bailly, P; Cornette, C; Talon, D

    2000-06-01

    We carried out a surveillance study of Enterococcus faecium isolates in the Franche-Comtéregion of France over three years. Clinical and epidemiological strains were characterized by antibiotype and genotype (pulsed field gel electrophoresis, PFGE). Three case-control studies were performed to identify risk factors for colonization/infection with three defined resistant phenotypes (amoxycillin, high-level gentamicin and high-level kanamycin). The crude incidence of colonization/infection was 0.156%, and 68.8% of cases were classified as hospital-acquired. Incidence did not differ according to the type of hospitalization (middle term or acute care). The urinary tract was the major site of infection. Resistance rates were: 45.8% (amoxycillin), 18.7% (high-level gentamicin), 61.4% (high-level kanamycin) and 3.1% (vancomycin). No isolate produced b-lactamase and one isolate carried the vanA gene. PFGE revealed two major epidemic patterns each including resistant strains isolated in different hospitals and during different periods in the study. Previous antimicrobial treatment was not identified as a risk factor for colonization/infection with any resistant phenotype. Despite the low frequency of vancomycin-resistant isolates in this study, resistant strains were widely disseminated and had characteristics enabling them to persist and spread. If these strains acquired the vanA gene, the risk of an outbreak would be large. So, the prevalence of vancomycin-resistant E. faecium in hospitals should be carefully monitored in the future. Copyright 2000 The Hospital Infection Society.

  14. Whole genome characterization of a naturally occurring vancomycin-dependent Enterococcus faecium from a patient with bacteremia.

    PubMed

    Mitchell, Stephanie L; Mattei, Lisa M; Alby, Kevin

    2017-08-01

    Vancomycin-dependent enterococci are a relatively uncommon phenotype recovered in the clinical laboratory. Recognition and recovery of these isolates are important, to provide accurate identification and susceptibility information to treating physicians. Herein, we describe the recovery of a vancomycin-dependent and revertant E. faecium isolates harboring vanB operon from a patient with bacteremia. Using whole genome sequencing, we found a unique single nucleotide polymorphism (S186N) in the D-Ala-D-Ala ligase (ddl) conferring vancomycin-dependency. Additionally, we found that a majority of in vitro revertants mutated outside ddl, with some strains harboring mutations in vanS, while others likely containing novel mechanisms of reversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin.

    PubMed

    Sadowy, Ewa; Luczkiewicz, Aneta

    2014-03-14

    Enterococci, ubiquitous colonizers of humans and other animals, play an increasingly important role in health-care associated infections (HAIs). It is believed that the recent evolution of two clinically relevant species, Enterococcus faecalis and Enterococcus faecium occurred in a big part in a hospital environment, leading to formation of high-risk enterococcal clonal complexes (HiRECCs), which combine multidrug resistance with increased pathogenicity and epidemicity. The aim of this study was to establish the species composition in wastewater, its marine recipient as well as a river estuary and to investigate the antimicrobial susceptibility of collected isolates. Molecular methods were additionally applied to test the presence of HiRRECC-related E. faecium. Two wastewater treatment plants (WWTPs), their marine outfalls and Vistula river that influence significantly the quality of waters in Gulf of Gdansk were sampled to investigate the presence of Enterococcus spp. Four-hundred-twenty-eight isolates were obtained, including E. faecium (244 isolates, 57.0%), E. hirae (113 isolates, 26.4%) and E. faecalis (63 isolates, 14.7%); other species (E. gallinarum/casseliflavus, E. durans and E. avium) accounted for 1.9%. Antimicrobial susceptibility testing revealed the presence of isolates resistant to erythromycin, tetracycline, amipicillin, fluoroquinolones and aminoglycosides (high-level resistance), especially among E. faecium, where such isolates were usually characterized by multilocus sequence types associated with nosocomial lineages 17, 18 and 78 of this species representing HiRECC, formerly called CC17. These isolates not only carried several resistance determinants but were also enriched in genes encoding pathogenicity factors (Esp, pili) and genes associated with mobile genetic elements (MGE), a feature also typical for nosocomial HiRECC. Our data show that WWTPs constitute an important source of enterococcal strains carrying antimicrobial resistance

  16. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin

    PubMed Central

    2014-01-01

    Background Enterococci, ubiquitous colonizers of humans and other animals, play an increasingly important role in health-care associated infections (HAIs). It is believed that the recent evolution of two clinically relevant species, Enterococcus faecalis and Enterococcus faecium occurred in a big part in a hospital environment, leading to formation of high-risk enterococcal clonal complexes (HiRECCs), which combine multidrug resistance with increased pathogenicity and epidemicity. The aim of this study was to establish the species composition in wastewater, its marine recipient as well as a river estuary and to investigate the antimicrobial susceptibility of collected isolates. Molecular methods were additionally applied to test the presence of HiRRECC-related E. faecium. Results Two wastewater treatment plants (WWTPs), their marine outfalls and Vistula river that influence significantly the quality of waters in Gulf of Gdansk were sampled to investigate the presence of Enterococcus spp. Four-hundred-twenty-eight isolates were obtained, including E. faecium (244 isolates, 57.0%), E. hirae (113 isolates, 26.4%) and E. faecalis (63 isolates, 14.7%); other species (E. gallinarum/casseliflavus, E. durans and E. avium) accounted for 1.9%. Antimicrobial susceptibility testing revealed the presence of isolates resistant to erythromycin, tetracycline, amipicillin, fluoroquinolones and aminoglycosides (high-level resistance), especially among E. faecium, where such isolates were usually characterized by multilocus sequence types associated with nosocomial lineages 17, 18 and 78 of this species representing HiRECC, formerly called CC17. These isolates not only carried several resistance determinants but were also enriched in genes encoding pathogenicity factors (Esp, pili) and genes associated with mobile genetic elements (MGE), a feature also typical for nosocomial HiRECC. Conclusions Our data show that WWTPs constitute an important source of enterococcal strains carrying

  17. Bacteriocinogenic potential and virulence traits of Enterococcus faecium and E. faecalis isolated from human milk

    PubMed Central

    Khalkhali, Soodabeh; Mojgani, Naheed

    2017-01-01

    Background and Objectives: Human milk is a continuous supply of Lactic Acid bacteria (LAB), including enterococci with probiotic potentials. The aim of this study was to analyze two Enterococcus species, isolated from human milk for their probiotic potential, bacteriocin producing ability and virulence traits. Materials and Methods: Enterococcus faecium TA0033 and E. faecalis TA102 were tested for acid and bile tolerance, survival in simulated gastric and intestinal conditions. The antibacterial spectrum of the isolates was tested by agar well diffusion assay. The antagonistic agent was characterized by physico-chemical methods. The enterocin structural genes, virulence determinants, vancomycin resistance and biogenic amine genes, such as hdc1, hdc2, tdc, ldc and odc were also determined. Results: The tested isolates survived acidic conditions, high bile salt (1%), simulated gastric and intestinal conditions. The culture supernatant fluids of the two isolates inhibited the growth of Escherichia coli, Listeria monocytogenes, Salmonella typhi, Staphylococcus aureus, Shigella dysenteriae and Streptococcus agalactiae. The antagonistic activity was lost in the presence of proteolytic enzymes but tolerated the action of catalase, lysozyme and lipase. In contrast to enterocin TA102, enterocin TA0033 possessed bactericidal mode of action. Bacteriocin structural genes, entA and entB were present in the genome of the two isolates, while E. faecalis TA102 additionally harboured entP and bac31 genes. The phenotypic and genotypic virulence assessment studies indicated hyaluronidase (hyl) production and vancomycin resistance in E. faecalis TA102 while, none of the isolates harboured the biogenic amine genes. Conclusion: The presence of virulence genes in E. faecalis TA102 calls for careful monitoring of Enterococcus isolates for their safety parameters. PMID:29238458

  18. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine.

    PubMed

    Amachawadi, Raghavendra G; Giok, Felicia; Shi, Xiaorong; Soto, Jose; Narayanan, Sanjeev K; Tokach, Mike D; Apley, Mike D; Nagaraja, T G

    2018-04-03

    Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E

  19. Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat.

    PubMed

    Pesavento, G; Calonico, C; Ducci, B; Magnanini, A; Lo Nostro, A

    2014-08-01

    Food specimens were analyzed in order to research Enterococcus spp.: 636 samples of raw meat (227 beef, 238 poultry, and 171 pork), 278 samples of cheese (110 fresh soft cheese and 168 mozzarella cheese), 214 samples of ready-to-eat salads, and 187 samples of ham. 312 strains of Enterococcus spp samples were isolated, then identified and submitted to susceptibility tests against 11 antimicrobial agents. The predominant species were Enterococcus faecalis in raw meat and Enterococcus faecium in retail products. Low percentages of microorganisms were resistant to vancomycin (3.53%), teicoplanin (2.24%), linezolid (0.32%), and amoxicillin in combination with clavulanic acid (0.32%). A high percentage of resistance was noted in E. faecalis at high level gentamicin (21.9%) and tetracycline (60.6%). In general, strains of E. faecalis were more resistant than E. faecium. Enterococci should be considered not only potential pathogens, but also a reservoir of genes encoding antibiotic resistance which can be transferred to other microorganisms. Continuous monitoring of their incidence and emerging resistance is important in order to identify foods which potentially represent a real risk to the population, and to ensure effective treatment of human enterococcal infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant Enterococcus faecium from renal transplant patients with infected urinary stents.

    PubMed

    Descourouez, Jillian L; Jorgenson, Margaret R; Wergin, Justine E; Rose, Warren E

    2013-03-01

    Fosfomycin is a potential option for vancomycin-resistant enterococcus (VRE) infections despite limited in vitro and clinical data. In this study, 32 VRE isolates from renal transplant patients with urinary stent infections were susceptible to fosfomycin, daptomycin, and linezolid and resistant to amoxicillin, minocycline, and nitrofurantoin based on their MIC(50)s and MIC(90)s. Fosfomycin was bacteriostatic at 0.5 to 16× the MIC (32 to 2,048 μg/ml); synergy occurred when fosfomycin was combined with daptomycin (2.8 to 3.9 log(10) CFU/ml kill; P < 0.001) or amoxicillin (2.6 to 3.4; P < 0.05). These combinations may be potent options to treat VRE urinary infections pending investigation of clinical efficacy.

  1. ccrABEnt serine recombinase genes are widely distributed in the Enterococcus faecium and Enterococcus casseliflavus species groups and are expressed in E. faecium

    PubMed Central

    Bjørkeng, Eva Katrin; Tessema, Girum Tadesse; Lundblad, Eirik Wasmuth; Butaye, Patrick; Willems, Rob; Sollid, Johanna Ericsson; Sundsfjord, Arnfinn; Hegstad, Kristin

    2010-01-01

    The presence, distribution and expression of cassette chromosome recombinase (ccr) genes, which are homologous to the staphylococcal ccrAB genes and are designated ccrABEnt genes, were examined in enterococcal isolates (n=421) representing 13 different species. A total of 118 (28 %) isolates were positive for ccrABEnt genes by PCR, and a number of these were confirmed by Southern hybridization with a ccrAEnt probe (n=76) and partial DNA sequencing of ccrAEnt and ccrBEnt genes (n=38). ccrABEnt genes were present in Enterococcus faecium (58/216, 27 %), Enterococcus durans (31/38, 82 %), Enterococcus hirae (27/52, 50 %), Enterococcus casseliflavus (1/4, 25 %) and Enterococcus gallinarum (1/2, 50 %). In the eight other species tested, including Enterococcus faecalis (n=94), ccrABEnt genes were not found. Thirty-eight sequenced ccrABEnt genes from five different enterococcal species showed 94–100 % nucleotide sequence identity and linkage PCRs showed heterogeneity in the ccrABEnt flanking chromosomal genes. Expression analysis of ccrABEnt genes from the E. faecium DO strain showed constitutive expression as a bicistronic mRNA. The ccrABEnt mRNA levels were lower during log phase than stationary phase in relation to total mRNA. Multilocus sequence typing was performed on 39 isolates. ccrABEnt genes were detected in both hospital-related (10/29, 34 %) and non-hospital (4/10, 40 %) strains of E. faecium. Various sequence types were represented by both ccrABEnt positive and negative isolates, suggesting acquisition or loss of ccrABEnt in E. faecium. In summary, ccrABEnt genes, potentially involved in genome plasticity, are expressed in E. faecium and are widely distributed in the E. faecium and E. casseliflavus species groups. PMID:20817645

  2. Enterocin HZ produced by a wild Enterococcus faecium strain isolated from a traditional, starter-free pickled cheese.

    PubMed

    Yildirim, Zeliha; Bilgin, Harun; Isleroglu, Hilal; Tokatli, Kader; Sahingil, Didem; Yildirim, Metin

    2014-05-01

    Bacteriogenic Enterococcus faecium HZ was identified by using biochemical (Strep-API 20, API-50 CHL, fatty acid profile) and 16S rRNA analysis (99·99 %). Ent. faecium HZ was sensitive to clinically important antibiotics such as vancomycin, and did not have gelatinase and haemolysis activities. Enterocin HZ, a bacteriocin from Ent. faecium HZ, was sensitive to papain and tyripsin, but resistant to pepsin, lipase, catalase, α-amylase, organic solvents, detergents, ß-mercaptoethanol, and heat treatment (90 °C/30 min). It was biologically active at pH 2·0-9·0 and synthesised at the highest level in MRS or M17 broth at 32 or 37 °C with an inoculum amount of 0·1-0·5 % and an initial pH of 6·0-7·0. Enterocin HZ production reached maximum level at middle and late logarithmic phase and its molecular weight was ∼4·5 kDa. It was active against some Gram-positive foodborne bacteria. Ent. faecium HZ or its bacteriocin enterocin HZ is a good candidate to be studied as a food biopreservative since enterocin HZ showed strong bactericidal activity against Listeria monocytogenes in UHT milk and also Ent. faecium HZ grew very well in milk and produced enterocin HZ at maximum level.

  3. Gastrointestinal Tract Colonization Dynamics by Different Enterococcus faecium Clades

    PubMed Central

    Montealegre, Maria Camila; Singh, Kavindra V.; Murray, Barbara E.

    2016-01-01

    Colonization of the gastrointestinal tract (GIT) generally precedes infection with antibiotic-resistant Enterococcus faecium. We used a mouse GIT colonization model to test differences in the colonization levels by strains from different E. faecium lineages: clade B, part of the healthy human microbiota; subclade A1, associated with infections; and subclade A2, primarily associated with animals. After mono-inoculation, there was no significant difference in colonization (measured as the geometric mean number of colony-forming units per gram) by the E. faecium clades at any time point (P > .05). However, in competition assays, with 6 of the 7 pairs, clade B strains outcompeted clade A strains in their ability to persist in the GIT; this difference was significant in some pairs by day 2 and in all pairs by day 14 (P < .0008–.0283). This observation may explain the predominance of clade B in the community and why antibiotic-resistant hospital-associated E. faecium are often replaced by clade B strains once patients leave the hospital. PMID:26671890

  4. Molecular Characterization of Virulence Genes in Vancomycin-Resistant and Vancomycin-Sensitive Enterococci

    PubMed Central

    Biswas, Priyanka Paul; Dey, Sangeeta; Sen, Aninda; Adhikari, Luna

    2016-01-01

    Background: The aim of this study was to find out the correlation between presence of virulence (gelatinase [gel E], enterococcal surface protein [esp], cytolysin A [cyl A], hyaluronidase [hyl], and aggregation substance [asa1]) and vancomycin-resistant genes (van A and van B) in enterococci, with their phenotypic expression. Materials and Methods: A total of 500 isolates (250 each clinical and fecal) were processed. Enterococci were isolated from various clinical samples and from fecal specimens of colonized patients. Various virulence determinants namely asa1, esp, hyl, gel E, and cyl were detected by phenotypic methods. Minimum inhibitory concentration (MIC) of vancomycin was determined by agar dilution method. Multiplex polymerase chain reaction (PCR) was used to detect the presence of virulence and van genes. Results: Out of all the samples processed, 12.0% (60/500) isolates carried van A or van B genes as confirmed by MIC test and PCR methods. Genes responsible for virulence were detected by multiplex PCR and at least one of the five was detected in all the clinical vancomycin-resistant enterococci (VRE) and vancomycin-sensitive enterococci (VSE). gel E, esp, and hyl genes were found to be significantly higher in clinical VRE. Of the fecal isolates, presence of gel E, esp, and asa1 was significantly higher in VRE as compared to VSE. The presence of hyl gene in the clinical VRE was found to be statistically significant (P = 0.043) as against the fecal VRE. Correlation between the presence of virulence genes and their expression as detected by phenotypic tests showed that while biofilm production was seen in 61.1% (22/36) of clinical VRE, the corresponding genes, i.e., asa1 and esp were detected in 30.5% (11/36) and 27.8% (10/36) of strains only. Conclusion: Enterococcus faecium isolates were found to carry esp gene, a phenomenon that has been described previously only for Enterococcus faecalis, but we were unable to correlate the presence of esp with their

  5. AsrR Is an Oxidative Stress Sensing Regulator Modulating Enterococcus faecium Opportunistic Traits, Antimicrobial Resistance, and Pathogenicity

    PubMed Central

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J. L.; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and

  6. Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986-2012).

    PubMed

    Freitas, Ana R; Tedim, Ana P; Francia, Maria V; Jensen, Lars B; Novais, Carla; Peixe, Luísa; Sánchez-Valenzuela, Antonio; Sundsfjord, Arnfinn; Hegstad, Kristin; Werner, Guido; Sadowy, Ewa; Hammerum, Anette M; Garcia-Migura, Lourdes; Willems, Rob J; Baquero, Fernando; Coque, Teresa M

    2016-12-01

    Vancomycin-resistant Enterococcus faecium (VREfm) have been increasingly reported since the 1980s. Despite the high number of published studies about VRE epidemiology, the dynamics and evolvability of these microorganisms are still not fully understood. A multilevel population genetic analysis of VREfm outbreak strains since 1986, representing the first comprehensive characterization of plasmid content in E. faecium, was performed to provide a detailed view of potential transmissible units. From a comprehensive MeSH search, we identified VREfm strains causing hospital outbreaks (1986-2012). In total, 53 VanA and 18 VanB isolates (27 countries, 5 continents) were analysed and 82 vancomycin-susceptible E. faecium (VSEfm) were included for comparison. Clonal relatedness was established by PFGE and MLST (goeBURST/Bayesian Analysis of Population Structure, BAPS). Characterization of van transposons (PCR mapping, RFLP, sequencing), plasmids (transfer, ClaI-RFLP, PCR typing of relaxases, replication-initiation proteins and toxin-antitoxin systems, hybridization, sequencing), bacteriocins and virulence determinants (PCR, hybridization, sequencing) was performed. VREfm were mainly associated with major human lineages ST17, ST18 and ST78. VREfm and VSEfm harboured plasmids of different families [RCR, small theta plasmids, RepA_N (pRUM/pLG1) and Inc18] able to yield mosaic elements. Tn1546-vanA was mainly located on pRUM/Axe-Txe (USA) and Inc18-pIP186 (Europe) plasmids. The VanB2 type (Tn5382/Tn1549) was predominant among VanB strains (chromosome and plasmids). Both strains and plasmids contributed to the spread and persistence of vancomycin resistance among E. faecium. Horizontal gene transfer events among genetic elements from different clonal lineages (same or different species) result in chimeras with different stability and host range, complicating the surveillance of epidemic plasmids. © The Author 2016. Published by Oxford University Press on behalf of the British

  7. Differential Penicillin-Binding Protein 5 (PBP5) Levels in the Enterococcus faecium Clades with Different Levels of Ampicillin Resistance.

    PubMed

    Montealegre, Maria Camila; Roh, Jung Hyeob; Rae, Meredith; Davlieva, Milya G; Singh, Kavindra V; Shamoo, Yousif; Murray, Barbara E

    2017-01-01

    Ampicillin resistance in Enterococcus faecium is a serious concern worldwide, complicating the treatment of E. faecium infections. Penicillin-binding protein 5 (PBP5) is considered the main ampicillin resistance determinant in E. faecium The three known E. faecium clades showed sequence variations in the pbp5 gene that are associated with their ampicillin resistance phenotype; however, these changes alone do not explain the array of resistance levels observed among E. faecium clinical strains. We aimed to determine if the levels of PBP5 are differentially regulated between the E. faecium clades, with the hypothesis that variations in PBP5 levels could help account for the spectrum of ampicillin MICs seen in E. faecium We studied pbp5 mRNA levels and PBP5 protein levels as well as the genetic environment upstream of pbp5 in 16 E. faecium strains that belong to the different E. faecium clades and for which the ampicillin MICs covered a wide range. Our results found that pbp5 and PBP5 levels are increased in subclade A1 and A2 ampicillin-resistant strains compared to those in clade B and subclade A2 ampicillin-susceptible strains. Furthermore, we found evidence of major clade-associated rearrangements in the region upstream of pbp5, including large DNA fragment insertions, deletions, and single nucleotide polymorphisms, that may be associated with the differential regulation of PBP5 levels between the E. faecium clades. Overall, these findings highlight the contribution of the clade background to the regulation of PBP5 abundance and point to differences in the region upstream of pbp5 as likely contributors to the differential expression of ampicillin resistance. Copyright © 2016 American Society for Microbiology.

  8. Co-colonization of vanA and vanB Enterococcus faecium of clonal complex 17 in a patient with bacteremia due to vanA E. faecium.

    PubMed

    Seol, Chang Ahn; Park, Jeong Su; Sung, Heungsup; Kim, Mi-Na

    2014-06-01

    A 53-year-old Vietnamese man with liver cirrhosis was transferred from a Vietnamese hospital to our tertiary care hospital in Korea in order to undergo a liver transplantation. Bacteremia due to vanA Enterococcus faecium was diagnosed, and stool surveillance cultures for vancomycin-resistant enterococci (VRE) were positive for both vanA and vanB E. faecium. Pulsed-field gel electrophoresis analysis revealed that the 2 vanA VRE isolates from the blood and stool were clonal, but the vanB VRE was unrelated to the vanA VRE. vanA and vanB VRE were ST64 and ST18, single-allele variations of clonal complex 17, respectively. This is the first case report of vanA VRE bacteremia in a Vietnamese patient and demonstrates the reemergence of vanB VRE since a single outbreak occurred 15years ago in Korea. The reemergence of vanB VRE emphasizes the importance of VRE genotyping to prevent the spread of new VRE strains. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island

    PubMed Central

    2010-01-01

    Background The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients. Results We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI), which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner. Conclusions Genes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come. PMID:20398277

  10. Antimicrobial activity and safety evaluation of Enterococcus faecium KQ 2.6 isolated from peacock feces.

    PubMed

    Zheng, Wei; Zhang, Yu; Lu, Hui-Min; Li, Dan-Ting; Zhang, Zhi-Liang; Tang, Zhen-Xing; Shi, Lu-E

    2015-05-12

    The objective of this paper was to study antimicrobial activity and safety of Enterococcus faecium KQ 2.6 (E. faecium KQ 2.6) isolated from peacock feces. Agar well diffusion method was adopted in antimicrobial activity assay. Disk diffusion test was used to determine the antibiotic resistance. The identification and virulence potential of E. faecium KQ 2.6 were investigated using PCR amplification. The results indicated that cell free supernatant (CFS) of the strain had the good antimicrobial activity against selected gram-positive and gram-negative bacteria. The biochemical characteristics of antimicrobial substances were investigated. The results indicated that the antimicrobial substances were still active after treatment with catalase and proteinase, respectively. Moreover, the stability of antimicrobial substances did not change after heat treatment at 40, 50, 60, 70 and 80°C for 30 min, respectively. The activity of antimicrobial substances remained stable at 4 and -20°C after long time storage. The antimicrobial activity of CFS was compared with that of the buffer with similar strength and pH. The inhibitory zone of the buffer was apparently smaller than that of CFS, which meant that the acid in CFS was not the only factor that was contributed to antibacterial activity of CFS. The antibiotic resistance and virulence potential were evaluated using disk diffusion test and PCR amplification. The results showed that E. faecium KQ 2.6 did not harbor any tested virulence genes such as gelE, esp, asa1, cylA, efaA and hyl. It was susceptible to most of tested antibiotics except for vancomycin and polymyxin B. E. faecium KQ 2.6 may be used as bio-preservative cultures for the production of fermented foods.

  11. Nonclinical and Clinical Enterococcus faecium Strains, but Not Enterococcus faecalis Strains, Have Distinct Structural and Functional Genomic Features

    PubMed Central

    Kim, Eun Bae

    2014-01-01

    Certain strains of Enterococcus faecium and Enterococcus faecalis contribute beneficially to animal health and food production, while others are associated with nosocomial infections. To determine whether there are structural and functional genomic features that are distinct between nonclinical (NC) and clinical (CL) strains of those species, we analyzed the genomes of 31 E. faecium and 38 E. faecalis strains. Hierarchical clustering of 7,017 orthologs found in the E. faecium pangenome revealed that NC strains clustered into two clades and are distinct from CL strains. NC E. faecium genomes are significantly smaller than CL genomes, and this difference was partly explained by significantly fewer mobile genetic elements (ME), virulence factors (VF), and antibiotic resistance (AR) genes. E. faecium ortholog comparisons identified 68 and 153 genes that are enriched for NC and CL strains, respectively. Proximity analysis showed that CL-enriched loci, and not NC-enriched loci, are more frequently colocalized on the genome with ME. In CL genomes, AR genes are also colocalized with ME, and VF are more frequently associated with CL-enriched loci. Genes in 23 functional groups are also differentially enriched between NC and CL E. faecium genomes. In contrast, differences were not observed between NC and CL E. faecalis genomes despite their having larger genomes than E. faecium. Our findings show that unlike E. faecalis, NC and CL E. faecium strains are equipped with distinct structural and functional genomic features indicative of adaptation to different environments. PMID:24141120

  12. Enterococcus faecium and Enterococcus durans isolated from cheese: Survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties.

    PubMed

    Amaral, Daniel M F; Silva, Luana F; Casarotti, Sabrina N; Nascimento, Liane Caroline Sousa; Penna, Ana Lúcia B

    2017-02-01

    In this study, we evaluated the survival of Enterococcus faecium and Enterococcus durans, isolated from cheese, in the presence of medications and under simulated in vitro gastrointestinal conditions. The presence of genes encoding virulence factors, the susceptibility to antimicrobial agents, and adhesion properties were also assessed. Enterococcus faecium and E. durans both exhibited resistance to most of the tested medications but showed a large sensitivity to analgesics and antihypertensives; they also showed wide susceptibility to antimicrobial agents. Enterococcus durans SJRP29 had greater resistance to the presence of medications in comparison with the probiotic Lactobacillus acidophilus La-5. The strains, except for E. durans SJRP05, did not harbor virulence genes. Enterococcus durans SJRP14, SJRP17, and SJRP26 were sensitive to all tested antimicrobial agents. Enterococcus faecium was more stable during the simulation of gastrointestinal tract and showed greater viability. At the end of the assay, except for E. durans SJRP17, all strains showed high viability (>7 log cfu/mL). Enterococcus durans SJRP29 stood out from the other strains and was selected for further evaluation; it tolerated up to 3.0% NaCl at 30 and 37°C, besides having good adhesion properties (high values of auto-aggregation, co-aggregation, and hydrophobicity). Additionally, the microorganism did not show bile salt hydrolase activity or mucin degradation. These results encourage carrying out additional tests to evaluate the probiotic features by using in vitro dynamic models and in vivo tests before applying these strains to a food system. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp.

    PubMed

    Wainwright, M; Phoenix, D A; Gaskell, M; Marshall, B

    1999-12-01

    The toxicities and phototoxicities of methylene blue and its two methylated derivatives were measured against one standard and three vancomycin-resistant pathogenic strains of Enterococcus spp. Each of the compounds was bactericidal and the derivatives exhibited photobactericidal activity on illumination at a 'light' dose of 6.3 J/cm(2) against one or more of the strains. Increased bactericidal and photobactericidal activity in the methylated derivatives is thought to be due to their higher hydrophobicities allowing greater interaction with the bacterial cell wall. In addition, the derivatives exhibited higher inherent photosensitizing efficacies.

  14. Complete Genome Sequences of Isolates of Enterococcus faecium Sequence Type 117, a Globally Disseminated Multidrug-Resistant Clone

    PubMed Central

    Tedim, Ana P.; Lanza, Val F.; Manrique, Marina; Pareja, Eduardo; Ruiz-Garbajosa, Patricia; Cantón, Rafael; Baquero, Fernando; Tobes, Raquel

    2017-01-01

    ABSTRACT The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences. PMID:28360174

  15. Selection of potential probiotic Enterococcus faecium isolated from Portuguese fermented food.

    PubMed

    Barbosa, Joana; Borges, Sandra; Teixeira, Paula

    2014-11-17

    Four Enterococcus faecium strains isolated from fermented products were evaluated for potential use as probiotic strains. In addition to efaAfm gene, commonly found in E. faecium food isolates, none of the isolates possessed virulence genes and none had positive reactions for the production of tyramine, histamine, putrescine and cadaverine in the screening medium used. All of these four isolates proved to be resistant to 65 °C. E. faecium 119 did not show antimicrobial activity against any of the target bacteria investigated. E. faecium 85 and 101 inhibited Listeria innocua and E. faecium DSMZ 13590. The strain E. faecium 120 inhibited seven target bacteria (Listeria monocytogenes 7946, L. monocytogenes 7947, L. innocua 2030c, L. innocua NCTC 11286, E. faecium DSMZ 13590, Enterococcus faecalis ATCC 29212 and Staphylococcus aureus ATCC 29213) and was chosen as the representative to assess the ability to survive gastrointestinal tract passage simulation, as well as the protective role of two food matrices (skim milk and Alheira) during its passage. For both matrices used, no significant differences (p<0.05) were obtained between the types of digestion - quick and slow passage simulation. In the skim milk matrix the isolate was reduced to values below the detection limit of the enumeration technique by the end of the two digestions, in contrast to the Alheira matrix, for which isolate 120 showed a reduction of only ca. 1 log CFU/ml. The E. faecium strain 120 was shown to be a potential candidate for further investigations as a potential probiotic culture. Copyright © 2014. Published by Elsevier B.V.

  16. A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: bacterial probiotics.

    PubMed

    Topcuoglu, Sevilay; Gursoy, Tugba; Ovalı, Fahri; Serce, Ozge; Karatekin, Guner

    2015-08-01

    Vancomycin-resistant Enterococcus (VRE) colonisation can be controlled with strict adherence to infection control measures. We describe a VRE outbreak coincident with bacterial probiotic trial. Relationship between probiotic and VRE colonisation, and other possible risk factors were investigated. Two hundred and ten infants with gestational age less than 32 weeks had been randomised for a trial with probiotic preparation containing Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacterium lactis, fructooligosaccharide, galactooligosaccharide, colostrums and lactoferrin (NBL probiotic ATP®; Nobel, Istanbul, Turkey) between February 2012 and August 2013 when a VRE outbreak also took place. The existence of a relationship between this probiotic preparation and VRE colonisation was investigated. The begining and end of the outbreak were coincident with the beginning and end of the probiotic trial. Demographic and clinical features of neonates did not differ between VRE colonised (n = 94) and non-colonised infants (n = 116) except for vancomycin (p = 0.012) and probiotic (p < 0.001) use. Probiotic and vancomycin exposure were significant risk factors for VRE colonisation. The acquisition and transfer of resistance genes of bacteria may be mediated by probiotics. Therefore, the safety of probiotics is a concern and should be investigated further.

  17. Gastrointestinal Tract Colonization Dynamics by Different Enterococcus faecium Clades.

    PubMed

    Montealegre, Maria Camila; Singh, Kavindra V; Murray, Barbara E

    2016-06-15

    Colonization of the gastrointestinal tract (GIT) generally precedes infection with antibiotic-resistant Enterococcus faecium We used a mouse GIT colonization model to test differences in the colonization levels by strains from different E. faecium lineages: clade B, part of the healthy human microbiota; subclade A1, associated with infections; and subclade A2, primarily associated with animals. After mono-inoculation, there was no significant difference in colonization (measured as the geometric mean number of colony-forming units per gram) by the E. faecium clades at any time point (P > .05). However, in competition assays, with 6 of the 7 pairs, clade B strains outcompeted clade A strains in their ability to persist in the GIT; this difference was significant in some pairs by day 2 and in all pairs by day 14 (P < .0008-.0283). This observation may explain the predominance of clade B in the community and why antibiotic-resistant hospital-associated E. faecium are often replaced by clade B strains once patients leave the hospital. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. [Vancomycin-resistant Staphylococcus aureus].

    PubMed

    Rodríguez, Carlos Andrés; Vesga, Omar

    2005-12-01

    The evolution and molecular mechanisms of vancomycin resistance in Staphylococcus aureus were reviewed. Case reports and research studies on biochemestry, electron microscopy and molecular biology of Staphylococcus aureus were selected from Medline database and summarized in the following review. After almost 40 years of successful treatment of S. aureus with vancomycin, several cases of clinical failures have been reported (since 1997). S. aureus strains have appeared with intermediate susceptibility (MIC 8-16 microg/ml), as well as strains with heterogeneous resistance (global MIC < or =4 microg/ml), but with subpopulations of intermediate susceptibility. In these cases, resistance is mediated by cell wall thickening with reduced cross linking. This traps the antibiotic before it reaches its major target, the murein monomers in the cell membrane. In 2002, a total vancomycin resistant strain (MIC > or =32 microg/ml) was reported with vanA genes from Enterococcus spp. These genes induce the change of D-Ala-D-Ala terminus for D-Ala-D-lactate in the cell wall precursors, leading to loss of affinity for glycopeptides. Vancomycin resistance in S. aureus has appeared; it is mediated by cell wall modifications that trap the antibiotic before it reaches its action site. In strains with total resistance, Enterococcus spp. genes have been acquired that lead to modification of the glycopeptide target.

  19. Genomic Analysis of Reduced Susceptibility to Tigecycline in Enterococcus faecium

    PubMed Central

    Isnard, Christophe; Cosquer, Thibaud; Odhiambo, Arlène; Bucquet, Fiona; Guérin, François; Giard, Jean-Christophe

    2014-01-01

    Tigecycline (TIG) is approved for use for the treatment of complicated intra-abdominal infections, skin and skin structure infections, as well as pneumonia. Acquired resistance or reduced susceptibility to TIG has been observed in Gram-negative rods, has seldom been reported in Gram-positive organisms, and has not yet been reported in Enterococcus faecium. Using the serial passage method, in vitro mutant AusTig and in vitro mutants HMtig1 and HMtig2 with decreased TIG susceptibility (MICs, 0.25 μg/ml) were obtained from strains E. faecium Aus0004 and HM1070 (MICs, 0.03 μg/ml), respectively. In addition, two vancomycin-resistant E. faecium clinical isolates (EF16 and EF22) with reduced susceptibility to TIG (MICs, 0.5 and 0.25 μg/ml, respectively) were studied. Compared to the wild-type strains, the in vitro mutants also showed an increase in the MICs of other tetracyclines. An efflux mechanism did not seem to be involved in the reduced TIG susceptibility, since the presence of efflux pump inhibitors (reserpine or pantoprazole) did not affect the MICs of TIG. Whole-genome sequencing of AusTig was carried out, and genomic comparison with the Aus0004 genome was performed. Four modifications leading to an amino acid substitution were found. These mutations affected the rpsJ gene (efau004_00094, coding for the S10 protein of the 30S ribosomal subunit), efau004_01228 (encoding a cation transporter), efau004_01636 (coding for a hypothetical protein), and efau004_02455 (encoding the l-lactate oxidase). The four other strains exhibiting reduced TIG susceptibility were screened for the candidate mutations. This analysis revealed that three of them showed an amino acid substitution in the same region of the RpsJ protein. In this study, we characterized for the first time genetic determinants linked to reduced TIG susceptibility in enterococci. PMID:25348531

  20. Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium.

    PubMed

    Cattoir, Vincent; Isnard, Christophe; Cosquer, Thibaud; Odhiambo, Arlène; Bucquet, Fiona; Guérin, François; Giard, Jean-Christophe

    2015-01-01

    Tigecycline (TIG) is approved for use for the treatment of complicated intra-abdominal infections, skin and skin structure infections, as well as pneumonia. Acquired resistance or reduced susceptibility to TIG has been observed in Gram-negative rods, has seldom been reported in Gram-positive organisms, and has not yet been reported in Enterococcus faecium. Using the serial passage method, in vitro mutant AusTig and in vitro mutants HMtig1 and HMtig2 with decreased TIG susceptibility (MICs, 0.25 μg/ml) were obtained from strains E. faecium Aus0004 and HM1070 (MICs, 0.03 μg/ml), respectively. In addition, two vancomycin-resistant E. faecium clinical isolates (EF16 and EF22) with reduced susceptibility to TIG (MICs, 0.5 and 0.25 μg/ml, respectively) were studied. Compared to the wild-type strains, the in vitro mutants also showed an increase in the MICs of other tetracyclines. An efflux mechanism did not seem to be involved in the reduced TIG susceptibility, since the presence of efflux pump inhibitors (reserpine or pantoprazole) did not affect the MICs of TIG. Whole-genome sequencing of AusTig was carried out, and genomic comparison with the Aus0004 genome was performed. Four modifications leading to an amino acid substitution were found. These mutations affected the rpsJ gene (efau004_00094, coding for the S10 protein of the 30S ribosomal subunit), efau004_01228 (encoding a cation transporter), efau004_01636 (coding for a hypothetical protein), and efau004_02455 (encoding the l-lactate oxidase). The four other strains exhibiting reduced TIG susceptibility were screened for the candidate mutations. This analysis revealed that three of them showed an amino acid substitution in the same region of the RpsJ protein. In this study, we characterized for the first time genetic determinants linked to reduced TIG susceptibility in enterococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain.

    PubMed

    Lozano, Carmen; Gonzalez-Barrio, David; Camacho, Maria Cruz; Lima-Barbero, Jose Francisco; de la Puente, Javier; Höfle, Ursula; Torres, Carmen

    2016-11-01

    The objectives were to evaluate the presence of vancomycin-resistant enterococci with acquired (VRE-a) and intrinsic (VRE-i) resistance mechanisms in fecal samples from different wild animals, and analyze their phenotypes and genotypes of antimicrobial resistance. A total of 348 cloacal/rectal samples from red-legged partridges (127), white storks (81), red kites (59), and wild boars (81) (June 2014/February 2015) were inoculated in Slanetz-Bartley agar supplemented with vancomycin (4 μg/mL). We investigated the susceptibility to 12 antimicrobials and the presence of 19 antimicrobial resistance and five virulence genes. In addition, we performed multilocus sequence typing, detection of IS16 and studied Tn1546 structure. One VRE-a isolate was identified in one wild boar. This isolate was identified as Enterococcus faecium, harbored vanA gene included into Tn1546 (truncated with IS1542/IS1216), and belonged to the new ST993. This isolate contained the erm(A), erm(B), tet(M), dfrG, and dfrK genes. Neither element IS16 nor the studied virulence genes were detected. Ninety-six VRE-i isolates were identified (89 Enterococcus gallinarum and seven Enterococcus casseliflavus), with the following prevalence: red kites (71.2 %), white storks (46.9 %), red-legged partridges (7.9 %), and wild boars (4.9 %). Most E. gallinarum isolates showed resistance to tetracycline (66.3 %) and/or erythromycin (46.1 %). High-level resistance to aminoglycosides was present among our VRE-i isolates: kanamycin (22.9 %), streptomycin (11.5 %), and gentamicin (9.4 %). In general, VRE-i isolates of red kites showed higher rates of resistance for non-glycopeptide agents than those of other animal species. The dissemination of acquired resistance mechanisms in natural environments could have implications in the global spread of resistance with public health implications.

  2. Is the mazEF toxin-antitoxin system responsible for vancomycin resistance in clinical isolates of Enterococcus faecalis?

    PubMed

    Sadeghifard, Nourkhoda; Soheili, Sara; Sekawi, Zamberi; Ghafourian, Sobhan

    2014-01-01

    The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci.

  3. Is the mazEF toxin-antitoxin system responsible for vancomycin resistance in clinical isolates of Enterococcus faecalis?

    PubMed Central

    Sadeghifard, Nourkhoda; Soheili, Sara; Sekawi, Zamberi; Ghafourian, Sobhan

    2014-01-01

    The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci. PMID:24653969

  4. Bacteriocinogenic Potential of Enterococcus faecium Isolated from Wine.

    PubMed

    Dündar, Halil

    2016-09-01

    A total of 145 lactic acid bacteria isolated from a variety of Turkish red wines during malolactic fermentation were screened to find bacteriocin-producing strains. Among them, 14 isolates of Enterococcus faecium were identified to produce bacteriocins. PCR screening revealed that some isolates harbored entA and entB genes while some harbored entA, entB and entP genes. An isolate designated as Ent. faecium H46 was selected to characterize its bacteriocins. The bacteriocins were purified to homogeneity from culture supernatant by Amberlite XAD-16, cation-exchange and reverse-phase chromatography. MALDI-TOF mass spectrometry analysis identified the bacteriocins as enterocin A and enterocin B. The presence of Ent. faecium is noteworthy since it is not associated with wine fermentation. However, it has been reported as an important wine spoilage organism due to its potential to produce tyramine. Although species of Enterococcus is not known as wine bacteria, contamination by Ent. faecium may arise from grapes or wineries equipments used for wine production.

  5. Enterococcus faecium small colony variant endocarditis in an immunocompetent patient

    PubMed Central

    Egido, S. Hernández; Ruiz, M. Siller; Inés Revuelta, S.; García, I. García; Bellido, J.L. Muñoz

    2015-01-01

    Small colony variants (SCV) are slow-growing subpopulations of bacteria usually associated with auxotrophism, causing persistent or recurrent infections. Enterococcus faecalis SCV have been seldom described, and only one case of Enterococcus faecium SCV has been reported, associated with sepsis in a leukaemia patient. Here we report the first case described of bacteraemia and endocarditis by SCV E. faecium in an immunocompetent patient. PMID:26862434

  6. Enterococcus faecium small colony variant endocarditis in an immunocompetent patient.

    PubMed

    Egido, S Hernández; Ruiz, M Siller; Inés Revuelta, S; García, I García; Bellido, J L Muñoz

    2016-01-01

    Small colony variants (SCV) are slow-growing subpopulations of bacteria usually associated with auxotrophism, causing persistent or recurrent infections. Enterococcus faecalis SCV have been seldom described, and only one case of Enterococcus faecium SCV has been reported, associated with sepsis in a leukaemia patient. Here we report the first case described of bacteraemia and endocarditis by SCV E. faecium in an immunocompetent patient.

  7. Enterococcus faecium ST17 from Coastal Marine Sediment Carrying Transferable Multidrug Resistance Plasmids.

    PubMed

    Morroni, Gianluca; Di Cesare, Andrea; Di Sante, Laura; Brenciani, Andrea; Vignaroli, Carla; Pasquaroli, Sonia; Giovanetti, Eleonora; Sabatino, Raffaella; Rossi, Luigia; Magnani, Mauro; Biavasco, Francesca

    2016-10-01

    The multidrug-resistant Enterococcus faecium 17i48, sequence type 17, from marine sediment, carrying erm(B), tet(M), and tet(L) genes, was analyzed for the presence of antibiotic resistance plasmids and for the ability to transfer resistance genes. The strain was found to harbor the replicon type (repA) of pRE25, pRUM, pHTβ, and the axe-txe toxin-antitoxin (TA) system. In mating experiments, tet(M) and tet(L) were cotransferred with the repA pRE25 , whereas erm(B) was consistently cotransferred with the axe-txe and repA pRUM , suggesting that tetracycline and erythromycin resistance genes were carried on different elements both transferable by conjugation, likely via pHTβ-mediated mobilization. Hybridization and PCR mapping demonstrated that tet(M) and tet(L) were located in tandem on a pDO1-like plasmid that also carried the repA pRE25 , whereas erm(B) was carried by a pRUM-like plasmid. Sequencing of the latter plasmid showed a high nucleotide identity with pRUM and the presence of cat, aadE, sat4, and a complete aphA resistance genes. These findings show that the genetic features of E. faecium 17i48 are consistent with a hospital-adapted clone and suggest that antibiotic resistance may spread in the environment, also in the absence of antibiotic pressure, due to TA system plasmid maintenance.

  8. COMPARISON BETWEEN AUTOMATED SYSTEM AND PCR-BASED METHOD FOR IDENTIFICATION AND ANTIMICROBIAL SUSCEPTIBILITY PROFILE OF CLINICAL Enterococcus spp

    PubMed Central

    Furlaneto-Maia, Luciana; Rocha, Kátia Real; Siqueira, Vera Lúcia Dias; Furlaneto, Márcia Cristina

    2014-01-01

    Enterococci are increasingly responsible for nosocomial infections worldwide. This study was undertaken to compare the identification and susceptibility profile using an automated MicrosScan system, PCR-based assay and disk diffusion assay of Enterococcus spp. We evaluated 30 clinical isolates of Enterococcus spp. Isolates were identified by MicrosScan system and PCR-based assay. The detection of antibiotic resistance genes (vancomycin, gentamicin, tetracycline and erythromycin) was also determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg), gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested by the automated system and disk diffusion method, and were interpreted according to the criteria recommended in CLSI guidelines. Concerning Enterococcus identification the general agreement between data obtained by the PCR method and by the automatic system was 90.0% (27/30). For all isolates of E. faecium and E. faecalis we observed 100% agreement. Resistance frequencies were higher in E. faecium than E. faecalis. The resistance rates obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline (43.35) and gentamicin (33.3%). The correlation between disk diffusion and automation revealed an agreement for the majority of the antibiotics with category agreement rates of > 80%. The PCR-based assay, the van(A) gene was detected in 100% of vancomycin resistant enterococci. This assay is simple to conduct and reliable in the identification of clinically relevant enterococci. The data obtained reinforced the need for an improvement of the automated system to identify some enterococci. PMID:24626409

  9. [Vancomycin-resistant enterococci - the nature of resistance and risk of transmission from animals to humans].

    PubMed

    Hermanovská, Lýdia; Bardoň, Jan; Čermák, Pavel

    2016-06-01

    Enterococci are part of the normal intestinal flora of humans and animals. Under certain circumstances, they are capable of extraintestinal conversion to opportunistic pathogens. They cause endogenous as well as exogenous community and nosocomial infections. The gastrointestinal tract of mammals provides them with favorable conditions for acquisition and spread of resistance genes, for example to vancomycin (van), from other symbiotic bacteria. Thus, vancomycin-resistant enterococci (VRE) become potential reservoirs and vectors of the van genes. Their occurrence in the population of the Czech Republic was first reported by Kolář et al. in 1997. Some variants of the vanA gene cluster carried on Tn1546 which encode resistance to vancomycin are identical in humans and in animals. It means that animals, especially cattle, poultry and pigs, could be an important reservoir of VRE for humans. Kolář and Bardoň detected VRE in animals in the Czech Republic for the first time in 2000. In Europe, the glycopeptide antibiotic avoparcin, used as a growth stimulator, is responsible for selection of VRE strains in animals. Strains of Enterococcus faecium from animals may offer genes of antimicrobial resistance to other enterococci or they can be directly dangerous to human. This is demonstrated by finding isolates of E. faecalis from human patients and from pigs having very similar profiles of resistance and virulence genes. The goal of the paper was to point out the similarity between isolates of human and animal strains of enterococci resistant to vancomycin, and the possibility of their bilateral transfer between humans and animals.

  10. Genomic Features and Niche-Adaptation of Enterococcus faecium Strains from Korean Soybean-Fermented Foods.

    PubMed

    Kim, Eun Bae; Jin, Gwi-Deuk; Lee, Jun-Yeong; Choi, Yun-Jaie

    2016-01-01

    Certain strains of Enterococcus faecium contribute beneficially to human health and food fermentation. However, other E. faecium strains are opportunistic pathogens due to the acquisition of virulence factors and antibiotic resistance determinants. To characterize E. faecium from soybean fermentation, we sequenced the genomes of 10 E. faecium strains from Korean soybean-fermented foods and analyzed their genomes by comparing them with 51 clinical and 52 non-clinical strains of different origins. Hierarchical clustering based on 13,820 orthologous genes from all E. faecium genomes showed that the 10 strains are distinguished from most of the clinical strains. Like non-clinical strains, their genomes are significantly smaller than clinical strains due to fewer accessory genes associated with antibiotic resistance, virulence, and mobile genetic elements. Moreover, we identified niche-associated gene gain and loss from the soybean strains. Thus, we conclude that soybean E. faecium strains might have evolved to have distinctive genomic features that may contribute to its ability to thrive during soybean fermentation.

  11. Genomic Features and Niche-Adaptation of Enterococcus faecium Strains from Korean Soybean-Fermented Foods

    PubMed Central

    Kim, Eun Bae; Jin, Gwi-Deuk; Lee, Jun-Yeong; Choi, Yun-Jaie

    2016-01-01

    Certain strains of Enterococcus faecium contribute beneficially to human health and food fermentation. However, other E. faecium strains are opportunistic pathogens due to the acquisition of virulence factors and antibiotic resistance determinants. To characterize E. faecium from soybean fermentation, we sequenced the genomes of 10 E. faecium strains from Korean soybean-fermented foods and analyzed their genomes by comparing them with 51 clinical and 52 non-clinical strains of different origins. Hierarchical clustering based on 13,820 orthologous genes from all E. faecium genomes showed that the 10 strains are distinguished from most of the clinical strains. Like non-clinical strains, their genomes are significantly smaller than clinical strains due to fewer accessory genes associated with antibiotic resistance, virulence, and mobile genetic elements. Moreover, we identified niche-associated gene gain and loss from the soybean strains. Thus, we conclude that soybean E. faecium strains might have evolved to have distinctive genomic features that may contribute to its ability to thrive during soybean fermentation. PMID:27070419

  12. Vancomycin-resistant enterococci with vanA gene in treated municipal wastewater and their association with human hospital strains.

    PubMed

    Oravcova, Veronika; Mihalcin, Matus; Zakova, Jana; Pospisilova, Lucie; Masarikova, Martina; Literak, Ivan

    2017-12-31

    Vancomycin-resistant enterococci (VRE) are pathogens of increasing medical importance. In Brno, Czech Republic, we collected 37 samples from the effluent of a wastewater treatment plant (WWTP), 21 surface swabs from hospital settings, and 59 fecal samples from hospitalized patients and staff. Moreover, we collected 284 gull cloacal swabs from the colony situated 35km downstream the WWTP. Samples were cultured selectively. Enterococci were identified using MALDI-TOF MS, phenotypically tested for susceptibility to antibiotics, and by PCR for occurrence of resistance and virulence genes. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were used to examine genotypic diversity. VRE carrying the vanA gene were found in 32 (86%, n=37) wastewater samples, from which we obtained 49 isolates: Enterococcus faecium (44) and Enterococcus gallinarum (2), Enterococcus casseliflavus (2), and Enterococcus raffinosus (1). From 33 (69%) of 48 inpatient stool samples, we obtained 39 vanA-carrying VRE, which belonged to E. faecium (33 isolates), Enterococcus faecalis (4), and Enterococcus raffinosus (2). Nearly one-third of the samples from hospital surfaces contained VRE with the vanA gene. VRE were not detected among gulls. Sixty-seven (84%, n=80) E. faecium isolates carried virulence genes hyl and/or esp. Virulence of E. faecalis was encoded by gelE, asa1, and cylA genes. A majority of the E. faecium isolates belonged to the clinically important sequence types ST17 (WWTP: 10 isolates; hospital: 4 isolates), ST18 (9;8), and ST78 (5;0). The remaining isolates belonged to ST555 (2;0), ST262 (1;6), ST273 (3;0), ST275 (1;0), ST549 (2;0), ST19 (0;1), ST323 (3;0), and ST884 (7;17). Clinically important enterococci carrying the vanA gene were almost continually detectable in the effluent of the WWTP, indicating insufficient removal of VRE during wastewater treatment and permanent shedding of these antibiotic resistant pathogens into the environment from this

  13. Vancomycin-resistant Enterococcus faecium bacteraemia as a complication of Kayexalate (sodium polystyrene sulfonate, SPS) in sorbitol-induced ischaemic colitis.

    PubMed

    Cerrud-Rodriguez, Roberto Christian; Alcaraz-Alvarez, Diego; Chiong, Brian Bobby; Ahmed, Abdurhman

    2017-11-09

    We present the case report of an 80-year-old woman with chronic kidney disease stage G5 admitted to the hospital with fluid overload and hyperkalaemia. Sodium polystyrene sulfonate (SPS, Kayexalate) in sorbitol suspension was given orally to treat her hyperkalaemia, which precipitated an episode of SPS in sorbitol-induced ischaemic colitis with the subsequent complication of vancomycin-resistant Enterococcus (VRE) bacteraemia. SPS (Kayexalate) in sorbitol suspension has been implicated in the development of intestinal necrosis. Sorbitol, which is added as a cathartic agent to decrease the chance of faecal impaction, may be primarily responsible through several proposed mechanisms. The gold standard of diagnosis is the presence of SPS crystals in the colon biopsy. On a MEDLINE search, no previous reports of a VRE bacteraemia as a complication of biopsy-confirmed SPS in sorbitol ischaemic colitis were found. To the best of our knowledge, ours would be the first such case ever reported. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. In vitro activity of flomoxef and cefazolin in combination with vancomycin.

    PubMed

    Simon, C; Simon, M

    1991-01-01

    207 clinical isolates from strains of patients from the University Children's Hospital of Kiel were investigated for their in vitro activity with the agar dilution method against flomoxef and cefazolin (alone and partially in combination with vancomycin). Staphylococci were also tested with other cephalosporins (cefoxitin, cefamandole, cefotaxime, cefotetan and latamoxef). Flomoxef and cefazolin always acted more vigorously on staphylococci than the other cephalosporins. Resistance of Staphylococcus aureus strains against flomoxef and cefazolin did not occur but was found in 15 and 5 of 98 Staphylococcus epidermidis strains, respectively. Enterococcus faecalis strains were always resistant against both drugs; Streptococcus faecium strains were only moderately sensitive. Combined testing of flomoxef or cefazolin with vancomycin showed synergism in almost all staphylococcal strains. Synergism was stronger when S. epidermidis strains were only weakly sensitive to or resistant against flomoxef and cefazolin in comparison to highly sensitive strains. Flomoxef (or cefazolin) acted synergistically in combination with vancomycin on E. faecalis and S. faecium with the exception of two strains of E. faecalis which showed an additive effect of both drugs.

  15. A Vaccine Approach for the Prevention of Infections by Multidrug-resistant Enterococcus faecium*

    PubMed Central

    Kodali, Srinivas; Vinogradov, Evgeny; Lin, Fiona; Khoury, Nancy; Hao, Li; Pavliak, Vilo; Jones, C. Hal; Laverde, Diana; Huebner, Johannes; Jansen, Kathrin U.; Anderson, Annaliesa S.; Donald, Robert G. K.

    2015-01-01

    The incidence of multidrug-resistant Enterococcus faecium hospital infections has been steadily increasing. With the goal of discovering new vaccine antigens, we systematically fractionated and purified four distinct surface carbohydrates from E. faecium endocarditis isolate Tx16, shown previously to be resistant to phagocytosis in the presence of human serum. The two most abundant polysaccharides consist of novel branched heteroglycan repeating units that include signature sugars altruronic acid and legionaminic acid, respectively. A minor high molecular weight polysaccharide component was recognized as the fructose homopolymer levan, and a glucosylated lipoteichoic acid (LTA) was identified in a micellar fraction. The polysaccharides were conjugated to the CRM197 carrier protein, and the resulting glycoconjugates were used to immunize rabbits. Rabbit immune sera were evaluated for their ability to kill Tx16 in opsonophagocytic assays and in a mouse passive protection infection model. Although antibodies raised against levan failed to mediate opsonophagocytic killing, the other glycoconjugates induced effective opsonic antibodies, with the altruronic acid-containing polysaccharide antisera showing the greatest opsonophagocytic assay activity. Antibodies directed against either novel heteroglycan or the LTA reduced bacterial load in mouse liver or kidney tissue. To assess antigen prevalence, we screened a diverse collection of blood isolates (n = 101) with antibodies to the polysaccharides. LTA was detected on the surface of 80% of the strains, and antigens recognized by antibodies to the two major heteroglycans were co-expressed on 63% of these clinical isolates. Collectively, these results represent the first steps toward identifying components of a glycoconjugate vaccine to prevent E. faecium infection. PMID:26109072

  16. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium.

    PubMed

    Sinnige, Jan C; de Been, Mark; Zhou, Miaomiao; Bonten, Marc J M; Willems, Rob J L; Top, Janetta

    2015-11-01

    The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood stream isolate, was grown until mid-log phase in brain heart infusion medium (BHI) with, or without 0.02% bile salts, Tryptic Soy Broth with 1% glucose (TSBg) and urine, and its cell surface was "shaved" using immobilized trypsin. Peptides were identified using MS/MS. Mapping against the translated E1162 whole genome sequence identified 67 proteins that were differentially detected in different conditions. In urine, 14 proteins were significantly more and nine proteins less abundant relative to the other conditions. Growth in BHI-bile and TSBg, revealed four and six proteins, respectively, which were uniquely present in these conditions while two proteins were uniquely present in both conditions. Thus, proteolytic shaving of E. faecium cells identified differentially surface exposed proteins in different growth conditions. These proteins are of special interest as they provide more insight in the adaptive mechanisms and may serve as targets for the development of novel therapeutics against this multi-resistant emerging pathogen. All MS data have been deposited in the ProteomeXchange with identifier PXD002497 (http://proteomecentral.proteomexchange.org/dataset/PXD002497). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparison of routine prophylaxis with vancomycin or cefazolin for femoral neck fracture surgery: microbiological and clinical outcomes.

    PubMed

    Merrer, Jacques; Desbouchages, Laetitia; Serazin, Valérie; Razafimamonjy, Jimmy; Pauthier, François; Leneveu, Michel

    2006-12-01

    To assess the impact of antibiotic prophylaxis on the emergence of vancomycin-resistant strains of Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus and the incidence of surgical site infection (SSI) after vancomycin or cefazolin prophylaxis for femoral neck fracture surgery. Prospective cohort study. A hospital with a high prevalence of methicillin-resistant S. aureus (MRSA) carriage. All patients admitted with a femoral neck fracture from March 1, 2004 through February 28, 2005 were prospectively identified and screened for MRSA and vancomycin-resistant (VRE) carriage at admission and at day 7. Deep incisional and organ/space SSIs were also recorded. Of 263 patients included in the study, 152 (58%) received cefazolin and 106 (40%) received vancomycin. At admission, the prevalence of MRSA carriage was 6.8%; it was 12% among patients with risk factors and 2.2% among patients with no risk factors (P=.002). At day 7 after surgery, there were 6 patients (2%) who had hospital-acquired MRSA, corresponding to 0.7% in the cefazolin group and 5% in the vancomycin group (P=.04); none of the MRSA isolates were resistant to glycopeptides. The rate of VRE carriage at admission was 0.4%. Three patients (1%) had acquired carriage of VRE (1 had E. faecium and 2 had E. faecalis); all 3 were in the cefazolin group (2% of patients) and none in the vancomycin group (P=.27). Eight SSIs (3%) occurred, 4% in the cefazolin group and 2% in the vancomycin group (P=.47). This preliminary study demonstrates that cefazolin and vancomycin prophylaxis have similar impacts on the emergence of glycopeptide-resistant pathogens. Neither MRSA infection nor increased rates of SSI with other bacteria were observed in the vancomycin group, suggesting that a larger multicenter study should be initiated.

  18. Synthesis and In Vitro Activity of Polyhalogenated 2-phenylbenzimidazoles as a New Class of anti-MRSA and Anti-VRE Agents.

    PubMed

    Göker, Hakan; Karaaslan, Cigdem; Püsküllü, Mustafa Orhan; Yildiz, Sulhiye; Duydu, Yalcin; Üstündağ, Aylin; Yalcin, Can Özgür

    2016-01-01

    A series of novel polyhalogenated 2-phenylbenzimidazoles have been synthesized and evaluated for in vitro antistaphylococcal activity against drug-resistant bacterial strains (methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium. Certain compounds inhibit bacterial growth perfectly. 11 was active than vancomycin (0.78 μg/mL) with the lowest MIC values with 0.19 μg/mL against methicillin-resistant Staphylococcus aureus, 8 and 35 exhibited best inhibitory activity against vancomycin-resistant Enterococcus faecium (1.56 μg/mL). The mechanism of action for this class of compounds appears to be different than clinically used antibiotics. These polyhalogenated benzimidazoles have potential for further investigation as a new class of potent anti-methicillin-resistant Staphylococcus aureus and anti-vancomycin-resistant Enterococcus faecium agents. © 2015 John Wiley & Sons A/S.

  19. Dispersion of the Vancomycin Resistance Genes vanA and vanC of Enterococcus Isolated from Nile Tilapia on Retail Sale: A Public Health Hazard.

    PubMed

    Osman, Kamelia M; Ali, Mohamed N; Radwan, Ismail; ElHofy, Fatma; Abed, Ahmed H; Orabi, Ahmed; Fawzy, Nehal M

    2016-01-01

    Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The acquisition of vancomycin resistance by enterococci (VRE) has seriously affected the treatment and infection control of these organisms. VRE are frequently resistant to all antibiotics that are effective treatment for vancomycin-susceptible enterococci, which leaves clinicians treating VRE infections with limited therapeutic options. With VRE emerging as a global threat to public health, we aimed to isolate, identify enterococci species from tilapia and their resistance to van-mediated glycopeptide (vanA and vanC) as well as the presence of enterococcal surface protein (esp) using conventional and molecular methods. The cultural, biochemical (Vitek 2 system) and polymerase chain reaction results revealed eight Enterococcus isolates from the 80 fish samples (10%) to be further identified as E. faecalis (6/8, 75%) and E gallinarum (2/8, 25%). Intraperitoneal injection of healthy Nile tilapia with the eight Enterococcus isolates caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post-injection with general signs of septicemia. All of the eight Enterococcus isolates were found to be resistant to tetracycline. The 6/6 E. faecalis isolates were susceptible for penicillin, nitrofurantoin, gentamicin, and streptomycin. On the other hand 5/6 were susceptible for ampicillin, vancomycin, chloramphenicol, and ciprofloxacin. The two isolates of E. gallinarum were sensitive to rifampicin and ciprofloxacin and resistant to vancomycin, chloramphenicol, and erythromycin. Molecular characterization proved that they all presented the prototypic vanC element. On the whole, one of the two vancomycin resistance gene was present in 3/8 of the enterococci isolates, while the esp virulence gene was present in 1/8 of the enterococci isolates. The results in this study emphasize the

  20. Novel Structure of Enterococcus faecium-Originated ermB-Positive Tn1546-Like Element in Staphylococcus aureus.

    PubMed

    Wan, Tsai-Wen; Hung, Wei-Chun; Tsai, Jui-Chang; Lin, Yu-Tzu; Lee, Hao; Hsueh, Po-Ren; Lee, Tai-Fen; Teng, Lee-Jene

    2016-10-01

    We determined the resistance determinants in 274 erythromycin-resistant methicillin-susceptible Staphylococcus aureus (MSSA) isolates during a 13-year period, 2000 to 2012. The resistance phenotypes, inducible macrolide-lincosamide-streptogramin (iMLS), constitutive MLS (cMLS), and macrolide-streptogramin (MS) resistance phenotypes, were examined by a double-disk diffusion D test. The ermB gene was more frequent (35%; 97/274) than ermC (27%; 75/274) or ermA (21%; 58/274). All 97 ermB-positive isolates harbored Tn551 and IS1216V The majority (89/97) of ermB-positive isolates displayed the cMLS phenotype and carried mobile element structure (MES)-like structures, which has been previously reported in sequence type 59 (ST59) methicillin-resistant S. aureus (MRSA). The remaining 8 ermB-carrying isolates, belonging to ST7 (n = 4), ST5 (n = 3), and ST59 (n = 1), were sasK intact and did not carry MES-like structures. Unlike a MES-like structure that was located on the chromosome, the ermB elements on sasK-intact isolates were located on plasmids by S1 nuclease pulsed-field gel electrophoresis (PFGE) analysis and conjugation tests. Sequence data for the ermB-containing region (14,566 bp) from ST59 NTUH_3874 revealed that the best match was a Tn1546-like element in plasmid pMCCL2 DNA (GenBank accession number AP009486) of Macrococcus caseolyticus Tn1546 is recognized as an enterococcal transposon and was known from the vancomycin resistance gene cluster in vancomycin-resistant Enterococcus (VRE). So far, acquisitions of Tn1546 in S. aureus have occurred in clonal complex 5 (CC5) MRSA, but not in MSSA. This is the first report that MSSA harbors an Enterococcus faecium-originated ermB-positive Tn1546-like element located on a plasmid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. High Prevalence of Ceftazidime-Resistant Klebsiella pneumoniae and Increase of Imipenem-Resistant Pseudomonas aeruginosa and Acinetobacter spp. in Korea: a KONSAR Program in 2004

    PubMed Central

    Lee, Kyungwon; Lim, Chang Hyun; Cho, Ji Hyun; Lee, Wee Gyo; Uh, Young; Kim, Hwi Jun; Yong, Dongeun

    2006-01-01

    A nationwide antimicrobial resistance surveillance has been conducted since 1997 in Korea. In this study, susceptibility test data generated in 2004 by KONSAR group hospitals were analyzed and compared to those at a commercial laboratory. In hospitals, the rank orders of organisms in 2004 were identical to those in 2003. The most prevalent species was Staphylococcus aureus (20.2%) in hospitals, but Escherichia coli (29.7%) in the commercial laboratory. The proportions of Enterococcus faecium to all isolates of Enterococcus faecalis plus E. faecium were 47.2% in hospitals and 24.9% in the commercial laboratory. The mean resistance rates of significant antimicrobial-organism combinations in hospitals were: oxacillin-resistant S. aureus (68%), oxacillin-resistant (penicillin-nonsusceptible) Streptococcus pneumoniae (68%), vancomycin-resistant E. faecium (25%), cefotaxime-resistant E. coli (14%), ceftazidime- and cefoxitin-resistant Klebsiella pneumoniae (34% and 32%, respectively), and imipenem-resistant Acinetobacter spp. and Pseudomonas aeruginosa (17% and 24%, respectively). In conclusion, oxacillin-resistant staphylococci, expanded-spectrum cephalosporin-resistant K. pneumoniae, and imipenem-resistant Acinetobacter spp. and P. aeruginosa were prevalent in 2004. Increasing trends were observed for vancomycin-resistant E. faecium, cefoxitin-resistant E. coli and K. pneumoniae, and imipenem-resistant Acinetobacter spp. and P. aeruginosa. Certain antimicrobial-organism combinations were also prevalent among the commercial laboratory-tested strains. PMID:17066507

  2. Relentless spread and adaptation of non-typeable vanA vancomycin-resistant Enterococcus faecium: a genome-wide investigation.

    PubMed

    van Hal, Sebastiaan J; Beukers, Alicia G; Timms, Verlaine J; Ellem, Justin A; Taylor, Peter; Maley, Michael W; Newton, Peter J; Ferguson, John K; Lee, Andie; Chen, Sharon C-A; Sintchenko, Vitali

    2018-03-16

    VRE are prevalent among patients in ICUs. Non-typeable vanA VRE, due to loss of one of the genes used for MLST (pstS), have increased in Australia, suggestive of a new, hospital-acquired lineage. To understand the significance of this lineage and its transmission using WGS of strains isolated from patients in ICUs across New South Wales, Australia. A total of 240 Enterococcus faecium isolates collected between February and May 2016, and identified by conventional PCR as vanA positive, were sequenced. Isolates originated from 12 ICUs in New South Wales, grouped according to six local health districts, and represented both rectal screening swab (n = 229) and clinical (n = 11) isolates. ST analysis revealed the absence of the pstS gene in 84.2% (202 of 240) of vanA isolates. Two different non-typeable STs were present based on different allelic backbone patterns. Loss of the pstS gene appeared to be the result of multiple recombination events across this region. Evidence for pstS-negative lineage spread across all six local health districts was observed suggestive of inter-hospital transmission. In addition, multiple outbreaks were detected, some of which were protracted and lasted for the duration of the study. These findings confirmed the evolution, emergence and dissemination of non-typeable vanA E. faecium. This study has highlighted the utility of WGS when attempting to describe accurately the hospital-based pathogen epidemiology, which in turn will continue to inform optimal infection control measures necessary to halt the spread of this important nosocomial organism.

  3. Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium.

    PubMed

    Hendrickx, Antoni P A; Top, Janetta; Bayjanov, Jumamurat R; Kemperman, Hans; Rogers, Malbert R C; Paganelli, Fernanda L; Bonten, Marc J M; Willems, Rob J L

    2015-11-10

    The microbiota of the mammalian gastrointestinal tract is a complex ecosystem of bacterial communities that continuously interact with the mucosal immune system. In a healthy host, the mucosal immune system maintains homeostasis in the intestine and prevents invasion of pathogenic bacteria, a phenomenon termed colonization resistance. Antibiotics create dysbiosis of microbiota, thereby decreasing colonization resistance and facilitating infections caused by antibiotic-resistant bacteria. Here we describe how cephalosporin antibiotics create dysbiosis in the mouse large intestine, allowing intestinal outgrowth of antimicrobial-resistant Enterococcus faecium. This is accompanied by a reduction of the mucus-associated gut microbiota layer, colon wall, and Muc-2 mucus layer. E. faecium agglutinates intraluminally in an extracellular matrix consisting of secretory IgA (sIgA), polymeric immunoglobulin receptor (pIgR), and epithelial cadherin (E-cadherin) proteins, thereby maintaining spatial segregation of E. faecium from the intestinal wall. Addition of recombinant E-cadherin and pIgR proteins or purified IgA to enterococci in vitro mimics agglutination of E. faecium in vivo. Also, the Ca(2+) levels temporarily increased by 75% in feces of antibiotic-treated mice, which led to deformation of E-cadherin adherens junctions between colonic intestinal epithelial cells and release of E-cadherin as an extracellular matrix entrapping E. faecium. These findings indicate that during antibiotic-induced dysbiosis, the intestinal epithelium stays separated from an invading pathogen through an extracellular matrix in which sIgA, pIgR, and E-cadherin are colocalized. Future mucosal vaccination strategies to control E. faecium or other opportunistic pathogens may prevent multidrug-resistant infections, hospital transmission, and outbreaks. Infections with antibiotic-resistant enterococci are an emerging worldwide problem because enterococci are resistant to most of the

  4. Near Absence of Vancomycin-Resistant Enterococci but High Carriage Rates of Quinolone-Resistant Ampicillin-Resistant Enterococci among Hospitalized Patients and Nonhospitalized Individuals in Sweden

    PubMed Central

    Torell, Erik; Cars, Otto; Olsson-Liljequist, Barbro; Hoffman, Britt-Marie; Lindbäck, Johan; Burman, Lars G.

    1999-01-01

    Rates of colonization with enterococci with acquired resistance to vancomycin (vancomycin-resistant enterococci [VRE]) and ampicillin (ampicillin-resistant enterococci [ARE]) were determined by using fecal samples from 670 nonhospitalized individuals and 841 patients in 27 major hospitals. Of the hospitalized patients, 181 (21.5%) were carriers of ARE and 9 (1.1%) were carriers of VRE. In univariate analyses, length of hospital stay (odds ratio [OR], 4.6; 95% confidence interval [CI], 2.5 to 8.9) and antimicrobial therapy (OR, 4.7; 95% CI, 3.3 to 6.7) were associated with ARE colonization, as were prior treatment with penicillins (OR, 3.1; 95% CI, 1.8 to 5.5), cephalosporins (OR, 2.9; 95% CI, 1.7 to 5.0), or quinolones (OR, 2.7; 95% CI, 1.5 to 4.7). In logistic regression analysis, antimicrobial therapy for at least 5 days was independently associated with ARE carriage (adjusted OR, 3.8; 95% CI, 2.6 to 5.4). Over 90% of the ARE isolates were fluoroquinolone resistant, whereas 14% of the ampicillin-susceptible Enterococcus faecium isolates were fluoroquinolone resistant. ARE carriage rates correlated with the use of fluoroquinolones (P = 0.04) but not with the use of ampicillin (P = 0.68) or cephalosporins (P = 0.40). All nine VRE isolates were E. faecium vanB and were found in one hospital. Seven of these isolates were related according to their types as determined by pulsed-field gel electrophoresis. Among the nonhospitalized individuals, the ARE carriage rate was lower (6%; P < 0.05), and only one person, who had recently returned from Africa, harbored VRE (E. faecium vanA). The absence of VRE colonization in nonhospitalized individuals reflects an epidemiological situation in Sweden radically different from that in countries in continental Europe where glycopeptides have been widely used for nonmedical purposes. PMID:10523543

  5. Changes in antimicrobial susceptibility of native Enterococcus faecium in chickens fed virginiamycin.

    PubMed

    McDermott, Patrick F; Cullen, Patti; Hubert, Susannah K; McDermott, Shawn D; Bartholomew, Mary; Simjee, Shabbir; Wagner, David D

    2005-09-01

    The extent of transfer of antimicrobial resistance from agricultural environments to humans is controversial. To assess the potential hazard posed by streptogramin use in food animals, this study evaluated the effect of virginiamycin exposure on antimicrobial resistance in Enterococcus faecium recovered from treated broilers. Four consecutive broiler feeding trials were conducted using animals raised on common litter. In the first three trials, one group of birds was fed virginiamycin continuously in feed at 20 g/ton, and a second group served as the nontreated control. In the fourth trial, antimicrobial-free feed was given to both groups. Fecal samples were cultured 1 day after chickens hatched and then at 1, 3, 5, and 7 weeks of age. Isolates from each time point were tested for susceptibility to a panel of different antimicrobials. Quinupristin/dalfopristin-resistant E. faecium appeared after 5 weeks of treatment in trial 1 and within 7 days of trials 2 to 4. Following removal of virginiamycin in trial 4, no resistant isolates were detected after 5 weeks. PCR failed to detect vat, vgb, or erm(B) in any of the streptogramin-resistant E. faecium isolates, whereas the msr(C) gene was detected in 97% of resistant isolates. In an experimental setting using broiler chickens, continuous virginiamycin exposure was required to maintain a stable streptogramin-resistant population of E. faecium in the animals. The bases of resistance could not be explained by known genetic determinants.

  6. Molecular Analysis of VanA Outbreak of Enterococcus faecium in Two Warsaw Hospitals: The Importance of Mobile Genetic Elements

    PubMed Central

    Wardal, Ewa; Markowska, Katarzyna; Żabicka, Dorota; Wróblewska, Marta; Giemza, Małgorzata; Mik, Ewa; Połowniak-Pracka, Hanna; Woźniak, Agnieszka; Hryniewicz, Waleria; Sadowy, Ewa

    2014-01-01

    Vancomycin-resistant Enterococcus faecium represents a growing threat in hospital-acquired infections. Two outbreaks of this pathogen from neighboring Warsaw hospitals have been analyzed in this study. Pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA, multilocus VNTR analysis (MLVA), and multilocus sequence typing (MLST) revealed a clonal variability of isolates which belonged to three main lineages (17, 18, and 78) of nosocomial E. faecium. All isolates were multidrug resistant and carried several resistance, virulence, and plasmid-specific genes. Almost all isolates shared the same variant of Tn1546 transposon, characterized by the presence of insertion sequence ISEf1 and a point mutation in the vanA gene. In the majority of cases, this transposon was located on 50 kb or 100 kb pRUM-related plasmids, which lacked, however, the axe-txe toxin-antitoxin genes. 100 kb plasmid was easily transferred by conjugation and was found in various clonal backgrounds in both institutions, while 50 kb plasmid was not transferable and occurred solely in MT159/ST78 strains that disseminated clonally in one institution. Although molecular data indicated the spread of VRE between two institutions or a potential common source of this alert pathogen, epidemiological investigations did not reveal the possible route by which outbreak strains disseminated. PMID:25003118

  7. Rapid Identification of Vancomycin Resistant Enterococcus Faecalis Clinical Isolates using a Sugar Fermentation Method

    PubMed Central

    Raeisi, Javad; Saifi, Mahnaz; Pourshafie, Mohammad Reza; Habibi, Mehri; Mohajerani, Hamid Reza; Akbari, Neda

    2017-01-01

    Introduction Vancomycin Resistant Enterococci (VRE) can be found all over the world. Thus, rapid detection of the isolates could be of high importance in the treatment or prevention of the associated disease. Aim To measure the turanose fermentation in Enterococcus faecalis clinical isolates for rapid differentiation of VRE and Vancomycin-Susceptible E. faecalis (VSE) isolates. Materials and Methods Forty E. faecalis samples were isolated from 200 clinical samples in Tehran Medical Center, Iran, from October 2012 to December 2012. These isolates were detected according to the standard microbial and biochemical tests. Detection of VRE isolates was originally performed by disk diffusion using 1 μg vancomycin disk, followed by Polymerase Chain Reaction (PCR) amplification of the vanA gene. Finally, the turanose consumption in 1%, 0.7% and 0.5% dilutions was detected by a phenotypic method. Results Among the 40 E. faecalis isolates, 20 vancomycin-susceptible and 20 vancomycin-resistant E. faecalis were isolated according to the disk diffusion and PCR of the vanA gene. There was a considerable difference between VRE and VSE isolates in 0.7% dilution of turanose. However, there was no significant difference between VRE and VSE in 1% and 0.5% dilutions of turanose. Conclusion Since detection of VRE isolates is of high importance, especially in nosocomial infections, phenotypic methods may be highly useful for this purpose. In conclusion, our data indicate that VRE isolated from clinical samples could be distinguished from VSE isolates by turanose fermentation at dilution 0.7%. PMID:28511382

  8. vanA-positive multi-drug-resistant Enterococcus spp. isolated from surfaces of a US hospital laundry facility.

    PubMed

    Michael, K E; No, D; Roberts, M C

    2017-02-01

    Enterococcus spp. are a normal part of the gastrointestinal tract of humans and animals. They are also important pathogens, being responsible for 14% of US nosocomial infections from 2007 to 2010. To examine a laundry facility that processes clinical linens for the presence and seasonality of vancomycin-resistant Enterococcus spp. Surface samples were collected four times in 2015 from the dirty and clean areas of the laundry facility. Isolates were confirmed using biochemical assays, and antibiotic susceptibility testing was performed. Further investigations included molecular characterization by multi-locus sequence typing (MLST), detection of acquired vanA and vanB and/or intrinsic vanC1 genes by polymerase chain reaction, and eBURST analysis. Seventy-four vanA-positive multi-drug-resistant Enterococcus spp. were identified: 64/120 (53%) in the dirty area and 10/120 (8%) in the clean area. There were 14 ST types among the E. faecium isolates identified (ST16, 17, 18, 117, 186, 280, 324, 412, 584, 664, 665, 736, 750 and 1038). Both E. faecalis isolates were ST109. Isolation of vancomycin-resistant enterococci (VRE) isolates was significantly higher (53% vs 8%) in the dirty area of the facility compared with the clean area. This is the first study to examine an industrial laundry facility for the presence of VRE, and may be an unrecognized reservoir. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats.

    PubMed

    Zhang, Fen; Qiu, Liang; Xu, Xiongpeng; Liu, Zhengqi; Zhan, Hui; Tao, Xueying; Shah, Nagendra P; Wei, Hua

    2017-03-01

    The aim of this study was to select probiotic Enterococcus strains that have the potential to improve metabolic syndrome (MS). Ten Enterococcus strains isolated from healthy infants were evaluated for their probiotic properties in vitro, and Enterococcus faecium WEFA23 was selected due to its cholesterol removal ability (1.89 ± 0.07 mg/10 10 cfu), highest glycodeoxycholic acid-hydrolase activity (1.86 ± 0.01 U/mg), and strong adhesion capacity to Caco-2 cells (17.90 ± 0.19%). The safety of E. faecium WEFA23 was verified by acute oral administration in mice, and it was found to have no adverse effects on general health status, bacterial translocation, and gut mucosal histology. Moreover, the beneficial effects of E. faecium WEFA23 on high-fat diet-induced MS in rats were investigated, and we found WEFA23 significantly decreased body weight, serum lipid levels (total cholesterol, triacylglycerols, and low-density lipoprotein cholesterol), blood glucose level, and insulin resistance in rats fed with a high-fat diet. This indicated that administration of E. faecium WEFA23 improved almost all key markers of MS, including obesity, hyperlipidemia, hyperglycemia, and insulin resistance. Our results supported E. faecium WEFA23 as a candidate for cholesterol-lowering dairy products and improvement of MS. Our research provided novel insights on Enterococcus as a strategy to combat MS. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium isolates collected in Bulgaria.

    PubMed

    Strateva, Tanya; Atanasova, Daniela; Savov, Encho; Petrova, Guergana; Mitov, Ivan

    2016-01-01

    To evaluate the prevalence of some virulence genes among 510 clinical Enterococcus spp. isolates and to assess the association of those genes with the species, infection site, and patient group (inpatients/outpatients). Adhesins genes (aggregation substances agg and asa1 of Enterococcus faecalis and Enterococcus faecium, respectively), enterococcal surface protein (esp), endocarditis-specific antigen A (efaA), collagen-binding proteins (ace/acm)); invasins (hyaluronidase (hyl) and gelatinase (gelE)); cytotoxines (activation of cytolysin (cylA) in E. faecalis); and modulators of the host immunity and inflammation (enhanced expression pheromone (eep) in E. faecalis) were detected by polymerase chain reaction. The overall prevalence was: esp - 44.3%, agg/asa1 - 38.4%, ace/acm - 64.3%, efaA - 85.9%, eep - 69.4%, gelE - 64.3%, hyl - 25.1%, and cylA - 47.1%. E. faecalis isolates had significantly higher frequency of adhesin genes (esp and agg/asa1) and gelatinase in comparison to E. faecium. Multiple virulence genes in E. faecalis were significantly more prevalent than in E. faecium isolates. Domination of E. faecium with or without only one gene compared to the isolates of E. faecalis were found. Enterococcus spp. isolates obtained from outpatients compared to inpatients isolates had significantly higher frequency of agg/asa1, eep, gelE and cylA. Some adhesins genes (esp, agg/asa1 and efaA) had higher prevalence among the non-invasive Enterococcus spp. isolates compared to those causing invasive bacteremia, while ace/acm revealed higher dissemination in isolates causing invasive infections compared to non-invasive isolates. Most E. faecalis attaches to abiotic surfaces in hospital environment, which correlates with higher prevalence of gene encoding for virulence factors involved in biofilm formation, such as enterococcal surface protein, aggregation substance, and gelatinase. The intestinal tract is an important reservoir for opportunistic enterococcal pathogens and

  11. Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment

    PubMed Central

    Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D.; Rohr, Jason R.

    2016-01-01

    ABSTRACT Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. PMID:27422829

  12. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis.

    PubMed

    Mikalsen, Theresa; Pedersen, Torunn; Willems, Rob; Coque, Teresa M; Werner, Guido; Sadowy, Ewa; van Schaik, Willem; Jensen, Lars Bogø; Sundsfjord, Arnfinn; Hegstad, Kristin

    2015-04-10

    The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured

  13. Enterocin A Mutants Identified by Saturation Mutagenesis Enhance Potency Towards Vancomycin-Resistant Enterococci

    PubMed Central

    McClintock, Maria K.; Kaznessis, Yiannis N.; Hackel, Benjamin J.

    2016-01-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13±3- and 18±4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. PMID:26191783

  14. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci.

    PubMed

    McClintock, Maria K; Kaznessis, Yiannis N; Hackel, Benjamin J

    2016-02-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. © 2015 Wiley Periodicals, Inc.

  15. Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter.

    PubMed

    Barlow, Robert S; McMillan, Kate E; Duffy, Lesley L; Fegan, Narelle; Jordan, David; Mellor, Glen E

    2017-01-01

    Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4-94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia's reputation

  16. Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter

    PubMed Central

    McMillan, Kate E.; Duffy, Lesley L.; Fegan, Narelle; Jordan, David; Mellor, Glen E.

    2017-01-01

    Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4–94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia

  17. Vancomycin-resistant Enterococcus in pediatric oncology patients: balancing infection prevention and family-centered care.

    PubMed

    Singh, Jasjit; Esparza, Samuel; Patterson, Melanie; Vogel, Kate; Patel, Bijal; Gornick, Wendi

    2013-04-01

    In February 2007, we experienced an abrupt 8-fold increase in vancomycin-resistant Enterococcus (VRE)-positive pediatric hematology/oncology patients in isolation per day, peaking at 12 patients in isolation per day in June 2007. We enforced and expanded infection prevention practices and initiated a rigorous 6-month clearance process. After noting an eventual decrease, we modified clearance to a 3-month process, maintaining <1 patient/day in isolation by June 2009, subjectively improving family and staff satisfaction after this 2-year process. VRE infection was relatively uncommon (7.8%), although continued VRE colonization portended an overall poorer prognosis.

  18. Enterocin TW21, a novel bacteriocin from dochi-isolated Enterococcus faecium D081821.

    PubMed

    Chang, S-Y; Chen, Y-S; Pan, S-F; Lee, Y-S; Chang, C-H; Chang, C-H; Yu, B; Wu, H-C

    2013-09-01

    Purification and characterization of a novel bacteriocin produced by strain Enterococcus faecium D081821. Enterococcus faecium D081821, isolated from the traditional Taiwanese fermented food dochi (fermented black beans), was previously found to produce a bacteriocin against Listeria monocytogenes and some Gram-positive bacteria. This bacteriocin, termed enterocin TW21, was purified from culture supernatant by ammonium sulfate precipitation, Sep-Pak C18 cartridge, ion-exchange and gel filtration chromatography. Mass spectrometry analysis showed the mass of the peptide to be approximately 5300·6 Da. The N-terminal amino acid sequencing yielded a partial sequence NH2 -ATYYGNGVYxNTQK by Edman degradation, and it contains the consensus class IIa bacteriocin motif YGNGV in the N-terminal region. The open reading frame (ORF) encoding the bacteriocin was identified from the draft genome sequence of Enterococcus faecium D081821, and sequence analysis of this peptide indicated that enterocin TW21 is a novel bacteriocin. Enterococcus faecium D081821 produced a bacteriocin named enterocin TW21, the molecular weight and amino acid sequence both revealed it to be a novel bacteriocin. A new member of class IIa bacteriocin was identified. This bacteriocin shows great inhibitory ability against L. monocytogenes and could be applied as a natural food preservative. © 2013 The Society for Applied Microbiology.

  19. Culture methods impact recovery of antibiotic-resistant Enterococci including Enterococcus cecorum from pre- and postharvest chicken.

    PubMed

    Suyemoto, M M; Barnes, H J; Borst, L B

    2017-03-01

    Pathogenic strains of Enterococcus cecorum (EC) expressing multidrug resistance have emerged. In National Antimicrobial Resistance Monitoring System (NARMS) data, EC is rarely recovered from chickens. Two NARMS methodologies (FDA and USDA) were compared with standard culture (SC) techniques for recovery of EC. NARMS methods failed to detect EC in 58 caecal samples, 20 chicken breast or six whole broiler samples. EC was recovered from 1 of 38 (2·6%) and 2 of 38 (5·2%) preharvest spinal lesions (USDA and FDA method, respectively). In contrast, using the SC method, EC was recovered from 44 of 53 (83%) caecal samples, all 38 (100%) spinal lesions, 14 of 20 (70%) chicken breast samples, and all three spinal lesions identified in whole carcasses. Compared with other Enterococcus spp., EC isolates had a higher prevalence of resistance to macrolides. The NARMS methods significantly affected recovery of enterococcal species other than EC. When the postharvest FDA method was applied to preharvest caecal samples, isolates of Enterococcus faecium were preferentially recovered. All 11 E. faecium isolates were multidrug resistant, including resistance to penicillin, daptomycin and linezolid. These findings confirm that current methodologies may not accurately identify the amount and range of antimicrobial resistance of enterococci from chicken sources. Enterococci are an important reservoir for antimicrobial resistance. This study demonstrates how current culture methods underreport resistance to macrolides in enterococci by selecting against strains of Enterococcus cecorum in pre- and postharvest chicken. Further, the application of postharvest surveillance methods to preharvest samples resulted in selective recovery of Enterococcus faecium over Enterococcus faecalis. Isolates of E. faecium recovered exhibited multidrug resistance including penicillin, daptomycin and linezolid resistance. These findings suggest that culture methodology significantly impacts the range and

  20. Restricted Gene Flow among Hospital Subpopulations of Enterococcus faecium

    PubMed Central

    Willems, Rob J. L.; Top, Janetta; van Schaik, Willem; Leavis, Helen; Bonten, Marc; Sirén, Jukka; Hanage, William P.; Corander, Jukka

    2012-01-01

    ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. PMID:22807567

  1. Failure of daptomycin β-Lactam combination therapy to prevent resistance emergence in Enterococcus faecium.

    PubMed

    Menon, Vidthiya; Davis, Rebecca; Shackel, Nick; Espedido, Bjorn A; Beukers, Alicia G; Jensen, Slade O; van Hal, Sebastiaan J

    2018-02-01

    Daptomycin β-Lactam combination therapy offers "protection" against daptomycin non-susceptibility (DNS) development in Enterococcus faecium. We report failure of this strategy and the importance of source control. Mutations were detected in the LiaF and cls genes in DNS isolates. A single DNS isolate contained an unrecognized mutation, which requires confirmation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Low prevalence of vancomycin- and bifunctional aminoglycoside-resistant enterococci isolated from poultry farms in Malaysia.

    PubMed

    Chan, Yean Yean; Abd Nasir, Mohd Hafiz B; Yahaya, Mohd Azli B; Salleh, Noor Mohamad Amin B; Md Dan, Azril Deenor B; Musa, Abd Majid B; Ravichandran, M

    2008-02-29

    A total of 225 samples from poultry farms and the surrounding environment were screened for vancomycin-resistant enterococci (VRE) and bifunctional aminoglycoside-resistant enterococci using conventional microbiological tests and a nanoplex polymerase chain reaction (PCR) assay. Three (1.3%) of the samples were found to contain vancomycin-resistant isolates (MIC>256 microg/mL) that had a vanA genotype. The three vanA positive VRE isolates were identified as different species. Only one isolate (Enterococcus faecium F 4/13_54) was sensitive to teicoplanin (MIC<0. 12-0.35 microg/mL); the other two VRE (E. faecalis A 21_35 and E. gallinarum F 5/10_1) were resistant to teicoplanin (MIC 3.6-->16 microg/mL). The vanC genotype was observed in nine (4%) of the samples collected. High-level gentamicin-resistant (HLGR) enterococci (with MIC ranging between 100 and 500 microg/mL) were detected in 44 samples. However, only 40 of these were found to possess the aac(6')-aph(2'') gene. The overall prevalence of VRE among the samples from the poultry farms and environment was 5.3%, but the prevalence of the clinically significant vanA VRE was 1.3%, and the prevalence of bifunctional aminoglycoside-resistant enterococci was slightly higher, at 19.5%.

  3. Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment.

    PubMed

    Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D; Rohr, Jason R; Harwood, Valerie J

    2016-09-15

    Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. RelA Mutant Enterococcus faecium with Multiantibiotic Tolerance Arising in an Immunocompromised Host

    PubMed Central

    Honsa, Erin S.; Mhaissen, Mohammed N.; Frank, Matthew; Shaker, Jessica; Iverson, Amy; Rubnitz, Jeffrey; Hayden, Randall T.; Lee, Richard E.; Rock, Charles O.; Tuomanen, Elaine I.

    2017-01-01

    ABSTRACT Serious bacterial infections in immunocompromised patients require highly effective antibacterial therapy for cure, and thus, this setting may reveal novel mechanisms by which bacteria circumvent antibiotics in the absence of immune pressure. Here, an infant with leukemia developed vancomycin-resistant Enterococcus faecium (VRE) bacteremia that persisted for 26 days despite appropriate antibiotic therapy. Sequencing of 22 consecutive VRE isolates identified the emergence of a single missense mutation (L152F) in relA, which constitutively activated the stringent response, resulting in elevated baseline levels of the alarmone guanosine tetraphosphate (ppGpp). Although the mutant remained susceptible to both linezolid and daptomycin in clinical MIC testing and during planktonic growth, it demonstrated tolerance to high doses of both antibiotics when growing in a biofilm. This biofilm-specific gain in resistance was reflected in the broad shift in transcript levels caused by the mutation. Only an experimental biofilm-targeting ClpP-activating antibiotic was able to kill the mutant strain in an established biofilm. The relA mutation was associated with a fitness trade-off, forming smaller and less-well-populated biofilms on biological surfaces. We conclude that clinically relevant relA mutations can emerge during prolonged VRE infection, causing baseline activation of the stringent response, subsequent antibiotic tolerance, and delayed eradication in an immunocompromised state. PMID:28049149

  5. Long-term clonal dynamics of Enterococcus faecium strains causing bloodstream infections (1995-2015) in Spain.

    PubMed

    Tedim, Ana P; Ruíz-Garbajosa, Patricia; Rodríguez, Maria Concepción; Rodríguez-Baños, Mercedes; Lanza, Val F; Derdoy, Laura; Cárdenas Zurita, Gonzalo; Loza, Elena; Cantón, Rafael; Baquero, Fernando; Coque, Teresa M

    2017-01-01

    To investigate the population structure of Enterococcus faecium causing bloodstream infections (BSIs) in a tertiary Spanish hospital with low glycopeptide resistance, and to enhance our knowledge of the dynamics of emergence and spread of high-risk clonal complexes. All available E. faecium causing BSIs (n = 413) in our hospital (January 1995-May 2015) were analysed for antibiotic susceptibility (CLSI), putative virulence traits (PCR, esp, hyl Efm ) and clonal relationship (SmaI-PFGE, MLST evaluated by goeBURST and BAPS). The increased incidence of BSIs caused by enterococci [2.3‰ of attended patients (inpatients and outpatients) in 1996 to 3.0‰ in 2014] significantly correlated with the increase in BSIs caused by E. faecium (0.33‰ of attended patients in 1996 to 1.3‰ in 2014). The BSIs Enterococcus faecalis:E. faecium ratio changed from 5:1 in 1996 to 1:1 in 2014. During the last decade an increase in E. faecium BSIs episodes in cancer patients (10.9% in 1995-2005 and 37.1% in 2006-15) was detected. Ampicillin-susceptible E. faecium (ASEfm; different STs/BAPS) and ampicillin-resistant E. faecium (AREfm; ST18/ST17-BAPS 3.3a) isolates were recovered throughout the study. Successive waves of BAPS 2.1a-AREfm (ST117, ST203 and ST80) partially replaced ASEfm and ST18-AREfm since 2006. Different AREfm clones (belonging to BAPS 2.1a and BAPS 3.3a) consistently isolated during the last decade from BSIs might be explained by a continuous and dense colonization (favouring both invasion and cross-transmission) of hospitalized patients. High-density colonization by these clones is probably enhanced in elderly patients by heavy and prolonged antibiotic exposure, particularly in oncological patients. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Efficacy of tigecycline alone and in combination with gentamicin in the treatment of experimental endocarditis due to linezolid-resistant Enterococcus faecium.

    PubMed

    Pontikis, Konstantinos; Pefanis, Angelos; Tsaganos, Thomas; Tzepi, Ira-Maria; Carrer, Dionyssia-Pinelopi; Giamarellou, Helen

    2013-07-01

    We evaluated the efficacy of tigecycline in a rabbit model of experimental endocarditis caused by a linezolid-resistant clinical strain of Enterococcus faecium. Tigecycline-treated animals had a 2.8-log10-CFU/g reduction in microbial counts in excised vegetations compared with controls. Addition of gentamicin caused a further arithmetical reduction in colony counts. The therapeutic effect was sustained 5 days after completion of treatment, as shown by relapse studies performed in treatment groups.

  7. Recovery of vancomycin-resistant enterococci on fingertips and environmental surfaces.

    PubMed

    Noskin, G A; Stosor, V; Cooper, I; Peterson, L R

    1995-10-01

    To determine the recovery of vancomycin-resistant enterococci (VRE) on fingertips, gloved fingertips, and environmental surfaces commonly encountered in the healthcare setting, and to examine the importance of handwashing on the removal of these organisms. Two clinical isolates of VRE (Enterococcus faecalis and Enterococcus faecium) were inoculated onto the hands of healthy human volunteers and the following environmental surfaces: countertops, bedrails, telephones, and stethoscopes. Following inoculation, samples were obtained at various time intervals to determine rates of recovery of organisms. To evaluate the effects of handwashing on enterococcal recovery, two different soap preparations were tested. Hands were washed with water alone or with one of the soaps and water. The soap and water studies were performed with a 5-second and a 30-second wash. Both enterococcal strains survived for at least 60 minutes on gloved and ungloved fingertips. The E faecalis was recoverable from countertops for 5 days; the E faecium persisted for 7 days. For bedrails, both enterococcal species survived for 24 hours without significant reduction in colony counts. The bacteria persisted for 60 minutes on the telephone handpiece and for 30 minutes on the diaphragmatic surface of the stethoscope. A 5-second wash with water alone resulted in virtually no change in recovery of enterococci; a 30-second wash with water plus either soap was necessary to eradicate the bacteria from hands completely. VRE are capable of prolonged survival on hands, gloves, and environmental surfaces. Hands should be washed thoroughly and gloves removed following contact with patients infected or colonized with these multidrug-resistant bacteria. Finally, environmental surfaces may serve as potential reservoirs for nosocomial transmission of VRE and need to be considered when formulating institutional infection control policies.

  8. Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia.

    PubMed

    Donado-Godoy, Pilar; Byrne, Barbara A; León, Maribel; Castellanos, Ricardo; Vanegas, Consuelo; Coral, Adriana; Arevalo, Alejandra; Clavijo, Viviana; Vargas, Mercedes; Romero Zuñiga, Juan J; Tafur, McAllister; Pérez-Gutierrez, Enrique; Smith, Woutrina A

    2015-04-01

    As a step toward implementing the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), this study aimed to establish the baseline antimicrobial resistance patterns of Salmonella serovars, Escherichia coli, and Enterococcus spp. isolates in retail poultry meat from independent stores and from a main chain distributor center. MICs of the isolates were determined for antimicrobials used both in humans and animals, using an automated system. Salmonella serovars were isolated from 26% of the meat samples and E. coli from 83%, whereas Enterococcus faecalis and Enterococcus faecium were detected in 81 and 13% of the meat samples, respectively. A principal finding of concern in this study was that almost 98% of isolates tested were multidrug resistant. Ceftiofur, enrofloxacin, nalidixic acid, and tetracycline were the antimicrobials that showed the highest frequency of resistance among Salmonella and E. coli isolates. For enterococci, 61.5% of E. faecium isolates were found to be resistant to quinupristin-dalfopristin; this is significant because it is used to treat nosocomial infections when vancomycin resistance is present. Vancomycin resistance was detected in 4% of the E. faecalis isolates. The results of our study highlight the need for rapid implementation of an integrated program for surveillance of antimicrobial resistance by the Colombian authorities in order to monitor trends, raise awareness, and help promote practices to safeguard later generation antimicrobial agents.

  9. Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection With Oral Vancomycin Compared With Metronidazole

    PubMed Central

    Lewis, Brittany B.; Buffie, Charlie G.; Carter, Rebecca A.; Leiner, Ingrid; Toussaint, Nora C.; Miller, Liza C.; Gobourne, Asia; Ling, Lilan; Pamer, Eric G.

    2015-01-01

    Antibiotic administration disrupts the intestinal microbiota, increasing susceptibility to pathogens such as Clostridium difficile. Metronidazole or oral vancomycin can cure C. difficile infection, and administration of these agents to prevent C. difficile infection in high-risk patients, although not sanctioned by Infectious Disease Society of America guidelines, has been considered. The relative impacts of metronidazole and vancomycin on the intestinal microbiota and colonization resistance are unknown. We investigated the effect of brief treatment with metronidazole and/or oral vancomycin on susceptibility to C. difficile, vancomycin-resistant Enterococcus, carbapenem-resistant Klebsiella pneumoniae, and Escherichia coli infection in mice. Although metronidazole resulted in transient loss of colonization resistance, oral vancomycin markedly disrupted the microbiota, leading to prolonged loss of colonization resistance to C. difficile infection and dense colonization by vancomycin-resistant Enterococcus, K. pneumoniae, and E. coli. Our results demonstrate that vancomycin, and to a lesser extent metronidazole, are associated with marked intestinal microbiota destruction and greater risk of colonization by nosocomial pathogens. PMID:25920320

  10. Identification, antimicrobial resistance and genotypic characterization of Enterococcus spp. isolated in Porto Alegre, Brazil

    PubMed Central

    Bender, Eduardo André; de Freitas, Ana Lúcia Peixoto; Reiter, Keli Cristine; Lutz, Larissa; Barth, Afonso Luís

    2009-01-01

    In the past two decades the members of the genus Enterococcus have emerged as important nosocomial pathogens worldwide. In the present study, we evaluated the antimicrobial resistance and genotypic characteristics of 203 Enterococcus spp. recovered from different clinical sources from two hospitals in Porto Alegre, Rio Grande do Sul, Brazil. The species were identified by conventional biochemical tests and by an automated system. The genetic diversity of E. faecalis presenting high-level aminoglycoside resistance (HLAR) was assessed by pulsed-field gel electrophoresis of chromosomal DNA after SmaI digestion. The E. faecalis was the most frequent specie (93.6%), followed by E. faecium (4.4%). The antimicrobial resistance profile was: 2.5% to ampicillin, 0.5% to vancomycin, 0.5% teicoplanin, 33% to chloramphenicol, 2% to nitrofurantoin, 66.1% to erythromycin, 66.5% to tetracycline, 24.6% to rifampicin, 30% to ciprofloxacin and 87.2% to quinupristin-dalfopristin. A total of 10.3% of the isolates proved to be HLAR to both gentamicin and streptomycin (HLR-ST/GE), with 23.6% resistant only to gentamicin (HLR-GE) and 37.4% only to streptomycin (HLR-ST). One predominant clonal group was found among E. faecalis HLR-GE/ST. The prevalence of resistance among beta-lactam antibiotics and glycopeptides was very low. However, in this study there was an increased number of HLR Enterococcus which may be spreading intra and inter-hospital. PMID:24031416

  11. Efficacy of Tigecycline Alone and in Combination with Gentamicin in the Treatment of Experimental Endocarditis Due to Linezolid-Resistant Enterococcus faecium

    PubMed Central

    Pefanis, Angelos; Tsaganos, Thomas; Tzepi, Ira-Maria; Carrer, Dionyssia-Pinelopi; Giamarellou, Helen

    2013-01-01

    We evaluated the efficacy of tigecycline in a rabbit model of experimental endocarditis caused by a linezolid-resistant clinical strain of Enterococcus faecium. Tigecycline-treated animals had a 2.8-log10-CFU/g reduction in microbial counts in excised vegetations compared with controls. Addition of gentamicin caused a further arithmetical reduction in colony counts. The therapeutic effect was sustained 5 days after completion of treatment, as shown by relapse studies performed in treatment groups. PMID:23587961

  12. Isolation and characterization of large spectrum and multiple bacteriocin-producing Enterococcus faecium strain from raw bovine milk.

    PubMed

    Gaaloul, N; ben Braiek, O; Hani, K; Volski, A; Chikindas, M L; Ghrairi, T

    2015-02-01

    To assess the antimicrobial properties of lactic acid bacteria from Tunisian raw bovine milk. A bacteriocin-producing Enterococcus faecium strain was isolated from raw cow milk with activity against Gram-positive and Gram-negative bacteria. Antimicrobial substances produced by this strain were sensitive to proteolytic enzymes and were thermostable and resistant to a broad range of pH (2-10). Mode of action of antimicrobial substances was determined as bactericidal. Maximum activity was reached at the end of the exponential growth phase when checked against Listeria ivanovii BUG 496 (2366.62 AU ml(-1)). However, maximum antimicrobial activity against Pseudomonas aeruginosa 28753 was recorded at the beginning of the exponential growth phase. Enterococcus faecium GGN7 was characterized as free from virulence factors and was susceptible to tested antibiotics. PCR analysis of the micro-organism's genome revealed the presence of genes coding for enterocins A and B. Mass spectrometry analysis of RP-HPLC active fractions showed molecular masses corresponding to enterocins A (4835.77 Da) and B (5471.56 Da), and a peptide with a molecular mass of 3215.5 Da active only against Gram-negative indicator strains. The latter was unique in the databases. Enterococcus faecium GGN7 produces three bacteriocins with different inhibitory spectra. Based on its antimicrobial properties and safety, Ent. faecium GGN7 is potentially useful for food biopreservation. The results suggest the bacteriocins from GGN7 strain could be useful for food biopreservation. © 2014 The Society for Applied Microbiology.

  13. Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese.

    PubMed

    Favaro, Lorenzo; Basaglia, Marina; Casella, Sergio; Hue, Isabelle; Dousset, Xavier; Gombossy de Melo Franco, Bernadette Dora; Todorov, Svetoslav Dimitrov

    2014-04-01

    Four LAB strains, isolated from Bulgarian home made white brine cheese, were selected for their effective inhibition against Listeria monocytogenes. According to their biochemical and physiological characteristics, the strains were classified as members of Enterococcus genus, and then identified as Enterococcus faecium by 16S rDNA sequencing. Their bacteriocin production and inhibitory spectrum were evaluated together with the occurrence of several bacteriocin genes (entA, entB, entP, entL50B). Their virulence potential and safety was assessed both using PCR targeted to the genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc and by phenotypical tests for antibiotic resistance, gelatinase, lipase, DNAse and α- and β-haemolysis. The E. faecium strains harboured at least one enterocin gene while the occurrence of virulence, antibiotic resistance and biogenic amines genes was limited. Considering their strong antimicrobial activity against L. monocytogenes strains, the four E. faecium strains exhibited promising potential as bio-preservatives cultures for fermented food productions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The Two-Component System ChtRS Contributes to Chlorhexidine Tolerance in Enterococcus faecium.

    PubMed

    Guzmán Prieto, Ana M; Wijngaarden, Jessica; Braat, Johanna C; Rogers, Malbert R C; Majoor, Eline; Brouwer, Ellen C; Zhang, Xinglin; Bayjanov, Jumamurat R; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2017-05-01

    Enterococcus faecium is one of the primary causes of nosocomial infections. Disinfectants are commonly used to prevent infections with multidrug-resistant E. faecium in hospitals. Worryingly, E. faecium strains that exhibit tolerance to disinfectants have already been described. We aimed to identify and characterize E. faecium genes that contribute to tolerance to the disinfectant chlorhexidine (CHX). We used a transposon mutant library, constructed in a multidrug-resistant E. faecium bloodstream isolate, to perform a genome-wide screen to identify genetic determinants involved in tolerance to CHX. We identified a putative two-component system (2CS), composed of a putative sensor histidine kinase (ChtS) and a cognate DNA-binding response regulator (ChtR), which contributed to CHX tolerance in E. faecium Targeted chtR and chtS deletion mutants exhibited compromised growth in the presence of CHX. Growth of the chtR and chtS mutants was also affected in the presence of the antibiotic bacitracin. The CHX- and bacitracin-tolerant phenotype of E. faecium E1162 was linked to a unique, nonsynonymous single nucleotide polymorphism in chtR Transmission electron microscopy showed that upon challenge with CHX, the Δ chtR and Δ chtS mutants failed to divide properly and formed long chains. Normal growth and cell morphology were restored when the mutations were complemented in trans Morphological abnormalities were also observed upon exposure of the Δ chtR and Δ chtS mutants to bacitracin. The tolerance to both chlorhexidine and bacitracin provided by ChtRS in E. faecium highlights the overlap between responses to disinfectants and antibiotics and the potential for the development of cross-tolerance for these classes of antimicrobials. Copyright © 2017 American Society for Microbiology.

  15. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer

    PubMed Central

    Novais, Carla; Tedim, Ana P.; Lanza, Val F.; Freitas, Ana R.; Silveira, Eduarda; Escada, Ricardo; Roberts, Adam P.; Al-Haroni, Mohammed; Baquero, Fernando; Peixe, Luísa; Coque, Teresa M.

    2016-01-01

    Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18, and ST78) in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works) with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180–280 kb) chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase) and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen. PMID

  16. Comparison of Genomic Methods for Differentiating Strains of Enterococcus faecium: Assessment Using Clinical Epidemiologic Data

    PubMed Central

    Savor, Connie; Pfaller, Michael A.; Kruszynski, Julie A.; Hollis, Richard J.; Noskin, Gary A.; Peterson, Lance R.

    1998-01-01

    Genomic DNA extracted from 45 vancomycin-resistant Enterococcus faecium (VRE) isolates was cleaved with HindIII and HaeIII and subjected to agarose gel electrophoresis. The ability of this method (restriction endonuclease analysis [REA]) to distinguish strains at the subspecies level was compared with results previously determined by pulsed-field gel electrophoresis (PFGE). Chart reviews were performed to provide a clinical correlation of possible epidemiologic relatedness. A likely clinical association was found for 29 patients as part of two outbreaks. REA found 21 of 21 isolates were the same type in the first outbreak, with PFGE calling 19 strains the same type. In the second outbreak with eight patient isolates, HindIII found six were the same type and two were unique types. HaeIII found three strains were the same type, two strains were a separate type, and three more strains were unique types, while PFGE found three were the same type and five were unique types. No single “ideal” method can be used without clinical epidemiologic investigation, but any of these techniques is helpful in providing focus to infection control practitioners assessing possible outbreaks of nosocomial infection. PMID:9774587

  17. Enterococcus faecium PBP5-S/R, the missing link between PBP5-S and PBP5-R.

    PubMed

    Pietta, Ester; Montealegre, Maria Camila; Roh, Jung Hyeob; Cocconcelli, Pier Sandro; Murray, Barbara E

    2014-11-01

    During a study to investigate the evolution of ampicillin resistance in Enterococcus faecium, we observed that a number of E. faecium strains, mainly from the recently described subclade A2, showed PBP5 sequences in between PBP5-S and PBP5-R. These hybrid PBP5-S/R patterns reveal a progression of amino acid changes from the S form to the R form of this protein; however, these changes do not strictly correlate with changes in ampicillin MICs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Selective digestive tract decontamination and vancomycin-resistant enterococcus isolation in the surgical intensive care unit.

    PubMed

    Dahms, R; Carlson, M; Lohr, B; Beilman, G

    2000-09-01

    Vancomycin-resistant Enterococcus (VRE) has emerged as a significant nosocomial pathogen in the surgical intensive care unit (SICU). We wished to test the hypothesis that the use of selective digestive tract decontamination (SDD) in the SICU affects the frequency of VRE isolation. A retrospective review of hospital records and the SICU database was performed using patients admitted to the SICU service for three or more days from January 1, 1996 to December 31, 1999 at our large tertiary-care teaching hospital. During this time use of SDD in selected patient populations decreased due to physician preference. Information gathered included length of SICU stay, presence of VRE infection or colonization, and use and duration of SDD protocol, vancomycin, and ceftazidime. There were 110 newly diagnosed VRE cases in the SICU during this time period. During the same time period 54 patients received SDD. Eight patients who received SDD had positive VRE cultures and seven had the initial positive culture after receiving SDD. Overall, 9.1% of eligible SICU patients received SDD, 18.5% of patients in the SICU for over 3 days had VRE, 7.3% of VRE patients received SDD, and 13.0% of the SICU patients who received SDD subsequently developed VRE. SDD use was not associated with VRE in univariate analysis. Logistic regression analysis showed higher odds ratios for SDD use in combination with vancomycin than for vancomycin use alone (OR=4.3 vs. 10.9). Odds ratios were over three times higher for SDD plus vancomycin plus ceftazidime use when compared to vancomycin plus ceftazidime use alone (OR=70.5 vs. 19.8). We conclude that administration of SDD alone did not correlate with increased VRE isolation, but that SDD use in conjunction with vancomycin and ceftazidime was associated with VRE isolation.

  19. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg; Gibbs, Shawn G.

    Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwestmore » spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the

  20. Vancomycin resistant enterococci in urine cultures: Antibiotic susceptibility trends over a decade at a tertiary hospital in the United Kingdom.

    PubMed

    Toner, Liam; Papa, Nathan; Aliyu, Sani H; Dev, Harveer; Lawrentschuk, Nathan; Al-Hayek, Samih

    2016-03-01

    Enterococci are a common cause of urinary tract infection and vancomycin-resistant strains are more difficult to treat. The purpose of this surveillance program was to assess the prevalence of and determine the risk factors for vancomycin resistance in adults among urinary isolates of Enterococcus sp. and to detail the antibiotic susceptibility profile, which can be used to guide empirical treatment. From 2005 to 2014 we retrospectively reviewed 5,528 positive Enterococcus sp. urine cultures recorded in a computerized laboratory results database at a tertiary teaching hospital in Cambridge, United Kingdom. Of these cultures, 542 (9.8%) were vancomycin resistant. No longitudinal trend was observed in the proportion of vancomycin-resistant strains over the course of the study. We observed emerging resistance to nitrofurantoin with rates climbing from near zero to 40%. Ampicillin resistance fluctuated between 50% and 90%. Low resistance was observed for linezolid and quinupristin/dalfopristin. Female sex and inpatient status were identified as risk factors for vancomycin resistance. The incidence of vancomycin resistance among urinary isolates was stable over the last decade. Although resistance to nitrofurantoin has increased, it still serves as an appropriate first choice in uncomplicated urinary tract infection caused by vancomycin-resistant Enterococcus sp.

  1. Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium

    PubMed Central

    Top, Janetta; Bayjanov, Jumamurat R.; Kemperman, Hans; Rogers, Malbert R. C.; Paganelli, Fernanda L.; Bonten, Marc J. M.; Willems, Rob J. L.

    2015-01-01

    ABSTRACT The microbiota of the mammalian gastrointestinal tract is a complex ecosystem of bacterial communities that continuously interact with the mucosal immune system. In a healthy host, the mucosal immune system maintains homeostasis in the intestine and prevents invasion of pathogenic bacteria, a phenomenon termed colonization resistance. Antibiotics create dysbiosis of microbiota, thereby decreasing colonization resistance and facilitating infections caused by antibiotic-resistant bacteria. Here we describe how cephalosporin antibiotics create dysbiosis in the mouse large intestine, allowing intestinal outgrowth of antimicrobial-resistant Enterococcus faecium. This is accompanied by a reduction of the mucus-associated gut microbiota layer, colon wall, and Muc-2 mucus layer. E. faecium agglutinates intraluminally in an extracellular matrix consisting of secretory IgA (sIgA), polymeric immunoglobulin receptor (pIgR), and epithelial cadherin (E-cadherin) proteins, thereby maintaining spatial segregation of E. faecium from the intestinal wall. Addition of recombinant E-cadherin and pIgR proteins or purified IgA to enterococci in vitro mimics agglutination of E. faecium in vivo. Also, the Ca2+ levels temporarily increased by 75% in feces of antibiotic-treated mice, which led to deformation of E-cadherin adherens junctions between colonic intestinal epithelial cells and release of E-cadherin as an extracellular matrix entrapping E. faecium. These findings indicate that during antibiotic-induced dysbiosis, the intestinal epithelium stays separated from an invading pathogen through an extracellular matrix in which sIgA, pIgR, and E-cadherin are colocalized. Future mucosal vaccination strategies to control E. faecium or other opportunistic pathogens may prevent multidrug-resistant infections, hospital transmission, and outbreaks. PMID:26556272

  2. Effects of two novel amino acid substitutions on the penicillin binding properties of the PBP5 C‑terminal from Enterococcus faecium.

    PubMed

    Zhou, Chengjiang; Niu, Haiying; Yu, Hui; Zhou, Lishe; Wang, Zhanli

    2015-10-01

    The low‑affinity penicillin‑binding protein (PBP)5 is responsible for resistance to β‑lactam antibiotics in Enterococcus faecium. (E. faecium). In order to evaluate more fully the potential of this species for the development of resistance to β-lactam antibiotics, the present study aimed to examine the extent of penicillin-binding protein (PBP) variations in a collection of clinical E. faecium isolates. In the present study, the C‑terminal domain of PBP5 (PBP5‑CD) of 13 penicillin‑resistant clinical isolates of E. faecium were sequenced and the correlation between penicillin resistance and particular amino acid changes were analyzed. The present study identified for the first time, to the best of our knowledge, two novel substitutions (Tyr460Phe and Ala462Thr or Val462Thr) of E. faecium PBP5‑CD. The covalent interaction between penicillin and PBP5‑CD was also investigated using homology modeling and molecular docking methods. The theoretical calculation revealed that Phe460 and Thr462 were involved in penicillin binding, suggesting that substitutions at these positions exert effects on the affinity for penicillin, and this increased affinity translates into lower resistance in vitro.

  3. Evaluation of Enterococcus faecium NRRL B-2354 as a Surrogate for Salmonella During Extrusion of Low-Moisture Food.

    PubMed

    Verma, Tushar; Wei, Xinyao; Lau, Soon Kiat; Bianchini, Andreia; Eskridge, Kent M; Subbiah, Jeyamkondan

    2018-04-01

    Salmonella in low-moisture foods is an emerging challenge due to numerous food product recalls and foodborne illness outbreaks. Identification of suitable surrogate is critical for process validation at industry level due to implementation of new Food Safety Modernization Act of 2011. The objective of this study was to evaluate Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during the extrusion of low-moisture food. Oat flour, a low-moisture food, was adjusted to different moisture (14% to 26% wet basis) and fat (5% to 15% w/w) contents and was inoculated with E. faecium NRRL B-2354. Inoculated material was then extruded in a lab-scale single-screw extruder running at different screw speeds (75 to 225 rpm) and different temperatures (75, 85, and 95 °C). A split-plot central composite 2nd order response surface design was used, with the central point replicated six times. The data from the selective media (m-Enterococcus agar) was used to build the response surface model for inactivation of E. faecium NRRL B-2354. Results indicated that E. faecium NRRL B-2354 always had higher heat resistance compared to Salmonella at all conditions evaluated in this study. However, the patterns of contour plots showing the effect of various product and process parameters on inactivation of E. faecium NRRL B-2354 was different from that of Salmonella. Although E. faecium NRRL B-2354 may be an acceptable surrogate for extrusion of low-moisture products due to higher resistance than Salmonella, another surrogate with similar inactivation behavior may be preferred and needs to be identified. Food Safety Modernization Act requires the food industry to validate processing interventions. This study validated extrusion processing and demonstrated that E. faecium NRRL B-2354 is an acceptable surrogate for extrusion of low-moisture products. The developed response surface model allows the industry to identify process conditions to achieve a desired lethality for their

  4. Proteomic characterization of vanA-containing Enterococcus recovered from Seagulls at the Berlengas Natural Reserve, W Portugal.

    PubMed

    Radhouani, Hajer; Poeta, Patrícia; Pinto, Luís; Miranda, Júlio; Coelho, Céline; Carvalho, Carlos; Rodrigues, Jorge; López, María; Torres, Carmen; Vitorino, Rui; Domingues, Pedro; Igrejas, Gilberto

    2010-09-21

    Enterococci have emerged as the third most common cause of nosocomial infections, requiring bactericidal antimicrobial therapy. Although vancomycin resistance is a major problem in clinics and has emerged in an important extend in farm animals, few studies have examined it in wild animals. To determine the prevalence of vanA-containing Enterococcus strains among faecal samples of Seagulls (Larus cachinnans) of Berlengas Natural Reserve of Portugal, we developed a proteomic approach integrated with genomic data. The purpose was to detect the maximum number of proteins that vary in different enterococci species which are thought to be connected in some, as yet unknown, way to antibiotic resistance. From the 57 seagull samples, 54 faecal samples showed the presence of Enterococcus isolates (94.7%). For the enterococci, E. faecium was the most prevalent species in seagulls (50%), followed by E. faecalis and E. durans (10.4%), and E. hirae (6.3%). VanA-containing enterococcal strains were detected in 10.5% of the 57 seagull faecal samples studied. Four of the vanA-containing enterococci were identified as E. faecium and two as E. durans. The tet(M) gene was found in all five tetracycline-resistant vanA strains. The erm(B) gene was demonstrated in all six erythromycin-resistant vanA strains. The hyl virulence gene was detected in all four vanA-containing E. faecium isolates in this study, and two of them harboured the purK1 allele. In addition these strains also showed ampicillin and ciprofoxacin resistance. The whole-cell proteomic profile of vanA-containing Enterococcus strains was applied to evaluate the discriminatory power of this technique for their identification. The major differences among species-specific profiles were found in the positions corresponding to 97-45 kDa. Sixty individualized protein spots for each vanA isolate was identified and suitable for peptide mass fingerprinting measures by spectrometry measuring (MALDI/TOF MS) and their identification

  5. Proteomic characterization of vanA-containing Enterococcus recovered from Seagulls at the Berlengas Natural Reserve, W Portugal

    PubMed Central

    2010-01-01

    Background Enterococci have emerged as the third most common cause of nosocomial infections, requiring bactericidal antimicrobial therapy. Although vancomycin resistance is a major problem in clinics and has emerged in an important extend in farm animals, few studies have examined it in wild animals. To determine the prevalence of vanA-containing Enterococcus strains among faecal samples of Seagulls (Larus cachinnans) of Berlengas Natural Reserve of Portugal, we developed a proteomic approach integrated with genomic data. The purpose was to detect the maximum number of proteins that vary in different enterococci species which are thought to be connected in some, as yet unknown, way to antibiotic resistance. Results From the 57 seagull samples, 54 faecal samples showed the presence of Enterococcus isolates (94.7%). For the enterococci, E. faecium was the most prevalent species in seagulls (50%), followed by E. faecalis and E. durans (10.4%), and E. hirae (6.3%). VanA-containing enterococcal strains were detected in 10.5% of the 57 seagull faecal samples studied. Four of the vanA-containing enterococci were identified as E. faecium and two as E. durans. The tet(M) gene was found in all five tetracycline-resistant vanA strains. The erm(B) gene was demonstrated in all six erythromycin-resistant vanA strains. The hyl virulence gene was detected in all four vanA-containing E. faecium isolates in this study, and two of them harboured the purK1 allele. In addition these strains also showed ampicillin and ciprofoxacin resistance. The whole-cell proteomic profile of vanA-containing Enterococcus strains was applied to evaluate the discriminatory power of this technique for their identification. The major differences among species-specific profiles were found in the positions corresponding to 97-45 kDa. Sixty individualized protein spots for each vanA isolate was identified and suitable for peptide mass fingerprinting measures by spectrometry measuring (MALDI/TOF MS) and their

  6. Comparative genomics of Enterococcus spp. isolated from bovine feces.

    PubMed

    Beukers, Alicia G; Zaheer, Rahat; Goji, Noriko; Amoako, Kingsley K; Chaves, Alexandre V; Ward, Michael P; McAllister, Tim A

    2017-03-08

    Enterococcus is ubiquitous in nature and is a commensal of both the bovine and human gastrointestinal (GI) tract. It is also associated with clinical infections in humans. Subtherapeutic administration of antibiotics to cattle selects for antibiotic resistant enterococci in the bovine GI tract. Antibiotic resistance genes (ARGs) may be present in enterococci following antibiotic use in cattle. If located on mobile genetic elements (MGEs) their dissemination between Enterococcus species and to pathogenic bacteria may be promoted, reducing the efficacy of antibiotics. We present a comparative genomic analysis of twenty-one Enterococcus spp. isolated from bovine feces including Enterococcus hirae (n = 10), Enterococcus faecium (n = 3), Enterococcus villorum (n = 2), Enterococcus casseliflavus (n = 2), Enterococcus faecalis (n = 1), Enterococcus durans (n = 1), Enterococcus gallinarum (n = 1) and Enterococcus thailandicus (n = 1). The analysis revealed E. faecium and E. faecalis from bovine feces share features with human clinical isolates, including virulence factors. The Tn917 transposon conferring macrolide-lincosamide-streptogramin B resistance was identified in both E. faecium and E. hirae, suggesting dissemination of ARGs on MGEs may occur in the bovine GI tract. An E. faecium isolate was also identified with two integrative conjugative elements (ICEs) belonging to the Tn916 family of ICE, Tn916 and Tn5801, both conferring tetracycline resistance. This study confirms the presence of enterococci in the bovine GI tract possessing ARGs on MGEs, but the predominant species in cattle, E. hirae is not commonly associated with infections in humans. Analysis using additional complete genomes of E. faecium from the NCBI database demonstrated differential clustering of commensal and clinical isolates, suggesting that these strains may be specifically adapted to their respective environments.

  7. Vancomycin-resistant enterococcus infection in the hematopoietic stem cell transplant recipient: an overview of epidemiology, management, and prevention

    PubMed Central

    Benamu, Esther; Deresinski, Stanley

    2018-01-01

    Vancomycin-resistant enterococcus (VRE) is now one of the leading causes of nosocomial infections in the United States. Hematopoietic stem cell transplantation (HSCT) recipients are at increased risk of VRE colonization and infection. VRE has emerged as a major cause of bacteremia in this population, raising important clinical questions regarding the role and impact of VRE colonization and infection in HSCT outcomes as well as the optimal means of prevention and treatment. We review here the published literature and scientific advances addressing these thorny issues and provide a rational framework for their approach. PMID:29333263

  8. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium.

    PubMed

    Desbonnet, Charlene; Tait-Kamradt, Amelia; Garcia-Solache, Monica; Dunman, Paul; Coleman, Jeffrey; Arthur, Michel; Rice, Louis B

    2016-04-05

    The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as "cephalosporins") is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2) of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP). Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system. β-Lactam antibiotics remain our most effective therapies against susceptible Gram-positive bacteria. The intrinsic resistance of Enterococcus faecium to β-lactams, particularly to cephalosporins, therefore represents a major limitation of therapy. Although the primary mechanism of resistance to β-lactams in E. faecium is the presence of low-affinity monofunctional transpeptidase (class B) penicillin-binding protein Pbp5, the interaction of Pbp5 with other proteins is fundamental to maintain a

  9. Enterocin P Selectively Dissipates the Membrane Potential of Enterococcus faecium T136

    PubMed Central

    Herranz, C.; Chen, Y.; Chung, H.-J.; Cintas, L. M.; Hernández, P. E.; Montville, T. J.; Chikindas, M. L.

    2001-01-01

    Enterocin P is a pediocin-like, broad-spectrum bacteriocin which displays a strong inhibitory activity against Listeria monocytogenes. The bacteriocin was purified from the culture supernatant of Enterococcus faecium P13, and its molecular mechanism of action against the sensitive strain E. faecium T136 was evaluated. Although enterocin P caused significant reduction of the membrane potential (ΔΨ) and the intracellular ATP pool of the indicator organism, the pH gradient (ΔpH) component of the proton motive force (Δp) was not dissipated. By contrast, enterocin P caused carboxyfluorescein efflux from E. faecium T136-derived liposomes. PMID:11282622

  10. Comparison of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Water and Clinical Samples: Antimicrobial Susceptibility and Genetic Relationships

    PubMed Central

    Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I.; Agis-Juárez, Raúl A.; Huebner, Johannes; López-Vidal, Yolanda

    2013-01-01

    Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species. PMID:23560050

  11. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships.

    PubMed

    Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I; Agis-Juárez, Raúl A; Huebner, Johannes; López-Vidal, Yolanda

    2013-01-01

    Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species.

  12. Effect of gastrointestinal bleeding and oral medications on acquisition of vancomycin-resistant Enterococcus faecium in hospitalized patients.

    PubMed

    Cetinkaya, Yesim; Falk, Pamela S; Mayhall, C Glen

    2002-10-15

    There has been minimal investigation of medications that affect gastrointestinal function as potential risk factors for the acquisition of vancomycin-resistant enterococci (VRE). We performed a retrospective case-control study, with control subjects matched to case patients by time and location of hospitalization. Strict exclusion criteria were applied to ensure that only case patients with a known time of acquisition of VRE were included. Control patients were patients with > or =1 culture negative for VRE. The risk factors identified were use of vancomycin (odds ratio [OR], 3.2; 95% confidence interval [CI], 1.7-6.0; P=.0003), presence of central venous lines (OR, 2.2; 95% CI, 1.04-4.6; P=.04), and use of antacids (OR, 2.9; 95% CI, 1.5-5.6; P=.002). Two protective factors included gastrointestinal bleeding (OR, 0.26; 95% CI, 0.08-0.79; P=.02) and use of Vicodin (Knoll Labs; hydrocodone and acetaminophen; OR, 0.93; 95% CI, 0.90-0.97; P=.0003). Changes in gastrointestinal function, whether due to bleeding or to the effects of oral medications, may affect whether patients become colonized with VRE.

  13. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release.

    PubMed

    Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L

    2013-04-16

    Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study

  14. Infrequent occurrence of vancomycin-resistant enterococci in poultry from Malaysian wet markets.

    PubMed

    Ong, C H S; Asaad, M; Lim, K C; Ngeow, Y F

    2002-12-01

    Fifty samples of chicken, duck and geese faeces were obtained from 13 wet markets in Kuala Lumpur to study the prevalence of vancomycin-resistant enterococci (VRE) among local market poultry. Biotyping of colonies grown on azide agar incubated at 45 degrees C yielded E. pseudoavium, E. faecalis, E. faecium and E. gallinarum from chicken faeces and E. malodoratus, E. faecalis, E. faecium, E. gallinarum, E. hirae/dispar, and E. durans from goose and duck faeces. On agar containing 6 mg/ l of vancomycin, one strain of E. flavescens was identified, giving a VRE detection rate of 2.0%. This isolate had a vancomycin M.I.C. of 8 mg/l as determined by the Etest, and the van C-3 gene that was identified by PCR followed by sequence analysis. The prevalence of VRE among poultry sold in local markets appears to be low, and may reflect the infrequent use of antimicrobials in our poultry farms. Nevertheless, the possibility of human acquisition of microbes via the food chain cautions against the use of antimicrobials in animal husbandry that may encourage the emergence and spread of multi-drug resistant organisms like the VRE among animal microbial flora.

  15. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor.

    PubMed

    Lavilla Lerma, Leyre; Benomar, Nabil; Valenzuela, Antonio Sánchez; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate

    2014-12-01

    Enterococcus faecalis and Enterococcus faecium isolated from various traditional fermented foods of both animal and vegetable origins have shown multidrug resistance to several antibiotics and tolerance to biocides. Reduced susceptibility was intra and inter-species dependent and was due to specific and unspecific mechanisms such as efflux pumps. EfrAB, a heterodimeric ABC transporter efflux pump, was detected in 100% of multidrug resistant (MDR) E. faecalis strains and only in 12% of MDR E. faecium strains. EfrAB expression was induced by half of minimum inhibitory concentration (MIC) of gentamicin, streptomycin and chloramphenicol. However, expression of efrA and efrB genes was highly dependent on the strain tested and on the antimicrobial used. Our results indicated that 3 mM EDTA highly reduced the MICs of almost all drugs tested. Nevertheless, the higher reductions (>8 folds) were obtained with gentamicin, streptomycin, chlorhexidine and triclosan. Reductions of MICs were correlated with down-regulation of EfrAB expression (10-140 folds) in all three MDR enterococci strains. This is the first report describing the role of EfrAB in the efflux of antibiotics and biocides which reflect also the importance of EfrAB in multidrug resistance in enterococci. EDTA used at low concentration as food preservative could be one of the best choices to prevent spread of multidrug resistant enterococci throughout food chain by decreasing EfrAB expression. EfrAB could be an attractive target not only in enterococci present in food matrix but also those causing infections as well by using EDTA as therapeutic agent in combination with low doses of antibiotics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Control of Listeria monocytogenes in goat's milk and goat's jben by the bacteriocinogenic Enterococcus faecium F58 strain.

    PubMed

    Achemchem, Fouad; Abrini, Jamal; Martínez-Bueno, Manuel; Valdivia, Eva; Maqueda, Mercedes

    2006-10-01

    The bacteriocinogenic Enterococcus faecium F58 strain, a natural goat's jben cheese isolate, lacks decarboxylase activity involved in most biogenic amine formation. It was also sensitive to 13 antibiotics assayed and free of virulence and vancomycin resistance genes. The F58 strain reached the stationary phase after 12 h of growth in sterile goat's milk, and the production of enterocin F-58 (Ent L50) was first detected after 48 h (400 AU/ml), thereafter remaining stable up to 5 days. The effectiveness of the F58 strain in controlling Listeria monocytogenes serovar 4b in reduced fat and whole goat's milk, and in goat's jben has been examined. Coculture experiments of F58-L. monocytogenes in both types of milk demonstrated that listeriae were not eliminated, although reductions by 1 to 4 log units were found. Nevertheless, when the F58 strain was previously inoculated in whole milk and left to grow for 12 h before contamination, the pathogen was completely eliminated after 130 h of coculture. Production of jben cheese contaminated with L. monocytogenes prior to packaging, using preparations of F58-producer strain, caused a significant decrease in the number of viable listeriae, which were undetectable after 1 week of cheese storage at 22 degrees C. Altogether, results from this study suggest that E. faecium F58 strain may be used as an adjunct culture in cheese to control contamination and growth of L. monocytogenes by in situ enterocin production, thus providing an additional hurdle to enhance control of this pathogen.

  17. Transcriptional Analysis of the vanC Cluster from Enterococcus gallinarum Strains with Constitutive and Inducible Vancomycin Resistance

    PubMed Central

    Panesso, Diana; Abadía-Patiño, Lorena; Vanegas, Natasha; Reynolds, Peter E.; Courvalin, Patrice; Arias, Cesar A.

    2005-01-01

    The vanC glycopeptide resistance gene cluster encodes enzymes required for synthesis of peptidoglycan precursors ending in d-Ala-d-Ser. Enterococcus gallinarum BM4174 and SC1 are constitutively and inducibly resistant to vancomycin, respectively. Analysis of peptidoglycan precursors in both strains indicated that UDP-MurNAc-tetrapeptide and UDP-MurNAc-pentapeptide[d-Ser] were synthesized in E. gallinarum SC1 only in the presence of vancomycin (4 μg/ml), whereas the “resistance” precursors accumulated in the cytoplasm of BM4174 cells under both inducing and noninducing conditions. Northern hybridization and reverse transcription-PCR experiments revealed that all the genes from the cluster, vanC-1, vanXYC, vanT, vanRC, and vanSC, were transcribed from a single promoter. In the inducible SC1 isolate, transcriptional regulation appeared to be responsible for inducible expression of resistance. Promoter mapping in E. gallinarum BM4174 revealed that the transcriptional start site was located 30 nucleotides upstream from vanC-1 and that the −10 promoter consensus sequence had high identity with that of the vanA cluster. Comparison of the deduced sequence of the vanSC genes from isolates with constitutive and inducible resistance revealed several amino acid substitutions located in the X box (R200L) and in the region between the F and G2 boxes (D312N, D312A, and G320S) of the putative sensor kinase proteins from isolates with constitutive resistance. PMID:15728903

  18. Reduced susceptibility of Enterococcus spp. isolates from Cairo University Hospital to tigecycline: Highlight on the influence of proton pump inhibitors.

    PubMed

    Hassan, Reem Mostafa; Ghaith, Doaa Mohammad; Ismail, Dalia Kadry; Zafer, Mai Mahmoud

    2018-03-01

    The incidence of reduced susceptibility to tigecycline (TIG) is increasing. This study aimed to analyse the in vitro activity of TIG against Enterococcus spp. isolates recovered from hospitalised patients and to evaluate the effect of omeprazole on the in vitro antimicrobial activity of TIG against several enterococcal species. A total of 67 Enterococcus clinical isolates were identified by MALDI-TOF/MS and multiplex PCR. Minimum inhibitory concentrations (MICs) of TIG alone and in combination with omeprazole (10, 30 and 60mg/L) were determined by broth microdilution. Antibiotic susceptibility to other antibiotics was determined by disk diffusion. The presence of van, tet(X) and tet(X1) genes was tested by multiplex PCR. Of the 67 Enterococcus isolates, 2 (3.0%) were resistant to TIG and 13 (19.4%) were intermediate-resistant according to EUCAST. The frequencies of resistance to norfloxacin (80.6%), doxycycline (80.6%), levofloxacin (74.6%) and ciprofloxacin (71.6%) were highest, whilst that of vancomycin (25.4%) was lowest. The vanA gene was detected in 11 Enterococcus isolates (8 Enterococcus faecalis, 3 Enterococcus faecium), vanB in 3 Enterococcus isolates (2 E. faecium, 1 E. faecalis) and vanC-2/3 in 3 Enterococcus casseliflavus. Nine isolates (13.4%) were positive for tet(X1). TIG resistance occurred both in patients receiving or not TIG and/or omeprazole. Omeprazole increased TIG MICs by 4-128-fold. The possibility of selection of TIG-non-susceptible Enterococcus in the gut may occur with long-term use of omeprazole. Omeprazole influenced TIG activity in a concentration-dependent manner. To our knowledge; this is the first report of TIG-non-susceptible Enterococcus spp. in Egypt. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  19. [Study of marine actinomycetes isolated from the central coast of Peru and their antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis].

    PubMed

    León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco

    2011-06-01

    To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.

  20. Evaluation of contact precautions for methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus.

    PubMed

    Bardossy, Ana Cecilia; Alsafadi, Muhammad Yasser; Starr, Patricia; Chami, Eman; Pietsch, Jennifer; Moreno, Daniela; Johnson, Laura; Alangaden, George; Zervos, Marcus; Reyes, Katherine

    2017-12-01

    There are limited controlled data demonstrating contact precautions (CPs) prevent methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) infections in endemic settings. We evaluated changes in hospital-acquired MRSA and VRE infections after discontinuing CPs for these organisms. This is a retrospective study done at an 800-bed teaching hospital in urban Detroit. CPs for MRSA and VRE were discontinued hospital-wide in 2013. Data on MRSA and VRE catheter-associated urinary tract infections (CAUTIs), ventilator-associated pneumonia (VAP), central line-associated bloodstream infections (CLABSIs), surgical site infections (SSIs), and hospital-acquired MRSA bacteremia (HA-MRSAB) rates were compared before and after CPs discontinuation. There were 36,907 and 40,439 patients hospitalized during the two 12-month periods: CPs and no CPs. Infection rates in the CPs and no-CPs periods were as follows: (1) MRSA infections: VAP, 0.13 versus 0.11 (P = .84); CLABSI, 0.11 versus 0.19 (P = .45); SSI, 0 versus 0.14 (P = .50); and CAUTI, 0.025 versus 0.033 (P = .84); (2) VRE infections: CAUTI, 0.27 versus 0.13 (P = .19) and CLABSI, 0.29 versus 0.3 (P = .94); and (3) HA-MRSAB rates: 0.14 versus 0.11 (P = .55), respectively. Discontinuation of CPs did not adversely impact endemic MRSA and VRE infection rates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Dispersion of Multidrug-Resistant Enterococcus faecium Isolates Belonging to Major Clonal Complexes in Different Portuguese Settings▿

    PubMed Central

    Freitas, Ana R.; Novais, Carla; Ruiz-Garbajosa, Patricia; Coque, Teresa M.; Peixe, Luísa

    2009-01-01

    The population structure of 56 Enterococcus faecium isolates selected from a collection of enterococci from humans, animals, and the environment in Portugal (1997 to 2007) was analyzed by multilocus sequence typing. We identified 41 sequence types clustering into CC17, CC5, CC9, CC22 and CC94, all clonal lineages comprising isolates from different hosts. Our findings highlight the role of community-associated hosts as reservoirs of enterococci able to cause human infections. PMID:19447948

  2. Clinico-Microbiological Investigation of Catheter Associated Urinary Tract Infection by Enterococcus faecalis: vanA Genotype

    PubMed Central

    Padmavathy, Kesavaram; Madhavan, Radha; Krithika, Nagarajan; Kiruthiga, Alexander

    2015-01-01

    Prolonged hospitalization and exposure to third generation cephalosporins are reported to facilitate the acquisition and colonization of Vancomycin Resistant Enterococci (VRE). Though VRE is not uncommon in India, urinary tract infection with a vanA genotype is a cause of serious concern as VRE co-exhibit resistance to aminoglycosides. In India, majority of the VRE isolates recovered from hospitalized patients include Enterococcus faecium. We report a case of catheter associated urinary tract infection by an endogenous, multidrug resistant E. faecalis of vanA genotype following prolonged hospitalization, ICU stay, catheterisation and exposure to 3G cephalosporin and metronidazole. The patient responded to linezolid therapy. PMID:26435949

  3. Determination of resistance and virulence genes in Enterococcus faecalis and E. faecium strains isolated from poultry and their genotypic characterization by ADSRRS-fingerprinting.

    PubMed

    Nowakiewicz, A; Ziólkowska, G; Troscianczyk, A; Zieba, P; Gnat, S

    2017-04-01

    The aim of this study was to determine the antimicrobial resistance of E. faecalis and E. faecium strains isolated from poultry and to carry out genotypic characterization thereof with the ADSRRS-fingerprinting method (amplification of DNA fragments surrounding rare restriction sites) and analysis of the genetic relatedness between the isolates with different resistance and virulence determinants. Samples were collected from 70 4-week-old chickens and tested for Enterococcus. Minimum inhibitory concentrations of 11 antimicrobials were determined using the broth microdilution method. Detection of antibiotic resistance and virulence genes was performed using PCR, and molecular analysis was carried out using the ADSRRS-fingerprinting method. The highest percentage of strains was resistant to tetracycline (60.5%) and erythromycin (54.4%), and a large number exhibited high-level resistance to both kanamycin (42.1%) and streptomycin (34.2%). Among 8 genes encoding AME, the tested strains showed mainly the presence of [aph(3΄)-IIIa], [ant(6)-Ia], [aac(6΄)-Ie-aph(2΄΄)-Ia], and [ant(9)-Ia] genes. Phenotypic resistance to erythromycin was encoded in 98.4% strains by the ermB gene. Genotypic resistance to tetracycline in E. faecium was associated with the presence of tetM and tetL (respectively, in 95.5 and 57.7% of the isolates); in contrast, E. faecalis strains were characterized mainly by the presence of tetO (83.3%). The virulence profile was homogenous for all E. faecium strains and included only efaAfm and ccf genes. All E. faecalis strains exhibited efaAfs, gelE, and genes encoding sex pheromones. The strains tested exhibited 34 genotypic profiles. Comparative analysis of phenotypic and genotypic resistance and virulence profiles and confrontation thereof with the genotypes of the strains tested showed that strains assigned to a particular genotype have an identical phenotypic resistance profile and a panel of resistance and virulence genes. The results of this

  4. Core Genome Multilocus Sequence Typing Scheme for High- Resolution Typing of Enterococcus faecium.

    PubMed

    de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; Mellmann, Alexander; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag; Willems, Rob J L

    2015-12-01

    Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism(SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks.

  5. Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans.

    PubMed

    Sim, Insuk; Park, Keun-Tae; Kwon, Gayeung; Koh, Jong-Ho; Lim, Young-Hee

    2018-04-12

    Probiotics including Enterococcus faecium confer a health benefit on the host. An Enterococcus strain was isolated from healthy chicken cecum, identified as E. faeciumby 16S rDNA gene sequence analysis, and designatedas E. faecium L11.Toevaluate the potential of E. faecium L11 as a probiotics, the gastrointestinal tolerance, immunomodulatory activity, and lifespan extension properties of the strain were assayed. E.faecium L11 showed >66% and >62% survival in artificial gastric juices (0.3% pepsin, pH 2.5) and simulated smallintestinal juice(0.5% bile salt and 0.1%pancreatin), respectively. Heat-killed E.faecium L11significantly ( p < 0.05) increased immune cell proliferation compared with controls, and stimulated the production of cytokines(IL-6 and TNF-α) by activated macrophages obtained from ICRmice. In addition, E.faecium L11 showed a protective effect against Salmonella Typhimurium infection in Caenorhabditis elegans . In addition, feeding E.faecium L11 significantly ( p < 0.05) extended the lifespan of C. elegans compared with the control. Furthermore, genes related to aging and host defense were upregulated in E.faecium L11-fed worms. In conclusion, E. faecium L11 which prolongs the lifespan of C. elegans may be a potent probiotic supplement for livestock.

  6. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci.

    PubMed

    Pospisilova, Sarka; Michnova, Hana; Kauerova, Tereza; Pauk, Karel; Kollar, Peter; Vinsova, Jarmila; Imramovsky, Ales; Cizek, Alois; Jampilek, Josef

    2018-07-01

    A series of 13 salicylamide derivatives was assessed for antibacterial activity against three isolates of vancomycin-resistant Enterococcus faecalis (VRE) and Enterococcus faecalis ATCC 29212 as a quality standard. The minimum inhibitory concentration was determined by the broth microdilution method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The growth kinetics was established by the time-kill assay. Ampicillin, ciprofloxacin, tetracycline and vancomycin were used as the reference antibacterial drugs. Three of the investigated compounds showed strong bacteriostatic activity against VRE (0.199-25 µM) comparable to or more potent than ampicillin and ciprofloxacin. In addition, these compounds were tested for synergistic effect with vancomycin, ciprofloxacin and tetracycline, while 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide showed the highest potency as well as synergistic activity with vancomycin against VRE 368. Screening of the cytotoxicity of the most effective compounds was performed using human monocytic leukemia THP-1 cells, and based on LD 50 values, it can be stated that the compounds have insignificant toxicity against human cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The acute-phase response impairs host defence against Enterococcus faecium peritonitis

    PubMed Central

    Leendertse, Masja; Willems, Rob J L; Giebelen, Ida A J; van den Pangaart, Petra S; Bonten, Marc J M; van der Poll, Tom

    2009-01-01

    Enterococcus faecium is an emerging pathogen that causes infections in hospitalized patients with various co-morbid diseases. These underlying diseases are often associated with an acute-phase response that renders patients vulnerable to nosocomial infections. To study the influence of the acute-phase response induced by sterile tissue injury on host defence against E. faecium, mice were injected subcutaneously with either turpentine or casein 1 day before intraperitoneal infection with E. faecium. Control mice were subcutaneously injected with saline or sodium bicarbonate, respectively. Turpentine and casein induced an acute-phase response as reflected by increases in the plasma concentrations of interleukin-6, serum amyloid P and C3. A pre-existent acute-phase response in mice was associated with a strongly reduced capacity to clear E. faecium, resulting in prolonged bacteraemia for several days. The inflammatory response to E. faecium was impaired in mice with an acute-phase response, as shown by reduced capacity to mount a neutrophilic leucocytosis in peripheral blood and by decreased local cytokine concentrations. These data indicate that the acute-phase response impairs host defence against E. faecium, suggesting that this condition may contribute to the increased vulnerability of critically ill patients to enterococcal infections. PMID:19175794

  8. Isolation of Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512 as novel probiotics with immunomodulatory properties.

    PubMed

    Mansour, Nahla M; Heine, Holger; Abdou, Sania M; Shenana, Mohamed E; Zakaria, Mohamed K; El-Diwany, Ahmed

    2014-10-01

    Probiotics, defined as living bacteria that are beneficial for human health, mainly function through their immunomodulatory abilities. Hence, these microorganisms have proven successful for treating diseases resulting from immune deregulation. The aim of this study was to find novel candidates to improve on and complement current probiotic treatment strategies. Of 60 lactic acid bacterial strains that were isolated from fecal samples of healthy, full-term, breast-fed infants, three were chosen because of their ability to activate human immune cells. These candidates were then tested with regard to immunomodulatory properties, antimicrobial effects on pathogens, required pharmacological properties and their safety profiles. To identify the immunomodulatory structures of the selected isolates, activation of specific innate immune receptors was studied. The three candidates for probiotic treatment were assigned Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512. Compared with the established allergy-protective strain Lactococcus lactis G121, these isolates induced release of similar amounts of IL-12, a potent inducer of T helper 1 cells. In addition, all three neonatal isolates had antimicrobial activity against pathogens. Analysis of pharmacological suitability showed high tolerance of low pH, bile salts and pancreatic enzymes. In terms of safe application in humans, the isolates were sensitive to three antibiotics (chloramphenicol, tetracycline and erythromycin). In addition, the Enterococcus isolates were free from the four major virulence genes (cylA, agg, efaAfs and ccf). Moreover, the isolates strongly activated Toll-like receptor 2, which suggests lipopeptides as their active immunomodulatory structure. Thus, three novel bacterial strains with great potential as probiotic candidates and promising immunomodulatory properties have here been identified and characterized. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  9. Safety of the Surrogate Microorganism Enterococcus faecium NRRL B-2354 for Use in Thermal Process Validation

    PubMed Central

    Kopit, Lauren M.; Kim, Eun Bae; Siezen, Roland J.; Harris, Linda J.

    2014-01-01

    Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of this strain is most similar to commensal, or community-associated, strains of this species. E. faecium NRRL B-2354 lacks antibiotic resistance genes, and both NRRL B-2354 and its clonal relative ATCC 8459 are sensitive to clinically relevant antibiotics. This organism also lacks, or contains nonfunctional copies of, enterococcal virulence genes including acm, cyl, the ebp operon, esp, gelE, hyl, IS16, and associated phenotypes. It does contain scm, sagA, efaA, and pilA, although either these genes were not expressed or their roles in enterococcal virulence are not well understood. Compared with the clinical strains TX0082 and 1,231,502, E. faecium NRRL B-2354 was more resistant to acidic conditions (pH 2.4) and high temperatures (60°C) and was able to grow in 8% ethanol. These findings support the continued use of E. faecium NRRL B-2354 in thermal process validation of food products. PMID:24413604

  10. Enterocin P Causes Potassium Ion Efflux from Enterococcus faecium T136 Cells

    PubMed Central

    Herranz, Carmen; Cintas, Luis M.; Hernández, Pablo E.; Moll, Gert N.; Driessen, Arnold J. M.

    2001-01-01

    Enterocin P is a bacteriocin produced by Enterococcus faecium P13. We studied the mechanism of its bactericidal action using enterocin-P-sensitive E. faecium T136 cells. The bacteriocin is incapable of dissipating the transmembrane pH gradient. On the other hand, depending on the buffer used, enterocin P dissipates the transmembrane potential. Enterocin P efficiently elicits efflux of potassium ions, but not of intracellularly accumulated anions like phosphate and glutamate. Taken together, these data demonstrate that enterocin P forms specific, potassium ion-conducting pores in the cytoplasmic membrane of target cells. PMID:11181377

  11. The mazEF toxin-antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis.

    PubMed

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang

    2015-01-01

    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.

  12. The mazEF toxin–antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang

    2015-01-01

    The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains. PMID:26005332

  13. Draft Genome Sequence of Enterococcus faecium Strain J19, Isolated from Cabbage

    PubMed Central

    2018-01-01

    ABSTRACT Herein, we report the draft genome sequence of a newly discovered probiotic strain, Enterococcus faecium J19, which was isolated from cabbage. Strain J19 has shown antagonistic effects against the human foodborne pathogen Listeria monocytogenes in coculture and in different food matrices. PMID:29622613

  14. Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium

    PubMed Central

    de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag

    2015-01-01

    Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism (SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks. PMID:26400782

  15. Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis.

    PubMed

    Nallapareddy, Sreedhar R; Singh, Kavindra V; Murray, Barbara E

    2008-09-01

    Enterococcus faecium is a multidrug-resistant opportunist causing difficult-to-treat nosocomial infections, including endocarditis, but there are no reports experimentally demonstrating E. faecium virulence determinants. Our previous studies showed that some clinical E. faecium isolates produce a cell wall-anchored collagen adhesin, Acm, and that an isogenic acm deletion mutant of the endocarditis-derived strain TX0082 lost collagen adherence. In this study, we show with a rat endocarditis model that TX0082 Deltaacm::cat is highly attenuated versus wild-type TX0082, both in established (72 h) vegetations (P < 0.0001) and for valve colonization 1 and 3 hours after infection (P faecium pathogenesis. In contrast, no mortality differences were observed in a mouse peritonitis model. While 5 of 17 endocarditis isolates were Acm nonproducers and failed to adhere to collagen in vitro, all had an intact, highly conserved acm locus. Highly reduced acm mRNA levels (>or=50-fold reduction relative to an Acm producer) were found in three of these five nonadherent isolates, including the sequenced strain TX0016, by quantitative reverse transcription-PCR, indicating that acm transcription is downregulated in vitro in these isolates. However, examination of TX0016 cells obtained directly from infected rat vegetations by flow cytometry showed that Acm was present on 40% of cells grown during infection. Finally, we demonstrated a significant reduction in E. faecium collagen adherence by affinity-purified anti-Acm antibodies from E. faecium endocarditis patient sera, suggesting that Acm may be a potential immunotarget for strategies to control this emerging pathogen.

  16. Bacteriocin-Producing Enterococcus faecium LCW 44: A High Potential Probiotic Candidate from Raw Camel Milk

    PubMed Central

    Vimont, Allison; Fernandez, Benoît; Hammami, Riadh; Ababsa, Ahlem; Daba, Hocine; Fliss, Ismaïl

    2017-01-01

    Bacterial isolates from raw camel milk were screened for antibacterial activity using the agar diffusion assay. Ten isolates selected for their inhibition of Gram-positive bacteria were identified by 16S sequencing as Enterococcus faecium or durans. An isolate named E. faecium LCW 44 exhibited the broadest antibacterial spectrum with an inhibitory activity against several Gram-positive strains belonging to the genera Clostridium, Listeria, Staphylococcus, and Lactobacillus. E. faecium LCW 44 was shown to produce N-formylated enterocins L50A and L50B, as revealed by mass spectrometry and PCR analyses. This isolate did not harbor any of the virulence factors tested and was shown to be sensitive to all tested antibiotics. It showed high resistance to gastric and intestinal conditions (78 ± 4% survival). Its adhesion index was evaluated at 176 ± 86 and 24 ± 86 on Caco-2 cells and HT-29 cells, respectively, and it significantly reduced adhesion of Listeria monocytogenes by 65 and 49%, respectively. In Macfarlane broth (simulating the nutrient content of the colon), counts of L. monocytogenes were reduced by 2 log10 cycles after 24 h in co-culture with E. faecium LCW 44, compared to the increase of 4 log10 cycles when cultured alone. Comparison with a bacteriocin-non-producing mutant of E. faecium LCW 44 strongly suggests that inhibition of L. monocytogenes was due to bacteriocin production. Altogether, E. faecium LCW 44 thus has potential for use as a probiotic for humans and veterinary medicine. PMID:28572793

  17. Multi-antibiotic resistant and putative virulence gene signatures in Enterococcus species isolated from pig farms environment.

    PubMed

    Beshiru, Abeni; Igbinosa, Isoken H; Omeje, Faith I; Ogofure, Abraham G; Eyong, Martin M; Igbinosa, Etinosa O

    2017-03-01

    The continuous misuse of antimicrobials in food animals both orally and subcutaneously as therapeutic and prophylactic agents to bacterial infections could be detrimental and contribute to the dissemination of resistant clones in livestock production. The present study was carried out to determine the antibiogram and virulence gene characteristics of Enterococcus species from pig farms. A total of 300 faecal samples were obtained from two pig farms in Benin City between February and July 2016. Standard culture-based and polymerase chain reaction (PCR) assay were adopted in the detection and characterization of the Enterococcus species. Antimicrobial susceptibility profile was determined using disc diffusion method. A total of 268 enterococci isolates were recovered from both farms investigated. In Farm A, 94/95 (99%) of E. faecalis isolates were resistant to clindamycin; while 23/25 (92%) of E. faecium isolates were resistant to clindamycin. In farm B, all E. faecalis isolates 119/119 (100%) were resistant to clindamycin; while 26/29 (90%) of E. faecium isolates were resistant to clindamycin. Virulence gene detected in the enterococci isolates includes aggregation (asa1) [Farm A (E. faecalis 66%, E. faecium 76%), Farm B (E. faecalis 71%, E. faecium 13%)] and others. Multidrug resistant profile of the isolates revealed that 17/95 (18%) of E. faecalis and 3/25 (12%) of E. faecium isolates from Farm A as well as, 16/119 (14%) of E. faecalis and 5/29 (17%) of E. faecium isolates from Farm B were resistant to CLI R , PEN R , ERY R , GEN R , TET R , MEM R , KAN R , and PTZ R . The high level of resistance observed in the study and their virulence gene signatures, calls for effective environmental monitoring to circumvent the environmental dissemination of resistant pathogenic clones. Thus environmental hygiene should be provided to food animals to prevent the proliferation and spread of resistant bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The potential of vancomycin-resistant enterococci to persist in fermented and pasteurised meat products.

    PubMed

    Houben, J H

    2003-11-15

    Experiments with 148 isolates of vancomycin-resistant enterococci (VRE) were performed to assess their potential to persist and grow in fermented sausages and pasteurised meat products. All strains were meat isolates and Van-type A, except a single VanC1 strain. In total, 143 strains of Enterococcus faecium were involved. Eight selected strains were examined for their potential to grow at high salt and nitrite levels and at reduced pH. The same isolates were used in experiments with fermented sausages. All available strains were subjected to heating tests in meat suspensions with added curing ingredients. All but one of the eight tested isolates grew at pH 4.0 in tryptone soya broth (TSB). With the combination of 8% w/w NaCl, 400 ppm NaNO2 and 0.5% w/w glucose in the meat suspension, all isolates grew at 37 degrees C, whereas none grew at 7 degrees C even after 56 days. With the addition of 10% w/w NaCl, 200 ppm NaNO2 and 0.5% w/w glucose, still one E. faecium isolate grew at 37 degrees C, although very slowly. Overall, the strains tolerated high salt and nitrite concentrations and reduced pH very well, even beyond levels applied in the regular production of fermented and/or pasteurised meat products. The tested strains could be isolated after the fermentation and further ripening of "boerenmetworst" and "snijworst". Overall, their colony counts decreased on average about 1 log-unit over a period of 60 days after batter manufacture. All 148 isolates demonstrated a relatively weak thermal resistance compared to results for selected vancomycin-sensitive enterococci strains reported in the literature and to results collected under identical experimental conditions in this laboratory. None of the strains (log inoculation level about 5-6 ml(-1) for each isolate) could be cultured after heating at 70 degrees C for 10 min.

  19. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

    PubMed

    Martino, Gabriela P; Quintana, Ingrid M; Espariz, Martín; Blancato, Victor S; Magni, Christian

    2016-02-02

    Enterococcus is one of the most controversial genera belonging to Lactic Acid Bacteria. Research involving this microorganism reflects its dual behavior as regards its safety. Although it has also been associated to nosocomial infections, natural occurrence of Enterococcus faecium in food contributes to the final quality of cheese. This bacterium is capable of fermenting citrate, which is metabolized to pyruvate and finally derives in the production of the aroma compounds diacetyl, acetoin and 2,3 butanediol. Citrate metabolism was studied in E. faecium but no data about genes related to these pathways have been described. A bioinformatic approach allowed us to differentiate cit(-) (no citrate metabolism genes) from cit(+) strains in E. faecium. Furthermore, we could classify them according to genes encoding for the transcriptional regulator, the oxaloacetate decarboxylase and the citrate transporter. Thus we defined type I organization having CitI regulator (DeoR family), CitM cytoplasmic soluble oxaloacetate decarboxylase (Malic Enzyme family) and CitP citrate transporter (2-hydroxy-carboxylate transporter family) and type II organization with CitO regulator (GntR family), OAD membrane oxaloacetate decarboxylase complex (Na(+)-transport decarboxylase enzyme family) and CitH citrate transporter (CitMHS family). We isolated and identified 17 E. faecium strains from regional cheeses. PCR analyses allowed us to classify them as cit(-) or cit(+). Within the latter classification we could differentiate type I but no type II organization. Remarkably, we came upon E. faecium GM75 strain which carries the insertion sequence IS256, involved in adaptative and evolution processes of bacteria related to Staphylococcus and Enterococcus genera. In this work we describe the differential behavior in citrate transport, metabolism and aroma generation of three strains and we present results that link citrate metabolism and genetic organizations in E. faecium for the first time

  20. Outbreak of vancomycin-resistant enterococcus colonization among pediatric oncology patients.

    PubMed

    Nolan, Sheila M; Gerber, Jeffrey S; Zaoutis, Theoklis; Prasad, Priya; Rettig, Susan; Gross, Kimberly; McGowan, Karin L; Reilly, Anne F; Coffin, Susan E

    2009-04-01

    To detect the burden of vancomycin-resistant Enterococcus (VRE) colonization among pediatric oncology patients and to determine risk factors for VRE acquisition. Retrospective case-control study. The Children's Hospital of Philadelphia. Pediatric oncology patients hospitalized from June 2006 through December 2007. Prevalence surveys revealed an increased VRE burden among pediatric oncology patients. For the case-control study, the 16 case patients were pediatric oncology patients who had 1 stool sample negative for VRE at screening before having a stool sample positive for VRE at screening; the 62 control patients had 2 consecutive screenings in which stool samples were negative for VRE. Case and control patients were matched on the duration of the interval between screens. Analyses were performed to determine the association between multiple exposures and VRE acquisition. The prevalence survey revealed that 5 (9.6%) of 52 patients had unsuspected VRE colonization at the time of hospitalization. Multivariate analysis identified a lack of empirical contact precautions (odds ratio [OR], 17.16 [95% confidence interval {CI}, 1.49-198.21]; P= .02) and the presence of a gastrointestinal device (OR, 4.03 [95% CI, 1.04-15.56]; P= .04) as significant risk factors for acquisition of VRE. Observations in the interventional radiology department revealed that staff could not access the portions of the electronic medical record in which isolation precautions were documented. Simple interventions that granted access and that trained interventional radiology staff to review the need for precautions, coupled with enhanced infection control practices, interrupted ongoing transmission and reduced the proportion of VRE screens that were positive to 15 (1.2%) of 1,270. Inadequate communication with regard to infection control precautions can increase the risk of transmission of epidemiologically important organisms, particularly when patients receive care at multiple clinic locations

  1. Amino acid substitutions in the VanS sensor of the VanA-type vancomycin-resistant Enterococcus strains result in high-level vancomycin resistance and low-level teicoplanin resistance.

    PubMed

    Hashimoto, Y; Tanimoto, K; Ozawa, Y; Murata, T; Ike, Y

    2000-04-15

    The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.

  2. Potential utility of a peptide deformylase inhibitor (NVP PDF-713) against oxazolidinone-resistant or streptogramin-resistant Gram-positive organism isolates.

    PubMed

    Jones, Ronald N; Moet, Gary J; Sader, Helio S; Fritsche, Thomas R

    2004-05-01

    To evaluate the potency of a novel peptide deformylase inhibitor, NVP PDF-713, against Gram-positive organisms having resistances to linezolid or quinupristin/dalfopristin. A total of 45 strains from three genera (six species groups) were tested by reference broth microdilution methods. The mechanism of resistance to the oxazolidinone was determined by sequencing of the gene encoding the ribosomal target. NVP PDF-713 retained activity against linezolid-resistant staphylococci (MIC range 0.25-2 mg/L), Streptococcus oralis (MIC 0.5 mg/L), Enterococcus faecalis (MIC range 2-4 mg/L) and Enterococcus faecium (MIC range 0.5-4 mg/L). Quinupristin/dalfopristin-resistant E. faecium (MIC range 1-2 mg/L) and staphylococci (MIC range 0.12-2 mg/L) were also inhibited by NVP PDF-713. Many (10 of 13 strains) of the linezolid-resistant enterococci were resistant to vancomycin and these clinical strains had a G2576U ribosomal target mutation. NVP PDF-713 appears to be a promising clinical candidate among the peptide deformylase inhibitors for the treatment of infections caused by Gram-positive organisms that possess resistances to oxazolidinones or streptogramin combinations.

  3. Enterococcus faecium Biofilm Formation: Identification of Major Autolysin AtlAEfm, Associated Acm Surface Localization, and AtlAEfm-Independent Extracellular DNA Release

    PubMed Central

    Paganelli, Fernanda L.; Willems, Rob J. L.; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J. M.; Leavis, Helen L.

    2013-01-01

    ABSTRACT Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. PMID:23592262

  4. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.

    PubMed

    Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa

    2016-02-01

    A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Prevalence and antimicrobial resistance of Enterococcus spp and Staphylococcus spp isolated from surfaces in a veterinary teaching hospital.

    PubMed

    Hamilton, Elizabeth; Kaneene, John B; May, Katherine J; Kruger, John M; Schall, William; Beal, Matthew W; Hauptman, Joe G; DeCamp, Charles E

    2012-06-15

    To determine the prevalence and antimicrobial resistance of enterococci and staphylococci collected from environmental surfaces at a veterinary teaching hospital (VTH). Longitudinal study. Samples collected from surfaces in 5 areas (emergency and critical care, soft tissue and internal medicine, and orthopedic wards; surgery preparation and recovery rooms; and surgery office and operating rooms) of a VTH. Selected surfaces were swabbed every 3 months during the 3-year study period (2007 to 2009). Isolates of enterococci and staphylococci were identified via biochemical tests, and antimicrobial susceptibility was evaluated with a microbroth dilution technique. A subset of isolates was analyzed to assess clonality by use of pulsed-field gel electrophoresis. 430 samples were collected, and isolates of enterococci (n = 75) and staphylococci (110) were identified. Surfaces significantly associated with isolation of Enterococcus spp and Staphylococcus spp included cages and a weight scale. Fourteen Enterococcus spp isolates and 17 Staphylococcus spp isolates were resistant to ≥ 5 antimicrobials. Samples collected from the scale throughout the study suggested an overall increase in antimicrobial resistance of Enterococcus faecium over time. Clonality was detected for E faecium isolates collected from 2 different surfaces on the same day. Although not surprising, the apparent increase in antimicrobial resistance of E faecium was of concern because of the organism's ability to transmit antimicrobial resistance genes to other pathogens. Results reported here may aid in identification of critical control points to help prevent the spread of pathogens in VTHs.

  6. Rapid disc diffusion antibiotic susceptibility testing for Pseudomonas aeruginosa, Acinetobacter baumannii and Enterococcus spp.

    PubMed Central

    Hombach, Michael; Jetter, Marion; Blöchliger, Nicolas; Kolesnik-Goldmann, Natalia; Keller, Peter M; Böttger, Erik C

    2018-01-01

    Abstract Background We investigated the feasibility of rapid disc diffusion antibiotic susceptibility testing (rAST) with reading of inhibition zones after 6 and/or 8 h of incubation for Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii. In addition, we evaluated discrimination of resistant populations from the WT populations at early timepoints and the requirement for clinical breakpoint adaptations for proper interpretation of rAST data. Methods In total, 815 clinical strains [E. faecalis (n = 135), E. faecium (n = 227), P. aeruginosa (n = 295) and A. baumannii (n = 158)] were included in this study. Disc diffusion plates were streaked, incubated and imaged using the WASPLabTM automation system. WT populations and non-WT populations were defined using epidemiological cut-offs. Results and conclusions rAST at 6 and 8 h was possible for A. baumannii and enterococci with readability of inhibition zones >90%. Overall categorical agreement of rAST at 6 h with AST at 18 h was 97.2%, 97.4% and 95.3% for E. faecalis, E. faecium and A. baumannii, respectively. With few exceptions, major categorization error rates were <1% for A. baumannii, and vancomycin-resistant E. faecium were clearly separated from the WT at 6 h. For P. aeruginosa the average readability of inhibition zones was 68.9% at 8 h and we found an overall categorical agreement of 94.8%. Adaptations of clinical breakpoints and/or introduction of technical buffer zones, preferably based on aggregated population data from various epidemiological settings, are required for proper interpretation of rAST. PMID:29186434

  7. Identification of a new peptide deformylase gene from enterococcus faecium and establishment of a new screening model targeted on PDF for novel antibiotics.

    PubMed

    Tang, Xian-Bing; Si, Shu-Yi; Zhang, Yue-Qin

    2004-09-01

    To identify a new peptide deformylase (PDF) gene (Genebank Accession AY238515) from Enterococcus faecium and to establish a new screening model targeted on PDF. A new PDF gene was identified by BLAST analysis and PCR and was subsequently over-expressed in the prokaryotic expression host E. coli B121(DE3). Over-expressed protein was purified for enzymatic assay by metal affinity chromatography and a new screening model was established for novel antibiotics. A new PDF gene of Enterococcus faecium was identified successfully. Ten positive samples were picked up from 8000 compound library and the microbial fermentation broth samples. A new PDF of gene Enterococcus faecium was first identified and the model had a high efficacy. Positive samples screened may be antibacterial agents of broad spectrum.

  8. Performance of Vitek 2 for Antimicrobial Susceptibility Testing of Staphylococcus spp. and Enterococcus spp.

    PubMed Central

    Bobenchik, April M.; Hindler, Janet A.; Giltner, Carmen L.; Saeki, Sandra

    2014-01-01

    Vitek 2 (bioMérieux, Inc., Durham, NC) is a widely used commercial antimicrobial susceptibility testing system. We compared MIC results obtained by Vitek 2 to those obtained by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) reference method for 134 staphylococcal and 84 enterococcal clinical isolates. Nineteen agents were evaluated, including all those available on Vitek 2 for testing staphylococci and enterococci. The resistance phenotypes tested included methicillin-resistant Staphylococcus aureus (MRSA) (n = 58), S. aureus with inducible clindamycin resistance (ICR) (n = 30), trimethoprim-sulfamethoxazole-resistant MRSA (n = 10), vancomycin-resistant Enterococcus (n = 37), high-level gentamicin-resistant Enterococcus (n = 15), linezolid-resistant Enterococcus (n = 5), and daptomycin-nonsusceptible Enterococcus faecalis (n = 6). For the staphylococci, there was 98.9% categorical agreement (CA). There was one very major error (VME) for gentamicin in a Staphylococcus hominis isolate, six VMEs for inducible clindamycin in S. aureus isolates, and two major errors (ME) for daptomycin in an S. aureus and a Staphylococcus epidermidis isolate. For enterococci, there was 97.3% CA. Two VMEs were observed for daptomycin in isolates of E. faecalis and 2 ME, 1 for high-level gentamicin resistance and 1 for nitrofurantoin, in E. faecium isolates. Overall, there was 98.3% CA and 99% essential agreement for the testing of staphylococci and enterococci by the Vitek 2. With the exception of detecting ICR in S. aureus, Vitek 2 performed reliably for antimicrobial susceptibility testing of staphylococci and enterococci. PMID:24478467

  9. Effect of Enterococcus faecium SF68 on serum cobalamin and folate concentrations in healthy dogs.

    PubMed

    Lucena, R; Olmedilla, A B; Blanco, B; Novales, M; Ginel, P J

    2018-04-17

    To study the effect of a 14-day administration of the probiotic Enterococcus faecium SF68 on serum concentrations of cobalamin and folate in healthy dogs. Thirty-six healthy dogs were randomly allocated between probiotic and control groups. Enterococcus faecium SF68 was administered to the probiotic group for 14 days whereas the control group did not receive any product. A blood sample was taken from all dogs when starting the administration (day 1), when the administration ended (day 14) and 14 days later (day 28). Serum cobalamin and folate concentrations and the canine inflammatory bowel disease activity index scores were determined at each time point. There was a progressive reduction of mean serum cobalamin in the probiotic group during the 28-day study, with significantly lower concentration at day 28 compared to baseline and day 14 concentrations. Moderate hypocobalaminaemia was observed in eight dogs at day 28. Probiotic administration was associated with a non-significant increase in mean serum folate concentration at day 14, and a significant decrease at day 28 compared with day 1. The canine inflammatory bowel disease activity index score remained unaltered during the study. Short-term Enterococcus faecium SF68 administration caused a significant reduction of mean cobalamin concentration and moderate hypocobolaminaemia in eight of 18 dogs. Monitoring serum folate appears unnecessary because the probiotic caused a non-significant increase that returned to baseline values after administration was discontinued. © 2018 British Small Animal Veterinary Association.

  10. Recent Recombination Events in the Core Genome Are Associated with Adaptive Evolution in Enterococcus faecium

    PubMed Central

    de Been, Mark; van Schaik, Willem; Cheng, Lu; Corander, Jukka; Willems, Rob J.

    2013-01-01

    Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species’ rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen. PMID:23882129

  11. Antimicrobial susceptibility testing of a clinical isolate of vancomycin-dependent enterococcus using D-alanine-D-alanine as a growth supplement.

    PubMed

    Sng, L H; Cornish, N; Knapp, C C; Ludwig, M D; Hall, G S; Washington, J A

    1998-04-01

    Bacteremia due to a vancomycin-dependent enterococcus (VDE) occurred during long-term vancomycin therapy in a renal transplant recipient with underlying pancreatitis and a vancomycin-resistant enterococcal (VRE) wound infection and bacteremia. The VDE was isolated from blood during vancomycin therapy and grew only in the presence of vancomycin and D-alanine-D-alanine (DADA), a substance required for cell-wall synthesis. Colonies beyond the periphery of growth of the VDE around a vancomycin disk contained vancomycin-independent revertant mutants after 48 hours of incubation. Pulsed-field gel electrophoresis of the VDE, revertant mutant, the initial blood culture isolate of VRE, and an autopsy isolate showed that the four strains were identical. Antimicrobial susceptibility testing was performed using standard macrobroth and microbroth dilution methods. DADA was used as a growth supplement for macrobroth dilution susceptibility testing of the VDE isolate. Minimum inhibitory concentrations (MICs) were similar for the VRE isolate and the VDE revertant, which were both resistant to ampicillin, high-level gentamicin, ciprofloxacin, imipenem, vancomycin, and daptomycin, and were susceptible to fusidic acid, high-level streptomycin, rifampin, and a quinupristin-dalfopristin combination. The MICs of teicoplanin were 2 microg/mL or less and 16 microg/mL for the clinical VRE isolate and the VDE revertant, respectively. The autopsy isolate was resistant to all antimicrobials tested and showed a fourfold increase in MICs for quinupristin-dalfopristin compared with that of the original blood isolate. The VDE was susceptible to all drugs tested except vancomycin.

  12. Mutations associated with reduced surotomycin susceptibility in Clostridium difficile and Enterococcus species.

    PubMed

    Adams, Hannah M; Li, Xiang; Mascio, Carmela; Chesnel, Laurent; Palmer, Kelli L

    2015-07-01

    Clostridium difficile infection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilized in vitro serial passage experiments to derive C. difficile strains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptible Enterococcus faecium and Enterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility in C. difficile and enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase in C. difficile ATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 in C. difficile REA type BI, and a PadR family transcriptional regulator in C. difficile REA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin against C. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Role of the transmembrane domain of the VanT serine racemase in resistance to vancomycin in Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Peña, J; Panesso, D; Reynolds, P

    2003-03-01

    Enterococcus gallinarum BM4175 (a vancomycin-susceptible derivative of BM4174 obtained by insertional inactivation of vanC-1) was transformed with plasmid constructs pCA10 (containing the genes necessary for resistance, vanC-1-XYc-T), pJP1 (with a fragment lacking the DNA encoding the transmembrane region of VanT, -vanC-1-XYc-T((Delta))(2-322)-) and with plasmids containing fragments encoding either the transmembrane (mvanT(1-322)) or racemase (svanT(323-698)) domains of VanT under the control of a constitutive promoter. Accumulated peptidoglycan precursors were measured in all strains in the presence of L-Ser, D-Ser (50 mM) or in the absence of any growth supplement. Uptake of 0.1 mM L-[(14)C]serine was also determined in BM4174, BM4175 and BM4175/pCA10. Vancomycin resistance was restored in BM4175 transformed with pCA10(C-1-XYc-T), and the profile of peptidoglycan precursors was similar to wild-type E. gallinarum BM4174. Transformation of E. gallinarum BM4175 with plasmid pJP1(vanC-1-XYc-T((Delta))(2-322)) resulted in: (i) vancomycin MICs remaining within susceptible levels (< or =4 mg/L) in the absence of any growth supplement, but increasing to 8 mg/L when either L-Ser or D-Ser was added to the medium; and (ii) the relative amounts of accumulated UDP-MurNAc-pentapeptide[D-Ser] and tetrapeptide precursors decreasing substantially compared with BM4175/pCA10 and BM4174. The effect on the appearance of tetrapeptide appeared to be host dependent, since a substantial amount was present when the same plasmid construct pJP1(vanC-1-XYc-T((Delta))(2-322)) was electroporated into Enterococcus faecalis JH2-2. The uptake of L-[(14)C]Ser at 240 s was decreased by approximately 40% in BM4175 compared with BM4174. Plasmid pCA10(C-1-XY(C)-T) restored uptake of L-[(14)C]Ser at 180 and 240 s in BM4175. The results suggest that the transmembrane domain of VanT is likely to be involved in the transport of L-Ser, and that in its absence the resistance phenotype is compromised.

  14. Outbreak of Vancomycin-Resistant Enterococcus Colonization Among Pediatric Oncology Patients

    PubMed Central

    Nolan, Sheila M.; Gerber, Jeffrey S.; Zaoutis, Theoklis; Prasad, Priya; Rettig, Susan; Gross, Kimberly; McGowan, Karin L.; Reilly, Anne F.; Coffin, Susan E.

    2010-01-01

    OBJECTIVE To detect the burden of vancomycin-resistant Enterococcus (VRE) colonization among pediatric oncology patients and to determine risk factors for VRE acquisition. DESIGN Retrospective case-control study. SETTING The Children’s Hospital of Philadelphia. PATIENTS Pediatric oncology patients hospitalized from June 2006 through December 2007. METHODS Prevalence surveys revealed an increased VRE burden among pediatric oncology patients. For the case-control study, the 16 case patients were pediatric oncology patients who had 1 stool sample negative for VRE at screening before having a stool sample positive for VRE at screening; the 62 control patients had 2 consecutive screenings in which stool samples were negative for VRE. Case and control patients were matched on the duration of the interval between screens. Analyses were performed to determine the association between multiple exposures and VRE acquisition. RESULTS The prevalence survey revealed that 5 (9.6%) of 52 patients had unsuspected VRE colonization at the time of hospitalization. Multivariate analysis identified a lack of empirical contact precautions (odds ratio [OR], 17.16 [95% confidence interval {CI}, 1.49–198.21]; P = .02) and the presence of a gastrointestinal device (OR, 4.03 [95% CI, 1.04–15.56]; P = .04) as significant risk factors for acquisition of VRE. Observations in the interventional radiology department revealed that staff could not access the portions of the electronic medical record in which isolation precautions were documented. Simple interventions that granted access and that trained interventional radiology staff to review the need for precautions, coupled with enhanced infection control practices, interrupted ongoing transmission and reduced the proportion of VRE screens that were positive to 15 (1.2%) of 1,270. CONCLUSIONS Inadequate communication with regard to infection control precautions can increase the risk of transmission of epidemiologically important organisms

  15. Clearance of Vancomycin-Resistant Enterococcus Concomitant With Administration of a Microbiota-Based Drug Targeted at Recurrent Clostridium difficile Infection.

    PubMed

    Dubberke, Erik R; Mullane, Kathleen M; Gerding, Dale N; Lee, Christine H; Louie, Thomas J; Guthertz, Harriet; Jones, Courtney

    2016-09-01

    Background.  Vancomycin-resistant Enterococcus (VRE) is a major healthcare-associated pathogen and a well known complication among transplant and immunocompromised patients. We report on stool VRE clearance in a post hoc analysis of the Phase 2 PUNCH CD study assessing a microbiota-based drug for recurrent Clostridium difficile infection (CDI). Methods.  A total of 34 patients enrolled in the PUNCH CD study received 1 or 2 doses of RBX2660 (microbiota suspension). Patients were requested to voluntarily submit stool samples at baseline and at 7, 30, and 60 days and 6 months after the last administration of RBX2660. Stool samples were tested for VRE using bile esculin azide agar with 6 µg/mL vancomycin and Gram staining. Vancomycin resistance was confirmed by Etest. Results.  VRE status (at least 1 test result) was available for 30 patients. All stool samples for 19 patients (63.3%, mean age 61.7 years, 68% female) tested VRE negative. Eleven patients (36.7%, mean age 75.5 years, 64% female) were VRE positive at the first test (baseline or 7-day follow-up). Of these patients, 72.7%, n = 8 converted to negative as of the last available follow-up (30 or 60 days or 6 months). Of the other 3: 1 died (follow-up data not available); 1 patient remained positive at all follow-ups; 1 patient retested positive at 6 months with negative tests during the interim. Conclusions.  Although based on a small sample size, this secondary analysis demonstrated the possibility of successfully converting a high percentage of VRE-positive patients to negative in a recurrent CDI population with RBX2660.

  16. Risk of vancomycin-resistant enterococci bloodstream infection among patients colonized with vancomycin-resistant enterococci.

    PubMed

    Kara, Ahu; Devrim, İlker; Bayram, Nuri; Katipoğlu, Nagehan; Kıran, Ezgi; Oruç, Yeliz; Demiray, Nevbahar; Apa, Hurşit; Gülfidan, Gamze

    2015-01-01

    Vancomycin-resistant enterococci colonization has been reported to increase the risk of developing infections, including bloodstream infections. In this study, we aimed to share our experience with the vancomycin-resistant enterococci bloodstream infections following gastrointestinal vancomycin-resistant enterococci colonization in pediatric population during a period of 18 months. A retrospective cohort of children admitted to a 400-bed tertiary teaching hospital in Izmir, Turkey whose vancomycin-resistant enterococci colonization was newly detected during routine surveillances for gastrointestinal vancomycin-resistant enterococci colonization during the period of January 2009 and December 2012 were included in this study. All vancomycin-resistant enterococci isolates found within 18 months after initial detection were evaluated for evidence of infection. Two hundred and sixteen patients with vancomycin-resistant enterococci were included in the study. Vancomycin-resistant enterococci colonization was detected in 136 patients (62.3%) while they were hospitalized at intensive care units; while the remaining majority (33.0%) were hospitalized at hematology-oncology department. Vancomycin-resistant enterococci bacteremia was present only in three (1.55%) patients. All these patients were immunosuppressed due to human immunodeficiency virus (one patient) and intensive chemotherapy (two patients). In conclusion, our study found that 1.55% of vancomycin-resistant enterococci-colonized children had developed vancomycin-resistant enterococci bloodstream infection among the pediatric intensive care unit and hematology/oncology patients; according to our findings, we suggest that immunosupression is the key point for developing vancomycin-resistant enterococci bloodstream infections. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  17. Molecular Epidemiology of Enterococcal Bacteremia in Australia

    PubMed Central

    Pearson, Julie C.; Daley, Denise A.; Le, Tam; Robinson, Owen J.; Gottlieb, Thomas; Howden, Benjamin P.; Johnson, Paul D. R.; Bennett, Catherine M.; Stinear, Timothy P.; Turnidge, John D.

    2014-01-01

    Enterococci are a major cause of health care-associated infections and account for approximately 10% of all bacteremias globally. The aim of this study was to determine the proportion of enterococcal bacteremia isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to ampicillin and the glycopeptides, and to characterize the molecular epidemiology of the Enterococcus faecalis and Enterococcus faecium isolates. From 1 January to 31 December 2011, 1,079 unique episodes of bacteremia were investigated, of which 95.8% were caused by either E. faecalis (61.0%) or E. faecium (34.8%). The majority of bacteremias were health care associated, and approximately one-third were polymicrobial. Ampicillin resistance was detected in 90.4% of E. faecium isolates but was not detected in E. faecalis isolates. Vancomycin nonsusceptibility was reported in 0.6% and 36.5% of E. faecalis and E. faecium isolates, respectively. Unlike Europe and the United States, where vancomycin resistance in E. faecium is predominately due to the acquisition of the vanA operon, 98.4% of E. faecium isolates harboring van genes carried the vanB operon, and 16.1% of the vanB E. faecium isolates had vancomycin MICs at or below the susceptible breakpoint of the CLSI. Although molecular typing identified 126 E. faecalis pulsed-field gel electrophoresis pulsotypes, >50% belonged to two pulsotypes that were isolated across Australia. E. faecium consisted of 73 pulsotypes from which 43 multilocus sequence types were identified. Almost 90% of the E. faecium isolates were identified as CC17 clones, of which approximately half were characterized as ST203, which was isolated Australia-wide. In conclusion, the Australian Enterococcal Sepsis Outcome Programme (AESOP) study has shown that although they are polyclonal, enterococcal bacteremias in Australia are frequently caused by ampicillin-resistant vanB E. faecium. PMID:24391201

  18. Performance of the EUCAST Disk Diffusion Method, the CLSI Agar Screen Method, and the Vitek 2 Automated Antimicrobial Susceptibility Testing System for Detection of Clinical Isolates of Enterococci with Low- and Medium-Level VanB-Type Vancomycin Resistance: a Multicenter Study

    PubMed Central

    Giske, Christian G.; Haldorsen, Bjørg; Matuschek, Erika; Schønning, Kristian; Leegaard, Truls M.; Kahlmeter, Gunnar

    2014-01-01

    Different antimicrobial susceptibility testing methods to detect low-level vancomycin resistance in enterococci were evaluated in a Scandinavian multicenter study (n = 28). A phenotypically and genotypically well-characterized diverse collection of Enterococcus faecalis (n = 12) and Enterococcus faecium (n = 18) strains with and without nonsusceptibility to vancomycin was examined blindly in Danish (n = 5), Norwegian (n = 13), and Swedish (n = 10) laboratories using the EUCAST disk diffusion method (n = 28) and the CLSI agar screen (n = 18) or the Vitek 2 system (bioMérieux) (n = 5). The EUCAST disk diffusion method (very major error [VME] rate, 7.0%; sensitivity, 0.93; major error [ME] rate, 2.4%; specificity, 0.98) and CLSI agar screen (VME rate, 6.6%; sensitivity, 0.93; ME rate, 5.6%; specificity, 0.94) performed significantly better (P = 0.02) than the Vitek 2 system (VME rate, 13%; sensitivity, 0.87; ME rate, 0%; specificity, 1). The performance of the EUCAST disk diffusion method was challenged by differences in vancomycin inhibition zone sizes as well as the experience of the personnel in interpreting fuzzy zone edges as an indication of vancomycin resistance. Laboratories using Oxoid agar (P < 0.0001) or Merck Mueller-Hinton (MH) agar (P = 0.027) for the disk diffusion assay performed significantly better than did laboratories using BBL MH II medium. Laboratories using Difco brain heart infusion (BHI) agar for the CLSI agar screen performed significantly better (P = 0.017) than did those using Oxoid BHI agar. In conclusion, both the EUCAST disk diffusion and CLSI agar screening methods performed acceptably (sensitivity, 0.93; specificity, 0.94 to 0.98) in the detection of VanB-type vancomycin-resistant enterococci with low-level resistance. Importantly, use of the CLSI agar screen requires careful monitoring of the vancomycin concentration in the plates. Moreover, disk diffusion methodology requires that personnel be trained in interpreting zone edges

  19. Enterococcal Endocarditis: Can We Win the War?

    PubMed Central

    Munita, Jose M.

    2015-01-01

    Treatment of enterococcal infections has long been recognized as an important clinical challenge, particularly in the setting of infective endocarditis (IE). Furthermore, the increase prevalence of isolates exhibiting multidrug resistance (MDR) to traditional anti-enterococcal antibiotics such as ampicillin, vancomycin and aminoglycosides (high-level resistance) poses immense therapeutic dilemmas in hospitals around the world. Unlike IE caused by most isolates of Enterococcus faecalis, which still retain susceptibility to ampicillin and vancomycin, the emergence and dissemination of a hospital-associated genetic clade of multidrug resistant Enterococcus faecium, markedly limits the therapeutic options. The best treatment of IE MDR enterococcal endocarditis is unknown and the paucity of antibiotics with bactericidal activity against these organisms is a cause of serious concern. Although it appears that we are winning the war against E. faecalis, the battle rages on against isolates of multidrug-resistant E. faecium. PMID:22661339

  20. Production of Enterocin P, an Antilisterial Pediocin-Like Bacteriocin from Enterococcus faecium P13, in Pichia pastoris

    PubMed Central

    Gutiérrez, Jorge; Criado, Raquel; Martín, María; Herranz, Carmen; Cintas, Luis M.; Hernández, Pablo E.

    2005-01-01

    The gene encoding mature enterocin P (EntP), an antimicrobial peptide from Enterococcus faecium P13, was cloned into the pPICZαA expression vector to generate plasmid pJC31. This plasmid was integrated into the genome of P. pastoris X-33, and EntP was heterologously secreted from the recombinant P. pastoris X-33t1 derivative at a higher production and antagonistic activity than from E. faecium P13. PMID:15980385

  1. Bacterial resistance to vancomycin: overproduction, purification, and characterization of VanC2 from Enterococcus casseliflavus as a D-Ala-D-Ser ligase.

    PubMed

    Park, I S; Lin, C H; Walsh, C T

    1997-09-16

    The VanC phenotype for clinical resistance of enterococci to vancomycin is exhibited by Enterococcus gallinarum and Enterococcus casseliflavus. Based on the detection of the cell precursor UDP-N-acetylmuramic acid pentapeptide intermediate terminating in D-Ala-D-Ser instead of D-Ala-D-Ala, it has been predicted that the VanC ligase would be a D-Ala-D-Ser rather than a D-Ala-D-Ala ligase. Overproduction of the E. casseliflavus ATCC 25788 vanC2 gene in Escherichia coli and its purification to homogeneity allowed demonstration of ATP-dependent D-Ala-D-Ser ligase activity. The kcat/Km2 (Km2 = Km for D-Ser or C-terminal D-Ala) ratio for D-Ala-D-Ser/D-Ala-D-Ala dipeptide formation is 270/0.69 for a 400-fold selection against D-Ala in the C-terminal position. VanC2 also has substantial D-Ala-D-Asn ligase activity (kcat/Km2 = 74 mM-1min-1).

  2. Effects of the probiotic Enterococcus faecium NCIMB 10415 on selected lactic acid bacteria and enterobacteria in co-culture.

    PubMed

    Starke, I C; Zentek, J; Vahjen, W

    2015-01-01

    Enterococcus faecium NCIMB 10415 is used as a probiotic for piglets and has been shown to modify the porcine intestinal microbiota. However, the mode of action of this probiotic modification is still unclear. One possible explanation is the direct growth inhibiting or stimulating effect of the probiotic on other indigenous bacteria. Therefore, the aim of the present study was to examine the growth interactions of the probiotic with different indigenous porcine bacteria in vitro. Reference strains were cultivated with the probiotic E. faecium strain NCIMB10415 (SF68) in a checkerboard assay with 102 to 105 cells/ml inoculum per strain. Growth kinetics were recorded for 8 h and used to determine specific growth of the co-cultures. Additionally, total DNA was extracted from the co-cultures at the end of the incubation to verify which strain in the co-culture was affected. Co-cultivation with eight Enterococcus spp. tester strains showed strain-specific growth differences. Three of four E. faecium strains were not influenced by the probiotic strain. PCR results showed reduced growth of the probiotic strain in co-culture with E. faecium DSM 6177. Three of four Enterococcus faecalis strains showed reduced specific growth in co-culture with the probiotic strain. However, E. faecalis DSM 20478 impaired growth of the probiotic E. faecium strain. The growth of Lactobacillus johnsonii DSM 10533 and Lactobacillus reuteri DSM 20016 was enhanced in co-culture with the probiotic strain, but co-cultivations with Lactobacillus mucosae DSM13345 or Lactobacillus amylovorus DSM10533 showed no differences. Co-cultures with the probiotic E. faecium showed no impact on the growth rate of four different enterobacterial reference strains (2 strains of Salmonella enterica and 2 strains of Escherichia coli), but PCR results showed reduced cell numbers for a pathogenic E. coli isolate at higher concentration of the probiotic strain. As the in vitro effect of the probiotic E. faecium on

  3. Growth inhibition of heat-injured Enterococcus faecium by oligophosphates in a cured meat model.

    PubMed

    Houben, J H; Tjeerdsma-van Bokhoven, J L M

    2004-12-01

    Cells of two heat-resistant strains of Enterococcus faecium were heated and incubated in meat suspensions containing curing ingredients. The concentrations of the curing ingredients were those frequently used for pasteurized ham-type products, except that the concentrations of the oligophosphates (triphosphate and diphosphate) varied. Heating tests at 69 degrees C were performed with inoculated meat suspensions in heat-sealed plastic pouches. Numbers of bacteria were counted immediately after heating and in parallel series of heated pouches incubated at 37 degrees C. Plating was performed in Tryptone Dextrose Yeast Meat Peptonised Milk Agar (TDYMP); in TDYMP Agar to which the curing ingredients were added; and in TDYMP Agar to which the curing ingredients except oligophosphates were added. The inclusion of oligophosphates in the heating medium increased the heat-injury sustained by the E. faecium cells, and in combination with rather severe heat treatment even completely blocked the growth of surviving organisms in the meat suspension incubated at 37 degrees C. The presence of oligophosphates in the culture medium TDYMP Agar severely reduced the counts of freshly heated cells; however, this effect disappeared after repair and growth of the surviving organisms in the meat suspension.

  4. Inhibitory Effect of Enterococcus faecium WB2000 on Volatile Sulfur Compound Production by Porphyromonas gingivalis

    PubMed Central

    Higuchi, Takuya; Nakajima, Masato; Fujimoto, Akie; Hanioka, Takashi; Hirofuji, Takao

    2016-01-01

    Volatile sulfur compounds (VSCs) produced by oral anaerobes are the major compounds responsible for oral malodor. Enterococcus faecium WB2000 is recognized as an antiplaque probiotic bacterium. In this study, the effect of E. faecium WB2000 on VSC production by Porphyromonas gingivalis was evaluated, and the mechanism of inhibition of oral malodor was investigated. P. gingivalis ATCC 33277 was cultured in the presence of four lactic acid bacteria, including E. faecium WB2000. Subsequently, P. gingivalis ATCC 33277, W50, W83, and two clinical isolates were cultured in the presence or absence of E. faecium WB2000, and the emission of VSCs from spent culture medium was measured by gas chromatography. The number of P. gingivalis ATCC 33277 in mixed culture with E. faecium WB2000 decreased at 6 h, and the rate of decrease was higher than that in mixed cultures with the other lactic acid bacteria. The numbers of five P. gingivalis strains decreased at similar rates in mixed culture with E. faecium WB2000. The concentration of methyl mercaptan was lower in spent culture medium from P. gingivalis and E. faecium WB2000 cultures compared with that from P. gingivalis alone. Therefore, E. faecium WB2000 may reduce oral malodor by inhibiting the growth of P. gingivalis and neutralizing methyl mercaptan. PMID:27799940

  5. Biochemical and Genetic Characterization of the vanC-2 Vancomycin Resistance Gene Cluster of Enterococcus casseliflavus ATCC 25788

    PubMed Central

    Dutta, Ireena; Reynolds, Peter E.

    2002-01-01

    The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXYC-2, vanTC-2, vanRC-2, and vanSC-2) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative d,d-dipeptidase-d,d-carboxypeptidase, VanXYC-2, exhibited 81% amino acid identity to VanXYC, and VanTC-2 displayed 65% amino acid identity to the serine racemase, VanT. VanRC-2 and VanSC-2 displayed high degrees of identity to VanRC and VanSC, respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-l-Ala-δ-d-Glu-l-Lys-d-Ala-d-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanTC-2 gene, encoding a putative serine racemase, and the presence of supplementary d-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of d-serine plays an important role in the induction process. PMID:12234834

  6. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES OF ENTEROCOCCUS FAECIUM].

    PubMed

    Vasilchenko, A S; Rogozhin, E A; Valyshev, A V

    2015-01-01

    Isolate bacteriocins from Enterococcus faecium metabolites and characterize their effect on cells of Gram positive (Listeria monocytogenes) and Gram negative (Escherichia coli) bacteria. Methods of solid-phase extraction, ion-exchange and reversed phase chromatography were applied for isolation of bacteriocins from cultural medium of bacteria MALDI time-of-flight mass-spectrometry was used for characterization of the obtained preparations. The mechanism of biological effect of peptides was evaluated using DNA-tropic dyes (SYTO 9 and PI) with subsequent registration of fluorescence spectra: Atomic-force microscopy (AFM) was used for characterization of morpho-functional reaction of target cells. Peptide fractions with mass of 1.0 - 3.0 kDa were isolated from enterococci metabolites, that inhibit the growth of indicator microorganisms. E. faecium strain exoproducts were shown to increase membrane permeability during interaction with L. monocytogenes, that results in subsequent detectable disturbance of normal cell morphology of listeria. Alterations of E. coli surface during the effect of purified peptide fraction was detected using AFM. The studies carried out have revealed the effect of bacteriocins of enterococci on microorganisms with various types of cell wall composition and have confirmed the importance of bacterial barrier structure permeability disturbance in the mechanism of antimicrobial effect of enterocins.

  7. Vancomycin-Resistant Gram-Positive Cocci Isolated from the Saliva of Wild Songbirds

    PubMed Central

    Ishihara, Shingo; Bitner, Jessica J.; Farley, Greg H.

    2014-01-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a birdbanding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens. PMID:23224296

  8. Vancomycin-resistant gram-positive cocci isolated from the saliva of wild songbirds.

    PubMed

    Ishihara, Shingo; Bitner, Jessica J; Farley, Greg H; Gillock, Eric T

    2013-04-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a bird-banding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens.

  9. Draft Genome Sequences of Four Enterococcus faecium Strains Isolated from Argentine Cheese

    PubMed Central

    Martino, Gabriela P.; Quintana, Ingrid M.; Espariz, Martín; Blancato, Victor S.; Gallina Nizo, Gabriel; Esteban, Luis

    2016-01-01

    We report the draft genome sequences of four Enterococcus faecium strains isolated from Argentine regional cheeses. These strains were selected based on their technological properties, i.e., their ability to produce aroma compounds (diacetyl, acetoin, and 2,3-butanediol) from citrate. The goal of our study is to provide further genetic evidence for the rational selection of enterococci strains based on their pheno- and genotype in order to be used in cheese production. PMID:26847907

  10. Distinct SagA from Hospital-Associated Clade A1 Enterococcus faecium Strains Contributes to Biofilm Formation

    PubMed Central

    Paganelli, F. L.; de Been, M.; Braat, J. C.; Hoogenboezem, T.; Vink, C.; Bayjanov, J.; Rogers, M. R. C.; Huebner, J.; Bonten, M. J. M.; Willems, R. J. L.

    2015-01-01

    Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components contributing to biofilm development. In this study, we investigated biofilm formation capacity and the roles of eDNA and secreted proteins for 83 E. faecium strains with different phylogenetic origins that clustered in clade A1 and clade B. Although there was no significant difference in biofilm formation between E. faecium strains from these two clades, the addition of DNase I or proteinase K to biofilms demonstrated that eDNA is essential for biofilm formation in most E. faecium strains, whereas proteolysis impacted primarily biofilms of E. faecium clade A1 strains. Secreted antigen A (SagA) was the most abundant protein in biofilms from E. faecium clade A1 and B strains, although its localization differed between the two groups. sagA was present in all sequenced E. faecium strains, with a consistent difference in the repeat region between the clades, which correlated with the susceptibility of biofilms to proteinase K. This indicates an association between the SagA variable repeat profile and the localization and contribution of SagA in E. faecium biofilms. PMID:26209668

  11. Distinct SagA from Hospital-Associated Clade A1 Enterococcus faecium Strains Contributes to Biofilm Formation.

    PubMed

    Paganelli, F L; de Been, M; Braat, J C; Hoogenboezem, T; Vink, C; Bayjanov, J; Rogers, M R C; Huebner, J; Bonten, M J M; Willems, R J L; Leavis, H L

    2015-10-01

    Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components contributing to biofilm development. In this study, we investigated biofilm formation capacity and the roles of eDNA and secreted proteins for 83 E. faecium strains with different phylogenetic origins that clustered in clade A1 and clade B. Although there was no significant difference in biofilm formation between E. faecium strains from these two clades, the addition of DNase I or proteinase K to biofilms demonstrated that eDNA is essential for biofilm formation in most E. faecium strains, whereas proteolysis impacted primarily biofilms of E. faecium clade A1 strains. Secreted antigen A (SagA) was the most abundant protein in biofilms from E. faecium clade A1 and B strains, although its localization differed between the two groups. sagA was present in all sequenced E. faecium strains, with a consistent difference in the repeat region between the clades, which correlated with the susceptibility of biofilms to proteinase K. This indicates an association between the SagA variable repeat profile and the localization and contribution of SagA in E. faecium biofilms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Production of enterocin A by Enterococcus faecium MMRA isolated from 'Rayeb', a traditional Tunisian dairy beverage.

    PubMed

    Rehaiem, A; Martínez, B; Manai, M; Rodríguez, A

    2010-05-01

    Characterization and purification of a bacteriocin produced by a wild Enterococcus faecium strain, isolated from a Tunisian traditional fermented milk. Enterococcus faecium MMRA was selected on the basis of its strong anti-Listeria activity. The antibacterial activity was sensitive to proteases, confirming its proteinaceous nature. It was extremely heat stable (15 min at 121 degrees C), remained active over a wide pH range (2-12), and also after treatment with lipase, amylase, organic solvents, detergents, lyophilisation and long-term storage at -20 degrees C. Production of the bacteriocin occurred throughout the logarithmic growth phase, it did not adhere to the surface of the producer cells and the mode of action was bactericidal. After partial purification of the active supernatants, a 4-kDa band with antibacterial activity was revealed by SDS-PAGE electrophoresis and bioassay. Tryptic digestion followed by MALDI-TOF mass spectrometry identified the peptide as enterocin A. The inhibitory activity of Ent. faecium MMRA, a wild strain isolated from the artisan dairy beverage 'Rayeb', is due to the synthesis of an enterocin A. Traditional fresh Tunisian fermented dairy products are generally manufactured with raw milk that can be used as a source of uncharacterized wild lactic acid bacteria strains. To our knowledge, this is the first report on the isolation of an enterocin A producing Ent. faecium from 'Rayeb'. This bacteriocin or the producing strain might have a promising potential in biopreservation to enhance the hygienic quality of this dairy product.

  13. Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production.

    PubMed

    Pashkova, Tatiana M; Vasilchenko, Alexey S; Khlopko, Yuriy A; Kochkina, Elena E; Kartashova, Olga L; Sycheva, Maria V

    2018-03-08

    We report here the complete genome sequence of Enterococcus faecium strain ICIS 96, which was isolated from the feces of a horse. Bacteriological characterization of strain ICIS 96 revealed the absence of pathogenicity factors, while its spectrum of antagonistic activity was found to be broad, having activities associated with both Gram-positive and Gram-negative bacteria. Analysis of the E. faecium ICIS 96 genome revealed five genes associated with antimicrobial activity (enterocin [ent] A, ent B, lactobin A/cerein 7b, and ent L50 A/B). No genes that correlate with human pathogenicity were identified. Copyright © 2018 Pashkova et al.

  14. Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production

    PubMed Central

    Pashkova, Tatiana M.; Vasilchenko, Alexey S.; Khlopko, Yuriy A.; Kochkina, Elena E.; Kartashova, Olga L.

    2018-01-01

    ABSTRACT We report here the complete genome sequence of Enterococcus faecium strain ICIS 96, which was isolated from the feces of a horse. Bacteriological characterization of strain ICIS 96 revealed the absence of pathogenicity factors, while its spectrum of antagonistic activity was found to be broad, having activities associated with both Gram-positive and Gram-negative bacteria. Analysis of the E. faecium ICIS 96 genome revealed five genes associated with antimicrobial activity (enterocin [ent] A, ent B, lactobin A/cerein 7b, and ent L50 A/B). No genes that correlate with human pathogenicity were identified. PMID:29519833

  15. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods.

    PubMed

    Rachon, Grzegorz; Peñaloza, Walter; Gibbs, Paul A

    2016-08-16

    The aims of this study were to obtain data on survival and heat resistance of cocktails of Salmonella, Listeria monocytogenes and the surrogate Enterococcus faecium (NRRL B-2354) in four low moisture foods (confectionery formulation, chicken meat powder, pet food and savoury seasoning) during storage before processing. Inoculated samples were stored at 16°C and cell viability examined at day 0, 3, 7 and 21. At each time point, the heat resistance at 80°C was determined. The purpose was to determine a suitable storage time of inoculated foods that can be applied in heat resistance studies or process validations with similar cell viability and heat resistance characteristics. The main inactivation study was carried out within 7days after inoculation, the heat resistance of each bacterial cocktail was evaluated in each low moisture food heated in thermal cells exposed to temperatures between 70 and 140°C. The Weibull model and the first order kinetics (D-value) were used to express inactivation data and calculate the heating time to achieve 5 log reduction at each temperature. Results showed that the pathogens Salmonella and L. monocytogenes and the surrogate E. faecium NRRL B-2354, can survive well (maximum reduction <0.8 log) in low moisture foods maintained at 16°C, as simulation of warehouse raw material storage in winter and before processing. The D80 value of the pathogens and surrogate did not significantly change during the 21day storage (p>0.05). The inactivation kinetics of the pathogens and surrogate at temperatures between 70 and 140°C, were different between each organism and product. E. faecium NRRL B-2354 was a suitable Salmonella surrogate for three of the low moisture foods studied, but not for the sugar-containing confectionery formulation. Heating low moisture food in moisture-tight environments (thermal cells) to 111.2, 105.3 or 111.8°C can inactivate 5 log of Salmonella, L. monocytogenes or E. faecium NRRL B-2354 respectively. Copyright

  16. Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium.

    PubMed

    Fernández, Ana; Alvarez-Ordóñez, Avelino; López, Mercedes; Bernardo, Ana

    2009-08-01

    In this study the adaptative response to heat (70 degrees C) of Enterococcus faecium using fresh and refrigerated (at 4 degrees C for up to 1 month) stationary phase cells grown in Brain Heart Infusion (BHI) buffered at pH 7.4 (non-acid-adapted cells) and acidified BHI at pH values of 6.4 and 5.4 with acetic, ascorbic, citric, lactic, malic and hydrochloric acids (acid-adapted cells) was evaluated. In all cases, the survival curves obtained were concave upward. A mathematical model based on the Weibull distribution accurately described the inactivation kinetic. The results indicate that previous adaptation to a low pH increased the bacterial heat resistance, whereas the subsequent cold storage of cells reduced E. faecium thermal tolerance. Fresh acid-adapted cells showed t(2.5)-values (time needed to obtain an inactivation level of 2.5 log10 cycles) ranging from 2.57 to 9.51 min, while non-acid-adapted cells showed t(2.5)-values of 1.92 min. The extent of increased heat tolerance varied with the acid examined, resulting in the following order: citric > or = acetic > malic > or = lactic > hydrochloric > or = ascorbic. In contrast, cold storage progressively decreased E. faecium thermal resistance. The t(2.5) values found at the end of the period studied were about 2-3-fold lower than those corresponding to non-refrigerated cells, although this decrease was more marked (about 5-fold) when cells were grown in buffered BHI and BHI acidified at pH 5.4 with hydrochloric acid. These findings highlight the need for a better understanding of microbial response to various preservation stresses in order to increase the efficiency of thermal processes and to indicate the convenience of counterbalancing the benefits of the hurdle concept.

  17. Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.

    PubMed

    Nallapareddy, Sreedhar R; Sillanpää, Jouko; Ganesh, Vannakambadi K; Höök, Magnus; Murray, Barbara E

    2007-06-01

    Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P < 0.0001). Blocking Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

  18. Five Genes Encoding Surface-Exposed LPXTG Proteins Are Enriched in Hospital-Adapted Enterococcus faecium Clonal Complex 17 Isolates▿

    PubMed Central

    Hendrickx, Antoni P. A.; van Wamel, Willem J. B.; Posthuma, George; Bonten, Marc J. M.; Willems, Rob J. L.

    2007-01-01

    Most Enterococcus faecium isolates associated with hospital outbreaks and invasive infections belong to a distinct genetic subpopulation called clonal complex 17 (CC17). It has been postulated that the genetic evolution of CC17 involves the acquisition of various genes involved in antibiotic resistance, metabolic pathways, and virulence. To gain insight into additional genes that may have favored the rapid emergence of this nosocomial pathogen, we aimed to identify surface-exposed LPXTG cell wall-anchored proteins (CWAPs) specifically enriched in CC17 E. faecium. Using PCR and Southern and dot blot hybridizations, 131 E. faecium isolates (40 CC17 and 91 non-CC17) were screened for the presence of 22 putative CWAP genes identified from the E. faecium TX0016 genome. Five genes encoding LPXTG surface proteins were specifically enriched in E. faecium CC17 isolates. These five LPXTG surface protein genes were found in 28 to 40 (70 to 100%) of CC17 and in only 7 to 24 (8 to 26%) of non-CC17 isolates (P < 0.05). Three of these CWAP genes clustered together on the E. faecium TX0016 genome, which may comprise a novel enterococcal pathogenicity island covering E. faecium contig 609. Expression at the mRNA level was demonstrated, and immunotransmission electron microscopy revealed an association of the five LPXTG surface proteins with the cell wall. Minimal spanning tree analysis based on the presence and absence of 22 CWAP genes revealed grouping of all 40 CC17 strains together with 18 hospital-derived but evolutionary unrelated non-CC17 isolates in a distinct CWAP-enriched cluster, suggesting horizontal transfer of CWAP genes and a role of these CWAPs in hospital adaptation. PMID:17873043

  19. Draft Genome Sequences of Four Enterococcus faecium Strains Isolated from Argentine Cheese.

    PubMed

    Martino, Gabriela P; Quintana, Ingrid M; Espariz, Martín; Blancato, Victor S; Gallina Nizo, Gabriel; Esteban, Luis; Magni, Christian

    2016-02-04

    We report the draft genome sequences of four Enterococcus faecium strains isolated from Argentine regional cheeses. These strains were selected based on their technological properties, i.e., their ability to produce aroma compounds (diacetyl, acetoin, and 2,3-butanediol) from citrate. The goal of our study is to provide further genetic evidence for the rational selection of enterococci strains based on their pheno- and genotype in order to be used in cheese production. Copyright © 2016 Martino et al.

  20. Characterization of an Enterococcus faecium small-colony variant isolated from blood culture.

    PubMed

    Gröbner, Sabine; Beck, Julia; Schaller, Martin; Autenrieth, Ingo B; Schulte, Berit

    2012-01-01

    Small-colony variants (SCVs) of bacteria are slow-growing subpopulations which can cause latent or recurrent infections due to better intracellular survival compared to their wild-type counterparts. Atypical colony morphology and altered biochemical profile may lead to failure in identification of SCV strains. We here report for the first time the isolation of an Enterococcus faecium SCV phenotype. The case of a 65-year-old woman with acute myeloid leukaemia who developed symptoms of sepsis during induction chemotherapy is presented. E. faecium with normal and SCV phenotype was isolated from blood cultures. At the same time urine culture was positive with E. faecium suggesting that bacteraemia originated from the urinary tract. The SCV phenotype was characterized by atypical growth behaviour. Electron microscopic analyses revealed perturbation of the separation of daughter cells and the accumulation of cell wall material. Accordingly, the SCV variant showed a dysfunction or lack of spontaneous autolysis whereas the normal phenotype did not. In contrast to conventional identification systems based on biochemical characteristics, the E. faecium SCV was precisely identified by MALDI-TOF MS analysis implemented in our laboratory. Hence, the increasing use of MALDI-TOF MS analysis for the identification of bacteria might be an appropriate tool for the detection of SCV variants, the diagnosis of which is of importance for the clinical outcome and the antibiotic treatment. Copyright © 2011. Published by Elsevier GmbH.

  1. Antibacterial potential and genetic profile of Enterococcus faecium strains isolated from human normal flora.

    PubMed

    Karimaei, Samira; Sadeghi, Javad; Asadian, Mahla; Esghaei, Maryam; Pourshafie, Mohammad Reza; Talebi, Malihe

    2016-07-01

    Enterococci have a widespread attendance in the circumference and belongs to the enteric commensal microbiota. Most of them produce the antimicrobial compounds and have an inhibition effect on pathogenic microorganisms. The objective of this study was to characterize the enterococcal strains isolated from human normal flora and assess their antibacterial activity. Enterococcal isolates were obtained from the feces of eighteen healthy humans. All enterococcal species were identified by biochemical and species-specific polymerase chain reaction (PCR). These isolates were investigated further to examine their ability to inhibit growth of Salmonella typhi, Shigella flexneri and Escherichia coli by well diffusion assay. Furthermore, antibiotic susceptibility test was performed and genetic relatedness of all isolates was evaluated by Pulse Field Gel Electrophoresis (PFGE). In all, 432 isolates were obtained from fecal samples. All of the isolates identified as Enterococcus faecium by biochemical and molecular (PCR) methods. Using repetitive element palindromic (REP)-PCR method 54 patterns have been obtained and were selected for further evaluation. The results indicated that 66%, 38% and 24% of our isolates had antimicrobial effect against S. typhi, S flexneri and enteroaggregative Escherichia coli (EAEC), respectively. On the other hand, there was no significant inhibition effect against enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). All isolates were sensitive to vancomycin, teicoplanin, linezolid, ampicillin, chloramphenicol and gentamicin. On the other hand, the resistance rates for erythromycin, tetracycline and ciprofloxacin were 20%, 22%, and 1.8% respectively. In addition, the analysis of PFGE showed forty patterns with eight (40.7%) common types (CT) and thirty two (59.2%) single types (ST). Among eight common types, only one common type (CT5) had similar antimicrobial effect. These results suggested that enterococcal isolates obtained from

  2. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium.

    PubMed

    Almohamad, Sam; Somarajan, Sudha R; Singh, Kavindra V; Nallapareddy, Sreedhar R; Murray, Barbara E

    2014-04-01

    Enterococcus faecium, a major cause of nosocomial infections, is often isolated from conditions where biofilm is considered to be important in the establishment of infections. We investigated biofilm formation among E. faecium isolates from diverse sources and found that the occurrence and amount of biofilm formation were significantly greater in clinical isolates than fecal isolates from community volunteers. We also found that the presence of the empfm (E. faecium pilus) operon was associated with the amount of biofilm formation. Furthermore, we analyzed the possible association between the distribution of 16 putative virulence genes and the occurrence of biofilm production. Even though the prevalence of these virulence genes was significantly higher in clinical isolates, we did not observe any correlation with the occurrence of biofilm formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788.

    PubMed

    Dutta, Ireena; Reynolds, Peter E

    2002-10-01

    The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXY(C-2), vanT(C-2), vanR(C-2), and vanS(C-2)) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative D,D-dipeptidase-D,D-carboxypeptidase, VanXY(C-2), exhibited 81% amino acid identity to VanXY(C), and VanT(C-2) displayed 65% amino acid identity to the serine racemase, VanT. VanR(C-2) and VanS(C-2) displayed high degrees of identity to VanR(C) and VanS(C), respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-L-Ala-delta-D-Glu-L-Lys-D-Ala-D-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanT(C-2) gene, encoding a putative serine racemase, and the presence of supplementary D-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of D-serine plays an important role in the induction process.

  4. Prevalence and antimicrobial resistance of Enterococcus species of food animal origin from Beijing and Shandong Province, China.

    PubMed

    Liu, Y; Liu, K; Lai, J; Wu, C; Shen, J; Wang, Y

    2013-02-01

    To evaluate the prevalence and antimicrobial resistance of Enterococcus species from chickens and pigs in Beijing and Shandong Province, China. Swab samples were collected from four farms in Beijing and two in Shandong Province in 2009 and tested for Enterococcus. Minimum inhibitory concentrations of antimicrobial agents were determined using broth microdilution or agar screening methods. A total of 453 Enterococcus isolates were recovered, belonging to six different Enterococcus species. All isolates were sensitive to vancomycin. Resistance to tetracycline (92.5%), amikacin (89.4%), erythromycin (72.8%) and rifampin (58.1%), and high-level streptomycin resistance (HLSR, 50.3%) were prevalent, while resistance to penicillins (7.9% to penicillin and 4.2% to ampicillin) was rare. The resistance rates to phenicols (chloramphenicol and florfenicol) and enrofloxacin, and high-level gentamicin resistance (HLGR) were approximately 30%. The vast majority of the Enterococcus isolates were classified as multidrug-resistant organisms. Resistance of Enterococcus sp. to most antimicrobials was more prevalent in China than in European or other Asian countries. Our findings reveal a high level of antimicrobial resistance in Enterococcus isolates from food animals in China and underline the need for prudent use of antibiotics in chicken and pig production to minimize the spread of antibiotic-resistant enterococci. © 2012 The Society for Applied Microbiology.

  5. Presence of the vancomycin resistance gene cluster vanC1, vanXYc, and vanT in Enterococcus casseliflavus.

    PubMed

    Hölzel, Christina; Bauer, Johann; Stegherr, Eva-Maria; Schwaiger, Karin

    2014-04-01

    The three chromosomally located clustered genes vanC1, vanXYc, and vanT confer intrinsic resistance to vancomycin and are used for species identification of Enterococcus gallinarum. In this study, 28 strains belonging to the E. gallinarum/casseliflavus group isolated from cloacal swabs from laying hens were screened for the presence of vanC1. As confirmed by species-specific multiplex PCR, 11 vanC1-positive strains were identified as E. gallinarum. Surprisingly, one yellow pigmented strain, verified as E. casseliflavus by species-specific multiplex PCR, was also vanC1 positive; vanXYc and vanT were additionally detectable in this strain. To our knowledge, this is the first report of vanC1, vanXYc, and vanT in E. casseliflavus. The minimum inhibitory concentration of vancomycin was 4 mg/L. Real-time reverse transcription-PCR revealed that none of the clustered genes was expressed in this strain. Even if the genes seem not to be active, there is a certain risk that they will be transferred to other bacteria where they might be functionally expressed. Therefore, it may be advisable to expand the search for vanC1, vanXYc, and vanT from E. gallinarum to other (enterococcal) species. This study confirms that enterococci live up to their name as being reservoir bacteria and should therefore always be closely monitored.

  6. Antibacterial efficacy of nisin, pediocin 34 and enterocin FH99 against L. monocytogenes, E. faecium and E. faecalis and bacteriocin cross resistance and antibiotic susceptibility of their bacteriocin resistant variants.

    PubMed

    Kaur, Gurpreet; Singh, Tejinder Pal; Malik, Ravinder Kumar; Bhardwaj, Arun; De, Sachinandan

    2014-02-01

    The bacteriocin susceptibility of Listeria monocytogenes MTCC 657, Enterococcus faecium DSMZ 20477, E. faecium VRE, and E. faecalis ATCC 29212 and their corresponding bacteriocin resistant variants was assessed. The single and combined effect of nisin and pediocin 34 and enterocin FH99 bacteriocins produced by Pediococcus pentosaceus 34, and E. faecium FH99, respectively, was determined. Pediocin34 proved to be more effective in inhibiting L. monocytogenes MTCC 657. A greater antibacterial effect was observed against E. faecium DSMZ 20477 and E. faecium (VRE) when the a combination of nisin, pediocin 34 and enterocin FH99 were used whereas in case of L. monocytogenes MTCC 657 a combination of pediocin 34 and enterocin FH99 was more effective in reducing the survival of pathogen. Bacteriocin cross-resistance and the antibiotic susceptibility of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class and also the acquired resistance to bacteriocins can modify the antibiotic susceptibility/resistance profile of the bacterial species used in the study. According to the hydrophobicity nisin resistant variant of L. monocytogenes was more hydrophobic (p < 0.001), whereas the pediocin 34 and enterocin FH99 resistant variants were less hydrophobic than the wild type strain. Nisin, pediocin 34 and enterocin FH99 resistant variants of E. faecium DSMZ 20477 and E. faecium VRE were less hydrophobic than their wild type counterparts. Nisin resistant E. faecalis ATCC 29212 was less hydrophobic than its wild type counterpart.

  7. Biofilms of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta and the control of these pathogens through cleaning and sanitization procedures.

    PubMed

    da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru

    2015-05-04

    The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8 days). At 7°C, the counts of E. faecalis and E. faecium were below 2 log10 CFU/cm(2). For the temperatures of 25 and 39°C, after 1 day, the counts of E. faecalis and E. faecium were 5.75 and 6.07 log10 CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4 log10 CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Prevalence and Antimicrobial Resistance of Enterococci Isolated from Retail Meats in the United States, 2002 to 2014.

    PubMed

    Tyson, Gregory H; Nyirabahizi, Epiphanie; Crarey, Emily; Kabera, Claudine; Lam, Claudia; Rice-Trujillo, Crystal; McDermott, Patrick F; Tate, Heather

    2018-01-01

    Bacteria of the genus Enterococcus are important human pathogens that are frequently resistant to a number of clinically important antibiotics. They are also used as markers of animal fecal contamination of human foods and are employed as sentinel organisms for tracking trends in resistance to antimicrobials with Gram-positive activity. As part of the National Antimicrobial Resistance Monitoring System (NARMS), we evaluated several retail meat commodities for the presence of enterococci from 2002 to 2014, and we found 92.0% to be contaminated. The majority of isolates were either Enterococcus faecalis (64.0%) or Enterococcus faecium (28.6%), and the antimicrobial resistance of each isolate was assessed by broth microdilution. The resistance prevalences for several drugs, including erythromycin and gentamicin, were significantly higher among poultry isolates, compared to retail beef or pork isolates. None of the isolates was resistant to the clinically important human drug vancomycin, only 1 isolate was resistant to linezolid, and resistance to tigecycline was below 1%. In contrast, a majority of both E. faecalis (67.5%) and E. faecium (53.7%) isolates were resistant to tetracycline. Overall, the robust NARMS testing system employed consistent sampling practices and methods throughout the testing period, with the only significant trend in resistance prevalence being decreased E. faecium resistance to penicillin. These data provide excellent baseline levels of resistance that can be used to measure future changes in resistance prevalence that may result from alterations in the use of antimicrobials in food animal production. IMPORTANCE Enterococci, including E. faecalis and E. faecium , are present in the guts of food-producing animals and are used as a measure of fecal contamination of meat. We used the large consistent sampling methods of NARMS to assess the prevalence of Enterococcus strains isolated from retail meats, and we found over 90% of meats to be

  9. Persistence of Animal and Human Glycopeptide-Resistant Enterococci on Two Norwegian Poultry Farms Formerly Exposed to Avoparcin Is Associated with a Widespread Plasmid-Mediated vanA Element within a Polyclonal Enterococcus faecium Population

    PubMed Central

    Johnsen, P. J.; Østerhus, J. I.; Sletvold, H.; Sørum, M.; Kruse, H.; Nielsen, K.; Simonsen, G. S.; Sundsfjord, A.

    2005-01-01

    The evolutionary processes responsible for the long-term persistence of glycopeptide-resistant Enterococcus faecium (GREF) in nonselective environments were addressed by genetic analyses of E. faecium populations in animals and humans on two Norwegian poultry farms that were previously exposed to avoparcin. A total of 222 fecal GREF (n = 136) and glycopeptide-susceptible (n = 86) E. faecium (GSEF) isolates were obtained from farmers and poultry on three separate occasions in 1998 and 1999. Pulsed-field gel electrophoresis (PFGE) and plasmid DNA analyses discerned 22 GREF and 32 GSEF PFGE types within shifting polyclonal animal and human E. faecium populations and indicated the presence of transferable plasmid-mediated vanA resistance, respectively. Examples of dominant, persistent GREF PFGE types supported the notion that environmentally well-adapted GREF types may counteract the reversal of resistance. PFGE analyses, sequencing of the purK housekeeping gene, and partial typing of vanA-containing Tn1546 suggested a common animal and human reservoir of glycopeptide resistance. Inverse PCR amplification and sequence analyses targeting the right end of the Tn1546-plasmid junction fragment strongly indicated the presence of a common single Tn1546-plasmid-mediated element in 20 of 22 GREF PFGE types. This observation was further strengthened by vanY-vanZ hybridization analyses of plasmid DNAs as well as the finding of a physical linkage between Tn1546 and a putative postsegregation killing system for seven GREF PFGE types. In conclusion, our observations suggest that the molecular unit of persistence of glycopeptide resistance is a common mobile plasmid-mediated vanA-containing element within a polyclonal GREF population that changes over time. In addition, we propose that “plasmid addiction systems” may contribute to the persistence of GREF in nonselective environments. PMID:15640183

  10. Results of Four-Year Rectal Vancomycin-Resistant Enterococci Surveillance in a Pediatric Hematology-Oncology Ward: From Colonization to Infection.

    PubMed

    Aktürk, Hacer; Sütçü, Murat; Somer, Ayper; Karaman, Serap; Acar, Manolya; Ünüvar, Ayşegül; Anak, Sema; Karakaş, Zeynep; Özdemir, Aslı; Sarsar, Kutay; Aydın, Derya; Salman, Nuran

    2016-09-05

    To investigate the clinical impact of vancomycin-resistant enterococci (VRE) colonization in patients with hematologic malignancies and associated risk factors. Patients colonized and infected with VRE were identified from an institutional surveillance database between January 2010 and December 2013. A retrospective case-control study was performed to identify the risk factors associated with development of VRE infection in VRE-colonized patients. Fecal VRE colonization was documented in 72 of 229 children (31.4%). Seven VRE-colonized patients developed subsequent systemic VRE infection (9.7%). Types of VRE infections included bacteremia (n=5), urinary tract infection (n=1), and meningitis (n=1). Enterococcus faecium was isolated in all VRE infections. Multivariate analysis revealed severe neutropenia and previous bacteremia with another pathogen as independent risk factors for VRE infection development in colonized patients [odds ratio (OR): 35.4, confidence interval (CI): 1.7-72.3, p=0.02 and OR: 20.6, CI: 1.3-48.6, p=0.03, respectively]. No deaths attributable to VRE occurred. VRE colonization has important consequences in pediatric cancer patients.

  11. Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk

    PubMed Central

    2013-01-01

    Background Recent studies have shown that mammalian milk represents a continuous supply of commensal bacteria, including enterococci. The objectives of this study were to evaluate the presence of enterococci in milk of different species and to screen them for several genetic and phenotypic traits of clinical significance among enterococci. Results Samples were obtained from, at least, nine porcine, canine, ovine, feline and human healthy hosts. Enterococci could be isolated, at a concentration of 1.00 × 102 -1.16 × 103 CFU/ml, from all the porcine samples and, also from 85, 50, 25 and 25% of the human, canine, feline and ovine ones, respectively. They were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus casseliflavus and Enterococcus durans. Among the 120 initial enterococcal isolates, 36 were selected on the basis of their different PFGE profiles and further characterized. MLST analysis revealed a wide diversity of STs among the E. faecalis and E. faecium strains, including some frequently associated to hospital infections and novel STs. All the E. faecalis strains possessed some of the potential virulence determinants (cad, ccf, cob, cpd, efaAfs, agg2, gelE, cylA, espfs) assayed while the E. faecium ones only harboured the efaAfm gene. All the tested strains were susceptible to tigecycline, linezolid and vancomycin, and produced tyramine. Their susceptibility to the rest of the antimicrobials and their ability to produce other biogenic amines varied depending on the strain. Enterococci strains isolated from porcine samples showed the widest spectrum of antibiotic resistance. Conclusions Enterococci isolated from milk of different mammals showed a great genetic diversity. The wide distribution of virulence genes and/or antibiotic resistance among the E. faecalis and E. faecium isolates indicates that they can constitute a reservoir of such traits and a risk to animal and human health. PMID:24325647

  12. Atypical Genetic Locus Associated with Constitutive Production of Enterocin B by Enterococcus faecium BFE 900

    PubMed Central

    Franz, Charles M. A. P.; Worobo, Randy W.; Quadri, Luis E. N.; Schillinger, Ulrich; Holzapfel, Wilhelm H.; Vederas, John C.; Stiles, Michael E.

    1999-01-01

    A purified bacteriocin produced by Enterococcus faecium BFE 900 isolated from black olives was shown by Edman degradation and mass spectrometric analyses to be identical to enterocin B produced by E. faecium T136 from meat (P. Casaus, T. Nilsen, L. M. Cintas, I. F. Nes, P. E. Hernández, and H. Holo, Microbiology 143:2287–2294, 1997). The structural gene was located on a 2.2-kb HindIII fragment and a 12.0-kb EcoRI chromosomal fragment. The genetic characteristics and production of EntB by E. faecium BFE 900 differed from that described so far by the presence of a conserved sequence like a regulatory box upstream of the EntB gene, and its production was constitutive and not regulated. The 2.2-kb chromosomal fragment contained the hitherto undetected immunity gene for EntB in an atypical orientation that is the reverse of that of the structural gene. Typical transport and other genes associated with bacteriocin production were not detected on the 12.0-kb chromosomal fragment containing the EntB structural gene. This makes the EntB genetic system different from most other bacteriocin systems, where transport and possible regulatory genes are clustered. EntB was subcloned and expressed by the dedicated secretion machinery of Carnobacterium piscicola LV17A. The structural gene was amplified by PCR, fused to the divergicin A signal peptide, and expressed by the general secretory pathway in Enterococcus faecalis ATCC 19433. PMID:10224016

  13. Diversity of Antibiotic Resistance Genes in Enterococcus Strains Isolated from Ready-to-Eat Meat Products.

    PubMed

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Łaniewska-Trokenheim, Łucja

    2016-10-25

    The objective of the study was to answer the question of whether the ready-to-eat meat products can pose indirect hazard for consumer health serving as reservoir of Enterococcus strains harboring tetracyclines, aminoglycosides, and macrolides resistance genes. A total of 390 samples of ready-to-eat meat products were investigated. Enterococcus strains were found in 74.1% of the samples. A total of 302 strains were classified as: Enterococcus faecalis (48.7%), Enterococcus faecium (39.7%), Enterococcus casseliflavus (4.3%), Enterococcus durans (3.0%), Enterococcus hirae (2.6%), and other Enterococcus spp. (1.7%). A high percentage of isolates were resistant to streptomycin high level (45%) followed by erythromycin (42.7%), fosfomycin (27.2%), rifampicin (19.2%), tetracycline (36.4%), tigecycline (19.9%). The ant(6')-Ia gene was the most frequently found gene (79.6%). Among the other genes that encode aminoglycosides-modifying enzymes, the highest portion of the strains had the aac(6')-Ie-aph(2'')-Ia (18.5%) and aph(3'')-IIIa (16.6%), but resistance of isolates from food is also an effect of the presence of aph(2'')-Ib, aph(2'')-Ic, aph(2'')-Id genes. Resistance to tetracyclines was associated with the presence of tetM (43.7%), tetL (32.1%), tetK (14.6%), tetW (0.7%), and tetO (0.3%) genes. The ermB and ermA genes were found in 33.8% and 18.9% of isolates, respectively. Nearly half of the isolates contained a conjugative transposon of the Tn916/Tn1545 family. Enterococci are widely present in retail ready-to-eat meat products. Many isolated strains (including such species as E. casseliflavus, E. durans, E. hirae, and Enterococcus gallinarum) are antibiotic resistant and carry transferable resistance genes. © 2016 Institute of Food Technologists®.

  14. Vancomycin-resistant gene identification from live bacteria on an integrated microfluidic system by using low temperature lysis and loop-mediated isothermal amplification

    PubMed Central

    Chang, Wen-Hsin; Yu, Ju-ching; Yang, Sung-Yi; Lin, Yi-Cheng; Wang, Chih-Hung; You, Huey-Ling; Wu, Jiunn-Jong; Lee, Gwo-Bin

    2017-01-01

    Vancomycin-resistant Enterococcus (VRE) is a kind of enterococci, which shows resistance toward antibiotics. It may last for a long period of time and meanwhile transmit the vancomycin-resistant gene (vanA) to other bacteria. In the United States alone, the resistant rate of Enterococcus to vancomycin increased from a mere 0.3% to a whopping 40% in the past two decades. Therefore, timely diagnosis and control of VRE is of great need so that clinicians can prevent patients from becoming infected. Nowadays, VRE is diagnosed by antibiotic susceptibility test or molecular diagnosis assays such as matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and polymerase chain reaction. However, the existing diagnostic methods have some drawbacks, for example, time-consumption, no genetic information, or high false-positive rate. This study reports an integrated microfluidic system, which can automatically identify the vancomycin resistant gene (vanA) from live bacteria in clinical samples. A new approach using ethidium monoazide, nucleic acid specific probes, low temperature chemical lysis, and loop-mediated isothermal amplification (LAMP) has been presented. The experimental results showed that the developed system can detect the vanA gene from live Enterococcus in joint fluid samples with detection limit as low as 10 colony formation units/reaction within 1 h. This is the first time that an integrated microfluidic system has been demonstrated to detect vanA gene from live bacteria by using the LAMP approach. With its high sensitivity and accuracy, the proposed system may be useful to monitor antibiotic resistance genes from live bacteria in clinical samples in the near future. PMID:28798845

  15. Evaluation of a New System, VITEK 2, for Identification and Antimicrobial Susceptibility Testing of Enterococci

    PubMed Central

    Garcia-Garrote, Fernando; Cercenado, Emilia; Bouza, Emilio

    2000-01-01

    We evaluated the new automated VITEK 2 system (bioMérieux) for the identification and antimicrobial susceptibility testing of enterococci. The results obtained with the VITEK 2 system were compared to those obtained by reference methods: standard identification by the scheme of Facklam and Sahm [R. R. Facklam and D. F. Sahm, p. 308–314, in P. R. Murray et al., ed., Manual of Clinical Microbiology, 6th ed., 1995] and with the API 20 STREP system and, for antimicrobial susceptibility testing, broth microdilution and agar dilution methods by the procedures of the National Committee for Clinical Laboratory Standards. The presence of vanA and vanB genes was determined by PCR. A total of 150 clinical isolates were studied, corresponding to 60 Enterococcus faecalis, 55 Enterococcus faecium, 26 Enterococcus gallinarum, 5 Enterococcus avium, 2 Enterococcus durans, and 2 Enterococcus raffinosus isolates. Among those isolates, 131 (87%) were correctly identified to the species level with the VITEK 2 system. Approximately half of the misidentifications were for E. faecium with low-level resistance to vancomycin, identified as E. gallinarum or E. casseliflavus; however, a motility test solved the discrepancies and increased the agreement to 94%. Among the strains studied, 66% were vancomycin resistant (57 VanA, 16 VanB, and 26 VanC strains), 23% were ampicillin resistant (MICs, ≥16 μg/ml), 31% were high-level gentamicin resistant, and 45% were high-level streptomycin resistant. Percentages of agreement for susceptibility and resistance to ampicillin, vancomycin, and teicoplanin and for high-level gentamicin resistance and high-level streptomycin resistance were 93, 95, 97, 97, and 96%, respectively. The accuracy of identification and antimicrobial susceptibility testing of enterococci with the VITEK 2 system, together with the significant reduction in handling time, will have a positive impact on the work flow of the clinical microbiology laboratory. PMID:10834961

  16. A functional collagen adhesin gene, acm, in clinical isolates of Enterococcus faecium correlates with the recent success of this emerging nosocomial pathogen.

    PubMed

    Nallapareddy, Sreedhar R; Singh, Kavindra V; Okhuysen, Pablo C; Murray, Barbara E

    2008-09-01

    Enterococcus faecium recently evolved from a generally avirulent commensal into a multidrug-resistant health care-associated pathogen causing difficult-to-treat infections, but little is known about the factors responsible for this change. We previously showed that some E. faecium strains express a cell wall-anchored collagen adhesin, Acm. Here we analyzed 90 E. faecium isolates (99% acm(+)) and found that the Acm protein was detected predominantly in clinically derived isolates, while the acm gene was present as a transposon-interrupted pseudogene in 12 of 47 isolates of nonclinical origin. A highly significant association between clinical (versus fecal or food) origin and collagen adherence (P faecium infections showed reactivity with recombinant Acm, while only 4 of 30 community and hospitalized patient control group sera reacted (P faecium endocarditis patient sera. Although pulsed-field gel electrophoresis indicated that multiple strains expressed collagen adherence, multilocus sequence typing demonstrated that the majority of collagen-adhering isolates, as well as 16 of 17 endocarditis isolates, are part of the hospital-associated E. faecium genogroup referred to as clonal complex 17 (CC17), which has emerged globally. Taken together, our findings support the hypothesis that Acm has contributed to the emergence of E. faecium and CC17 in nosocomial infections.

  17. Novel Compounds From Shark and Stingray Epidermal Mucus With Antimicrobial Activity Against Wound Infection Pathogens

    DTIC Science & Technology

    2014-03-01

    Micrococcus sp., Enterococcus faecalis, Enterococcus faecium, Vancomycin resistant Enterococcus, and Escherichia coli). During the second Quarter of...mm) 803 D10 Rhinoptera bonasus MRSA (9.5) MSSA (4.5) Bacillus cereus (6) Listeria monocytogenes (6) MRSA (2) Micrococcus sp (7) VRE (2) 803...E6 Rhinoptera bonasus MRSA (7.5) MSSA (8.5) VRE (4.5) Bacillus subtilis (10) MRSA (10) MRSA (10) Micrococcus (16) Listeria monocytogenes (13

  18. Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia.

    PubMed

    Ben Said, Leila; Klibi, Naouel; Dziri, Raoudha; Borgo, Francesca; Boudabous, Abdellatif; Ben Slama, Karim; Torres, Carmen

    2016-03-30

    The objective of this study was to determine the species, clonal diversity, antibiotic resistance and virulence of enterococci in different environments. Seventy-one samples of farm origin (34 of food vegetables, 27 of soil and ten of irrigation water) and 19 samples of vegetables from five markets, were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. Enterococci were obtained from 72.2% of tested samples in SB media (food vegetables from farms, 88.2%; soil and irrigation water, 51%; food vegetables from markets, 84.2%), and 65 enterococcal isolates were obtained. Enterococcus faecium was the most prevalent species (52.3%), followed by E. hirae (35.4%), E. faecalis (6.15%), and E. casseliflavus (6.15%). Antibiotic resistance detected among these enterococci was as follows (percentage/detected gene): ciprofloxacin (60%), erythromycin (18.4%/erm(B)), tetracycline (15.4%/tet(M)-tet(L)), kanamycin (15.4%/aph(3')-III), chloramphenicol (7.7%), streptomycin (3%/ant(6)), vancomycin (6.15%/vanC2)), teicoplanin (0%) and ampicillin (0%). High-level gentamicin-resistant (HLR-G) enterococci were detected in SB-Gen plates in 14 of 90 tested samples (15.5%), and 15 isolates were characterized: ten E. faecalis, four E. faecium and one E. hirae. All HLR-G enterococci carried the aac(6')-aph(2″), erm(B) and tet(M) genes, among other resistance genes. The HLR-G isolates showed high genetic diversity (ten different PFGE profiles), and were ascribed to the sequence types ST2, ST16, ST28 and new ST528 (in E. faecalis), and ST56, new ST885 and new ST886 (in E. faecium). Food vegetables in the farm or market settings are frequently contaminated by HLR-G enterococci, and these microorganisms could reach the human intestine through the food chain, if hygienic conditions are not followed. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Population Biology of Intestinal Enterococcus Isolates from Hospitalized and Nonhospitalized Individuals in Different Age Groups

    PubMed Central

    Tedim, Ana P.; Ruiz-Garbajosa, Patricia; Corander, Jukka; Rodríguez, Concepción M.; Cantón, Rafael; Willems, Rob J.; Baquero, Fernando

    2014-01-01

    The diversity of enterococcal populations from fecal samples from hospitalized (n = 133) and nonhospitalized individuals (n = 173) of different age groups (group I, ages 0 to 19 years; group II, ages 20 to 59 years; group III, ages ≥60 years) was analyzed. Enterococci were recovered at similar rates from hospitalized and nonhospitalized persons (77.44% to 79.77%) of all age groups (75.0% to 82.61%). Enterococcus faecalis and Enterococcus faecium were predominant, although seven other Enterococcus species were identified. E. faecalis and E. faecium (including ampicillin-resistant E. faecium) colonization rates in nonhospitalized persons were age independent. For inpatients, E. faecalis colonization rates were age independent, but E. faecium colonization rates (particularly the rates of ampicillin-resistant E. faecium colonization) significantly increased with age. The population structure of E. faecium and E. faecalis was determined by superimposing goeBURST and Bayesian analysis of the population structure (BAPS). Most E. faecium sequence types (STs; 150 isolates belonging to 75 STs) were linked to BAPS groups 1 (22.0%), 2 (31.3%), and 3 (36.7%). A positive association between hospital isolates and BAPS subgroups 2.1a and 3.3a (which included major ampicillin-resistant E. faecium human lineages) and between community-based ampicillin-resistant E. faecium isolates and BAPS subgroups 1.2 and 3.3b was found. Most E. faecalis isolates (130 isolates belonging to 58 STs) were grouped into 3 BAPS groups, BAPS groups 1 (36.9%), 2 (40.0%), and 3 (23.1%), with each one comprising widespread lineages. No positive associations with age or hospitalization were established. The diversity and dynamics of enterococcal populations in the fecal microbiota of healthy humans are largely unexplored, with the available knowledge being fragmented and contradictory. The study offers a novel and comprehensive analysis of enterococcal population landscapes and suggests that E. faecium

  20. Effectiveness of automated ultraviolet-C light for decontamination of textiles inoculated with Enterococcus faecium.

    PubMed

    Smolle, C; Huss, F; Lindblad, M; Reischies, F; Tano, E

    2018-01-01

    Healthcare textiles are increasingly recognized as potential vehicles for transmission of hospital-acquired infections. This study tested the ability of an automated ultraviolet-C (UV-C) room disinfection device (Tru-D Smart UV-C) to decontaminate textiles inoculated with Enterococcus faecium in a clinical setting. Contaminated polycotton (50/50 polyester/cotton) swatches were distributed to predefined locations in a ward room and exposed to UV-C light. UV-C decontamination reduced E. faecium counts by a mean log 10 reduction factor of 1.37 (all P = 0.005, Wilcoxon signed rank test). UV-C decontamination may be a feasible adjunctive measure to conventional laundering to preserve the cleanliness of healthcare textiles in ward rooms. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  1. Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: in vitro and in vivo evidence.

    PubMed

    Divyashri, G; Krishna, G; Muralidhara; Prapulla, S G

    2015-12-01

    Accumulating evidence suggests that probiotic bacteria play a vital role in modulating various aspects integral to the health and well-being of humans. In the present study, probiotic attributes and the antioxidant, anti-inflammatory and neuromodulatory potential of Enterococcus faecium CFR 3003 were investigated by employing suitable model systems. E. faecium exhibited robust resistance to gastrointestinal stress conditions as it could withstand acid stress at pH 1.5, 2 and 3. The bacterium also survived at a bile salt concentration of 0.45 %, and better tolerance was observed towards pepsin and trypsin. E. faecium produced lactic acid as a major metabolic product, followed by butyric acid. Lyophilized cell-free supernatant (LCS) of E. faecium exhibited significant antioxidant capacity evaluated against 1,1-diphenyl-2-picryl-hydrazyl, ascorbate auto-oxidation, oxygen radical absorbance and reducing power. Interestingly, E. faecium, Lactobacillus rhamnosus GG MTCC 1408 and LCS showed a significant anti-inflammatory effect by negatively modulating TNF-α production and upregulating IL-10 levels in LPS-stimulated macrophage cell lines. In an in vivo mice model, the propensity of probiotic supplements to modulate endogenous oxidative markers and redox status in brain regions was assessed. Young mice provided with oral supplements (daily for 28 days) of E. faecium and L. rhamnosus exhibited diminished oxidative markers in the brain and enhanced activities of antioxidant enzymes with a concomitant increase in γ-aminobutyric acid and dopamine levels. Collectively, our findings clearly suggest the propensity of these bacteria to protect against tissue damage mediated through free radicals and inflammatory cytokines. Although the underlying molecular mechanisms need further studies, it is tempting to speculate that probiotics confer a neuroprotective advantage in vivo against oxidative damage-mediated neurodegenerative conditions.

  2. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets

    PubMed Central

    Guzmán Prieto, Ana M.; Urbanus, Rolf T.; Zhang, Xinglin; Bierschenk, Damien; Koekman, C. Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P.; Pape, Marieke; Paganelli, Fernanda L.; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P. A.; Bonten, Marc J. M.; Willems, Rob J. L.; van Schaik, Willem

    2015-01-01

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets. PMID:26675410

  3. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    PubMed

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  4. Evaluation of technological properties of Enterococcus faecium CECT 8849, a strain isolated from human milk, for the dairy industry.

    PubMed

    Cárdenas, Nivia; Arroyo, Rebeca; Calzada, Javier; Peirotén, Ángela; Medina, Margarita; Rodríguez, Juan Miguel; Fernández, Leonides

    2016-09-01

    In this work, a variety of biochemical properties of Enterococcus faecium CECT 8849, which had been isolated from breast milk, were analyzed. Its acidifying capacity and proteolytic activity were low but, in contrast, remarkable peptidase and esterase activities were observed. Ethanol and 3-hydroxy-2-butanone were the most abundant volatile compounds found in experimental model cheese manufactured with E. faecium CECT 8849. This strain inhibited the growth of several Listeria monocytogenes and Listeria innocua strains in vitro. Enterocin A and B structural genes were detected in E. faecium CECT 8849. Model fermented milk and cheeses were manufactured from milk inoculated or not with L. innocua CECT 8848 (2.5-3 log10 colony forming units mL(-1)) using E. faecium CECT 8849 or Lactococcus lactis ESI 153 as starter cultures. Although E. faecium CECT 8849 controlled Listeria growth in both dairy models, it led to lower reduction in Listeria counts when compared with L. lactis ESI 153.

  5. Effects of probiotic Enterococcus faecium and Saccharomyces cerevisiae on the faecal microflora of pet rabbits.

    PubMed

    Benato, L; Hastie, P; O'Shaughnessy, P; Murray, J-A; Meredith, A

    2014-09-01

    Probiotics are frequently used in the treatment of gastrointestinal diseases in pet rabbits based largely on anecdotal evidence of a beneficial effect. However, there has been little work performed to assess any such benefit in health or disease. The aim of this study was to determine the effect of probiotics on faecal levels of four important candidate gastrointestinal bacteria (Bacteroides species, Enterococcus faecium, Fibrobacter succinogenes and Clostridium spiroforme) in pet rabbits. Additional aims were to evaluate the effect of probiotics on bodyweight and faecal weight and diameter. Double-blind triple cross-over study in six healthy rabbits orally administered two probiotic strains, Saccharomyces cerevisiae NCYC Sc47 and E. faecium NCIMB 30183. Levels of bacteria in faecal pellets were subsequently determined by real-time quantitative polymerase chain reaction. Oral administration of probiotic E. faecium NCIMB 30183 was associated with a significant (P = 0 · 042) increase in faecal levels of E. faecium. However, probiotic treatment did not affect faecal levels of Bacteroides species, F. succinogenes or C. spiroforme, bodyweight, or faecal weight and diameter. The inclusion of dietary probiotic supplementation using E. faecium NCIMB 30183 can increase faecal levels of certain bacterial flora of healthy adult rabbits. Further work is required to investigate the effects of probiotics in animals affected with gastrointestinal disease. © 2014 British Small Animal Veterinary Association.

  6. Efficacy of Daptomycin Monotherapy and In Combination with β-lactams for Daptomycin-Susceptible Enterococcus faecium Harboring LiaSR Substitutions: Influence of The Inoculum Effect.

    PubMed

    Kebriaei, Razieh; Rice, Seth A; Singh, Kavindra V; Stamper, Kyle C; Dinh, An Q; Rios, Rafael; Diaz, Lorena; Murray, Barbara E; Munita, Jose M; Tran, Truc T; Arias, Cesar A; Rybak, Michael J

    2018-05-14

    Enterococcus faecium that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) PK/PD model, we investigated DAP regimens (6, 8 and 10 mg/kg/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT) or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of ∼10 9 CFU/g, DAP doses of 6-8 mg/kg/d were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of ∼10 7 , marked reductions in bacterial counts were observed with DAP 6 mg/kg/d with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT or ERT demonstrated enhanced eradication and reduced potential for resistance allowing for de-escalation of the DAP dose. Persistence of the LiaRS substitutions were identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions and recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and paves the way for testing these approaches in humans. Copyright © 2018 American Society for Microbiology.

  7. Environmental Panels as a Proxy for Nursing Facility Patients With Methicillin-Resistant Staphylococcus Aure and Vancomycin-Resistant Enterococcus Colonization.

    PubMed

    Cassone, Marco; Mantey, Julia; Perri, Mary Beth; Gibson, Kristen; Lansing, Bonnie; McNamara, Sara; Patel, Payal K; Cheng, Vincent C C; Walters, Maroya S; Stone, Nimalie D; Zervos, Marcus J; Mody, Lona

    2018-05-02

    Most nursing facilities (NFs) lack methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) surveillance programs due to limited resources and high costs. We investigated the utility of environmental screening of high-touch surfaces in patient rooms as a way to circumvent these challenges. We compared MRSA and VRE culture data from high-touch surfaces in patients' rooms (14450 samples from 6 NFs) and ranked each site's performance in predicting patient colonization (7413 samples). The best-performing sites were included in a MRSA- and a VRE-specific panel that functioned as a proxy for patient colonization. Molecular typing was performed to confirm available concordant patient-environment pairs. We identified and validated a MRSA panel that consisted of the bed controls, nurse call button, bed rail, and TV remote control. The VRE panel included the toilet seat, bed controls, bed rail, TV remote control, and top of the side table. Panel colonization data tracked patient colonization. Negative predictive values were 89%-92% for MRSA and 82%-84% for VRE. Molecular typing confirmed a strong clonal type relationship in available concordant patient-environment pairs (98% for MRSA, 91% for VRE), pointing to common epidemiological patterns for environmental and patient isolates. Environmental panels used as a proxy for patient colonization and incorporated into facility surveillance protocols can guide decolonization strategies, improve awareness of MRSA and VRE burden, and inform efforts to reduce transmission. Targeted environmental screening may be a viable surveillance strategy for MRSA and VRE detection in NFs.

  8. Purification and characterization of enterocin MC13 produced by a potential aquaculture probiont Enterococcus faecium MC13 isolated from the gut of Mugil cephalus.

    PubMed

    Satish Kumar, R; Kanmani, P; Yuvaraj, N; Paari, K A; Pattukumar, V; Arul, V

    2011-12-01

    A bacteriocin producer strain MC13 was isolated from the gut of Mugil cephalus (grey mullet) and identified as Enterococcus faecium. The bacteriocin of E. faecium MC13 was purified to homogeneity, as confirmed by Tricine sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE). Reverse-phase high-performance liquid chromatography (HPLC) analysis showed a single active fraction eluted at 26 min, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry analysis showed the molecular mass to be 2.148 kDa. The clear zone in native PAGE corresponding to enterocin MC13 band further substantiated its molecular mass. A dialyzed sample (semicrude preparation) of enterocin MC13 was broad spectrum in its action and inhibited important seafood-borne pathogens: Listeria monocytogenes , Vibrio parahaemolyticus, and Vibrio vulnificus. This antibacterial substance was sensitive to proteolytic enzymes: trypsin, protease, and chymotrypsin but insensitive to catalase and lipase, confirming that inhibition was due to the proteinaceous molecule, i.e., bacteriocin, and not due to hydrogen peroxide. Enterocin MC13 tolerated heat treatment (up to 90 °C for 20 min). Enterococcus faecium MC13 was effective in bile salt tolerance, acid tolerance, and adhesion to the HT-29 cell line. These properties reveal the potential of E. faecium MC13 to be a probiotic bacterium. Enterococcus faecium MC13 could be used as potential fish probiotic against pathogens such as V. parahaemolyticus, Vibrio harveyi, and Aeromonas hydrophila in fisheries. Also, this could be a valuable seafood biopreservative against L. monocytogenes.

  9. Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci

    PubMed Central

    Bhardwaj, Pooja; Ziegler, Elizabeth

    2016-01-01

    Chlorhexidine is a bisbiguanide antiseptic used for infection control. Vancomycin-resistant E. faecium (VREfm) is among the leading causes of hospital-acquired infections. VREfm may be exposed to chlorhexidine at supra- and subinhibitory concentrations as a result of chlorhexidine bathing and chlorhexidine-impregnated central venous catheter use. We used RNA sequencing to investigate how VREfm responds to chlorhexidine gluconate exposure. Among the 35 genes upregulated ≥10-fold after 15 min of exposure to the MIC of chlorhexidine gluconate were those encoding VanA-type vancomycin resistance (vanHAX) and those associated with reduced daptomycin susceptibility (liaXYZ). We confirmed that vanA upregulation was not strain or species specific by querying other VanA-type VRE. VanB-type genes were not induced. The vanH promoter was found to be responsive to subinhibitory chlorhexidine gluconate in VREfm, as was production of the VanX protein. Using vanH reporter experiments with Bacillus subtilis and deletion analysis in VREfm, we found that this phenomenon is VanR dependent. Deletion of vanR did not result in increased chlorhexidine susceptibility, demonstrating that vanHAX induction is not protective against chlorhexidine. As expected, VanA-type VRE is more susceptible to ceftriaxone in the presence of sub-MIC chlorhexidine. Unexpectedly, VREfm is also more susceptible to vancomycin in the presence of subinhibitory chlorhexidine, suggesting that chlorhexidine-induced gene expression changes lead to additional alterations in cell wall synthesis. We conclude that chlorhexidine induces expression of VanA-type vancomycin resistance genes and genes associated with daptomycin nonsusceptibility. Overall, our results indicate that the impacts of subinhibitory chlorhexidine exposure on hospital-associated pathogens should be further investigated in laboratory studies. PMID:26810654

  10. Vancomycin Resistance in Staphylococcus aureus


    PubMed Central

    McGuinness, Will A.; Malachowa, Natalia; DeLeo, Frank R.

    2017-01-01

    The evolution of Staphylococcus aureus during the modern antibiotic era has been delineated by distinct strain emergence events, many of which include acquisition of antibiotic resistance. The relative high burden of methicillin-resistant S. aureus (MRSA) in healthcare and community settings is a major concern worldwide. Vancomycin, a glycopeptide antibiotic that inhibits cell wall biosynthesis, remains a drug of choice for treatment of severe MRSA infections. S. aureus strains exhibiting increased resistance to vancomycin, known as vancomycin intermediate-resistant S. aureus (VISA) (MIC = 4-8 µg/mL), were discovered in the 1990s. The molecular basis of resistance in VISA is polygenic and involves stepwise mutations in genes encoding molecules predominantly involved in cell envelope biosynthesis. S. aureus isolates with complete resistance to vancomycin (MIC ≥ 16 µg/mL) are termed vancomycin-resistant S. aureus (VRSA)—they were first reported in the U.S. in 2002. Resistance in VRSA is conferred by the vanA gene and operon, which is present on a plasmid. Although treatment of VRSA infections is challenging, the total number of human VRSA infections to date is limited (14 in the U.S.). By comparison, the burden of VISA is relatively high and the molecular mechanisms of resistance are less well-defined. VISA are associated with persistent infections, vancomycin treatment failure, and poor clinical outcomes. Here, we review in brief progress made toward understanding the acquisition of antibiotic resistance in S. aureus, with an emphasis on the molecular mechanisms underlying vancomycin resistance. PMID:28656013

  11. Vancomycin Resistance in Staphylococcus aureus
.

    PubMed

    McGuinness, Will A; Malachowa, Natalia; DeLeo, Frank R

    2017-06-01

    The evolution of Staphylococcus aureus during the modern antibiotic era has been delineated by distinct strain emergence events, many of which include acquisition of antibiotic resistance. The relative high burden of methicillin-resistant S. aureus (MRSA) in healthcare and community settings is a major concern worldwide. Vancomycin, a glycopeptide antibiotic that inhibits cell wall biosynthesis, remains a drug of choice for treatment of severe MRSA infections. S. aureus strains exhibiting increased resistance to vancomycin, known as vancomycin intermediate-resistant S. aureus (VISA) (MIC = 4-8 µg/mL), were discovered in the 1990s. The molecular basis of resistance in VISA is polygenic and involves stepwise mutations in genes encoding molecules predominantly involved in cell envelope biosynthesis. S. aureus isolates with complete resistance to vancomycin (MIC ≥ 16 µg/mL) are termed vancomycin-resistant S. aureus (VRSA)-they were first reported in the U.S. in 2002. Resistance in VRSA is conferred by the vanA gene and operon, which is present on a plasmid. Although treatment of VRSA infections is challenging, the total number of human VRSA infections to date is limited (14 in the U.S.). By comparison, the burden of VISA is relatively high and the molecular mechanisms of resistance are less well-defined. VISA are associated with persistent infections, vancomycin treatment failure, and poor clinical outcomes. Here, we review in brief progress made toward understanding the acquisition of antibiotic resistance in S. aureus , with an emphasis on the molecular mechanisms underlying vancomycin resistance.

  12. Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria.

    PubMed

    Ngbede, Emmanuel Ochefije; Raji, Mashood Abiola; Kwanashie, Clara Nna; Kwaga, Jacob Kwada Paghi

    2017-03-01

    This study investigated the occurrence, antimicrobial resistance and virulence of Enterococcus from poultry and cattle farms. Three hundred and ninety samples: cloacal/rectal swabs (n = 260) and manure (n = 130] were processed for recovery of Enterococcus species. Standard bacteriological methods were used to isolate, identify and characterize Enterococcus species for antimicrobial susceptibility and expression of virulence traits. Detection of antibiotic resistance and virulence genes was carried out by polymerase chain reaction. Enterococcus was recovered from 167 (42.8%) of the 390 samples tested with a predominance of Enterococcus faecium (27.7%). Other species detected were Enterococcus gallinarum, Enterococcus faecalis, Enterococcus hirae, Enterococcus raffinosus, Enterococcus avium, Enterococcus casseliflavus, Enterococcus mundtii and Enterococcus durans. All the isolates tested were susceptible to vancomycin, but resistance to tetracycline, erythromycin, ampicillin and gentamicin was also observed among 61.0, 61.0, 45.1 and 32.7% of the isolates, respectively. Sixty (53.1%) of the isolates were multidrug resistant presenting as 24 different resistance patterns with resistance to gentamicin-erythromycin-streptomycin-tetracycline (CN-ERY-STR-TET) being the most common (n = 11) pattern. In addition to expression of virulence traits (haemolysin, gelatinase, biofilm production), antibiotic resistance (tetK, tetL, tetM, tetO and ermB) and virulence (asa1, gelE, cylA) genes were detected among the isolates. Also, in vitro transfer of resistance determinants was observed among 75% of the isolates tested. Our data revealed poultry, cattle and manure in this area are hosts to varying Enterococcus species harbouring virulence and resistance determinants that can be transferred to other organisms and also are important for causing nosocomial infection.

  13. Resistance of enterococci to heat and chemical agents.

    PubMed

    Renner, P; Peters, J

    1999-06-01

    Within the framework of the standardisation efforts on disinfectant testing on the European level the test germ Enterococcus hirae ATCC 10541 has been included for some time in the test requirements whereas the test strain Enterococcus faecium, which has frequently been used up to now, has been largely ignored. We compared the thermal and the chemical resistance of both test germ species. In the quantitative suspension test with active ingredients from the group of aldehydes, phenols, quaternaries and oxidizing agents with the exception of peracetic acid, no significant differences were determined between the two strains. In the case of the studies on thermal resistance at 65 degrees C and 68 degrees C, Enterococcus faecium ATCC 6057, by contrast, proved to be far more resistant than Enterococcus hirae ATCC 10541. According to these results, priority should be given to Enterococcus faecium over Enterococcus hirae as the test germ for chemical and also chemothermal disinfection.

  14. The prevention and management of infections due to multidrug resistant organisms in haematology patients

    PubMed Central

    Trubiano, Jason A; Worth, Leon J; Thursky, Karin A; Slavin, Monica A

    2015-01-01

    Infections due to resistant and multidrug resistant (MDR) organisms in haematology patients and haematopoietic stem cell transplant recipients are an increasingly complex problem of global concern. We outline the burden of illness and epidemiology of resistant organisms such as gram-negative pathogens, vancomycin-resistant Enterococcus faecium (VRE), and Clostridium difficile in haematology cohorts. Intervention strategies aimed at reducing the impact of these organisms are reviewed: infection prevention programmes, screening and fluoroquinolone prophylaxis. The role of newer therapies (e.g. linezolid, daptomycin and tigecycline) for treatment of resistant and MDR organisms in haematology populations is evaluated, in addition to the mobilization of older agents (e.g. colistin, pristinamycin and fosfomycin) and the potential benefit of combination regimens. PMID:24341410

  15. Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei.

    PubMed

    Bhat, Bilqeesa; Bajaj, Bijender Kumar

    2018-04-01

    Bioprospecting of novel probiotic strains especially from unexplored eco-niches has been a continuous practice. Enterococcus faecium K1, an isolate from indigenously fermented milk product kalarei possesses numerous desirable functional attributes. In current study, E. faecium K1 has been used for EPS production, and it yielded 355 ± 0.019 mg/L EPS. EPS demonstrates remarkable hypocholesterolemic, antioxidant, antibiofilm, and emulsification characteristics. EPS is constituted of mannose, glucose and galactose. SEM analysis reveals flake like compact structure of EPS while TEM and X-ray diffractogram confirms the amorphous structure of EPS. FTIR substantiates the functional groups/bonds typical of polysaccharides. Thermal analysis indicates adequate stability of EPS at 237 °C with average weight loss of 22%. E. faecium K1 EPS possesses unique functional bioactivities and physicochemical characteristics, and may potentially be explored for applications in food/pharmaceutical industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Susceptibility to disinfectants in antimicrobial-resistant and -susceptible isolates of Escherichia coli, Enterococcus faecalis and Enterococcus faecium from poultry-ESBL/AmpC-phenotype of E. coli is not associated with resistance to a quaternary ammonium compound, DDAC.

    PubMed

    Wieland, N; Boss, J; Lettmann, S; Fritz, B; Schwaiger, K; Bauer, J; Hölzel, C S

    2017-06-01

    The spread of bacteria that are simultaneously resistant to disinfectants and antimicrobials would constitute an unsettling scenario. In order to explore an association between antimicrobial resistance and reduced susceptibility to biocides/microbicides (disinfectants) in agriculture, we investigated Escherichia coli (n = 438) and enterococci (n = 120) isolated from six different flocks of the same poultry farm with known history of antimicrobial treatment. Susceptibility to disinfectants (formic acid and a quaternary ammonium compound (QAC), didecyldimethylammoniumchloride-DDAC) was assessed by macrodilution according to guidelines of the German Veterinary Society. Escherichia coli, Enterococcus faecalis and Enterococcus faecium were screened (i) for reduced biocide susceptibility and (ii) for an association of biocide susceptibility and antimicrobial resistance including the production of extended-spectrum beta-lactamases (ESBL) and the hyperproduction of AmpC-type beta-lactamases. DDAC inhibited ESBL/AmpC(hyper)-producing E. coli (n = 53) from poultry at similar or slightly lower inhibitory concentrations, compared with non-ESBL/AmpC strains (median MIC = 0·36 vs 1·44 mg l -1 ). In contrast, DDAC-MICs were positively correlated with several other antibiotic MICs (e.g. piperacillin and sulphamethoxazole + trimethoprim in E. coli, chloramphenicol in E. faecalis) and increased DDAC-MICs were statistically linked to high-level aminoglycoside resistance in enterococci (streptomycin high level). DDAC-MICs did not correlate with the presence of the integron marker qacEDelta1. This study provides indication that residual disinfectant might be able to select antimicrobial-resistant enterococci, but not ESBL-/AmpC (hyper)producing E. coli from poultry. While ESBL-/AmpC-E. coli were inhibited at disinfectant concentrations comparable to or lower than wildtype values, low concentrations of QACs might be able to select other antimicrobial-resistant E

  17. Approaches for enhancing in situ detection of enterocin genes in thermized milk, and selective isolation of enterocin-producing Enterococcus faecium from Baird-Parker agar.

    PubMed

    Vandera, Elpiniki; Tsirka, Georgia; Kakouri, Athanasia; Koukkou, Anna-Irini; Samelis, John

    2018-05-21

    Enterococci are naturally selected for growth in thermized ewes'/goats' milk mixtures used for traditional cooked hard cheese processing in Greece. A culture-independent PCR-based approach was applied to detect the presence of enterocin-encoding genes in naturally culture-enriched thermized milk (TM). Portions of TM (63 °C, 30 s) collected from a commercial cheese plant before addition of starters were fermented at 37 °C for 48 h to facilitate growth of indigenous enterococci. The multiple enterocin-producing (m-Ent+) Enterococcus faecium KE82 and the nisin A-producing Lactococcus lactis subsp. cremoris M104 served as bacteriocin-positive inocula in separate TM treatments. The PCR results revealed a constant presence of the enterocin A, B and P genes in TM fermented naturally at 37 °C. Eleven out of 42 (26.2%) lactic isolates from the enriched TM cultures without inoculation were Ent+ E. faecium assigned to three biotypes. Biotype I (4 isolates) included single entA possessors, whereas biotype II (5 isolates) and biotype III (2 isolates) were m-Ent+ variants profiling entA-entB-entP and entA-entB genes, respectively. Biotype II displayed the strongest antilisterial activity in vitro. Surprisingly, 85.7% (6/7) of the m-Ent+ E. faecium were selectively isolated from Baird-Parker agar, reflecting their natural resistance to 0.01% tellurite contained in the egg yolk supplement. No cytolysin-positive E. faecalis or other Ent+ Enterococcus spp. were isolated. In conclusion, commercially thermized Greek milk is a natural pool or 'reservoir' of antagonistic Ent+ or m-Ent+ E. faecium strains that can be easily detected and recovered by applying this PCR-based approach to naturally fermented milks or cheese products. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Vancomycin-Resistant Enterococcus Colonization and Bacteremia and Hematopoietic Stem Cell Transplantation Outcomes.

    PubMed

    Ford, Clyde D; Gazdik, Michaela A; Lopansri, Bert K; Webb, Brandon; Mitchell, Birgitta; Coombs, Jana; Hoda, Daanish; Petersen, Finn Bo

    2017-02-01

    The association between pre-hematopoietic stem cell transplantation (HSCT) vancomycin-resistant Enterococcus (VRE) colonization, HSCT-associated VRE bacteremia, and HSCT mortality is disputed. We studied 161 consecutive patients with acute leukemia who underwent HSCT at our hospital between 2006 and 2014, of whom 109 also received leukemia induction/consolidation on our unit. All inpatients had weekly VRE stool surveillance. Pre-HSCT colonization was not associated with increases in HSCT mortality but did identify a subgroup of HSCT recipients with a higher risk for VRE bacteremia and possibly bacteremia from other organisms. The major risk factor for pre-HSCT colonization was the number of hospital inpatient days between initial admission for leukemia and HSCT. One-third of evaluable patients colonized before HSCT were VRE-culture negative on admission for HSCT; these patients had an increased risk for subsequent VRE stool surveillance positivity but not VRE bacteremia. Molecular typing of VRE isolates obtained before and after HSCT showed that VRE strains frequently change. Postengraftment VRE bacteremia was associated with a much higher mortality than pre-engraftment VRE bacteremia. Pre-engraftment bacteremia from any organism was associated with an alternative donor and resulted in an increase in hospital length of stay and cost. Mortality was similar for pre-engraftment VRE bacteremia and pre-engraftment bacteremia due to other organisms, but mortality associated with post-engraftment VRE bacteremia was higher and largely explained by associated severe graft-versus-host disease and relapsed leukemia. These data emphasize the importance of distinguishing between VRE colonization before HSCT and at HSCT, between pre-engraftment and postengraftment VRE bacteremia, and between VRE bacteremia and bacteremia from other organisms. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Heterologous expression of glycopeptide resistance vanHAX gene clusters from soil bacteria in Enterococcus faecalis.

    PubMed

    Hasman, Henrik; Aarestrup, Frank M; Dalsgaard, Anders; Guardabassi, Luca

    2006-04-01

    The aim of the study was to determine whether glycopeptide resistance gene clusters from soil bacteria could be heterologously expressed in Enterococcus faecalis and adapt to the new host following exposure to vancomycin. The vanHAX clusters from Paenibacillus thiaminolyticus PT-2B1, Paenibacillus apiarius PA-B2B and Amycolatopsis coloradensis DSM 44225 were separately cloned in an appropriately constructed shuttle vector containing the two-component regulatory system (vanRS) of Tn1546. The complete vanA(PT) operon (vanRSHAXY) from P. thiaminolyticus PT-2B1 was cloned in the same shuttle vector lacking enterococcal vanRS. All plasmid constructs were electroporated into E. faecalis JH2-2 and the MICs of vancomycin and teicoplanin were determined for each recombinant strain before and following exposure to sublethal concentrations of vancomycin. The vanHAX clusters from P. thiaminolyticus and P. apiarius conferred high-level vancomycin resistance (MIC > or = 125 mg/L) in E. faecalis JH2-2. In contrast, cloning of the vanHAX cluster from A. coloradensis did not result in a significant increase of vancomycin resistance (MIC = 0.7 mg/L). Resistance to vancomycin was not observed after cloning the complete vanA(PT) operon from P. thiaminolyticus (MIC = 2 mg/L), but this recombinant rapidly adapted to high concentrations of vancomycin (MIC = 500 mg/L) following exposure to sub-lethal concentrations of this antibiotic. The results showed that vanA(PT) in P. thiaminolyticus is a possible ancestor of vanA-mediated glycopeptide resistance in enterococci. Experimental evidence supported the hypothesis that enterococci did not acquire glycopeptide resistance directly from glycopeptide-producing organisms such as A. coloradensis.

  20. Growth Behavior of E. coli, Enterococcus and Staphylococcus Species in the Presence and Absence of Sub-inhibitory Antibiotic Concentrations: Consequences for Interpretation of Culture-Based Data.

    PubMed

    Heß, Stefanie; Gallert, Claudia

    2016-11-01

    Culture-based approaches are used to monitor, e.g., drinking water or bathing water quality and to investigate species diversity and antibiotic resistance levels in environmental samples. For health risk assessment, it is important to know whether the growing cultures display the actual abundance of, e.g., clinically relevant antibiotic resistance phenotypes such as vancomycin-resistant Enterococcus faecium/Enterococcus faecalis (VRE) or methicillin-resistant Staphylococcus aureus. In addition, it is important to know whether sub-inhibitory antibiotic concentrations, which are present in surface waters, favor the growth of antibiotic-resistant strains. Therefore, clinically relevant bacteria were isolated from different water sources and the growth behavior of 58 Escherichia coli, 71 Enterococcus, and 120 Staphylococcus isolates, belonging to different species and revealing different antibiotic resistance patterns, was studied with respect to "environmental" antibiotic concentrations. The finding that VRE could only be detected after specific enrichment can be explained by their slow growth compared to non-resistant strains. Interpreting their absence in standardized culture-based methods as nonexistent might be a fallacy. Sub-inhibitory antibiotic concentrations that were detected in sewage and receiving river water did not specifically promote antibiotic-resistant strains. Generally, those antibiotics that influenced cell metabolism directly led to slightly reduced growth rates and less than maximal optical densities after 48 h of incubation.

  1. Molecular epidemiology of vancomycin-resistant enterococcal bacteraemia: results from the Canadian Nosocomial Infection Surveillance Program, 1999-2009.

    PubMed

    McCracken, M; Wong, A; Mitchell, R; Gravel, D; Conly, J; Embil, J; Johnston, L; Matlow, A; Ormiston, D; Simor, A E; Smith, S; Du, T; Hizon, R; Mulvey, M R

    2013-07-01

    Vancomycin-resistant enterococci (VRE) can be associated with serious bacteraemia. The focus of this study was to characterize the molecular epidemiology of VRE from bacteraemia cases that were isolated from 1999 to 2009 as part of Canadian Nosocomial Infection Surveillance Program (CNISP) surveillance activities. From 1999 to 2009, enterococci were collected from across Canada in accordance with the CNISP VRE surveillance protocol. MICs were determined using broth microdilution. PCR was used to identify vanA, B, C, D, E, G and L genes. Genetic relatedness was examined using multilocus sequence typing (MLST). A total of 128 cases of bacteraemia were reported to CNISP from 1999 to 2009. In 2007, a significant increase in bacteraemia rates was observed in western and central Canada. Eighty-one of the 128 bacteraemia isolates were received for further characterization and were identified as Enterococcus faecium. The majority of isolates were from western Canada (60.5%), followed by central (37.0%) and eastern (2.5%) Canada. Susceptibilities were as follows: daptomycin, linezolid, tigecycline and chloramphenicol, 100%; quinupristin/dalfopristin, 96.3%; high-level gentamicin, 71.6%; tetracycline, 50.6%; high-level streptomycin, 44.4%; rifampicin, 21.0%; nitrofurantoin, 11.1%; clindamycin, 8.6%; ciprofloxacin, levofloxacin and moxifloxacin, 1.2%; and ampicillin, 0.0%. vanA contributed to vancomycin resistance in 90.1% of isolates and vanB in 9.9%. A total of 17 sequence types (STs) were observed. Beginning in 2006 there was a shift in ST from ST16, ST17, ST154 and ST80 to ST18, ST412, ST203 and ST584. The increase in bacteraemia observed since 2007 in western and central Canada appears to coincide with the shift of MLST STs. All VRE isolates remained susceptible to daptomycin, linezolid, chloramphenicol and tigecycline.

  2. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E

    1999-03-01

    Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.

  3. Enterococcus faecium FC-K Derived from Kimchi Is a Probiotic Strain That Shows Anti-Allergic Activity.

    PubMed

    Rho, Man-Kwang; Kim, Young-Eun; Rho, Hyun-In; Kim, Tae-Rahk; Kim, Yoon-Bum; Sung, Won-Kyung; Kim, Taw-Woo; Kim, Dae-Ok; Kang, Hee

    2017-06-28

    A rise in the occurrence of allergic diseases is attributed to the dysregulated balance of type 1/type 2 immunity, where type 2 T-helper (Th2) cells predominate over type 1 T-helper (Th1) cells, leading to an abnormally increased production of IgE in response to unharmful antigens. Kimchi, a traditional Korean fermented food, is a rich source of beneficial lactic acid bacteria. In this study, we investigated the ability of Enterococcus faecium FC-K derived from kimchi to induce type I immunity in the presence of Th2 polarizing conditions in vitro and in vivo. Stimulation of mouse peritoneal macrophages with E. faecium FC-K induced the production of tumor necrosis factor alpha, interleukin (IL)-6, and IL-12. Under the in vitro Th2 conditions in which splenic T cells were activated in the presence of IL-4, E. faecium FC-K enhanced the ability of T cells to produce interferon (IFN)-γ. Using the ovalbumin (OVA)-induced allergy model, male BALB/c mice receiving E. faecium FC-K reduced the serum level of total IgE, but not that of OVA-specific IgE. Furthermore, the population of activated splenic B cells during OVA immunization was decreased in E. faecium FC-K-treated mice, accounting for a reduction of total IgE in the serum. Restimulating splenocytes from OVA-immunized mice with OVA ex vivo resulted in an increased production of IFN-γ, with no effect on IL-4, in E. faecium FC-Ktreated mice. These observations provide the evidence that E. faecium FC-K can be a beneficial probiotic strain that can modulate the Th2-mediated pathologic response.

  4. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    PubMed

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-06-01

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High-level aminoglycoside resistance and virulence characteristics among Enterococci isolated from recreational beaches in Malaysia.

    PubMed

    Dada, Ayokunle Christopher; Ahmad, Asmat; Usup, Gires; Heng, Lee Yook; Hamid, Rahimi

    2013-09-01

    We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.

  6. Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus

    PubMed Central

    Palmer, Kelli L.; Godfrey, Paul; Griggs, Allison; Kos, Veronica N.; Zucker, Jeremy; Desjardins, Christopher; Cerqueira, Gustavo; Gevers, Dirk; Walker, Suzanne; Wortman, Jennifer; Feldgarden, Michael; Haas, Brian; Birren, Bruce; Gilmore, Michael S.

    2012-01-01

    ABSTRACT The enterococci are Gram-positive lactic acid bacteria that inhabit the gastrointestinal tracts of diverse hosts. However, Enterococcus faecium and E. faecalis have emerged as leading causes of multidrug-resistant hospital-acquired infections. The mechanism by which a well-adapted commensal evolved into a hospital pathogen is poorly understood. In this study, we examined high-quality draft genome data for evidence of key events in the evolution of the leading causes of enterococcal infections, including E. faecalis, E. faecium, E. casseliflavus, and E. gallinarum. We characterized two clades within what is currently classified as E. faecium and identified traits characteristic of each, including variation in operons for cell wall carbohydrate and putative capsule biosynthesis. We examined the extent of recombination between the two E. faecium clades and identified two strains with mosaic genomes. We determined the underlying genetics for the defining characteristics of the motile enterococci E. casseliflavus and E. gallinarum. Further, we identified species-specific traits that could be used to advance the detection of medically relevant enterococci and their identification to the species level. PMID:22354958

  7. The rise of ampicillin-resistant Enterococcus faecium high-risk clones as a frequent intestinal colonizer in oncohaematological neutropenic patients on levofloxacin prophylaxis: a risk for bacteraemia?

    PubMed

    Sánchez-Díaz, A M; Cuartero, C; Rodríguez, J D; Lozano, S; Alonso, J M; Rodríguez-Domínguez, M; Tedim, A P; Del Campo, R; López, J; Cantón, R; Ruiz-Garbajosa, P

    2016-01-01

    Levofloxacin extended prophylaxis (LEP), recommended in oncohaematological neutropenic patients to reduce infections, might select resistant bacteria in the intestine acting as a source of endogenous infection. In a prospective observational study we evaluated intestinal emergence and persistence of ampicillin-resistant Enterococcus faecium (AREfm), a marker of hospital adapted high-risk clones. AREfm was recovered from the faeces of 52 patients with prolonged neutropenia after chemotherapy, at admission (Basal), during LEP, and twice weekly until discharge (Pos-LEP). Antibiotic susceptibility, virulence traits and population structure (pulsed-field gel electrophoresis and multilocus sequence typing) were determined and compared with bacteraemic isolates. Gut enterococcal population was monitored using a quantitative PCR quantification approach. AREfm colonized 61.4% of patients (194/482 faecal samples). Sequential AREfm acquisition (25% Basal, 36.5% LEP, 50% Pos-LEP) and high persistent colonization rates (76.9-89.5%) associated with a decrease in clonal diversity were demonstrated. Isolates were clustered into 24 PFGE-patterns within 13 sequence types, 95.8% of them belonging to hospital-associated Bayesian analysis of population structure subgroups 2.1a and 3.3a. Levofloxacin resistance and high-level streptomycin resistance were a common trait of these high-risk clones. AREfm-ST117, the most persistent clone, was dominant (60.0% isolates, 32.6% patients). It presented esp gene and caused 18.2% of all bacteraemia episodes in 21% of patients previously colonized by this clone. In AREfm-colonized patients, intestinal enrichment in the E. faecium population with a decline in total bacterial load was observed. AREfm intestinal colonization increases during hospital stay and coincides with enterococci population enrichment in the gut. Dominance and intestinal persistence of the ST117 clone might increase the risk of bacteraemia. Copyright © 2015 European Society of

  8. Purification and characterization of enterocin FH 99 produced by a faecal isolate Enterococcus faecium FH 99.

    PubMed

    Gupta, H; Malik, R K; Bhardwaj, A; Kaur, G; De, S; Kaushik, J K

    2010-06-01

    Enterococcus faecium FH 99 was isolated from human faeces and selected because of its broad spectrum of inhibitory activity against several Gram-positive foodborne spoilage and pathogenic bacteria. Ent. faecium FH 99 accumulates enterocin in large number in early stationary phase of the growth. The enterocin FH 99 was stable over a wide pH range (2-10) and recovered activity even after treatment at high temperatures (10 min at 100°C). The enterocin was subjected to different purification techniques viz., gel filteration, cation exchange chromatography and reverse-phase high-performance liquid chromatography. The activity was eluted as one individual active fraction. SDSPAGE revealed a molecular weight of less than 6.5 kDa. Studies carried out to identify the genetic determinants for bacteriocin production showed that this trait may be plasmid encoded as loss in both of the plasmids (size>chromosomal DNA) led to loss in bacteriocin production by Ent. faecium FH 99. Ent. faecium strain FH 99 is a newly discovered high bacteriocin producer with Activity Units 1.8 × 10(5) AU ml(-1) and its characteristics indicate that it may have strong potential for application as a protective agent against pathogens and spoilage bacteria in foods.

  9. Single nucleotide polymorphism analysis of the enterocin P structural gene of Enterococcus faecium strains isolated from nonfermented animal foods.

    PubMed

    Arlindo, Samuel; Calo, Pilar; Franco, Carlos; Prado, Marta; Cepeda, Alberto; Barros-Velázquez, Jorge

    2006-12-01

    The bacteriocins produced by two lactic acid bacteria isolated from nonfermented fresh meat and fish, respectively, and exhibiting a remarkable antilisterial activity, were characterized. Bacteriocinogenic strains were identified as Enterococcus faecium and the maximum bacteriocin production by both strains was detected in the stationary phase of growth. The activity against Listeria monocytogenes was maintained in pH range of 3-7 and was stable in both strains after heating at 100 or 121 degrees C. The genes coding for enterocin P were detected, isolated, and sequenced in both E. faecium strains. They exhibited DNA/DNA homology in the 87.1-97.2% range with respect to the other four enterocin P genes reported so far. Three single nucleotide polymorphism events, silent at the amino acid level, were detected at nucleotide positions 45 (G/A), 75 (A/G), and 90 (T/C) in E. faecium LHICA 28-4 and may explain the differences reported for those loci in other enterocin P-producing E. faecium strains. This work provides the first description of enterocin P-producing E. faecium strains in nonfermented foodstuffs and, in the case of E. faecium LHICA 51, the first report of an enterocin P-producing strain isolated from fish so far.

  10. Is it worth screening for vancomycin-resistant Enterococcus faecium colonization?: Financial burden of screening in a developing country.

    PubMed

    Ulu-Kilic, Aysegul; Özhan, Esra; Altun, Dilek; Perçin, Duygu; Güneş, Tamer; Alp, Emine

    2016-04-01

    The screening of critically ill patients at high risk of vancomycin resistant enterococci (VRE) colonization, to detect and isolate colonized patients, is recommended to prevent and control the transmission of VRE. Screening asymptomatic carriers brings financial burden for institutions. In this study, we performed risk analysis for VRE colonization and determined the financial burden of screening in a middle-income country, Turkey. We retrospectively analyzed the VRE surveillance data from a pediatric hospital between 2010 and 2014. A case-control study was conducted to identify the risk factors of colonization. Total cost of VRE screening and additional costs for a VRE colonized patient (including active surveillance cultures and contact isolation) were calculated. During the 4-year period, 6,372 patients were screened for perirectal VRE colonization. The rate of culture-positive specimens among all patients screened was 239 (3.75%). The rate of VRE infection was 0.04% (n = 3) among all patients screened. Length of hospital stay, malignancy, and being transferred from another institution were independently associated risk factors for colonization. Annual estimated costs for the laboratory were projected as $19,074 (76,295/4) for all patients screened. Cost of contact isolation for each patient colonized in a ward and an intensive care unit was $270 and $718, respectively. In developing countries, institutions should identify their own high-risk patients; screening priorities should be based on prevalence of infection and hospital financial resources. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice

    PubMed Central

    2009-01-01

    Background Enterococcus faecium has globally emerged as a cause of hospital-acquired infections with high colonization rates in hospitalized patients. The enterococcal surface protein Esp, identified as a potential virulence factor, is specifically linked to nosocomial clonal lineages that are genetically distinct from indigenous E. faecium strains. To investigate whether Esp facilitates bacterial adherence and intestinal colonization of E. faecium, we used human colorectal adenocarcinoma cells (Caco-2 cells) and an experimental colonization model in mice. Results No differences in adherence to Caco-2 cells were found between an Esp expressing strain of E. faecium (E1162) and its isogenic Esp-deficient mutant (E1162Δesp). Mice, kept under ceftriaxone treatment, were inoculated orally with either E1162, E1162Δesp or both strains simultaneously. Both E1162 and E1162Δesp were able to colonize the murine intestines with high and comparable numbers. No differences were found in the contents of cecum and colon. Both E1162 and E1162Δesp were able to translocate to the mesenteric lymph nodes. Conclusion These results suggest that Esp is not essential for Caco-2 cell adherence and intestinal colonization or translocation of E. faecium in mice. PMID:19178704

  12. Inhibitory Influence of Enterococcus faecium on the Propagation of Swine Influenza A Virus In Vitro

    PubMed Central

    Wang, Zhenya; Chai, Weidong; Burwinkel, Michael; Twardziok, Sven; Wrede, Paul; Palissa, Christiane; Esch, Bettina; Schmidt, Michael F. G.

    2013-01-01

    The control of infectious diseases such as swine influenza viruses (SwIV) plays an important role in food production both from the animal health and from the public health point of view. Probiotic microorganisms and other health improving food supplements have been given increasing attention in recent years, but, no information on the effects of probiotics on swine influenza virus is available. Here we address this question by assessing the inhibitory potential of the probiotic Enterococcus faecium NCIMB 10415 (E. faecium) on the replication of two porcine strains of influenza virus (H1N1 and H3N2 strain) in a continuous porcine macrophage cell line (3D4/21) and in MDBK cells. Cell cultures were treated with E. faecium at the non-toxic concentration of 1×106 CFU/ml in growth medium for 60 to 90 min before, during and after SwIV infection. After further incubation of cultures in probiotic-free growth medium, cell viability and virus propagation were determined at 48 h or 96 h post infection. The results obtained reveal an almost complete recovery of viability of SwIV infected cells and an inhibition of virus multiplication by up to four log units in the E. faecium treated cells. In both 3D4/21- and MDBK-cells a 60 min treatment with E. faecium stimulated nitric oxide (NO) release which is in line with published evidence for an antiviral function of NO. Furthermore, E. faecium caused a modified cellular expression of selected mediators of defence in 3D4-cells: while the expression of TNF-α, TLR-3 and IL-6 were decreased in the SwIV-infected and probiotic treated cells, IL-10 was found to be increased. Since we obtained experimental evidence for the direct adsorptive trapping of SwIV through E. faecium, this probiotic microorganism inhibits influenza viruses by at least two mechanisms, direct physical interaction and strengthening of innate defence at the cellular level. PMID:23308134

  13. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-01-01

    Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides.

    PubMed

    Hu, Chih-Bo; Malaphan, Wanna; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2010-07-01

    Enterocin X, composed of two antibacterial peptides (Xalpha and Xbeta), is a novel class IIb bacteriocin from Enterococcus faecium KU-B5. When combined, Xalpha and Xbeta display variably enhanced or reduced antibacterial activity toward a panel of indicators compared to each peptide individually. In E. faecium strains that produce enterocins A and B, such as KU-B5, only one additional bacteriocin had previously been known.

  15. Outcomes of Aminopenicillin Therapy for Vancomycin-Resistant Enterococcal Urinary Tract Infections.

    PubMed

    Cole, Kelli A; Kenney, Rachel M; Perri, Mary Beth; Dumkow, Lisa E; Samuel, Linoj P; Zervos, Marcus J; Davis, Susan L

    2015-12-01

    Vancomycin-resistant urinary tract infections are often challenging to treat. This retrospective cohort study compared outcomes between patients treated for vancomycin-resistant enterococcal urinary tract infection with an aminopenicillin and those treated with a non-β-lactam antibiotic. Inpatients treated with an enterococcus-active agent for their first symptomatic vancomycin-resistant enterococcal urinary tract infection between 1 January 2012 and 31 December 2013 were considered for inclusion. Patients with colonization, on hospice, or receiving comfort care only were excluded. The primary endpoint of clinical cure was defined as resolution of clinical symptoms, or symptom improvement to the extent that no additional antibacterial drug therapy was necessary, and lack of microbiologic persistence. Secondary endpoints of 30-day readmission or retreatment and 30-day all-cause mortality were also compared. A total of 316 urinary isolates were screened, and 61 patients with symptomatic urinary tract infection were included. Twenty (35%) of the 57 isolates tested were ampicillin susceptible. Thirty-one patients received an aminopenicillin, and 30 received a non-β-lactam. Rates of clinical cure for aminopenicillin versus non-β-lactam treatment were 26/31 (83.9%) and 22/30 (73.3%) (P = 0.315), respectively. Rates of 30-day readmission (6/31, or 19.4%, versus 9/30, or 30%, respectively; P = 0.334), 30-day retreatment (4/31, or 12.9%, versus 4/30, 13.3%, respectively; P = 0.960), and 30-day all-cause mortality (2/31, or 6.5%, versus 1/30, or 3.3%, respectively; P = 0.573) were also not significantly different between groups. Aminopenicillins may be a viable option for treating vancomycin-resistant urinary tract infection regardless of the organism's ampicillin susceptibility. Prospective validation with larger cohorts of patients should be considered. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium

    NASA Astrophysics Data System (ADS)

    Alshareef, A.; Laird, K.; Cross, R. B. M.

    2017-12-01

    Silver nanoparticles (AgNPs) have been shown to exhibit strong antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria including antibiotic resistant strains. This study aims to compare the bactericidal effect of different shaped AgNPs (spherical and truncated octahedral) against Escherichia coli and Enterococcus faecium. The antimicrobial activity of a range of concentrations (50, 100, 1000 μg/ml) was determined over 24 h using both optical density and viable counts. Truncated octahedral AgNPs (AgNOct) were found to be more active when compared with spherical AgNPs (AgNS). The difference in shape resulted in differences in efficacy which may be due to the higher surface area of AgNOct compared to AgNS, and differences in active facets and surface energies, with AgNPs having a bacteriostatic effect and AgNOct being bactericidal after 4 h. The results suggest that AgNPs can be used as effective growth inhibitors in different microorganisms, rendering them applicable to various medical devices and antimicrobial control systems.

  17. Diversity, distribution and antibiotic resistance of Enterococcus spp. recovered from tomatoes, leaves, water and soil on U.S. Mid-Atlantic farms.

    PubMed

    Micallef, Shirley A; Goldstein, Rachel E Rosenberg; George, Ashish; Ewing, Laura; Tall, Ben D; Boyer, Marc S; Joseph, Sam W; Sapkota, Amy R

    2013-12-01

    Antibiotic-resistant enterococci are important opportunistic pathogens and have been recovered from retail tomatoes. However, it is unclear where and how tomatoes are contaminated along the farm-to-fork continuum. Specifically, the degree of pre-harvest contamination with enterococci is unknown. We evaluated the prevalence, diversity and antimicrobial susceptibilities of enterococci collected from tomato farms in the Mid-Atlantic United States. Tomatoes, leaves, groundwater, pond water, irrigation ditch water, and soil were sampled and tested for enterococci using standard methods. Antimicrobial susceptibility testing was performed using the Sensititre microbroth dilution system. Enterococcus faecalis isolates were characterized using amplified fragment length polymorphism to assess dispersal potential. Enterococci (n = 307) occurred in all habitats and colonization of tomatoes was common. Seven species were identified: Enterococcus casseliflavus, E. faecalis, Enterococcus gallinarum, Enterococcus faecium, Enterococcus avis, Enterococcus hirae and Enterococcus raffinosus. E. casseliflavus predominated in soil and on tomatoes and leaves, and E. faecalis predominated in pond water. On plants, distance from the ground influenced presence of enterococci. E. faecalis from samples within a farm were more closely related than those from samples between farms. Resistance to rifampicin, quinupristin/dalfopristin, ciprofloxacin and levofloxacin was prevalent. Consumption of raw tomatoes as a potential exposure risk for antibiotic-resistant Enterococcus spp. deserves further attention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Characterization of veterinary hospital-associated isolates of Enterococcus species in Korea.

    PubMed

    Chung, Yeon Soo; Kwon, Ka Hee; Shin, Sook; Kim, Jae Hong; Park, Yong Ho; Yoon, Jang Won

    2014-03-28

    Possible cross-transmission of hospital-associated enterococci between human patients, medical staff, and hospital environments has been extensively studied. However, limited information is available for veterinary hospital-associated Enterococcus isolates. This study investigated the possibility of cross-transmission of antibiotic-resistant enterococci between dog patients, their owners, veterinary staff, and hospital environments. Swab samples (n =46 5) were obtained from five veterinary hospitals in Seoul, Korea, during 2011. Forty-three Enterococcus strains were isolated, representing seven enterococcal species. E. faecalis and E. faecium were the most dominant species (16 isolates each, 37.2%). Although slight differences in the antibiotic resistance profiles were observed between the phenotypic and the genotypic data, our antibiogram analysis demonstrated high prevalence of the multiple drug-resistant (MDR) isolates of E. faecalis (10/16 isolates, 62.5%) and E. faecium (12/16 isolates, 75.0%). Pulsed-field gel electrophoretic comparison of the MDR isolates revealed three different clonal sets of E. faecalis and a single set of E. faecium, which were isolated from different sample groups or dog patients at the same or two separate veterinary hospitals. These results imply a strong possibility of cross-transmission of the antibiotic-resistant enterococcal species between animal patients, owners, veterinary staff, and hospital environments.

  19. Antibiotic susceptibility of enterococci isolated from traditional fermented meat products.

    PubMed

    Barbosa, J; Ferreira, V; Teixeira, P

    2009-08-01

    Antibiotic susceptibility was evaluated for 182 Enterococcus spp. isolated from Alheira, Chouriça de Vinhais and Salpicão de Vinhais, fermented meat products produced in the North of Portugal. Previously, a choice was made from a group of 1060 isolates, using phenotypic and genotypic tests. From these, 76 were previously identified as Enterococcus faecalis, 44 as Enterococcus faecium, one as Enterococcus casseliflavus and 61 as Enteroccocus spp. In order to encompass several of the known chemical and functional classes of antibiotics, resistance to ampicillin, penicillin G, ciprofloxacin, chloramphenicol, erythromycin, nitrofurantoin, rifampicin, tetracycline and vancomycin was evaluated. All the isolates were sensitive to antibiotics of clinical importance, such as penicillins and vancomycin. Some differences in Minimal Inhibitory Concentrations (MICs) of antibiotics, could be associated with the enterococcal species.

  20. Significant reduction in vancomycin-resistant enterococcus colonization and bacteraemia after introduction of a bleach-based cleaning-disinfection programme.

    PubMed

    Grabsch, E A; Mahony, A A; Cameron, D R M; Martin, R D; Heland, M; Davey, P; Petty, M; Xie, S; Grayson, M L

    2012-12-01

    Vancomycin-resistant enterococcus (VRE) colonization and infection have increased at our hospital, despite adherence to standard VRE control guidelines. We implemented a multi-modal, hospital-wide improvement programme including a bleach-based cleaning-disinfection programme ('Bleach-Clean'). VRE colonization, infection and environmental contamination were compared pre and post implementation. The programme included a new product (sodium hypochlorite 1000 ppm + detergent), standardized cleaning-disinfection practices, employment of cleaning supervisors, and modified protocols to rely on alcohol-based hand hygiene and sleeveless aprons instead of long-sleeved gowns and gloves. VRE was isolated using chromogenic agar and/or routine laboratory methods. Outcomes were assessed during the 6 months pre and 12 months post implementation, including proportions (per 100 patients screened) of VRE colonization in high-risk wards (HRWs: intensive care, liver transplant, renal, haematology/oncology); proportions of environmental contamination; and episodes of VRE bacteraemia throughout the entire hospital. Significant reductions in newly recognized VRE colonizations (208/1948 patients screened vs 324/4035, a 24.8% reduction, P = 0.001) and environmental contamination (66.4% reduction, P = 0.012) were observed, but the proportion of patients colonized on admission was stable. The total burden of inpatients with VRE in the HRWs also declined (median percentage of colonized inpatients per week, 19.4% vs 17.3%, P = 0.016). Hospital-wide VRE bacteraemia declined from 14/2935 patients investigated to 5/6194 (83.1% reduction; P < 0.001), but there was no change in vancomycin-susceptible enterococcal bacteraemia (P = 0.54). The Bleach-Clean programme was associated with marked reductions in new VRE colonizations in high-risk patients, and VRE bacteraemia across the entire hospital. These findings have important implications for VRE control in endemic healthcare settings. Copyright

  1. Enterocin X, a Novel Two-Peptide Bacteriocin from Enterococcus faecium KU-B5, Has an Antibacterial Spectrum Entirely Different from Those of Its Component Peptides▿

    PubMed Central

    Hu, Chih-Bo; Malaphan, Wanna; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2010-01-01

    Enterocin X, composed of two antibacterial peptides (Xα and Xβ), is a novel class IIb bacteriocin from Enterococcus faecium KU-B5. When combined, Xα and Xβ display variably enhanced or reduced antibacterial activity toward a panel of indicators compared to each peptide individually. In E. faecium strains that produce enterocins A and B, such as KU-B5, only one additional bacteriocin had previously been known. PMID:20418437

  2. Antimicrobial Use and Antimicrobial Resistance: A Population Perspective

    PubMed Central

    Samore, Matthew H.

    2002-01-01

    The need to stem the growing problem of antimicrobial resistance has prompted multiple, sometimes conflicting, calls for changes in the use of antimicrobial agents. One source of disagreement concerns the major mechanisms by which antibiotics select resistant strains. For infections like tuberculosis, in which resistance can emerge in treated hosts through mutation, prevention of antimicrobial resistance in individual hosts is a primary method of preventing the spread of resistant organisms in the community. By contrast, for many other important resistant pathogens, such as penicillin-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium resistance is mediated by the acquisition of genes or gene fragments by horizontal transfer; resistance in the treated host is a relatively rare event. For these organisms, indirect, population-level mechanisms of selection account for the increase in the prevalence of resistance. These mechanisms can operate even when treatment has a modest, or even negative, effect on an individual host’s colonization with resistant organisms. PMID:11971765

  3. The Fibronectin-Binding Protein Fnm Contributes to Adherence to Extracellular Matrix Components and Virulence of Enterococcus faecium

    PubMed Central

    Somarajan, Sudha R.; La Rosa, Sabina Leanti; Singh, Kavindra V.; Roh, Jung H.; Höök, Magnus

    2015-01-01

    The interaction between bacteria and fibronectin is believed to play an important role in the pathogenicity of clinically important Gram-positive cocci. In the present study, we identified a gene encoding a predicted fibronectin-binding protein of Enterococcus faecium (fnm), a homologue of Streptococcus pneumoniae pavA, in the genomes of E. faecium strain TX82 and all other sequenced E. faecium isolates. Full-length recombinant Fnm from strain TX82 bound to immobilized fibronectin in a concentration-dependent manner and also appeared to bind collagen type V and laminin, but not other proteins, such as transferrin, heparin, bovine serum albumin, mucin, or collagen IV. We demonstrated that the N-terminal fragment of Fnm is required for full fibronectin binding, since truncation of this region caused a 2.4-fold decrease (P < 0.05) in the adhesion of E. faecium TX82 to fibronectin. Deletion of fnm resulted in a significant reduction (P < 0.001) in the ability of the mutant, TX6128, to bind fibronectin relative to that of the wild-type strain; in situ reconstitution of fnm in the deletion mutant strain restored adherence. In addition, the Δfnm mutant was highly attenuated relative to TX82 (P ≤ 0.0001) in a mixed-inoculum rat endocarditis model. Taken together, these results demonstrate that Fnm affects the adherence of E. faecium to fibronectin and is important in the pathogenesis of experimental endocarditis. PMID:26371130

  4. Enterococcus faecium WEFA23 from infant lessens high-fat-diet-induced hyperlipidemia via cholesterol 7-alpha-hydroxylase gene by altering the composition of gut microbiota in rats.

    PubMed

    Huang, Fuqing; Zhang, Fen; Xu, Di; Zhang, Zhihong; Xu, Feng; Tao, Xueying; Qiu, Liang; Wei, Hua

    2018-06-20

    Enterococcus faecium WEFA23 is a potential probiotic strain from Chinese infants with the ability to decrease cholesterol levels. Aiming to explore the mechanism of E. faecium WEFA23 in lowering cholesterol in vivo, we examined the gene transcriptions related to cholesterol metabolism, the composition of bile acids in feces, the synthesis of trimethylamine N-oxide (TMAO) in liver, and the composition of the gut microbiota of rats. We found that E. faecium WEFA23 enhanced the synthesis of bile acids by promoting cholesterol excretion, upregulating the genes transcript level relevant to cholesterol decomposition and transportation, and downregulating the genes involved in cholesterol synthesis. In addition, E. faecium WEFA23 not only downregulated the transcript levels of farnesoid X receptor and fibroblast growth factor 15 as well as flavin-containing monooxygenase 3, but also decreased the TMAO production followed by increasing the CYP7A1 transcript level. Furthermore, when orally administered to rats for 35 d, E. faecium WEFA23 improved the gut microbiota diversity of rats fed a high-fat diet. Therein, the ratio of Bacteroidetes to Firmicutes and the abundance of Rikenellaceae increased, whereas the number of Veillonellaceae decreased. These results suggest that reduction of cholesterol level by E. faecium WEFA23 might be related to the changes in the gut microbiota. Our finding provides important information on lowering cholesterol by E. faecium and reveals that Enterococcus spp. might have the potential to decrease the TMAO level. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Molecular Characterization of Enterococcus faecalis N06-0364 with Low-Level Vancomycin Resistance Harboring a Novel d-Ala-d-Ser Gene Cluster, vanL▿

    PubMed Central

    Boyd, David A.; Willey, Barbara M.; Fawcett, Darlene; Gillani, Nazira; Mulvey, Michael R.

    2008-01-01

    Enterococcus faecalis N06-0364, exhibiting a vancomycin MIC of 8 μg/ml, was found to harbor a novel d-Ala-d-Ser gene cluster, designated vanL. The vanL gene cluster was similar in organization to the vanC operon, but the VanT serine racemase was encoded by two separate genes, vanTmL (membrane binding) and vanTrL (racemase). PMID:18458129

  6. Impact of Discontinuing Contact Precautions for Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus: An Interrupted Time Series Analysis.

    PubMed

    Bearman, Gonzalo; Abbas, Salma; Masroor, Nadia; Sanogo, Kakotan; Vanhoozer, Ginger; Cooper, Kaila; Doll, Michelle; Stevens, Michael P; Edmond, Michael B

    2018-06-01

    OBJECTIVETo investigate the impact of discontinuing contact precautions among patients infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) on rates of healthcare-associated infection (HAI). Single-center, quasi-experimental study conducted between 2011 and 2016.METHODSWe employed an interrupted time series design to evaluate the impact of 7 horizontal infection prevention interventions across intensive care units (ICUs) and hospital wards at an 865-bed urban, academic medical center. These interventions included (1) implementation of a urinary catheter bundle in January 2011, (2) chlorhexidine gluconate (CHG) perineal care outside ICUs in June 2011, (3) hospital-wide CHG bathing outside of ICUs in March 2012, (4) discontinuation of contact precautions in April 2013 for MRSA and VRE, (5) assessments and feedback with bare below the elbows (BBE) and contact precautions in August 2014, (6) implementation of an ultraviolet-C disinfection robot in March 2015, and (7) 72-hour automatic urinary catheter discontinuation orders in March 2016. Segmented regression modeling was performed to assess the changes in the infection rates attributable to the interventions.RESULTSThe rate of HAI declined throughout the study period. Infection rates for MRSA and VRE decreased by 1.31 (P=.76) and 6.25 (P=.21) per 100,000 patient days, respectively, and the infection rate decreased by 2.44 per 10,000 patient days (P=.23) for device-associated HAI following discontinuation of contact precautions.CONCLUSIONThe discontinuation of contact precautions for patients infected or colonized with MRSA or VRE, when combined with horizontal infection prevention measures was not associated with an increased incidence of MRSA and VRE device-associated infections. This approach may represent a safe and cost-effective strategy for managing these patients.Infect Control Hosp Epidemiol 2018;39:676-682.

  7. Elimination of Routine Contact Precautions for Endemic Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus: A Retrospective Quasi-Experimental Study.

    PubMed

    Martin, Elise M; Russell, Dana; Rubin, Zachary; Humphries, Romney; Grogan, Tristan R; Elashoff, David; Uslan, Daniel Z

    2016-11-01

    OBJECTIVE To evaluate the impact of discontinuation of contact precautions (CP) for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) and expansion of chlorhexidine gluconate (CHG) use on the health system. DESIGN Retrospective, nonrandomized, observational, quasi-experimental study. SETTING Two California hospitals. PARTICIPANTS Inpatients. METHODS We compared hospital-wide laboratory-identified clinical culture rates (as a marker of healthcare-associated infections) 1 year before and after routine CP for endemic MRSA and VRE were discontinued and CHG bathing was expanded to all units. Culture data from patients and cost data on material utilization were collected. Nursing time spent donning personal protective equipment was assessed and quantified using time-driven activity-based costing. RESULTS Average positive culture rates before and after discontinuing CP were 0.40 and 0.32 cultures/100 admissions for MRSA (P=.09), and 0.48 and 0.40 cultures/100 admissions for VRE (P=.14). When combining isolation gown and CHG costs, the health system saved $643,776 in 1 year. Before the change, 28.5% intensive care unit and 19% medicine/surgery beds were on CP for MRSA/VRE. On the basis of average room entries and donning time, estimated nursing time spent donning personal protective equipment for MRSA/VRE before the change was 45,277 hours/year (estimated cost, $4.6 million). CONCLUSION Discontinuing routine CP for endemic MRSA and VRE did not result in increased rates of MRSA or VRE after 1 year. With cost savings on materials, decreased healthcare worker time, and no concomitant increase in possible infections, elimination of routine CP may add substantial value to inpatient care delivery. Infect Control Hosp Epidemiol 2016;1-8.

  8. Construction of improved temperature-sensitive and mobilizable vectors and their use for constructing mutations in the adhesin-encoding acm gene of poorly transformable clinical Enterococcus faecium strains.

    PubMed

    Nallapareddy, Sreedhar R; Singh, Kavindra V; Murray, Barbara E

    2006-01-01

    Inactivation by allelic exchange in clinical isolates of the emerging nosocomial pathogen Enterococcus faecium has been hindered by lack of efficient tools, and, in this study, transformation of clinical isolates was found to be particularly problematic. For this reason, a vector for allelic replacement (pTEX5500ts) was constructed that includes (i) the pWV01-based gram-positive repAts replication region, which is known to confer a high degree of temperature intolerance, (ii) Escherichia coli oriR from pUC18, (iii) two extended multiple-cloning sites located upstream and downstream of one of the marker genes for efficient cloning of flanking regions for double-crossover mutagenesis, (iv) transcriptional terminator sites to terminate undesired readthrough, and (v) a synthetic extended promoter region containing the cat gene for allelic exchange and a high-level gentamicin resistance gene, aph(2'')-Id, to distinguish double-crossover recombination, both of which are functional in gram-positive and gram-negative backgrounds. To demonstrate the functionality of this vector, the vector was used to construct an acm (encoding an adhesin to collagen from E. faecium) deletion mutant of a poorly transformable multidrug-resistant E. faecium endocarditis isolate, TX0082. The acm-deleted strain, TX6051 (TX0082Deltaacm), was shown to lack Acm on its surface, which resulted in the abolishment of the collagen adherence phenotype observed in TX0082. A mobilizable derivative (pTEX5501ts) that contains oriT of Tn916 to facilitate conjugative transfer from the transformable E. faecalis strain JH2Sm::Tn916 to E. faecium was also constructed. Using this vector, the acm gene of a nonelectroporable E. faecium wound isolate was successfully interrupted. Thus, pTEX5500ts and its mobilizable derivative demonstrated their roles as important tools by helping to create the first reported allelic replacement in E. faecium; the constructed this acm deletion mutant will be useful for assessing the

  9. Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).

    PubMed

    Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping

    2017-09-01

    Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.

  10. Molecular characterization and antibiotic resistance of Enterococcus species from gut microbiota of Chilean Altiplano camelids

    PubMed Central

    Guerrero-Olmos, Katheryne; Báez, John; Valenzuela, Nicomédes; Gahona, Joselyne; del Campo, Rosa; Silva, Juan

    2014-01-01

    Background Enterococcus is one of the major human pathogens able to acquire multiple antibiotic-resistant markers as well as virulence factors which also colonize remote ecosystems, including wild animals. In this work, we characterized the Enterococcus population colonizing the gut of Chilean Altiplano camelids without foreign human contact. Material and methods Rectal swabs from 40 llamas and 10 alpacas were seeded in M-Enterococcus agar, and we selected a total of 57 isolates. Species identification was performed by biochemical classical tests, semi-automated WIDER system, mass spectrometry analysis by MALDI-TOF (matrix-assisted laser desorption/ionization with a time-of-flight mass spectrometer), and, finally, nucleotide sequence of internal fragments of the 16S rRNA, rpoB, pheS, and aac(6)-I genes. Genetic diversity was measured by pulsed field gel electrophoresis (PFGE)-SmaI, whereas the antibiotic susceptibility was determined by the WIDER system. Carriage of virulence factors was explored by polymerase chain reaction (PCR). Results Our results demonstrated that the most prevalent specie was Enterococcus hirae (82%), followed by other non–Enterococcus faecalis and non–Enterococcus faecium species. Some discrepancies were detected among the identification methods used, and the most reliable were the rpoB, pheS, and aac(6)-I nucleotide sequencing. Selected isolates exhibited susceptibility to almost all studied antibiotics, and virulence factors were not detected by PCR. Finally, some predominant clones were characterized by PFGE into a diverse genetic background. Conclusion Enterococcus species from the Chilean camelids’ gut microbiota were different from those adapted to humans, and they remained free of antibiotic resistance mechanisms as well as virulence factors. PMID:25405007

  11. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms.

    PubMed

    Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M

    2011-01-01

    We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.

  12. Modification of IgE binding to αS1-casein by proteolytic activity of Enterococcus faecium isolated from Iranian camel milk samples.

    PubMed

    Kordesedehi, Reihane; Taheri-Kafrani, Asghar; Rabbani-Khorasgani, Mohammad; Kazemi, Rezvan; Mutangadura, Daniel; Haertle, Thomas

    2018-06-20

    Milk is a perfect source of nutrients for neonates. When breast feeding cannot be done, an infant's alimentation is usually initiated to cow's milk, among the primary foods. It has been reported that about 2.5% of juveniles under the age of 3 years manifest allergic reactions to cow's milk proteins. Among the cow's milk proteins, casein fractions are considered as the strongest allergenic proteins. The proteolytic enzymes of lactic acid bacteria (LAB), during fermentation of dairy products, can break down milk proteins especially caseins and subsequently reduce the immune reactivity of allergenic proteins. In this research, raw bovine and camel milk samples were screened for cocci LAB strains and after isolation, their proteolytic activity against bovine milk caseins were evaluated by SDS-PAGE and RP-HPLC. The potential of cocci LAB strains on α S1 -casein degradation and their potential to break down the principle allergenic epitopes of this protein was detected using indirect competitive ELISA. Molecular identification of the best proteolytic strain was fulfilled by 16S rDNA fragment sequencing with universal primers. The obtained results demonstrated that Enterococcus faecium isolated from raw camel milk samples was the most efficient isolate in hydrolyzing Na-caseinate and α S1 -casein. Hydrolysated α S1 -casein by Enterococcus faecium was also less recognized by IgE of bovine milk allergic patients' sera in comparison with native α S1 -casein. It has been proposed that Enterococcus faecium could be an efficient strain in allergenicity reduction of cow's milk proteins. So it could be an excellent candidate to be potentially used in dairy industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Typing of vancomycin-resistant enterococci with MALDI-TOF mass spectrometry in a nosocomial outbreak setting.

    PubMed

    Holzknecht, B J; Dargis, R; Pedersen, M; Pinholt, M; Christensen, J J

    2018-03-23

    To investigate the usefulness of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) typing as a first-line epidemiological tool in a nosocomial outbreak of vancomycin-resistant Enterococcus faecium (VREfm). Fifty-five VREfm isolates, previously characterized by whole-genome sequencing (WGS), were included and analysed by MALDI-TOF MS. To take peak reproducibility into account, ethanol/formic acid extraction and other steps of the protocol were conducted in triplicate. Twenty-seven spectra were generated per isolate, and spectra were visually inspected to determine discriminatory peaks. The presence or absence of these was recorded in a peak scheme. Nine discriminatory peaks were identified. A characteristic pattern of these could distinguish between the three major WGS groups: WGS I, WGS II and WGS III. Only one of 38 isolates belonging to WGS I, WGS II or WGS III was misclassified. However, ten of the 17 isolates not belonging to WGS I, II or III displayed peak patterns indistinguishable from those of the outbreak strain. Using visual inspection of spectra, MALDI-TOF MS typing proved to be useful in differentiating three VREfm outbreak clones from each other. However, as non-outbreak isolates could not be reliably differentiated from outbreak clones, the practical value of this typing method for VREfm outbreak management was limited in our setting. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures.

    PubMed

    Liu, Shuxiang; Rojas, Rossana V; Gray, Peter; Zhu, Mei-Jun; Tang, Juming

    2018-09-01

    This study investigated the influence of temperature-dependent water activity (a w ) on thermal resistances of Enterococcus faecium NRRL B-2354 (E. faecium) and Salmonella Enteritidis PT 30 (S. Enteritidis) in wheat flour. The a w for wheat flour samples at 20, 40, and 60 °C was determined by a vapor sorption analyzer and at 75, 80 and 85 °C using custom-built thermal cells with high temperature humidity sensors. Full-factorial isothermal inactivation studies of both strains in sealed aluminum-test-cells included three temperatures (75, 80, and 85 °C) and three a w,25°C levels (0.30, 0.45 and 0.60 within ±0.02 range, prior to the thermal treatments). Isotherm results of wheat flour demonstrate a significant increase (P < 0.05) of a w as temperature rises (e.g. a w,25°C  = 0.45 ± 0.02 became a w,80°C  = 0.71 ± 0.02 in a closed system). Inactivation kinetics of both microorganisms fitted a log-linear model, the yielded D-values varied from 2.7 ± 0.2 min (D 85°C of S. Enteritidis at a w,25°C 0.60 ± 0.02) to 65.8 ± 2.5 min (D 75°C of E. faecium at a w,25°C 0.30 ± 0.02). The z T of E. faecium and S. Enteritidis decreased from 16.4 and 16.9 °C, respectively, to 10.2 °C with increased moisture content (dry basis) from 10 to 14%. Under all tested conditions, E. faecium exhibited equal or higher (1.0-3.1 times) D- and z T -values than those of Salmonella. Overall, E. faecium should be a conservative surrogate for Salmonella in thermal processing of wheat flour for control of Salmonella over a moisture content of 10-14% and treatment temperatures between 75 and 85 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Antibiotic resistance monitoring: the Spanish programme. The VAV Network. Red de Vigilancia de Resistencias Antibióticas en Bacterias de Origen Veterinario.

    PubMed

    Moreno, M A; Domínguez, L; Teshager, T; Herrero, I A; Porrero, M C

    2000-05-01

    Antimicrobial resistance is a problem in modern public health and antimicrobial use and especially misuse, the most important selecting force for bacterial antibiotic resistance. As this resistance must be monitored we have designed the Spanish network 'Red de Vigilancia de Resistencias Antibióticas en Bacterias de Origen Veterinario'. This network covers the three critical points of veterinary responsibility, bacteria from sick animals, bacteria from healthy animals and bacteria from food animals. Key bacteria, antimicrobials and animal species have been defined for each of these groups along with laboratory methods for testing antimicrobial susceptibility and for data analysis and reporting. Surveillance of sick animals was first implemented using Escherichia coli as the sentinel bacterium. Surveillance of E. coli and Enterococcus faecium from healthy pigs was implemented in 1998. In July 1999, data collection on Salmonella spp. was initiated in poultry slaughterhouses. Additionally, the prevalence of vancomycin resistant E. faecium was also monitored. This network has specific topics of interest related to methods of determining resistance, analysis and reporting of data, methods of use for veterinary practitioners and collaboration with public health authorities.

  16. Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria.

    PubMed

    Fuzi, Miklos; Szabo, Dora; Csercsik, Rita

    2017-01-01

    The major international sequence types/lineages of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae and ESBL-producing E. coli were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant Enterococcus faecium (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated.

  17. Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria

    PubMed Central

    Fuzi, Miklos; Szabo, Dora; Csercsik, Rita

    2017-01-01

    The major international sequence types/lineages of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae and ESBL-producing E. coli were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant Enterococcus faecium (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated. PMID:29250038

  18. Comparison of performance of the novel chromogenic spectra VRE agar to that of bile esculin azide and Campylobacter agars for detection of vancomycin-resistant enterococci in fecal samples.

    PubMed

    Jenkins, S G; Raskoshina, L; Schuetz, A N

    2011-11-01

    A total of 142 stool specimens were evaluated for vancomycin-resistant enterococcus (VRE). Twenty-four-hour sensitivities and specificities, respectively, were 98% and 95% for Spectra VRE chromogenic agar (Remel, Lenexa, KS), 86% and 92% for bile esculin azide with vancomycin (BEAV; Remel), and 96.5% and 92% for Campylobacter agar (CAMPY; Remel). Spectra VRE and CAMPY are significantly more sensitive at 24 h than BEAV.

  19. Elucidation of the active conformation of vancomycin dimers with antibacterial activity against vancomycin-resistant bacteria.

    PubMed

    Nakamura, Jun; Yamashiro, Hidenori; Hayashi, Sayaka; Yamamoto, Mami; Miura, Kenji; Xu, Shu; Doi, Takayuki; Maki, Hideki; Yoshida, Osamu; Arimoto, Hirokazu

    2012-10-01

    Covalently linked vancomycin dimers have attracted a great deal of attention among researchers because of their enhanced antibacterial activity against vancomycin-resistant strains. However, the lack of a clear insight into the mechanisms of action of these dimers hampers rational optimization of their antibacterial potency. Here, we describe the synthesis and antibacterial activity of novel vancomycin dimers with a constrained molecular conformation achieved by two tethers between vancomycin units. Conformational restriction is a useful strategy for studying the relationship between the molecular topology and biological activity of compounds. In this study, two vancomycin units were linked at three distinct positions of the glycopeptide (vancosamine residue (V), C terminus (C), and N terminus (N)) to form two types of novel vancomycin cyclic dimers. Active NC-VV-linked dimers with a stable conformation as indicated by molecular mechanics calculations selectively suppressed the peptidoglycan polymerization reaction of vancomycin-resistant Staphylococcus aureus in vitro. In addition, double-disk diffusion tests indicated that the antibacterial activity of these dimers against vancomycin-resistant enterococci might arise from the inhibition of enzymes responsible for peptidoglycan polymerization. These findings provide a new insight into the biological targets of vancomycin dimers and the conformational requirements for efficient antibacterial activity against vancomycin-resistant strains. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    PubMed

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  1. Dogs Leaving the ICU Carry a Very Large Multi-Drug Resistant Enterococcal Population with Capacity for Biofilm Formation and Horizontal Gene Transfer

    PubMed Central

    Ghosh, Anuradha; Dowd, Scot E.; Zurek, Ludek

    2011-01-01

    The enterococcal community from feces of seven dogs treated with antibiotics for 2–9 days in the veterinary intensive care unit (ICU) was characterized. Both, culture-based approach and culture-independent 16S rDNA amplicon 454 pyrosequencing, revealed an abnormally large enterococcal community: 1.4±0.8×108 CFU gram−1 of feces and 48.9±11.5% of the total 16,228 sequences, respectively. The diversity of the overall microbial community was very low which likely reflects a high selective antibiotic pressure. The enterococcal diversity based on 210 isolates was also low as represented by Enterococcus faecium (54.6%) and Enterococcus faecalis (45.4%). E. faecium was frequently resistant to enrofloxacin (97.3%), ampicillin (96.5%), tetracycline (84.1%), doxycycline (60.2%), erythromycin (53.1%), gentamicin (48.7%), streptomycin (42.5%), and nitrofurantoin (26.5%). In E. faecalis, resistance was common to tetracycline (59.6%), erythromycin (56.4%), doxycycline (53.2%), and enrofloxacin (31.9%). No resistance was detected to vancomycin, tigecycline, linezolid, and quinupristin/dalfopristin in either species. Many isolates carried virulence traits including gelatinase, aggregation substance, cytolysin, and enterococcal surface protein. All E. faecalis strains were biofilm formers in vitro and this phenotype correlated with the presence of gelE and/or esp. In vitro intra-species conjugation assays demonstrated that E. faecium were capable of transferring tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin resistance traits to human clinical strains. Multi-locus variable number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE) of E. faecium strains showed very low genotypic diversity. Interestingly, three E. faecium clones were shared among four dogs suggesting their nosocomial origin. Furthermore, multi-locus sequence typing (MLST) of nine representative MLVA types revealed that six sequence types (STs) originating from five

  2. Determination of antimicrobial resistance to extended-spectrum cephalosporin, quinolones, and vancomycin in selected human enteric pathogens from Prince Edward Island, Canada.

    PubMed

    Awosile, Babafela; German, Gregory; Rodriguez-Lecompte, Juan Carlos; Saab, Matthew E; Heider, Luke C; McClure, J Trenton

    2018-04-05

    The aim of this study was to determine the frequency of fecal carriage of vancomycin-resistant Enterococcus spp. and Escherichia coli with reduced susceptibilities to extended-spectrum cephalosporins (ESCs) and quinolones in humans on Prince Edward Island, Canada. Convenience fecal samples from individuals on Prince Edward Island were screened phenotypically using selective culture and genotypically using multiplex polymerase chain reactions to detect E. coli and Enterococcus spp. resistant to critically important antimicrobials. Twenty-six (5.3%) of 489 individuals had E. coli with reduced susceptibility to ESCs. Twenty-five (96.2%) of the 26 isolates harbored bla TEM , 18 (69.2%) harbored bla CMY-2 , 16 (61.5%) harbored bla CTX-M groups, 2 (7.7%) harbored bla SHV genes. None of the ESC-resistant E. coli was positive for carbapenem resistance. Twenty-one (8.3%) of 253 individuals had E. coli isolates with reduced quinolone susceptibility. All 21 isolates were positive for at least 1 qnr gene, with 3 (14.3%) isolates positive for qnrB, 5 (23.8%) positive for qnrS, and 13 (61.9%) positive for both qnrB and qnrS genes. All the enterococci isolates were vancomycin-susceptible. Higher susceptibility to the critically important antimicrobials was found in this study. This study can serve as a baseline for future antimicrobial resistance surveillance within this region.

  3. Comparative in-vitro activities of quinupristin-dalfopristin against Gram-positive bloodstream isolates.

    PubMed

    Schouten, M A; Hoogkamp-Korstanje, J A

    1997-08-01

    The in-vitro activity of quinupristin-dalfopristin was compared with those of vancomycin, teicoplanin, erythromycin, clarithromycin, rifampicin, imipenem, meropenem, ciprofloxacin and sparfloxacin against 414 bloodstream isolates of Gram-positive cocci. Quinupristin-dalfopristin inhibited strains of Streptococcus pyogenes and Streptococcus agalactiae at 0.12 mg/L, methicillin- and/or erythromycin-resistant Staphylococcus aureus and Staphylococcus epidermidis at 0.5 mg/L, Staphylococcus haemolyticus, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus mitis, Streptococcus bovis, Streptococcus sanguis and Streptococcus anginosus at 1 mg/L and Enterococcus faecalis at 8 mg/L.

  4. Intestinal microbiota and oral administration of Enterococcus faecium associated with the growth performance of new-born piglets.

    PubMed

    Wang, Y B; Du, W; Fu, A K; Zhang, X P; Huang, Y; Lee, K H; Yu, K; Li, W F; Li, Y L

    2016-09-01

    The oral administration of Enterococcus faecium EF1 to new-born suckling and weaning piglets along with their growth performances and intestinal microbiota was investigated in this study. Twenty-four new-born piglets were initially divided into 2 groups. The probiotics group received 2 ml of 10% sterilised skimmed milk by oral gavage supplemented with 6×10(8) cfu/ml viable E. faecium EF1 at the first, the third and the fifth day after birth, while the control group received 2 ml of 10% sterilised skimmed milk without probiotics at the same time. Results showed that oral administration of E. faecium EF1 was associated with a remarkable increase on the body weight of piglets for both suckling and weaning periods, by 30.73% (P<0.01) and 320.84% (P<0.01), and also decreased the diarrhoea rate, by 43.21% (P<0.05) and 71.42% (P<0.05), respectively. In addition, 454-pyrosequencing analysis revealed that there was no significant difference in the intestinal microbial diversity of the suckling piglets between the two groups; nevertheless, when compared to the control group, the relative abundance of Firmicutes in the probiotics group was substantially augmented, while the relative abundance of Proteobacteria, Bacteroidetes and Fusobacteria diminished. However, results indicated that oral administration of E. faecium EF1 did not have any influence on the relative abundance of Firmicutes in weaning piglets rather than increasing the relative abundance of Bacteroidetes and decreasing the relative abundance of Proteobacteria. Furthermore, at the level of the Firmicutes phylum, the relative abundance of Lactobacillales in the probiotic group increased significantly. These findings suggest that oral administration of E. faecium EF1 to new-born piglets could improve the growth performance and intestinal microbiota of piglets for both suckling and weaning periods.

  5. vanC Cluster of Vancomycin-Resistant Enterococcus gallinarum BM4174

    PubMed Central

    Arias, Cesar A.; Courvalin, Patrice; Reynolds, Peter E.

    2000-01-01

    Glycopeptide-resistant enterococci of the VanC type synthesize UDP-muramyl-pentapeptide[d-Ser] for cell wall assembly and prevent synthesis of peptidoglycan precursors ending in d-Ala. The vanC cluster of Enterococcus gallinarum BM4174 consists of five genes: vanC-1, vanXYC, vanT, vanRC, and vanSC. Three genes are sufficient for resistance: vanC-1 encodes a ligase that synthesizes the dipeptide d-Ala-d-Ser for addition to UDP-MurNAc-tripeptide, vanXYC encodes a d,d-dipeptidase–carboxypeptidase that hydrolyzes d-Ala-d-Ala and removes d-Ala from UDP-MurNAc-pentapeptide[d-Ala], and vanT encodes a membrane-bound serine racemase that provides d-Ser for the synthetic pathway. The three genes are clustered: the start codons of vanXYC and vanT overlap the termination codons of vanC-1 and vanXYC, respectively. Two genes which encode proteins with homology to the VanS-VanR two-component regulatory system were present downstream from the resistance genes. The predicted amino acid sequence of VanRC exhibited 50% identity to VanR and 33% identity to VanRB. VanSC had 40% identity to VanS over a region of 308 amino acids and 24% identity to VanSB over a region of 285 amino acids. All residues with important functions in response regulators and histidine kinases were conserved in VanRC and VanSC, respectively. Induction experiments based on the determination of d,d-carboxypeptidase activity in cytoplasmic extracts confirmed that the genes were expressed constitutively. Using a promoter-probing vector, regions upstream from the resistance and regulatory genes were identified that have promoter activity. PMID:10817725

  6. Comparison of Performance of the Novel Chromogenic Spectra VRE Agar to That of Bile Esculin Azide and Campylobacter Agars for Detection of Vancomycin-Resistant Enterococci in Fecal Samples ▿

    PubMed Central

    Jenkins, S. G.; Raskoshina, L.; Schuetz, A. N.

    2011-01-01

    A total of 142 stool specimens were evaluated for vancomycin-resistant enterococcus (VRE). Twenty-four-hour sensitivities and specificities, respectively, were 98% and 95% for Spectra VRE chromogenic agar (Remel, Lenexa, KS), 86% and 92% for bile esculin azide with vancomycin (BEAV; Remel), and 96.5% and 92% for Campylobacter agar (CAMPY; Remel). Spectra VRE and CAMPY are significantly more sensitive at 24 h than BEAV. PMID:21880967

  7. Use of bacteriocin-producing, probiotic strain Enterococcus faecium AL41 to control intestinal microbiota in farm ostriches.

    PubMed

    Lauková, A; Kandričáková, A; Ščerbová, J

    2015-06-01

    Probiotic enterococci can produce bacteriocins. Enterococcus faecium AL41 is an Enterocin M-producing, probiotic strain which has previously shown beneficial effect in broiler chickens. In this study, it was used to control intestinal microbiota in farm ostriches in a 42-day experiment with an experimental group (EG, 40 ostriches) and a control group (CG, 46). In addition to feed mixture, the ostriches in EG received Ent. faecium AL41 (10(9) CFU ml(-1); by rifampicin-marked variant) 400 μl per animal per day in their drinking water for 21 days. Sampling was carried out at the start of the experiment (at day 0/1), at day 21 (after 21 days of AL41 application) and at day 42 (21 days after AL41 cessation). Faeces (mixture, n = 6) were treated using the standard microbiological dilution method and cultivated on selective media (ISO). The highest count of AL41 was found at day 42. Its identity was confirmed with PCR and Maldi-Tof. The ostriches were free of Salmonella and Campylobacter cells. At day 21, antimicrobial effect was demonstrated by significant reduction in coagulase-positive and negative staphylococci in EG compared to CG (P < 0·001) and coliforms, Enterobacteria and Pseudomonas-like bacteria (P < 0·001). We conclude that AL41 can be used to control intestinal microbiota in farm ostriches. Significance and impact of the study: Ostriches are excellent for high intensity farming in a wide range of climates, requiring only limited space and giving high yields per hectare. They are reared mainly for their meat. Although adult birds possess quite good immunity, young birds can be threatened by spoilage bacteria, especially when they are transferred from the nests to the farm area. Based on our previous results related to the beneficial effect of bacteriocin-producing, probiotic strain Enterococcus faecium AL41 in poultry or rabbits, we decided to test its ability to control intestinal microbiota in farming ostriches which has never been tested previously.

  8. Detection of a New cfr-Like Gene, cfr(B), in Enterococcus faecium Isolates Recovered from Human Specimens in the United States as Part of the SENTRY Antimicrobial Surveillance Program.

    PubMed

    Deshpande, Lalitagauri M; Ashcraft, Deborah S; Kahn, Heather P; Pankey, George; Jones, Ronald N; Farrell, David J; Mendes, Rodrigo E

    2015-10-01

    Two linezolid-resistant Enterococcus faecium isolates (MICs, 8 μg/ml) from unique patients of a medical center in New Orleans were included in this study. Isolates were initially investigated for the presence of mutations in the V domain of 23S rRNA genes and L3, L4, and L22 ribosomal proteins, as well as cfr. Isolates were subjected to pulsed-field gel electrophoresis (just one band difference), and one representative strain was submitted to whole-genome sequencing. Gene location was also determined by hybridization, and cfr genes were cloned and expressed in a Staphylococcus aureus background. The two isolates had one out of six 23S rRNA alleles mutated (G2576T), had wild-type L3, L4, and L22 sequences, and were positive for a cfr-like gene. The sequence of the protein encoded by the cfr-like gene was most similar (99.7%) to that found in Peptoclostridium difficile, which shared only 74.9% amino acid identity with the proteins encoded by genes previously identified in staphylococci and non-faecium enterococci and was, therefore, denominated Cfr(B). When expressed in S. aureus, the protein conferred a resistance profile similar to that of Cfr. Two copies of cfr(B) were chromosomally located and embedded in a Tn6218 similar to the cfr-carrying transposon described in P. difficile. This study reports the first detection of cfr genes in E. faecium clinical isolates in the United States and characterization of a new cfr variant, cfr(B). cfr(B) has been observed in mobile genetic elements in E. faecium and P. difficile, suggesting potential for dissemination. However, further analysis is necessary to access the resistance levels conferred by cfr(B) when expressed in enterococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods.

    PubMed

    Andrade, N J; Bridgeman, T A; Zottola, E A

    1998-07-01

    Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.

  10. An outbreak of vancomycin-resistant Enterococcus faecium in an acute care pediatric hospital: Lessons from environmental screening and a case-control study

    PubMed Central

    Drews, Steven J; Richardson, Susan E; Wray, Rick; Freeman, Renee; Goldman, Carol; Streitenberger, Laurie; Stevens, Derek; Goia, Cristina; Kovach, Danuta; Brophy, Jason; Matlow, Anne G

    2008-01-01

    BACKGROUND The present study describes a vancomycin-resistant enterococci (VRE) outbreak investigation and a case-control study to identify risk factors for VRE acquisition in a tertiary care pediatric hospital. OBJECTIVE To report an outbreak investigation and a case-control study to identify risk factors for VRE colonization or infection in hospitalized children. METHODS Screening for VRE cases was performed by culture or polymerase chain reaction. A case-control study of VRE-colonized patients was undertaken. Environmental screening was performed using standard culture and susceptibility methods, with pulsed-field gel electrophoresis to determine relationships between VRE isolates. Statistical analysis was performed using SAS version 9.0 (SAS Institute Inc, USA). RESULTS Thirty-four VRE-positive cases were identified on 10 wards between February 28, 2005, and May 27, 2005. Pulsed-field gel electrophoresis analysis confirmed a single outbreak strain that was also isolated from a video game found on one affected ward. Multivariate analysis identified cephalosporin use as the major risk factor for VRE colonization. CONCLUSIONS In the present study outbreak, VRE colonization was significantly associated with cephalosporin use. Because shared recreational items and environmental surfaces may be colonized by VRE, they warrant particular attention in housekeeping protocols, particularly in pediatric institutions. PMID:19412380

  11. Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans.

    PubMed

    Borrero, Juan; Kunze, Gotthard; Jiménez, Juan J; Böer, Erik; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2012-08-01

    The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.

  12. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases

    PubMed Central

    Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; Egorova, Olga

    2015-01-01

    ABSTRACT Vancomycin resistance in Gram-positive bacteria results from the replacement of the d-alanyl–d-alanine target of peptidoglycan precursors with d-alanyl–d-lactate or d-alanyl–d-serine (d-Ala-d-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of d-Ala-d-Ser-terminating precursors by converting l-Ser to d-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in l-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5′-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the l-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against l-Ser versus l-Ala implied that this enzyme relies on its membrane-bound domain for l-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. PMID:26265719

  13. Structural and functional adaptation of vancomycin resistance VanT serine racemases

    DOE PAGES

    Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; ...

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl–D-alanine target of peptidoglycan precursors with D-alanyl–D-lactate or D-alanyl–D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanT G from VanG-type resistant Enterococcus faecalis BM4518more » was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanT G and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn 696 which are responsible for theL-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanT G against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of D-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.« less

  14. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    PubMed

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  15. Tapering Courses of Oral Vancomycin Induce Persistent Disruption of the Microbiota That Provide Colonization Resistance to Clostridium difficile and Vancomycin-Resistant Enterococci in Mice.

    PubMed

    Tomas, Myreen E; Mana, Thriveen S C; Wilson, Brigid M; Nerandzic, Michelle M; Joussef-Piña, Samira; Quiñones-Mateu, Miguel E; Donskey, Curtis J

    2018-05-01

    Vancomycin taper regimens are commonly used for the treatment of recurrent Clostridium difficile infections. One rationale for tapering and pulsing of the dose at the end of therapy is to reduce the selective pressure of vancomycin on the indigenous intestinal microbiota. Here, we used a mouse model to test the hypothesis that the indigenous microbiota that provide colonization resistance against C. difficile and vancomycin-resistant enterococci (VRE) is repopulated during tapering courses of vancomycin. Mice were treated orally with vancomycin daily for 10 days, vancomycin in a tapering dose for 42 days, fidaxomicin for 10 days, or saline. To assess colonization resistance, subsets of mice were challenged with 10 4 CFU of C. difficile or VRE at multiple time points during and after completion of treatment. The impact of the treatments on the microbiome was measured by cultures, real-time PCR for selected anaerobic bacteria, and deep sequencing. Vancomycin taper-treated mice developed alterations of the microbiota and disruption of colonization resistance that was persistent 18 days after treatment. In contrast, mice treated with a 10-day course of vancomycin exhibited recovery of the microbiota and of colonization resistance by 15 days after treatment, and fidaxomicin-treated mice maintained intact colonization resistance. These findings demonstrate that alteration of the indigenous microbiota responsible for colonization resistance to C. difficile and VRE persist during and after completion of tapering courses of vancomycin. Copyright © 2018 American Society for Microbiology.

  16. Isolation and purification of two bacteriocins 3D produced by Enterococcus faecium with inhibitory activity against Listeria monocytogenes.

    PubMed

    Bayoub, Kaoutar; Mardad, Ilham; Ammar, Emna; Serrano, Aurelio; Soukri, Abdelaziz

    2011-02-01

    Strain 3D, isolated from fermented traditional Moroccan dairy product, and identified as Enterococcus faecium, was studied for its capability to produce two bacteriocins acting against Listeria monocytogenes. Bacteriocins 3 Da and 3Db were heat stable inactivated by proteinase K, pepsin, and trypsin but not when treated with catalase. The evidenced bacteriocins were stable in a wide pH range from 2 to 11 and bactericidal activity was kept during storage at 4°C. However, the combination of temperature and pH exhibited a stability of the bacteriocins. RP-HPLC purification of the anti-microbial compounds shows two active fractions eluted at 16 and 30.5 min, respectively. Mass spectrometry analysis showed that E. faecium 3D produce two bacteriocins Enterocin 3 Da (3893.080 Da) and Enterocin 3Db (4203.350 Da). This strain is food-grade organism and its bacteriocins were heat-stable peptides at basic, neutral, and acid pH: such bacteriocins may be of interest as food preservatives.

  17. Increasing Prevalence of Aminoglycoside-Resistant Enterococcus faecalis Isolates Due to the aac(6')-aph(2") Gene: A Therapeutic Problem in Kermanshah, Iran.

    PubMed

    Khani, Mitra; Fatollahzade, Mahdie; Pajavand, Hamid; Bakhtiari, Somaye; Abiri, Ramin

    2016-03-01

    Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. This study was designed to identify the prevalence of, and to compare, the aac(6')-aph(2") and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6')-aph(2") and aph(3")-IIIa were analyzed with multiplex PCR. The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6')-aph(2"). The prevalence of aph(3")-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Remarkably increased incidence of aac(6')-aph(2") among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary.

  18. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators.

    PubMed

    Channaiah, Lakshmikantha H; Holmgren, Elizabeth S; Michael, Minto; Sevart, Nicholas J; Milke, Donka; Schwan, Carla L; Krug, Matthew; Wilder, Amanda; Phebus, Randall K; Thippareddi, Harshavardhan; Milliken, George

    2016-04-01

    This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.

  19. Development of a Dry Inoculation Method for Thermal Challenge Studies in Low-Moisture Foods by Using Talc as a Carrier for Salmonella and a Surrogate (Enterococcus faecium).

    PubMed

    Enache, Elena; Kataoka, Ai; Black, D Glenn; Napier, Carla D; Podolak, Richard; Hayman, Melinda M

    2015-06-01

    The objective of this study was to obtain dry inocula of Salmonella Tennessee and Enterococcus faecium, a surrogate for thermal inactivation of Salmonella in low-moisture foods, and to compare their thermal resistance and stability over time in terms of survival. Two methods of cell growth were compared: cells harvested from a lawn on tryptic soy agar (TSA-cells) and from tryptic soy broth (TSB-cells). Concentrated cultures of each organism were inoculated onto talc powder, incubated at 35 °C for 24 h, and dried for additional 24 h at room temperature (23 ± 2 °C) to achieve a final water activity of ≤ 0.55 before sieving. Cell reductions of Salmonella and E. faecium during the drying process were between 0.14 and 0.96 log CFU/g, depending on growth method used. There was no difference between microbial counts at days 1 and 30. Heat resistance of the dry inoculum on talc inoculated into a model peanut paste (50 % fat and 0.6 water activity) was determined after 1 and 30 days of preparation, using thermal death time tests conducted at 85 °C. For Salmonella, there was no significant difference between the thermal resistance (D(85 °C)) for the TSB-cells and TSA-cells (e.g. day 1 cells D(85 °C) = 1.05 and 1.07 min, respectively), and there was no significant difference in D(85 °C) between dry inocula on talc used either 1 or 30 days after preparation (P > 0.05). However, the use the dry inocula of E. faecium yielded different results: the TSB-grown cells had a significantly (P < 0.05) greater heat resistance than TSA-grown cells (e.g. D(85 °C) for TSB-cells = 3.42 min versus 2.60 min for TSA-cells). E. faecium had significantly (P < 0.05) greater heat resistance than Salmonella Tennessee regardless what cell type was used for dry inoculum preparation; therefore, it proved to be a conservative but appropriate surrogate for thermal inactivation of Salmonella in low-moisture food matrices under the tested conditions.

  20. Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics.

    PubMed

    Hanchi, Hasna; Hammami, Riadh; Gingras, Hélène; Kourda, Rim; Bergeron, Michel G; Ben Hamida, Jeannette; Ouellette, Marc; Fliss, Ismail

    2017-03-01

    The aim of this study was to evaluate the efficacy of durancin 61A alone or in combination with nisin, pediocin PA-1, reuterin, microcin J25, vancomycin or tetracycline as an inhibitor of resistant clinical pathogens and to shed light on its mode of action. Durancin and reuterin were effective inhibitors of Clostridium difficile, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus. The combination of durancin and reuterin was highly synergistic against C. difficile (fractional inhibitory concentration index = 0.2). Durancin/vancomycin combination was synergistic against S. aureus ATCC ® 700699 (fractional inhibitory concentration index = 0.3). Conclusion & future perspective: Durancin 61A alone or combined with other bacteriocins or antibiotics may therefore provide a possible therapeutic option for the treatment of infections by these pathogens.

  1. Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures.

    PubMed

    da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru

    2015-05-04

    The formation of mono-species biofilm (Listeria monocytogenes) and multi-species biofilms (Enterococcus faecium, Enterococcus faecalis, and L. monocytogenes) was evaluated. In addition, the effectiveness of sanitation procedures for the control of the multi-species biofilm also was evaluated. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39°C) and contact times (0, 1, 2, 4, 6 and 8 days). In all tests, at 7°C, the microbial counts were below 0.4 log CFU/cm(2) and not characteristic of biofilms. In mono-species biofilm, the counts of L. monocytogenes after 8 days of contact were 4.1 and 2.8 log CFU/cm(2) at 25 and 39°C, respectively. In the multi-species biofilms, Enterococcus spp. were present at counts of 8 log CFU/cm(2) at 25 and 39°C after 8 days of contact. However, the L. monocytogenes in multi-species biofilms was significantly affected by the presence of Enterococcus spp. and by temperature. At 25°C, the growth of L. monocytogenes biofilms was favored in multi-species cultures, with counts above 6 log CFU/cm(2) after 8 days of contact. In contrast, at 39°C, a negative effect was observed for L. monocytogenes biofilm growth in mixed cultures, with a significant reduction in counts over time and values below 0.4 log CFU/cm(2) starting at day 4. Anionic tensioactive cleaning complemented with another procedure (acid cleaning, disinfection or acid cleaning+disinfection) eliminated the multi-species biofilms under all conditions tested (counts of all micro-organisms<0.4 log CFU/cm(2)). Peracetic acid was the most effective disinfectant, eliminating the multi-species biofilms under all tested conditions (counts of the all microorganisms <0.4 log CFU/cm(2)). In contrast, biguanide was the least effective disinfectant, failing to eliminate biofilms under all the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Microbiological quality assessment and validation of antimicrobials against unstressed or cold-stress adapted Salmonella and surrogate Enterococcus faecium on broiler carcasses and wings.

    PubMed

    Lemonakis, Lacey; Li, KaWang; Adler, Jeremy M; Shen, Cangliang

    2017-09-01

    This study aims to evaluate the microbiological quality and efficacy of antimicrobials to inactivate unstressed or cold-stress adapted Salmonella and Enterococcus on broiler carcasses and wings processed at a small USDA-inspected slaughter facility in West Virginia. The first part of the study included 42 carcasses that were pre- and secondarily-enriched in bacterial media followed by streak-plating onto XLT-4 and HardyCHROM™-agar Salmonella and confirmation using an API20E-kit. The aerobic plate counts (APC), Escherichia coli (ECC), total coliforms (TCC), and yeast/molds were analyzed on petri-films. The second part of the study included fresh broiler carcasses and wings that were inoculated with unstressed and cold-stress-adapted (4 °C, 7-day) Salmonella Typhimurium and Tennessee, and Enterococcus faecium ATCC 8459 (5.5 to 6.0 log10CFU/mL) and later dipped into peroxyacetic acid (PAA; 1,000 ppm), lactic acid (LA; 5%), lactic and citric acid blend (LCA; 2.5%), and sodium hypochlorite (SH; 70 ppm) for 30 s without (carcasses) or with 2-min drainage (wings). The surviving bacteria were recovered onto non-selective and selective agar to analyze the total microbial population, Salmonella and Enterococcus. APC, TCC, and Yeast/Molds were 2.62, 1.08, and 2.37 log10CFU/mL on broiler carcasses, respectively. A total of 30 and 40% of the carcasses tested positive for Salmonella spp. and E. coli (0.48 to 1.70 log10CFU/mL), respectively. For carcasses, antimicrobial reductions of cold-stress-adapted cells of Salmonella and Enterococcus were greater (P < 0.05) than the unstressed cells. For wings, cold-stress-adapted Salmonella were more (P < 0.05) sensitive to antimicrobials than unstressed cells; however, unstressed and cold-stress-adapted Enterococcus behaved similarly (P > 0.05). The reduction of Salmonella and Enterococcus on carcasses and wings increased in the order of SH ≤ LCA < LA < PAA and irrespective of unstressed or cold-stress-adapted cells. Applying

  3. A Novel High-Molecular-Mass Bacteriocin Produced by Enterococcus faecium: Biochemical Features and Mode of Action.

    PubMed

    Vasilchenko, A S; Vasilchenko, A V; Valyshev, A V; Rogozhin, E A

    2018-02-08

    Discovery of a novel bacteriocin is always an event in sciences, since cultivation of most bacterial species is a general problem in microbiology. This statement is reflected by the fact that number of bacteriocins is smaller for tenfold comparing to known antimicrobial peptides. We cultivated Enterococcus faecium on simplified medium to reduce amount of purification steps. This approach allows to purify the novel heavy weight bacteriocin produced by E. faecium ICIS 7. The novelty of this bacteriocin, named enterocin-7, was confirmed by N-terminal sequencing and by comparing the structural-functional properties with available data. Purified enterocin-7 is characterized by a sequence of amino acid residues having no homology in UniProt/SwissProt/TrEMBL databases: NH2 - Asp - Ala - His - Leu - Ser - Glu - Val - Ala - Glu - Arg - Phe - Glu - Asp - Leu - Gly. Isolated thermostable protein has a molecular mass of 65 kDa, which allows it to be classified into class III in bacteriocin classification schemes. Enterocin-7 displayed a broad spectrum of activity against some Gram-positive and Gram-negative microorganisms. Fluorescent microscopy and spectroscopy showed the permeabilizing mechanism of the action of enterocin-7, which is realized within a few minutes.

  4. In vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive organisms: tigecycline Evaluation and Surveillance Trial 2004 to 2007.

    PubMed

    Garrison, Mark W; Mutters, Reinier; Dowzicky, Michael J

    2009-11-01

    The Tigecycline Evaluation and Surveillance Trial began in 2004 to monitor the in vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive pathogens. Against Gram negatives (n = 63 699), tigecycline MIC(90)'s ranged from 0.25 to 2 mg/L for Escherichia coli, Haemophilus influenzae, Acinetobacter baumannii, Klebsiella oxytoca, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens (but was > or =32 for Pseudomonas aeruginosa). Against Gram-positive organisms (n = 32 218), tigecycline MIC(90)'s were between 0.06 and 0.25 mg/L for Streptococcus pneumoniae, Enterococcus faecium, Streptococcus agalactiae, Staphylococcus aureus, and Enterococcus faecalis. The in vitro activity of tigecycline was maintained against resistant phenotypes, including multidrug-resistant A. baumannii (9.2% of isolates), extended-spectrum beta-lactamase-producing E. coli (7.0%) and K. pneumoniae (14.0%), beta-lactamase-producing H. influenzae (22.2%), methicillin-resistant S. aureus (44.5%), vancomycin-resistant E. faecium (45.9%) and E. faecalis (2.8%), and penicillin-resistant S. pneumoniae (13.8%). Tigecycline represents a welcome addition to the armamentarium against difficult to treat organisms.

  5. Prevalence and antibiotic-resistance characteristics of Enterococcus spp. Isolated from free-living and captive raptors in Central Illinois.

    PubMed

    Marrow, Judilee; Whittington, Julia K; Mitchell, Mark; Hoyer, Lois L; Maddox, Carol

    2009-04-01

    Due to their predatory nature, raptor species may serve as important indicators of environmental contamination with antimicrobial-resistant bacteria. Raptors prey on small rodents and birds that have diverse habitat ranges, including urban and rural environments, and their intestinal microflora can reflect that of the animals on which they feed. Enterococcus spp. were selected as target organisms because they have been isolated from the avian gastrointestinal tract, can be conferred by prey items, and because they are capable of multiple resistance patterns. They are also a concerning source of human antimicrobial resistance. In this study fecal cultures were obtained from 15 May 2004 to 31 August 2004, from 21 free-living raptors and four captive raptors. Enterococcus was isolated from 21 (84%) of the 25 birds, and 54 isolates were chosen for further study based upon unique colony morphology. The most common isolate recovered was Enterococcus faecalis (95%, 95% confidence interval [CI]: 89-100). One bird in the study was determined to have Enterococcus gallinarum. Two distinct ribotypes of E. faecalis were identified, one with unique bands at 11 and 13 kb and the other with unique bands at 14 and 20 kb. Both ribotypes were found in free-living and captive birds. The Enterococcus isolates in this study demonstrated a variety of antimicrobial-resistance characteristics, including almost complete resistance to amikacin, first-generation cephalosporins, spectinomycin, and sulphadimethoxime. Isolates demonstrated variable resistance to chloramphenicol, gentamicin, enrofloxacin, erythromycin, and ticarcillin. No phenotypically vancomycin-resistant E. faecalis isolates were recovered from any of the raptors; three isolates had intermediate level susceptibility. A significantly higher number of isolates collected from captive birds demonstrated resistance to chloramphenicol than those obtained from free-living birds. This trend was not duplicated with any of the remaining

  6. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation.

    PubMed

    Paganelli, Fernanda L; Huebner, Johannes; Singh, Kavindra V; Zhang, Xinglin; van Schaik, Willem; Wobser, Dominique; Braat, Johanna C; Murray, Barbara E; Bonten, Marc J M; Willems, Rob J L; Leavis, Helen L

    2016-07-15

    Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Optimization of conditions for probiotic curd formulation by Enterococcus faecium MTCC 5695 with probiotic properties using response surface methodology.

    PubMed

    Ramakrishnan, Vrinda; Goveas, Louella Concepta; Prakash, Maya; Halami, Prakash M; Narayan, Bhaskar

    2014-11-01

    Enterococcus faecium MTCC 5695 possessing potential probiotic properties as well as enterocin producing ability was used as starter culture. Effect of time (12-24 h) and inoculum level (3-7 % v/v) on cell growth, bacteriocin production, antioxidant property, titrable acidity and pH of curd was studied by response surface methodology (RSM). The optimized conditions were 26.48 h and 2.17%v/v inoculum and the second order model validated. Co cultivation studies revealed that the formulated product had the ability to prevent growth of foodborne pathogens that affect keeping quality of the product during storage. The results indicated that application of E. faecium MTCC 5695 along with usage of optimized conditions attributed to the formation of highly consistent well set curd with bioactive and bioprotective properties. Formulated curd with potential probiotic attributes can be used as therapeutic agent for the treatment of foodborne diseases like Traveler's diarrhea and gastroenteritis which thereby help in improvement of bowel health.

  8. [Influence of staphylococcin T on Enterococcus sp. growth].

    PubMed

    Białucha, Agata; Kozuszko, Sylwia; Gospodarek, Eugenia; Bugalski, Roman Marian; Gierlotka, Krzysztof

    2007-01-01

    Bacteriocins are ribosomally synthesised, extracellular bacterial products. Generally, spectrum of inhibition is limited to the same or closely related species to bacteriocin producer. Staphylococcin T is produced by Staphylococcus cohnii strain. The present study concerns influence of StT to 267 Enterococcus sp. strains growth isolated between 2003 and 2006 in Department of Microbiology University Hospital of dr. A. Jurasz in Bydgoszcz. S. cohnii T antagonistic ability evaluated towards bacteries on Mueller-Hinton Agar (bio Mérieux) in aerobic conditions. After 24 and 48 hours tested enterococci suspensions were plated perpendiculary. Susceptibility to antibiotics was assessed by disc diffusion method according to the guideless of Clinical and Laboratory Standards Institute and National Reference Centre for Antimicrobial Susceptibility. Among Enterococcus sp. strains tested 7.1% were sensitive to StT. The highest percentage of sensitive enterococci isolated from wound swabs, urine, blood and pus. Enterococcus faecium strains dominated (63.2%) among enterococci sensitive to StT. Moderate inhibition degree on S. cohnii T bacteriocin action was observed in majority sensitive enterococci strains. Enterococcus sp. sensitive to StT strains were frequently multidrug resistant (68.4%). According to the study results and increasing resistance to antibiotics, StT could be an alternative agent used to treat infections caused by Enterococcus sp.

  9. Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus

    PubMed Central

    Hu, Qiwen; Peng, Huagang; Rao, Xiancai

    2016-01-01

    Vancomycin has been used as the last resort in the clinical treatment of serious Staphylococcus aureus infections. Vancomycin-intermediate S. aureus (VISA) was discovered almost two decades ago. Aside from the vancomycin-intermediate phenotype, VISA strains from the clinic or laboratory exhibited common characteristics, such as thickened cell walls, reduced autolysis, and attenuated virulence. However, the genetic mechanisms responsible for the reduced vancomycin susceptibility in VISA are varied. The comparative genomics of vancomycin-susceptible S. aureus (VSSA)/VISA pairs showed diverse genetic mutations in VISA; only a small number of these mutations have been experimentally verified. To connect the diversified genotypes and common phenotypes in VISA, we reviewed the genetic alterations in the relative determinants, including mutations in the vraTSR, graSR, walKR, stk1/stp1, rpoB, clpP, and cmk genes. Especially, we analyzed the mechanism through which diverse mutations mediate vancomycin resistance. We propose a unified model that integrates diverse gene functions and complex biochemical processes in VISA upon the action of vancomycin. PMID:27790199

  10. Novel Imidazoline Antimicrobial Scaffold That Inhibits DNA Replication with Activity against Mycobacteria and Drug Resistant Gram-Positive Cocci

    PubMed Central

    2015-01-01

    Bacterial antimicrobial resistance is an escalating public health threat, yet the current antimicrobial pipeline remains alarmingly depleted, making the development of new antimicrobials an urgent need. Here, we identify a novel, potent, imidazoline antimicrobial compound, SKI-356313, with bactericidal activity against Mycobacterium tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine models of Streptococcus pneumoniae and MRSA infection and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole genome sequencing, and a novel target ID approach using real time imaging of core macromolecular biosynthesis, we show that SKI-356313 inhibits DNA replication and displaces the replisome from the bacterial nucleoid. These results identify a new antimicrobial scaffold with a novel mechanism of action and potential therapeutic utility against nonreplicating M. tuberculosis and antibiotic resistant Gram-positive cocci. PMID:25222597

  11. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium

    PubMed Central

    Sillanpää, Jouko; Nallapareddy, Sreedhar R.; Prakash, Vittal P.; Qin, Xiang; Hook, Magnus; Weinstock, George M.; Murray, Barbara E.

    2009-01-01

    SUMMARY Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about pathogenic determinants of this organism. We have previously identified a cell wall anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad spectrum binding to extracellular matrix proteins. Here, we analyzed the draft genome of strain TX0016 for potential MSCRAMMs (microbial surface component recognizing adhesive matrix molecules). Genome-based bioinformatics identified 22 predicted cell wall anchored E. faeciumsurface proteins (Fms) of which 15 (including Acm) have typical characteristics of MSCRAMMs including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one (Fms10, redesignated Scm for second collagen adhesin of E. faeciu m) revealed that recombinant Scm65 (A- and B-domains) and Scm36 (A-domain) bound efficiently to collagen type V in a concentration dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism of recombinant Scm36 and of Acm37 indicated that these proteins are rich in β-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; 9 of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated as EbpCfm), detected a “ladder” pattern of high-molecular weight protein bands in a Western blot

  12. Purification of a Novel Bacteriocin-Like Inhibitory Substance Produced by Enterococcus faecium ICIS 8 and Characterization of Its Mode of Action.

    PubMed

    Vasilchenko, Alexey S; Rogozhin, Eugene A; Valyshev, Alexander V

    2017-06-01

    The aim of this work was to purify and characterize a bacteriocin-like antimicrobial substance produced by an antagonistic active strain of Enterococcus faecium. A novel bacteriocin-like inhibitory substance (BLIS) produced by the E. faecium ICIS 8 strain was purified and characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and N-terminal amino acid sequencing revealed the following partial sequence: NH 2 -APKEKCFPKYCV. The proteinaceous nature of purified BLIS was assessed by treatment with proteolytic enzyme. Studies of the action of BLIS using bacteriological and bioluminescence assays revealed a dose-dependent inhibition of Listeria monocytogenes 88BK and Escherichia coli K12 TG1 lac::lux viability. The interaction of the BLIS with the bacterial surface led to the compensation of a negative charge value, as shown by zeta-potential measurements. Assessments of membrane integrity using fluorescent probes and atomic force microscopy revealed the permeabilization of the cellular barrier structures in both L. monocytogenes and E. coli. The novel BLIS from E. faecium ICIS 8 was characterized by a unique primary peptide sequence and exerted bactericidal activity against L. monocytogenes and E. coli by disrupting membrane integrity.

  13. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria.

    PubMed

    Zhou, Zhongxin; Wei, Dafu; Lu, Yanhua

    2015-01-01

    More information regarding the bactericidal properties of polyhexamethylene guanidine hydrochloride (PHMG) against clinically important antibiotic-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens needs to be provided for its uses in infection control. The bactericidal properties of PHMG and chlorhexidine digluconate (CHG) were compared based on their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations, and time-course-killing curves against clinically important antibiotic-susceptible and antibiotic-resistant ESKAPE pathogens. Results showed that PHMG exhibited significantly higher bactericidal activities against methicillin-resistant Staphylococcus aureus, carbapenem-resistant Klebsiella pneumoniae, and ceftazidime-resistant Enterobacter spp. than CHG. A slight bactericidal advantage over CHG was obtained against vancomycin-resistant Enterococcus faecium, ciprofloxacin- and levofloxacin-resistant Acinetobacter spp., and multidrug-resistant Pseudomonas aeruginosa. In previous reports, PHMG had higher antimicrobial activity against almost all tested Gram-negative bacteria and several Gram-positive bacteria than CHG using MIC test. These studies support the further development of covalently bound PHMG in sterile-surface materials and the incorporation of PHMG in novel disinfectant formulas. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  14. Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faecium AL41 and Eleutherococcus senticosus in rabbits.

    PubMed

    Lauková, Andrea; Simonová, Monika Pogány; Chrastinová, Ľubica; Plachá, Iveta; Čobanová, Klaudia; Formelová, Zuzana; Chrenková, Mária; Ondruška, Ľubomír; Strompfová, Viola

    2016-03-01

    This study presents the effects of the probiotic and enterocin M-producing strain Enterococcus faecium AL41 on microbiota, phagocytic activity (PA), oxidative stress, performance and biochemical parameters when applied individually or in combination with Eleutherococcus senticosus in rabbits. The novelty of the study lies in the use of our non-rabbit-derived strain (AL41 = CCM8558) which produces new enterocin M. Ninety-six post-weaned rabbits (Hyplus breed) aged 5 weeks were divided into three experimental groups, 24 in each: E. senticosus (ES, 30 g/100 kg) in feed, E. faecium AL41 (10(9) CFU/mL marked by rifampicin to differentiate it from other enterococci) in water, and ES + AL. AL41 colonized sufficiently in rabbits to reduce coliforms, staphylococci, pseudomonads and clostridia. Slight decrease in bacteria was also found in the caecum and appendix. Phagocytic activity was significantly increased in the experimental groups compared to the control group (CG) (p < 0.001; p < 0.05). Applications did not evoke oxidative stress. Biochemical parameters in blood and caecal organic acids were slightly influenced. Average daily weight gain was slightly higher in ES and AL + ES. Combinative application of E. faecium with E. senticosus can be beneficial in rabbits. AL41 strain alone and in combination with ES produced reduction in spoilage bacteria; the highest stimulation of PA was in the AL41 + ES group.

  15. Comparison of the loads and antibiotic-resistance profiles of Enterococcus species from conventional and organic chicken carcasses in South Korea.

    PubMed

    Kim, Y-J; Park, J-H; Seo, K-H

    2018-01-01

    Antibiotic-resistant bacteria in poultry meat are a threat to public health. In this study, we compared the Enterococcus spp. loads and antibiotic-resistance profiles between carcasses of conventionally and organically raised chickens. A total of 144 chicken carcasses (72 conventional and 72 organic) was collected from local retail markets in Seoul, South Korea. Overall, 77.7% (112 of 144; 75% conventional and 80% organic) of chicken carcasses were positive for Enterococcus. The mean loads of Enterococcus spp. were greater in conventional chicken carcasses, at 2.9 ± 0.4 log CFU/mL, than those in organic chicken carcasses, at 1.78 ± 0.3 log CFU/mL (p < 0.05). A total of 104 isolates (52 from conventional and 52 from organic chicken carcasses) was randomly selected for further analysis. The predominant species was Enterococcus faecalis in both conventional and organic chicken carcasses (57.7 and 76.9%, respectively; P > 0.05). Rates of resistance to ciprofloxacin and erythromycin, which are used in veterinary medicine in South Korea, were significantly higher in conventional chicken carcasses than in organic chicken carcasses. However, we found no difference between the rates of resistance to antibiotics such as vancomycin and tigecycline, which were not registered for use in veterinary medicine in South Korea, of Enterococcus isolates from conventional and organic chicken carcasses. In addition, although multidrug resistant isolates were obtained from both types of chicken samples, the prevalence of samples positive for Enterococcus was significantly higher in conventional chicken carcasses than in organic chicken carcasses (P < 0.05). The most common multidrug resistance pattern was erythromycin-tetracycline-rifampicin in conventional chicken carcasses and quinupristin-dalfopristin-tetracycline-rifampicin in organic chicken carcasses. A high level of gentamicin resistance was observed in isolates from not only conventional (5.8%) but also organic chicken (1

  16. Increasing Prevalence of Aminoglycoside-Resistant Enterococcus faecalis Isolates Due to the aac(6’)-aph(2”) Gene: A Therapeutic Problem in Kermanshah, Iran

    PubMed Central

    Khani, Mitra; Fatollahzade, Mahdie; Pajavand, Hamid; Bakhtiari, Somaye; Abiri, Ramin

    2016-01-01

    Background: Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. Objectives: This study was designed to identify the prevalence of, and to compare, the aac(6’)-aph(2”) and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. Patients and Methods: One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6’)-aph(2”) and aph(3”)-IIIa were analyzed with multiplex PCR. Results: The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6’)-aph(2”). The prevalence of aph(3”)-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Conclusions: Remarkably increased incidence of aac(6’)-aph(2”) among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary. PMID:27217920

  17. Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21.

    PubMed

    Soria, M Cecilia; Audisio, M Carina

    2014-12-01

    Bacillus cereus is an endospore-forming, Gram-positive bacterium able to cause foodborne diseases. Lactic acid bacteria (LAB) are known for their ability to synthesize organic acids and bacteriocins, but the potential of these compounds against B. cereus has been scarcely documented in food models. The present study has examined the effect of the metabolites produced by Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21 on the viability of select B. cereus strains. Furthermore, the effect of E. faecium SM21 metabolites against B. cereus strains has also been investigated on a rice food model. L. johnsonii CRL1647 produced 128 mmol/L of lactic acid, 38 mmol/L of acetic acid and 0.3 mmol/L of phenyl-lactic acid. These organic acids reduced the number of vegetative cells and spores of the B. cereus strains tested. However, the antagonistic effect disappeared at pH 6.5. On the other hand, E. faecium SM21 produced only lactic and acetic acid (24.5 and 12.2 mmol/L, respectively) and was able to inhibit both vegetative cells and spores of the B. cereus strains, at a final fermentation pH of 5.0 and at pH 6.5. This would indicate the action of other metabolites, different from organic acids, present in the cell-free supernatant. On cooked rice grains, the E. faecium SM21 bacteriocin(s) were tested against two B. cereus strains. Both of them were significantly affected within the first 4 h of contact; whereas B. cereus BAC1 cells recovered after 24 h, the effect on B. cereus 1 remained up to the end of the assay. The LAB studied may thus be considered to define future strategies for biological control of B. cereus.

  18. Autolytic activity and molecular characteristics of Staphylococcus haemolyticus strains with induced vancomycin resistance.

    PubMed

    Kim, Jung Wook; Chung, Gyung Tae; Yoo, Jung Sik; Lee, Yeong Seon; Yoo, Jae Il

    2012-10-01

    The aim of this study was to investigate the molecular characteristics of induced vancomycin resistance in Staphylococcus haemolyticus. Autolytic properties and phenotypic characteristics of passage-selected vancomycin-resistant S. haemolyticus strains were examined. In addition, expression of autolysis-related genes (atl, lrgAB, sarA and lytS) was investigated using the RNase protection assay (RPA). The RPA results indicated that only the expression of the atl gene was significantly upregulated (2.5- to 6-fold increase) in vancomycin-intermediate and vancomycin-resistant strains. The vancomycin-resistant strains exhibited lower expression of murein hydrolase proteins and reduced autolytic activity compared with the parent strain. In addition, a reduced growth rate, cell wall thickening and higher survival rate in the presence of lysostaphin were observed in vancomycin-intermediate and vancomycin-resistant induced strains compared with the parent strain. In conclusion, altered autolytic properties, in particular upregulation of the atl gene, may contribute to vancomycin resistance in S. haemolyticus.

  19. Aging Eye Microbiota in Dry Eye Syndrome in Patients Treated with Enterococcus faecium and Saccharomyces boulardii.

    PubMed

    Chisari, Giuseppe; Chisari, Eleonora M; Borzi, Antonio M; Chisari, Clara G

    2017-01-01

    Aging and oxidative stress seem to play a key role in the onset and progression of ocular surface diseases. Dry Eye Syndrome (DES) is a multifactorial disease of the tears and ocular surface in which symptoms may interfere with the ability to work and carry out daily functions. This clinical trial was a pilot study to evaluate the effects of supplementation with mixture (Saccharomyces boulardii MUCL 53837 and Enterococcus faecium LMG S-28935) on the tear film. Following the run-in period subjects were randomized in two groups: group A (n.30 subjects) and group B (n.30 subjects). Group A (control) treated only with substitute tear and group B treated with substitute tear + mixture (probiotic). The data obtained in the two study groups A and B were, respectively the following: Schirmer I: 9.2±0.2 vs. 12.8±0.4 (p< 0.001); Schirmer II: 3.6±0.1 vs. 4.6±0.2 (p<0.001); BUT 3.8±0.3 vs. 6.2±0.2 (p<0.001). Culture test showed initial bacterial growth in group "A" (placebo) 27 out of 60 samples tested, corresponding to 45.0% and "B" after treatment (probiotic) was found positive culture whit growth of bacteria in 18 tests equal to 30.0%. The total numbers of isolations of aerobic and anaerobic bacteria found group A and B after treatment. A reduction of 23 to 16 strains of aerobic and anaerobic isolates from 13 to 7 has been found. The administration of probiotics strains was effective in reducing DES. In light of these results, we have identified our probiotic (Saccharomyces boulardii MUCL 53837 and Enterococcus faecium LMG S-28935) activity integration with the action of tear substitutes, along with standardization of clinical parameters of the tear film and microbiological activity in restoring of the microbiota ocular surface subject with DES. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Identification of Structural and Immunity Genes of a Class IIb Bacteriocin Encoded in the Enterocin A Operon of Enterococcus faecium Strain MXVK29.

    PubMed

    Escamilla-Martínez, E E; Cisneros, Y M Álvarez; Fernández, F J; Quirasco-Baruch, M; Ponce-Alquicira, E

    2017-10-09

    The Enterococcus faecium strain MXVK29, isolated from fermented sausages, produces a bacteriocin with a molecular mass of 3.5 kDa that belongs to the class of enterocins II.1, according to the terminal amino acid sequence, and has been identified as enterocin A. This bacteriocin is active against selected strains of Listeria, Staphylococcus, Pediococcus, and Enterococcus. In this study, we identified the genes adjacent to the structural gene for this bacteriocin, such as the immunity gene (entI) and the inducer gene (entF). Accessory genes for this bacteriocin, such as entK, entR, and entT, were identified as well, in addition to the orf2 and orf3, showing a high identity with class IIb peptides bacteriocins. The orf2 shows the consensus motif GxxxG, similar to those shown by bacteriocins such as PlnNC8α, EntCα, and Ent1071A, whereas orf3 shows a consensus motif SxxxS similar to that present in PlnNC8β (AxxxA). PlnNC8 is expressed only in bacterial cocultures, so there is the possibility that the expression of this two-peptide bacteriocin can be induced by a similar mechanism. So far, only the expression of enterocin A has been found in this strain; however, the presence of the genes ent29α and ent29β opens the possibility for further research on its induction, functionality, and origin. Although there are reports on this type of bacteriocin (EntX, EntC, and Ent1071) in other strains of E. faecium, no report exists yet on an Enterococcus strain producing two different classes of bacteriocin.

  1. Enhanced Control of Listeria monocytogenes by Enterococcus faecium KE82, a Multiple Enterocin-Producing Strain, in Different Milk Environments.

    PubMed

    Vandera, Elpiniki; Lianou, Alexandra; Kakouri, Athanasia; Feng, Jinbo; Koukkou, Anna-Irini; Samelis, John

    2017-01-01

    Enterococcus faecium KE82, isolated from traditional Greek Graviera cheese, was identified in pure broth cultures in vitro as a multiple enterocin-producing bacterial strain possessing the structural entA, entB, and entP enterocin genes. E. faecium KE82 was further assessed for in situ antilisterial activity in raw milk (RM) and commercially thermized milk (TM; 63°C for 30 s) in the presence of the indigenous microbiota and in sterile raw milk (SRM; 121°C for 5 min) with or without the addition of two commercial starter culture (CSC) strains Streptococcus thermophilus and Lactococcus lactis . Growth of Listeria monocytogenes was completely inhibited in RM incubated at 37°C for 6 h, whereas the pathogen was significantly inactivated in RM+KE82 samples during further incubation at 18°C for 66 h. In contrast, L. monocytogenes levels increased by approximately 2 log CFU/ml in TM, but in TM+KE82 samples, pathogen growth was retarded during the first 6 h at 37°C followed by growth cessation and partial inactivation at 18°C. After 48 to 72 h, growth of L. monocytogenes in SRM+CSC samples decreased by 4 to 5 log CFU/ml compared with the SRM control, whereas additional 10-fold decreases in the pathogen were observed in SRM+CSC+KE82 samples. Reverse transcription PCR analysis of SRM+KE82 and SRM+CSC+KE82 samples confirmed that the entA and entB genes were transcribed, but entP gene transcription was not detected. All RM and SRM samples inoculated with E. faecium KE82 displayed strong in situ inhibitory activity against L. monocytogenes in well diffusion bioassays, whereas activity was weaker to undetectable in comparable or additional TM+KE82 samples; no milk sample without E. faecium KE82 had activity against L. monocytogenes . The findings of this study indicate that E. faecium KE82 is an antilisterial agent that could be used in traditional dairy foods because it concomitantly produces enterocins A and B in situ in milk.

  2. Comparative analysis on antibiotic resistance characteristics of Listeria spp. and Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany.

    PubMed

    Schwaiger, K; Schmied, E-M V; Bauer, J

    2010-05-01

    By investigating the prevalence and antimicrobial resistance characteristics of Gram-positive bacteria from organic and conventional keeping systems of laying hens, it was to be determined to what extent these properties are influenced by the different systems. For this purpose, a total of 799 cloacal swabs and 800 egg samples were examined. Prevalences for all selected bacteria from cloacal swabs were much the same for both organic and caged birds: Listeria spp.1.3%[org] versus 1.6%[con]; Enterococcus spp. 95.5%[org] versus 97.5%[con]. Egg contents and eggshells were generally contaminated to a lesser extent, primarily with Enterococcus spp. Listeria isolates were susceptible to almost all tested antibiotics, only three Listeria innocua from conventional keepings were resistant to clindamycin; one isolate additionally to imipenem. High percentages of Enterococcus faecalis were resistant to doxycycline and macrolides. Enterococcus faecium proved to have high resistance rates to clindamycin, fosfomycin and erythromycin; 9.1% were even resistant to the reserve antibiotic synercid. Further, Enterococcus spp. showed higher resistance rates to doxycycline, erythromycin, fosfomycin and rifampicin. No glycopeptide resistant enterococci were detected. A correlation between keeping system and resistance/susceptibility rates could be demonstrated. In detail, E. faecalis from organic laying hen husbandries showed significant lower resistance prevalences to tylosin, streptomycin and doxycycline; susceptibility rates were higher for enrofloxacin and ciprofloxacin. Rifampicin and imipenem were more effective in isolates from conventional keepings (P < 0.05). The amounts of resistant isolates of the Enterococcus raffinosus from organic farms were significantly lower, the amounts of sensitive isolates were significantly higher than from conventional farms concerning eight antibiotics (P < 0.05). When comparing the susceptibility/resistance rates, as well as the mean minimum

  3. A novel combination approach of human polyclonal IVIG and antibiotics against multidrug-resistant Gram-positive bacteria

    PubMed Central

    Sallam, Mariam Madkour; Abou-Aisha, Khaled; El-Azizi, Mohamed

    2016-01-01

    Background Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and enterococci, have shown a remarkable ability to develop resistance to antimicrobial agents. Objective We aimed to assess possible enhancement of the antimicrobial activity of vancomycin, amoxicillin, clarithromycin, and azithromycin by human polyclonal intravenous immunoglobulin G (IVIG) against 34 multidrug-resistant (MDR) bacterial isolates, including MRSA, Enterococcus faecium, and Enterococcus faecalis. Materials and methods Double combinations of the antibiotics with the IVIG were assessed by checkerboard assay, where the interaction was evaluated with respect to the minimum inhibitory concentration (MIC) of the antibiotics. The results of the checkerboard assay were verified in vitro using time-kill assay and in vivo using an invasive sepsis murine model. Results The checkerboard assay showed that IVIG enhanced the antimicrobial activity of amoxicillin and clarithromycin against isolates from the three groups of bacteria, which were resistant to the same antibiotics when tested in the absence of IVIG. The efficacy of vancomycin against 15% of the tested isolates was enhanced when it was combined with the antibodies. Antagonism was demonstrated in 47% of the E. faecalis isolates when clarithromycin was combined with the IVIG. Synergism was proved in the time-kill assay when amoxicillin was combined with the antibodies; meanwhile, antagonism was not demonstrated in all tested combinations, even in combinations that showed such response in checkerboard assay. Conclusion The suggested approach is promising and could be helpful to enhance the antimicrobial activity of not only effective antibiotics but also antibiotics that have been proven to be ineffective against MDR bacteria. To our knowledge, this combinatorial approach against MDR bacteria, such as MRSA and enterococci, has not been investigated before. PMID:27994476

  4. Safety Evaluation of Enterocin Producer Enterococcus sp. Strains Isolated from Traditional Turkish Cheeses.

    PubMed

    Avcı, Mine; Özden Tuncer, Banu

    2017-07-06

    The purpose of this study was to determine the antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. isolated from different cheeses and also investigate some of their virulence factors. Enterococcus strains were isolated from 33 different cheeses. Enterococcus faecium (6 strains) and Enterococcus faecalis (5 strains) enterocin-producing strains were identified by 16S rDNA analyses. Structural genes entA, entB, entP and entX were detected in some isolates. Multiple enterocin structural genes were found in 7 strains. None of the tested enterococci demonstrated anyβ-haemolytic activity and only one strain had gelatinase activity. Six strains showed multiple antibiotic resistance patterns and in addition, vanA and several virulence genes were detected in many strains. Only E. faecalis MBE1-9 showed tyrosine decarboxylase activity and tdc gene was detected only in this strain.

  5. Enterococcus faecium F58, a bacteriocinogenic strain naturally occurring in Jben, a soft, farmhouse goat's cheese made in Morocco.

    PubMed

    Achemchem, F; Martínez-Bueno, M; Abrini, J; Valdivia, E; Maqueda, M

    2005-01-01

    Characterization of Ent F-58 produced by Enterococcus faecium strain F58 isolated from Jben, a soft, farmhouse goat's cheese manufactured without starter cultures. E. faecium strain F58 was isolated because of its broad inhibitory spectrum, including activity against food-borne pathogenic and spoilage bacteria. The antimicrobial substance was produced during the growth phase, with maximum production after 16-20 h of incubation at 30 degrees C, and was stable over a wide pH range (4-8) and at high temperatures (5 min at 100 degrees C). The enterocin was purified to homogeneity using cation exchange and hydrophobic interaction on C-18 and reverse-phase high-performance liquid chromatography. The activity was eluted as two individual active fractions (F-58A and F-58B) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis showed masses of 5210.5 and 5234.3 Da respectively. Both peptides were partially sequenced by Edman degradation, and amino-acid sequencing revealed high similarity with enterocin L50 (I). PCR-amplified fragments containing the structural genes for F-58 A and B were located in a 22-kb plasmid harboured by this strain. We verified that it also holds the structural gene for P-like enterocin. E. faecium strain F58 from Jben cheese, a producer of enterocin L50, exerts an inhibitory effect against strains of genera such as Listeria, Staphylococcus, Clostridium, Brochothrix and Bacillus. Enterocin was characterized according to its functional and biological properties, purification to homogeneity and an analysis of its amino acid and genetic sequences. E. faecium strain F58 is a newly discovered producer of enterocin L50, the biotechnological characteristics of which indicate its potential for application as a protective agent against pathogens and spoilage bacteria in foods.

  6. OCCURRENCE OF VANCOMYCIN RESISTANT ENTEROCOCCI IN ANIMAL FECES

    EPA Science Inventory

    A survey was conducted to determine the occurrence of vancomycin resistant Enterococci (VRE) in animal and human fecal samples. A selective agar mEI, and mEI supplemented with 4 micrograms/ml vancomycin was used in a membrane filtration procedure to determine quantitative levels ...

  7. Reduction of Clostridium Difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods

    PubMed Central

    Eckstein, Brittany C; Adams, Daniel A; Eckstein, Elizabeth C; Rao, Agam; Sethi, Ajay K; Yadavalli, Gopala K; Donskey, Curtis J

    2007-01-01

    Background Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD) and vancomycin-resistant Enterococcus (VRE) colonization or infection and examined whether an intervention would result in improved decontamination of surfaces. Methods During a 6-week period, we cultured commonly touched surfaces (i.e. bedrails, telephones, call buttons, door knobs, toilet seats, and bedside tables) in rooms of patients with CDAD and VRE colonization or infection before and after housekeeping cleaning, and again after disinfection with 10% bleach performed by the research staff. After the housekeeping staff received education and feedback, additional cultures were collected before and after housekeeping cleaning during a 10-week follow-up period. Results Of the 17 rooms of patients with VRE colonization or infection, 16 (94%) had one or more positive environmental cultures before cleaning versus 12 (71%) after housekeeping cleaning (p = 0.125), whereas none had positive cultures after bleach disinfection by the research staff (p < 0.001). Of the 9 rooms of patients with CDAD, 100% had positive cultures prior to cleaning versus 7 (78%) after housekeeping cleaning (p = 0.50), whereas only 1 (11%) had positive cultures after bleach disinfection by research staff (p = 0.031). After an educational intervention, rates of environmental contamination after housekeeping cleaning were significantly reduced. Conclusion Our findings provide additional evidence that simple educational interventions directed at housekeeping staff can result in improved decontamination of environmental surfaces. Such interventions should include efforts to monitor cleaning and disinfection practices and provide feedback to the housekeeping staff. PMID:17584935

  8. Dietary Enterococcus faecium NCIMB 10415 and Zinc Oxide Stimulate Immune Reactions to Trivalent Influenza Vaccination in Pigs but Do Not Affect Virological Response upon Challenge Infection

    PubMed Central

    Wang, Zhenya; Burwinkel, Michael; Chai, Weidong; Lange, Elke; Blohm, Ulrike; Breithaupt, Angele; Hoffmann, Bernd; Twardziok, Sven; Rieger, Juliane; Janczyk, Pawel; Pieper, Robert; Osterrieder, Nikolaus

    2014-01-01

    Swine influenza viruses (SIV) regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E.) faecium NCIMB 10415 or zinc (Zn) oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels of Zn (2500 ppm, Znhigh; 50 ppm, Znlow). Half of the piglets were vaccinated intramuscularly (VAC) twice with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Znhigh and E. faecium groups gained weight after infection while those in the control group (Znlow) lost weight. Using ELISA, we found significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI) titers were also observed in the Znhigh+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the Znhigh and E. faecium groups at single time points after infection compared to the Znlow control group, but no prolonged effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected. Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology. PMID:24489827

  9. A 1.5 hour procedure for identification of Enterococcus Species directly from blood cultures.

    PubMed

    Morgan, Margie A; Marlowe, Elizabeth; Novak-Weekly, Susan; Miller, J M; Painter, T M; Salimnia, Hossein; Crystal, Benjamin

    2011-02-10

    Enterococci are a common cause of bacteremia with E. faecalis being the predominant species followed by E. faecium. Because resistance to ampicillin and vancomycin in E. faecalis is still uncommon compared to resistance in E. faecium, the development of rapid tests allowing differentiation between enterococcal species is important for appropriate therapy and resistance surveillance. The E. faecalis OE PNA FISH assay (AdvanDx, Woburn, MA) uses species-specific peptide nucleic acid (PNA) probes in a fluorescence in situ hybridization format and offers a time to results of 1.5 hours and the potential of providing important information for species-specific treatment. Multicenter studies were performed to assess the performance of the 1.5 hour E. faecalis/OE PNA FISH procedure compared to the original 2.5 hour assay procedure and to standard bacteriology methods for the identification of enterococci directly from a positive blood culture bottle.

  10. A 1.5 Hour Procedure for Identification of Enterococcus Species Directly from Blood Cultures

    PubMed Central

    Morgan, Margie A.; Marlowe, Elizabeth; Novak-Weekly, Susan; Miller, J.M.; Painter, T.M.; Salimnia, Hossein; Crystal, Benjamin

    2011-01-01

    Enterococci are a common cause of bacteremia with E. faecalis being the predominant species followed by E. faecium. Because resistance to ampicillin and vancomycin in E. faecalis is still uncommon compared to resistance in E. faecium, the development of rapid tests allowing differentiation between enterococcal species is important for appropriate therapy and resistance surveillance. The E. faecalis OE PNA FISH assay (AdvanDx, Woburn, MA) uses species-specific peptide nucleic acid (PNA) probes in a fluorescence in situ hybridization format and offers a time to results of 1.5 hours and the potential of providing important information for species-specific treatment. Multicenter studies were performed to assess the performance of the 1.5 hour E. faecalis/OE PNA FISH procedure compared to the original 2.5 hour assay procedure and to standard bacteriology methods for the identification of enterococci directly from a positive blood culture bottle. PMID:21339730

  11. Inducer bacteria, unique signal peptides and low nutrient media stimulate in-vitro bacteriocin production by Lactobacillus spp. and Enterococcus spp. strains

    USDA-ARS?s Scientific Manuscript database

    Bacteriocins (BCN) provide promising potential to control bacterial infections in a variety of applications. We previously reported three Type IIa BCN produced by Lactobacillus salivarius B-30514 (OR-7), Enterococcus durans/faecium/hirae B-30745 (E 760) and Enterococcus faecium B-30746 (E 50-52). ...

  12. Longitudinal surveillance on antibiogram of important Gram-positive pathogens in Southern China, 2001 to 2015.

    PubMed

    Xu, Zhenbo; Xie, Jinhong; Peters, Brian M; Li, Bing; Li, Lin; Yu, Guangchao; Shirtliff, Mark E

    2017-02-01

    A longitudinal surveillance aimed to investigate the antibiogram of three genus of important Gram-positive pathogens in Southern China during 2001-2015. A total of 3849 Staphylococcus, Enterococcus and Streptococcus strains were isolated from Southern China during 2001-2015. Bacteria identification was performed by colony morphology, Gram staining, the API commercial kit and the Vitek 2 automated system. Antimicrobial susceptibility testing was determined by disk diffusion method and MIC method. As sampling site was concerned, 51.4% of Staphylococcus strains were isolated from sputum, whereas urinary tract remained the dominant infection site among Enterococcus and Streptococcus. According to the antimicrobial susceptibility, three genus of important Gram-positive pathogens showed high resistance against erythromycin, tetracycline, ciprofloxacin and clindamycin. Resistance rates to penicillins (penicillin, oxacillin, ampicillin) were high as well, with the exception of E. faecalis and Streptococcus. Overall, resistance rates against methicillin (oxacillin) were 63.2% in S. aureus and 76.2% in coagulase-negative Staphylococcus (CNS), along with continuous increases during the study. VRSA and vancomycin-resistant coagulase-negative Staphylococcus only appeared in 2011-2015. Sight decline was obtained for the vancomycin resistance of E. faecalis, while vancomycin-resistant E. faecium only appeared in 2011-2015, with its intermediate rate decreasing. Significant decrease in penicillin-resistant Streptococcus pneumonia (PRSP) was observed during studied period. Glycopeptide antibiotic remained highly effective to Staphylococcus, Enterococcus and Streptococcus (resistance rates <5%). Despite decline obtained for some antibiotic agents resistance during 2001-2015, antimicrobial resistance among Gram-positive pathogens still remained high in Southern China. This study may aid in the guidance for appropriate therapeutic strategy of infections caused by nosocomial

  13. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy.

    PubMed

    Thayer, Desiree A; Wong, Chi-Huey

    2006-09-18

    Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.

  14. Pharmacodynamic activity of ceftobiprole compared with vancomycin versus methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate Staphylococcus aureus (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) using an in vitro model.

    PubMed

    Zhanel, George G; Voth, Dylan; Nichol, Kim; Karlowsky, James A; Noreddin, Ayman M; Hoban, Daryl J

    2009-08-01

    This study compared the pharmacodynamics of ceftobiprole and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) using an in vitro model. Two methicillin-susceptible S. aureus (MSSA), two community-associated (CA)-MRSA, one healthcare-associated (HA)-MRSA, three VISA and two VRSA were studied. The pharmacodynamic model was inoculated with a concentration of 1 x 10(6) cfu/mL and ceftobiprole dosed every 8 h (at 0, 8 and 16 h) to simulate the fC(max) and t(1/2) obtained after 500 mg intravenous (iv) every 8 h dosing (fC(max,) 30 mg/L; t(1/2,) 3.5 h). Vancomycin was dosed every 12 h (at 0 and 12 h) to simulate fC(max) and t(1/2) obtained after 1 g iv every 12 h dosing (fC(max), 20 mg/L; t(1/2), 8 h). Samples were collected over 24 h to assess viable growth. Ceftobiprole T > MIC of > or =100% (ceftobiprole MICs, < or =2 mg/L) was bactericidal (> or =3 log(10) killing) against MSSA, CA-MRSA, HA-MRSA, VISA and VRSA at 16 and 24 h. Vancomycin fAUC(24)/MIC of 340 (vancomycin MIC, 1 mg/L for MSSA and MRSA) resulted in a 1.8-2.6 log(10) reduction in colony count at 24 h. Vancomycin fAUC(24)/MIC of 85-170 (vancomycin MIC, 2-4 mg/L for VISA) resulted in a 0.4-0.7 log(10) reduction at 24 h. Vancomycin fAUC(24)/MIC of 5.3 (vancomycin MIC, 64 mg/L for VRSA) resulted in a limited effect. Ceftobiprole T > MIC of > or =100% (ceftobiprole MICs, < or =2 mg/L) was bactericidal (> or =3 log(10) killing) against MSSA, CA-MRSA, HA-MRSA, VISA and VRSA at 16 and 24 h. Vancomycin was bacteriostatic against MSSA, MRSA and VISA, while demonstrating no activity against VRSA.

  15. Enterococcus Xinjiangensis sp. nov., Isolated from Yogurt of Xinjiang, China.

    PubMed

    Ren, Xiaopu; Li, Mingyang; Guo, Dongqi

    2016-09-01

    A Gram-strain-positive bacterial strain 48(T) was isolated from traditional yogurt in Xinjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, polymerase α subunit (rpoA) gene sequence analysis, determination of DNA G+C content, DNA-DNA hybridization with the type strain of Enterococcus ratti and analysis of phenotypic features. Strain 48(T) accounted for 96.1, 95.8, 95.8, and 95.7 % with Enterococcus faecium CGMCC 1.2136(T), Enterococcus hirae ATCC 9790(T), Enterococcus durans CECT 411(T), and E. ratti ATCC 700914(T) in the 16S rRNA gene sequence similarities, respectively. The sequence of rpoA gene showed similarities of 99.0, 96.0, 96.0, and 96 % with that of E. faecium ATCC 19434(T), Enterococcus villorum LMG12287, E. hirae ATCC 9790(T), and E. durans ATCC 19432(T), respectively. Based upon of polyphasic characterization data obtained in the study, a novel species, Enterococcus xinjiangensis sp. nov., was proposed and the type strain was 48(T)(=CCTCC AB 2014041(T) = JCM 30200(T)).

  16. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens.

    PubMed

    Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T

    2017-02-06

    The acronymously named "ESKAPE" pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to "eskape" antibiotic treatment. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment.

  17. Effects of Enterococcus faecium SLB 120 on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers.

    PubMed

    Lan, R X; Lee, S I; Kim, I H

    2017-09-01

    This 5-week study was conducted to determine the effects of Enterococcus faecium (SLB 120) on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers. A total of 816 one-day-old male broilers were allocated to 4 groups with 12 replications (17 broilers/pen) according to body weight (43.2 ± 0.32 g). Dietary treatment groups were: (1) CON, basal diet, (2) T1, CON + 0.05% E. faecium, (3) T2, CON + 0.10% E. faecium, (4) T3, CON + 0.20% E. faecium. From day 1 to 21, dietary E. faecium supplementation showed linear increase (P < 0.05) in gain:feed ratio. From day 21 to 35 and the overall period, dietary E. faecium supplementation showed a linear increase (P < 0.05) in body weight gain and gain:feed ratio. On day 35, dietary E. faecium supplementation showed a linear increase (P < 0.05) in the apparent total tract digestibility of dry matter and nitrogen, and the relative weight of bursa of Fabricius; no differences were observed in white blood cells, red blood cells or lymphocyte counts. Dietary E. faecium supplementation showed a linear decrease (P < 0.05) in excreta E.coli counts on day 7 and 35, while excreta Lactobacillus counts were linearly increased (P < 0.05) on day 35. On day 35, dietary E. faecium supplementation linearly decreased (P < 0.05) excreta NH3, H2S, and total mercaptans emission, but only H2S emission was linearly decreased (P < 0.05) on day 7. In conclusion, the supplementation of E. faecium improved growth performance, the digestibility of dry matter and nitrogen, the relative weight of bursa of Fabricius, and shifted excreta microbiota by increasing Lactobacillus and decreasing E.coli counts, as well as decreased excreta NH3, H2S, and total mercaptans gas emission. © 2017 Poultry Science Association Inc.

  18. Vancomycin intermediate-resistant Staphylococcus aureus (VISA) isolated from a patient who never received vancomycin treatment.

    PubMed

    Zhu, Xuhui; Liu, Cailin; Gao, Sui; Lu, Yanfang; Chen, Zhongju; Sun, Ziyong

    2015-04-01

    With the abuse of antibiotics, the methicillin-resistant Staphylococcus aureus (MRSA) strain became prevalent. Furthermore, Staphylococcus aureus with a character of vancomycin intermediate-resistance (VISA) has been found globally since the first report in Japan. The main objectives of this study were to report a case of VISA isolated from a Chinese patient who had never undergone Vancomycin treatment, and to determine its molecular character. A total of 9 strains were recovered from a patient during the therapeutic process. Antimicrobial susceptibility testing was performed to determine their antibiotic susceptibility patterns. To detect the VISA strain's molecular epidemiological features, growth and morphological characters, we used multilocus sequence typing, autolysis assay and transmission electric microscope tests. Pulsed-field gel electrophoresis (PFGE) was performed to characterize the heterogeneities of all isolates. One isolate was found to exhibit vancomycin intermediated-resistant with MIC of 8 μg/ml. It was ST239-T030-agr-1, had thickened cell wall, and displayed a slower growth rate and reduced susceptibility to Triton X-100-induced autolysis than other strains. All 9 strains exhibited the same PFGE pattern. This is the first report of VISA found in central China from a patient who had never received vancomycin treatment. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Validation of VITEK 2 Version 4.01 Software for Detection, Identification, and Classification of Glycopeptide-Resistant Enterococci

    PubMed Central

    Abele-Horn, Marianne; Hommers, Leif; Trabold, René; Frosch, Matthias

    2006-01-01

    We evaluated the ability of the new VITEK 2 version 4.01 software to identify and detect glycopeptide-resistant enterococci compared to that of the reference broth microdilution method and to classify them into the vanA, vanB, vanC1, and vanC2 genotypes. Moreover, the accuracy of antimicrobial susceptibility testing with agents with improved potencies against glycopeptide-resistant enterococci was determined. A total of 121 enterococci were investigated. The new VITEK 2 software was able to identify 114 (94.2%) enterococcal strains correctly to the species level and to classify 119 (98.3%) enterococci correctly to the glycopeptide resistance genotype level. One Enterococcus casseliflavus strain and six Enterococcus faecium vanA strains with low-level resistance to vancomycin were identified with low discrimination, requiring additional tests. One of the vanA strains was misclassified as the vanB type, and one glycopeptide-susceptible E. facium wild type was misclassified as the vanA type. The overall essential agreements for antimicrobial susceptibility testing results were 94.2% for vancomycin, 95.9% for teicoplanin, 100% for quinupristin-dalfopristin and moxifloxacin, and 97.5% for linezolid. The rates of minor errors were 9% for teicoplanin and 5% for the other antibiotic agents. The identification and susceptibility data were produced within 4 h to 6 h 30 min and 8 h 15 min to 12 h 15 min. In conclusion, use of VITEK 2 version 4.01 software appears to be a reliable method for the identification and detection of glycopeptide-resistant enterococci as well as an improvement over the use of the former VITEK 2 database. However, a significant reduction in the detection time would be desirable. PMID:16390951

  20. Causative Organisms and Associated Antimicrobial Resistance in Healthcare-Associated, Central Line-Associated Bloodstream Infections From Oncology Settings, 2009-2012.

    PubMed

    See, Isaac; Freifeld, Alison G; Magill, Shelley S

    2016-05-15

    Recent antimicrobial resistance data are lacking from inpatient oncology settings to guide infection prophylaxis and treatment recommendations. We describe central line-associated bloodstream infection (CLABSI) pathogens and antimicrobial resistance patterns reported from oncology locations to the Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN). CLABSI data reported to NHSN from 2009 to 2012 from adult inpatient oncology locations were compared to data from nononcology adult locations within the same hospitals. Pathogen profile, antimicrobial resistance rates, and CLABSI incidence rates per 1000 central line-days were calculated. CLABSI incidence rates were compared using Poisson regression. During 2009-2012, 4654 CLABSIs were reported to NHSN from 299 adult oncology units. The most common organisms causing CLABSI in oncology locations were coagulase-negative staphylococci (16.9%), Escherichia coli (11.8%), and Enterococcus faecium (11.4%). Fluoroquinolone resistance was more common among E. coli CLABSI in oncology than nononcology locations (56.5% vs 41.5% of isolates tested; P < .0001) and increased significantly from 2009-2010 to 2011-2012 (49.5% vs 60.4%; P = .01). Furthermore, rates of CLABSI were significantly higher in oncology compared to nononcology locations for fluoroquinolone-resistant E. coli (rate ratio, 7.37; 95% confidence interval [CI], 6.20-8.76) and vancomycin-resistant E. faecium (rate ratio, 2.27, 95% CI, 2.03-2.53). However, resistance rates for some organisms, such as Klebsiella species and Pseudomonas aeruginosa, were lower in oncology than in nononcology locations. Antimicrobial-resistant E. coli and E. faecium have become significant pathogens in oncology. Practices for antimicrobial prophylaxis and empiric antimicrobial therapy should be regularly assessed in conjunction with contemporary antimicrobial resistance data. Published by Oxford University Press for the Infectious Diseases Society of

  1. Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish.

    PubMed

    Ishibashi, Naoki; Himeno, Kohei; Fujita, Koji; Masuda, Yoshimitsu; Perez, Rodney Honrada; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2012-01-01

    Enterocins NKR-5-3A, B, C, and D were purified from the culture supernatant of Enterococcus faecium NKR-5-3 and characterized. Among the four purified peptides, enterocin NKR-5-3A (5242.3 Da) was identical to brochocin A, produced by Brochothrix campestris ATCC 43754, in mature peptides, and its putative synergistic peptide, enterocin NKR-5-3Z, was found to be encoded in ent53Z downstream of ent53A, encoding enterocin NKR-5-3A. Enterocin NKR-5-3B (6316.4 Da) showed a broad antimicrobial spectrum, and enterocin NKR-5-3C (4512.8 Da) showed high activity against Listeria. Enterocin NKR-5-3D (2843.5 Da), showing high homology to an inducing peptide produced by Lactobacillus sakei 5, induced the production of the enterocins. The enterocins showed different antimicrobial spectra and intensities. E. faecium NKR-5-3 concomitantly produced enterocins NKR-5-3A, B, C, and D which probably belong to different classes of bacteriocins. Furthermore, NKR-5-3 production was induced by enterocin NKR-5-3D.

  2. Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia.

    PubMed

    Solomon, Fithamlak Bisetegen; Wadilo, Fiseha Wada; Arota, Amsalu Amache; Abraham, Yishak Leka

    2017-04-12

    Hospitals provide a reservoir of microorganisms, many of which are multi-resistant to antibiotics. Emergence of multi-drug resistant strains in a hospital environment, particularly in developing countries is an increasing problem to infection treatment. This study aims at assessing antibiotic resistant airborne bacterial isolates. A cross-sectional study was conducted at Wolaita Sodo university teaching and referral Hospital. Indoor air samples were collected by using passive air sampling method. Sample processing and antimicrobial susceptibility testing were done following standard bacteriological techniques. The data was analyzed using SPSS version 20. Medically important bacterial pathogens, Coagulase negative staphylococci (29.6%), Staphylococcus aureus (26.3%), Enterococci species, Enterococcus faecalis and Enterococcus faecium (16.5%), Acinetobacter species (9.5%), Escherichia coli (5.8%) and Pseudomonas aeruginosa (5.3%) were isolated. Antibiotic resistance rate ranging from 7.5 to 87.5% was detected for all isolates. Acinetobacter species showed a high rate of resistance for trimethoprim-sulfamethoxazole, gentamicin (78.2%) and ciprofloxacin (82.6%), 28 (38.9%) of S. aureus isolates were meticillin resistant, and 7.5% Enterococci isolates of were vancomycin resistant. 75.3% of all bacterial pathogen were multi-drug resistant. Among them, 74.6% were gram positive and 84% were gram negative. Multi-drug resistance were observed among 84.6% of P. aeruginosa, of 82.5% Enterococcii, E. coli 78.6%, S. aureus 76.6%, and Coagulase negative staphylococci of 73.6%. Indoor environment of the hospital was contaminated with airborne microbiotas, which are common cause of post-surgical site infection in the study area. Bacterial isolates were highly resistant to commonly used antibiotics with high multi-drug resistance percentage. So air quality of hospital environment, in restricted settings deserves attention, and requires long-term surveillance to protect both

  3. Fatal Enterococcus durans aortic valve endocarditis: a case report and review of the literature

    PubMed Central

    Vijayakrishnan, Rajakrishnan; Rapose, Alwyn

    2012-01-01

    Most enterococcal endocarditis is caused by Enterococcus faecalis and Enterococcus faecium. Enterococcus durans is a rare member of non-faecalis, non-faecium enterococcal species and is found in the intestines of animals. E durans endocarditis is a very rare infection—only two cases of endocarditis in humans have been reported in the literature—and usually associated with good outcomes when treated with appropriate antibiotics. We report the first case of fatal E durans endocarditis. This patient had end-stage liver disease with associated compromised immune status that likely contributed to the progression of disease in spite of appropriate antibiotic coverage and clearance of bacteraemia. PMID:22684831

  4. Antimicrobial Resistance in Enterococcus spp. Isolated from Environmental Samples in an Area of Intensive Poultry Production

    PubMed Central

    Furtula, Vesna; Jackson, Charlene R.; Farrell, Erin Gwenn; Barrett, John B.; Hiott, Lari M.; Chambers, Patricia A.

    2013-01-01

    Enterococcus spp. from two poultry farms and proximate surface and ground water sites in an area of intensive poultry production were tested for resistance to 16 clinical antibiotics. Resistance patterns were compared to assess trends and possible correlations for specific antimicrobials and levels of resistance. Enterococci were detected at all 12 surface water sites and three of 28 ground water sites. Resistance to lincomycin, tetracycline, penicillin and ciprofloxacin in poultry litter isolates was high (80.3%, 65.3%, 61.1% and 49.6%, respectively). Resistance in the surface water to the same antibiotics was 87.1%, 24.1%, 7.6% and 12.9%, respectively. Overall, 86% of litter isolates, 58% of surface water isolates and 100% of ground water isolates were resistant to more than one antibiotic. Fifty-four different resistance patterns were recognised in isolates obtained from litter and environmental samples and several E. faecium and E. faecalis isolates from litter and environment samples shared the same resistance pattern. Multiple antibiotic resistant (MAR) indices calculated to assess health risks due to the presence of resistant enterococci suggested an increased presence of antibiotics in surface water, likely from poultry sources as no other wastewater contributions in the area were documented. PMID:23481592

  5. Pathogens Present in Acute Mangled Extremities From Afghanistan and Subsequent Pathogen Recovery

    DTIC Science & Technology

    2015-01-01

    methicillin - resistant Staphylococcus aureus or vancomycin- resistant Enterococcus. Most wounds were colonized with low-virulence...there were no methicillin - resistant Staphylococcus aureus or vancomycin- resistant Enterococcus. Although Enterococcus was recovered at Role 3 and 4 in 9...available for furthermicrobiological analysis in this study.MDRwas defined asmethicillin- resistant Staphylococcus aureus , vancomycin- resistant

  6. Cross-talk Between Host, Microbiome and Probiotics: A Systems Biology Approach for Analyzing the Effects of Probiotic Enterococcus faecium NCIMB 10415 in Piglets.

    PubMed

    Twardziok, S O; Pieper, R; Aschenbach, J R; Bednorz, C; Brockmann, G A; Fromm, M; Klingspor, S; Kreuzer, S; Lodemann, U; Martens, H; Martin, L; Richter, J F; Scharek-Tedin, L; Siepert, B F; Starke, I C; Tedin, K; Vahjen, W; Wieler, L H; Zakrzewski, S S; Zentek, J; Wrede, P

    2014-03-01

    A comprehensive data-set from a multidisciplinary feeding experiment with the probiotic Enterococcus faecium was analyzed to elucidate effects of the probiotic on growing piglets. Sixty-two piglets were randomly assigned to a control (no probiotic treatment) and a treatment group (E. faecium supplementation). Piglets were weaned at 26 d. Age-matched piglets were sacrificed for the collection of tissue samples at 12, 26, 34 and 54 d. In addition to zootechnical data, the composition and activity of intestinal microbiota, immune cell types, and intestinal responses were determined. Our systems analysis revealed clear effects on several measured variables in 26 and 34 days old animals, while response patterns varied between piglets from different age groups. Correlation analyses identified reduced associations between intestinal microbial communities and immune system reactions in the probiotic group. In conclusion, the developed model is useful for comparative analyses to unravel systems effects of dietary components and their time resolution. The model identified that effects of E. faecium supplementation most prominently affected the interplay between intestinal microbiota and the intestinal immune system. These effects, as well as effects in other subsystems, clustered around weaning, which is the age where piglets are most prone to diarrhea. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis.

    PubMed

    de Sousa, Marylane; Manzo, Ricardo M; García, José L; Mammarella, Enrique J; Gonçalves, Luciana R B; Pessela, Benevides C

    2017-12-06

    l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N -His-l-AI and C -His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C -His-l-AI was preferentially hexameric in solution, whereas N -His-l-AI was mainly monomeric. The specific activity of the N -His-l-AI at acidic pH was higher than that of C -His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg -1 , respectively. However, C -His-l-AI was more active and stable at alkaline pH than N -His-l-AI. N -His-l-AI follows a Michaelis-Menten kinetic, whereas C -His-l-AI fitted to a sigmoidal saturation curve.

  8. Intestinal Translocation of Clinical Isolates of Vancomycin-Resistant Enterococcus faecalis and ESBL-Producing Escherichia coli in a Rat Model of Bacterial Colonization and Liver Ischemia/Reperfusion Injury

    PubMed Central

    van der Heijden, Karin M.; van der Heijden, Inneke M.; Galvao, Flavio H.; Lopes, Camila G.; Costa, Silvia F.; Abdala, Edson; D’Albuquerque, Luiz A.; Levin, Anna S.

    2014-01-01

    The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results – The best inocula were: VRE: 2.4×1010 cfu and ESBL-E. coli: 1.12×1010 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.761±13.804 EU/mL−p:0.01). No differences for endotoxin occurred in portal blood. Conclusion –We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups

  9. Vancomycin-induced thrombocytopenia in a 60-year-old man: a case report.

    PubMed

    Shah, Ravish A; Musthaq, Adnan; Khardori, Nancy

    2009-06-26

    Vancomycin, a glycopeptide antibiotic, is used to treat resistant gram-positive infections. There has been a 10- to 20-fold increase in its use over the past 25 years. Although ototoxicity and nephrotoxicity are well known side effects of vancomycin, it can also induce platelet reactive antibodies leading to life-threatening thrombocytopenia. Vancomycin is often clinically overlooked as a cause of thrombocytopenia, especially in a scenario of sepsis or when there is use of heparin. We report a proven case of vancomycin-induced thrombocytopenia and its reversal after discontinuation of vancomycin. A 60-year-old man with a history of hypertension, congestive heart failure and dyslipidemia was admitted for a right shoulder rotator cuff tear. He underwent right-shoulder arthroscopy and rotator cuff repair. About three weeks later, he developed pain, swelling and purulent drainage from his right shoulder. Arthroscopic irrigation and drainage was then performed. Intraoperative fluid revealed the presence of Methicillin susceptible Staphylococcus aureus, vancomycin-sensitive Enterococcus spp. and Serratia marcescens. The patient had no known allergies. After reviewing his antimicrobial susceptibility, he was started on vancomycin 1500 mgs intravenously every 12 hours (to treat both Staphylococcus aureus and Enterococcus spp) and ciprofloxacin 750 mgs by oral induction every 12 hours. The patient's condition improved following antibiotic treatment. He was discharged and allowed to go home on IV vancomycin and oral ciprofloxacin. The patient's platelet count on the day of starting vancomycin therapy was 253 x 10(3)/mm(3). At weeks one, two and three, the counts were 231 x 10(3)/mm(3), 272 x 10(3)/mm and 6 x 103/mm(3), respectively. The patient was admitted for further work-up of the thrombocytopenia. He was later shown to have vancomycin-induced platelet-reactive antibodies, causing significant thrombocytopenia, and then reversal after his vancomycin medication was

  10. Dietary Enterococcus faecium NCIMB 10415 and zinc oxide stimulate immune reactions to trivalent influenza vaccination in pigs but do not affect virological response upon challenge infection.

    PubMed

    Wang, Zhenya; Burwinkel, Michael; Chai, Weidong; Lange, Elke; Blohm, Ulrike; Breithaupt, Angele; Hoffmann, Bernd; Twardziok, Sven; Rieger, Juliane; Janczyk, Pawel; Pieper, Robert; Osterrieder, Nikolaus

    2014-01-01

    Swine influenza viruses (SIV) regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E.) faecium NCIMB 10415 or zinc (Zn) oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels of Zn (2500 ppm, Zn(high); 50 ppm, Zn(low)). Half of the piglets were vaccinated intramuscularly (VAC) twice with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Zn(high) and E. faecium groups gained weight after infection while those in the control group (Zn(low)) lost weight. Using ELISA, we found significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI) titers were also observed in the Zn(high)+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the Zn(high) and E. faecium groups at single time points after infection compared to the Zn(low) control group, but no prolonged effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected. Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology.

  11. Epidemiology of Resistant Microbial Strains Among Different Groups of People (Healthy, Infected and Exposed to Animals)

    ClinicalTrials.gov

    2017-11-10

    ESBL Producing E.Coli; ESBL Producing K.Pneumoniae; Multidrug Resistant P.Aeruginosa; Carbapenem Resistant P.Aeruginosa; Methicillin Resistant Staphylococcus Aureus (MRSA); Vancomycin (Glycopeptide) Resistant Enterococcus (VRE)

  12. Combined effect of enterocin and lipase from Enterococcus faecium NCIM5363 against food borne pathogens: mode of action studies.

    PubMed

    Ramakrishnan, Vrinda; Narayan, Bhaskar; Halami, Prakash M

    2012-08-01

    Food borne diseases have a major impact on public health whose epidemiology is rapidly changing. The whole cells of pathogens involved or their toxins/metabolites affect the human health apart from spoiling sensory properties of the food products finally affecting the food industry as well as consumer health. With pathogens developing mechanisms of antibiotic resistance, there has been an increased need to replace antibiotics as well as chemical additives with naturally occurring bacteriocins. Bacteriocins are known to act mainly against Gram-positive pathogens and with little or no effect towards Gram-negative enteric bacteria. In the present study, combination effect of lipase and bacteriocin produced by Enterococcus faecium NCIM5363, a highly lipolytic lactic acid bacterium against various food pathogens was assessed. The lipase in combination with enterocin exhibited a lethal effect against Gram-negative pathogens. Scanning electron microscopy studies carried out to ascertain the constitutive mode of action of lipase and enterocin revealed that the lipase degrades the cell wall of Gram-negative bacteria and creates a pore through which enterocin enters thereby resulting in cell death. The novelty of this work is the fact that this is the first report revealing the synergistic effect of lipase with enterocin against Gram-negative bacteria.

  13. A Discrete Event Simulation Model of Patient Flow in a General Hospital Incorporating Infection Control Policy for Methicillin-Resistant Staphylococcus Aureus (MRSA) and Vancomycin-Resistant Enterococcus (VRE).

    PubMed

    Shenoy, Erica S; Lee, Hang; Ryan, Erin E; Hou, Taige; Walensky, Rochelle P; Ware, Winston; Hooper, David C

    2018-02-01

    Hospitalized patients are assigned to available staffed beds based on patient acuity and services required. In hospitals with double-occupancy rooms, patients must be additionally matched by gender. Patients with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) must be bedded in single-occupancy rooms or cohorted with other patients with similar MRSA/VRE flags. We developed a discrete event simulation (DES) model of patient flow through an acute care hospital. Patients are matched to beds based on acuity, service, gender, and known MRSA/VRE colonization. Outcomes included time to bed arrival, length of stay, patient-bed acuity mismatches, occupancy, idle beds, acuity-related transfers, rooms with discordant MRSA/VRE colonization, and transmission due to discordant colonization. Observed outcomes were well-approximated by model-generated outcomes for time-to-bed arrival (6.7 v. 6.2 to 6.5 h) and length of stay (3.3 v. 2.9 to 3.0 days), with overlapping 90% coverage intervals. Patient-bed acuity mismatches, where patient acuity exceeded bed acuity and where patient acuity was lower than bed acuity, ranged from 0.6 to 0.9 and 8.6 to 11.1 mismatches per h, respectively. Values for observed occupancy, total idle beds, and acuity-related transfers compared favorably to model-predicted values (91% v. 86% to 87% occupancy, 15.1 v. 14.3 to 15.7 total idle beds, and 27.2 v. 22.6 to 23.7 transfers). Rooms with discordant colonization status and transmission due to discordance were modeled without an observed value for comparison. One-way and multi-way sensitivity analyses were performed for idle beds and rooms with discordant colonization. We developed and validated a DES model of patient flow incorporating MRSA/VRE flags. The model allowed for quantification of the substantial impact of MRSA/VRE flags on hospital efficiency and potentially avoidable nosocomial transmission.

  14. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada

    PubMed Central

    Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie

    2016-01-01

    An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry. PMID:26733732

  15. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada.

    PubMed

    Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie

    2016-01-01

    An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry.

  16. Current and novel antibiotics against resistant Gram-positive bacteria.

    PubMed

    Perez, Federico; Salata, Robert A; Bonomo, Robert A

    2008-01-01

    The challenge posed by resistance among Gram-positive bacteria, epitomized by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) is being met by a new generation of antimicrobials. This review focuses on the new β-lactams with activity against MRSA (ceftobiprole and ceftaroline) and on the new glycopeptides (oritavancin, dalbavancin, and telavancin). It will also consider the role of vancomycin in an era of existing alternatives such as linezolid, daptomycin and tigecycline. Finally, compounds in early development are described, such as iclaprim, friulimicin, and retapamulin, among others.

  17. Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection.

    PubMed

    Montealegre, Maria Camila; Singh, Kavindra V; Somarajan, Sudha R; Yadav, Puja; Chang, Chungyu; Spencer, Robert; Sillanpää, Jouko; Ton-That, Hung; Murray, Barbara E

    2016-05-01

    Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P < 0.001 to 0.048), that reconstitution of empA restored virulence in the UTI model, and that deletion of empA also resulted in attenuation in an infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection

    PubMed Central

    Montealegre, Maria Camila; Singh, Kavindra V.; Somarajan, Sudha R.; Yadav, Puja; Chang, Chungyu; Spencer, Robert; Sillanpää, Jouko; Ton-That, Hung

    2016-01-01

    Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium. We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P < 0.001 to 0.048), that reconstitution of empA restored virulence in the UTI model, and that deletion of empA also resulted in attenuation in an infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract. PMID:26930703

  19. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  20. Preliminary survey of antibiotic-resistant fecal indicator bacteria and pathogenic Escherichia coli from river-water samples collected in Oakland County, Michigan, 2003

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.

    2005-01-01

    A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum-β-lactamase (ESBL)- producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was

  1. Solution Structure of Enterocin HF, an Antilisterial Bacteriocin Produced by Enterococcus faecium M3K31.

    PubMed

    Arbulu, Sara; Lohans, Christopher T; van Belkum, Marco J; Cintas, Luis M; Herranz, Carmen; Vederas, John C; Hernández, Pablo E

    2015-12-16

    The solution structure of enterocin HF (EntHF), a class IIa bacteriocin of 43 amino acids produced by Enterococcus faecium M3K31, was evaluated by CD and NMR spectroscopy. Purified EntHF was unstructured in water, but CD analysis supports that EntHF adopts an α-helical conformation when exposed to increasing concentrations of trifluoroethanol. Furthermore, NMR spectroscopy indicates that this bacteriocin adopts an antiparallel β-sheet structure in the N-terminal region (residues 1-17), followed by a well-defined central α-helix (residues 19-30) and a more disordered C-terminal end (residues 31-43). EntHF could be structurally organized into three flexible regions that might act in a coordinated manner. This is in agreement with the absence of long-range nuclear Overhauser effect signals between the β-sheet domain and the C-terminal end of the bacteriocin. The 3D structure recorded for EntHF fits emerging facts regarding target recognition and mode of action of class IIa bacteriocins.

  2. The Leaderless Bacteriocin Enterocin K1 Is Highly Potent against Enterococcus faecium: A Study on Structure, Target Spectrum and Receptor.

    PubMed

    Ovchinnikov, Kirill V; Kristiansen, Per Eugen; Straume, Daniel; Jensen, Marianne S; Aleksandrzak-Piekarczyk, Tamara; Nes, Ingolf F; Diep, Dzung B

    2017-01-01

    Enterocin K1 (EntK1), enterocin EJ97 (EntEJ97), and LsbB are three sequence related leaderless bacteriocins. Yet LsbB kills only lactococci while EntK1 and EntEJ97 target wider spectra with EntK1 being particularly active against Enterococcus faecium , including nosocomial multidrug resistant isolates. NMR study of EntK1 showed that it had a structure very similar to LsbB - both having an amphiphilic N-terminal α-helix and an unstructured C-terminus. The α-helix in EntK1 is, however, about 3-4 residues longer than that of LsbB. Enterococcal mutants highly resistant to EntEJ97 and EntK1 were found to have mutations within rseP , a gene encoding a stress response membrane-bound Zn-dependent protease. Heterologous expression of the enterococcal rseP rendered resistant cells of Streptococcus pneumoniae sensitive to EntK1 and EntEJ97, suggesting that RseP likely serves as the receptor for EntK1 and EntEJ97. It was also shown that the conserved proteolytic active site in E. faecalis RseP is partly required for EntK1 and EntEJ97 activity, since alanine substitutions of its conserved residues (HExxH) reduced the sensitivity of the clones to the bacteriocins. RseP is known to be involved in bacterial stress response. As expected, the growth of resistant mutants with mutations within rseP was severely affected when they were exposed to higher (stressing) growth temperatures, e.g., at 45°C, at which wild type cells still grew well. These findings allow us to design a hurdle strategy with a combination of the bacteriocin(s) and higher temperature that effectively kills bacteriocin sensitive bacteria and prevents the development of resistant cells.

  3. OCCURRENCE OF HIGH-LEVEL AMINOGLYCOSIDE RESISTANCE IN ENVIRONMENTAL ISOLATES OF ENTEROCOCCI

    EPA Science Inventory

    High-level resistance fo aminoglycosides was observed in environmental isolates of enterococci. Various aquatic habitats, including agricultural runoff, creeks, rivers, wastewater, and wells, were analyzed. Strains of Enterococcus faecalis, e.faecium, E. gallinarum, and other Ent...

  4. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.

    PubMed

    Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann

    2010-05-01

    Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance.

    PubMed

    Miller, Corwin; Kong, Jiayi; Tran, Truc T; Arias, Cesar A; Saxer, Gerda; Shamoo, Yousif

    2013-11-01

    With increasing numbers of hospital-acquired antibiotic resistant infections each year and staggering health care costs, there is a clear need for new antimicrobial agents, as well as novel strategies to extend their clinical efficacy. While genomic studies have provided a wealth of information about the alleles associated with adaptation to antibiotics, they do not provide essential information about the relative importance of genomic changes, their order of appearance, or potential epistatic relationships between adaptive changes. Here we used quantitative experimental evolution of a single polymorphic population in continuous culture with whole-genome sequencing and allelic frequency measurements to study daptomycin (DAP) resistance in the vancomycin-resistant clinical pathogen Enterococcus faecalis S613. Importantly, we sustained both planktonic and nonplanktonic (i.e., biofilm) populations in coculture as the concentration of antibiotic was raised, facilitating the development of more ecological complexity than is typically observed in laboratory evolution. Quantitative experimental evolution revealed a clear order and hierarchy of genetic changes leading to resistance, the signaling and metabolic pathways responsible, and the relative importance of these mutations to the evolution of DAP resistance. Despite the relative simplicity of this ex vivo approach compared to the ecological complexity of the human body, we showed that experimental evolution allows for rapid identification of clinically relevant adaptive molecular pathways and new targets for drug design in pathogens.

  6. Derivatives of a Vancomycin-Resistant Staphylococcus aureus Strain Isolated at Hershey Medical Center

    PubMed Central

    Bozdogan, Bülent; Ednie, Lois; Credito, Kim; Kosowska, Klaudia; Appelbaum, Peter C.

    2004-01-01

    Antimicrobial susceptibilities and genetic relatedness of the vancomycin-resistant Staphylococcus aureus strain (VRSA) isolated at Hershey, Pa. (VRSA Hershey), and its vancomycin-susceptible and high-level-resistant derivatives were studied and compared to 32 methicillin-resistant S. aureus strains (MRSA) isolated from patients and medical staff in contact with the VRSA patient. Derivatives of VRSA were obtained by subculturing six VRSA colonies from the original culture with or without vancomycin. Ten days of drug-free subculture caused the loss of vanA in two vancomycin-susceptible derivatives for which vancomycin MICs were 1 to 4 μg/ml. Multistep selection of three VRSA clones with vancomycin for 10 days increased vancomycin MICs from 32 to 1,024 to 2,048 μg/ml. MICs of teicoplanin, dalbavancin, and oritavancin were also increased from 4, 0.5, and 0.12 to 64, 1, and 32 μg/ml, respectively. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing analysis indicated that VRSA Hershey was the vanA-acquired variety of a common MRSA clone in our hospital with sequence type 5 (ST5). Three of five vancomycin-intermediate S. aureus strains tested from geographically different areas were also ST5, and the Michigan VRSA was ST371, a one-allele variant of ST5. Derivatives of VRSA Hershey had differences in PFGE profiles and the size of SmaI fragment that carries the vanA gene cluster, indicating instability of this cluster in VRSA Hershey. However induction with vancomycin increased glycopeptide MICs and stabilized the resistance. PMID:15561854

  7. Derivatives of a vancomycin-resistant Staphylococcus aureus strain isolated at Hershey Medical Center.

    PubMed

    Bozdogan, Bülent; Ednie, Lois; Credito, Kim; Kosowska, Klaudia; Appelbaum, Peter C

    2004-12-01

    Antimicrobial susceptibilities and genetic relatedness of the vancomycin-resistant Staphylococcus aureus strain (VRSA) isolated at Hershey, Pa. (VRSA Hershey), and its vancomycin-susceptible and high-level-resistant derivatives were studied and compared to 32 methicillin-resistant S. aureus strains (MRSA) isolated from patients and medical staff in contact with the VRSA patient. Derivatives of VRSA were obtained by subculturing six VRSA colonies from the original culture with or without vancomycin. Ten days of drug-free subculture caused the loss of vanA in two vancomycin-susceptible derivatives for which vancomycin MICs were 1 to 4 microg/ml. Multistep selection of three VRSA clones with vancomycin for 10 days increased vancomycin MICs from 32 to 1,024 to 2,048 microg/ml. MICs of teicoplanin, dalbavancin, and oritavancin were also increased from 4, 0.5, and 0.12 to 64, 1, and 32 microg/ml, respectively. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing analysis indicated that VRSA Hershey was the vanA-acquired variety of a common MRSA clone in our hospital with sequence type 5 (ST5). Three of five vancomycin-intermediate S. aureus strains tested from geographically different areas were also ST5, and the Michigan VRSA was ST371, a one-allele variant of ST5. Derivatives of VRSA Hershey had differences in PFGE profiles and the size of SmaI fragment that carries the vanA gene cluster, indicating instability of this cluster in VRSA Hershey. However induction with vancomycin increased glycopeptide MICs and stabilized the resistance.

  8. Bloodstream Infections in Hospitalized Children: Epidemiology and Antimicrobial Susceptibilities.

    PubMed

    Larru, Beatriz; Gong, Wu; Vendetti, Neika; Sullivan, Kaede V; Localio, Russell; Zaoutis, Theoklis E; Gerber, Jeffrey S

    2016-05-01

    Bloodstream infection is a major cause of morbidity and mortality. Much of our understanding of the epidemiology and resistance patterns of bloodstream infections comes from studies of hospitalized adults. We evaluated the epidemiology and antimicrobial resistance of bloodstream infections occurring during an 11-year period in a large, tertiary care children's hospital in the US. All positive blood cultures were identified retrospectively from clinical microbiology laboratory records. We excluded repeat positive cultures with the same organism from the same patient within 30 days and polymicrobial infections. We identified 8196 unique episodes of monomicrobial bacteremia in 5508 patients. Overall, 46% were community onset, 72% were Gram-positive bacteria, 22% Gram-negative bacteria and 5% Candida spp. Coagulase negative Staphylococcus was the most common isolated organism. ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) accounted for 20% of episodes. No S. aureus isolate was resistant to vancomycin or linezolid, and no increase in vancomycin minimum inhibitory concentration among methicillin-resistant S. aureus was observed during the study period. Clinically significant increases in vancomycin-resistant Enterococcus, ceftazidime-resistant P. aeruginosa or carbapenem-resistant Enterobacteriaceae were not observed during the study period; however, rates of methicillin-resistant S. aureus increased over time (P < 0.01). Gram-positive and ESKAPE organisms are leading causes of bacteremia in hospitalized children. Although antimicrobial resistance patterns were favorable compared with prior reports of hospitalized adults, multicenter studies with continuous surveillance are needed to identify trends in the emergence of antimicrobial resistance in this setting.

  9. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques.

    PubMed

    Lüddeke, Frauke; Heß, Stefanie; Gallert, Claudia; Winter, Josef; Güde, Hans; Löffler, Herbert

    2015-02-01

    Elimination of bacteria by ozonation in combination with charcoal or slow sand filtration for advanced sewage treatment to improve the quality of treated sewage and to reduce the potential risk for human health of receiving surface waters was investigated in pilot scale at the sewage treatment plant Eriskirch, Baden-Wuerttemberg/Germany. To determine the elimination of sewage bacteria, inflowing and leaving wastewater of different treatment processes was analysed in a culture-based approach for its content of Escherichia coli, enterococci and staphylococci and their resistance against selected antibiotics over a period of 17 month. For enterococci, single species and their antibiotic resistances were identified. In comparison to the established flocculation filtration at Eriskirch, ozonation plus charcoal or sand filtration (pilot-scale) reduced the concentrations of total and antibiotic resistant E. coli, enterococci and staphylococci. However, antibiotic resistant E. coli and staphylococci apparently survived ozone treatment better than antibiotic sensitive strains. Neither vancomycin resistant enterococci nor methicillin resistant Staphylococcus aureus (MRSA) were detected. The decreased percentage of antibiotic resistant enterococci after ozonation may be explained by a different ozone sensitivity of species: Enterococcus faecium and Enterococcus faecalis, which determined the resistance-level, seemed to be more sensitive for ozone than other Enterococcus-species. Overall, ozonation followed by charcoal or sand filtration led to 0.8-1.1 log-units less total and antibiotic resistant E. coli, enterococci and staphylococci, as compared to the respective concentrations in treated sewage by only flocculation filtration. Thus, advanced wastewater treatment by ozonation plus charcoal or sand filtration after common sewage treatment is an effective tool for further elimination of microorganisms from sewage before discharge in surface waters. Copyright © 2014 Elsevier

  10. Effect of calcium and magnesium on the antimicrobial action of enterocin LR/6 produced by Enterococcus faecium LR/6.

    PubMed

    Kumar, Manoj; Srivastava, Sheela

    2011-06-01

    Enterococci are well-known producers of antimicrobial peptides (enterocins) that possess potential as biopreservatives in food. In this study, divalent cations and release of intracellular potassium were used to assess the mechanism of interaction and killing of enterocin LR/6 produced by Enterococcus faecium LR/6 on three target Gram-positive and Gram-negative bacteria, namely Micrococcus luteus, Enterococcus sp. strain LR/3 and Escherichia coli K-12. Whilst treatment with enterocin LR/6 in all cases led to a significant loss of viability, suggesting a bactericidal mode of action, E. coli K-12 showed better tolerance than the other two strains. Bacteriocins have generally been reported to create pores in the membrane of sensitive cells and this function is diminished by divalent cations. In this study it was shown that Ca(2+) and Mg(2+) markedly improved the viability of enterocin LR/6-treated cells in a concentration-dependent manner. K(+) release as a sign of membrane leakiness was higher in M. luteus compared with the other two test strains. In agreement with the viability response, pre-exposure to Ca(2+) and Mg(2+) substantially reduced the amount of K(+) leakage by M. luteus and Enterococcus sp.; in the case of E. coli K-12, no leakage of K(+) was recorded. These results suggest that enterocin LR/6, which possesses good antibacterial potential, may not be very effective as a preservative in foods containing high concentrations of calcium and magnesium. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target

    PubMed Central

    Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2016-01-01

    Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953

  12. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium.

    PubMed

    Himeno, Kohei; Rosengren, K Johan; Inoue, Tomoko; Perez, Rodney H; Colgrave, Michelle L; Lee, Han Siean; Chan, Lai Y; Henriques, Sónia Troeira; Fujita, Koji; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Nakayama, Jiro; Leelawatcharamas, Vichien; Jikuya, Hiroyuki; Craik, David J; Sonomoto, Kenji

    2015-08-11

    Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.

  13. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens

    PubMed Central

    Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T.

    2017-01-01

    The acronymously named “ESKAPE” pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to “eskape” antibiotic treatment12. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment. PMID:28165020

  14. Lower Prevalence of Antibiotic-Resistant Enterococci on U.S. Conventional Poultry Farms that Transitioned to Organic Practices

    PubMed Central

    Hulet, R. Michael; Zhang, Guangyu; McDermott, Patrick; Kinney, Erinna L.; Schwab, Kellogg J.; Joseph, Sam W.

    2011-01-01

    Background: In U.S. conventional poultry production, antimicrobials are used for therapeutic, prophylactic, and nontherapeutic purposes. Researchers have shown that this can select for antibiotic-resistant commensal and pathogenic bacteria on poultry farms and in poultry-derived products. However, no U.S. studies have investigated on-farm changes in resistance as conventional poultry farms transition to organic practices and cease using antibiotics. Objective: We investigated the prevalence of antibiotic-resistant Enterococcus on U.S. conventional poultry farms that transitioned to organic practices. Methods: Poultry litter, feed, and water samples were collected from 10 conventional and 10 newly organic poultry houses in 2008 and tested for Enterococcus. Enterococcus (n = 259) was identified using the Vitek® 2 Compact System and tested for susceptibility to 17 antimicrobials using the Sensititre™ microbroth dilution system. Data were analyzed using SAS software (version 9.2), and statistical associations were derived based on generalized linear mixed models. Results: Litter, feed, and water samples were Enterococcus positive. The percentages of resistant Enterococcus faecalis and resistant Enterococcus faecium were significantly lower (p < 0.05) among isolates from newly organic versus conventional poultry houses for two (erythromycin and tylosin) and five (ciprofloxacin, gentamicin, nitrofurantoin, penicillin, and tetracycline) antimicrobials, respectively. Forty-two percent of E. faecalis isolates from conventional poultry houses were multidrug resistant (MDR; resistant to three or more antimicrobial classes), compared with 10% of isolates from newly organic poultry houses (p = 0.02); 84% of E. faecium isolates from conventional poultry houses were MDR, compared with 17% of isolates from newly organic poultry houses (p < 0.001). Conclusions: Our findings suggest that the voluntary removal of antibiotics from large-scale U.S. poultry farms that transition to

  15. Surveillance of bacterial contamination in small animal veterinary hospitals with special focus on antimicrobial resistance and virulence traits of enterococci.

    PubMed

    KuKanich, Kate S; Ghosh, Anuradha; Skarbek, Jennifer V; Lothamer, Kale M; Zurek, Ludek

    2012-02-15

    To determine the prevalence of bacterial contamination on 4 surfaces of 4 types of standard equipment in small animal veterinary hospitals. Surveillance study. 10 small animal veterinary hospitals. Each hospital was visited 3 times at 4-month intervals; at each visit, a cage door, stethoscope, rectal thermometer, and mouth gag were swabbed. Swab samples were each plated onto media for culture of enterococci and organisms in the family Enterobacteriaceae. Enterococci were identified via a species-specific PCR assay and sodA gene sequencing; species of Enterobacteriaceae were identified with a biochemical test kit. Antimicrobial susceptibility was assessed via the disk diffusion method. Enterococci were screened for virulence traits and genotyped to assess clonality. Among the 10 hospitals, enterococci were isolated from cage doors in 7, from stethoscopes in 7, from thermometers in 6, and from mouth gags in 1; contamination with species of Enterobacteriaceae was rare. Enterococci were mainly represented by Enterococcus faecium (35.4%), Enterococcus faecalis (33.2%), and Enterococcus hirae (28.3%). Antimicrobial resistance was common in E. faecium, whereas virulence traits were present in 99% of E. faecalis isolates but not in E. faecium isolates. Clonal multidrug-resistant E. faecium was isolated from several surfaces at 1 hospital over multiple visits, whereas sporadic nonclonal contamination was detected in other hospitals. Contamination of surfaces in small animal veterinary hospitals with multidrug-resistant enterococci is a potential concern for pets and humans contacting these surfaces. Implementing precautions to minimize enterococcal contamination on these surfaces is recommended.

  16. Changes in Enterococcal Populations and Related Antibiotic Resistance along a Medical Center-Wastewater Treatment Plant-River Continuum

    PubMed Central

    Oberlé, Kenny; Galopin, Sébastien; Cattoir, Vincent; Budzinski, Hélène; Petit, Fabienne

    2013-01-01

    To determine if hospital effluent input has an ecological impact on downstream aquatic environment, antibiotic resistance in Enterococcus spp. along a medical center-retirement home-wastewater treatment plant-river continuum in France was determined using a culture-based method. Data on antibiotic consumption among hospitalized and general populations and levels of water contamination by antibiotics were collected. All isolated enterococci were genotypically identified to the species level, tested for in vitro antibiotic susceptibility, and typed by multilocus sequence typing. The erm(B) and mef(A) (macrolide resistance) and tet(M) (tetracycline resistance) genes were detected by PCR. Along the continuum, from 89 to 98% of enterococci, according to the sampled site, were identified as Enterococcus faecium. All E. faecium isolates from hospital and retirement home effluents were multiply resistant to antibiotics, contained erm(B) and mef(A) genes, and belonged to hospital-adapted clonal complex 17 (CC17). Even though this species remained dominant in the downstream continuum, the relative proportion of CC17 isolates progressively decreased in favor of other subpopulations of E. faecium that were more diverse, less resistant to antibiotics, and devoid of the classical macrolide resistance genes and that belonged to various sequence types. Antibiotic concentrations in waters were far below the MICs for susceptible isolates. CC17 E. faecium was probably selected in the gastrointestinal tract of patients under the pressure of administered antibiotics and then excreted together with the resistance genes in waters to progressively decrease along the continuum. PMID:23377946

  17. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages.

    PubMed

    Gröbner, Sabine; Fritz, Evelyn; Schoch, Friederike; Schaller, Martin; Berger, Alexander C; Bitzer, Michael; Autenrieth, Ingo B

    2010-10-01

    Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential DeltaPsi(m). Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.

  18. Major globally disseminated clonal complexes of antimicrobial resistant enterococci associated with infections in cancer patients in Brazil.

    PubMed

    Santos, Barbara A; Oliveira, Jéssica S; Cardoso, Nayara T; Barbosa, André V; Superti, Silvana V; Teixeira, Lúcia M; Neves, Felipe P G

    2017-11-01

    Cancer and hematological malignancies constitute major comorbidities in enterococcal infections, but little is known about the characteristics of enterococci affecting cancer patients. The aim of this study was to characterize 132 enterococcal clinical isolates obtained from cancer patients attending a Cancer Reference Center in Brazil between April 2013 and March 2014. Susceptibility to 17 antimicrobial agents was assessed by disk diffusion method. Resistance and virulence genes were investigated by PCR. Multilocus sequence typing (MLST) was performed for selected Enterococcus faecalis and Enterococcus faecium isolates. The predominant species was E. faecalis (108 isolates), followed by E. faecium (18), Enterococcus gallinarum (3), Enterococcus avium (2) and Enterococcus durans (1). Multidrug-resistant (MDR) isolates made up 44.7%, but all isolates were susceptible to fosfomycin, linezolid and glycopeptides. The most prevalent genes associated with erythromycin- and tetracycline-non susceptible isolates were erm(B) (47/71; 66.2%) and tet(M) (24/68; 35.3%), respectively. High-level resistance (HLR) to gentamicin was found in 22 (16.7%) isolates and 13 (59.1%) of them carried the aac(6')-Ie-aph(2″)-Ia gene. HLR to streptomycin was detected in 34 (25.8%) isolates, of which 15 (44.1%) isolates had the ant(6')-Ia gene. The most common virulence genes were gelE (48.9%), esp (30.5%) and asa1 (29.8%). MLST performed for 26 E. faecalis isolates revealed 18 different sequence-types (STs), with seven corresponding to novel STs (625, 626, 627, 628, 629, 630, and 635). On the other hand, nine of 10 E. faecium isolates analyzed by MLST belonged to a single clonal complex, comprised of mostly ST412, which emerged worldwide after mid-2000s, but also two novel STs (963 and 964). We detected major globally disseminated E. faecalis and E. faecium clonal complexes along with novel closely related STs, indicating the fitness and continuous evolution of these hospital

  19. Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41.

    PubMed

    Mareková, Mária; Lauková, Andrea; Skaugen, Morten; Nes, Ingolf

    2007-08-01

    The new bacteriocin, termed enterocin M, produced by Enterococcus faecium AL 41 showed a wide spectrum of inhibitory activity against the indicator organisms from different sources. It was purified by (NH4)2SO4 precipitation, cation-exchange chromatography and reverse phase chromatography (FPLC). The purified peptide was sequenced by N-terminal amino acid Edman degradation and a mass spectrometry analysis was performed. By combining the data obtained from amino acid sequence (39 N-terminal amino acid residues was determined) and the molecular weight (determined to be 4628 Da) it was concluded that the purified enterocin M is a new bacteriocin, which is very similar to enterocin P. However, its molecular weight is different from enterocin P (4701.25). Of the first 39 N-terminal residues of enterocin M, valine was found in position 20 and a lysine in position 35, while enterocin P has tryptophane residues in these positions.

  20. Genetic identification of the bacteriocins produced by Enterococcus faecium IT62 and evidence that bacteriocin 32 is identical to enterocin IT.

    PubMed

    Izquierdo, Esther; Cai, Yimin; Marchioni, Eric; Ennahar, Saïd

    2009-05-01

    Enterococcus faecium IT62, a strain isolated from ryegrass in Japan, produces three bacteriocins (enterocins L50A, L50B, and IT) that have been previously purified and the primary structures of which have been determined by amino acid sequencing (E. Izquierdo, A. Bednarczyk, C. Schaeffer, Y. Cai, E. Marchioni, A. Van Dorsselaer, and S. Ennahar, Antimicrob. Agents Chemother., 52:1917-1923, 2008). Genetic analysis showed that the bacteriocins of E. faecium IT62 are plasmid encoded, but with the structural genes specifying enterocin L50A and enterocin L50B being carried by a plasmid (pTAB1) that is separate from the one (pTIT1) carrying the structural gene of enterocin IT. Sequencing analysis of a 1,475-bp region from pTAB1 identified two consecutive open reading frames corresponding, with the exception of 2 bp, to the genes entL50A and entL50B, encoding EntL50A and EntL50B, respectively. Both bacteriocins are synthesized without N-terminal leader sequences. Genetic analysis of a sequenced 1,380-bp pTIT1 fragment showed that the genes entIT and entIM, encoding enterocin IT and its immunity protein, respectively, were both found in E. faecium VRE200 for bacteriocin 32. Enterocin IT, a 6,390-Da peptide made up of 54 amino acids, has been previously shown to be identical to the C-terminal part of bacteriocin 32, a 7,998-Da bacteriocin produced by E. faecium VRE200 whose structure was deduced from its structural gene (T. Inoue, H. Tomita, and Y. Ike, Antimicrob. Agents Chemother., 50:1202-1212, 2006). By combining the biochemical and genetic data on enterocin IT, it was concluded that bacteriocin 32 is in fact identical to enterocin IT, both being encoded by the same plasmid-borne gene, and that the N-terminal leader peptide for this bacteriocin is 35 amino acids long and not 19 amino acids long as previously reported.

  1. Heat resistance of thermoduric enterococci isolated from milk.

    PubMed

    McAuley, Catherine M; Gobius, Kari S; Britz, Margaret L; Craven, Heather M

    2012-03-15

    Enterococci are reported to survive pasteurisation but the extent of their survival is unclear. Sixty-one thermoduric enterococci isolates were selected from laboratory pasteurised milk obtained from silos in six dairy factories. The isolates were screened to determine log(10) reductions incurred after pasteurisation (63°C/30 min) and ranked from highest to lowest log(10) reduction. Two isolates each of Enterococcus faecalis, Enterococcus faecium, Enterococcus durans and Enterococcus hirae, exhibiting the median and the greatest heat resistance, as well as E. faecalis ATCC 19433, were selected for further heat resistance determinations using an immersed coil apparatus. D values were calculated from survival curves plotted from viable counts obtained after heating isolates in Brain Heart Infusion Broth at 63, 69, 72, 75 and 78°C followed by rapid cooling. At 72°C, the temperature employed for High Temperature Short Time (HTST) pasteurisation (72°C/15s), the D values extended from 0.3 min to 5.1 min, depending on the isolate and species. These data were used to calculate z values, which ranged from 5.0 to 9.8°C. The most heat sensitive isolates were E. faecalis (z values 5.0, 5.7 and 7.5°C), while the most heat resistant isolates were E. durans (z values 8.7 and 8.8°C), E. faecium (z value 9.0°C) and E. hirae (z values 8.5 and 9.8°C). The data show that heat resistance in enterococci is highly variable. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Bacillus subtilis as a Platform for Molecular Characterisation of Regulatory Mechanisms of Enterococcus faecalis Resistance against Cell Wall Antibiotics

    PubMed Central

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M.; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators. PMID:24676422

  3. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

    PubMed

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

  4. Titanium-Tethered Vancomycin Prevents Resistance to Rifampicin in Staphylococcus aureus in vitro

    PubMed Central

    Hacking, S. Adam

    2012-01-01

    Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×106 CFU, however inocula greater than 2×106 CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 106 CFU/cm2 by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×108 CFU. PMID:23285213

  5. Epidemiology of multidrug resistant bacterial organisms and Clostridium difficile in German hospitals in 2014: Results from a nationwide one-day point prevalence of 329 German hospitals.

    PubMed

    Huebner, Nils-Olaf; Dittmann, Kathleen; Henck, Vivien; Wegner, Christian; Kramer, Axel

    2016-09-02

    One important aspect in combatting resistance to antibiotics is to increase the awareness and knowledge by epidemiological studies. We therefore conducted a German-wide point-prevalence survey for multidrug resistant bacterial organisms (MDROs) and Clostridium difficile (CD) to assess the epidemiology and structure quality of infection control in German hospitals. 1550 hospitals were asked to participate and to report surveillance data on the prevalence of Methicillin-resistant and Vancomycin resistant Staphylococcus aureus (MRSA, VRSA/GRSA), Vancomycin resistant Enterococcus faecalis/faecium (VRE), multiresistant strains of Escherichia coli (EC), Klebsiella spp. (KS), Enterobacter spp. (ES), Acinetobacter spp. (AB) and Pseudomonas spp. (PS). as well as CD infections. Surveys from 73,983 patients from 329 hospitals were eligible for analysis. MRSA was the most often reported pathogen (prevalence: 1.64 % [CI95: 1.46-1.82]), followed by 3 multidrug resistant EC (3MRGN-EC) (0.75 % [CI95: 0.60-0.89]), CD (0.74 % [CI95: 0.60-0.88]), VRE (0.25 % [CI95: 0.13-0.37]) und 3MRGN-KS (0.22 % [CI95: [0.15-0.29]). The majority of hospitals met the German recommendations for staffing with infection control personnel. The continuing increase in participating hospitals in this third survey in a row indicates a growing awareness to MDROs and our pragmatic approach. Our results confirm that MRSA, 3MRGN-EC, VRE and 3MRGN-KS remain the most prevalent MDROs in German hospitals.

  6. Draft Genome Sequences of Five Enterococcus Species Isolated from the Gut of Patients with Suspected Clostridium difficile Infection

    PubMed Central

    Castro-Nallar, Eduardo; Valenzuela, Sandro L.; Baquedano, Sebastián; Sánchez, Carolina; Fernández, Fabiola

    2017-01-01

    ABSTRACT We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin. PMID:28522725

  7. Effect of nosocomial vancomycin-resistant enterococcal bacteremia on mortality, length of stay, and costs.

    PubMed

    Song, Xiaoyan; Srinivasan, Arjun; Plaut, David; Perl, Trish M

    2003-04-01

    To determine the impact of vancomycin-resistant enterococcal bacteremia on patient outcomes and costs by assessing mortality, excess length of stay, and charges attributable to it. A population-based, matched, historical cohort study. A 1,025-bed, university-based teaching facility and referral hospital. Two hundred seventy-seven vancomycin-resistant enterococcal bacteremia case-patients and 277 matched control-patients identified between 1993 and 2000. The crude mortality rate was 50.2% and 19.9% for case-patients and control-patients, respectively, yielding a mortality rate of 30.3% attributable to vancomycin-resistant enterococcal bacteremia. The excess length of hospital stay attributable to vancomycin-resistant enterococcal bacteremia was 17 days, of which 12 days were spent in intensive care units. On average, dollars 77,558 in extra charges was attributable to each vancomycin-resistant enterococcal bacteremia. To adjust for severity of illness, 159 pairs of case-patients and control-patients, who had the same severity of illness (All Patient Refined-Diagnosis Related Group complexity level), were further analyzed. When patients were stratified by severity of illness, the crude mortality rate was 50.3% among case-patients compared with 27.7% among control-patients, accounting for an attributable mortality rate of 22.6%. Attributable excess length of stay and charges were 17 days and dollars 81,208, respectively. Vancomycin-resistant enterococcal bacteremia contributes significantly to excess mortality and economic loss, once severity of illness is considered. Efforts to prevent these infections will likely be cost-effective.

  8. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci.

    PubMed

    Pidgeon, Sean E; Pires, Marcos M

    2017-07-21

    Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.

  9. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    PubMed

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  10. Targeting Enterococcus faecalis Biofilms with Phage Therapy

    PubMed Central

    Khalifa, Leron; Brosh, Yair; Gelman, Daniel; Coppenhagen-Glazer, Shunit; Beyth, Shaul; Poradosu-Cohen, Ronit; Que, Yok-Ai; Beyth, Nurit

    2015-01-01

    Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment. PMID:25662974

  11. Treatment of methicillin-resistant Staphylococcus aureus: vancomycin and beyond.

    PubMed

    Holmes, Natasha E; Tong, Steven Y C; Davis, Joshua S; van Hal, Sebastiaan J

    2015-02-01

    There has been a welcome increase in the number of agents available for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin remains an acceptable treatment option, with moves toward individualized dosing to a pharmacokinetic/pharmacodynamic (PK/PD) target. Numerous practicalities, however, would need to be resolved before implementation. Lipoglycopeptides as a class show excellent in vitro potency. Their long half-lives and complex PKs may preclude these agents being used in critically ill patients. Anti-MRSA cephalosporins provide great promise in the treatment of MRSA. These agents, despite broad-spectrum activity, should be reserved for patients with MRSA infections as it is likely that usage will be associated with increased rates of resistance. Daptomycin is currently the only antibiotic to have shown noninferiority to vancomycin in the treatment of MRSA bacteremia. The results of an open-labeled trial to address the superiority of daptomycin compared with vancomycin in reduced vancomycin susceptibility infections are eagerly anticipated. No drug to date has shown superiority to vancomycin in the treatment of MRSA infections with the possible exception of linezolid in hospital-acquired pneumonia (HAP), making linezolid an important option in the treatment of MRSA-proven HAP. Whether these strengths and features are agent or class specific are unclear but will likely be answered with the marketing of tedizolid. There are insufficient data to recommend either quinupristin/dalfopristin or tigecycline, as first line in the treatment of severe MRSA infections. These agents however remain options in patients with no other alternatives. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Vancomycin-resistant Staphylococcus aureus (VRSA) in hepatic cirrhosis patient: a case report

    NASA Astrophysics Data System (ADS)

    Ramazoni, M.; Siregar, M. L.; Jamil, K. F.

    2018-03-01

    The irrational use of vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) infections result in the emergence of vancomycin-resistant Staphylococcus aureus (VRSA) pathogen, which can pose a threat to the world healthcare. A 32-year-old male with hepatic cirrhosis patient admitted with recurrent gastrointestinal bleeding with a wound in his left leg since 6 months ago; the result microbiological culture showed a VRSA with minimum inhibitory concentration (MIC) vancomycin ≥32μg/mL The patient was treated with trimethoprim/sulfamethoxazole combination according to cultural sensitivity. The second microbiological culture showed thesame result. VRSA is a rare and difficult condition to handle. The success of therapy for this VRSA case warn us how important to cut the S. aureus distribution chain with a high level of resistance.

  13. Titanium-tethered vancomycin prevents resistance to rifampicin in Staphylococcus aureus in vitro.

    PubMed

    Rottman, Martin; Goldberg, Joel; Hacking, S Adam

    2012-01-01

    Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×10⁶ CFU, however inocula greater than 2×10⁶ CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 10⁶ CFU/cm² by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×10⁸ CFU.

  14. Iterative Chemical Engineering of Vancomycin Leads to Novel Vancomycin Analogs With a High in Vitro Therapeutic Index.

    PubMed

    Mishra, Nigam M; Stolarzewicz, Izabela; Cannaerts, David; Schuermans, Joris; Lavigne, Rob; Looz, Yannick; Landuyt, Bart; Schoofs, Liliane; Schols, Dominique; Paeshuyse, Jan; Hickenbotham, Peter; Clokie, Martha; Luyten, Walter; Van der Eycken, Erik V; Briers, Yves

    2018-01-01

    Vancomycin is a glycopeptide antibiotic that inhibits transpeptidation during cell wall synthesis by binding to the D-Ala-D-Ala termini of lipid II. For long, it has been used as a last resort antibiotic. However, since the emergence of the first vancomycin-resistant enterococci in 1987, vancomycin resistance has become widespread, especially in hospitals. We have synthesized and evaluated 110 vancomycin analogs modified at the C-terminal carboxyl group of the heptapeptide moiety with R 2 NHR 1 NH 2 substituents. Through iterative optimizations of the substituents, we identified vancomycin analogs that fully restore (or even exceed) the original inhibitory activity against vancomycin-resistant enterococci (VRE), vancomycin-intermediate (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) strains. The best analogs have improved growth inhibitory activity and in vitro therapeutic indices against a broad set of VRE and methicillin-resistant S. aureus (MRSA) isolates. They also exceed the activity of vancomycin against Clostridium difficile ribotypes. Vanc-39 and Vanc-42 have a low probability to provoke antibiotic resistance, and overcome different vancomycin resistance mechanisms (VanA, VanB, and VanC1).

  15. Influence of oral application of Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni.

    PubMed

    Letnická, Alica; Karaffová, Viera; Levkut, Mikuláš; Revajová, Viera; Herich, Róbert

    2017-09-01

    Campylobacteriosis is mainly caused by infection with Campylobacter jejuni following consumption or handling of Campylobacter-contaminated poultry meat. The aim of this study was to investigate the effect of probiotic Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and on immunocompetent cell distribution after C. jejuni infection in broiler chicken, as a second part of the previous study of Karaffová et al. (2017). Accordingly, day-old chicks were randomly divided into four experimental groups of 10 chicks each (n = 10): control (C), E. faecium AL41 (EFAL41), C. jejuni CCM6191 (CJ), and combined E. faecium AL41 + C. jejuni CCM6191 (EFAL41 + CJ). Samples from the caecum were collected on days 4 and 7 post Campylobacter infection (dpi), for the isolation of mRNA of TGF-β4, IL-17 and for immunohistochemistry. The relative mRNA expression of TGF-β4 was upregulated in the combined (EFAL41 + CJ) group compared to other groups during both samplings, but the expression of IL-17 was downregulated. Similarly, the highest density of CD3+ was detected in the combined group at 7 dpi, but the number of IgA+ cells was increased in both groups with EFAL41. It was concluded that the EFAL41 probiotic E. faecium strain can modulate the expression of selected cytokines (upregulation of TGF-β4 but downregulation of IL-17 relative expression), and activate IgA-producing cells in the caeca of chicks infected with C. jejuni CCM6191.

  16. Accumulation of phosphatidic acid increases vancomycin resistance in Escherichia coli.

    PubMed

    Sutterlin, Holly A; Zhang, Sisi; Silhavy, Thomas J

    2014-09-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Evaluation of Carbohydrate-Derived Fulvic Acid (CHD-FA) as a Topical Broad-Spectrum Antimicrobial for Drug-Resistant Wound Infections

    DTIC Science & Technology

    2015-10-01

    resistant Klebsiella pneumoniae, Enterococcus faecium, Staphylococcus aureus, Methicillin- resistant Staphylococcus aureus (MRSA), Escherichia coli ...cutaneous wound model in rats with the drug resistant Gram negative bacteria Acinetobacter baumannii, Escherichia coli , Klebsiella pneumoniae and...bioburden reduction induced by CHD-FA was also observed in wounds infected with multidrug resistant E. coli and K. pneumoniae. To better assess wound

  18. Room contamination, patient colonization pressure, and the risk of vancomycin-resistant Enterococcus colonization on a unit dedicated to the treatment of hematologic malignancies and hematopoietic stem cell transplantation.

    PubMed

    Ford, Clyde D; Lopansri, Bert K; Gazdik, Michaela A; Webb, Brandon; Snow, Gregory L; Hoda, Daanish; Adams, Barbara; Petersen, Finn Bo

    2016-10-01

    Contaminated surfaces and colonization pressure are risk factors for vancomycin-resistant Enterococcus (VRE) colonization in intensive care units (ICUs). Whether these apply to modern units dedicated to the care of hematologic malignancies and hematopoietic stem cell transplant (HSCT) procedures is unknown. We reviewed the records of 780 consecutive admissions for acute leukemia, autologous HSCT, or allogeneic HSCT in which the patient was at risk for hospital-acquired VRE and underwent weekly surveillance. We also obtained staff and room cultures, observed staff behavior, and performed VRE molecular strain typing on selected isolates. The overall rate of VRE colonization was 11.4 cases/1,000 patient days. Cultures of room surfaces revealed VRE isolates in 10% of terminally cleaned rooms. A prior VRE-colonized room occupant did not increase risk, and paired isolates from 20 patients and prior occupants were indistinguishable on molecular typing in only 1 pair. VRE colonization pressure was significantly associated with acquisition. Cultures of unit personnel and shared equipment were negative except for weighing scales. Observation of unit clinical personnel showed high compliance for hand sanitation and but less so for gowns. Conversely, ancillary staff showed poor compliance. Transmission of VRE from room surfaces seems to be an infrequent event. Encouraging adherence to surveillance, disinfection, and contact isolation protocols may decrease VRE colonization rates. Copyright © 2016. Published by Elsevier Inc.

  19. Treatment of Dialysis Catheter–Related Enterococcus Bacteremia With an Antibiotic Lock: A Quality Improvement Report

    PubMed Central

    Peterson, William J.; Maya, Ivan D.; Carlton, Donna; Estrada, Erin; Allon, Michael

    2008-01-01

    Background Catheter-related bacteremia (CRB) is a frequent complication of tunneled dialysis catheters, and Enterococcus is a common infecting organism. CRB may be treated by instilling an antibiotic lock into the catheter lumen, in conjunction with systemic antibiotics. The efficacy of this approach in Enterococcus bacteremia is unknown. Design Quality improvement report. Setting and participants 64 catheter-dependent hemodialysis outpatients with vancomycin-sensitive Enterococcus bacteremia treated with a uniform antibiotic lock protocol. Clinical outcomes were tracked prospectively. Quality improvement plans Patients received intravenous vancomycin for 3 weeks, in conjunction with a vancomycin lock instilled into both catheter lumens after each dialysis session. Measures Treatment failure was defined as persistent fever 48 hours after initiation of antibiotics or recurrent Enterococcus bacteremia within 90 days. A clinical cure was defined as fever resolution without recurrent bacteremia. Major infection-related complications within 6 months were documented. Results Treatment failure occurred in 25 patients (39%), due to persistent fever in 10, and recurrent bacteremia in 15. Treatment success occurred in 39 patients (61%). A serious complication of Enterococcus CRB occurred in 4 of 64 patients (6%), endocarditis in 1 and osteomyelitis in 3. The frequency of serious complications was 16% (4/25) in patients with treatment failure, as compared with 0% (0/39) in those with treatment success (P=0.01). Limitations This was a single-center study. We did not measure serum vancomycin levels. Conclusions An antibiotic lock protocol permits catheter salvage in 61% of hemodialysis patients with Enterococcus CRB. Serious complications occur in 6% of patients, and are more common in those with treatment failure. PMID:18848379

  20. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci.

    PubMed

    Hughes, C S; Longo, E; Phillips-Jones, M K; Hussain, R

    2017-08-01

    A-type resistance towards "last-line" glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanR A S A two-component system, comprising the histidine sensor kinase VanS A and the partner response regulator VanR A . The nature of the activating ligand for VanS A has not been identified, therefore this work sought to identify and characterise ligand(s) for VanS A . In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanS A protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanS A with different affinities (vancomycin 70μM; teicoplanin 30 and 170μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanS A , proposing them as activators of type A vancomycin resistance in the enterococci. Copyright © 2017 Diamond Light Source Ltd. Published by Elsevier B.V. All rights reserved.